--- /srv/rebuilderd/tmp/rebuilderdrj3qB7/inputs/macaulay2-common_1.25.11+ds-2_all.deb +++ /srv/rebuilderd/tmp/rebuilderdrj3qB7/out/macaulay2-common_1.25.11+ds-2_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-12-14 14:09:53.000000 debian-binary │ --rw-r--r-- 0 0 0 540512 2025-12-14 14:09:53.000000 control.tar.xz │ --rw-r--r-- 0 0 0 31297916 2025-12-14 14:09:53.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 540532 2025-12-14 14:09:53.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 31297284 2025-12-14 14:09:53.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: macaulay2-common │ │ │ Source: macaulay2 │ │ │ Version: 1.25.11+ds-2 │ │ │ Architecture: all │ │ │ Maintainer: Debian Math Team │ │ │ -Installed-Size: 305306 │ │ │ +Installed-Size: 305291 │ │ │ Depends: fonts-katex (>= 0.16.10+~cs6.1.0), libjs-bootsidemenu (>= 1.0.0), libjs-bootstrap5 (>= 5.3.8+dfsg), libjs-d3 (>= 3.5.17), libjs-jquery (>= 3.7.1+dfsg+~3.5.33), libjs-katex (>= 0.16.10+~cs6.1.0), libjs-nouislider (>= 15.8.1+ds), libjs-three (>= 111+dfsg1), node-clipboard (>= 2.0.11+ds+~cs9.6.11), node-fortawesome-fontawesome-free (>= 6.7.2+ds1) │ │ │ Section: math │ │ │ Priority: optional │ │ │ Multi-Arch: foreign │ │ │ Homepage: http://macaulay2.com │ │ │ Description: Software system for algebraic geometry research (common files) │ │ │ Macaulay 2 is a software system for algebraic geometry research, written by │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -3723,18 +3723,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 76682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2909 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 289851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/example-output/ │ │ │ @@ -3998,15 +3998,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bertini/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 141706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 8038 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp2.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6928 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp4.out │ │ │ -rw-r--r-- 0 root (0) root (0) 758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Character_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Equality_spchecks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Labels.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Sub.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/_action_lp__Complex_cm__List_cm__List_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/example-output/_action_lp__Module_cm__List_cm__List_rp.out │ │ │ @@ -4028,15 +4028,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 62 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Action.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Action__On__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8643 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Action__On__Graded__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp2.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18504 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp4.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9931 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Character.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6339 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Character__Decomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6812 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Character__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Character_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Character_spoperations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6855 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BettiCharacters/html/___Equality_spchecks.html │ │ │ @@ -4315,22 +4315,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 19549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 4572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4571 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_elementary.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_evans__Griffith.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_is__Syzygy.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 14041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14040 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_elementary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_evans__Griffith.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_is__Syzygy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4075 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/toc.html │ │ │ @@ -4365,15 +4365,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Minimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Simplex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Well__Defined_lp__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_is__Well__Defined_lp__Cell_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_max__Cells.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_new__Cell.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_new__Simplex__Cell.out │ │ │ --rw-r--r-- 0 root (0) root (0) 733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_ring_lp__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_skeleton_lp__Z__Z_cm__Cell__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_subcomplex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 821 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_taylor__Complex.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 39 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/.Headline │ │ │ @@ -4406,15 +4406,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Minimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Simplex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Well__Defined_lp__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8974 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_is__Well__Defined_lp__Cell_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_max__Cells.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8432 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_new__Cell.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7358 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_new__Simplex__Cell.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_ring_lp__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_skeleton_lp__Z__Z_cm__Cell__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_subcomplex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/_taylor__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CellularResolutions/html/master.html │ │ │ @@ -4429,19 +4429,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Chain__Complex__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Exact_lp__Chain__Complex_cm__Length__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 578 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Exact_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism_lp..._cm__Length__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_koszul__Complex.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1960 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_nonzero__Max.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_prepend__Zero__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_remove__Zero__Trailing__Terms.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3450 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_substitute_lp__Chain__Complex_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_trivial__Homological__Truncation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/ │ │ │ @@ -4459,20 +4459,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9376 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_is__Exact_lp__Chain__Complex_cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_is__Exact_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_is__Minimal__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_is__Quasi__Isomorphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9544 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_is__Quasi__Isomorphism_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10094 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Max.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_prepend__Zero__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_remove__Zero__Trailing__Terms.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9135 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_substitute_lp__Chain__Complex_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ @@ -4501,49 +4501,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 4377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4376 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Toric__Variety__Valid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chern.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Toric__Chow__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2017 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2013 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ -rw-r--r-- 0 root (0) root (0) 342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out │ │ │ --rw-r--r-- 0 root (0) root (0) 759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 664 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Multi__Proj__Coord__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Output.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3327 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1666 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Toric__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_is__Multi__Homogeneous.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_probabilistic_spalgorithm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 55 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 23694 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Toric__Variety__Valid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chern.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6409 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7339 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Toric__Chow__Ring.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6013 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Multi__Proj__Coord__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16398 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16710 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Toric__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4910 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_bertini__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_configuring_sp__Bertini.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_is__Multi__Homogeneous.html │ │ │ @@ -4558,15 +4558,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Chordal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Element_sp_pc_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Map_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_adjacent__Minors__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Elim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1196 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1633 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Tria.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal_spnetworks_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chromatic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_codim__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_components_lp__Chordal__Net_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_constraint__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 726 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_digraph_lp__Chordal__Net_rp.out │ │ │ @@ -4599,15 +4599,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3907 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Get__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Element_sp_pc_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Map_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5071 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_adjacent__Minors__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Elim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Tria.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10852 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal_spnetworks_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chromatic__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_codim__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_components_lp__Chordal__Net_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_constraint__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_digraph_lp__Chordal__Net_rp.html │ │ │ @@ -4899,15 +4899,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 231378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__G__G__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Complete__Intersection__Resolutions.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash__Total.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module__Data.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2102 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 761 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_complexity.out │ │ │ @@ -4931,24 +4931,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_matrix__Factorization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_new__Ext.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_odd__Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_regularity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_splittings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ --rw-r--r-- 0 root (0) root (0) 451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___A__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4935 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Augmentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__G__G__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9094 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash__Total.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10327 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Hom__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Layered.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Lift.html │ │ │ @@ -4993,18 +4993,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_module__As__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_new__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_odd__Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_psi__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_regularity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_splittings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_stable__Hom.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6046 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_tensor__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_to__Array.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 56031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 706402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/example-output/ │ │ │ @@ -5342,29 +5342,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 36623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Gauss_sq_sphypergeometric_spfunction.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3313 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_base__Fraction__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Transform.out │ │ │ -rw-r--r-- 0 root (0) root (0) 299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Epsilon__Factorized.out │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Integrable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_standard__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 56 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 46479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Gauss_sq_sphypergeometric_spfunction.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9212 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_base__Fraction__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Transform.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_is__Epsilon__Factorized.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_is__Integrable.html │ │ │ @@ -5584,136 +5584,136 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 38506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 239171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2310 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Codim__Bs__Inv.out │ │ │ --rw-r--r-- 0 root (0) root (0) 19788 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ --rw-r--r-- 0 root (0) root (0) 526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 19786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 527 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_eq_eq_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_vb_sp__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 42548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 42544 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_coefficients_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 33238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_describe_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_exceptional__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_flatten_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 492 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph_lp__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 46183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Isomorphism_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Morphism.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6113 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_map_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 18539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 18540 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1461 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_quadro__Quadric__Cremona__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5782 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Polynomial__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6868 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 23421 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 23420 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3628 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_super_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Blow__Up__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Certify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Codim__Bs__Inv.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Dominant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Num__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4917 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_eq_eq_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_us_st.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11362 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_vb_sp__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17701 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 51962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 51958 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4930 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficient__Ring_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficients_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_describe_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_entries_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_exceptional__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_flatten_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Inverse__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph_lp__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6127 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20053 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 53874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6457 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map_lp__Rational__Map_cm__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Isomorphism_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6602 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Morphism.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_matrix_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_quadro__Quadric__Cremona__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Polynomial__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_source_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13797 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8762 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_super_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_target_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12995 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 66135 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 66133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37101 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6101 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/_cyclotomic__Field.out │ │ │ @@ -5733,17 +5733,17 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 184137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 8593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_us__Z__Z_sp__D__G__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_adjoin__Variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations__To__Poincare.out │ │ │ @@ -5753,16 +5753,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_expand__Geom__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_find__Trivial__Massey__Operation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_free__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Basis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Boundary__Preimage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Generators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3937 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1991 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 812 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1992 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Acyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod__Homomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homogeneous_lp__D__G__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homology__Algebra__Trivial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_kill__Cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1082 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_koszul__Complex__D__G__A.out │ │ │ @@ -5787,20 +5787,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 16114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___End__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Gen__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_us__Z__Z_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Rel__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Start__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4822 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___T__M__O__Limit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_adjoin__Variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_block__Diff.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ @@ -5825,16 +5825,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism_lp..._cm__T__M__O__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Homogeneous_lp__D__G__Algebra_rp.html │ │ │ @@ -6242,36 +6242,36 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 41804 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7766 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 794 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/_zero__Dim__Solve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/_zero__Dim__Solve.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4942 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 892 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9076 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7360 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15904 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 98399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/example-output/ │ │ │ @@ -6459,35 +6459,35 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6990 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EngineTests/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 10834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_multiple__Cover.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2170 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5203 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_multiple__Cover.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Equivariant__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Priority__Queue.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Monomial__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring_lp__Ring_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 222 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_delete__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 348 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_exponent__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_inc__Orbit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_insert_lp__Priority__Queue_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_length_lp__Priority__Queue_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_merge__P__Q.out │ │ │ -rw-r--r-- 0 root (0) root (0) 161 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_min_lp__Priority__Queue_rp.out │ │ │ @@ -6502,15 +6502,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4953 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Shift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3844 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Symmetrize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9077 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Monomial__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring_lp__Ring_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5895 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_delete__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9002 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_exponent__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7150 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_inc__Orbit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_insert_lp__Priority__Queue_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_length_lp__Priority__Queue_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_merge__P__Q.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_min_lp__Priority__Queue_rp.html │ │ │ @@ -6753,68 +6753,68 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2981 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FGLM/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 142955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Point__Options.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 14279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1054 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Good__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 246 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Random__Submatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Largest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Smallest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_get__Submatrix__Of__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Rank__At__Least.out │ │ │ --rw-r--r-- 0 root (0) root (0) 436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 435 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out │ │ │ --rw-r--r-- 0 root (0) root (0) 25047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 25044 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_reorder__Polynomial__Ring.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Det__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Max__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Min__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Modulus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Point__Options.html │ │ │ --rw-r--r-- 0 root (0) root (0) 27489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 27490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Good__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Random__Submatrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Largest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Smallest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_get__Submatrix__Of__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Dim__At__Most.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least_lp..._cm__Threads_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10205 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10204 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ --rw-r--r-- 0 root (0) root (0) 43514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 43511 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_reorder__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ -rw-r--r-- 0 root (0) root (0) 334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_affine__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_co1__Fitting.out │ │ │ -rw-r--r-- 0 root (0) root (0) 848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gauss__Col.out │ │ │ -rw-r--r-- 0 root (0) root (0) 365 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_gotzmann__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_next__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 197 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/_quot__Scheme.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 10957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_affine__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_co1__Fitting.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gauss__Col.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_gotzmann__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7246 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_next__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/_quot__Scheme.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9538 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/index.html │ │ │ @@ -7037,15 +7037,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 105269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Frobenius__Thresholds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Guess__Strategy.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_compare__F__P__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__Jumping__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__P__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__Simple__Normal__Crossing.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 12 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Bounds.html │ │ │ @@ -7057,15 +7057,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10580 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Guess__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Return__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4769 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Standard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Use__Special__Algorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_compare__F__P__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24542 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13295 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__Jumping__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__P__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__Simple__Normal__Crossing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19600 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20028 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7092 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FunctionFieldDesingularization/ │ │ │ @@ -7117,15 +7117,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 339 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 170 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_normal__Toric__Variety_lp__G__K__M__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8064 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pullback_lp__Equivariant__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pushforward.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_set__Indicator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_trivial__K__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_underlying__Graph_lp__Moment__Graph_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/ │ │ │ @@ -7168,15 +7168,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7893 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_normal__Toric__Variety_lp__G__K__M__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pullback_lp__Equivariant__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pushforward.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6964 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_set__Indicator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_trivial__K__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_underlying__Graph_lp__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26820 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/index.html │ │ │ @@ -8244,32 +8244,32 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/___Groebner__Strata.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Constraints.out │ │ │ -rw-r--r-- 0 root (0) root (0) 598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Vector.out │ │ │ -rw-r--r-- 0 root (0) root (0) 30368 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Family.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2709 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Stratum.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_linear__Part.out │ │ │ --rw-r--r-- 0 root (0) root (0) 13267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13044 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 15158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_smaller__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 960 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_standard__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_tail__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___All__Standard.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___Minimalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Constraints.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 42133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Family.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Stratum.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_linear__Part.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23971 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_smaller__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_standard__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_tail__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/ │ │ │ @@ -8293,28 +8293,28 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 18704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_eq_eq_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_st_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 934 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_ideal__Of__Projective__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5014 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_eq_eq_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_st_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_ideal__Of__Projective__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/index.html │ │ │ @@ -8417,61 +8417,61 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 920 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Appell__F1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Canonical_sp__Series_sp__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4893 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4892 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_diff__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_distraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_euler__Operators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_gkz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_is__Torus__Fixed.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_put__Weyl__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2252 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_toric__Ideal__Partials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Appell__F1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Canonical_sp__Series_sp__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Wto__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_create__Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11150 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_diff__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_distraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7705 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_euler__Operators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_gkz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_indicial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_is__Torus__Fixed.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_nilsson__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_put__Weyl__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6396 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_toric__Ideal__Partials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_truncated__Canonical__Series.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 21857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/___Homotopy__Lie__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_ad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_allgens.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket__Matrix.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_ad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_allgens.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 233569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/rawdocumentation.dump │ │ │ @@ -8644,18 +8644,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Frac__P_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__P__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_idealizer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 28106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2398 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_is__Normal_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_make__S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ring__From__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_test__Huneke__Question.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/ │ │ │ @@ -8679,18 +8679,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ic__P__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8990 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Index_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6571 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 57383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 57380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14718 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12734 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_is__Normal_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ring__From__Fractions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_test__Huneke__Question.html │ │ │ @@ -8705,29 +8705,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_action__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_ambient_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_cyclic__Factors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_defining__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_degrees__Ring_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 685 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_diagonal__Action.out │ │ │ -rw-r--r-- 0 root (0) root (0) 300 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_dim_lp__Group__Action_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_finite__Action.out │ │ │ -rw-r--r-- 0 root (0) root (0) 677 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Series_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hironaka__Decomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariant__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Abelian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Invariant.out │ │ │ @@ -8761,32 +8761,32 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6600 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_action__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_ambient_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_cyclic__Factors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6918 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_defining__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_degrees__Ring_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8613 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_diagonal__Action.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5362 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_dim_lp__Group__Action_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert__Series.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_finite__Action.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6507 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6898 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Series_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hironaka__Decomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23420 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariant__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6139 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Subring__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8197 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13243 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Abelian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Invariant.html │ │ │ @@ -8873,21 +8873,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvolutiveBases/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_check__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_check__Degrees_lp..._cm__Strict_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 53645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 53647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_isomorphism.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9558 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_check__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6908 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_check__Degrees_lp..._cm__Strict_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 66341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 66343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_isomorphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7777 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/dump/rawdocumentation.dump │ │ │ @@ -8983,62 +8983,62 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_all__Gradings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_canonical__Homotopies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ --rw-r--r-- 0 root (0) root (0) 269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_correspondence__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 804 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_cox__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_homotopy__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_irrelevant__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_product__Of__Projective__Spaces.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1075 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_relative__Resolution__Twists.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out │ │ │ -rw-r--r-- 0 root (0) root (0) 129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_scheme__In__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3037 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_schreyer__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_small__Diagonal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Fine__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Scrolls.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_all__Gradings.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Carpet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Homotopies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10622 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_correspondence__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_cox__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_gorenstein__Double.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_hankel__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_homotopy__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6177 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_irrelevant__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_product__Of__Projective__Spaces.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7118 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7204 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_relative__Resolution__Twists.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_scheme__In__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_schreyer__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_small__Diagonal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22352 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/toc.html │ │ │ @@ -9162,27 +9162,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LAYOUT.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33504 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2411 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 476 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_gcd__L__L__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/example-output/_is__L__L__L.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 28 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___B__K__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Engine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4148 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Cohen__Top__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Givens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Hermite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9865 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Change__Matrix_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 22126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 22129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3996 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___N__T__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3797 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__F__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3817 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__Q__P1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3833 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__R__R.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Real__X__D.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LLLBases/html/___Threshold.html │ │ │ @@ -9198,15 +9198,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 70564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/___Working_spwith_splattice_sppolytopes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_adjoint__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_ambient__Halfspaces.out │ │ │ --rw-r--r-- 0 root (0) root (0) 596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_cayley.out │ │ │ -rw-r--r-- 0 root (0) root (0) 85 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_codegree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_degree__Of__Jet__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_epsilon__Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gaussk__Fiber.out │ │ │ @@ -9223,15 +9223,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_toric__Div.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_torus__Embedding.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/___Working_spwith_splattice_sppolytopes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5659 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_adjoint__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_ambient__Halfspaces.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_cayley.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_codegree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6907 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_degree__Of__Jet__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_epsilon__Bounds.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6764 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gaussk__Fiber.html │ │ │ @@ -9475,30 +9475,30 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 60488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 790 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/___Linear__Truncations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_comp__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_diagonal__Multidegrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Mins.out │ │ │ --rw-r--r-- 0 root (0) root (0) 701 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ -rw-r--r-- 0 root (0) root (0) 754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_irrelevant__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1046 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_is__Linear__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 904 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_is__Quasi__Linear.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1150 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_linear__Truncations__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_multigraded__Polynomial__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_partial__Regularities.out │ │ │ -rw-r--r-- 0 root (0) root (0) 577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_regularity__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1734 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_support__Of__Tor.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_comp__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_diagonal__Multidegrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Mins.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_irrelevant__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8139 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_is__Linear__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_is__Quasi__Linear.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8199 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_multigraded__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LinearTruncations/html/_partial__Regularities.html │ │ │ @@ -9711,15 +9711,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Expression.out │ │ │ -rw-r--r-- 0 root (0) root (0) 788 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Matrix_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Flat__Monoid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_at_at_sp__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_us_sp__Thing.out │ │ │ --rw-r--r-- 0 root (0) root (0) 414 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__F.out │ │ │ -rw-r--r-- 0 root (0) root (0) 194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Rev__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Gamma.out │ │ │ -rw-r--r-- 0 root (0) root (0) 230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Assign__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Release__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Grassmannian.out │ │ │ @@ -9965,46 +9965,46 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apply_lp__Z__Z_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apropos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ascii.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asinh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assigning_spvalues.out │ │ │ --rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atanh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_augmented_spassignment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_autoload.out │ │ │ -rw-r--r-- 0 root (0) root (0) 137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2978 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_sparithmetic_spof_spmatrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_spconstruction_cm_spsource_spand_sptarget_spof_spa_spring_spmap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1118 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_springs_spof_spnumbers.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basis.out │ │ │ --rw-r--r-- 0 root (0) root (0) 133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_betti_lp__Betti__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_between.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_binomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_block__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_borel_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 725 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_break.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_capture.out │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ceiling_lp__Number_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_center__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Base.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_char.out │ │ │ -rw-r--r-- 0 root (0) root (0) 196 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_characters.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_check.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_check.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_clean.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_code.out │ │ │ -rw-r--r-- 0 root (0) root (0) 543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_codim_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_codim_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_codim_lp__Monomial__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_codim_lp__Quotient__Ring_rp.out │ │ │ @@ -10020,22 +10020,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_column__Swap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_columnate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_combine.out │ │ │ -rw-r--r-- 0 root (0) root (0) 198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_command__Interpreter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 149 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comments.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_common__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_commonest.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 225 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compact__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compare__Exchange.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compose.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2477 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compositions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compress.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_spsyzygies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1767 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_concatenating_spmatrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conditional_spexecution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 148 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_conjugate_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_constructing_spmaps_spbetween_spmodules.out │ │ │ @@ -10061,15 +10061,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__File__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 90 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__File__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Layout.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 81 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Row__Number.out │ │ │ --rw-r--r-- 0 root (0) root (0) 330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_debug_lp__Package_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_debug_lp__String_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_deep__Splice.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_default__Precision.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_definition_spof_spproduct_sp_lpblock_rp_sporders.out │ │ │ -rw-r--r-- 0 root (0) root (0) 735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_degree__Group.out │ │ │ @@ -10115,15 +10115,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eagon__Northcott.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvalues.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvectors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eint.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elements.out │ │ │ --rw-r--r-- 0 root (0) root (0) 21211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 782 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3683 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 487 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_equality_spand_spcontainment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erfc.out │ │ │ @@ -10264,15 +10264,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inheritance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inputting_spa_spmatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_insert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spassignment_spmethods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spaugmented_spassignment_spmethods.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integers_spmodulo_spa_spprime.out │ │ │ -rw-r--r-- 0 root (0) root (0) 315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integrate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1162 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Set_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection_spof_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inverse__Erf.out │ │ │ @@ -10404,18 +10404,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 769 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 125 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max.out │ │ │ --rw-r--r-- 0 root (0) root (0) 82 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 83 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ -rw-r--r-- 0 root (0) root (0) 83 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Position.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_merge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method__Options_lp__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods_spfor_spnormal_spforms_spand_spremainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min__Exponent.out │ │ │ @@ -10501,16 +10501,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_override.out │ │ │ -rw-r--r-- 0 root (0) root (0) 681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pack.out │ │ │ -rw-r--r-- 0 root (0) root (0) 144 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packages.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packing_spmonomials_spfor_spefficiency.out │ │ │ -rw-r--r-- 0 root (0) root (0) 131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pairs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8669 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parsing_spprecedence_cm_spin_spdetail.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partitions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pdim_lp__Module_rp.out │ │ │ @@ -10518,15 +10518,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_peek_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permanents.out │ │ │ -rw-r--r-- 0 root (0) root (0) 874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_permutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pfaffian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pfaffians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pi.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pivots_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 13708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polarize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_polynomial_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_position.out │ │ │ -rw-r--r-- 0 root (0) root (0) 475 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_positions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_powermod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_precision.out │ │ │ -rw-r--r-- 0 root (0) root (0) 657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_prefix__Path.out │ │ │ @@ -10560,15 +10560,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_push__Forward_lp__Ring__Map_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 796 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient__Remainder_sq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3975 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_lp__Matrix_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1476 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_quotient_sq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 669 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__Subset.out │ │ │ -rw-r--r-- 0 root (0) root (0) 843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__List_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 138 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Q__Q_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random_lp__Type_rp.out │ │ │ @@ -10655,15 +10655,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_show__User__Structure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sign.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_simple_sp__Groebner_spbasis_spcomputations_spover_spvarious_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_size2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_smith__Normal__Form_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_some__Terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort__Columns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_specifying_sptypical_spvalues.out │ │ │ @@ -10729,15 +10729,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tests.out │ │ │ -rw-r--r-- 0 root (0) root (0) 214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tex__Math.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_the_spdebugger.out │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_thread__Local.out │ │ │ -rw-r--r-- 0 root (0) root (0) 134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_throw.out │ │ │ --rw-r--r-- 0 root (0) root (0) 142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 143 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Absolute__Path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__C__C.out │ │ │ -rw-r--r-- 0 root (0) root (0) 428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__External__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Field_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 94 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Lower.out │ │ │ @@ -10778,15 +10778,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_value_lp__Symbol_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_values.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Monoid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vector.out │ │ │ --rw-r--r-- 0 root (0) root (0) 12155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 12161 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1121 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_viewing_spthe_spsymbols_spdefined_spso_spfar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_weight__Range.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spa_spclass_spis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spis_spa_sp__Groebner_spbasis_qu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_while.out │ │ │ -rw-r--r-- 0 root (0) root (0) 133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_width_lp__Net_rp.out │ │ │ @@ -10954,15 +10954,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Body.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4006 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_at_at_sp__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_us_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__B__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__C_spgarbage_spcollector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__F.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__N__U_sp__M__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Rev__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Galois__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Gamma.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___General__Ordered__Monoid.html │ │ │ @@ -11515,15 +11515,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_argument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ascii.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6112 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assigning_spvalues.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_associative_spalgebras.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4872 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atanh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_augmented_spassignment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_autoload.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4113 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_backtrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Filename.html │ │ │ @@ -11531,26 +11531,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Rings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_sparithmetic_spof_spmatrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_spconstruction_cm_spsource_spand_sptarget_spof_spa_spring_spmap.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_springs_spof_spnumbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_begin__Documentation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9767 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_betti_lp__Betti__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_between.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binary_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5698 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_block__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_borel_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7894 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_break.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7156 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_capture.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cdd_pl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling_lp__Number_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_center__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -11586,15 +11586,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_changes_cm_sp1.8.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6879 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_changes_cm_sp1.9.1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_changes_cm_sp1.9.2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_changes_cm_sp1.9.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_changes_spto_sp__Macaulay2_cm_spby_spversion.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5138 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_char.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_characters.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_check.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4076 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_chi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6177 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_clean.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4359 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_clear__All.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_clear__Echo.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4197 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_clear__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_close.html │ │ │ @@ -11625,26 +11625,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combinatorics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Interpreter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Line.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comments.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_common__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commonest.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9305 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commutative_spalgebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compact__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compare__Exchange.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9441 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compositions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compress.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_spsyzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_concatenating_spmatrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conditional_spexecution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conjugate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_conjugate_lp__Partition_rp.html │ │ │ @@ -11680,15 +11680,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4785 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__File__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__File__Name.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Layout.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5092 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Row__Number.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug__Error.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4578 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5587 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__Local__Dictionary_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__Package_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debug_lp__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11864 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_debugging.html │ │ │ @@ -11770,15 +11770,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors_lp..._cm__Hermitian_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eint.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elementary_sparithmetic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elements.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6025 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_endl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3725 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_engine__Debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5845 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_environment.html │ │ │ @@ -12014,15 +12014,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installed__Packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spaugmented_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instance.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integers_spmodulo_spa_spprime.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integrate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_interpreter__Depth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__R__Ri_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Set_cm__Set_rp.html │ │ │ @@ -12206,18 +12206,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5744 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3987 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Position.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6091 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method__Options_lp__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods_spfor_spnormal_spforms_spand_spremainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4898 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_midpoint.html │ │ │ @@ -12355,16 +12355,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10924 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 81466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages_spprovided_spwith_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packing_spmonomials_spfor_spefficiency.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pager.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11431 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel__Apply.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20417 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parsing_spprecedence_cm_spin_spdetail.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partitions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_path.html │ │ │ @@ -12375,15 +12375,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permanents.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_permutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6779 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pfaffian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pfaffians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5571 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pivots_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_plus.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare__N.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polarize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21362 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_polynomial_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_position.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_positions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_powermod.html │ │ │ @@ -12436,15 +12436,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8898 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient__Remainder_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_lp__Matrix_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11071 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_quotient_sq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8674 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7540 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__Mutable__Matrix_lp__Z__Z_cm__Z__Z_cm__R__R_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6882 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__Subset.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__List_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Q__Q_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random_lp__Type_rp.html │ │ │ @@ -12574,15 +12574,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sleep.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_smith__Normal__Form_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8028 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_some__Terms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9127 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ @@ -12681,15 +12681,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_tex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5441 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_tex__Math.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spdebugger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3979 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spengine_spof_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spinterpreter_spof_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_thread__Local.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_throw.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4988 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4989 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_times.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__Absolute__Path.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__C__C.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__External__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__Field_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7589 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__List.html │ │ │ @@ -12752,15 +12752,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_values.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Monoid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17082 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_view__Help.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_viewing_spthe_spsymbols_spdefined_spso_spfar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4355 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wait.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_weight__Range.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spa_spclass_spis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spis_spa_sp__Groebner_spbasis_qu.html │ │ │ @@ -13134,15 +13134,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 199907 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Full__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__Random__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___A__S__M__To__Monotone__Triangle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Functions_spfor_spinvestigating_sppermutations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Initial_spideals_spof_sp__A__S__M_spideals.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6282 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out │ │ │ -rw-r--r-- 0 root (0) root (0) 44253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out │ │ │ -rw-r--r-- 0 root (0) root (0) 680 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___K__Polynomial__A__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Pipe__Dream.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_anti__Diag__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Essential__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_augmented__Rothe__Diagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 257 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_avoids__All__Patterns.out │ │ │ @@ -13204,15 +13204,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5219 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Full__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__Random__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___A__S__M__To__Monotone__Triangle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Functions_spfor_spinvestigating_sppermutations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21942 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Initial_spideals_spof_sp__A__S__M_spideals.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 58003 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___K__Polynomial__A__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Pipe__Dream.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_anti__Diag__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Essential__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_augmented__Rothe__Diagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5855 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MatrixSchubert/html/_avoids__All__Patterns.html │ │ │ @@ -13346,15 +13346,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_nonbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_parallel__Connection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_positive__Orientation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1019 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_projective__Geometry.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 502 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relabel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relaxation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_restriction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_search__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_series__Connection.out │ │ │ @@ -13446,15 +13446,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5632 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_nonbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6680 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_parallel__Connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_positive__Orientation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_projective__Geometry.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_cm__Set_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relabel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relaxation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_restriction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_save__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_search__Representation.html │ │ │ @@ -13485,29 +13485,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2953 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_is__Prime_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal__Primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal_spprimes_spof_span_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out │ │ │ --rw-r--r-- 0 root (0) root (0) 870 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 871 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical_spof_span_spideal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 46 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5845 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_is__Prime_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal_spprimes_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11292 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8578 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 15700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/dump/rawdocumentation.dump │ │ │ @@ -13543,25 +13543,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_m__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_mixed__Multiplicity.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2839 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2838 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 229 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_sec__Milnor__Numbers.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_m__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_mixed__Multiplicity.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8870 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_sec__Milnor__Numbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/ │ │ │ @@ -13586,15 +13586,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver__Options.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 243 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_compute__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_create__Seed__Pair.out │ │ │ --rw-r--r-- 0 root (0) root (0) 942 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 941 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_cm__Abstract__Point_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__E.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__Lower__Bound.out │ │ │ @@ -13609,15 +13609,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/___Point__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4552 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4697 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_compute__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_create__Seed__Pair.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_get__Track__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6199 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_homotopy__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_indices_lp__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_is__Member_lp__Abstract__Point_cm__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_length_lp__Point__Array_rp.html │ │ │ @@ -13855,28 +13855,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 19109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 41382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 719 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_compute__Component.out │ │ │ -rw-r--r-- 0 root (0) root (0) 723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_interpolate__Component.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_max__Grading.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_trim__Basis__In__Degree.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Coefficient__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Previous__Gens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Return__Target__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Use__Interpolation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Use__Matroid.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11855 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6602 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_compute__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_interpolate__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8008 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_max__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_trim__Basis__In__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/master.html │ │ │ @@ -13885,27 +13885,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35822 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/___N__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_gr__Gr.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_hilbert__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_multiplicity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_print__Hilbert__Sequence.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/___N__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_gr__Gr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6040 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5705 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_multiplicity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6921 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_print__Hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/toc.html │ │ │ @@ -13958,15 +13958,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5192 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplierIdealsDim2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 379736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp!.out │ │ │ --rw-r--r-- 0 root (0) root (0) 20227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 20228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5148 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_bs_sp__Multiprojective__Variety.out │ │ │ @@ -13974,15 +13974,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 507 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 763 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 744 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multirational__Map.out │ │ │ @@ -14002,41 +14002,41 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cone__Of__Lines.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_conormal__Variety_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cycle__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_decompose_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1006 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degrees_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dim_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 482 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dual_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_entries_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_euler_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_factor_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_fiber__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ideal_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1016 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 801 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 931 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 753 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Well__Defined_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 790 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linear__Span.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 661 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_parametrize_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_permute_lp__Multiprojective__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -14051,15 +14051,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_random_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_schubert__Cycle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_sectional__Genus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shape_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shortcuts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 512 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_singular__Locus_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_super_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 352 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_support_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_tangent__Cone_lp__Embedded__Projective__Variety_cm__Embedded__Projective__Variety_rp.out │ │ │ @@ -14073,15 +14073,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 631 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋂.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋃.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 14090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8119 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp!.html │ │ │ --rw-r--r-- 0 root (0) root (0) 29042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 29043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6724 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Grassmannian__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24980 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety.html │ │ │ @@ -14092,15 +14092,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_eq_eq_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_eq_eq_gt_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multirational__Map.html │ │ │ @@ -14125,41 +14125,41 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cone__Of__Lines.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_conormal__Variety_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cycle__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_decompose_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degrees_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dim_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6476 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dual_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_entries_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_euler_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_factor_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9165 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_fiber__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9685 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ideal_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8018 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7121 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7820 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Well__Defined_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linear__Span.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7618 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10280 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_parametrize_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_permute_lp__Multiprojective__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -14176,15 +14176,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__List_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ring_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_schubert__Cycle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_sectional__Genus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shape_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9083 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shortcuts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5740 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_singular__Locus_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_source_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_super_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_support_lp__Multiprojective__Variety_rp.html │ │ │ @@ -14560,26 +14560,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 28886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NCAlgebra/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 139526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_add__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_build__Graph__Filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 165 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_count__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_filter__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Bipartite__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph6__To__Sparse6.out │ │ │ --rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Graph.out │ │ │ @@ -14589,26 +14589,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_string__To__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_string__To__Graph.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 18 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5988 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8521 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_add__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6991 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14195 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_build__Graph__Filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6502 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7139 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Graph.html │ │ │ @@ -14629,15 +14629,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_add__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_build__Graph__Filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 124 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Graph.out │ │ │ @@ -14655,15 +14655,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7800 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9132 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9062 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Graph.html │ │ │ @@ -14691,15 +14691,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 431 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Dependent__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op.out │ │ │ -rw-r--r-- 0 root (0) root (0) 553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_amult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 931 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_coordinate__Change__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_differential__Primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_eliminating__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_evaluate_lp__Diff__Op_cm__Abstract__Point_rp.out │ │ │ @@ -14732,15 +14732,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 75 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Dependent__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op_sp__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5026 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Sampler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Tolerance_sp_lp__Noetherian__Operators_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_amult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_colon.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_coordinate__Change__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op_lp__Matrix_rp.html │ │ │ @@ -14829,15 +14829,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 608995 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 3509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3510 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 908 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1922 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___O__O_sp__Toric__Divisor.out │ │ │ @@ -14901,20 +14901,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1271 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_lattice__Points_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1229 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Simplicial_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Smooth_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_matrix_lp__Toric__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_max_lp__Normal__Toric__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_nef__Generators_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1002 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1964 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1599 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1640 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_picard__Group_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_picard__Group_lp__Toric__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_polytope_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2219 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_projective_spspace.out │ │ │ @@ -14939,15 +14939,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vector_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vertices_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weighted__Projective__Space_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Toric__Map_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 68 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 12847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13026 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8752 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Z__Z.html │ │ │ @@ -15016,20 +15016,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Simplicial_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Smooth_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_making_spnormal_sptoric_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11093 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_matrix_lp__Toric__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_max_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_nef__Generators_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_picard__Group_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_picard__Group_lp__Toric__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_polytope_lp__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_projective_spspace.html │ │ │ @@ -15337,40 +15337,40 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Numerical__Interpolation__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Pseudo__Witness__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_is__On__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1222 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Degree.out │ │ │ --rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Nullity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Source__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1201 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_pseudo__Witness__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 43 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 7153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Max__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8844 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Numerical__Interpolation__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Pseudo__Witness__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_is__On__Image.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Nullity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Source__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set_lp..._cm__Software_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34695 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/index.html │ │ │ @@ -15409,15 +15409,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 105 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/___Pieri__Root__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_bracket2partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_change__Flags.out │ │ │ -rw-r--r-- 0 root (0) root (0) 17148 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_parse__Triplet.out │ │ │ -rw-r--r-- 0 root (0) root (0) 237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_partition2bracket.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_print__Statistics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4092 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_random__Schubert__Problem__Instance.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solutions__To__Affine__Coords.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1169 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solve__Schubert__Problem.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_solve__Simple__Schubert.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/___L__Rcheater.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/___L__Rhomotopies.html │ │ │ @@ -15439,15 +15439,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5979 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_change__Flags_lp__Matrix_cm__List_cm__Sequence_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_check__Incidence__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_parse__Triplet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_partition2bracket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_print__Statistics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_random__Schubert__Problem__Instance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12125 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_random__Schubert__Problem__Instance_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solutions__To__Affine__Coords.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9879 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Schubert__Problem.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Schubert__Problem_lp..._cm__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11052 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_solve__Simple__Schubert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_wrap__Triplet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25053 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/master.html │ │ │ @@ -15479,22 +15479,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_genus_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2107 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_get__Flat__Family.out │ │ │ -rw-r--r-- 0 root (0) root (0) 547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__A__Random__Fiber__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Gap__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Symmetric.out │ │ │ --rw-r--r-- 0 root (0) root (0) 206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_known__Example.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_make__Unfolding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 169 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mingens_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mu.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_socle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_sums.out │ │ │ -rw-r--r-- 0 root (0) root (0) 73 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_weight.out │ │ │ @@ -15523,22 +15523,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_genus_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_get__Flat__Family.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__A__Random__Fiber__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Gap__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7739 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Symmetric.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_known__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12477 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_make__Unfolding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mingens_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6222 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mu.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6544 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8892 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_socle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_sums.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_weight.html │ │ │ @@ -15554,58 +15554,58 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Module__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Number_sp_st_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ --rw-r--r-- 0 root (0) root (0) 704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Ring__Element_sp_st_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 446 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp-_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp_pl_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_degree_lp__Vector__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1074 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 919 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Basis__Elements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1124 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_install__Generators__In__Width.out │ │ │ --rw-r--r-- 0 root (0) root (0) 507 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Homogeneous_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Homogeneous_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Coefficient_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Monomial_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Term_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 445 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Polynomial__O__I__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2165 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 368 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Module__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Vector__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Orbit.out │ │ │ --rw-r--r-- 0 root (0) root (0) 472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_ranks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1812 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_restricted__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 655 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_terms_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_use_lp__Module__In__Width_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/.Headline │ │ │ @@ -15619,63 +15619,63 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7821 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5764 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Module__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Number_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Monomial__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6918 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Ring__Element_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Variable__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp-_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp_pl_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_degree_lp__Vector__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6677 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6718 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Basis__Elements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_install__Generators__In__Width.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Homogeneous_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6589 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Homogeneous_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6045 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Coefficient_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Monomial_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Term_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Polynomial__O__I__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Module__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5767 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Vector__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Orbit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8521 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_ranks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_restricted__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_terms_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_use_lp__Module__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/master.html │ │ │ @@ -15708,15 +15708,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Ring_sp^_sp__Betti__Tally.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp__Graded__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 358 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_complete_lp__Chain__Complex_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_cone_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_dd.out │ │ │ -rw-r--r-- 0 root (0) root (0) 536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_dual_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_extend_lp__Chain__Complex_cm__Chain__Complex_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_extracting_spinformation_spfrom_spchain_spcomplexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_free_spresolutions_spof_spmodules.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_graded__Module__Map.out │ │ │ @@ -15790,15 +15790,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Graded__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5865 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_complete_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_complete_lp__Graded__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_components_lp__Chain__Complex_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7475 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_cone_lp__Chain__Complex__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5785 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dual_lp__Chain__Complex__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dual_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_extend_lp__Chain__Complex_cm__Chain__Complex_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_extracting_spinformation_spfrom_spchain_spcomplexes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_free_spresolutions_spof_spmodules.html │ │ │ @@ -16254,22 +16254,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6360 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3143 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 17045 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2540 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Oscillators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_all__Unique__Principal__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_find__Real__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Angles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_identify__Stability.out │ │ │ -rw-r--r-- 0 root (0) root (0) 459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_is__Stable__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10664 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Jacobian.out │ │ │ @@ -16277,22 +16277,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 23259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__System.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_standard__Sols.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_vertex__Spanning__Polynomial.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 25404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25408 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Harrington-__Schenck-__Stillman.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_all__Unique__Principal__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19710 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_find__Real__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6864 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Angles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_identify__Stability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_is__Stable__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20003 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__Jacobian.html │ │ │ @@ -16524,15 +16524,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 136324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Array_sp_us_sp__N__C__Polynomial__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 863 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Axis__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Mon__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path__Signatures.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Polynomial_sppaths_spof_spdegree_spm.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___The_spuniversal_spvariety_spand_sptoric_spcoordinates.out │ │ │ @@ -16558,15 +16558,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 204 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Format.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__String.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7073 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Array_sp_us_sp__N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Axis__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Mon__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3941 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Computing_sp__Path_sp__Varieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Ring__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Path.html │ │ │ @@ -16962,15 +16962,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 14765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PlaneCurveLinearSeries/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 619 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Make__Ring__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_affine__Points__Mat.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_expected__Betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_min__Max__Resolution.out │ │ │ @@ -16982,15 +16982,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_projective__Points__By__Intersection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/example-output/_random__Points__Mat.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/___All__Random.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/___Verify__Points.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Make__Ring__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__By__Intersection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_affine__Points__Mat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_expected__Betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5252 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Points/html/_min__Max__Resolution.html │ │ │ @@ -17699,15 +17699,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 411 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_irreducible__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_is__Primary.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_localize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1734 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary__Decomposition_lp__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_primary_spdecomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_remove__Lowest__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_strategies_spfor_spcomputing_spprimary_spdecomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_top__Components.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 17690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated_spprimes.html │ │ │ @@ -17715,15 +17715,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_is__Primary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_localize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21071 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary__Decomposition_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_primary_spdecomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_remove__Lowest__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_strategies_spfor_spcomputing_spprimary_spdecomposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7361 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_top__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5480 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Probability/ │ │ │ @@ -18142,15 +18142,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2633 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300c].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 13630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Half_spcanonical_spdegree_sp20.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 22546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Noether-__Lefschetz_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Pfaffians_spon_spquadrics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Singularities_spof_splifting_spof_sptype_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 4091 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[331]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ @@ -18184,15 +18184,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9061 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 9848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300c].html │ │ │ -rw-r--r-- 0 root (0) root (0) 6828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Half_spcanonical_spdegree_sp20.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 48194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Noether-__Lefschetz_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Pfaffians_spon_spquadrics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Singularities_spof_splifting_spof_sptype_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 14692 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.html │ │ │ @@ -18311,44 +18311,44 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7199 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 417 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 6065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 27181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_disturb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1358 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_histogram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_maximal__Entry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_normalize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 510 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_random__Simplicial__Complex.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3937 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Discrete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4295 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___With__L__L__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/___Zero__Mean.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9992 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_disturb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_histogram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7257 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_maximal__Entry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_random__Simplicial__Complex.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4800 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCurves/html/ │ │ │ @@ -18378,50 +18378,50 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 13233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_canonical__Curve__Genus14.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_curve__Genus14__Degree18in__P6.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2925 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Canonical__Curve__Genus8with8__Points.out │ │ │ --rw-r--r-- 0 root (0) root (0) 485 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 484 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus8__Degree14in__P6.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_canonical__Curve__Genus14.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5485 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_curve__Genus14__Degree18in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Canonical__Curve__Genus8with8__Points.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus8__Degree14in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 85866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Finding_sp__Extreme_sp__Examples.out │ │ │ --rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 481 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__Chain__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_is__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Addition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 894 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Elements__From__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 461 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 421 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 359 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Pure__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal__Chain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 752 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Sparse__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8838 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Toric__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_reg__Seq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_square__Free.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 39 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Alexander__Probability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/___Finding_sp__Extreme_sp__Examples.html │ │ │ @@ -18430,28 +18430,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_is__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7774 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Addition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Elements__From__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7113 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Pure__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal__Chain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9696 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Sparse__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Toric__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_reg__Seq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free_lp__Z__Z_cm__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8052 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 151393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/___C__M__Stats.out │ │ │ @@ -18580,40 +18580,40 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 96387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Max__Coordinates__To__Replace.out │ │ │ -rw-r--r-- 0 root (0) root (0) 268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Point__Check__Attempts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Replacement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 292 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_find__A__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_generic__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_get__Random__Linear__Forms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_projection__To__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Coordinate__Change.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 51 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Decomposition__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Dimension__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Extend__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Max__Coordinates__To__Replace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Num__Threads__To__Use.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Point__Check__Attempts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9659 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Replacement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10917 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_find__A__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_get__Random__Linear__Forms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_projection__To__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Coordinate__Change.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomSpaceCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomSpaceCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 23231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomSpaceCurves/dump/rawdocumentation.dump │ │ │ @@ -18641,15 +18641,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 117469 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/___Rational__Mapping.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/___Rational__Mapping_sp_st_sp__Rational__Mapping.out │ │ │ -rw-r--r-- 0 root (0) root (0) 608 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_base__Locus__Of__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_ideal__Of__Image__Of__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4961 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Birational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Birational__Onto__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Regular__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_is__Same__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 613 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_jacobian__Dual__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/example-output/_map__Onto__Image.out │ │ │ @@ -18668,15 +18668,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Rational__Mapping_sp_st_sp__Rational__Mapping.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Rees__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Saturate__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5196 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Saturation__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/___Simis__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_base__Locus__Of__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_ideal__Of__Image__Of__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19626 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Birational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Birational__Onto__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15074 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6538 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Regular__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8013 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_is__Same__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_jacobian__Dual__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8082 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalMaps/html/_map__Onto__Image.html │ │ │ @@ -18705,26 +18705,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/___Rational__Points2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_base__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_charpoly.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_ext__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_global__Height.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_hermite__Normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 361 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_integers.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4102 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_zeros.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5780 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/___Projective__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_base__Change.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_charpoly.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_ext__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_global__Height.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_hermite__Normal__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_integers.html │ │ │ --rw-r--r-- 0 root (0) root (0) 21131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 21129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_zeros.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 93198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/rawdocumentation.dump │ │ │ @@ -18872,52 +18872,52 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 204897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 8423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Rees__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_distinguished.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_intersect__In__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Linear__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_jacobian__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1022 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 972 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_reduction__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 417 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel_lp..._cm__Variable_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_versal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_which__Gm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 13 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 24242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Trim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_associated__Graded__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_distinguished.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Linear__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_jacobian__Dual.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5982 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8674 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_reduction__Number.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17580 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Minimal__Generators_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Pair__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5952 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_symmetric__Algebra__Ideal.html │ │ │ @@ -19089,29 +19089,29 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 114689 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/___Grass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Discriminant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2692 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Resultant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6583 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 17439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_conormal__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dualize.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_generic__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 122873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 122875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_veronese.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 41 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Proj.html │ │ │ @@ -19119,49 +19119,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Duality.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6511 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12075 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12073 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dualize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_generic__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8219 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 130499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10008 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 130501 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_veronese.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6282 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Keep__Statistics__Command.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5527 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Pre__Run__Script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Child.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23865 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2__Return__Answer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2_lp..._cm__Keep__Files_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_suggestions_spfor_spusing_sp__Run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9683 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCMAlgebras/ │ │ │ @@ -19203,15 +19203,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6794 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2516 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_arithmetic_spwith_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 830 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_compressing_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_creating_spgates.out │ │ │ -rw-r--r-- 0 root (0) root (0) 142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_declare__Variable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_differentiating_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluate_lp__S__L__Program_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluating_spgates.out │ │ │ @@ -19246,15 +19246,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Compiled__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Interpreted__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_measuring_spthe_spsize_spof_spcircuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6033 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_undeclare__Variable.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_value__Hash__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_working_spwith_spgate_spmatrices.html │ │ │ --rw-r--r-- 0 root (0) root (0) 36826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 36824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42778 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/_sl2__Equivariant__Constant__Rank__Matrix.out │ │ │ @@ -19494,29 +19494,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 44888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5542 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_are__Pseudo__Inverses.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6984 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_laplacians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_numeric__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_pseudo__Inverse.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Laplacian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_are__Pseudo__Inverses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_check__S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14701 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_laplacians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3882 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_new__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_numeric__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_pseudo__Inverse.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3961 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_pseudo__Inverse1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/index.html │ │ │ @@ -19539,24 +19539,24 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_annihilator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_ideal_spquotients_spand_spsaturation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_is__Supported__In__Zero__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1835 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_saturate.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 69 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_annihilator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_ideal_spquotients_spand_spsaturation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_is__Supported__In__Zero__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17355 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11944 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12655 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/ │ │ │ @@ -19997,29 +19997,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Multi__Hom.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Product__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre.out │ │ │ --rw-r--r-- 0 root (0) root (0) 719 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7697 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_chow__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_contained__In__Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9833 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_intersection__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Multi__Hom.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Product__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9107 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44566 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/example-output/ │ │ │ @@ -20348,15 +20348,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_get__Facet__Bases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graph__From__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graphic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_grassmann__Section__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reconstruct__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reduced__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 619 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_set__Ones__Forest.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Circuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 852 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1105 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 15577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_specific__Slack__Matrix.out │ │ │ @@ -20404,15 +20404,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Flag__Indices_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Vars_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Saturate_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8305 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_set__Ones__Forest.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15037 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits_lp..._cm__Tolerance_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__Ideal.html │ │ │ @@ -20541,18 +20541,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Ring__Element_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Discriminant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 930 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Resultant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Resultant_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1025 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1360 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dim_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_entries_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 394 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 471 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Resultant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_flattening.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Laurent__Polynomials.out │ │ │ @@ -20566,15 +20566,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_random__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_rank_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_reverse__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_ring_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 457 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sort__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 12400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 55253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 55251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 35 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp-_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp_eq_eq_sp__Multidimensional__Matrix.html │ │ │ @@ -20584,18 +20584,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6195 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Ring__Element_sp_st_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Resultant_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dim_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_entries_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7003 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Resultant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_flattening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Laurent__Polynomials.html │ │ │ @@ -20609,15 +20609,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_random__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_rank_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_reverse__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5628 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_ring_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5589 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sort__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 65534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 65532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 178042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/rawdocumentation.dump │ │ │ @@ -20644,15 +20644,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_cycle__Decomposition_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 252 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_entries_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_first__Row__Descent_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_garnir__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generate__Permutation__Group_lp__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3117 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_hook__Length__Formula_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 538 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_list__To__Tableau_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_matrix__Representation.out │ │ │ @@ -20664,15 +20664,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_permute__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_reading__Word_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Permutation__Tableaux_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Stabilizer_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 45652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 45653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_size_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 603 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Module__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.out │ │ │ @@ -20708,15 +20708,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_cycle__Decomposition_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_entries_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_first__Row__Descent_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8083 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_garnir__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generate__Permutation__Group_lp__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_hook__Length__Formula_lp__Partition_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6024 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_list__To__Tableau_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8110 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_matrix__Representation.html │ │ │ @@ -20728,15 +20728,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_permute__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_reading__Word_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Permutation__Tableaux_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Stabilizer_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53545 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_size_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Module__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.html │ │ │ @@ -20755,74 +20755,74 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 203984 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___Congruence__Of__Curves_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___G__Mtables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_ambient__Fivefold.out │ │ │ --rw-r--r-- 0 root (0) root (0) 954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 952 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_beauville__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_clean_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1555 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 599 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_from__Ordinary__To__Gushel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible.out │ │ │ -rw-r--r-- 0 root (0) root (0) 164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible__G__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_map_lp__Congruence__Of__Curves_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_mirror__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_normal__Sheaf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1972 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 762 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 469 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__External__String_lp__Hodge__Special__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 23 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Congruence__Of__Curves.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6988 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Congruence__Of__Curves_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___G__Mtables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Hodge__Special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Intersection__Of__Three__Quadrics__In__P7.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4602 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Singular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/___Verbose.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_ambient__Fivefold.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10359 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_beauville__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_check_lp__Z__Z_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_clean_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6192 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6745 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6642 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5909 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_from__Ordinary__To__Gushel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible__G__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Member_lp__Embedded__Projective__Variety_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Congruence__Of__Curves_rp.html │ │ │ @@ -20831,29 +20831,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_mirror__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6394 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_normal__Sheaf.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8483 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize_lp__Hodge__Special__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15460 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15461 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6948 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold_lp__String_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12074 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7745 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7348 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_surface_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6144 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__External__String_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10744 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_trisecant__Flop.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpectralSequences/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpectralSequences/dump/ │ │ │ @@ -21367,15 +21367,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 212 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_no__Packed__All__Subs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_no__Packed__Sub.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_squarefree__Gens.out │ │ │ -rw-r--r-- 0 root (0) root (0) 169 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_squarefree__In__Codim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symb__Power__Prime__Pos__Char.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Defect.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Polyhedron.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1212 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power__Join.out │ │ │ -rw-r--r-- 0 root (0) root (0) 320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_waldschmidt.out │ │ │ -rw-r--r-- 0 root (0) root (0) 200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_waldschmidt_lp..._cm__Sample__Size_eq_gt..._rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 15 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4616 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/___A_spquick_spintroduction_spto_spthis_sppackage.html │ │ │ @@ -21408,15 +21408,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_no__Packed__All__Subs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_no__Packed__Sub.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_squarefree__Gens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_squarefree__In__Codim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symb__Power__Prime__Pos__Char.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Defect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6014 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Polyhedron.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power__Join.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7926 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_waldschmidt.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7018 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/_waldschmidt_lp..._cm__Sample__Size_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymbolicPowers/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SymmetricPolynomials/ │ │ │ @@ -21787,25 +21787,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_compatible__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_decompose__Fraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_descend__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_floor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Preimage.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1117 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Trace__On__Canonical__Module.out │ │ │ --rw-r--r-- 0 root (0) root (0) 487 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1821 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ -rw-r--r-- 0 root (0) root (0) 637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Pure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Rational.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1492 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_multiplicative__Order.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_parameter__Test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Element.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1512 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Module.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Ascent__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__C__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__Domain.html │ │ │ @@ -21838,25 +21838,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_compatible__Ideals.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7168 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_decompose__Fraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_descend__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5225 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_floor__Log.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12408 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Preimage.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16745 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Trace__On__Canonical__Module.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Pure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9661 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Rational.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_multiplicative__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_parameter__Test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Element.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14992 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12484 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 136721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/dump/rawdocumentation.dump │ │ │ @@ -22056,30 +22056,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 37607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6776 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ --rw-r--r-- 0 root (0) root (0) 615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 938 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 934 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Lineage__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7016 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7089 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6937 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21626 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/dump/rawdocumentation.dump │ │ │ @@ -22186,25 +22186,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 944 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Volumes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_dual__Deg__Codim.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_polar__Degrees.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 86 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Force__Amat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Text__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7510 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Volumes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7471 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_dual__Deg__Codim.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8817 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_polar__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9974 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/rawdocumentation.dump │ │ │ @@ -22375,15 +22375,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 18048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_all__Triangulations_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 75224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 75242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_is__Regular__Triangulation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_triangulation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4460 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Cone__Index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Triangulation.html │ │ │ @@ -22391,15 +22391,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 30386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_all__Triangulations_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_bistellar__Flip.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Subdivision.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Weights.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_fine__Star__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_flips.html │ │ │ --rw-r--r-- 0 root (0) root (0) 86004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 86022 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_gkz__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Fine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Regular__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3883 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Star.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Is__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_neighbors.html │ │ │ @@ -23373,15 +23373,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ceiling_lp__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clean__Support.out │ │ │ -rw-r--r-- 0 root (0) root (0) 470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clear__Cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficients_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_embed__As__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_find__Element__Of__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_gbs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Linear__Diophantine__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 501 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Divisors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ideal__Power.out │ │ │ @@ -23405,16 +23405,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 441 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Zero__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_map__To__Projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_non__Cartier__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 780 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_positive__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ramification__Divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4355 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ring_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Q__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__R__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_torsion__Submodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_trim_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_zero__Divisor.out │ │ │ @@ -23444,15 +23444,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ceiling_lp__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clean__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clear__Cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficients_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_embed__As__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_find__Element__Of__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_gbs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Linear__Diophantine__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Divisors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ideal__Power.html │ │ │ @@ -23477,16 +23477,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Zero__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_map__To__Projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_non__Cartier__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6689 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_positive__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ramification__Divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ring_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Q__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__R__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_torsion__Submodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_trim_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4924 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_zero__Divisor.html │ │ │ @@ -23502,15 +23502,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 365 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Dsingular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Dtransposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Fourier.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_characteristic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 300 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_create__Dpairs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_extract__Diffs__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_extract__Vars__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 643 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_gbw.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_holonomic__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_inw.out │ │ │ -rw-r--r-- 0 root (0) root (0) 296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_is__Holonomic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_make__Cyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_make__Weyl__Algebra.out │ │ │ @@ -23523,15 +23523,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Dtransposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9800 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Fourier.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Stop__After.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_characteristic__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_create__Dpairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_extract__Diffs__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_extract__Vars__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7486 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_gbw.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_holonomic__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_inw.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_is__Holonomic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6246 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_make__Cyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_make__Weyl__Algebra.html │ │ │ @@ -24020,307 +24020,307 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17286 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 106822 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/copyright │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc-base/ │ │ │ -rw-r--r-- 0 root (0) root (0) 577 2025-12-14 14:09:53.000000 ./usr/share/doc-base/macaulay2-common.macaulay2 │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/info/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35711 2025-12-14 14:09:53.000000 ./usr/share/info/A1BrouwerDegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14024 2025-12-14 14:09:53.000000 ./usr/share/info/AInfinity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14022 2025-12-14 14:09:53.000000 ./usr/share/info/AInfinity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10523 2025-12-14 14:09:53.000000 ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1491 2025-12-14 14:09:53.000000 ./usr/share/info/AbstractToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7475 2025-12-14 14:09:53.000000 ./usr/share/info/AdjointIdeal.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8787 2025-12-14 14:09:53.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8786 2025-12-14 14:09:53.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23074 2025-12-14 14:09:53.000000 ./usr/share/info/AlgebraicSplines.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8654 2025-12-14 14:09:53.000000 ./usr/share/info/AllMarkovBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3058 2025-12-14 14:09:53.000000 ./usr/share/info/AnalyzeSheafOnP1.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38028 2025-12-14 14:09:53.000000 ./usr/share/info/AssociativeAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13736 2025-12-14 14:09:53.000000 ./usr/share/info/BGG.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13734 2025-12-14 14:09:53.000000 ./usr/share/info/BGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1733 2025-12-14 14:09:53.000000 ./usr/share/info/BIBasis.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16540 2025-12-14 14:09:53.000000 ./usr/share/info/BeginningMacaulay2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1535 2025-12-14 14:09:53.000000 ./usr/share/info/Benchmark.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1547 2025-12-14 14:09:53.000000 ./usr/share/info/Benchmark.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 47150 2025-12-14 14:09:53.000000 ./usr/share/info/BernsteinSato.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21318 2025-12-14 14:09:53.000000 ./usr/share/info/Bertini.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31909 2025-12-14 14:09:53.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31906 2025-12-14 14:09:53.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3389 2025-12-14 14:09:53.000000 ./usr/share/info/BinomialEdgeIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-12-14 14:09:53.000000 ./usr/share/info/Binomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20100 2025-12-14 14:09:53.000000 ./usr/share/info/BoijSoederberg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16450 2025-12-14 14:09:53.000000 ./usr/share/info/Book3264Examples.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1822 2025-12-14 14:09:53.000000 ./usr/share/info/BooleanGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-12-14 14:09:53.000000 ./usr/share/info/Brackets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-12-14 14:09:53.000000 ./usr/share/info/Browse.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6545 2025-12-14 14:09:53.000000 ./usr/share/info/Bruns.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20052 2025-12-14 14:09:53.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15811 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6544 2025-12-14 14:09:53.000000 ./usr/share/info/Bruns.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20058 2025-12-14 14:09:53.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15808 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4454 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexOperations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26075 2025-12-14 14:09:53.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22860 2025-12-14 14:09:53.000000 ./usr/share/info/Chordal.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26098 2025-12-14 14:09:53.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22847 2025-12-14 14:09:53.000000 ./usr/share/info/Chordal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3710 2025-12-14 14:09:53.000000 ./usr/share/info/Classic.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 40809 2025-12-14 14:09:53.000000 ./usr/share/info/CodingTheory.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5339 2025-12-14 14:09:53.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24922 2025-12-14 14:09:53.000000 ./usr/share/info/CoincidentRootLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 59630 2025-12-14 14:09:53.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 59636 2025-12-14 14:09:53.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 224577 2025-12-14 14:09:53.000000 ./usr/share/info/Complexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12241 2025-12-14 14:09:53.000000 ./usr/share/info/ConformalBlocks.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13363 2025-12-14 14:09:53.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13364 2025-12-14 14:09:53.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7163 2025-12-14 14:09:53.000000 ./usr/share/info/ConvexInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1758 2025-12-14 14:09:53.000000 ./usr/share/info/ConwayPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8622 2025-12-14 14:09:53.000000 ./usr/share/info/CorrespondenceScrolls.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7453 2025-12-14 14:09:53.000000 ./usr/share/info/CotangentSchubert.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30015 2025-12-14 14:09:53.000000 ./usr/share/info/CpMackeyFunctors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 96513 2025-12-14 14:09:53.000000 ./usr/share/info/Cremona.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 96499 2025-12-14 14:09:53.000000 ./usr/share/info/Cremona.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1982 2025-12-14 14:09:53.000000 ./usr/share/info/Cyclotomic.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49514 2025-12-14 14:09:53.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49526 2025-12-14 14:09:53.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4886 2025-12-14 14:09:53.000000 ./usr/share/info/DecomposableSparseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-12-14 14:09:53.000000 ./usr/share/info/Depth.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18058 2025-12-14 14:09:53.000000 ./usr/share/info/DeterminantalRepresentations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19221 2025-12-14 14:09:53.000000 ./usr/share/info/DiffAlg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3483 2025-12-14 14:09:53.000000 ./usr/share/info/Dmodules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15778 2025-12-14 14:09:53.000000 ./usr/share/info/EagonResolution.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45559 2025-12-14 14:09:53.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2729 2025-12-14 14:09:53.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4476 2025-12-14 14:09:53.000000 ./usr/share/info/Elimination.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45561 2025-12-14 14:09:53.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2730 2025-12-14 14:09:53.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4471 2025-12-14 14:09:53.000000 ./usr/share/info/Elimination.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21219 2025-12-14 14:09:53.000000 ./usr/share/info/EliminationMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6856 2025-12-14 14:09:53.000000 ./usr/share/info/EllipticCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1690 2025-12-14 14:09:53.000000 ./usr/share/info/EllipticIntegrals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2459 2025-12-14 14:09:53.000000 ./usr/share/info/EngineTests.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2905 2025-12-14 14:09:53.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9714 2025-12-14 14:09:53.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2883 2025-12-14 14:09:53.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9710 2025-12-14 14:09:53.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20248 2025-12-14 14:09:53.000000 ./usr/share/info/ExampleSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19433 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorExtensions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5180 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10413 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorModules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2581 2025-12-14 14:09:53.000000 ./usr/share/info/FGLM.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31687 2025-12-14 14:09:53.000000 ./usr/share/info/FastMinors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5212 2025-12-14 14:09:53.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31678 2025-12-14 14:09:53.000000 ./usr/share/info/FastMinors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5214 2025-12-14 14:09:53.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1042 2025-12-14 14:09:53.000000 ./usr/share/info/FirstPackage.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22607 2025-12-14 14:09:53.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22617 2025-12-14 14:09:53.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7402 2025-12-14 14:09:53.000000 ./usr/share/info/FormalGroupLaws.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7409 2025-12-14 14:09:53.000000 ./usr/share/info/FourTiTwo.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7512 2025-12-14 14:09:53.000000 ./usr/share/info/FourierMotzkin.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17491 2025-12-14 14:09:53.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17488 2025-12-14 14:09:53.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1996 2025-12-14 14:09:53.000000 ./usr/share/info/FunctionFieldDesingularization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 36098 2025-12-14 14:09:53.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 36097 2025-12-14 14:09:53.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23589 2025-12-14 14:09:53.000000 ./usr/share/info/GameTheory.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2807 2025-12-14 14:09:53.000000 ./usr/share/info/GenericInitialIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15375 2025-12-14 14:09:53.000000 ./usr/share/info/GeometricDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 86371 2025-12-14 14:09:53.000000 ./usr/share/info/GradedLieAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38442 2025-12-14 14:09:53.000000 ./usr/share/info/GraphicalModels.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22801 2025-12-14 14:09:53.000000 ./usr/share/info/GraphicalModelsMLE.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14394 2025-12-14 14:09:53.000000 ./usr/share/info/Graphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 51497 2025-12-14 14:09:53.000000 ./usr/share/info/Graphs.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22270 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4698 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4457 2025-12-14 14:09:53.000000 ./usr/share/info/Hadamard.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 51498 2025-12-14 14:09:53.000000 ./usr/share/info/Graphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22296 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4700 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4462 2025-12-14 14:09:53.000000 ./usr/share/info/Hadamard.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4172 2025-12-14 14:09:53.000000 ./usr/share/info/HigherCIOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24610 2025-12-14 14:09:53.000000 ./usr/share/info/HighestWeights.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5216 2025-12-14 14:09:53.000000 ./usr/share/info/HodgeIntegrals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12520 2025-12-14 14:09:53.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6448 2025-12-14 14:09:53.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 41842 2025-12-14 14:09:53.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12518 2025-12-14 14:09:53.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6459 2025-12-14 14:09:53.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 41838 2025-12-14 14:09:53.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9253 2025-12-14 14:09:53.000000 ./usr/share/info/IncidenceCorrespondenceCohomology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6098 2025-12-14 14:09:53.000000 ./usr/share/info/IntegerProgramming.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26723 2025-12-14 14:09:53.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 39446 2025-12-14 14:09:53.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26711 2025-12-14 14:09:53.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 39451 2025-12-14 14:09:53.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12011 2025-12-14 14:09:53.000000 ./usr/share/info/InverseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9404 2025-12-14 14:09:53.000000 ./usr/share/info/InvolutiveBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9332 2025-12-14 14:09:53.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3412 2025-12-14 14:09:53.000000 ./usr/share/info/JSON.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9333 2025-12-14 14:09:53.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3413 2025-12-14 14:09:53.000000 ./usr/share/info/JSON.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5117 2025-12-14 14:09:53.000000 ./usr/share/info/JSONRPC.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20226 2025-12-14 14:09:53.000000 ./usr/share/info/Jets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 24273 2025-12-14 14:09:53.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20225 2025-12-14 14:09:53.000000 ./usr/share/info/Jets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 24279 2025-12-14 14:09:53.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7185 2025-12-14 14:09:53.000000 ./usr/share/info/K3Surfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/info/Kronecker.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-12-14 14:09:53.000000 ./usr/share/info/KustinMiller.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10629 2025-12-14 14:09:53.000000 ./usr/share/info/LLLBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10306 2025-12-14 14:09:53.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10309 2025-12-14 14:09:53.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11907 2025-12-14 14:09:53.000000 ./usr/share/info/LexIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 53836 2025-12-14 14:09:53.000000 ./usr/share/info/LieAlgebraRepresentations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11223 2025-12-14 14:09:53.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11222 2025-12-14 14:09:53.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11459 2025-12-14 14:09:53.000000 ./usr/share/info/LocalRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14642 2025-12-14 14:09:53.000000 ./usr/share/info/M0nbar.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8789 2025-12-14 14:09:53.000000 ./usr/share/info/MCMApproximations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1043149 2025-12-14 14:09:53.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1043222 2025-12-14 14:09:53.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4315 2025-12-14 14:09:53.000000 ./usr/share/info/MapleInterface.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6009 2025-12-14 14:09:53.000000 ./usr/share/info/Markov.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6010 2025-12-14 14:09:53.000000 ./usr/share/info/Markov.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29534 2025-12-14 14:09:53.000000 ./usr/share/info/MatchingFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 164075 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixFactorizations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37754 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 66777 2025-12-14 14:09:53.000000 ./usr/share/info/Matroids.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37756 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 66771 2025-12-14 14:09:53.000000 ./usr/share/info/Matroids.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-12-14 14:09:53.000000 ./usr/share/info/MergeTeX.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7089 2025-12-14 14:09:53.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7088 2025-12-14 14:09:53.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3783 2025-12-14 14:09:53.000000 ./usr/share/info/Miura.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7711 2025-12-14 14:09:53.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6283 2025-12-14 14:09:53.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14938 2025-12-14 14:09:53.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14923 2025-12-14 14:09:53.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20463 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12699 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialIntegerPrograms.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5726 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialOrbits.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10028 2025-12-14 14:09:53.000000 ./usr/share/info/Msolve.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10018 2025-12-14 14:09:53.000000 ./usr/share/info/Msolve.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10408 2025-12-14 14:09:53.000000 ./usr/share/info/MultiGradedRationalMap.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10201 2025-12-14 14:09:53.000000 ./usr/share/info/MultigradedBGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6937 2025-12-14 14:09:53.000000 ./usr/share/info/MultigradedImplicitization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7283 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7285 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplierIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4208 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplierIdealsDim2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 71943 2025-12-14 14:09:53.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 71934 2025-12-14 14:09:53.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21458 2025-12-14 14:09:53.000000 ./usr/share/info/NAGtypes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 85834 2025-12-14 14:09:53.000000 ./usr/share/info/NCAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15870 2025-12-14 14:09:53.000000 ./usr/share/info/Nauty.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14732 2025-12-14 14:09:53.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15872 2025-12-14 14:09:53.000000 ./usr/share/info/Nauty.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14733 2025-12-14 14:09:53.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4096 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherNormalization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 35152 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 35154 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9643 2025-12-14 14:09:53.000000 ./usr/share/info/NonPrincipalTestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2547 2025-12-14 14:09:53.000000 ./usr/share/info/NonminimalComplexes.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 111293 2025-12-14 14:09:53.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 111305 2025-12-14 14:09:53.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31263 2025-12-14 14:09:53.000000 ./usr/share/info/Normaliz.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3131 2025-12-14 14:09:53.000000 ./usr/share/info/NumericSolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 34508 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalAlgebraicGeometry.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13639 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalCertification.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17847 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3201 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalLinearAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31583 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 28580 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20315 2025-12-14 14:09:53.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45744 2025-12-14 14:09:53.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31595 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 28578 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20285 2025-12-14 14:09:53.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45747 2025-12-14 14:09:53.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 67774 2025-12-14 14:09:53.000000 ./usr/share/info/OldPolyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31097 2025-12-14 14:09:53.000000 ./usr/share/info/OldToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2108 2025-12-14 14:09:53.000000 ./usr/share/info/OnlineLookup.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1528 2025-12-14 14:09:53.000000 ./usr/share/info/OpenMath.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27582 2025-12-14 14:09:53.000000 ./usr/share/info/Oscillators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27584 2025-12-14 14:09:53.000000 ./usr/share/info/Oscillators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 27241 2025-12-14 14:09:53.000000 ./usr/share/info/PHCpack.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2517 2025-12-14 14:09:53.000000 ./usr/share/info/PackageCitations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1714 2025-12-14 14:09:53.000000 ./usr/share/info/PackageTemplate.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9367 2025-12-14 14:09:53.000000 ./usr/share/info/Parametrization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6942 2025-12-14 14:09:53.000000 ./usr/share/info/Parsing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31856 2025-12-14 14:09:53.000000 ./usr/share/info/PathSignatures.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 29654 2025-12-14 14:09:53.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31854 2025-12-14 14:09:53.000000 ./usr/share/info/PathSignatures.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 29653 2025-12-14 14:09:53.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4752 2025-12-14 14:09:53.000000 ./usr/share/info/Permanents.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18991 2025-12-14 14:09:53.000000 ./usr/share/info/Permutations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19599 2025-12-14 14:09:53.000000 ./usr/share/info/PhylogeneticTrees.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 28264 2025-12-14 14:09:53.000000 ./usr/share/info/PieriMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12263 2025-12-14 14:09:53.000000 ./usr/share/info/PlaneCurveLinearSeries.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10005 2025-12-14 14:09:53.000000 ./usr/share/info/Points.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10006 2025-12-14 14:09:53.000000 ./usr/share/info/Points.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 71585 2025-12-14 14:09:53.000000 ./usr/share/info/Polyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1814 2025-12-14 14:09:53.000000 ./usr/share/info/Polymake.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18578 2025-12-14 14:09:53.000000 ./usr/share/info/PolyominoIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 54561 2025-12-14 14:09:53.000000 ./usr/share/info/Posets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 54562 2025-12-14 14:09:53.000000 ./usr/share/info/Posets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9934 2025-12-14 14:09:53.000000 ./usr/share/info/PositivityToricBundles.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15309 2025-12-14 14:09:53.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15311 2025-12-14 14:09:53.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-12-14 14:09:53.000000 ./usr/share/info/Probability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9056 2025-12-14 14:09:53.000000 ./usr/share/info/PruneComplex.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2874 2025-12-14 14:09:53.000000 ./usr/share/info/PseudomonomialPrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2268 2025-12-14 14:09:53.000000 ./usr/share/info/Pullback.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5379 2025-12-14 14:09:53.000000 ./usr/share/info/PushForward.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37347 2025-12-14 14:09:53.000000 ./usr/share/info/Python.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37348 2025-12-14 14:09:53.000000 ./usr/share/info/Python.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9376 2025-12-14 14:09:53.000000 ./usr/share/info/QthPower.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6105 2025-12-14 14:09:53.000000 ./usr/share/info/QuadraticIdealExamplesByRoos.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-12-14 14:09:53.000000 ./usr/share/info/Quasidegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 56981 2025-12-14 14:09:53.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 56338 2025-12-14 14:09:53.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13524 2025-12-14 14:09:53.000000 ./usr/share/info/QuillenSuslin.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13459 2025-12-14 14:09:53.000000 ./usr/share/info/RInterface.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1475 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1476 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8360 2025-12-14 14:09:53.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 856 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4054 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3722 2025-12-14 14:09:53.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14846 2025-12-14 14:09:53.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4056 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3721 2025-12-14 14:09:53.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14853 2025-12-14 14:09:53.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30361 2025-12-14 14:09:53.000000 ./usr/share/info/RandomMonomialIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3585 2025-12-14 14:09:53.000000 ./usr/share/info/RandomObjects.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4030 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPlaneCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14979 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14980 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7297 2025-12-14 14:09:53.000000 ./usr/share/info/RandomSpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 18617 2025-12-14 14:09:53.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 18614 2025-12-14 14:09:53.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1703 2025-12-14 14:09:53.000000 ./usr/share/info/RationalPoints.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10729 2025-12-14 14:09:53.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10731 2025-12-14 14:09:53.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20540 2025-12-14 14:09:53.000000 ./usr/share/info/ReactionNetworks.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-12-14 14:09:53.000000 ./usr/share/info/RealRoots.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37259 2025-12-14 14:09:53.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37251 2025-12-14 14:09:53.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12568 2025-12-14 14:09:53.000000 ./usr/share/info/ReflexivePolytopesDB.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2745 2025-12-14 14:09:53.000000 ./usr/share/info/Regularity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2746 2025-12-14 14:09:53.000000 ./usr/share/info/Regularity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6359 2025-12-14 14:09:53.000000 ./usr/share/info/RelativeCanonicalResolution.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6017 2025-12-14 14:09:53.000000 ./usr/share/info/ResLengthThree.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7488 2025-12-14 14:09:53.000000 ./usr/share/info/ResidualIntersections.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4695 2025-12-14 14:09:53.000000 ./usr/share/info/ResolutionsOfStanleyReisnerRings.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45665 2025-12-14 14:09:53.000000 ./usr/share/info/Resultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45673 2025-12-14 14:09:53.000000 ./usr/share/info/Resultants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8804 2025-12-14 14:09:53.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3583 2025-12-14 14:09:53.000000 ./usr/share/info/SCMAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4074 2025-12-14 14:09:53.000000 ./usr/share/info/SCSCP.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13740 2025-12-14 14:09:53.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13739 2025-12-14 14:09:53.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8229 2025-12-14 14:09:53.000000 ./usr/share/info/SLnEquivariantMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51962 2025-12-14 14:09:53.000000 ./usr/share/info/SRdeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22395 2025-12-14 14:09:53.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22393 2025-12-14 14:09:53.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2644 2025-12-14 14:09:53.000000 ./usr/share/info/SagbiGbDetection.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9146 2025-12-14 14:09:53.000000 ./usr/share/info/Saturation.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 64567 2025-12-14 14:09:53.000000 ./usr/share/info/Schubert2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9144 2025-12-14 14:09:53.000000 ./usr/share/info/Saturation.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 64568 2025-12-14 14:09:53.000000 ./usr/share/info/Schubert2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-12-14 14:09:53.000000 ./usr/share/info/SchurComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-12-14 14:09:53.000000 ./usr/share/info/SchurFunctors.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 25155 2025-12-14 14:09:53.000000 ./usr/share/info/SchurRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7965 2025-12-14 14:09:53.000000 ./usr/share/info/SchurVeronese.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2654 2025-12-14 14:09:53.000000 ./usr/share/info/SectionRing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7701 2025-12-14 14:09:53.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7469 2025-12-14 14:09:53.000000 ./usr/share/info/SemidefiniteProgramming.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8348 2025-12-14 14:09:53.000000 ./usr/share/info/Seminormalization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2626 2025-12-14 14:09:53.000000 ./usr/share/info/Serialization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8316 2025-12-14 14:09:53.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8317 2025-12-14 14:09:53.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 76323 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7232 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2966 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialPosets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37164 2025-12-14 14:09:53.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37170 2025-12-14 14:09:53.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13525 2025-12-14 14:09:53.000000 ./usr/share/info/SpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27513 2025-12-14 14:09:53.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37572 2025-12-14 14:09:53.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27512 2025-12-14 14:09:53.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37568 2025-12-14 14:09:53.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 32636 2025-12-14 14:09:53.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 291857 2025-12-14 14:09:53.000000 ./usr/share/info/SpectralSequences.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12684 2025-12-14 14:09:53.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2631 2025-12-14 14:09:53.000000 ./usr/share/info/StatePolytope.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7815 2025-12-14 14:09:53.000000 ./usr/share/info/StronglyStableIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1897 2025-12-14 14:09:53.000000 ./usr/share/info/Style.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1895 2025-12-14 14:09:53.000000 ./usr/share/info/Style.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29769 2025-12-14 14:09:53.000000 ./usr/share/info/SubalgebraBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15726 2025-12-14 14:09:53.000000 ./usr/share/info/SumsOfSquares.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5366 2025-12-14 14:09:53.000000 ./usr/share/info/SuperLinearAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2753 2025-12-14 14:09:53.000000 ./usr/share/info/SwitchingFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14148 2025-12-14 14:09:53.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14147 2025-12-14 14:09:53.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2157 2025-12-14 14:09:53.000000 ./usr/share/info/SymmetricPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14151 2025-12-14 14:09:53.000000 ./usr/share/info/TSpreadIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17554 2025-12-14 14:09:53.000000 ./usr/share/info/Tableaux.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1559 2025-12-14 14:09:53.000000 ./usr/share/info/TangentCone.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 47112 2025-12-14 14:09:53.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 47114 2025-12-14 14:09:53.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22604 2025-12-14 14:09:53.000000 ./usr/share/info/TensorComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2389 2025-12-14 14:09:53.000000 ./usr/share/info/TerraciniLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31171 2025-12-14 14:09:53.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31165 2025-12-14 14:09:53.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15054 2025-12-14 14:09:53.000000 ./usr/share/info/Text.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22883 2025-12-14 14:09:53.000000 ./usr/share/info/ThinSincereQuivers.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8461 2025-12-14 14:09:53.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8198 2025-12-14 14:09:53.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13901 2025-12-14 14:09:53.000000 ./usr/share/info/Topcom.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7599 2025-12-14 14:09:53.000000 ./usr/share/info/TorAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7449 2025-12-14 14:09:53.000000 ./usr/share/info/ToricHigherDirectImages.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4015 2025-12-14 14:09:53.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4014 2025-12-14 14:09:53.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6581 2025-12-14 14:09:53.000000 ./usr/share/info/ToricTopology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31435 2025-12-14 14:09:53.000000 ./usr/share/info/ToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9584 2025-12-14 14:09:53.000000 ./usr/share/info/TriangularSets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13681 2025-12-14 14:09:53.000000 ./usr/share/info/Triangulations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13683 2025-12-14 14:09:53.000000 ./usr/share/info/Triangulations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7188 2025-12-14 14:09:53.000000 ./usr/share/info/Triplets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11010 2025-12-14 14:09:53.000000 ./usr/share/info/Tropical.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10698 2025-12-14 14:09:53.000000 ./usr/share/info/TropicalToric.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5772 2025-12-14 14:09:53.000000 ./usr/share/info/Truncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-12-14 14:09:53.000000 ./usr/share/info/Units.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4687 2025-12-14 14:09:53.000000 ./usr/share/info/VNumber.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8877 2025-12-14 14:09:53.000000 ./usr/share/info/Valuations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 44204 2025-12-14 14:09:53.000000 ./usr/share/info/Varieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19378 2025-12-14 14:09:53.000000 ./usr/share/info/VectorFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51845 2025-12-14 14:09:53.000000 ./usr/share/info/VectorGraphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 41369 2025-12-14 14:09:53.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 41370 2025-12-14 14:09:53.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12693 2025-12-14 14:09:53.000000 ./usr/share/info/VirtualResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10443 2025-12-14 14:09:53.000000 ./usr/share/info/Visualize.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 38082 2025-12-14 14:09:53.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10700 2025-12-14 14:09:53.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 38096 2025-12-14 14:09:53.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10702 2025-12-14 14:09:53.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 33226 2025-12-14 14:09:53.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14777 2025-12-14 14:09:53.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8865 2025-12-14 14:09:53.000000 ./usr/share/info/XML.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49484 2025-12-14 14:09:53.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49483 2025-12-14 14:09:53.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/lintian/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/lintian/overrides/ │ │ │ -rw-r--r-- 0 root (0) root (0) 11489 2025-12-14 14:09:53.000000 ./usr/share/lintian/overrides/macaulay2-common │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/auto-render.min.js -> ../../../../javascript/katex/contrib/auto-render.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/copy-tex.min.js -> ../../../../javascript/katex/contrib/copy-tex.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/render-a11y-string.min.js -> ../../../../javascript/katex/contrib/render-a11y-string.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/fonts/KaTeX_AMS-Regular.ttf -> ../../../../fonts/truetype/katex/KaTeX_AMS-Regular.ttf │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ @@ -10,25 +10,25 @@ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ - -- 1.71138s elapsed │ │ │ + -- 1.32813s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o3 : Complex │ │ │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ - -- 2.15695s elapsed │ │ │ + -- 1.72872s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ @@ -90,28 +90,28 @@ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i3 : elapsedTime burkeResolution(M, 7, Check => false)
│ │ │ - -- 1.71138s elapsed
│ │ │ + -- 1.32813s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o3 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o3 : Complex
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i4 : elapsedTime burkeResolution(M, 7, Check => true)
│ │ │ - -- 2.15695s elapsed
│ │ │ + -- 1.72872s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o4 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o4 : Complex
│ │ │ ├── html2text {} │ │ │ │ @@ -23,24 +23,24 @@ │ │ │ │ i2 : M = coker vars R │ │ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ │ │ 1 │ │ │ │ o2 : R-module, quotient of R │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ │ - -- 1.71138s elapsed │ │ │ │ + -- 1.32813s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o3 : Complex │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ │ - -- 2.15695s elapsed │ │ │ │ + -- 1.72872s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ o8 : BettiTally │ │ │ │ │ │ i9 : c=codim I │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ i10 : elapsedTime fI=res I │ │ │ - -- .0228791s elapsed │ │ │ + -- .0271592s elapsed │ │ │ │ │ │ 1 14 33 28 8 │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ @@ -87,30 +87,30 @@ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : phi=map(P2,Pn,H); │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ i15 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .670263s elapsed │ │ │ + -- .520556s elapsed │ │ │ │ │ │ 0 1 │ │ │ o15 = total: 1 11 │ │ │ 0: 1 . │ │ │ 1: . 3 │ │ │ 2: . 8 │ │ │ │ │ │ o15 : BettiTally │ │ │ │ │ │ i16 : I'== I │ │ │ │ │ │ o16 = true │ │ │ │ │ │ i17 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 5.77797s elapsed │ │ │ + -- 4.82354s elapsed │ │ │ │ │ │ i18 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o18 = Tally{(1, 1, total: 1 2) => 5} │ │ │ 0: 1 2 │ │ │ 0 1 │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ @@ -79,40 +79,40 @@ │ │ │ 1: . . │ │ │ 2: . . │ │ │ 3: . 8 │ │ │ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : elapsedTime sub(I,H) │ │ │ - -- .0136638s elapsed │ │ │ + -- .0155972s elapsed │ │ │ │ │ │ o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) │ │ │ │ │ │ o14 : Ideal of P2 │ │ │ │ │ │ i15 : phi=map(P2,Pn,H); │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ i16 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .0563731s elapsed │ │ │ + -- .0668926s elapsed │ │ │ │ │ │ 0 1 │ │ │ o16 = total: 1 12 │ │ │ 0: 1 . │ │ │ 1: . 12 │ │ │ │ │ │ o16 : BettiTally │ │ │ │ │ │ i17 : I'== I │ │ │ │ │ │ o17 = true │ │ │ │ │ │ i18 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 1.83465s elapsed │ │ │ + -- 1.49597s elapsed │ │ │ │ │ │ i19 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o19 = Tally{(0, 34, total: 1 15) => 1} │ │ │ 0: 1 . │ │ │ 1: . . │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i10 : elapsedTime fI=res I
│ │ │ - -- .0228791s elapsed
│ │ │ + -- .0271592s elapsed
│ │ │  
│ │ │          1       14       33       28       8
│ │ │  o10 = Pn  <-- Pn   <-- Pn   <-- Pn   <-- Pn  <-- 0
│ │ │                                                    
│ │ │        0       1        2        3        4       5
│ │ │  
│ │ │  o10 : ChainComplex
│ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2: . 12 │ │ │ │ │ │ │ │ o8 : BettiTally │ │ │ │ i9 : c=codim I │ │ │ │ │ │ │ │ o9 = 4 │ │ │ │ i10 : elapsedTime fI=res I │ │ │ │ - -- .0228791s elapsed │ │ │ │ + -- .0271592s elapsed │ │ │ │ │ │ │ │ 1 14 33 28 8 │ │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ @@ -217,15 +217,15 @@ │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .670263s elapsed
│ │ │ + -- .520556s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o15 = total: 1 11
│ │ │            0: 1  .
│ │ │            1: .  3
│ │ │            2: .  8
│ │ │  
│ │ │ @@ -238,15 +238,15 @@
│ │ │  
│ │ │  o16 = true
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 5.77797s elapsed
│ │ │ + -- 4.82354s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                            0 1
│ │ │ ├── html2text {}
│ │ │ │ @@ -110,28 +110,28 @@
│ │ │ │            6: . 7
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o14 : RingMap P2 <-- Pn
│ │ │ │  i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .670263s elapsed
│ │ │ │ + -- .520556s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o15 = total: 1 11
│ │ │ │            0: 1  .
│ │ │ │            1: .  3
│ │ │ │            2: .  8
│ │ │ │  
│ │ │ │  o15 : BettiTally
│ │ │ │  i16 : I'== I
│ │ │ │  
│ │ │ │  o16 = true
│ │ │ │  i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 5.77797s elapsed
│ │ │ │ + -- 4.82354s elapsed
│ │ │ │  i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                            0 1
│ │ │ │  o18 = Tally{(1, 1, total: 1 2) => 5}
│ │ │ │                         0: 1 2
│ │ │ │                            0 1
│ │ │ │              (1, 3, total: 1 3) => 8
│ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html
│ │ │ @@ -193,15 +193,15 @@
│ │ │  
│ │ │  o13 : BettiTally
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : elapsedTime sub(I,H)
│ │ │ - -- .0136638s elapsed
│ │ │ + -- .0155972s elapsed
│ │ │  
│ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │  
│ │ │  o14 : Ideal of P2
│ │ │ │ │ │ │ │ │ │ │ │ @@ -210,15 +210,15 @@ │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .0563731s elapsed
│ │ │ + -- .0668926s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o16 = total: 1 12
│ │ │            0: 1  .
│ │ │            1: . 12
│ │ │  
│ │ │  o16 : BettiTally
│ │ │ @@ -230,15 +230,15 @@ │ │ │ │ │ │ o17 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 1.83465s elapsed
│ │ │ + -- 1.49597s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                             0  1
│ │ │ ├── html2text {}
│ │ │ │ @@ -82,36 +82,36 @@
│ │ │ │            0: 1 .
│ │ │ │            1: . .
│ │ │ │            2: . .
│ │ │ │            3: . 8
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : elapsedTime sub(I,H)
│ │ │ │ - -- .0136638s elapsed
│ │ │ │ + -- .0155972s elapsed
│ │ │ │  
│ │ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │ │  
│ │ │ │  o14 : Ideal of P2
│ │ │ │  i15 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o15 : RingMap P2 <-- Pn
│ │ │ │  i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .0563731s elapsed
│ │ │ │ + -- .0668926s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o16 = total: 1 12
│ │ │ │            0: 1  .
│ │ │ │            1: . 12
│ │ │ │  
│ │ │ │  o16 : BettiTally
│ │ │ │  i17 : I'== I
│ │ │ │  
│ │ │ │  o17 = true
│ │ │ │  i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 1.83465s elapsed
│ │ │ │ + -- 1.49597s elapsed
│ │ │ │  i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                             0  1
│ │ │ │  o19 = Tally{(0, 34, total: 1 15) => 1}
│ │ │ │                          0: 1  .
│ │ │ │                          1: .  .
│ │ │ │                          2: .  .
│ │ ├── ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out
│ │ │ @@ -114,26 +114,26 @@
│ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │  
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │  
│ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ + -- used 0.496304s (cpu); 0.412543s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │  o14 : BettiTally
│ │ │  
│ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ + -- used 0.548375s (cpu); 0.468363s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html
│ │ │ @@ -253,15 +253,15 @@
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ + -- used 0.496304s (cpu); 0.412543s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │ @@ -272,15 +272,15 @@
│ │ │          
│ │ │

With the form pureResolution(p,q,D) we can directly create the situation of pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables of characteristic p, created by the script. For a given number of variables in A this runs much faster than taking a random matrix M.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -192,26 +192,26 @@ │ │ │ │ o18 : ActionOnComplex │ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ │ - -- .852762s elapsed │ │ │ │ + -- .692703s elapsed │ │ │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o20 : Character │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ │ - -- 34.344s elapsed │ │ │ │ + -- 25.4401s elapsed │ │ │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ i30 : M = Is2 / I2; │ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ │ - -- 14.2617s elapsed │ │ │ │ + -- 11.4504s elapsed │ │ │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o32 : Character │ │ │ │ i33 : b/T │ │ ├── ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ @@ -230,15 +230,15 @@ │ │ │ 0: 1 . . . . │ │ │ 1: . 4 2 . . │ │ │ 2: . 1 6 5 1 │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ i23 : time j=bruns F.dd_3; │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc) │ │ │ + -- used 0.265543s (cpu); 0.19889s (thread); 0s (gc) │ │ │ │ │ │ o23 : Ideal of S │ │ │ │ │ │ i24 : betti res j │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o24 = total: 1 3 6 5 1 │ │ ├── ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ @@ -380,15 +380,15 @@ │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ + -- used 0.548375s (cpu); 0.468363s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │ ├── html2text {}
│ │ │ │ @@ -161,30 +161,30 @@
│ │ │ │        | -30a-29b -29a-24b -47a-39b 38a+2b   |
│ │ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │ │  
│ │ │ │                4      4
│ │ │ │  o13 : Matrix A  <-- A
│ │ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ │ + -- used 0.496304s (cpu); 0.412543s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o14 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ │ │  
│ │ │ │  o14 : BettiTally
│ │ │ │  With the form pureResolution(p,q,D) we can directly create the situation of
│ │ │ │  pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of
│ │ │ │  linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables
│ │ │ │  of characteristic p, created by the script. For a given number of variables in
│ │ │ │  A this runs much faster than taking a random matrix M.
│ │ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ │ + -- used 0.548375s (cpu); 0.468363s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o15 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out
│ │ │ @@ -1,10 +1,10 @@
│ │ │  -- -*- M2-comint -*- hash: 1330545576567
│ │ │  
│ │ │  i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025
│ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.249  
│ │ │ +-- beginning computation Thu Jan  1 11:06:24 UTC 2026
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .192783 seconds
│ │ │  
│ │ │  i2 :
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html
│ │ │ @@ -75,19 +75,19 @@
│ │ │          
│ │ │

The tests available are:
"deg2generic" -- gb of a generic ideal of codimension 2 and degree 2
"gb4by4comm" -- gb of the ideal of generic commuting 4 by 4 matrices over ZZ/101
"gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables
"gbB148" -- gb of Bayesian graph ideal #148
"res39" -- res of a generic 3 by 9 matrix over ZZ/101
"resG25" -- res of the coordinate ring of Grassmannian(2,5)
"yang-gb1" -- an example of Yang-Hui He arising in string theory
"yang-subring" -- an example of Yang-Hui He

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025
│ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.249  
│ │ │ +-- beginning computation Thu Jan  1 11:06:24 UTC 2026
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .192783 seconds │ │ │
│ │ │ │ │ │
│ │ │
│ │ │

For the programmer

│ │ │ ├── html2text {} │ │ │ │ @@ -23,18 +23,18 @@ │ │ │ │ "gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables │ │ │ │ "gbB148" -- gb of Bayesian graph ideal #148 │ │ │ │ "res39" -- res of a generic 3 by 9 matrix over ZZ/101 │ │ │ │ "resG25" -- res of the coordinate ring of Grassmannian(2,5) │ │ │ │ "yang-gb1" -- an example of Yang-Hui He arising in string theory │ │ │ │ "yang-subring" -- an example of Yang-Hui He │ │ │ │ i1 : runBenchmarks "res39" │ │ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025 │ │ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 │ │ │ │ -(2025-11-05) x86_64 GNU/Linux │ │ │ │ --- AMD EPYC 7702P 64-Core Processor AuthenticAMD cpu MHz 1996.249 │ │ │ │ +-- beginning computation Thu Jan 1 11:06:24 UTC 2026 │ │ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ +-- Intel Xeon Processor (Skylake, IBRS) GenuineIntel cpu MHz 2099.998 │ │ │ │ -- Macaulay2 1.25.11, compiled with gcc 15.2.0 │ │ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds │ │ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .192783 seconds │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_u_n_B_e_n_c_h_m_a_r_k_s is a _c_o_m_m_a_n_d. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Benchmark.m2:297:0. │ │ ├── ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ @@ -515,15 +515,15 @@ │ │ │ Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbUNvbXBsZXgifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57fX0sU1BBTntUTzJ7bmV3 │ │ │ IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVXNlckhvbW90b3B5LFJhbmRvbVJlYWxdLCJiZXJ0 │ │ │ aW5pVXNlckhvbW90b3B5KC4uLixSYW5kb21SZWFsPT4uLi4pIiwiQmVydGluaSJ9LCJSYW5kb21S │ │ │ ZWFsIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZhbHVlICIsInt9 │ │ │ In0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVG9wRGlyZWN0 │ │ │ b3J5IiwiVG9wRGlyZWN0b3J5IiwiQmVydGluaSJ9LCJUb3BEaXJlY3RvcnkifSxUVHsiID0+ICJ9 │ │ │ -LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTI4NzA2LTAv │ │ │ +LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTQxMDM3LTAv │ │ │ MFwiIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gY2hhbmdlIGRpcmVjdG9yeSBmb3IgZmlsZSBzdG9y │ │ │ YWdlLiJ9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7W2JlcnRpbmlVc2VySG9tb3Rv │ │ │ cHksVmVyYm9zZV0sImJlcnRpbmlVc2VySG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0 │ │ │ aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQg │ │ │ dmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwg │ │ │ b3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ YmVydGluaVVzZXJIb21vdG9weSIsImJlcnRpbmlVc2VySG9tb3RvcHkiLCJCZXJ0aW5pIn0sIEtl │ │ │ @@ -1100,15 +1100,15 @@ │ │ │ ZXJ0aW5pUGFyYW1ldGVySG9tb3RvcHkoLi4uLFJhbmRvbVJlYWw9Pi4uLikiLCJCZXJ0aW5pIn0s │ │ │ IlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFs │ │ │ dWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGljaCBkZXNpZ25hdGVzIHN5bWJvbHMv │ │ │ c3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0byBiZSBhIHJhbmRvbSByZWFsIG51 │ │ │ bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BBTntUTzJ7bmV3IERvY3VtZW50VGFn │ │ │ IGZyb20geyJUb3BEaXJlY3RvcnkiLCJUb3BEaXJlY3RvcnkiLCJCZXJ0aW5pIn0sIlRvcERpcmVj │ │ │ dG9yeSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIsICIsU1BBTnsiZGVmYXVsdCB2YWx1ZSAiLCJc │ │ │ -Ii90bXAvTTItMjg3MDYtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ +Ii90bXAvTTItNDEwMzctMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ b3J5IGZvciBmaWxlIHN0b3JhZ2UuIn19LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVBhcmFtZXRlckhvbW90b3B5LFZlcmJvc2VdLCJiZXJ0aW5pUGFyYW1ldGVySG9tb3Rv │ │ │ cHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRU │ │ │ eyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9w │ │ │ dGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwgb3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiYmVydGluaVBhcmFtZXRlckhvbW90b3B5IiwiYmVy │ │ │ dGluaVBhcmFtZXRlckhvbW90b3B5IiwiQmVydGluaSJ9LCBLZXkgPT4gYmVydGluaVBhcmFtZXRl │ │ │ @@ -2449,15 +2449,15 @@ │ │ │ YWw9Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGlj │ │ │ aCBkZXNpZ25hdGVzIHN5bWJvbHMvc3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0 │ │ │ byBiZSBhIHJhbmRvbSByZWFsIG51bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BB │ │ │ TntUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFRvcERpcmVj │ │ │ dG9yeV0sImJlcnRpbmlaZXJvRGltU29sdmUoLi4uLFRvcERpcmVjdG9yeT0+Li4uKSIsIkJlcnRp │ │ │ bmkifSwiVG9wRGlyZWN0b3J5In0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZh │ │ │ -dWx0IHZhbHVlICIsIlwiL3RtcC9NMi0yODcwNi0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ +dWx0IHZhbHVlICIsIlwiL3RtcC9NMi00MTAzNy0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ IGNoYW5nZSBkaXJlY3RvcnkgZm9yIGZpbGUgc3RvcmFnZS4ifX0sU1BBTntUTzJ7bmV3IERvY3Vt │ │ │ ZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFVzZVJlZ2VuZXJhdGlvbl0sImJlcnRp │ │ │ bmlaZXJvRGltU29sdmUoLi4uLFVzZVJlZ2VuZXJhdGlvbj0+Li4uKSIsIkJlcnRpbmkifSwiVXNl │ │ │ UmVnZW5lcmF0aW9uIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZh │ │ │ bHVlICIsIi0xIn0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVplcm9EaW1Tb2x2ZSxWZXJib3NlXSwiYmVydGluaVplcm9EaW1Tb2x2ZSguLi4sVmVy │ │ │ Ym9zZT0+Li4uKSIsIkJlcnRpbmkifSwiVmVyYm9zZSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIs │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ @@ -72,15 +72,15 @@ │ │ │
  • HomVariableGroup => ..., default value {}, an option to group variables and use multihomogeneous homotopies
  • │ │ │
  • M2Precision (missing documentation) │ │ │ => ..., default value 53,
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-41037-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list whose entries are lists of solutions for each target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-41037-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list whose entries are lists of solutions for each │ │ │ │ target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ => ..., default value 53, │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex (missing documentation) │ │ │ => ..., default value {},
  • │ │ │
  • RandomReal (missing documentation) │ │ │ => ..., default value {},
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-41037-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S0, a list, a list of solutions to the target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ value {}, │ │ │ │ o HomVariableGroup (missing documentation) => ..., default value {}, │ │ │ │ o M2Precision (missing documentation) => ..., default value 53, │ │ │ │ o OutputStyle (missing documentation) => ..., default value │ │ │ │ "OutPoints", │ │ │ │ o RandomComplex (missing documentation) => ..., default value {}, │ │ │ │ o RandomReal (missing documentation) => ..., default value {}, │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-41037-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S0, a _l_i_s_t, a list of solutions to the target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method calls Bertini to track a user-defined homotopy. The user needs to │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ => ..., default value "main_data", │ │ │
  • NameSolutionsFile (missing documentation) │ │ │ => ..., default value "raw_solutions",
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-41037-0/0", Option to change directory for file storage.
  • │ │ │
  • UseRegeneration (missing documentation) │ │ │ => ..., default value -1,
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list of points that are contained in the variety of F
    • │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-41037-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o UseRegeneration (missing documentation) => ..., default value -1, │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list of points that are contained in the variety of F │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp1.out │ │ │ @@ -76,15 +76,15 @@ │ │ │ i8 : A = action(RI,S7) │ │ │ │ │ │ o8 = Complex with 15 actors │ │ │ │ │ │ o8 : ActionOnComplex │ │ │ │ │ │ i9 : elapsedTime c = character A │ │ │ - -- .559135s elapsed │ │ │ + -- .394847s elapsed │ │ │ │ │ │ o9 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 | │ │ │ (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 | │ │ │ (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp2.out │ │ │ @@ -100,15 +100,15 @@ │ │ │ i6 : A=action(RI,S6) │ │ │ │ │ │ o6 = Complex with 11 actors │ │ │ │ │ │ o6 : ActionOnComplex │ │ │ │ │ │ i7 : elapsedTime c=character A │ │ │ - -- .474916s elapsed │ │ │ + -- .451823s elapsed │ │ │ │ │ │ o7 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 | │ │ │ (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 | │ │ │ (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ @@ -187,27 +187,27 @@ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ - -- .852762s elapsed │ │ │ + -- .692703s elapsed │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o20 : Character │ │ │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ - -- 34.344s elapsed │ │ │ + -- 25.4401s elapsed │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ @@ -297,15 +297,15 @@ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ - -- 14.2617s elapsed │ │ │ + -- 11.4504s elapsed │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o32 : Character │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp1.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o8 : ActionOnComplex
  • │ │ │
    │ │ │
    i9 : elapsedTime c = character A
    │ │ │ - -- .559135s elapsed
    │ │ │ + -- .394847s elapsed
    │ │ │  
    │ │ │  o9 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │  o7 : List
    │ │ │ │  i8 : A = action(RI,S7)
    │ │ │ │  
    │ │ │ │  o8 = Complex with 15 actors
    │ │ │ │  
    │ │ │ │  o8 : ActionOnComplex
    │ │ │ │  i9 : elapsedTime c = character A
    │ │ │ │ - -- .559135s elapsed
    │ │ │ │ + -- .394847s elapsed
    │ │ │ │  
    │ │ │ │  o9 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp2.html
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o6 : ActionOnComplex
    │ │ │
    │ │ │
    i7 : elapsedTime c=character A
    │ │ │ - -- .474916s elapsed
    │ │ │ + -- .451823s elapsed
    │ │ │  
    │ │ │  o7 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -113,15 +113,15 @@
    │ │ │ │  o5 : List
    │ │ │ │  i6 : A=action(RI,S6)
    │ │ │ │  
    │ │ │ │  o6 = Complex with 11 actors
    │ │ │ │  
    │ │ │ │  o6 : ActionOnComplex
    │ │ │ │  i7 : elapsedTime c=character A
    │ │ │ │ - -- .474916s elapsed
    │ │ │ │ + -- .451823s elapsed
    │ │ │ │  
    │ │ │ │  o7 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html
    │ │ │ @@ -310,30 +310,30 @@
    │ │ │  
    │ │ │  o19 : ActionOnComplex
    │ │ │
    │ │ │
    i20 : elapsedTime a1 = character A1
    │ │ │ - -- .852762s elapsed
    │ │ │ + -- .692703s elapsed
    │ │ │  
    │ │ │  o20 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {11}) => | 1 1 1 1 1 1 |
    │ │ │        (2, {13}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o20 : Character
    │ │ │
    │ │ │
    i21 : elapsedTime a2 = character A2
    │ │ │ - -- 34.344s elapsed
    │ │ │ + -- 25.4401s elapsed
    │ │ │  
    │ │ │  o21 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {16}) => | 6 2 0 0 -1 -1 |
    │ │ │        (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  
    │ │ │  o31 : ActionOnGradedModule
    │ │ │
    │ │ │
    i32 : elapsedTime b = character(B,21)
    │ │ │ - -- 14.2617s elapsed
    │ │ │ + -- 11.4504s elapsed
    │ │ │  
    │ │ │  o32 = Character over R
    │ │ │         
    │ │ │        (0, {21}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o32 : Character
    │ │ │
    │ │ │
    i23 : time j=bruns F.dd_3;
    │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc)
    │ │ │ + -- used 0.265543s (cpu); 0.19889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of S
    │ │ │
    │ │ │
    i24 : betti res j
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -230,15 +230,15 @@
    │ │ │ │  o22 = total: 1 5 8 5 1
    │ │ │ │            0: 1 . . . .
    │ │ │ │            1: . 4 2 . .
    │ │ │ │            2: . 1 6 5 1
    │ │ │ │  
    │ │ │ │  o22 : BettiTally
    │ │ │ │  i23 : time j=bruns F.dd_3;
    │ │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc)
    │ │ │ │ + -- used 0.265543s (cpu); 0.19889s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 : Ideal of S
    │ │ │ │  i24 : betti res j
    │ │ │ │  
    │ │ │ │               0 1 2 3 4
    │ │ │ │  o24 = total: 1 3 6 5 1
    │ │ │ │            0: 1 . . . .
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_boundary.out
    │ │ │ @@ -34,14 +34,14 @@
    │ │ │  
    │ │ │  i12 : f = (cells(2,C))#0;
    │ │ │  
    │ │ │  i13 : boundary(f)
    │ │ │  
    │ │ │  o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │ +      1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      with label 1, -1)}
    │ │ │ +      with label 1, 1)}
    │ │ │  
    │ │ │  o13 : List
    │ │ │  
    │ │ │  i14 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.out
    │ │ │ @@ -24,15 +24,15 @@
    │ │ │  
    │ │ │  o7 : CellComplex
    │ │ │  
    │ │ │  i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5    3 3   5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4
    │ │ │ -               1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y }
    │ │ │ +                      2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2
    │ │ │ +               1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y , x y }
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cells.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │  
    │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │  
    │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │  
    │ │ │  i7 : cells(C)
    │ │ │  
    │ │ │ -o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label z, Cell of dimension 0 with label x}}
    │ │ │ +o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label x, Cell of dimension 0 with label z}}
    │ │ │                 1 => {Cell of dimension 1 with label x*y}
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │  
    │ │ │  i8 : R = QQ;
    │ │ │  
    │ │ │  i9 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}};
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cells_lp__Z__Z_cm__Cell__Complex_rp.out
    │ │ │ @@ -10,17 +10,17 @@
    │ │ │  
    │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │  
    │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │  
    │ │ │  i7 : cells(0,C)
    │ │ │  
    │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ +     Cell of dimension 0 with label y}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : cells(1,C)
    │ │ │  
    │ │ │  o8 = {Cell of dimension 1 with label x*y}
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_relabel__Cell__Complex.out
    │ │ │ @@ -22,20 +22,20 @@
    │ │ │  
    │ │ │  i11 : T = new HashTable from {v0 => a^2*b, v1 => b*c^2, v2 => b^2, v3 => a*c};
    │ │ │  
    │ │ │  i12 : relabeledC = relabelCellComplex(C,T);
    │ │ │  
    │ │ │  i13 : for c in cells(0,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2      2   2
    │ │ │ -o13 = {a b, b*c , b , a*c}
    │ │ │ +          2   2        2
    │ │ │ +o13 = {b*c , b , a*c, a b}
    │ │ │  
    │ │ │  o13 : List
    │ │ │  
    │ │ │  i14 : for c in cells(1,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2   2   2 2   2 2       2     2
    │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c}
    │ │ │ +        2 2       2     2    2   2   2 2
    │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b }
    │ │ │  
    │ │ │  o14 : List
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_boundary.html
    │ │ │ @@ -145,17 +145,17 @@
    │ │ │            
    │ │ │
    i13 : boundary(f)
    │ │ │  
    │ │ │  o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │ +      1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      with label 1, -1)}
    │ │ │ +      with label 1, 1)}
    │ │ │  
    │ │ │  o13 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,17 +42,17 @@ │ │ │ │ i10 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}}; │ │ │ │ i11 : C = cellComplex(R,P); │ │ │ │ i12 : f = (cells(2,C))#0; │ │ │ │ i13 : boundary(f) │ │ │ │ │ │ │ │ o13 = {(Cell of dimension 1 with label 1, 1), (Cell of dimension 1 with label │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 1, 1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1 │ │ │ │ + 1, -1), (Cell of dimension 1 with label 1, -1), (Cell of dimension 1 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - with label 1, -1)} │ │ │ │ + with label 1, 1)} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_o_u_n_d_a_r_y_C_e_l_l_s_(_C_e_l_l_) -- returns the boundary cells of the given cell │ │ │ │ ********** WWaayyss ttoo uussee bboouunnddaarryy:: ********** │ │ │ │ * boundary(Cell) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.html │ │ │ @@ -129,16 +129,16 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5    3 3   5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4
    │ │ │ -               1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y }
    │ │ │ +                      2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3   5 2
    │ │ │ +               1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y , x y }
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,17 +41,17 @@ │ │ │ │ │ │ │ │ o7 : CellComplex │ │ │ │ i8 : applyValues(cells C, l -> apply(l,cellLabel)) │ │ │ │ │ │ │ │ 5 4 3 2 2 3 4 5 │ │ │ │ o8 = HashTable{0 => {x , x y, x y , x y , x*y , x } │ │ │ │ } │ │ │ │ - 5 3 3 5 2 2 4 5 3 5 4 5 5 2 5 3 5 4 │ │ │ │ -4 2 4 4 │ │ │ │ - 1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , │ │ │ │ + 2 4 5 3 5 4 5 5 2 5 3 5 4 4 2 4 4 5 │ │ │ │ +3 3 5 2 │ │ │ │ + 1 => {x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, │ │ │ │ x y , x y } │ │ │ │ 5 2 5 4 5 3 5 4 5 2 5 4 5 3 5 4 │ │ │ │ 2 => {x y , x y , x y , x y , x y , x y , x y , x y } │ │ │ │ │ │ │ │ o8 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x -- create a cell complex │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cells.html │ │ │ @@ -101,15 +101,15 @@ │ │ │
    i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : cells(C)
    │ │ │  
    │ │ │ -o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label z, Cell of dimension 0 with label x}}
    │ │ │ +o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with label x, Cell of dimension 0 with label z}}
    │ │ │                 1 => {Cell of dimension 1 with label x*y}
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i3 : vy = newSimplexCell({},y); │ │ │ │ i4 : vz = newSimplexCell({},z); │ │ │ │ i5 : exy = newSimplexCell {vx,vy}; │ │ │ │ i6 : C = cellComplex(R,{exy,vz}); │ │ │ │ i7 : cells(C) │ │ │ │ │ │ │ │ o7 = HashTable{0 => {Cell of dimension 0 with label y, Cell of dimension 0 with │ │ │ │ -label z, Cell of dimension 0 with label x}} │ │ │ │ +label x, Cell of dimension 0 with label z}} │ │ │ │ 1 => {Cell of dimension 1 with label x*y} │ │ │ │ │ │ │ │ o7 : HashTable │ │ │ │ i8 : R = QQ; │ │ │ │ i9 : P = convexHull matrix {{1,1,-1,-1},{1,-1,1,-1}}; │ │ │ │ i10 : C = cellComplex(R,P); │ │ │ │ i11 : cells C │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cells_lp__Z__Z_cm__Cell__Complex_rp.html │ │ │ @@ -103,17 +103,17 @@ │ │ │
    i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : cells(0,C)
    │ │ │  
    │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ +     Cell of dimension 0 with label y}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : cells(1,C)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,17 +19,17 @@
    │ │ │ │  i2 : vx = newSimplexCell({},x);
    │ │ │ │  i3 : vy = newSimplexCell({},y);
    │ │ │ │  i4 : vz = newSimplexCell({},z);
    │ │ │ │  i5 : exy = newSimplexCell {vx,vy};
    │ │ │ │  i6 : C = cellComplex(R,{exy,vz});
    │ │ │ │  i7 : cells(0,C)
    │ │ │ │  
    │ │ │ │ -o7 = {Cell of dimension 0 with label y, Cell of dimension 0 with label x,
    │ │ │ │ +o7 = {Cell of dimension 0 with label x, Cell of dimension 0 with label z,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     Cell of dimension 0 with label z}
    │ │ │ │ +     Cell of dimension 0 with label y}
    │ │ │ │  
    │ │ │ │  o7 : List
    │ │ │ │  i8 : cells(1,C)
    │ │ │ │  
    │ │ │ │  o8 = {Cell of dimension 1 with label x*y}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_relabel__Cell__Complex.html
    │ │ │ @@ -136,26 +136,26 @@
    │ │ │                
    i12 : relabeledC = relabelCellComplex(C,T);
    │ │ │
    │ │ │
    i13 : for c in cells(0,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2      2   2
    │ │ │ -o13 = {a b, b*c , b , a*c}
    │ │ │ +          2   2        2
    │ │ │ +o13 = {b*c , b , a*c, a b}
    │ │ │  
    │ │ │  o13 : List
    │ │ │
    │ │ │
    i14 : for c in cells(1,relabeledC) list cellLabel(c)
    │ │ │  
    │ │ │ -        2   2   2 2   2 2       2     2
    │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c}
    │ │ │ +        2 2       2     2    2   2   2 2
    │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b }
    │ │ │  
    │ │ │  o14 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,22 +31,22 @@ │ │ │ │ i8 : v1 = verts#1; │ │ │ │ i9 : v2 = verts#2; │ │ │ │ i10 : v3 = verts#3; │ │ │ │ i11 : T = new HashTable from {v0 => a^2*b, v1 => b*c^2, v2 => b^2, v3 => a*c}; │ │ │ │ i12 : relabeledC = relabelCellComplex(C,T); │ │ │ │ i13 : for c in cells(0,relabeledC) list cellLabel(c) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o13 = {a b, b*c , b , a*c} │ │ │ │ + 2 2 2 │ │ │ │ +o13 = {b*c , b , a*c, a b} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : for c in cells(1,relabeledC) list cellLabel(c) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 │ │ │ │ -o14 = {a b*c , a b , b c , a*b*c , a*b c} │ │ │ │ + 2 2 2 2 2 2 2 2 │ │ │ │ +o14 = {b c , a*b*c , a*b c, a b*c , a b } │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_L_a_b_e_l -- return the label of a cell │ │ │ │ * _R_i_n_g_M_a_p_ _*_*_ _C_e_l_l_C_o_m_p_l_e_x -- tensors labels via a ring map │ │ │ │ ********** WWaayyss ttoo uussee rreellaabbeellCCeellllCCoommpplleexx:: ********** │ │ │ │ * relabelCellComplex(CellComplex,HashTable) │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ @@ -63,15 +63,15 @@ │ │ │ o11 : ChainComplex │ │ │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ o12 = false │ │ │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc) │ │ │ + -- used 0.3389s (cpu); 0.263959s (thread); 0s (gc) │ │ │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : E[1] == source m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5); │ │ │ │ │ │ i6 : mods = for i from 0 to max C list pushForward(f, C_i); │ │ │ │ │ │ i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S)); │ │ │ │ │ │ i8 : time m = resolutionOfChainComplex C; │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc) │ │ │ + -- used 0.103578s (cpu); 0.103579s (thread); 0s (gc) │ │ │ │ │ │ i9 : time n = cartanEilenbergResolution C; │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc) │ │ │ + -- used 0.24087s (cpu); 0.164874s (thread); 0s (gc) │ │ │ │ │ │ i10 : betti source m │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o10 = total: 1 19 80 181 312 484 447 156 │ │ │ 0: 1 3 3 1 . . . . │ │ │ 1: . . 1 3 3 . . . │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ @@ -181,15 +181,15 @@ │ │ │
    │ │ │

    Now we minimize the result. The free summand we added to the end maps to zero, and thus is part of the minimization.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -301,15 +301,15 @@ │ │ │ │ │ │ o21 : A │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -160,15 +160,15 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o14 = ideal (x x - x x x , x x ) │ │ │ │ 0 3 1 2 4 2 5 │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time csmK=CSM(A,K) │ │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc) │ │ │ │ + -- used 1.23554s (cpu); 0.414859s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o15 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o15 : A │ │ │ │ i16 : csmKHash= CSM(A,K,Output=>HashForm) │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o21 = 9h h + 9h h + 9h h + 3h + 7h h + 3h + 3h + 2h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 1 2 │ │ │ │ │ │ │ │ o21 : A │ │ │ │ i22 : time CSM(A,K,m) │ │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc) │ │ │ │ + -- used 0.107807s (cpu); 0.0734502s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o22 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o22 : A │ │ │ │ In the case where the ambient space is a toric variety which is not a product │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o2 : NormalToricVariety │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i13 : time m = minimize (E[1]);
    │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc)
    │ │ │ + -- used 0.3389s (cpu); 0.263959s (thread); 0s (gc) │ │ │
    │ │ │
    i14 : isQuasiIsomorphism m
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ o11 : ChainComplex │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ │ │ o12 = false │ │ │ │ Now we minimize the result. The free summand we added to the end maps to zero, │ │ │ │ and thus is part of the minimization. │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc) │ │ │ │ + -- used 0.3389s (cpu); 0.263959s (thread); 0s (gc) │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : E[1] == source m │ │ │ │ │ │ │ │ o15 = true │ │ │ │ i16 : E' = target m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ @@ -129,21 +129,21 @@ │ │ │
    │ │ │
    i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │
    │ │ │
    i8 : time m = resolutionOfChainComplex C;
    │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc)
    │ │ │ + -- used 0.103578s (cpu); 0.103579s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : time n = cartanEilenbergResolution C;
    │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc)
    │ │ │ + -- used 0.24087s (cpu); 0.164874s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : betti source m
    │ │ │  
    │ │ │               0  1  2   3   4   5   6   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,17 +49,17 @@
    │ │ │ │  
    │ │ │ │  o4 : RingMap R <-- S
    │ │ │ │  i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5);
    │ │ │ │  i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │ │  i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-
    │ │ │ │  1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │ │  i8 : time m = resolutionOfChainComplex C;
    │ │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc)
    │ │ │ │ + -- used 0.103578s (cpu); 0.103579s (thread); 0s (gc)
    │ │ │ │  i9 : time n = cartanEilenbergResolution C;
    │ │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc)
    │ │ │ │ + -- used 0.24087s (cpu); 0.164874s (thread); 0s (gc)
    │ │ │ │  i10 : betti source m
    │ │ │ │  
    │ │ │ │               0  1  2   3   4   5   6   7
    │ │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │ │            1: .  .  1   3   3   .   .   .
    │ │ │ │            2: .  1  3   3   2   .   .   .
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │                2              2
    │ │ │  o14 = ideal (x x  - x x x , x x )
    │ │ │                0 3    1 2 4   2 5
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc)
    │ │ │ + -- used 1.23554s (cpu); 0.414859s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │  
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │          2 2     2         2     2             2
    │ │ │  o21 = 9h h  + 9h h  + 9h h  + 3h  + 7h h  + 3h  + 3h  + 2h
    │ │ │          1 2     1 2     1 2     1     1 2     2     1     2
    │ │ │  
    │ │ │  o21 : A
    │ │ │  
    │ │ │  i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc)
    │ │ │ + -- used 0.107807s (cpu); 0.0734502s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out
    │ │ │ @@ -9,28 +9,28 @@
    │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │  
    │ │ │  o2 = U
    │ │ │  
    │ │ │  o2 : NormalToricVariety
    │ │ │  
    │ │ │  i3 : time CSM U
    │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ + -- used 0.244192s (cpu); 0.163054s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │  o3 : -----------------------------------------------------------------------------------------------
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │  
    │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ + -- used 0.413007s (cpu); 0.313062s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out
    │ │ │ @@ -18,29 +18,29 @@
    │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │  
    │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ + -- used 0.866703s (cpu); 0.376965s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o5 : ------
    │ │ │          6
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ + -- used 2.4222s (cpu); 2.14452s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -53,29 +53,29 @@
    │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │  
    │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │  
    │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ + -- used 0.342009s (cpu); 0.251525s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │  o10 : ------
    │ │ │           4
    │ │ │          h
    │ │ │           1
    │ │ │  
    │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ + -- used 0.102148s (cpu); 0.10217s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out
    │ │ │ @@ -21,20 +21,20 @@
    │ │ │               2                                                        2
    │ │ │       - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
    │ │ │               3         0 4        1 4         2 4         3 4         4
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc)
    │ │ │ + -- used 0.0677474s (cpu); 0.0448798s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │  
    │ │ │  i5 : time Euler I
    │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc)
    │ │ │ + -- used 0.306022s (cpu); 0.184479s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │  
    │ │ │  i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │  
    │ │ │  i7 : A=ring EulerIHash#"CSM"
    │ │ │  
    │ │ │ @@ -62,20 +62,20 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x )
    │ │ │          0 3
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc)
    │ │ │ + -- used 0.145412s (cpu); 0.0950761s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │  
    │ │ │  i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc)
    │ │ │ + -- used 0.286246s (cpu); 0.13218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : R=MultiProjCoordRing({2,2})
    │ │ │  
    │ │ │  o12 = R
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out
    │ │ │ @@ -13,12 +13,12 @@
    │ │ │              2    2    2
    │ │ │  o3 = ideal(x  + x  + x  - 1)
    │ │ │              1    2    3
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time EulerAffine I
    │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc)
    │ │ │ + -- used 0.0757855s (cpu); 0.0618365s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ + -- used 6.25189s (cpu); 1.40623s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │  o3 : ----------
    │ │ │          3   3
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ + -- used 6.11753s (cpu); 1.41944s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out
    │ │ │ @@ -3,43 +3,43 @@
    │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ + -- used 1.02425s (cpu); 0.50674s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ + -- used 0.0775952s (cpu); 0.041121s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o4 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i5 : time Chern I
    │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ + -- used 0.0656896s (cpu); 0.0406127s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ + -- used 2.74846s (cpu); 1.07222s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          7
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ + -- used 0.6721s (cpu); 0.261928s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html
    │ │ │ @@ -234,15 +234,15 @@
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    │ │ │
    i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc)
    │ │ │ + -- used 1.23554s (cpu); 0.414859s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │
    │ │ │
    i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc)
    │ │ │ + -- used 0.107807s (cpu); 0.0734502s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ │
    │ │ │
    i3 : time CSM U
    │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ + -- used 0.244192s (cpu); 0.163054s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │
    │ │ │
    i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ + -- used 0.413007s (cpu); 0.313062s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,30 +16,30 @@
    │ │ │ │  o1 : Package
    │ │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │ │  
    │ │ │ │  o2 = U
    │ │ │ │  
    │ │ │ │  o2 : NormalToricVariety
    │ │ │ │  i3 : time CSM U
    │ │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ │ + -- used 0.244192s (cpu); 0.163054s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ │ │  o3 : --------------------------------------------------------------------------
    │ │ │ │  ---------------------
    │ │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x ,
    │ │ │ │  - x  + x , - x  + x )
    │ │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5
    │ │ │ │  0    6     0    7
    │ │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ │ + -- used 0.413007s (cpu); 0.313062s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ + -- used 0.866703s (cpu); 0.376965s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ + -- used 2.4222s (cpu); 2.14452s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -142,15 +142,15 @@
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │
    │ │ │
    i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ + -- used 0.342009s (cpu); 0.251525s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │ @@ -159,15 +159,15 @@
    │ │ │          h
    │ │ │           1
    │ │ │
    │ │ │
    i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ + -- used 0.102148s (cpu); 0.10217s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,28 +32,28 @@
    │ │ │ │  using the regenerative cascade implemented in Bertini. This is done by choosing
    │ │ │ │  the option bertini, provided Bertini is _i_n_s_t_a_l_l_e_d_ _a_n_d_ _c_o_n_f_i_g_u_r_e_d.
    │ │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ │ + -- used 0.866703s (cpu); 0.376965s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │ │         1      1      1      1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o5 : ------
    │ │ │ │          6
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ │ + -- used 2.4222s (cpu); 2.14452s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          6
    │ │ │ │ @@ -62,28 +62,28 @@
    │ │ │ │  
    │ │ │ │  o7 = 2
    │ │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │ │  
    │ │ │ │  o9 : Ideal of S
    │ │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ │ + -- used 0.342009s (cpu); 0.251525s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o10 = 3h  + 5h
    │ │ │ │          1     1
    │ │ │ │  
    │ │ │ │        ZZ[h ]
    │ │ │ │            1
    │ │ │ │  o10 : ------
    │ │ │ │           4
    │ │ │ │          h
    │ │ │ │           1
    │ │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ │ + -- used 0.102148s (cpu); 0.10217s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o11 = 3H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html
    │ │ │ @@ -125,23 +125,23 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc)
    │ │ │ + -- used 0.0677474s (cpu); 0.0448798s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : time Euler I
    │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc)
    │ │ │ + -- used 0.306022s (cpu); 0.184479s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │ @@ -189,23 +189,23 @@ │ │ │
    │ │ │

    Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc)
    │ │ │ + -- used 0.145412s (cpu); 0.0950761s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │
    │ │ │
    i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc)
    │ │ │ + -- used 0.286246s (cpu); 0.13218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │
    │ │ │
    │ │ │

    Now consider an example in \PP^2 \times \PP^2.

    │ │ │ ├── html2text {} │ │ │ │ @@ -74,19 +74,19 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 │ │ │ │ - 14254x - 11226x x + 2653x x + 12365x x - 10226x x - 12696x ) │ │ │ │ 3 0 4 1 4 2 4 3 4 4 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time Euler(I,InputIsSmooth=>true) │ │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc) │ │ │ │ + -- used 0.0677474s (cpu); 0.0448798s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : time Euler I │ │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc) │ │ │ │ + -- used 0.306022s (cpu); 0.184479s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ i6 : EulerIHash=Euler(I,Output=>HashForm); │ │ │ │ i7 : A=ring EulerIHash#"CSM" │ │ │ │ │ │ │ │ o7 = A │ │ │ │ │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ o9 : Ideal of R │ │ │ │ Note that the ideal J above is a complete intersection, thus we may change the │ │ │ │ method option which may speed computation in some cases. We may also note that │ │ │ │ the ideal generated by the first 2 generators of I defines a smooth scheme and │ │ │ │ input this information into the method. This may also improve computation │ │ │ │ speed. │ │ │ │ i10 : time Euler(J,Method=>DirectCompleteInt) │ │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc) │ │ │ │ + -- used 0.145412s (cpu); 0.0950761s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 2 │ │ │ │ i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1}) │ │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc) │ │ │ │ + -- used 0.286246s (cpu); 0.13218s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ Now consider an example in \PP^2 \times \PP^2. │ │ │ │ i12 : R=MultiProjCoordRing({2,2}) │ │ │ │ │ │ │ │ o12 = R │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o3 : Ideal of R │ │ │
    │ │ │
    i4 : time EulerAffine I
    │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc)
    │ │ │ + -- used 0.0757855s (cpu); 0.0618365s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    │ │ │

    Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under probabilistic algorithm.

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o3 = ideal(x + x + x - 1) │ │ │ │ 1 2 3 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time EulerAffine I │ │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc) │ │ │ │ + -- used 0.0757855s (cpu); 0.0618365s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ Observe that the algorithm is a probabilistic algorithm and may give a wrong │ │ │ │ answer with a small but nonzero probability. Read more under _p_r_o_b_a_b_i_l_i_s_t_i_c │ │ │ │ _a_l_g_o_r_i_t_h_m. │ │ │ │ ********** WWaayyss ttoo uussee EEuulleerrAAffffiinnee:: ********** │ │ │ │ * EulerAffine(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ + -- used 6.25189s (cpu); 1.40623s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ + -- used 6.11753s (cpu); 1.41944s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,28 +16,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ │ + -- used 6.25189s (cpu); 1.40623s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ │ │  o3 : ----------
    │ │ │ │          3   3
    │ │ │ │        (h , h )
    │ │ │ │          1   2
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ │ + -- used 6.11753s (cpu); 1.41944s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html
    │ │ │ @@ -66,15 +66,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM I
    │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ + -- used 1.02425s (cpu); 0.50674s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ + -- used 0.0775952s (cpu); 0.041121s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │          
    │ │ │

    Note that one could, equivalently, use the command Chern instead in this case.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time Chern I
    │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ + -- used 0.0656896s (cpu); 0.0406127s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -9,42 +9,42 @@
    │ │ │ │  input ideal is known to define a smooth subscheme setting this option to true
    │ │ │ │  will speed up computations (it is set to false by default).
    │ │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ │ + -- used 1.02425s (cpu); 0.50674s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o3 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0775952s (cpu); 0.041121s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o4 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o4 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  Note that one could, equivalently, use the command _C_h_e_r_n instead in this case.
    │ │ │ │  i5 : time Chern I
    │ │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0656896s (cpu); 0.0406127s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o5 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : time CSM I
    │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ + -- used 2.74846s (cpu); 1.07222s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ + -- used 0.6721s (cpu); 0.261928s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,28 +18,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ │ + -- used 2.74846s (cpu); 1.07222s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          7
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ │ + -- used 0.6721s (cpu); 0.261928s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out
    │ │ │ @@ -16,32 +16,32 @@
    │ │ │  
    │ │ │  o2 : Digraph
    │ │ │  
    │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │  
    │ │ │  i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │  
    │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │  
    │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │  
    │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html
    │ │ │ @@ -102,18 +102,18 @@
    │ │ │                
    i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │
    │ │ │
    i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │
    │ │ │
    i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ @@ -128,18 +128,18 @@
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │
    │ │ │
    i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │
    │ │ │
    
    │ │ │        
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,32 +32,32 @@
    │ │ │ │               d0 => {}
    │ │ │ │               d1 => {}
    │ │ │ │  
    │ │ │ │  o2 : Digraph
    │ │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │ │  i4 : tree = elimTree G
    │ │ │ │  
    │ │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ │ +o4 = ElimTree{a => c}
    │ │ │ │                b => c
    │ │ │ │                c => d
    │ │ │ │ -              d => null
    │ │ │ │ +              d => b
    │ │ │ │  
    │ │ │ │  o4 : ElimTree
    │ │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │ │  
    │ │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ │ -                 b => {b,  , b}
    │ │ │ │ -                 a => {a,  }
    │ │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │ │                   c => { , c}
    │ │ │ │ +                 d => { , d}
    │ │ │ │ +                 b => {b,  , b}
    │ │ │ │  
    │ │ │ │  o7 : ChordalNet
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _d_i_s_p_l_a_y_N_e_t -- displays a chordal network using Graphivz
    │ │ │ │      * _d_i_g_r_a_p_h_(_C_h_o_r_d_a_l_N_e_t_) -- digraph associated to a chordal network
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _c_h_o_r_d_a_l_N_e_t_(_H_a_s_h_T_a_b_l_e_,_H_a_s_h_T_a_b_l_e_,_E_l_i_m_T_r_e_e_,_D_i_g_r_a_p_h_) -- construct chordal
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out
    │ │ │ @@ -184,15 +184,15 @@
    │ │ │        {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, -1, -1}}
    │ │ │  
    │ │ │  o19 : List
    │ │ │  
    │ │ │  i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.67408s elapsed
    │ │ │ + -- 3.11184s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -265,45 +265,45 @@
    │ │ │  i22 : degree(X_3 + X_7 + X_8)
    │ │ │  
    │ │ │  o22 = {0, 0, 1, 2, 0, -1}
    │ │ │  
    │ │ │  o22 : List
    │ │ │  
    │ │ │  i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .302915s elapsed
    │ │ │ + -- .514668s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │  
    │ │ │  i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.9792s elapsed
    │ │ │ + -- 9.21423s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │  
    │ │ │  i25 : assert(cohomvec1 == cohomvec2)
    │ │ │  
    │ │ │  i26 : degree(X_3 + X_7 - X_8)
    │ │ │  
    │ │ │  o26 = {0, 0, 1, 2, -2, -1}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .342126s elapsed
    │ │ │ + -- .530444s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .517346s elapsed
    │ │ │ - -- .517373s elapsed
    │ │ │ + -- .492547s elapsed
    │ │ │ + -- .492574s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │  
    │ │ │  i29 : assert(cohomvec1 == cohomvec2)
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/html/index.html
    │ │ │ @@ -309,15 +309,15 @@
    │ │ │  
    │ │ │  o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.67408s elapsed
    │ │ │ + -- 3.11184s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -399,25 +399,25 @@
    │ │ │  
    │ │ │  o22 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .302915s elapsed
    │ │ │ + -- .514668s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.9792s elapsed
    │ │ │ + -- 9.21423s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -433,26 +433,26 @@ │ │ │ │ │ │ o26 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .342126s elapsed
    │ │ │ + -- .530444s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .517346s elapsed
    │ │ │ - -- .517373s elapsed
    │ │ │ + -- .492547s elapsed
    │ │ │ + -- .492574s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -182,15 +182,15 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, -1, -1}} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : elapsedTime hvecs = cohomCalg(X, D2) │ │ │ │ - -- 2.67408s elapsed │ │ │ │ + -- 3.11184s elapsed │ │ │ │ │ │ │ │ o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -262,42 +262,42 @@ │ │ │ │ {2, 2, 3, 1, -4, -6} => {{0, 1, 0, 0, 0}, {{1, 1x1*x2}}} │ │ │ │ i22 : degree(X_3 + X_7 + X_8) │ │ │ │ │ │ │ │ o22 = {0, 0, 1, 2, 0, -1} │ │ │ │ │ │ │ │ o22 : List │ │ │ │ i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8) │ │ │ │ - -- .302915s elapsed │ │ │ │ + -- .514668s elapsed │ │ │ │ │ │ │ │ o23 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X │ │ │ │ (0,0,1,2,0,-1)) │ │ │ │ - -- 10.9792s elapsed │ │ │ │ + -- 9.21423s elapsed │ │ │ │ │ │ │ │ o24 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o24 : List │ │ │ │ i25 : assert(cohomvec1 == cohomvec2) │ │ │ │ i26 : degree(X_3 + X_7 - X_8) │ │ │ │ │ │ │ │ o26 = {0, 0, 1, 2, -2, -1} │ │ │ │ │ │ │ │ o26 : List │ │ │ │ i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8) │ │ │ │ - -- .342126s elapsed │ │ │ │ + -- .530444s elapsed │ │ │ │ │ │ │ │ o27 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j │ │ │ │ (X, OO_X(0,0,1,2,-2,-1)) │ │ │ │ - -- .517346s elapsed │ │ │ │ - -- .517373s elapsed │ │ │ │ + -- .492547s elapsed │ │ │ │ + -- .492574s elapsed │ │ │ │ │ │ │ │ o28 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o28 : List │ │ │ │ i29 : assert(cohomvec1 == cohomvec2) │ │ │ │ _c_o_h_o_m_C_a_l_g computes cohomology vectors by calling CohomCalg. It also stashes │ │ │ │ it's results in the toric variety's cache table, so computations need not be │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : len = 10 │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc) │ │ │ + -- used 7.6472s (cpu); 5.77844s (thread); 0s (gc) │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S \28 / S \36 / S \44 / S \52 / S \60 / S \68 / S \76 │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| │ │ │ | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | │ │ │ |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| │ │ │ \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / │ │ │ │ │ │ @@ -140,37 +140,37 @@ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc) │ │ │ + -- used 0.205348s (cpu); 0.115054s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o20 : Complex │ │ │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc) │ │ │ + -- used 1.20834s (cpu); 0.951486s (thread); 0s (gc) │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o21 : Complex │ │ │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc) │ │ │ + -- used 1.08345s (cpu); 0.842864s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ @@ -2,21 +2,21 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc) │ │ │ + -- used 0.5834s (cpu); 0.411115s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc) │ │ │ + -- used 0.325698s (cpu); 0.189051s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc) │ │ │ + -- used 3.417e-06s (cpu); 3.212e-06s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ @@ -2,23 +2,23 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : twoMonomials(2,3) │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc) │ │ │ + -- used 1.21967s (cpu); 0.739341s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{1, 1}} => 2 } │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc) │ │ │ + -- used 0.587918s (cpu); 0.427198s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc) │ │ │ + -- used 0.21924s (cpu); 0.137787s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time G = EisenbudShamash(ff,F,len)
    │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc)
    │ │ │ + -- used 7.6472s (cpu); 5.77844s (thread); 0s (gc)
    │ │ │  
    │ │ │       /    S   \1     /    S   \5     /    S   \12     /    S   \20     /    S   \28     /    S   \36     /    S   \44     /    S   \52     /    S   \60     /    S   \68     /    S   \76
    │ │ │  o7 = |--------|  <-- |--------|  <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|
    │ │ │       |  2   3 |      |  2   3 |      |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |
    │ │ │       |(x , x )|      |(x , x )|      |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|
    │ │ │       \  0   1 /      \  0   1 /      \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /
    │ │ │                                                                                                                                                                                
    │ │ │ @@ -295,28 +295,28 @@
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : FF = time Shamash(R1,F,4)
    │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc)
    │ │ │ + -- used 0.205348s (cpu); 0.115054s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o20 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        0       1       2        3        4
    │ │ │  
    │ │ │  o20 : Complex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : GG = time EisenbudShamash(ff,F,4)
    │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc)
    │ │ │ + -- used 1.20834s (cpu); 0.951486s (thread); 0s (gc)
    │ │ │  
    │ │ │        / R\1     / R\6     / R\18     / R\38     / R\66
    │ │ │  o21 = |--|  <-- |--|  <-- |--|   <-- |--|   <-- |--|
    │ │ │        | 3|      | 3|      | 3|       | 3|       | 3|
    │ │ │        \c /      \c /      \c /       \c /       \c /
    │ │ │                                                   
    │ │ │        0         1         2          3          4
    │ │ │ @@ -328,15 +328,15 @@
    │ │ │          
    │ │ │

    The function also deals correctly with complexes F where min F is not 0:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i22 : GG = time EisenbudShamash(R1,F[2],4)
    │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc)
    │ │ │ + -- used 1.08345s (cpu); 0.842864s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o22 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        -2      -1      0        1        2
    │ │ │  
    │ │ │  o22 : Complex
    │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ o5 = R │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : len = 10 │ │ │ │ │ │ │ │ o6 = 10 │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc) │ │ │ │ + -- used 7.6472s (cpu); 5.77844s (thread); 0s (gc) │ │ │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S │ │ │ │ \28 / S \36 / S \44 / S \52 / S \60 / │ │ │ │ S \68 / S \76 │ │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |------- │ │ │ │ -| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |- │ │ │ │ -------| <-- |--------| │ │ │ │ @@ -165,36 +165,36 @@ │ │ │ │ o18 : Matrix R <-- R │ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc) │ │ │ │ + -- used 0.205348s (cpu); 0.115054s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o20 : Complex │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc) │ │ │ │ + -- used 1.20834s (cpu); 0.951486s (thread); 0s (gc) │ │ │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o21 : Complex │ │ │ │ The function also deals correctly with complexes F where min F is not 0: │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc) │ │ │ │ + -- used 1.08345s (cpu); 0.842864s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ @@ -79,23 +79,23 @@ │ │ │ │ │ │ o1 = 0 │ │ │
    │ │ │
    i2 : sumTwoMonomials(2,3)
    │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc)
    │ │ │ + -- used 0.5834s (cpu); 0.411115s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{2, 2}, {1, 2}} => 3}
    │ │ │  
    │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc)
    │ │ │ + -- used 0.325698s (cpu); 0.189051s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │  
    │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.417e-06s (cpu); 3.212e-06s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{}
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,23 +18,23 @@ │ │ │ │ appropriate syzygy M of M0 = R/(m1+m2) where m1 and m2 are monomials of the │ │ │ │ same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc) │ │ │ │ + -- used 0.5834s (cpu); 0.411115s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc) │ │ │ │ + -- used 0.325698s (cpu); 0.189051s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc) │ │ │ │ + -- used 3.417e-06s (cpu); 3.212e-06s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ssuummTTwwooMMoonnoommiiaallss:: ********** │ │ │ │ * sumTwoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ @@ -83,25 +83,25 @@ │ │ │ │ │ │ o1 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : twoMonomials(2,3)
    │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc)
    │ │ │ + -- used 1.21967s (cpu); 0.739341s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{1, 1}} => 2        }
    │ │ │        {{2, 2}, {1, 2}} => 4
    │ │ │  
    │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc)
    │ │ │ + -- used 0.587918s (cpu); 0.427198s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 2}
    │ │ │        {{3, 3}, {2, 3}} => 1
    │ │ │  
    │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc)
    │ │ │ + -- used 0.21924s (cpu); 0.137787s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,25 +20,25 @@ │ │ │ │ that is, for an appropriate syzygy M of M0 = R/(m1, m2) where m1 and m2 are │ │ │ │ monomials of the same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : twoMonomials(2,3) │ │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc) │ │ │ │ + -- used 1.21967s (cpu); 0.739341s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{1, 1}} => 2 } │ │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc) │ │ │ │ + -- used 0.587918s (cpu); 0.427198s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc) │ │ │ │ + -- used 0.21924s (cpu); 0.137787s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ttwwooMMoonnoommiiaallss:: ********** │ │ │ │ * twoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ConformalBlocks/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ Y2Fub25pY2FsRGl2aXNvck0wbmJhcg== │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ - ϵ*z*dy + 2ϵ - ϵ, x*dx + y*dy + z*dz - 2ϵ) │ │ │ │ │ │ o7 : Ideal of D │ │ │ │ │ │ i8 : assert(holonomicRank I == 4) │ │ │ │ │ │ i9 : elapsedTime A = connectionMatrices I; │ │ │ - -- 2.81078s elapsed │ │ │ + -- 2.36245s elapsed │ │ │ │ │ │ i10 : elapsedTime assert isIntegrable A │ │ │ - -- 5.94013s elapsed │ │ │ + -- 3.95334s elapsed │ │ │ │ │ │ i11 : netList A │ │ │ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o11 = || 2ϵ/x -y/x -z/x 0 | | │ │ │ || (4x2y2ϵ^2+4xy2zϵ^2-2x2z2ϵ^2-2y2z2ϵ^2-4xz3ϵ^2+x3zϵ-3xy2zϵ+2xz3ϵ)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (2x3y2ϵ-2x2y3ϵ+2x3yzϵ-2xy3zϵ-x3z2ϵ+x2yz2ϵ-xy2z2ϵ+y3z2ϵ-2x3yz+2xy3z)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-2x2y2zϵ-x3z2ϵ-3xy2z2ϵ+x2z3ϵ+y2z3ϵ+4xz4ϵ+2xy2z2-2xz4)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-xyz+xz2+yz2-z3)/(2x2y+2xy2-x2z-2xyz-y2z) | | │ │ │ || (-2xyz2ϵ^2-2y2z2ϵ^2-4yz3ϵ^2+2x2y2ϵ+x2yzϵ+xy2zϵ+2y2z2ϵ+2yz3ϵ)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (x2yz2ϵ+2xy2z2ϵ+y3z2ϵ+2xyz3ϵ+2y2z3ϵ-2x2y3-x2y2z-xy3z-x2yz2-y3z2-xyz3-y2z3)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (2x2y2ϵ+x2yzϵ+xy2zϵ-2x2z2ϵ+xyz2ϵ+y2z2ϵ-2xz3ϵ+2yz3ϵ-2x2y2-x2yz-xy2z+x2z2-y2z2+xz3-yz3)/(2x3y2+x3yz+x2y2z-x3z2-xy2z2-x2z3-xyz3) (-yz+z2)/(2xy-xz-yz) | | │ │ │ @@ -56,24 +56,24 @@ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i12 : F = baseFractionField D; │ │ │ │ │ │ i13 : B = {1_D,dx,dy,dx*dy}; │ │ │ │ │ │ i14 : elapsedTime g = gaugeMatrix(I, B); │ │ │ - -- .73523s elapsed │ │ │ + -- .491211s elapsed │ │ │ │ │ │ 4 4 │ │ │ o14 : Matrix F <-- F │ │ │ │ │ │ i15 : elapsedTime A1 = gaugeTransform(g, A); │ │ │ - -- 1.57042s elapsed │ │ │ + -- 1.07411s elapsed │ │ │ │ │ │ i16 : elapsedTime assert isIntegrable A1 │ │ │ - -- .808615s elapsed │ │ │ + -- .787232s elapsed │ │ │ │ │ │ i17 : netList A1 │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o17 = || 0 1 0 0 | | │ │ │ || (-2ϵ^2+ϵ)/(x2-z2) (3xϵ+zϵ-2x)/(x2-z2) (yϵ+zϵ)/(x2-z2) (-y-z)/(x-z) | | │ │ │ || 0 0 0 1 | | │ │ │ @@ -96,18 +96,18 @@ │ │ │ {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)}, │ │ │ {0, 0, 0, -(x+y)*(x+z)*(y+z)}}); │ │ │ │ │ │ 4 4 │ │ │ o18 : Matrix F <-- F │ │ │ │ │ │ i19 : elapsedTime A2 = gaugeTransform(changeEps, A1); │ │ │ - -- .496173s elapsed │ │ │ + -- .31763s elapsed │ │ │ │ │ │ i20 : elapsedTime assert isIntegrable A2 │ │ │ - -- .830479s elapsed │ │ │ + -- .609243s elapsed │ │ │ │ │ │ i21 : netList A2 │ │ │ │ │ │ +-------------------------------------------------------------------------------------------+ │ │ │ o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0 0 | | │ │ │ || 0 ϵ/(x-z) 0 ϵ/(x+y) | | │ │ │ || 0 0 ϵ/(x+z) (-yϵ+zϵ)/(x2+xy+xz+yz) | | │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ @@ -16,18 +16,18 @@ │ │ │ │ │ │ 2 │ │ │ o6 = {1, dx, dy, dy } │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime A = connectionMatrices I; │ │ │ - -- .267226s elapsed │ │ │ + -- .203972s elapsed │ │ │ │ │ │ i8 : elapsedTime assert isIntegrable A │ │ │ - -- .203883s elapsed │ │ │ + -- .16896s elapsed │ │ │ │ │ │ i9 : netList A │ │ │ │ │ │ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o9 = || 0 1 0 0 || │ │ │ || 0 -1/x 1/x y/x || │ │ │ || -1/2xy -1/y (-x-3y+1)/2xy (-x-y+1)/2x || │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ @@ -118,21 +118,21 @@ │ │ │
    │ │ │

    Then, we compute the system in connection form and verify that it meets the integrability conditions.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ 2 2 │ │ │ │ - a*c + e - b*c + f │ │ │ │ ----------*v, x + ----------*v) │ │ │ │ d*e - a*f d*e - a*f │ │ │ │ │ │ │ │ o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i6 : time phi^** q │ │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc) │ │ │ │ + -- used 0.166215s (cpu); 0.166214s (thread); 0s (gc) │ │ │ │ │ │ │ │ e d c b a │ │ │ │ o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v) │ │ │ │ f f f f f │ │ │ │ │ │ │ │ o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i7 : oo == p │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ @@ -134,59 +134,59 @@ │ │ │ x x - 2x x x x + x x - 2x x x x - 2x x x x + 4x x x x + x x + 4x x x x - 2x x x x - 2x x x x - 2x x x x + x x │ │ │ 3 4 2 3 4 5 2 5 1 3 4 6 1 2 5 6 0 3 5 6 1 6 1 2 4 7 0 3 4 7 0 2 5 7 0 1 6 7 0 7 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- 2.81078s elapsed
    │ │ │ + -- 2.36245s elapsed │ │ │
    │ │ │
    i10 : elapsedTime assert isIntegrable A
    │ │ │ - -- 5.94013s elapsed
    │ │ │ + -- 3.95334s elapsed │ │ │
    │ │ │
    i11 : netList A
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │              
    │ │ │
    i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │
    │ │ │
    i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ - -- .73523s elapsed
    │ │ │ + -- .491211s elapsed
    │ │ │  
    │ │ │                4      4
    │ │ │  o14 : Matrix F  <-- F
    │ │ │
    │ │ │
    i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ - -- 1.57042s elapsed
    │ │ │ + -- 1.07411s elapsed │ │ │
    │ │ │
    i16 : elapsedTime assert isIntegrable A1
    │ │ │ - -- .808615s elapsed
    │ │ │ + -- .787232s elapsed │ │ │
    │ │ │
    i17 : netList A1
    │ │ │  
    │ │ │        +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -227,21 +227,21 @@
    │ │ │                4      4
    │ │ │  o18 : Matrix F  <-- F
    │ │ │
    │ │ │
    i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ - -- .496173s elapsed
    │ │ │ + -- .31763s elapsed │ │ │
    │ │ │
    i20 : elapsedTime assert isIntegrable A2
    │ │ │ - -- .830479s elapsed
    │ │ │ + -- .609243s elapsed │ │ │
    │ │ │
    i21 : netList A2
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,17 +41,17 @@
    │ │ │ │  
    │ │ │ │  o7 : Ideal of D
    │ │ │ │  First, we check that the system has finite holonomic rank using _h_o_l_o_n_o_m_i_c_R_a_n_k.
    │ │ │ │  i8 : assert(holonomicRank I == 4)
    │ │ │ │  Then, we compute the system in connection form and verify that it meets the
    │ │ │ │  integrability conditions.
    │ │ │ │  i9 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- 2.81078s elapsed
    │ │ │ │ + -- 2.36245s elapsed
    │ │ │ │  i10 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- 5.94013s elapsed
    │ │ │ │ + -- 3.95334s elapsed
    │ │ │ │  i11 : netList A
    │ │ │ │  
    │ │ │ │        +----------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │ @@ -227,22 +227,22 @@
    │ │ │ │  -----------------------------------------------------------------------------------+
    │ │ │ │  Next, we use _g_a_u_g_e_ _m_a_t_r_i_x for changing base to a base given by suitable set of
    │ │ │ │  standard monomials, and compute the _g_a_u_g_e_ _t_r_a_n_s_f_o_r_m with respect to this gauge
    │ │ │ │  matrix.
    │ │ │ │  i12 : F = baseFractionField D;
    │ │ │ │  i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │ │  i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ │ - -- .73523s elapsed
    │ │ │ │ + -- .491211s elapsed
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o14 : Matrix F  <-- F
    │ │ │ │  i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ │ - -- 1.57042s elapsed
    │ │ │ │ + -- 1.07411s elapsed
    │ │ │ │  i16 : elapsedTime assert isIntegrable A1
    │ │ │ │ - -- .808615s elapsed
    │ │ │ │ + -- .787232s elapsed
    │ │ │ │  i17 : netList A1
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  --------------------------------------------------------------------------+
    │ │ │ │  o17 = || 0                            1                      0
    │ │ │ │  0                                                      |
    │ │ │ │ @@ -300,17 +300,17 @@
    │ │ │ │                {0, ϵ*(x^2-z^2), 0, ϵ*(x+y)*(x+z)},
    │ │ │ │                {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)},
    │ │ │ │                {0, 0, 0, -(x+y)*(x+z)*(y+z)}});
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o18 : Matrix F  <-- F
    │ │ │ │  i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ │ - -- .496173s elapsed
    │ │ │ │ + -- .31763s elapsed
    │ │ │ │  i20 : elapsedTime assert isIntegrable A2
    │ │ │ │ - -- .830479s elapsed
    │ │ │ │ + -- .609243s elapsed
    │ │ │ │  i21 : netList A2
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------+
    │ │ │ │  o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0       0                      |
    │ │ │ │  |
    │ │ │ │        || 0       ϵ/(x-z)     0       ϵ/(x+y)                |
    │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html
    │ │ │ @@ -100,21 +100,21 @@
    │ │ │          
    │ │ │

    Finally, we can compute the connection matrices.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- .267226s elapsed
    │ │ │ + -- .203972s elapsed │ │ │
    │ │ │
    i8 : elapsedTime assert isIntegrable A
    │ │ │ - -- .203883s elapsed
    │ │ │ + -- .16896s elapsed │ │ │
    │ │ │
    i9 : netList A
    │ │ │  
    │ │ │       +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,17 +20,17 @@
    │ │ │ │  
    │ │ │ │                     2
    │ │ │ │  o6 = {1, dx, dy, dy }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  Finally, we can compute the connection matrices.
    │ │ │ │  i7 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- .267226s elapsed
    │ │ │ │ + -- .203972s elapsed
    │ │ │ │  i8 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- .203883s elapsed
    │ │ │ │ + -- .16896s elapsed
    │ │ │ │  i9 : netList A
    │ │ │ │  
    │ │ │ │       +-------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------+
    │ │ │ │  o9 = || 0                                                       1
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out
    │ │ │ @@ -13,27 +13,27 @@
    │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │  
    │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ + -- used 2.36974s (cpu); 1.25502s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │  
    │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ + -- used 1.43309s (cpu); 0.986049s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -62,27 +62,27 @@
    │ │ │          0,2 1,3    0,1 2,3
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i9 : time ChernClass G
    │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ + -- used 0.350846s (cpu); 0.194791s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │  
    │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ + -- used 0.132431s (cpu); 0.0387954s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out
    │ │ │ @@ -1,56 +1,56 @@
    │ │ │  -- -*- M2-comint -*- hash: 10433409267944421825
    │ │ │  
    │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │  
    │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ + -- used 0.00524112s (cpu); 0.00523976s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │  
    │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ + -- used 0.149399s (cpu); 0.0730355s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │  
    │ │ │  i4 : time degreeMap phi
    │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ + -- used 0.0334176s (cpu); 0.0334224s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ + -- used 0.716496s (cpu); 0.549996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ + -- used 0.0704585s (cpu); 0.0704671s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ + -- used 0.0025549s (cpu); 0.00255898s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -59,15 +59,15 @@
    │ │ │                                                                             ------[x ..x ]
    │ │ │                 ZZ                                                          300007  0   9
    │ │ │  o7 : RingMap ------[t ..t ] <-- ----------------------------------------------------------------------------------------------------
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ + -- used 0.422925s (cpu); 0.422931s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -76,32 +76,32 @@
    │ │ │                                                          ------[x ..x ]
    │ │ │                                                          300007  0   9                                                   ZZ
    │ │ │  o8 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[t ..t ]
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ + -- used 0.0109647s (cpu); 0.0109661s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time degreeMap psi
    │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ + -- used 0.486731s (cpu); 0.262439s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │  
    │ │ │  i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ + -- used 5.44371s (cpu); 5.02492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ + -- used 0.002611s (cpu); 0.00261541s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │  
    │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ + -- used 0.17472s (cpu); 0.090802s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -217,15 +217,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i14 : time phi^(-1)
    │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ + -- used 0.440018s (cpu); 0.440021s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -275,71 +275,71 @@
    │ │ │                         x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x
    │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │                        }
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │  
    │ │ │  i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ + -- used 0.475373s (cpu); 0.340152s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : time degrees phi
    │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ + -- used 0.0793952s (cpu); 0.0267941s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │  
    │ │ │  i17 : time describe phi
    │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ + -- used 0.00372634s (cpu); 0.00373177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ + -- used 0.0109202s (cpu); 0.0109263s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │        number of minimal representatives: 1
    │ │ │        dimension base locus: 4
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ + -- used 0.0115313s (cpu); 0.0115369s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i21 : time degrees f
    │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ + -- used 1.20731s (cpu); 0.987305s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │  
    │ │ │  i22 : time degree f
    │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.1074e-05s (cpu); 1.9557e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │  
    │ │ │  i23 : time describe f
    │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ + -- used 0.00165199s (cpu); 0.00165748s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out
    │ │ │ @@ -3,18 +3,18 @@
    │ │ │  i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc)
    │ │ │ + -- used 0.313648s (cpu); 0.171991s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc)
    │ │ │ + -- used 0.0746203s (cpu); 0.0206391s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │  
    │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i4 : time phi! ;
    │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ + -- used 0.0726521s (cpu); 0.0609858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │  
    │ │ │  i5 : describe phi
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │ @@ -37,15 +37,15 @@
    │ │ │  
    │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^4
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i9 : time phi! ;
    │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ + -- used 0.0662474s (cpu); 0.0459304s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i10 : describe phi
    │ │ │  
    │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │        source variety: PP^4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │       - a*c + e         - b*c + f
    │ │ │       ----------*v, x + ----------*v)
    │ │ │        d*e - a*f         d*e - a*f
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │  
    │ │ │  i6 : time phi^** q
    │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc)
    │ │ │ + -- used 0.166215s (cpu); 0.166214s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out
    │ │ │ @@ -47,50 +47,50 @@
    │ │ │                                                                            P7
    │ │ │  o3 : Ideal of -------------------------------------------------------------------------------------------------------------------------
    │ │ │                 2 2                2 2                                        2 2                                                    2 2
    │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1 6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │  
    │ │ │  i4 : time SegreClass X
    │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ + -- used 0.787156s (cpu); 0.53615s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ + -- used 0.620994s (cpu); 0.36341s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ + -- used 0.0674279s (cpu); 0.0316446s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ + -- used 0.127674s (cpu); 0.114673s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -98,22 +98,22 @@
    │ │ │  
    │ │ │  i8 : o4 == o6 and o5 == o7
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9 =   ZZ
    │ │ │ - ------[x ..x ]
    │ │ │ - 100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │  
    │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ + -- used 0.0662291s (cpu); 0.0662326s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -122,15 +122,15 @@
    │ │ │                                                           ------[y ..y ]
    │ │ │                                                           100003  0   9                                                   ZZ
    │ │ │  o10 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[x ..x ]
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i11 : time SegreClass phi
    │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ + -- used 0.372775s (cpu); 0.253258s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -150,27 +150,27 @@
    │ │ │                                                            100003  0   9
    │ │ │  o12 : Ideal of ----------------------------------------------------------------------------------------------------
    │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ + -- used 0.423745s (cpu); 0.294539s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │  
    │ │ │  i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ + -- used 1.54782s (cpu); 0.936395s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out
    │ │ │ @@ -17,32 +17,32 @@
    │ │ │  
    │ │ │  o3 = QQ[u ..u ]
    │ │ │           0   5
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ + -- used 0.000464119s (cpu); 0.000458369s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │  
    │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ + -- used 0.358626s (cpu); 0.201614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : time rationalMap psi
    │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ + -- used 0.468152s (cpu); 0.384639s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -113,48 +113,48 @@
    │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │  
    │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ + -- used 0.163849s (cpu); 0.0752081s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ + -- used 4.43247s (cpu); 2.24391s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │  
    │ │ │  i16 : time T2 = T * T
    │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.6402e-05s (cpu); 2.5293e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ + -- used 7.01159s (cpu); 3.54843s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │  
    │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │  
    │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │  i20 : T q
    │ │ │  
    │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │  o20 : List
    │ │ │  
    │ │ │  i21 : time f = rationalMap T
    │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ + -- used 5.82316s (cpu); 2.9113s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out
    │ │ │ @@ -54,15 +54,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ + -- used 0.287583s (cpu); 0.226178s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │  
    │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ + -- used 0.23606s (cpu); 0.178632s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i6 : assert(psi == psi')
    │ │ │  
    │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-3*x_6*x_7+2*x_0*x_8+11*x_1*x_8-37*x_3*x_8-23*x_4*x_8-33*x_6*x_8+8*x_0*x_9+10*x_1*x_9-25*x_2*x_9-9*x_3*x_9+3*x_4*x_9+24*x_5*x_9-27*x_6*x_9-5*x_0*x_10+28*x_1*x_10+37*x_2*x_10+9*x_4*x_10+27*x_6*x_10-25*x_0*x_11+9*x_2*x_11+27*x_4*x_11-27*x_5*x_11,x_2^2+17*x_2*x_3-14*x_3^2-13*x_2*x_4+34*x_3*x_4+44*x_0*x_5-30*x_2*x_5+27*x_3*x_5+31*x_2*x_6-36*x_3*x_6-x_0*x_7+13*x_1*x_7+8*x_3*x_7+9*x_5*x_7+46*x_6*x_7+41*x_0*x_8-7*x_1*x_8-34*x_3*x_8-9*x_4*x_8-46*x_6*x_8-17*x_0*x_9+32*x_1*x_9-8*x_2*x_9-35*x_3*x_9-46*x_4*x_9+26*x_5*x_9+17*x_6*x_9+15*x_0*x_10+35*x_1*x_10+34*x_2*x_10+20*x_4*x_10+14*x_0*x_11+36*x_1*x_11+35*x_2*x_11-17*x_4*x_11,x_1*x_2-40*x_2*x_3+28*x_3^2-x_0*x_4+5*x_2*x_4-16*x_3*x_4+5*x_0*x_5-36*x_2*x_5+37*x_3*x_5+48*x_2*x_6-5*x_1*x_7-5*x_3*x_7+x_5*x_7+20*x_6*x_7+10*x_0*x_8+34*x_1*x_8+41*x_3*x_8-x_4*x_8+x_6*x_8+40*x_0*x_9-32*x_1*x_9+5*x_2*x_9-11*x_3*x_9-20*x_4*x_9+45*x_5*x_9-14*x_6*x_9-25*x_0*x_10+45*x_1*x_10-41*x_2*x_10-46*x_4*x_10+8*x_6*x_10-28*x_0*x_11+11*x_2*x_11+14*x_4*x_11-8*x_5*x_11),{t_4^2+t_0*t_5+t_1*t_5+35*t_2*t_5+10*t_3*t_5+25*t_4*t_5-5*t_5^2-14*t_0*t_6-14*t_1*t_6-5*t_2*t_6-13*t_4*t_6+37*t_5*t_6+22*t_6^2-31*t_3*t_7+26*t_4*t_7+12*t_5*t_7-45*t_6*t_7-46*t_3*t_8+37*t_4*t_8+28*t_5*t_8+33*t_6*t_8,t_3*t_4+4*t_0*t_5+39*t_1*t_5-40*t_2*t_5+40*t_3*t_5+26*t_4*t_5-20*t_5^2+41*t_0*t_6+36*t_1*t_6-22*t_2*t_6+36*t_4*t_6-30*t_5*t_6-13*t_6^2-25*t_3*t_7+5*t_4*t_7-35*t_5*t_7+10*t_6*t_7+11*t_3*t_8+46*t_4*t_8+29*t_5*t_8+28*t_6*t_8,t_2*t_4-5*t_0*t_5-40*t_1*t_5+12*t_2*t_5+47*t_3*t_5+37*t_4*t_5+25*t_5^2-27*t_0*t_6-22*t_1*t_6+27*t_2*t_6-23*t_4*t_6+5*t_5*t_6-13*t_6^2-39*t_3*t_7-29*t_4*t_7+9*t_5*t_7+39*t_6*t_7+36*t_3*t_8+13*t_4*t_8+26*t_5*t_8+37*t_6*t_8,t_0*t_4-t_0*t_5-8*t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+15*t_0*t_6+15*t_1*t_6+5*t_2*t_6+15*t_4*t_6-38*t_5*t_6-22*t_6^2+31*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_2*t_3-t_0*t_5-t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+14*t_0*t_6+14*t_1*t_6+5*t_2*t_6+14*t_4*t_6-31*t_5*t_6-24*t_6^2+32*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_1*t_3-7*t_1*t_5+t_1*t_6+t_4*t_6-7*t_5*t_6+2*t_6^2-t_3*t_7,t_0*t_3-46*t_0*t_5-39*t_1*t_5-43*t_2*t_5-41*t_3*t_5-26*t_4*t_5-28*t_5^2-35*t_0*t_6-36*t_1*t_6+20*t_2*t_6-36*t_4*t_6+9*t_5*t_6+15*t_6^2+26*t_3*t_7-5*t_4*t_7+35*t_5*t_7-10*t_6*t_7-10*t_3*t_8-46*t_4*t_8+47*t_5*t_8-25*t_6*t_8,t_2^2-46*t_1*t_4-33*t_0*t_5-45*t_1*t_5-39*t_2*t_5-39*t_3*t_5-46*t_4*t_5-29*t_5^2-48*t_0*t_6-38*t_1*t_6-30*t_2*t_6+19*t_4*t_6-44*t_5*t_6-47*t_6^2-36*t_0*t_7-46*t_1*t_7+t_2*t_7-44*t_3*t_7+48*t_4*t_7-14*t_5*t_7+4*t_6*t_7-36*t_0*t_8-46*t_1*t_8+47*t_2*t_8-34*t_3*t_8-24*t_4*t_8-12*t_5*t_8-47*t_6*t_8+47*t_7*t_8,t_1*t_2+6*t_1*t_5+5*t_0*t_6-2*t_1*t_6-t_4*t_6-t_5*t_6+5*t_0*t_7+t_1*t_7-2*t_2*t_7-7*t_5*t_7+2*t_6*t_7-2*t_1*t_8+3*t_7*t_8,t_0*t_2+t_1*t_4+5*t_0*t_5+32*t_1*t_5-20*t_2*t_5-47*t_3*t_5-37*t_4*t_5-25*t_5^2+19*t_0*t_6+22*t_1*t_6-25*t_2*t_6+25*t_4*t_6-5*t_5*t_6+13*t_6^2+5*t_0*t_7+t_1*t_7+39*t_3*t_7+28*t_4*t_7-9*t_5*t_7-39*t_6*t_7+4*t_0*t_8+t_1*t_8-36*t_3*t_8-14*t_4*t_8-26*t_5*t_8-37*t_6*t_8,t_0*t_1-39*t_1*t_4+40*t_1*t_5-37*t_0*t_6-39*t_1*t_6+19*t_4*t_6-39*t_5*t_6-38*t_0*t_7+39*t_1*t_7+19*t_2*t_7+18*t_5*t_7-19*t_6*t_7+19*t_1*t_8+20*t_7*t_8,t_0^2+12*t_1*t_4+20*t_0*t_5+27*t_1*t_5-8*t_2*t_5+37*t_3*t_5+28*t_4*t_5+30*t_5^2-46*t_0*t_6+24*t_1*t_6-40*t_2*t_6+25*t_4*t_6+16*t_5*t_6-35*t_6^2+29*t_0*t_7+12*t_1*t_7-35*t_2*t_7-8*t_3*t_7-18*t_4*t_7+42*t_5*t_7-12*t_6*t_7-6*t_0*t_8+12*t_1*t_8-15*t_3*t_8+9*t_4*t_8+20*t_5*t_8-30*t_6*t_8+4*t_7*t_8})
    │ │ │  
    │ │ │ @@ -192,15 +192,15 @@
    │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │  
    │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ + -- used 2.10674s (cpu); 1.7984s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -258,15 +258,15 @@
    │ │ │  
    │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ + -- used 2.90154s (cpu); 2.53s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out
    │ │ │ @@ -9,27 +9,27 @@
    │ │ │                                   2                  2                             2                                       2                                                2                                                           2                                                                       2                                                                              2                                                                                            2         2                 2                             2                                       2                                              2                                                           2                                                                   2                                                                               2                                                                                          2        2                   2                            2                                      2                                                  2                                                          2                                                                      2                                                                               2                                                                                            2        2                   2                             2                                      2                                                 2                                                          2                                                                    2                                                                               2                                                                                          2         2                2                          2                                      2                                                 2                                                           2                                                                       2                                                                            2                                                                                          2        2                  2                         2                                       2                                                2                                                           2                                                                      2                                                                               2                                                                                        2       2                  2                             2                                    2                                                2                                                          2                                                                    2                                                                               2                                                                                       2       2                 2                           2                                      2                                                 2                                                            2                                                                       2                                                                                2                                                                                           2        2                   2                             2                                       2                                                  2                                                            2                                                                   2                                                                            2                                                                                          2      2                 2                            2                                       2                                                2                                                         2                                                                        2                                                                               2                                                                                          2     2                   2                             2                                      2                                                   2                                                          2                                                                     2                                                                               2                                                                                          2         2                2                            2                                       2                                                 2                                                           2                                                                      2                                                                                  2                                                                                              2      2                  2                            2                                    2                                                2                                                            2                                                                    2                                                                                2                                                                                          2       2                  2                            2                                    2                                                   2                                                        2                                                                         2                                                                               2                                                                                           2       2                  2                             2                                       2                                                 2                                                          2                                                                       2                                                                               2                                                                                       2
    │ │ │  o4 = map (ringP8, ringP14, {- 95x  + 181x x  + 1028x  - 1384x x  - 1455x x  + 559x  - 502x x  + 1264x x  - 162x x  + 1209x  - 180x x  - 504x x  - 1168x x  - 676x x  + 501x  + 73x x  + 1263x x  + 1035x x  + 844x x  + 1593x x  + 785x  + 982x x  - 412x x  + 1335x x  + 1136x x  + 826x x  + 1078x x  + 1158x  + 335x x  - 982x x  - 1479x x  - 15x x  + 1363x x  + 1397x x  - 575x x  - 71x  + 1255x x  - 1138x x  - 1590x x  + 604x x  + 1182x x  - 63x x  - 1382x x  - 1255x x  - 613x , - 1444x  + 575x x  + 767x  - 1495x x  + 1631x x  - 217x  - 294x x  - 1511x x  - 504x x  - 1284x  - 1459x x  + 152x x  + 141x x  - 10x x  - 95x  + 1056x x  + 654x x  + 1397x x  - 930x x  + 578x x  - 696x  + 759x x  + 733x x  + 505x x  - 609x x  + 526x x  - 659x x  + 846x  + 1253x x  - 1519x x  + 635x x  + 576x x  + 54x x  - 1261x x  - 822x x  - 257x  - 986x x  + 356x x  - 1488x x  - 1561x x  - 850x x  - 85x x  - 1350x x  - 783x x  - 1335x , - 871x  + 1006x x  - 1399x  - 1636x x  - 699x x  - 769x  - 307x x  - 1645x x  - 502x x  - 719x  + 1405x x  + 870x x  - 1133x x  + 425x x  - 1203x  - 1601x x  + 117x x  - 382x x  + 318x x  - 117x x  - 560x  + 1135x x  + 1468x x  + 869x x  - 943x x  - 335x x  - 1218x x  + 201x  - 11x x  + 540x x  - 710x x  - 489x x  + 1605x x  + 1663x x  - 423x x  + 1246x  + 97x x  - 644x x  + 1655x x  + 1219x x  + 1476x x  + 1355x x  + 1594x x  + 893x x  + 1150x , - 143x  + 1240x x  - 1042x  + 1649x x  + 1024x x  + 794x  + 1442x x  - 1263x x  + 537x x  - 82x  - 734x x  - 1569x x  - 798x x  - 366x x  + 1289x  - 569x x  - 254x x  + 237x x  - 1234x x  - 807x x  + 264x  - 202x x  - 616x x  + 44x x  + 1465x x  + 685x x  + 1630x x  - 406x  - 123x x  - 4x x  + 1583x x  + 1235x x  + 162x x  + 1034x x  - 1035x x  + 737x  + 660x x  + 1459x x  - 359x x  - 1291x x  + 1638x x  - 325x x  - 631x x  + 73x x  - 1471x , - 1340x  + 31x x  - 994x  - 880x x  - 89x x  + 574x  + 760x x  - 1054x x  + 772x x  - 239x  - 443x x  + 1240x x  + 637x x  - 1423x x  + 320x  - 1363x x  - 1139x x  - 158x x  - 325x x  - 1578x x  + 32x  + 695x x  + 305x x  + 1012x x  + 1492x x  + 1290x x  + 1579x x  - 342x  - 83x x  - 104x x  + 998x x  - 92x x  + 1554x x  + 201x x  - 237x x  + 160x  - 228x x  - 543x x  - 1147x x  - 376x x  + 1313x x  + 603x x  + 106x x  - 1361x x  + 699x , - 228x  - 1510x x  + 277x  - 4x x  - 22x x  - 1526x  + 234x x  + 969x x  + 1253x x  - 1426x  - 1474x x  + 947x x  + 194x x  - 316x x  - 988x  - 1211x x  + 1087x x  + 536x x  - 491x x  + 870x x  - 659x  + 1490x x  - 469x x  + 1190x x  + 807x x  + 650x x  + 448x x  - 1353x  - 218x x  + 759x x  - 253x x  + 830x x  - 1080x x  - 143x x  - 1313x x  - 374x  - 180x x  + 741x x  + 742x x  - 1254x x  + 458x x  - 345x x  + 597x x  + 1567x x  - 31x , 1120x  + 709x x  - 1538x  - 1048x x  - 162x x  - 1518x  - 73x x  + 380x x  + 533x x  - 286x  + 1374x x  - 74x x  - 22x x  + 1535x x  - 1071x  - 839x x  - 560x x  + 928x x  + 335x x  - 1008x x  + 810x  - 448x x  - 357x x  - 107x x  + 40x x  + 784x x  - 1423x x  + 1276x  + 147x x  + 443x x  - 598x x  - 1077x x  - 1214x x  + 322x x  - 1408x x  + 72x  - 63x x  - 1513x x  - 791x x  + 11x x  + 77x x  + 836x x  - 1100x x  + 1637x x  - 788x , 1331x  + 318x x  - 704x  + 51x x  + 275x x  + 1149x  + 1526x x  + 768x x  + 414x x  - 782x  - 262x x  + 686x x  - 380x x  + 1377x x  + 1077x  + 1650x x  - 1129x x  - 508x x  + 846x x  + 1513x x  + 460x  - 1626x x  - 1024x x  + 862x x  + 1352x x  - 188x x  - 1382x x  - 650x  + 55x x  - 326x x  + 1037x x  + 705x x  - 667x x  + 1483x x  + 1661x x  - 1652x  - 1052x x  - 692x x  - 542x x  + 162x x  + 582x x  - 1369x x  + 934x x  + 1392x x  + 1227x , - 346x  + 1408x x  - 1225x  - 1536x x  - 1028x x  - 985x  - 210x x  - 1312x x  + 915x x  + 1633x  - 202x x  - 1636x x  - 1653x x  - 480x x  - 1260x  - 813x x  - 1623x x  - 1429x x  + 1094x x  - 747x x  + 955x  + 898x x  - 795x x  - 35x x  - 566x x  + 1631x x  - 324x x  + 926x  - 132x x  - 9x x  - 1290x x  - 543x x  + 902x x  + 735x x  - 342x x  - 400x  + 900x x  - 463x x  + 694x x  - 1262x x  - 1449x x  - 448x x  - 1402x x  - 731x x  - 996x , 301x  + 166x x  - 955x  - 739x x  - 1199x x  - 319x  + 1047x x  - 532x x  + 902x x  + 1195x  - 663x x  + 1215x x  - 534x x  - 332x x  - 973x  + 772x x  - 308x x  + 315x x  - 454x x  - 483x x  - 239x  - 1313x x  - 419x x  - 1340x x  - 1388x x  - 1340x x  - 1665x x  - 333x  - 465x x  - 1084x x  + 676x x  - 1612x x  - 288x x  + 11x x  - 1170x x  - 189x  + 498x x  - 889x x  + 693x x  + 1460x x  - 473x x  - 414x x  - 122x x  - 1659x x  - 1421x , 14x  - 1049x x  + 1506x  + 1235x x  + 642x x  - 1034x  + 460x x  + 150x x  + 760x x  - 1246x  - 1407x x  + 1570x x  + 1403x x  - 1610x x  - 431x  + 574x x  + 893x x  - 657x x  + 417x x  + 1362x x  + 224x  + 268x x  + 1097x x  + 1132x x  + 148x x  + 1331x x  - 77x x  - 756x  + 228x x  + 136x x  - 1484x x  - 1478x x  - 13x x  + 1620x x  - 701x x  - 769x  - 760x x  - 492x x  - 1077x x  - 1249x x  - 834x x  - 395x x  - 1358x x  - 988x x  + 113x , - 1634x  - 13x x  + 805x  - 21x x  - 1655x x  + 1479x  - 1510x x  - 646x x  + 225x x  - 1411x  + 1227x x  - 1108x x  + 1291x x  - 59x x  - 142x  + 586x x  - 676x x  + 655x x  - 1476x x  + 453x x  - 1076x  - 1152x x  + 1373x x  - 1191x x  - 416x x  + 699x x  + 317x x  + 825x  - 1560x x  - 488x x  - 1035x x  - 1561x x  - 644x x  - 1178x x  - 1320x x  + 158x  + 889x x  + 1444x x  - 1486x x  - 1211x x  + 1269x x  - 1228x x  + 568x x  + 1591x x  + 1207x , 105x  - 538x x  - 1222x  - 277x x  + 716x x  - 1067x  - 428x x  + 154x x  - 469x x  + 77x  + 538x x  - 179x x  + 921x x  - 223x x  + 1093x  - 262x x  + 1299x x  + 631x x  + 1486x x  - 1280x x  - 121x  - 50x x  - 978x x  - 694x x  - 531x x  + 505x x  + 1412x x  - 1061x  + 1202x x  + 448x x  - 187x x  + 1276x x  - 121x x  + 1361x x  + 697x x  + 682x  + 1592x x  + 705x x  - 227x x  - 7x x  - 1423x x  - 1446x x  - 1578x x  + 1511x x  + 917x , 1270x  - 391x x  - 1116x  - 287x x  + 653x x  + 1643x  + 1623x x  + 514x x  - 14x x  - 90x  + 1232x x  - 1434x x  + 1296x x  + 1522x x  + 136x  - 623x x  - 607x x  + 18x x  + 896x x  - 29x x  + 1059x  - 1053x x  + 1643x x  + 1652x x  - 1190x x  - 1073x x  + 1470x x  - 944x  - 93x x  - 187x x  - 994x x  - 1415x x  - 229x x  - 796x x  + 1642x x  + 1600x  - 344x x  + 905x x  + 1032x x  - 538x x  - 891x x  + 1243x x  + 1290x x  + 490x x  - 1148x , 1613x  + 175x x  - 1346x  - 1000x x  - 1217x x  - 729x  - 1296x x  + 1456x x  + 745x x  + 539x  + 525x x  - 811x x  + 753x x  + 1362x x  + 1629x  - 840x x  + 513x x  + 429x x  + 842x x  + 1414x x  - 308x  + 1415x x  - 1461x x  - 1135x x  + 701x x  + 766x x  + 785x x  + 1503x  + 147x x  + 929x x  - 1220x x  - 853x x  + 493x x  + 226x x  + 1416x x  + 280x  - 7x x  + 1632x x  + 520x x  + 1259x x  + 157x x  + 1596x x  + 655x x  - 42x x  - 586x })
    │ │ │                                   0       0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4       1 4        2 4       3 4       4      0 5        1 5        2 5       3 5        4 5       5       0 6       1 6        2 6        3 6       4 6        5 6        6       0 7       1 7        2 7      3 7        4 7        5 7       6 7      7        0 8        1 8        2 8       3 8        4 8      5 8        6 8        7 8       8         0       0 1       1        0 2        1 2       2       0 3        1 3       2 3        3        0 4       1 4       2 4      3 4      4        0 5       1 5        2 5       3 5       4 5       5       0 6       1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8      5 8        6 8       7 8        8        0        0 1        1        0 2       1 2       2       0 3        1 3       2 3       3        0 4       1 4        2 4       3 4        4        0 5       1 5       2 5       3 5       4 5       5        0 6        1 6       2 6       3 6       4 6        5 6       6      0 7       1 7       2 7       3 7        4 7        5 7       6 7        7      0 8       1 8        2 8        3 8        4 8        5 8        6 8       7 8        8        0        0 1        1        0 2        1 2       2        0 3        1 3       2 3      3       0 4        1 4       2 4       3 4        4       0 5       1 5       2 5        3 5       4 5       5       0 6       1 6      2 6        3 6       4 6        5 6       6       0 7     1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8       2 8        3 8        4 8       5 8       6 8      7 8        8         0      0 1       1       0 2      1 2       2       0 3        1 3       2 3       3       0 4        1 4       2 4        3 4       4        0 5        1 5       2 5       3 5        4 5      5       0 6       1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7      3 7        4 7       5 7       6 7       7       0 8       1 8        2 8       3 8        4 8       5 8       6 8        7 8       8        0        0 1       1     0 2      1 2        2       0 3       1 3        2 3        3        0 4       1 4       2 4       3 4       4        0 5        1 5       2 5       3 5       4 5       5        0 6       1 6        2 6       3 6       4 6       5 6        6       0 7       1 7       2 7       3 7        4 7       5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8      8       0       0 1        1        0 2       1 2        2      0 3       1 3       2 3       3        0 4      1 4      2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5       0 6       1 6       2 6      3 6       4 6        5 6        6       0 7       1 7       2 7        3 7        4 7       5 7        6 7      7      0 8        1 8       2 8      3 8      4 8       5 8        6 8        7 8       8       0       0 1       1      0 2       1 2        2        0 3       1 3       2 3       3       0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5        4 5       5        0 6        1 6       2 6        3 6       4 6        5 6       6      0 7       1 7        2 7       3 7       4 7        5 7        6 7        7        0 8       1 8       2 8       3 8       4 8        5 8       6 8        7 8        8        0        0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4        1 4        2 4       3 4        4       0 5        1 5        2 5        3 5       4 5       5       0 6       1 6      2 6       3 6        4 6       5 6       6       0 7     1 7        2 7       3 7       4 7       5 7       6 7       7       0 8       1 8       2 8        3 8        4 8       5 8        6 8       7 8       8      0       0 1       1       0 2        1 2       2        0 3       1 3       2 3        3       0 4        1 4       2 4       3 4       4       0 5       1 5       2 5       3 5       4 5       5        0 6       1 6        2 6        3 6        4 6        5 6       6       0 7        1 7       2 7        3 7       4 7      5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8        8     0        0 1        1        0 2       1 2        2       0 3       1 3       2 3        3        0 4        1 4        2 4        3 4       4       0 5       1 5       2 5       3 5        4 5       5       0 6        1 6        2 6       3 6        4 6      5 6       6       0 7       1 7        2 7        3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8       5 8        6 8       7 8       8         0      0 1       1      0 2        1 2        2        0 3       1 3       2 3        3        0 4        1 4        2 4      3 4       4       0 5       1 5       2 5        3 5       4 5        5        0 6        1 6        2 6       3 6       4 6       5 6       6        0 7       1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8        2 8        3 8        4 8        5 8       6 8        7 8        8      0       0 1        1       0 2       1 2        2       0 3       1 3       2 3      3       0 4       1 4       2 4       3 4        4       0 5        1 5       2 5        3 5        4 5       5      0 6       1 6       2 6       3 6       4 6        5 6        6        0 7       1 7       2 7        3 7       4 7        5 7       6 7       7        0 8       1 8       2 8     3 8        4 8        5 8        6 8        7 8       8       0       0 1        1       0 2       1 2        2        0 3       1 3      2 3      3        0 4        1 4        2 4        3 4       4       0 5       1 5      2 5       3 5      4 5        5        0 6        1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7        3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8       4 8        5 8        6 8       7 8        8       0       0 1        1        0 2        1 2       2        0 3        1 3       2 3       3       0 4       1 4       2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5        0 6        1 6        2 6       3 6       4 6       5 6        6       0 7       1 7        2 7       3 7       4 7       5 7        6 7       7     0 8        1 8       2 8        3 8       4 8        5 8       6 8      7 8       8
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │  
    │ │ │  i5 : time degreeMap phi
    │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc)
    │ │ │ + -- used 0.0553537s (cpu); 0.0550886s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │       -- of dimension 5 (so that the composition phi':P^8--->P^8 must have degree equal to deg(G(1,5))=14)
    │ │ │       phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14))
    │ │ │  
    │ │ │                                   2                  2                           2                                      2                                                 2                                                           2                                                                   2                                                                              2                                                                                          2        2                  2                              2                                       2                                                2                                                             2                                                                  2                                                                              2                                                                                            2        2                  2                             2                                       2                                                2                                                           2                                                                      2                                                                              2                                                                                         2         2                 2                            2                                       2                                                  2                                                             2                                                                    2                                                                                2                                                                                             2       2                   2                            2                                     2                                                2                                                          2                                                                  2                                                                                   2                                                                                            2        2                2                           2                                      2                                                  2                                                            2                                                                      2                                                                                 2                                                                                          2   2                   2                           2                                     2                                                  2                                                           2                                                                    2                                                                              2                                                                                         2      2                  2                           2                                      2                                                  2                                                             2                                                                       2                                                                              2                                                                                          2         2                  2                            2                                     2                                                 2                                                              2                                                                    2                                                                               2                                                                                        2
    │ │ │  o6 = map (ringP8, ringP8, {- 780x  - 506x x  + 1537x  - 132x x  - 928x x  + 386x  - 102x x  + 422x x  + 725x x  - 1073x  - 905x x  - 830x x  + 1500x x  + 276x x  + 1533x  - 653x x  + 1558x x  + 939x x  - 1432x x  + 462x x  - 329x  - 92x x  + 661x x  - 1298x x  - 684x x  + 70x x  - 715x x  + 1093x  + 581x x  + 329x x  + 454x x  - 911x x  - 84x x  - 1452x x  - 809x x  + 1202x  + 1353x x  + 1503x x  + 482x x  + 893x x  - 643x x  + 598x x  + 110x x  + 1064x x  - 472x , - 522x  - 583x x  + 1339x  + 1535x x  - 1317x x  + 1113x  - 169x x  + 1440x x  - 1657x x  + 721x  + 40x x  - 1576x x  - 367x x  + 257x x  - 1454x  + 1612x x  + 1529x x  - 1068x x  + 560x x  - 1441x x  + 608x  - 92x x  - 1006x x  + 285x x  + 102x x  - 397x x  + 66x x  - 643x  - 38x x  + 1380x x  + 1069x x  - 426x x  + 1147x x  + 982x x  + 10x x  - 662x  + 16x x  + 1561x x  + 1597x x  + 512x x  + 1288x x  - 1253x x  + 1317x x  + 1481x x  - 354x , - 640x  - 1551x x  + 469x  + 1482x x  - 1593x x  - 986x  + 471x x  + 612x x  + 1228x x  + 1156x  - 731x x  + 1503x x  - 628x x  + 674x x  - 799x  + 1137x x  + 844x x  + 589x x  - 666x x  + 829x x  - 1024x  - 170x x  + 450x x  + 1497x x  + 1204x x  - 907x x  + 1621x x  - 417x  + 1297x x  + 1444x x  + 4x x  + 398x x  + 996x x  - 1031x x  + 239x x  + 303x  + 1215x x  - 83x x  + 1571x x  - 1543x x  - 925x x  - 694x x  + 151x x  - 520x x  + 880x , - 1210x  - 222x x  + 185x  + 245x x  + 1059x x  - 322x  + 238x x  + 962x x  + 1260x x  - 1581x  + 50x x  + 1352x x  - 1465x x  + 1555x x  + 1333x  + 1362x x  + 1365x x  + 1168x x  - 1401x x  + 149x x  - 652x  + 1378x x  - 557x x  - 112x x  + 26x x  + 315x x  + 111x x  + 1592x  - 283x x  - 1454x x  + 907x x  + 212x x  + 400x x  + 1049x x  - 882x x  - 1429x  - 183x x  + 1571x x  - 1286x x  - 1179x x  + 1319x x  + 240x x  - 1100x x  + 1500x x  - 348x , 1051x  - 1325x x  + 1354x  - 346x x  - 1532x x  - 466x  + 163x x  - 659x x  - 291x x  + 966x  + 789x x  + 393x x  + 403x x  - 1199x x  - 570x  - 93x x  - 492x x  - 418x x  + 713x x  - 1323x x  - 1384x  - 830x x  - 54x x  - 306x x  + 709x x  + 421x x  - 954x x  - 299x  + 1053x x  - 1080x x  + 686x x  + 170x x  - 1272x x  - 1661x x  + 1235x x  + 1553x  - 1454x x  - 1411x x  - 1195x x  - 962x x  + 737x x  - 390x x  + 957x x  + 1538x x  + 1234x , - 509x  + 9x x  - 1563x  - 710x x  - 642x x  + 541x  + 220x x  - 1214x x  - 16x x  + 1008x  - 1088x x  + 755x x  - 886x x  - 1433x x  + 1154x  + 1627x x  - 1547x x  - 951x x  + 866x x  + 163x x  - 1142x  - 668x x  + 1361x x  + 1324x x  - 490x x  + 282x x  - 1133x x  - 612x  + 805x x  - 126x x  + 1296x x  - 973x x  + 1271x x  - 1646x x  + 844x x  + 1073x  - 1452x x  - 1112x x  - 141x x  + 176x x  - 1579x x  - 78x x  + 848x x  - 1365x x  + 711x , x  + 1543x x  - 1076x  + 493x x  - 526x x  + 868x  - 582x x  - 996x x  + 206x x  - 419x  + 1258x x  - 391x x  + 1002x x  - 1539x x  + 931x  - 1504x x  + 810x x  + 324x x  + 1356x x  + 313x x  + 772x  + 299x x  + 1186x x  + 718x x  + 407x x  - 64x x  - 828x x  - 1393x  + 94x x  - 290x x  - 766x x  + 950x x  - 640x x  + 265x x  - 1640x x  - 1403x  - 126x x  + 891x x  - 1519x x  - 927x x  - 1335x x  - 1448x x  - x x  - 1103x x  - 1152x , 821x  + 558x x  - 1174x  - 168x x  + 986x x  + 790x  + 549x x  + 817x x  + 1396x x  + 695x  + 1211x x  + 878x x  - 1061x x  - 1244x x  - 880x  + 1409x x  - 567x x  + 1240x x  + 1126x x  - 1262x x  + 490x  + 1553x x  + 1276x x  + 805x x  + 576x x  - 1076x x  + 1617x x  - 495x  - 750x x  - 277x x  + 544x x  + 1479x x  - 784x x  - 64x x  - 1203x x  + 405x  + 1013x x  + 604x x  + 1301x x  + 1003x x  + 235x x  + 696x x  + 939x x  - 714x x  - 879x , - 1452x  + 727x x  - 1159x  + 449x x  - 1169x x  + 732x  + 575x x  - 600x x  + 924x x  - 837x  + 1298x x  - 860x x  + 1010x x  + 774x x  + 319x  + 1087x x  - 1120x x  + 1439x x  + 1175x x  - 1648x x  + 985x  - 1317x x  - 878x x  + 399x x  - 1339x x  + 70x x  - 463x x  + 470x  - 628x x  - 907x x  + 748x x  + 98x x  + 1150x x  + 1140x x  + 1308x x  + 621x  + 369x x  - 991x x  - 1186x x  + 61x x  - 907x x  - 681x x  - 1528x x  + 717x x  + 854x })
    │ │ │                                   0       0 1        1       0 2       1 2       2       0 3       1 3       2 3        3       0 4       1 4        2 4       3 4        4       0 5        1 5       2 5        3 5       4 5       5      0 6       1 6        2 6       3 6      4 6       5 6        6       0 7       1 7       2 7       3 7      4 7        5 7       6 7        7        0 8        1 8       2 8       3 8       4 8       5 8       6 8        7 8       8        0       0 1        1        0 2        1 2        2       0 3        1 3        2 3       3      0 4        1 4       2 4       3 4        4        0 5        1 5        2 5       3 5        4 5       5      0 6        1 6       2 6       3 6       4 6      5 6       6      0 7        1 7        2 7       3 7        4 7       5 7      6 7       7      0 8        1 8        2 8       3 8        4 8        5 8        6 8        7 8       8        0        0 1       1        0 2        1 2       2       0 3       1 3        2 3        3       0 4        1 4       2 4       3 4       4        0 5       1 5       2 5       3 5       4 5        5       0 6       1 6        2 6        3 6       4 6        5 6       6        0 7        1 7     2 7       3 7       4 7        5 7       6 7       7        0 8      1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1       1       0 2        1 2       2       0 3       1 3        2 3        3      0 4        1 4        2 4        3 4        4        0 5        1 5        2 5        3 5       4 5       5        0 6       1 6       2 6      3 6       4 6       5 6        6       0 7        1 7       2 7       3 7       4 7        5 7       6 7        7       0 8        1 8        2 8        3 8        4 8       5 8        6 8        7 8       8       0        0 1        1       0 2        1 2       2       0 3       1 3       2 3       3       0 4       1 4       2 4        3 4       4      0 5       1 5       2 5       3 5        4 5        5       0 6      1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7        4 7        5 7        6 7        7        0 8        1 8        2 8       3 8       4 8       5 8       6 8        7 8        8        0     0 1        1       0 2       1 2       2       0 3        1 3      2 3        3        0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5       4 5        5       0 6        1 6        2 6       3 6       4 6        5 6       6       0 7       1 7        2 7       3 7        4 7        5 7       6 7        7        0 8        1 8       2 8       3 8        4 8      5 8       6 8        7 8       8   0        0 1        1       0 2       1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5       2 5        3 5       4 5       5       0 6        1 6       2 6       3 6      4 6       5 6        6      0 7       1 7       2 7       3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8        4 8        5 8    6 8        7 8        8      0       0 1        1       0 2       1 2       2       0 3       1 3        2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5        2 5        3 5        4 5       5        0 6        1 6       2 6       3 6        4 6        5 6       6       0 7       1 7       2 7        3 7       4 7      5 7        6 7       7        0 8       1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1        1       0 2        1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4       3 4       4        0 5        1 5        2 5        3 5        4 5       5        0 6       1 6       2 6        3 6      4 6       5 6       6       0 7       1 7       2 7      3 7        4 7        5 7        6 7       7       0 8       1 8        2 8      3 8       4 8       5 8        6 8       7 8       8
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │  
    │ │ │  i7 : time degreeMap phi'
    │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc)
    │ │ │ + -- used 1.22619s (cpu); 0.716078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out
    │ │ │ @@ -5,14 +5,14 @@
    │ │ │  o2 : Ideal of P6
    │ │ │  
    │ │ │  i3 : Phi = rationalMap(X,Dominant=>2);
    │ │ │  
    │ │ │  o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc)
    │ │ │ + -- used 0.000859741s (cpu); 0.000852916s (thread); 0s (gc)
    │ │ │  
    │ │ │  i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out
    │ │ │ @@ -35,15 +35,15 @@
    │ │ │                        - x  + x x
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc)
    │ │ │ + -- used 0.081288s (cpu); 0.0303614s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │                                    ZZ                                 ZZ
    │ │ │       source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by
    │ │ │                                  190181  0   1   2   3   4          190181  0   1   2   3   4   5
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  i8 : projectiveDegrees p2
    │ │ │  
    │ │ │  o8 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : time g = graph p2;
    │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc)
    │ │ │ + -- used 0.0536877s (cpu); 0.037804s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │  
    │ │ │  i11 : g_1;
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │                        x  - x x
    │ │ │                         1    0 3
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │  
    │ │ │  i3 : time ideal phi
    │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ + -- used 0.00385233s (cpu); 0.00384916s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │                        y
    │ │ │                         4
    │ │ │                       }
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │  
    │ │ │  i6 : time ideal phi'
    │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ + -- used 0.103877s (cpu); 0.103879s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │                        w w  - w w  + w w
    │ │ │                         2 4    1 5    0 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │  
    │ │ │  i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc)
    │ │ │ + -- used 0.19784s (cpu); 0.113276s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  o4 = map (QQ[w ..w  ], QQ[w ..w  ], {w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   + w w   + w w   - w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   - w w   + w w   - w w  , w w  - w w  - w w  + w w  - w w })
    │ │ │                0   26       0   26     21 22    20 23    15 24    10 25    0 26   19 22    18 23    16 24    11 25    1 26   19 20    18 21    17 24    12 25    2 26   15 19    16 21    17 23    13 25    3 26   10 19    11 21    12 23    13 24    4 26   0 19    1 21    2 23    3 24    4 25   15 18    16 20    17 22    14 25    5 26   10 18    11 20    12 22    14 24    6 26   0 18    1 20    2 22    5 24    6 25   12 16    11 17    13 18    14 19    7 26   2 16    1 17    3 18    5 19    7 25   12 15    10 17    13 20    14 21    8 26   11 15    10 16    13 22    14 23    9 26   2 15    0 17    3 20    5 21    8 25   1 15    0 16    3 22    5 23    9 25   5 13    3 14    7 15    8 16    9 17   5 12    2 14    6 17    8 18    7 20   3 12    2 13    4 17    8 19    7 21   5 11    1 14    6 16    9 18    7 22   3 11    1 13    4 16    9 19    7 23   2 11    1 12    4 18    6 19    7 24   7 10    8 11    9 12    6 13    4 14   5 10    0 14    6 15    9 20    8 22   3 10    0 13    4 15    9 21    8 23   2 10    0 12    4 20    6 21    8 24   1 10    0 11    4 22    6 23    9 24   4 5    3 6    0 7    1 8    2 9
    │ │ │  
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │  
    │ │ │  i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc)
    │ │ │ + -- used 0.350088s (cpu); 0.208419s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out
    │ │ │ @@ -28,15 +28,15 @@
    │ │ │                        - -------x  + ---------x x  + ------------x x  - ----------x x  - -----x  - -----------x x  + -------------x x x  + -------------x x x  - --------x x  - ----------x x  + -------------x x x  - ----------x x  - -----------x x  + ----------x x  + ------x  + -----------x x  + ----------x x x  - -----------x x x  - -------x x  + -------------x x x  + ------------x x x x  - -----------x x x  + -----------x x x  - ------------x x x  + ----------x x  - -----------x x  - ------------x x x  - ---------x x  - ------------x x x  - -----------x x x  + -----------x x  - ----------x x  + -------x x  + --------x x  + ------x  + ---------x x  - ------------x x x  - -------------x x x  - ----------x x  + --------------x x x  + -------------x x x x  - ------------x x x  + -------------x x x  + ------------x x x  + ----------x x  + -----------x x x  - -------------x x x x  - ----------x x x  + --------------x x x x  - -------------x x x x  + -------------x x x  - ------------x x x  + ---------x x x  - ------------x x x  + ---------x x  - ---------x x  - -----------x x x  - ----------x x  + -----------x x x  + -----------x x x  + ----------x x  - -----------x x x  - -----------x x x  - ------------x x x  - ----------x x  + ---------x x  - ------x x  - --------x x  - ----------x x  - -----x
    │ │ │                           290304 0    3888000  0 1    2939328000  0 1    163296000 0 1   20250 1    228614400  0 2    41150592000  0 1 2    41150592000  0 1 2    3888000 1 2     3572100  0 2    10287648000  0 1 2    342921600 1 2    114307200  0 2    63504000  1 2    25200 2     76204800  0 3    42336000  0 1 3    428652000  0 1 3    212625 1 3     5334336000  0 2 3    9601804800  0 1 2 3    489888000  1 2 3    222264000  0 2 3    12002256000 1 2 3    66679200  2 3    666792000  0 3     666792000  0 1 3    47628000 1 3    1333584000  0 2 3    444528000  1 2 3    777924000  2 3    55566000  0 3    105840 1 3    3472875 2 3    11025 3    4665600  0 4    2939328000  0 1 4     4898880000  0 1 4    29160000  1 4     41150592000  0 2 4    20575296000  0 1 2 4    4898880000  1 2 4    20575296000  0 2 4    1371686400  1 2 4    95256000  2 4     40824000  0 3 4     8573040000  0 1 3 4    11664000  1 3 4     24004512000  0 2 3 4    34292160000  1 2 3 4    12002256000  2 3 4     333396000  0 3 4    5292000  1 3 4    1333584000  2 3 4    3969000  3 4    6804000  0 4    272160000  0 1 4    58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4    476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4    30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │  
    │ │ │  i3 : time inverse phi
    │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ + -- used 0.064242s (cpu); 0.0641291s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out
    │ │ │ @@ -40,18 +40,18 @@
    │ │ │                        - t  + t t
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time isBirational phi
    │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc)
    │ │ │ + -- used 0.0222861s (cpu); 0.0222858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc)
    │ │ │ + -- used 0.0265349s (cpu); 0.0147412s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}};
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^8 to PP^8)
    │ │ │  
    │ │ │  i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc)
    │ │ │ + -- used 2.56366s (cpu); 2.23958s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │  
    │ │ │  i5 : -- hyperelliptic curve of genus 3
    │ │ │       C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6-26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5-24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7-23*x_1*x_7+8*x_2*x_7-22*x_3*x_7+20*x_4*x_7-15*x_5*x_7,x_2*x_5+47*x_5^2-40*x_0*x_6+37*x_1*x_6-25*x_2*x_6-22*x_3*x_6-8*x_4*x_6+27*x_5*x_6+15*x_6^2-23*x_0*x_7-42*x_1*x_7+27*x_2*x_7+35*x_3*x_7+39*x_4*x_7+24*x_5*x_7,x_1*x_5+15*x_5^2+49*x_0*x_6+8*x_1*x_6-31*x_2*x_6+9*x_3*x_6+38*x_4*x_6-36*x_5*x_6-30*x_6^2-33*x_0*x_7+26*x_1*x_7+32*x_2*x_7+27*x_3*x_7+6*x_4*x_7+36*x_5*x_7,x_0*x_5+30*x_5^2-11*x_0*x_6-38*x_1*x_6+13*x_2*x_6-32*x_3*x_6-30*x_4*x_6+4*x_5*x_6-28*x_6^2-30*x_0*x_7-6*x_1*x_7-45*x_2*x_7+34*x_3*x_7+20*x_4*x_7+48*x_5*x_7,x_3*x_4+46*x_5^2-37*x_0*x_6+27*x_1*x_6+33*x_2*x_6+8*x_3*x_6-32*x_4*x_6+42*x_5*x_6-34*x_6^2-37*x_0*x_7-28*x_1*x_7+10*x_2*x_7-27*x_3*x_7-42*x_4*x_7-8*x_5*x_7,x_2*x_4-25*x_5^2-4*x_0*x_6+2*x_1*x_6-31*x_2*x_6-5*x_3*x_6+16*x_4*x_6-24*x_5*x_6+31*x_6^2-30*x_0*x_7+32*x_1*x_7+12*x_2*x_7-40*x_3*x_7+3*x_4*x_7-28*x_5*x_7,x_0*x_4+15*x_5^2+48*x_0*x_6-50*x_1*x_6+46*x_2*x_6-48*x_3*x_6-23*x_4*x_6-28*x_5*x_6+39*x_6^2+38*x_1*x_7-5*x_3*x_7+5*x_4*x_7-34*x_5*x_7,x_3^2-31*x_5^2+41*x_0*x_6-30*x_1*x_6-4*x_2*x_6+43*x_3*x_6+23*x_4*x_6+7*x_5*x_6+31*x_6^2-19*x_0*x_7+25*x_1*x_7-49*x_2*x_7-16*x_3*x_7-45*x_4*x_7+25*x_5*x_7,x_2*x_3+13*x_5^2-45*x_0*x_6-22*x_1*x_6+33*x_2*x_6-26*x_3*x_6-21*x_4*x_6+34*x_5*x_6-21*x_6^2-47*x_0*x_7-10*x_1*x_7+29*x_2*x_7-46*x_3*x_7-x_4*x_7+20*x_5*x_7,x_1*x_3+22*x_5^2+4*x_0*x_6+3*x_1*x_6+45*x_2*x_6+37*x_3*x_6+17*x_4*x_6+36*x_5*x_6-2*x_6^2-31*x_0*x_7+3*x_1*x_7-12*x_2*x_7+19*x_3*x_7+28*x_4*x_7+30*x_5*x_7,x_0*x_3-47*x_5^2-43*x_0*x_6+6*x_1*x_6-40*x_2*x_6+21*x_3*x_6+26*x_4*x_6-5*x_5*x_6-5*x_6^2+4*x_0*x_7-15*x_1*x_7+18*x_2*x_7-31*x_3*x_7+50*x_4*x_7-46*x_5*x_7,x_2^2+4*x_5^2+31*x_0*x_6+41*x_1*x_6+31*x_2*x_6+28*x_3*x_6+42*x_4*x_6-28*x_5*x_6-4*x_6^2-7*x_0*x_7+15*x_1*x_7-9*x_2*x_7+31*x_3*x_7+3*x_4*x_7+7*x_5*x_7,x_1*x_2-46*x_5^2-6*x_0*x_6-50*x_1*x_6+32*x_2*x_6-10*x_3*x_6+42*x_4*x_6+33*x_5*x_6+18*x_6^2-9*x_0*x_7-20*x_1*x_7+45*x_2*x_7-9*x_3*x_7+10*x_4*x_7-8*x_5*x_7,x_0*x_2-9*x_5^2+34*x_0*x_6-45*x_1*x_6+19*x_2*x_6+24*x_3*x_6+23*x_4*x_6-37*x_5*x_6-44*x_6^2+24*x_0*x_7-33*x_2*x_7+41*x_3*x_7-40*x_4*x_7+4*x_5*x_7,x_1^2+x_1*x_4+x_4^2-28*x_5^2-33*x_0*x_6-17*x_1*x_6+11*x_3*x_6+20*x_4*x_6+25*x_5*x_6-21*x_6^2-22*x_0*x_7+24*x_1*x_7-14*x_2*x_7+5*x_3*x_7-39*x_4*x_7-18*x_5*x_7,x_0*x_1-47*x_5^2-5*x_0*x_6-9*x_1*x_6-45*x_2*x_6+48*x_3*x_6+45*x_4*x_6-29*x_5*x_6+3*x_6^2+29*x_0*x_7+40*x_1*x_7+46*x_2*x_7+27*x_3*x_7-36*x_4*x_7-39*x_5*x_7,x_0^2-31*x_5^2+36*x_0*x_6-30*x_1*x_6-10*x_2*x_6+42*x_3*x_6+9*x_4*x_6+34*x_5*x_6-6*x_6^2+48*x_0*x_7-47*x_1*x_7-19*x_2*x_7+25*x_3*x_7+28*x_4*x_7+34*x_5*x_7);
    │ │ │ @@ -21,12 +21,12 @@
    │ │ │  
    │ │ │  i6 : phi = rationalMap(C,3,2);
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from PP^7 to PP^7)
    │ │ │  
    │ │ │  i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc)
    │ │ │ + -- used 3.81151s (cpu); 2.74143s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out
    │ │ │ @@ -6,23 +6,23 @@
    │ │ │  o1 = map (QQ[x ..x ], QQ[y ..y  ], {- 5x x  + x x  + x x  + 35x x  - 7x x  + x x  - x x  - 49x  - 5x x  + 2x x  - x x  + 27x x  - 4x  + x x  - 7x x  + 2x x  - 2x x  + 14x x  - 4x x , - x x  - 6x x  - 5x x  + 2x x  + x x  + x x  - 5x x  - x x  + 2x x  + 7x x  - 2x x  + 2x x  - 3x x , - 25x  + 9x x  + 10x x  - 2x x  - x  + 29x x  - x x  - 7x x  - 13x x  + 3x x  + x x  - x x  + 2x x  - x x  + 7x x  - 2x x  - 8x x  + 2x x  - 3x x , x x  + x x  + x  + 7x x  - 9x x  + 12x x  - 4x  + 2x x  + 2x x  - 14x x  + 4x x  + x x  - x x  - 14x x  + x x , - 5x x  + x x  - 7x x  + 8x x  - 5x x  + 2x x  - x x  + x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , x x  + x  - 7x x  - 8x x  + x x  + x x  + 2x x  - x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  + x  - 8x x  + x x  + 6x x  - 2x  + x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  - 7x x  + x x  + x x  - 7x x  + 2x  - x x , - 4x x  + x x  - x  - 7x x  + 8x x  + x x  - x x  - 6x x  + 2x  - x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , - 5x x  + 2x  + x x  - x  - x x  + 8x x  - 10x x  + 2x x  + 2x x  - 2x x  + 14x x  - 4x x  + 5x x  - 3x x  - 2x x  + 7x x  - 2x x  - 3x x , - 5x x  + x x  + x x  - 4x x  - x x  + x x  + x x , x x  - x x  + 5x x  + x x  - 14x x  - x x  - 8x x  - 8x x  + 2x x  + 4x x  + 2x x  + 4x x  + 3x x  - 7x x  + 2x x  - 3x x })
    │ │ │                0   8       0   11        0 3    2 4    3 4      0 5     2 5    3 5    4 5      5     0 6     2 6    4 6      5 6     6    4 7     5 7     6 7     4 8      5 8     6 8     1 2     1 5     0 6     1 6    4 6    5 6     0 7    1 7     2 7     5 7     6 7     1 8     7 8       0     0 2      0 4     2 4    4      0 5    2 5     4 5      0 6     4 6    5 6    0 7     2 7    4 7     5 7     6 7     0 8     4 8     7 8   2 4    3 4    4     2 5     4 5      5 6     6     3 7     4 7      5 7     6 7    3 8    4 8      5 8    6 8      0 4    2 4     2 5     4 5     0 6     2 6    4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   0 4    4     1 5     4 5    0 6    1 6     4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   2 3    4     4 5    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8   1 3     1 5    1 6    4 6     5 6     6    3 7      0 3    3 4    4     0 5     4 5    0 6    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8      0 2     2    2 4    4    2 5     4 5      0 6     5 6     2 7     4 7      5 7     6 7     0 8     2 8     4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7   0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2 7     0 8     1 8     5 8     6 8     7 8
    │ │ │  
    │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │                   0   8          0   11
    │ │ │  
    │ │ │  i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ + -- used 0.021294s (cpu); 0.0212939s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │  
    │ │ │  i3 : time kernel(phi,2)
    │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ + -- used 1.04194s (cpu); 0.476185s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │                8           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i3 : time parametrize L
    │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ + -- used 0.00577994s (cpu); 0.0057765s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i5 : time parametrize Q
    │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ + -- used 0.530896s (cpu); 0.427076s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 3560583829489988690
    │ │ │  
    │ │ │  i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331);
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │  
    │ │ │  i2 : time p = point source f
    │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc)
    │ │ │ + -- used 0.470352s (cpu); 0.225542s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -20,12 +20,12 @@
    │ │ │                                                             -----[y ..y  ]
    │ │ │                                                             33331  0   11
    │ │ │  o2 : Ideal of -------------------------------------------------------------------------------------------------------
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i3 : time p == f^* f p
    │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc)
    │ │ │ + -- used 0.219581s (cpu); 0.136401s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │                       0   4              0   5       1    0 2     1 2    0 3     2    1 3     1 3    0 4     2 3    1 4     3    2 4
    │ │ │  
    │ │ │  o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ]
    │ │ │                          0   4                 0   5
    │ │ │  
    │ │ │  i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc)
    │ │ │ + -- used 0.0641293s (cpu); 0.0231389s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : psi=inverseMap(toMap(phi,Dominant=>infinity))
    │ │ │  
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                           0   5
    │ │ │  o4 : RingMap ------------------ <-- GF 109561[t ..t ]
    │ │ │               x x  - x x  + x x                 0   4
    │ │ │                2 3    1 4    0 5
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc)
    │ │ │ + -- used 0.0796457s (cpu); 0.0209875s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : -- Cremona transformation of P^6 defined by the quadrics through a rational octic surface
    │ │ │       phi = map specialCremonaTransformation(7,ZZ/300007)
    │ │ │ @@ -48,21 +48,21 @@
    │ │ │            300007  0   6   300007  0   6     2 4    1 5          0 4          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6   2 3    0 5          1 3          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6        0 3         1 4         3 4         4          0 5         1 5         2 5          3 5          4 5         5         3 6          4 6         5 6          0 1          1         0 2          1 2         2          1 4          1 5         2 5          0 6         1 6         2 6         0          1         0 2         1 2         2         1 4          4         0 5         1 5          2 5          4 5         5         0 6         1 6          2 6          3 6         4 6         5 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o6 : RingMap ------[x ..x ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   6
    │ │ │  
    │ │ │  i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc)
    │ │ │ + -- used 6.1895e-05s (cpu); 5.4573e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.6877e-05s (cpu); 3.674e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -3,15 +3,15 @@
    │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │                33331  0   6
    │ │ │  
    │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ + -- used 0.109934s (cpu); 0.109934s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │                     0         1         2         3        4         5
    │ │ │  
    │ │ │  o4 : Ideal of X
    │ │ │  
    │ │ │  i5 : D = new Tally from {H => 2,C => 1};
    │ │ │  
    │ │ │  i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc)
    │ │ │ + -- used 0.0341706s (cpu); 0.0341558s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -123,13 +123,13 @@
    │ │ │                        x x x  + x x x  + x x x  + x x  + x x x  - 2x x x  + x x
    │ │ │                         0 1 5    0 2 5    1 2 5    2 5    1 4 5     2 4 5    4 5
    │ │ │                       }
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │  
    │ │ │  i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc)
    │ │ │ + -- used 1.42653s (cpu); 0.648079s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1330846641081
    │ │ │  
    │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ + -- used 1.50129s (cpu); 1.16668s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730018912715498288
    │ │ │  
    │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ + -- used 0.0897767s (cpu); 0.089776s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -62,15 +62,15 @@
    │ │ │                        8x x  - 12x x  + 24x  - 11x x  + 17x x x  - 24x x  - 10x x  + 11x x  - 3x  - 6x x  + 28x x x  - 70x x  - 21x x x  + 47x x x  - 13x x  - 14x x  + 66x x  - 22x x  - 20x  + 2x x  - 2x x x  - 10x x  - 11x x x  + 8x x x  - 5x x  + 3x x x  + 23x x x  - 11x x x  - 12x x  + 3x x  - 3x x  - 2x x  + 3x x  + x  - 11x x  + 14x x x  + 34x x  - 6x x x  - 16x x x  + 3x x  - 15x x x  - 66x x x  + 12x x x  + 30x x  - 19x x x  + 2x x x  - 5x x x  - 2x x x  - 7x x  + 6x x  + 21x x  - 3x x  - 21x x  + x x  + 5x  - 8x x  + 7x x x  - 32x x  - 13x x x  + 28x x x  - 9x x  + 70x x x  - 27x x x  - 36x x  + x x x  + 4x x x  - 7x x x  - 2x x x  + 3x x  - 25x x x  - 23x x x  + 4x x x  + 27x x x  - 14x x x  - 9x x  - 2x x  + 10x x  - 6x x  - 10x x  + 3x x  - 2x x
    │ │ │                          0 1      0 1      1      0 2      0 1 2      1 2      0 2      1 2     2     0 3      0 1 3      1 3      0 2 3      1 2 3      2 3      0 3      1 3      2 3      3     0 4     0 1 4      1 4      0 2 4     1 2 4     2 4     0 3 4      1 3 4      2 3 4      3 4     0 4     1 4     2 4     3 4    4      0 5      0 1 5      1 5     0 2 5      1 2 5     2 5      0 3 5      1 3 5      2 3 5      3 5      0 4 5     1 4 5     2 4 5     3 4 5     4 5     0 5      1 5     2 5      3 5    4 5     5     0 6     0 1 6      1 6      0 2 6      1 2 6     2 6      1 3 6      2 3 6      3 6    0 4 6     1 4 6     2 4 6     3 4 6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6      1 6     2 6      3 6     4 6     5 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ + -- used 0.0185673s (cpu); 0.0185692s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729200582376678705
    │ │ │  
    │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ + -- used 0.0755322s (cpu); 0.0755319s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -50,15 +50,15 @@
    │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ + -- used 0.11261s (cpu); 0.031117s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out
    │ │ │ @@ -7,34 +7,34 @@
    │ │ │  i2 : str = toExternalString phi;
    │ │ │  
    │ │ │  i3 : #str
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │  
    │ │ │  i4 : time phi' = value str;
    │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ + -- used 0.0252531s (cpu); 0.0252537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │  
    │ │ │  i5 : time describe phi'
    │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ + -- used 0.0059402s (cpu); 0.00594602s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │       number of minimal representatives: 1
    │ │ │       dimension base locus: 1
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │  
    │ │ │  i6 : time describe inverse phi'
    │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ + -- used 0.00506706s (cpu); 0.00507227s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html
    │ │ │ @@ -97,30 +97,30 @@
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │
    │ │ │
    i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ + -- used 2.36974s (cpu); 1.25502s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │
    │ │ │
    i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ + -- used 1.43309s (cpu); 0.986049s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i9 : time ChernClass G
    │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ + -- used 0.350846s (cpu); 0.194791s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │
    │ │ │
    i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ + -- used 0.132431s (cpu); 0.0387954s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,26 +39,26 @@
    │ │ │ │                 2                           2
    │ │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │ │                          0   4
    │ │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ │ + -- used 2.36974s (cpu); 1.25502s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o3 : -----
    │ │ │ │          5
    │ │ │ │         H
    │ │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ │ + -- used 1.43309s (cpu); 0.986049s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          5
    │ │ │ │ @@ -88,26 +88,26 @@
    │ │ │ │          0,2 1,3    0,1 2,3
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p
    │ │ │ │  ]
    │ │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │  i9 : time ChernClass G
    │ │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ │ + -- used 0.350846s (cpu); 0.194791s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          9      8      7      6      5      4     3
    │ │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o9 : -----
    │ │ │ │         10
    │ │ │ │        H
    │ │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ │ + -- used 0.132431s (cpu); 0.0387954s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6      5      4     3
    │ │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o10 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc)
    │ │ │ + -- used 0.313648s (cpu); 0.171991s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │
    │ │ │
    i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc)
    │ │ │ + -- used 0.0746203s (cpu); 0.0206391s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,20 +31,20 @@ │ │ │ │ i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p │ │ │ │ ] │ │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ i2 : time EulerCharacteristic I │ │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc) │ │ │ │ + -- used 0.313648s (cpu); 0.171991s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ i3 : time EulerCharacteristic(I,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc) │ │ │ │ + -- used 0.0746203s (cpu); 0.0206391s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 10 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ No test is made to see if the projective variety is smooth. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_u_l_e_r_(_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- topological Euler characteristic of a │ │ │ │ (smooth) projective variety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ
    │ │ │
    │ │ │
    i4 : time phi! ;
    │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ + -- used 0.0726521s (cpu); 0.0609858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │
    │ │ │
    i5 : describe phi
    │ │ │ @@ -127,15 +127,15 @@
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │
    │ │ │
    i9 : time phi! ;
    │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ + -- used 0.0662474s (cpu); 0.0459304s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │
    │ │ │
    i10 : describe phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i3 : describe phi
    │ │ │ │  
    │ │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i4 : time phi! ;
    │ │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0726521s (cpu); 0.0609858s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │ │  i5 : describe phi
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  i8 : describe phi
    │ │ │ │  
    │ │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i9 : time phi! ;
    │ │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0662474s (cpu); 0.0459304s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │ │  i10 : describe phi
    │ │ │ │  
    │ │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │ │        source variety: PP^4
    │ │ │ │        target variety: PP^5
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i6 : time phi^** q
    │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc)
    │ │ │ + -- used 0.166215s (cpu); 0.166214s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i4 : time SegreClass X
    │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ + -- used 0.787156s (cpu); 0.53615s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ + -- used 0.620994s (cpu); 0.36341s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ + -- used 0.0674279s (cpu); 0.0316446s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ + -- used 0.127674s (cpu); 0.114673s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -203,25 +203,25 @@
    │ │ │          
    │ │ │

    The method also accepts as input a ring map phi representing a rational map $\Phi:X\dashrightarrow Y$ between projective varieties. In this case, the method returns the push-forward to the Chow ring of the ambient projective space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it basically computes SegreClass ideal matrix phi. In the next example, we compute the Segre class of the base locus of a birational map $\mathbb{G}(1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9 =   ZZ
    │ │ │ - ------[x ..x ]
    │ │ │ - 100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │
    │ │ │
    i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ + -- used 0.0662291s (cpu); 0.0662326s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i11 : time SegreClass phi
    │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ + -- used 0.372775s (cpu); 0.253258s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -267,30 +267,30 @@
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ + -- used 0.423745s (cpu); 0.294539s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │
    │ │ │
    i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ + -- used 1.54782s (cpu); 0.936395s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -81,47 +81,47 @@
    │ │ │ │                 2 2                2 2                                        2
    │ │ │ │  2                                                    2 2
    │ │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x
    │ │ │ │  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1
    │ │ │ │  6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │ │  i4 : time SegreClass X
    │ │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ │ + -- used 0.787156s (cpu); 0.53615s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ │ + -- used 0.620994s (cpu); 0.36341s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o5 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0674279s (cpu); 0.0316446s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ │ + -- used 0.127674s (cpu); 0.114673s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o7 : -----
    │ │ │ │          8
    │ │ │ │ @@ -134,22 +134,22 @@
    │ │ │ │  method returns the push-forward to the Chow ring of the ambient projective
    │ │ │ │  space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it
    │ │ │ │  basically computes SegreClass ideal matrix phi. In the next example, we compute
    │ │ │ │  the Segre class of the base locus of a birational map $\mathbb{G}
    │ │ │ │  (1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.
    │ │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │ │  
    │ │ │ │ -o9 =   ZZ
    │ │ │ │ - ------[x ..x ]
    │ │ │ │ - 100003  0   6
    │ │ │ │ +       ZZ
    │ │ │ │ +o9 = ------[x ..x ]
    │ │ │ │ +     100003  0   6
    │ │ │ │  
    │ │ │ │  o9 : PolynomialRing
    │ │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},
    │ │ │ │  {x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0662291s (cpu); 0.0662326s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                          ZZ
    │ │ │ │                                                        ------[y ..y ]
    │ │ │ │                                                        100003  0   9
    │ │ │ │  ZZ              2                              2
    │ │ │ │  o10 = map (--------------------------------------------------------------------
    │ │ │ │  --------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y
    │ │ │ │ @@ -169,15 +169,15 @@
    │ │ │ │  o10 : RingMap -----------------------------------------------------------------
    │ │ │ │  ----------------------------------- <-- ------[x ..x ]
    │ │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6
    │ │ │ │  1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i11 : time SegreClass phi
    │ │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ │ + -- used 0.372775s (cpu); 0.253258s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │          10
    │ │ │ │ @@ -198,26 +198,26 @@
    │ │ │ │  ------------------------------------
    │ │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )
    │ │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2
    │ │ │ │  6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │ │        time SegreClass B
    │ │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ │ + -- used 0.423745s (cpu); 0.294539s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o13 : -----
    │ │ │ │          10
    │ │ │ │         H
    │ │ │ │  i14 : -- Segre class of B in P^9
    │ │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ │ + -- used 1.54782s (cpu); 0.936395s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             9       8       7      6     5
    │ │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o14 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html
    │ │ │ @@ -101,15 +101,15 @@
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ + -- used 0.000464119s (cpu); 0.000458369s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │ @@ -119,23 +119,23 @@
    │ │ │            
    │ │ │

    Now we compute first the degree of the forms defining the abstract map psi and then the corresponding concrete rational map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ + -- used 0.358626s (cpu); 0.201614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    │ │ │
    i6 : time rationalMap psi
    │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ + -- used 0.468152s (cpu); 0.384639s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │
    │ │ │
    i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ + -- used 0.163849s (cpu); 0.0752081s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -253,26 +253,26 @@
    │ │ │            
    │ │ │

    The degree of the forms defining the abstract map T can be obtained by the following command:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ + -- used 4.43247s (cpu); 2.24391s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │
    │ │ │

    We verify that the composition of T with itself is defined by linear forms:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i16 : time T2 = T * T
    │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.6402e-05s (cpu); 2.5293e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -281,15 +281,15 @@
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │
    │ │ │
    i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ + -- used 7.01159s (cpu); 3.54843s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │
    │ │ │

    We verify that the composition of T with itself leaves a random point fixed:

    │ │ │ │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │
    │ │ │

    We now compute the concrete rational map corresponding to T:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i21 : time f = rationalMap T
    │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ + -- used 5.82316s (cpu); 2.9113s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,32 +35,32 @@
    │ │ │ │  i3 : P5 := QQ[u_0..u_5]
    │ │ │ │  
    │ │ │ │  o3 = QQ[u ..u ]
    │ │ │ │           0   5
    │ │ │ │  
    │ │ │ │  o3 : PolynomialRing
    │ │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000464119s (cpu); 0.000458369s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │ │  Now we compute first the degree of the forms defining the abstract map psi and
    │ │ │ │  then the corresponding concrete rational map.
    │ │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ │ + -- used 0.358626s (cpu); 0.201614s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = 2
    │ │ │ │  i6 : time rationalMap psi
    │ │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ │ + -- used 0.468152s (cpu); 0.384639s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: {
    │ │ │ │ @@ -139,48 +139,48 @@
    │ │ │ │  o13 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │ │                 65521  0   3
    │ │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ │ + -- used 0.163849s (cpu); 0.0752081s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  The degree of the forms defining the abstract map T can be obtained by the
    │ │ │ │  following command:
    │ │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ │ + -- used 4.43247s (cpu); 2.24391s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = 3
    │ │ │ │  We verify that the composition of T with itself is defined by linear forms:
    │ │ │ │  i16 : time T2 = T * T
    │ │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 2.6402e-05s (cpu); 2.5293e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ │ + -- used 7.01159s (cpu); 3.54843s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = 1
    │ │ │ │  We verify that the composition of T with itself leaves a random point fixed:
    │ │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │ │  
    │ │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │ @@ -193,15 +193,15 @@
    │ │ │ │  i20 : T q
    │ │ │ │  
    │ │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │  o20 : List
    │ │ │ │  We now compute the concrete rational map corresponding to T:
    │ │ │ │  i21 : time f = rationalMap T
    │ │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ │ + -- used 5.82316s (cpu); 2.9113s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html
    │ │ │ @@ -139,15 +139,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ + -- used 0.287583s (cpu); 0.226178s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -200,15 +200,15 @@
    │ │ │            
    │ │ │
    i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ + -- used 0.23606s (cpu); 0.178632s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i6 : assert(psi == psi')
    │ │ │ @@ -295,15 +295,15 @@ │ │ │
    │ │ │
    i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ + -- used 2.10674s (cpu); 1.7984s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -367,15 +367,15 @@
    │ │ │              
    │ │ │
    i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ + -- used 2.90154s (cpu); 2.53s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -135,15 +135,15 @@
    │ │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ │ + -- used 0.287583s (cpu); 0.226178s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                    ZZ
    │ │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │ │                                  ZZ
    │ │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -252,15 +252,15 @@
    │ │ │ │  
    │ │ │ │  o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ │ + -- used 0.23606s (cpu); 0.178632s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i6 : assert(psi == psi')
    │ │ │ │  A more complicated example is the following (here _i_n_v_e_r_s_e_M_a_p takes a lot of
    │ │ │ │  time!).
    │ │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-
    │ │ │ │  22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-
    │ │ │ │ @@ -418,15 +418,15 @@
    │ │ │ │  
    │ │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time
    │ │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ │ + -- used 2.10674s (cpu); 1.7984s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = -- rational map --
    │ │ │ │                                  ZZ
    │ │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │               {
    │ │ │ │                                  2
    │ │ │ │ @@ -526,15 +526,15 @@
    │ │ │ │  o9 = false
    │ │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ │ + -- used 2.90154s (cpu); 2.53s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = -- rational map --
    │ │ │ │                                   ZZ
    │ │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │                {
    │ │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │
    │ │ │
    i5 : time degreeMap phi
    │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc)
    │ │ │ + -- used 0.0553537s (cpu); 0.0550886s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │
    │ │ │
    i7 : time degreeMap phi'
    │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc)
    │ │ │ + -- used 1.22619s (cpu); 0.716078s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -266,15 +266,15 @@ │ │ │ │ 4 0 5 1 5 2 5 3 5 4 5 5 0 6 │ │ │ │ 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 │ │ │ │ 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 │ │ │ │ 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o4 : RingMap ringP8 <-- ringP14 │ │ │ │ i5 : time degreeMap phi │ │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc) │ │ │ │ + -- used 0.0553537s (cpu); 0.0550886s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a │ │ │ │ general subspace of P^14 │ │ │ │ -- of dimension 5 (so that the composition phi':P^8--->P^8 must have │ │ │ │ degree equal to deg(G(1,5))=14) │ │ │ │ phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14)) │ │ │ │ @@ -418,15 +418,15 @@ │ │ │ │ 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 │ │ │ │ 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 │ │ │ │ 7 4 7 5 7 6 7 7 0 8 1 8 2 8 │ │ │ │ 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o6 : RingMap ringP8 <-- ringP8 │ │ │ │ i7 : time degreeMap phi' │ │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc) │ │ │ │ + -- used 1.22619s (cpu); 0.716078s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s -- projective degrees of a rational map between │ │ │ │ projective varieties │ │ │ │ ********** WWaayyss ttoo uussee ddeeggrreeeeMMaapp:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc)
    │ │ │ + -- used 0.000859741s (cpu); 0.000852916s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ │ │ o2 : Ideal of P6 │ │ │ │ i3 : Phi = rationalMap(X,Dominant=>2); │ │ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of │ │ │ │ PP^9) │ │ │ │ i4 : time forceImage(Phi,ideal 0_(target Phi)) │ │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc) │ │ │ │ + -- used 0.000859741s (cpu); 0.000852916s (thread); 0s (gc) │ │ │ │ i5 : Phi; │ │ │ │ │ │ │ │ o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional │ │ │ │ subvariety of PP^9) │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ If the declaration is false, nonsensical answers may result. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ @@ -113,15 +113,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc)
    │ │ │ + -- used 0.081288s (cpu); 0.0303614s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │ @@ -272,15 +272,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    When the source of the rational map is a multi-projective variety, the method returns all the projections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │ │ │ w w - w w + w w │ │ │ │ 2 4 1 5 0 6 │ │ │ │ } │ │ │ │ │ │ │ │ o1 : RationalMap (quadratic Cremona transformation of PP^20) │ │ │ │ i2 : time psi = inverseMap phi │ │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc) │ │ │ │ + -- used 0.19784s (cpu); 0.113276s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = -- rational map -- │ │ │ │ source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ , w , w , w , w , w , w , w ]) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 │ │ │ │ 14 15 16 17 18 19 20 │ │ │ │ target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ @@ -216,15 +216,15 @@ │ │ │ │ 15 9 20 8 22 3 10 0 13 4 15 9 21 8 23 2 10 0 12 4 │ │ │ │ 20 6 21 8 24 1 10 0 11 4 22 6 23 9 24 4 5 3 6 0 7 │ │ │ │ 1 8 2 9 │ │ │ │ │ │ │ │ o4 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ │ 0 26 0 26 │ │ │ │ i5 : time psi = inverseMap phi │ │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc) │ │ │ │ + -- used 0.350088s (cpu); 0.208419s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = map (QQ[w ..w ], QQ[w ..w ], {- w w + w w + w w - w w - w w , │ │ │ │ - w w + w w + w w - w w - w w , - w w + w w + w w - w w - │ │ │ │ w w , - w w - w w + w w - w w - w w , - w w - w w + w w - │ │ │ │ w w - w w , - w w - w w + w w - w w - w w , - w w - w w + │ │ │ │ w w - w w - w w , w w - w w + w w - w w - w w , - w w + │ │ │ │ w w - w w + w w - w w , - w w + w w - w w + w w - w w │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^4 to PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time g = graph p2;
    │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc)
    │ │ │ + -- used 0.0536877s (cpu); 0.037804s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,15 +50,15 @@ │ │ │ │ - x + x x │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time (p1,p2) = graph phi; │ │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc) │ │ │ │ + -- used 0.081288s (cpu); 0.0303614s (thread); 0s (gc) │ │ │ │ i4 : p1 │ │ │ │ │ │ │ │ o4 = -- rational map -- │ │ │ │ ZZ ZZ │ │ │ │ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y │ │ │ │ , y , y , y , y ]) defined by │ │ │ │ 190181 0 1 2 3 4 190181 0 │ │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ │ │ │ o8 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ When the source of the rational map is a multi-projective variety, the method │ │ │ │ returns all the projections. │ │ │ │ i9 : time g = graph p2; │ │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc) │ │ │ │ + -- used 0.0536877s (cpu); 0.037804s (thread); 0s (gc) │ │ │ │ i10 : g_0; │ │ │ │ │ │ │ │ o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ │ │ of PP^4 x PP^5 x PP^5 to PP^4) │ │ │ │ i11 : g_1; │ │ │ │ │ │ │ │ o11 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4) │ │ │
    │ │ │
    i3 : time ideal phi
    │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ + -- used 0.00385233s (cpu); 0.00384916s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -195,15 +195,15 @@
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │
    │ │ │
    i6 : time ideal phi'
    │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ + -- used 0.103877s (cpu); 0.103879s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                         2
    │ │ │ │                        x  - x x
    │ │ │ │                         1    0 3
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │ │  i3 : time ideal phi
    │ │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00385233s (cpu); 0.00384916s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2                                     2
    │ │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2
    │ │ │ │       x x , x  - x x )
    │ │ │ │ @@ -121,15 +121,15 @@
    │ │ │ │                        y
    │ │ │ │                         4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of
    │ │ │ │  PP^5 x PP^4 to PP^4)
    │ │ │ │  i6 : time ideal phi'
    │ │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ │ + -- used 0.103877s (cpu); 0.103879s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = ideal 1
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  QQ[x ..x , y ..y ]
    │ │ │ │  
    │ │ │ │  0   5   0   4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │
    │ │ │
    i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc)
    │ │ │ + -- used 0.19784s (cpu); 0.113276s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -251,15 +251,15 @@
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc)
    │ │ │ + -- used 0.350088s (cpu); 0.208419s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i3 : time inverse phi
    │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ + -- used 0.064242s (cpu); 0.0641291s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -290,15 +290,15 @@
    │ │ │ │  58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4
    │ │ │ │  476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4
    │ │ │ │  30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │ │  i3 : time inverse phi
    │ │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ │ + -- used 0.064242s (cpu); 0.0641291s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html
    │ │ │ @@ -123,24 +123,24 @@
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i3 : time isBirational phi
    │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc)
    │ │ │ + -- used 0.0222861s (cpu); 0.0222858s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    │ │ │
    i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc)
    │ │ │ + -- used 0.0265349s (cpu); 0.0147412s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -58,20 +58,20 @@ │ │ │ │ - t + t t │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time isBirational phi │ │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc) │ │ │ │ + -- used 0.0222861s (cpu); 0.0222858s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : time isBirational(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc) │ │ │ │ + -- used 0.0265349s (cpu); 0.0147412s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_D_o_m_i_n_a_n_t -- whether a rational map is dominant │ │ │ │ ********** WWaayyss ttoo uussee iissBBiirraattiioonnaall:: ********** │ │ │ │ * isBirational(RationalMap) │ │ │ │ * isBirational(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc)
    │ │ │ + -- used 2.56366s (cpu); 2.23958s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │ @@ -115,15 +115,15 @@ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc)
    │ │ │ + -- used 3.81151s (cpu); 2.74143s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : P8 = ZZ/101[x_0..x_8]; │ │ │ │ i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7}, │ │ │ │ {x_4..x_8}}; │ │ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ i3 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc) │ │ │ │ + -- used 2.56366s (cpu); 2.23958s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : P7 = ZZ/101[x_0..x_7]; │ │ │ │ i5 : -- hyperelliptic curve of genus 3 │ │ │ │ C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6- │ │ │ │ 26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5- │ │ │ │ 24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7- │ │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ │ │ o5 : Ideal of P7 │ │ │ │ i6 : phi = rationalMap(C,3,2); │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ i7 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc) │ │ │ │ + -- used 3.81151s (cpu); 2.74143s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_B_i_r_a_t_i_o_n_a_l -- whether a rational map is birational │ │ │ │ ********** WWaayyss ttoo uussee iissDDoommiinnaanntt:: ********** │ │ │ │ * isDominant(RationalMap) │ │ │ │ * isDominant(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ @@ -90,26 +90,26 @@ │ │ │ o1 : RingMap QQ[x ..x ] <-- QQ[y ..y ] │ │ │ 0 8 0 11 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ + -- used 0.021294s (cpu); 0.0212939s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time kernel(phi,2)
    │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ + -- used 1.04194s (cpu); 0.476185s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │  4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7
    │ │ │ │  0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2
    │ │ │ │  7     0 8     1 8     5 8     6 8     7 8
    │ │ │ │  
    │ │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │ │                   0   8          0   11
    │ │ │ │  i2 : time kernel(phi,1)
    │ │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ │ + -- used 0.021294s (cpu); 0.0212939s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = ideal ()
    │ │ │ │  
    │ │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │ │                    0   11
    │ │ │ │  i3 : time kernel(phi,2)
    │ │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ │ + -- used 1.04194s (cpu); 0.476185s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                             2
    │ │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │  
    │ │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time parametrize L
    │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ + -- used 0.00577994s (cpu); 0.0057765s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -201,15 +201,15 @@
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time parametrize Q
    │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ + -- used 0.530896s (cpu); 0.427076s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │       - 849671x  + 3034137x )
    │ │ │ │                8           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i3 : time parametrize L
    │ │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00577994s (cpu); 0.0057765s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -136,15 +136,15 @@
    │ │ │ │       1211601x x  - 2168594x x  - 1801762x x  + 3022242x x  + 3618789x )
    │ │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i5 : time parametrize Q
    │ │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ │ + -- used 0.530896s (cpu); 0.427076s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html
    │ │ │ @@ -78,15 +78,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time p = point source f
    │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc)
    │ │ │ + -- used 0.470352s (cpu); 0.225542s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -100,15 +100,15 @@
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p == f^* f p
    │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc)
    │ │ │ + -- used 0.219581s (cpu); 0.136401s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ documentation) , see _p_o_i_n_t_(_M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_). │ │ │ │ Below we verify the birationality of a rational map. │ │ │ │ i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331); │ │ │ │ │ │ │ │ o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to │ │ │ │ PP^8) │ │ │ │ i2 : time p = point source f │ │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc) │ │ │ │ + -- used 0.470352s (cpu); 0.225542s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = ideal (y - 9235y , y + 11075y , y - 5847y , y + 7396y , y + │ │ │ │ 10 11 9 11 8 11 7 11 6 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 13530y , y + 4359y , y - 2924y , y + 13040y , y + 6904y , y - │ │ │ │ 11 5 11 4 11 3 11 2 11 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : Ideal of ----------------------------------------------------------------- │ │ │ │ -------------------------------------- │ │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y │ │ │ │ y - y y + y y , y y - y y + y y ) │ │ │ │ 6 7 5 8 4 11 3 7 2 8 1 11 3 5 2 6 0 11 │ │ │ │ 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ i3 : time p == f^* f p │ │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc) │ │ │ │ + -- used 0.219581s (cpu); 0.136401s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t -- pick a random K rational point on the scheme X │ │ │ │ defined by I │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * point(PolynomialRing) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ 0 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc)
    │ │ │ + -- used 0.0641293s (cpu); 0.0231389s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -117,15 +117,15 @@ │ │ │ 2 3 1 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc)
    │ │ │ + -- used 0.0796457s (cpu); 0.0209875s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,25 +143,25 @@ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc)
    │ │ │ + -- used 6.1895e-05s (cpu); 5.4573e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.6877e-05s (cpu); 3.674e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 0 4 0 5 1 0 2 1 2 0 3 │ │ │ │ 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ │ 0 4 0 5 │ │ │ │ i3 : time projectiveDegrees(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc) │ │ │ │ + -- used 0.0641293s (cpu); 0.0231389s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {1, 2, 4, 4, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : psi=inverseMap(toMap(phi,Dominant=>infinity)) │ │ │ │ │ │ │ │ GF 109561[x ..x ] │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ GF 109561[x ..x ] │ │ │ │ 0 5 │ │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ │ x x - x x + x x 0 4 │ │ │ │ 2 3 1 4 0 5 │ │ │ │ i5 : time projectiveDegrees(psi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc) │ │ │ │ + -- used 0.0796457s (cpu); 0.0209875s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = {2, 4, 4, 2, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : -- Cremona transformation of P^6 defined by the quadrics through a │ │ │ │ rational octic surface │ │ │ │ phi = map specialCremonaTransformation(7,ZZ/300007) │ │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ 4 5 5 0 6 1 6 2 6 3 6 4 6 │ │ │ │ 5 6 │ │ │ │ │ │ │ │ ZZ ZZ │ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ │ 300007 0 6 300007 0 6 │ │ │ │ i7 : time projectiveDegrees phi │ │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc) │ │ │ │ + -- used 6.1895e-05s (cpu); 5.4573e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 2, 4, 8, 8, 4, 1} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : time projectiveDegrees(phi,NumDegrees=>1) │ │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc) │ │ │ │ + -- used 3.6877e-05s (cpu); 3.674e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = {4, 1} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Another way to use this method is by passing an integer i as second argument. │ │ │ │ However, this is equivalent to first projectiveDegrees(phi,NumDegrees=>i) and │ │ │ │ generally it is not faster. │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ o2 : Ideal of -----[x ..x ] │ │ │ 33331 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ + -- used 0.109934s (cpu); 0.109934s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-
    │ │ │ │  x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │ │                33331  0   6
    │ │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ │ + -- used 0.109934s (cpu); 0.109934s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                      ZZ
    │ │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │ │                      ZZ
    │ │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  ,
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i5 : D = new Tally from {H => 2,C => 1};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc)
    │ │ │ + -- used 0.0341706s (cpu); 0.0341558s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc)
    │ │ │ + -- used 1.42653s (cpu); 0.648079s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │ │ │ │

    See also the package WeilDivisors, which provides general tools for working with divisors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ │ │ │ │ o4 = ideal(- 32646x - 28377x + 26433x - 29566x + 3783x + 26696x ) │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : Ideal of X │ │ │ │ i5 : D = new Tally from {H => 2,C => 1}; │ │ │ │ i6 : time phi = rationalMap D │ │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc) │ │ │ │ + -- used 0.0341706s (cpu); 0.0341558s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = -- rational map -- │ │ │ │ ZZ │ │ │ │ source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by │ │ │ │ 65521 0 1 2 3 4 5 │ │ │ │ { │ │ │ │ 2 2 │ │ │ │ @@ -169,15 +169,15 @@ │ │ │ │ 2 2 │ │ │ │ x x x + x x x + x x x + x x + x x x - 2x x x + x x │ │ │ │ 0 1 5 0 2 5 1 2 5 2 5 1 4 5 2 4 5 4 5 │ │ │ │ } │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20) │ │ │ │ i7 : time ? image(phi,"F4") │ │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc) │ │ │ │ + -- used 1.42653s (cpu); 0.648079s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ See also the package _W_e_i_l_D_i_v_i_s_o_r_s, which provides general tools for working │ │ │ │ with divisors. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_t_i_o_n_a_l_M_a_p -- makes a rational map │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ @@ -70,15 +70,15 @@ │ │ │
    │ │ │

    Description

    │ │ │

    A Cremona transformation is said to be special if the base locus scheme is smooth and irreducible. To ensure this condition, the field K must be large enough but no check is made.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ + -- used 1.50129s (cpu); 1.16668s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │              K, according to the classification given in Table 1 of _S_p_e_c_i_a_l
    │ │ │ │              _c_u_b_i_c_ _C_r_e_m_o_n_a_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _P_6_ _a_n_d_ _P_7.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A Cremona transformation is said to be special if the base locus scheme is
    │ │ │ │  smooth and irreducible. To ensure this condition, the field K must be large
    │ │ │ │  enough but no check is made.
    │ │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ │ + -- used 1.50129s (cpu); 1.16668s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │ │        source variety: PP^3
    │ │ │ │        target variety: PP^3
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true
    │ │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ + -- used 0.0897767s (cpu); 0.089776s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ + -- used 0.0185673s (cpu); 0.0185692s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special cubic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 2 of _S_p_e_c_i_a_l_ _c_u_b_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _p_r_o_j_e_c_t_i_v_e
    │ │ │ │              _s_p_a_c_e_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0897767s (cpu); 0.089776s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6
    │ │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -323,15 +323,15 @@
    │ │ │ │  6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6
    │ │ │ │  1 6     2 6      3 6     4 6     5 6
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0185673s (cpu); 0.0185692s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^6
    │ │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ + -- used 0.0755322s (cpu); 0.0755319s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ + -- used 0.11261s (cpu); 0.031117s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special quadratic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 1 of _E_x_a_m_p_l_e_s_ _o_f_ _s_p_e_c_i_a_l_ _q_u_a_d_r_a_t_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s
    │ │ │ │              _i_n_t_o_ _c_o_m_p_l_e_t_e_ _i_n_t_e_r_s_e_c_t_i_o_n_s_ _o_f_ _q_u_a_d_r_i_c_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0755322s (cpu); 0.0755319s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │                                                     2
    │ │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ │ + -- used 0.11261s (cpu); 0.031117s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^8
    │ │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html
    │ │ │ @@ -88,23 +88,23 @@
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │
    │ │ │
    i4 : time phi' = value str;
    │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ + -- used 0.0252531s (cpu); 0.0252537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │
    │ │ │
    i5 : time describe phi'
    │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ + -- used 0.0059402s (cpu); 0.00594602s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │
    │ │ │
    i6 : time describe inverse phi'
    │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ + -- used 0.00506706s (cpu); 0.00507227s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,32 +19,32 @@
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i2 : str = toExternalString phi;
    │ │ │ │  i3 : #str
    │ │ │ │  
    │ │ │ │  o3 = 6927
    │ │ │ │  i4 : time phi' = value str;
    │ │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0252531s (cpu); 0.0252537s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i5 : time describe phi'
    │ │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0059402s (cpu); 0.00594602s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^3
    │ │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ │       number of minimal representatives: 1
    │ │ │ │       dimension base locus: 1
    │ │ │ │       degree base locus: 5
    │ │ │ │       coefficient ring: ZZ/33331
    │ │ │ │  i6 : time describe inverse phi'
    │ │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00506706s (cpu); 0.00507227s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │ │       target variety: PP^3
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/index.html
    │ │ │ @@ -58,29 +58,29 @@
    │ │ │              
    │ │ │
    i1 : ZZ/300007[t_0..t_6];
    │ │ │
    │ │ │
    i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ + -- used 0.00524112s (cpu); 0.00523976s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │
    │ │ │
    i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ + -- used 0.149399s (cpu); 0.0730355s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │ @@ -88,43 +88,43 @@
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │
    │ │ │
    i4 : time degreeMap phi
    │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ + -- used 0.0334176s (cpu); 0.0334224s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ + -- used 0.716496s (cpu); 0.549996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ + -- used 0.0704585s (cpu); 0.0704671s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ + -- used 0.0025549s (cpu); 0.00255898s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ + -- used 0.422925s (cpu); 0.422931s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -156,44 +156,44 @@
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ + -- used 0.0109647s (cpu); 0.0109661s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time degreeMap psi
    │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ + -- used 0.486731s (cpu); 0.262439s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │
    │ │ │
    i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ + -- used 5.44371s (cpu); 5.02492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │

    We repeat the example using the type RationalMap and using deterministic methods.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 2 │ │ │ │ o6 = y T │ │ │ │ 2 │ │ │ │ │ │ │ │ o6 : R[T ..T ] │ │ │ │ 1 3 │ │ │ │ i7 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.0137422s (cpu); 0.0130223s │ │ │ │ +Finding easy relations : -- used 0.0601616s (cpu); 0.023681s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = H │ │ │ │ │ │ │ │ o7 : PolynomialRing, 3 skew commutative variable(s) │ │ │ │ i8 : homologyClass(KR,z1*z2) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ @@ -129,15 +129,15 @@ │ │ │ │ │ │ o5 : Complex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ + -- used 0.002611s (cpu); 0.00261541s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -242,15 +242,15 @@
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │
    │ │ │
    i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ + -- used 0.17472s (cpu); 0.090802s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -315,15 +315,15 @@
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i14 : time phi^(-1)
    │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ + -- used 0.440018s (cpu); 0.440021s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -376,49 +376,49 @@
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │
    │ │ │
    i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ + -- used 0.475373s (cpu); 0.340152s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    │ │ │
    i16 : time degrees phi
    │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ + -- used 0.0793952s (cpu); 0.0267941s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │
    │ │ │
    i17 : time describe phi
    │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ + -- used 0.00372634s (cpu); 0.00373177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ + -- used 0.0109202s (cpu); 0.0109263s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ @@ -427,41 +427,41 @@
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ + -- used 0.0115313s (cpu); 0.0115369s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i21 : time degrees f
    │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ + -- used 1.20731s (cpu); 0.987305s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │
    │ │ │
    i22 : time degree f
    │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.1074e-05s (cpu); 1.9557e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │
    │ │ │
    i23 : time describe f
    │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ + -- used 0.00165199s (cpu); 0.00165748s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  map) from a list of $m+1$ homogeneous elements of the same degree in $K
    │ │ │ │  [x_0,...,x_n]/I$.
    │ │ │ │  Below is an example using the methods provided by this package, dealing with a
    │ │ │ │  birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}
    │ │ │ │  (2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.
    │ │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00524112s (cpu); 0.00523976s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              ZZ              ZZ                3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │  3                2    2                2                                 2
    │ │ │ │  2    2                                  2        2                      2
    │ │ │ │  2                        2                         2    2                 2
    │ │ │ │  3                2    2
    │ │ │ │ @@ -52,43 +52,43 @@
    │ │ │ │  0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4
    │ │ │ │  3 4 5    2 5    3 6    2 4 6
    │ │ │ │  
    │ │ │ │                 ZZ                 ZZ
    │ │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │ │               300007  0   6      300007  0   9
    │ │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ │ + -- used 0.149399s (cpu); 0.0730355s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │ │                300007  0   9
    │ │ │ │  i4 : time degreeMap phi
    │ │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0334176s (cpu); 0.0334224s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = 1
    │ │ │ │  i5 : time projectiveDegrees phi
    │ │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ │ + -- used 0.716496s (cpu); 0.549996s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0704585s (cpu); 0.0704671s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = {5}
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0025549s (cpu); 0.00255898s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                                         ZZ
    │ │ │ │                                                                       ------[x
    │ │ │ │  ..x ]
    │ │ │ │              ZZ                                                       300007  0
    │ │ │ │  9                                                  3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │ @@ -123,15 +123,15 @@
    │ │ │ │  o7 : RingMap ------[t ..t ] <-- -----------------------------------------------
    │ │ │ │  -----------------------------------------------------
    │ │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  -
    │ │ │ │  x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5
    │ │ │ │  2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i8 : time psi = inverseMap phi
    │ │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ │ + -- used 0.422925s (cpu); 0.422931s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                         ZZ
    │ │ │ │                                                       ------[x ..x ]
    │ │ │ │                                                       300007  0   9
    │ │ │ │  ZZ              3                2               2    2
    │ │ │ │  2                          2     2        2                               2
    │ │ │ │  2               2             2                       3
    │ │ │ │ @@ -164,31 +164,31 @@
    │ │ │ │  o8 : RingMap ------------------------------------------------------------------
    │ │ │ │  ---------------------------------- <-- ------[t ..t ]
    │ │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │  1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0109647s (cpu); 0.0109661s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time degreeMap psi
    │ │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ │ + -- used 0.486731s (cpu); 0.262439s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = 1
    │ │ │ │  i11 : time projectiveDegrees psi
    │ │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ │ + -- used 5.44371s (cpu); 5.02492s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ │ │  We repeat the example using the type _R_a_t_i_o_n_a_l_M_a_p and using deterministic
    │ │ │ │  methods.
    │ │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ │ + -- used 0.002611s (cpu); 0.00261541s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o12 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -233,15 +233,15 @@
    │ │ │ │                            3                2    2
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ │ + -- used 0.17472s (cpu); 0.090802s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                                     ZZ
    │ │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │ @@ -304,15 +304,15 @@
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i14 : time phi^(-1)
    │ │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ │ + -- used 0.440018s (cpu); 0.440021s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                                     ZZ
    │ │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │  ]) defined by
    │ │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │ │                {
    │ │ │ │ @@ -373,67 +373,67 @@
    │ │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6
    │ │ │ │  9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9
    │ │ │ │  to PP^6)
    │ │ │ │  i15 : time degrees phi^(-1)
    │ │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ │ + -- used 0.475373s (cpu); 0.340152s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o15 : List
    │ │ │ │  i16 : time degrees phi
    │ │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0793952s (cpu); 0.0267941s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o16 : List
    │ │ │ │  i17 : time describe phi
    │ │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00372634s (cpu); 0.00373177s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │ │        source variety: PP^6
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i18 : time describe phi^(-1)
    │ │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0109202s (cpu); 0.0109263s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        target variety: PP^6
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │        number of minimal representatives: 1
    │ │ │ │        dimension base locus: 4
    │ │ │ │        degree base locus: 24
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0115313s (cpu); 0.0115369s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety
    │ │ │ │  of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │  i21 : time degrees f
    │ │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ │ + -- used 1.20731s (cpu); 0.987305s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │ │  
    │ │ │ │  o21 : List
    │ │ │ │  i22 : time degree f
    │ │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 2.1074e-05s (cpu); 1.9557e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o22 = 1
    │ │ │ │  i23 : time describe f
    │ │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00165199s (cpu); 0.00165748s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20
    │ │ │ │  hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1,
    │ │ │ │  1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2,
    │ │ │ │  0},{2, 0})
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │                                    2     2     2       2 2     2 2      2 2      2 2     2 2        2 2       2 2        2       2       2
    │ │ │         Differential => {a, b, c, a T , b T , c T , a*b c T , b c T , -a b T , -a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │                                      1     2     3         1       4        6        5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │  
    │ │ │  o16 : DGAlgebra
    │ │ │  
    │ │ │  i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0332124s (cpu); 0.0205266s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        Underlying algebra => R[S ..S ]
    │ │ │                                 1   4
    │ │ │        Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.016973s (cpu); 0.0160828s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0424716s (cpu); 0.0242212s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i6 : describe HB
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                                      2
    │ │ │        Differential => {a, b, c, d, a T }
    │ │ │                                        1
    │ │ │  
    │ │ │  o9 : DGAlgebra
    │ │ │  
    │ │ │  i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0188901s (cpu); 0.0173443s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.254629s (cpu); 0.0538928s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out
    │ │ │ @@ -55,15 +55,15 @@
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 1 |
    │ │ │  
    │ │ │  o6 : ComplexMap
    │ │ │  
    │ │ │  i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.099449s (cpu); 0.027786s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │                                1                                                             {6} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c b a |     3
    │ │ │                                                                                      
    │ │ │                                                                                     2
    │ │ │  
    │ │ │  o6 : Complex
    │ │ │  
    │ │ │  i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.126962s (cpu); 0.0524544s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.266471s (cpu); 0.0684123s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : ideal HKR
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │  i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2-c^2*d^2}
    │ │ │  
    │ │ │  o9 = R'
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.54717s (cpu); 0.472623s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.645556s (cpu); 0.609624s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : numgens HKR'
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.019887s (cpu); 0.0171466s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.135124s (cpu); 0.0336625s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : numgens HA
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0169473s (cpu); 0.0162102s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0563319s (cpu); 0.0307142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │  i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o7 = {1, 5, 10, 10, 4}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0853296s (cpu); 0.0826839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.109501s (cpu); 0.0958652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │  
    │ │ │  i9 : numgens HA
    │ │ │  
    │ │ │ @@ -114,15 +114,15 @@
    │ │ │  i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o15 = {1, 7, 7, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0511448s (cpu); 0.0499304s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0738294s (cpu); 0.0611957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : R = ZZ/101[a,b,c,d]
    │ │ │  
    │ │ │ @@ -151,14 +151,14 @@
    │ │ │         Underlying algebra => S[T ..T ]
    │ │ │                                  1   4
    │ │ │         Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o20 : DGAlgebra
    │ │ │  
    │ │ │  i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.0169588s (cpu); 0.016221s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0519669s (cpu); 0.0277195s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i22 :
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out
    │ │ │ @@ -43,15 +43,15 @@
    │ │ │  o6 = y T
    │ │ │          2
    │ │ │  
    │ │ │  o6 : R[T ..T ]
    │ │ │          1   3
    │ │ │  
    │ │ │  i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0137422s (cpu); 0.0130223s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0601616s (cpu); 0.023681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : homologyClass(KR,z1*z2)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out
    │ │ │ @@ -34,15 +34,15 @@
    │ │ │  o5 = R  <-- R  <-- R  <-- R  <-- R
    │ │ │                                    
    │ │ │       0      1      2      3      4
    │ │ │  
    │ │ │  o5 : Complex
    │ │ │  
    │ │ │  i6 : HKR = HH(KR)
    │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc)
    │ │ │ + -- used 0.564706s (cpu); 0.174931s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │  
    │ │ │  i7 : degList = first entries vars Q / degree / first
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                 2
    │ │ │  o9 = (true, x y T T T  - x x y T T T )
    │ │ │               2 2 1 2 3    1 2 2 2 3 4
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.517042s (cpu); 0.445082s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.683328s (cpu); 0.581384s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -27,15 +27,15 @@
    │ │ │                                 1   4
    │ │ │        Differential => {t , t , t , t }
    │ │ │                          1   2   3   4
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.138884s (cpu); 0.136232s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.181575s (cpu); 0.167873s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │  
    │ │ │  i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  i3 : S = R/ideal{a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc)
    │ │ │ + -- used 0.611233s (cpu); 0.502307s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : numgens HB
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html
    │ │ │ @@ -289,15 +289,15 @@
    │ │ │          
    │ │ │

    One can also obtain the map on homology induced by a DGAlgebra map.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0332124s (cpu); 0.0205266s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -210,15 +210,15 @@
    │ │ │ │  a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │ │                                      1     2     3         1       4        6
    │ │ │ │  5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │ │  
    │ │ │ │  o16 : DGAlgebra
    │ │ │ │  One can also obtain the map on homology induced by a DGAlgebra map.
    │ │ │ │  i17 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s
    │ │ │ │ +Finding easy relations           :  -- used 0.0332124s (cpu); 0.0205266s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                            ZZ
    │ │ │ │                           ---[a..c]
    │ │ │ │              ZZ           101
    │ │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │             101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │          
    │ │ │

    One can compute the homology algebra of a DGAlgebra using the homology (or HH) command.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -174,15 +174,15 @@ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ One can compute the homology algebra of a DGAlgebra using the homology (or HH) │ │ │ │ command. │ │ │ │ i5 : HB = HH B │ │ │ │ -Finding easy relations : -- used 0.016973s (cpu); 0.0160828s │ │ │ │ +Finding easy relations : -- used 0.0424716s (cpu); 0.0242212s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = HB │ │ │ │ │ │ │ │ o5 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i6 : describe HB │ │ │ │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ 1 5 │ │ │ │ 2 │ │ │ │ Differential => {a, b, c, d, a T } │ │ │ │ 1 │ │ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4) │ │ │ │ -Finding easy relations : -- used 0.0188901s (cpu); 0.0173443s │ │ │ │ +Finding easy relations : -- used 0.254629s (cpu); 0.0538928s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o10 = ---[X ..X ] │ │ │ │ 101 1 3 │ │ │ │ │ │ │ │ o10 : PolynomialRing, 3 skew commutative variable(s) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ │ │ o6 : ComplexMap │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -242,15 +242,15 @@ │ │ │ │ │ │ o15 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.016973s (cpu); 0.0160828s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0424716s (cpu); 0.0242212s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0188901s (cpu); 0.0173443s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.254629s (cpu); 0.0538928s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.099449s (cpu); 0.027786s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -62,15 +62,15 @@
    │ │ │ │       2 : R  <------------- R  : 2
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 1 |
    │ │ │ │  
    │ │ │ │  o6 : ComplexMap
    │ │ │ │  i7 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s
    │ │ │ │ +Finding easy relations           :  -- used 0.099449s (cpu); 0.027786s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                           ZZ
    │ │ │ │                          ---[a..c]
    │ │ │ │             ZZ           101
    │ │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │            101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │          
    │ │ │

    Since the Koszul complex is a DG algebra, its homology is itself an algebra. One can obtain this algebra using the command homology, homologyAlgebra, or HH (all commands work). This algebra structure can detect whether or not the ring is a complete intersection or Gorenstein.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ │ │ o6 : Complex │ │ │ │ Since the Koszul complex is a DG algebra, its homology is itself an algebra. │ │ │ │ One can obtain this algebra using the command homology, homologyAlgebra, or HH │ │ │ │ (all commands work). This algebra structure can detect whether or not the ring │ │ │ │ is a complete intersection or Gorenstein. │ │ │ │ i7 : HKR = HH KR │ │ │ │ -Finding easy relations : -- used 0.126962s (cpu); 0.0524544s │ │ │ │ +Finding easy relations : -- used 0.266471s (cpu); 0.0684123s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = HKR │ │ │ │ │ │ │ │ o7 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i8 : ideal HKR │ │ │ │ │ │ │ │ @@ -94,16 +94,16 @@ │ │ │ │ i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2- │ │ │ │ c^2*d^2} │ │ │ │ │ │ │ │ o9 = R' │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : HKR' = HH koszulComplexDGA R' │ │ │ │ -Finding easy relations : -- used 0.54717s (cpu); 0.472623s (thread); │ │ │ │ -0s (gc) │ │ │ │ +Finding easy relations : -- used 0.645556s (cpu); 0.609624s │ │ │ │ +(thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = HKR' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : numgens HKR' │ │ │ │ │ │ │ │ o11 = 34 │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.019887s (cpu); 0.0171466s │ │ │ │ +Finding easy relations : -- used 0.135124s (cpu); 0.0336625s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i5 : numgens HA │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.126962s (cpu); 0.0524544s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.266471s (cpu); 0.0684123s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.54717s (cpu); 0.472623s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.645556s (cpu); 0.609624s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.019887s (cpu); 0.0171466s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.135124s (cpu); 0.0336625s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0169473s (cpu); 0.0162102s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0563319s (cpu); 0.0307142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o7 : List
    │ │ │
    │ │ │
    i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0853296s (cpu); 0.0826839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.109501s (cpu); 0.0958652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │
    │ │ │
    i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0511448s (cpu); 0.0499304s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0738294s (cpu); 0.0611957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │
    │ │ │ @@ -302,15 +302,15 @@ │ │ │ │ │ │ o20 : DGAlgebra
    │ │ │
    │ │ │
    i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.0169588s (cpu); 0.016221s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0519669s (cpu); 0.0277195s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0169473s (cpu); 0.0162102s │ │ │ │ +Finding easy relations : -- used 0.0563319s (cpu); 0.0307142s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ Note that HA is a graded commutative polynomial ring (i.e. an exterior algebra) │ │ │ │ since R is a complete intersection. │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ o6 : DGAlgebra │ │ │ │ i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o7 = {1, 5, 10, 10, 4} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0853296s (cpu); 0.0826839s │ │ │ │ +Finding easy relations : -- used 0.109501s (cpu); 0.0958652s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = HA │ │ │ │ │ │ │ │ o8 : QuotientRing │ │ │ │ i9 : numgens HA │ │ │ │ │ │ │ │ @@ -122,15 +122,15 @@ │ │ │ │ o14 : DGAlgebra │ │ │ │ i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o15 = {1, 7, 7, 1} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0511448s (cpu); 0.0499304s │ │ │ │ +Finding easy relations : -- used 0.0738294s (cpu); 0.0611957s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = HA │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ One can check that HA has Poincare duality since R is Gorenstein. │ │ │ │ If your DGAlgebra has generators in even degrees, then one must specify the │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ o20 = {Ring => S } │ │ │ │ Underlying algebra => S[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o20 : DGAlgebra │ │ │ │ i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14) │ │ │ │ -Finding easy relations : -- used 0.0169588s (cpu); 0.016221s │ │ │ │ +Finding easy relations : -- used 0.0519669s (cpu); 0.0277195s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = HB │ │ │ │ │ │ │ │ o21 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ ********** WWaayyss ttoo uussee hhoommoollooggyyAAllggeebbrraa:: ********** │ │ │ │ * homologyAlgebra(DGAlgebra) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ o6 : R[T ..T ] │ │ │ 1 3
    │ │ │
    │ │ │
    i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0137422s (cpu); 0.0130223s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0601616s (cpu); 0.023681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i6 : HKR = HH(KR)
    │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc)
    │ │ │ + -- used 0.564706s (cpu); 0.174931s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 1 4 6 4 1 │ │ │ │ o5 = R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o5 : Complex │ │ │ │ i6 : HKR = HH(KR) │ │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc) │ │ │ │ + -- used 0.564706s (cpu); 0.174931s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o6 = HKR │ │ │ │ │ │ │ │ o6 : QuotientRing │ │ │ │ The following is the graded canonical module of R: │ │ │ │ i7 : degList = first entries vars Q / degree / first │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ @@ -192,15 +192,15 @@ │ │ │
    │ │ │

    Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey triple product of the homology classes represented by z1,z2 and z3 is the homology class of lift12*z3 + z1*lift23. To see this, we compute and check:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ Underlying algebra => R[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {t , t , t , t } │ │ │ │ 1 2 3 4 │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ i5 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.138884s (cpu); 0.136232s │ │ │ │ +Finding easy relations : -- used 0.181575s (cpu); 0.167873s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = H │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : masseys = masseyTripleProduct(KR,1,1,1); │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ i2 : M = coker matrix {{a^3*b^3*c^3*d^3}}; │ │ │ │ i3 : S = R/ideal{a^3*b^3*c^3*d^3} │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8) │ │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc) │ │ │ │ + -- used 0.611233s (cpu); 0.502307s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o4 = HB │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : numgens HB │ │ │ │ │ │ │ │ o5 = 35 │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ @@ -3,25 +3,25 @@ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 1 3 4 1 5 2 3 4 5 │ │ │ + 1 2 3 3 5 1 2 4 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ o3 : HyperGraph │ │ │ │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 2 3 4 1 2 1 3 4 5 │ │ │ + 1 2 4 4 5 1 2 3 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch limit reached │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ @@ -88,28 +88,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,24 +25,24 @@ │ │ │ │ _T_i_m_e_L_i_m_i_t). The method will return null if it cannot find a hypergraph within │ │ │ │ the branch and time limits. │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 1 3 4 1 5 2 3 4 5 │ │ │ │ + 1 2 3 3 5 1 2 4 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ o3 : HyperGraph │ │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 2 3 4 1 2 1 3 4 5 │ │ │ │ + 1 2 4 4 5 1 2 3 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch │ │ │ │ limit reached │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ @@ -15,14 +15,14 @@ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ ------------------------------------------------------------------------ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ - -- .34144s elapsed │ │ │ + -- .219083s elapsed │ │ │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ o4 = 156 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,22 +29,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc) │ │ │ │ + -- used 0.00315082s (cpu); 0.00314671s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc) │ │ │ │ + -- used 0.00181431s (cpu); 0.00181563s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ @@ -97,26 +97,26 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -30,22 +30,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc) │ │ │ │ + -- used 0.00314217s (cpu); 0.003138s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc) │ │ │ │ + -- used 0.00167105s (cpu); 0.00167243s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.517042s (cpu); 0.445082s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.683328s (cpu); 0.581384s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ │ ├── html2text {} │ │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ Note that the first return value of _g_e_t_B_o_u_n_d_a_r_y_P_r_e_i_m_a_g_e indicates that the │ │ │ │ inputs are indeed boundaries, and the second value is the lift of the boundary │ │ │ │ along the differential. │ │ │ │ Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey │ │ │ │ triple product of the homology classes represented by z1,z2 and z3 is the │ │ │ │ homology class of lift12*z3 + z1*lift23. To see this, we compute and check: │ │ │ │ i10 : z123 = masseyTripleProduct(KR,z1,z2,z3) │ │ │ │ -Finding easy relations : -- used 0.517042s (cpu); 0.445082s │ │ │ │ +Finding easy relations : -- used 0.683328s (cpu); 0.581384s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 │ │ │ │ o10 = x x y z T T T T │ │ │ │ 1 2 2 2 3 4 5 │ │ │ │ │ │ │ │ o10 : R[T ..T ] │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ │ o4 : DGAlgebra │ │ │
    │ │ │
    i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.138884s (cpu); 0.136232s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.181575s (cpu); 0.167873s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │
    │ │ │
    i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc)
    │ │ │ + -- used 0.611233s (cpu); 0.502307s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │
    │ │ │
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │  o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              1   3   4     1   5     2   3   4   5
    │ │ │ +                              1   2   3     3   5     1   2   4   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │  o3 : HyperGraph
    │ │ │
    │ │ │
    i4 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │  o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              2   3   4     1   2     1   3   4   5
    │ │ │ +                              1   2   4     4   5     1   2   3   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │  o4 : HyperGraph
    │ │ │
    │ │ │
    i3 : elapsedTime sols = zeroDimSolve I;
    │ │ │ - -- .34144s elapsed
    │ │ │ + -- .219083s elapsed │ │ │
    │ │ │
    i4 : #sols -- 156 solutions
    │ │ │  
    │ │ │  o4 = 156
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ │ - -- .34144s elapsed │ │ │ │ + -- .219083s elapsed │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ │ │ o4 = 156 │ │ │ │ The authors would like to acknowledge the June 2020 Macaulay2 workshop held │ │ │ │ virtually at Warwick, where this package was first developed. │ │ │ │ RReeffeerreenncceess: │ │ │ │ * [1] Sturmfels, Bernd. Solving systems of polynomial equations. No. 97. │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc) │ │ │ + -- used 0.00315082s (cpu); 0.00314671s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc) │ │ │ + -- used 0.00181431s (cpu); 0.00181563s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc) │ │ │ + -- used 0.00314217s (cpu); 0.003138s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc) │ │ │ + -- used 0.00167105s (cpu); 0.00167243s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o3 = x + x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc) │ │ │ + -- used 1.38743s (cpu); 1.25876s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o4 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -73,15 +73,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc) │ │ │ + -- used 0.015875s (cpu); 0.0158768s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o4 = x + x + x*c + d │ │ │ │ │ │ o4 : R │ │ │ │ │ │ i5 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc) │ │ │ + -- used 1.46589s (cpu); 1.35028s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -75,15 +75,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : time ideal resultant(f,g,x) │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc) │ │ │ + -- used 0.0153981s (cpu); 0.0154021s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o6 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -103,26 +103,26 @@ │ │ │ │ │ │ o3 : R │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc)
    │ │ │ + -- used 0.00315082s (cpu); 0.00314671s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc)
    │ │ │ + -- used 0.00181431s (cpu); 0.00181563s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc)
    │ │ │ + -- used 0.00314217s (cpu); 0.003138s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc)
    │ │ │ + -- used 0.00167105s (cpu); 0.00167243s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc)
    │ │ │ + -- used 1.38743s (cpu); 1.25876s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc)
    │ │ │ + -- used 0.015875s (cpu); 0.0158768s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  i3 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o3 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o3 : R
    │ │ │ │  i4 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc)
    │ │ │ │ + -- used 1.38743s (cpu); 1.25876s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -90,15 +90,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc)
    │ │ │ │ + -- used 0.015875s (cpu); 0.0158768s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  
    │ │ │  o4 : R
    │ │ │
    │ │ │
    i5 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc)
    │ │ │ + -- used 1.46589s (cpu); 1.35028s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -163,15 +163,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc)
    │ │ │ + -- used 0.0153981s (cpu); 0.0154021s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i4 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o4 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o4 : R
    │ │ │ │  i5 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc)
    │ │ │ │ + -- used 1.46589s (cpu); 1.35028s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -85,15 +85,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o5 : Ideal of R
    │ │ │ │  i6 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0153981s (cpu); 0.0154021s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1331975673177
    │ │ │  
    │ │ │  i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc)
    │ │ │ + -- used 0.0289803s (cpu); 0.0289806s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out
    │ │ │ @@ -37,83 +37,83 @@
    │ │ │  i6 : rationalCurve(2) - rationalCurve(1)/8
    │ │ │  
    │ │ │  o6 = 609250
    │ │ │  
    │ │ │  o6 : QQ
    │ │ │  
    │ │ │  i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc)
    │ │ │ + -- used 0.345874s (cpu); 0.2915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time rationalCurve(3)
    │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc)
    │ │ │ + -- used 0.130073s (cpu); 0.13008s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │  
    │ │ │  i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc)
    │ │ │ + -- used 4.91979s (cpu); 4.39581s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc)
    │ │ │ + -- used 0.1301s (cpu); 0.130107s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │  
    │ │ │  i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc)
    │ │ │ + -- used 4.96808s (cpu); 4.40223s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time rationalCurve(4)
    │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc)
    │ │ │ + -- used 1.42387s (cpu); 1.30604s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │  
    │ │ │  i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc)
    │ │ │ + -- used 6.76391s (cpu); 5.67641s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │  
    │ │ │  i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc)
    │ │ │ + -- used 1.54252s (cpu); 1.36125s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │  
    │ │ │  i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc)
    │ │ │ + -- used 6.58956s (cpu); 5.47923s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │  
    │ │ │  i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc)
    │ │ │ + -- used 6.80324s (cpu); 5.67876s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │  
    │ │ │  i17 :
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html
    │ │ │ @@ -71,15 +71,15 @@
    │ │ │            

    Computes the number of lines on a general hypersurface of degree 2n - 3 in \mathbb P^n.

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the number of lines on a general hypersurface of degree │ │ │ │ 2n - 3 in \mathbb P^n │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Computes the number of lines on a general hypersurface of degree 2n - 3 in │ │ │ │ \mathbb P^n. │ │ │ │ i1 : time for n from 2 to 10 list linesHypersurface(n) │ │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc) │ │ │ │ + -- used 0.0289803s (cpu); 0.0289806s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** WWaayyss ttoo uussee lliinneessHHyyppeerrssuurrffaaccee:: ********** │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ @@ -152,15 +152,15 @@ │ │ │

    The numbers of conics on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc)
    │ │ │ + -- used 0.0289803s (cpu); 0.0289806s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc)
    │ │ │ + -- used 0.345874s (cpu); 0.2915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ @@ -168,27 +168,27 @@ │ │ │

    For rational curves of degree 3:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -198,15 +198,15 @@ │ │ │

    The number of rational curves of degree 3 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i8 : time rationalCurve(3)
    │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc)
    │ │ │ + -- used 0.130073s (cpu); 0.13008s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │
    │ │ │
    i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc)
    │ │ │ + -- used 4.91979s (cpu); 4.39581s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc)
    │ │ │ + -- used 0.1301s (cpu); 0.130107s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │
    │ │ │ @@ -214,15 +214,15 @@ │ │ │

    The numbers of rational curves of degree 3 on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc)
    │ │ │ + -- used 4.96808s (cpu); 4.40223s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │ @@ -230,27 +230,27 @@ │ │ │

    For rational curves of degree 4:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time rationalCurve(4)
    │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc)
    │ │ │ + -- used 1.42387s (cpu); 1.30604s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │
    │ │ │
    i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc)
    │ │ │ + -- used 6.76391s (cpu); 5.67641s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │
    │ │ │ @@ -258,15 +258,15 @@ │ │ │

    The number of rational curves of degree 4 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc)
    │ │ │ + -- used 1.54252s (cpu); 1.36125s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │
    │ │ │ @@ -274,25 +274,25 @@ │ │ │

    The numbers of rational curves of degree 4 on general complete intersections of types (4,2) and (3,3) in \mathbb P^5 can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc)
    │ │ │ + -- used 6.58956s (cpu); 5.47923s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │
    │ │ │
    i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc)
    │ │ │ + -- used 6.80324s (cpu); 5.67876s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,85 +59,85 @@ │ │ │ │ │ │ │ │ o6 = 609250 │ │ │ │ │ │ │ │ o6 : QQ │ │ │ │ The numbers of conics on general complete intersection Calabi-Yau threefolds │ │ │ │ can be computed as follows: │ │ │ │ i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8 │ │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc) │ │ │ │ + -- used 0.345874s (cpu); 0.2915s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {609250, 92288, 52812, 22428, 9728} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ For rational curves of degree 3: │ │ │ │ i8 : time rationalCurve(3) │ │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc) │ │ │ │ + -- used 0.130073s (cpu); 0.13008s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 │ │ │ │ o8 = ---------- │ │ │ │ 27 │ │ │ │ │ │ │ │ o8 : QQ │ │ │ │ i9 : time for D in T list rationalCurve(3,D) │ │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc) │ │ │ │ + -- used 4.91979s (cpu); 4.39581s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 422690816 4834592 11239424 │ │ │ │ o9 = {----------, ---------, 6424365, -------, --------} │ │ │ │ 27 27 3 27 │ │ │ │ │ │ │ │ o9 : List │ │ │ │ The number of rational curves of degree 3 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i10 : time rationalCurve(3) - rationalCurve(1)/27 │ │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc) │ │ │ │ + -- used 0.1301s (cpu); 0.130107s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 317206375 │ │ │ │ │ │ │ │ o10 : QQ │ │ │ │ The numbers of rational curves of degree 3 on general complete intersection │ │ │ │ Calabi-Yau threefolds can be computed as follows: │ │ │ │ i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27 │ │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc) │ │ │ │ + -- used 4.96808s (cpu); 4.40223s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = {317206375, 15655168, 6424326, 1611504, 416256} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ For rational curves of degree 4: │ │ │ │ i12 : time rationalCurve(4) │ │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc) │ │ │ │ + -- used 1.42387s (cpu); 1.30604s (thread); 0s (gc) │ │ │ │ │ │ │ │ 15517926796875 │ │ │ │ o12 = -------------- │ │ │ │ 64 │ │ │ │ │ │ │ │ o12 : QQ │ │ │ │ i13 : time rationalCurve(4,{4,2}) │ │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc) │ │ │ │ + -- used 6.76391s (cpu); 5.67641s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = 3883914084 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ The number of rational curves of degree 4 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i14 : time rationalCurve(4) - rationalCurve(2)/8 │ │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc) │ │ │ │ + -- used 1.54252s (cpu); 1.36125s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 242467530000 │ │ │ │ │ │ │ │ o14 : QQ │ │ │ │ The numbers of rational curves of degree 4 on general complete intersections of │ │ │ │ types (4,2) and (3,3) in \mathbb P^5 can be computed as follows: │ │ │ │ i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8 │ │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc) │ │ │ │ + -- used 6.58956s (cpu); 5.47923s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3883902528 │ │ │ │ │ │ │ │ o15 : QQ │ │ │ │ i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8 │ │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc) │ │ │ │ + -- used 6.80324s (cpu); 5.67876s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 1139448384 │ │ │ │ │ │ │ │ o16 : QQ │ │ │ │ ********** WWaayyss ttoo uussee rraattiioonnaallCCuurrvvee:: ********** │ │ │ │ * rationalCurve(ZZ) │ │ │ │ * rationalCurve(ZZ,List) │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ @@ -10,34 +10,34 @@ │ │ │ o3 = map (R, S, {x , x x , x x , x }) │ │ │ 1 1 0 1 0 0 │ │ │ │ │ │ o3 : RingMap R <-- S │ │ │ │ │ │ i4 : G = egbToric(m, OutFile=>stdio) │ │ │ 3 │ │ │ - -- used .00198437 seconds │ │ │ - -- used .000540734 seconds │ │ │ + -- used .0020064 seconds │ │ │ + -- used .000584388 seconds │ │ │ (9, 9) │ │ │ new stuff found │ │ │ 4 │ │ │ - -- used .00328788 seconds │ │ │ - -- used .00432848 seconds │ │ │ + -- used .00407531 seconds │ │ │ + -- used .00488458 seconds │ │ │ (16, 26) │ │ │ new stuff found │ │ │ 5 │ │ │ - -- used .00788476 seconds │ │ │ - -- used .0260362 seconds │ │ │ + -- used .0084479 seconds │ │ │ + -- used .026256 seconds │ │ │ (25, 60) │ │ │ 6 │ │ │ - -- used .0175752 seconds │ │ │ - -- used .212106 seconds │ │ │ + -- used .0187941 seconds │ │ │ + -- used .201187 seconds │ │ │ (36, 120) │ │ │ 7 │ │ │ - -- used .0370974 seconds │ │ │ - -- used .791376 seconds │ │ │ + -- used .0407566 seconds │ │ │ + -- used .809507 seconds │ │ │ (49, 217) │ │ │ │ │ │ 2 │ │ │ o4 = {- y + y , - y y + y , - y y + y y , - y y + │ │ │ 1,0 0,1 1,1 0,0 1,0 2,1 0,0 2,0 1,0 2,1 1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ y y , - y y + y y , - y y + y y , - y y + │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ @@ -101,34 +101,34 @@ │ │ │ o3 : RingMap R <-- S
    │ │ │
    │ │ │
    i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │  3
    │ │ │ -     -- used .00198437 seconds
    │ │ │ -     -- used .000540734 seconds
    │ │ │ +     -- used .0020064 seconds
    │ │ │ +     -- used .000584388 seconds
    │ │ │  (9, 9)
    │ │ │  new stuff found
    │ │ │  4
    │ │ │ -     -- used .00328788 seconds
    │ │ │ -     -- used .00432848 seconds
    │ │ │ +     -- used .00407531 seconds
    │ │ │ +     -- used .00488458 seconds
    │ │ │  (16, 26)
    │ │ │  new stuff found
    │ │ │  5
    │ │ │ -     -- used .00788476 seconds
    │ │ │ -     -- used .0260362 seconds
    │ │ │ +     -- used .0084479 seconds
    │ │ │ +     -- used .026256 seconds
    │ │ │  (25, 60)
    │ │ │  6
    │ │ │ -     -- used .0175752 seconds
    │ │ │ -     -- used .212106 seconds
    │ │ │ +     -- used .0187941 seconds
    │ │ │ +     -- used .201187 seconds
    │ │ │  (36, 120)
    │ │ │  7
    │ │ │ -     -- used .0370974 seconds
    │ │ │ -     -- used .791376 seconds
    │ │ │ +     -- used .0407566 seconds
    │ │ │ +     -- used .809507 seconds
    │ │ │  (49, 217)
    │ │ │  
    │ │ │                                     2
    │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,34 +33,34 @@
    │ │ │ │                    2               2
    │ │ │ │  o3 = map (R, S, {x , x x , x x , x })
    │ │ │ │                    1   1 0   1 0   0
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- S
    │ │ │ │  i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │ │  3
    │ │ │ │ -     -- used .00198437 seconds
    │ │ │ │ -     -- used .000540734 seconds
    │ │ │ │ +     -- used .0020064 seconds
    │ │ │ │ +     -- used .000584388 seconds
    │ │ │ │  (9, 9)
    │ │ │ │  new stuff found
    │ │ │ │  4
    │ │ │ │ -     -- used .00328788 seconds
    │ │ │ │ -     -- used .00432848 seconds
    │ │ │ │ +     -- used .00407531 seconds
    │ │ │ │ +     -- used .00488458 seconds
    │ │ │ │  (16, 26)
    │ │ │ │  new stuff found
    │ │ │ │  5
    │ │ │ │ -     -- used .00788476 seconds
    │ │ │ │ -     -- used .0260362 seconds
    │ │ │ │ +     -- used .0084479 seconds
    │ │ │ │ +     -- used .026256 seconds
    │ │ │ │  (25, 60)
    │ │ │ │  6
    │ │ │ │ -     -- used .0175752 seconds
    │ │ │ │ -     -- used .212106 seconds
    │ │ │ │ +     -- used .0187941 seconds
    │ │ │ │ +     -- used .201187 seconds
    │ │ │ │  (36, 120)
    │ │ │ │  7
    │ │ │ │ -     -- used .0370974 seconds
    │ │ │ │ -     -- used .791376 seconds
    │ │ │ │ +     -- used .0407566 seconds
    │ │ │ │ +     -- used .809507 seconds
    │ │ │ │  (49, 217)
    │ │ │ │  
    │ │ │ │                                     2
    │ │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out
    │ │ │ @@ -462,50 +462,50 @@
    │ │ │                 3 2 4     3 6
    │ │ │  o27 = ideal(12x x x  - 4x x )
    │ │ │                 3 7 9     3 9
    │ │ │  
    │ │ │  o27 : Ideal of S
    │ │ │  
    │ │ │  i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc)
    │ │ │ + -- used 0.219958s (cpu); 0.15362s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │  
    │ │ │  i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc)
    │ │ │ + -- used 0.355877s (cpu); 0.224017s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │  
    │ │ │  i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc)
    │ │ │ + -- used 0.563589s (cpu); 0.360913s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │  
    │ │ │  i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc)
    │ │ │ + -- used 0.288154s (cpu); 0.225162s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │  
    │ │ │  i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc)
    │ │ │ + -- used 0.44032s (cpu); 0.233399s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │  
    │ │ │  i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc)
    │ │ │ + -- used 0.371217s (cpu); 0.239568s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │  
    │ │ │  i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc)
    │ │ │ + -- used 0.345982s (cpu); 0.1988s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │  
    │ │ │  i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc)
    │ │ │ + -- used 17.5223s (cpu); 11.4921s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │  
    │ │ │  i36 : peek StrategyDefault
    │ │ │  
    │ │ │  o36 = OptionTable{GRevLexLargest => 0      }
    │ │ │                    GRevLexSmallest => 16
    │ │ │ @@ -514,15 +514,15 @@
    │ │ │                    LexSmallest => 16
    │ │ │                    LexSmallestTerm => 16
    │ │ │                    Points => 0
    │ │ │                    Random => 16
    │ │ │                    RandomNonzero => 16
    │ │ │  
    │ │ │  i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc)
    │ │ │ + -- used 0.450381s (cpu); 0.378324s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -582,15 +582,15 @@
    │ │ │  i41 : ptsStratGeometric = new OptionTable from (options chooseGoodMinors)#PointOptions;
    │ │ │  
    │ │ │  i42 : ptsStratGeometric#ExtendField --look at the default value
    │ │ │  
    │ │ │  o42 = true
    │ │ │  
    │ │ │  i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc)
    │ │ │ + -- used 0.745732s (cpu); 0.600893s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │  
    │ │ │  i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │  
    │ │ │  o44 = OptionTable{DecompositionStrategy => Decompose}
    │ │ │                    DimensionFunction => dim
    │ │ │ @@ -605,47 +605,47 @@
    │ │ │  o44 : OptionTable
    │ │ │  
    │ │ │  i45 : ptsStratRational.ExtendField --look at our changed value
    │ │ │  
    │ │ │  o45 = false
    │ │ │  
    │ │ │  i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc)
    │ │ │ + -- used 0.4884s (cpu); 0.419871s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │  
    │ │ │  i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc)
    │ │ │ + -- used 3.98407s (cpu); 3.53959s (thread); 0s (gc)
    │ │ │  
    │ │ │  i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc)
    │ │ │ + -- used 0.864416s (cpu); 0.729779s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │  
    │ │ │  i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc)
    │ │ │ + -- used 3.24659s (cpu); 3.02979s (thread); 0s (gc)
    │ │ │  
    │ │ │  i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc)
    │ │ │ + -- used 2.75203s (cpu); 2.24497s (thread); 0s (gc)
    │ │ │  
    │ │ │  i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc)
    │ │ │ + -- used 0.87716s (cpu); 0.815091s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │  
    │ │ │  i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc)
    │ │ │ + -- used 3.06605s (cpu); 2.51926s (thread); 0s (gc)
    │ │ │  
    │ │ │  i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc)
    │ │ │ + -- used 3.56947s (cpu); 3.07165s (thread); 0s (gc)
    │ │ │  
    │ │ │  i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc)
    │ │ │ + -- used 10.7366s (cpu); 8.87559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │  
    │ │ │  i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc)
    │ │ │ + -- used 7.98092s (cpu); 6.59218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │  
    │ │ │  i56 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  o2 : Ideal of S
    │ │ │  
    │ │ │  i3 : dim (S/J)
    │ │ │  
    │ │ │  o3 = 4
    │ │ │  
    │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ + -- used 1.12832s (cpu); 0.759775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ + -- used 11.8543s (cpu); 8.52938s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time regularInCodimension(1, S/J, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 452.908 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ @@ -87,21 +87,21 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 49, and computed = 39
    │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ -regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.43458s (cpu); 1.01606s (thread); 0s (gc)
    │ │ │ +regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.60919s (cpu); 1.15948s (thread); 0s (gc)
    │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ + -- used 0.230667s (cpu); 0.176996s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ + -- used 0.171312s (cpu); 0.117678s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ + -- used 0.661642s (cpu); 0.487505s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ + -- used 0.754931s (cpu); 0.540222s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -214,15 +214,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 25, and computed = 23
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 25, and computed = 23.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ + -- used 0.493336s (cpu); 0.327536s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5509279875405941999
    │ │ │  
    │ │ │  i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │  
    │ │ │  i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.73127s elapsed
    │ │ │ + -- 1.44643s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │  
    │ │ │  i3 : peek StrategyDefault
    │ │ │  
    │ │ │  o3 = OptionTable{GRevLexLargest => 0      }
    │ │ │                   GRevLexSmallest => 16
    │ │ │ @@ -16,12 +16,12 @@
    │ │ │                   LexSmallest => 16
    │ │ │                   LexSmallestTerm => 16
    │ │ │                   Points => 0
    │ │ │                   Random => 16
    │ │ │                   RandomNonzero => 16
    │ │ │  
    │ │ │  i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.19064s elapsed
    │ │ │ + -- .860053s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out
    │ │ │ @@ -16,29 +16,29 @@
    │ │ │  i5 : r = rank myDiff;
    │ │ │  
    │ │ │  i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc)
    │ │ │ + -- used 0.00405033s (cpu); 0.00532349s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : I = ideal(x_2^8*x_10^3-3*x_1*x_2^7*x_10^2*x_11+3*x_1^2*x_2^6*x_10*x_11^2-x_1^3*x_2^5*x_11^3,x_5^5*x_6^3*x_11^3-3*x_5^6*x_6^2*x_11^2*x_12+3*x_5^7*x_6*x_11*x_12^2-x_5^8*x_12^3,x_1^5*x_2^3*x_4^3-3*x_1^6*x_2^2*x_4^2*x_5+3*x_1^7*x_2*x_4*x_5^2-x_1^8*x_5^3,x_6^8*x_11^3-3*x_5*x_6^7*x_11^2*x_12+3*x_5^2*x_6^6*x_11*x_12^2-x_5^3*x_6^5*x_12^3,x_8^3*x_10^8-3*x_7*x_8^2*x_10^7*x_11+3*x_7^2*x_8*x_10^6*x_11^2-x_7^3*x_10^5*x_11^3,x_2^8*x_4^3-3*x_1*x_2^7*x_4^2*x_5+3*x_1^2*x_2^6*x_4*x_5^2-x_1^3*x_2^5*x_5^3,-x_6^3*x_11^8+3*x_5*x_6^2*x_11^7*x_12-3*x_5^2*x_6*x_11^6*x_12^2+x_5^3*x_11^5*x_12^3,-x_6^3*x_7^3*x_9^5+3*x_4*x_6^2*x_7^2*x_9^6-3*x_4^2*x_6*x_7*x_9^7+x_4^3*x_9^8,x_8^8*x_10^3-3*x_7*x_8^7*x_10^2*x_11+3*x_7^2*x_8^6*x_10*x_11^2-x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3-3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3);
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o8 : Ideal of ---[x  , x , x , x , x  , x , x , x  , x , x , x , x ]
    │ │ │                127  11   8   1   9   12   6   5   10   2   4   3   7
    │ │ │  
    │ │ │  i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc)
    │ │ │ + -- used 0.00396225s (cpu); 0.00510562s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc)
    │ │ │ + -- used 0.00489081s (cpu); 0.00483486s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : pdim(module I)
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc)
    │ │ │ + -- used 0.27821s (cpu); 0.167497s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc)
    │ │ │ + -- used 0.0125711s (cpu); 0.0150857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out
    │ │ │ @@ -4,20 +4,20 @@
    │ │ │  
    │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │  
    │ │ │               6      7
    │ │ │  o2 : Matrix R  <-- R
    │ │ │  
    │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ + -- used 0.568918s (cpu); 0.507531s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ + -- used 1.37125s (cpu); 1.25481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : I1 == I2
    │ │ │  
    │ │ │  o5 = true
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out
    │ │ │ @@ -17,44 +17,44 @@
    │ │ │  i6 : S = T/I;
    │ │ │  
    │ │ │  i7 : dim S
    │ │ │  
    │ │ │  o7 = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc)
    │ │ │ + -- used 0.734378s (cpu); 0.588417s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc)
    │ │ │ + -- used 7.07038s (cpu); 5.35834s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : R = QQ[c, f, g, h]/ideal(g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3-f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h-c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c);
    │ │ │  
    │ │ │  i11 : dim(R)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc)
    │ │ │ + -- used 0.0239444s (cpu); 0.0211436s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │  
    │ │ │  i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc)
    │ │ │ + -- used 0.198059s (cpu); 0.150608s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │  
    │ │ │  i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc)
    │ │ │ + -- used 1.05492s (cpu); 0.672474s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc)
    │ │ │ + -- used 1.46998s (cpu); 1.00868s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : time regularInCodimension(2, S, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 327.599 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -386,15 +386,15 @@
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc)
    │ │ │ +internalChooseMinor: Ch -- used 7.64161s (cpu); 5.64553s (thread); 0s (gc)
    │ │ │  oosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -430,15 +430,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 328, and computed = 180
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 1
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 328, and computed = 180.  singular locus dimension appears to be = 1
    │ │ │  
    │ │ │  i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc)
    │ │ │ + -- used 1.61781s (cpu); 1.2258s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -490,59 +490,59 @@
    │ │ │  i18 : StrategyCurrent#Random = 0;
    │ │ │  
    │ │ │  i19 : StrategyCurrent#LexSmallest = 100;
    │ │ │  
    │ │ │  i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │  
    │ │ │  i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc)
    │ │ │ + -- used 0.377725s (cpu); 0.244506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc)
    │ │ │ + -- used 0.146987s (cpu); 0.083492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc)
    │ │ │ + -- used 0.452641s (cpu); 0.318563s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc)
    │ │ │ + -- used 1.94543s (cpu); 1.40704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │  
    │ │ │  i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │  
    │ │ │  i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc)
    │ │ │ + -- used 2.58283s (cpu); 1.8019s (thread); 0s (gc)
    │ │ │  
    │ │ │  i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc)
    │ │ │ + -- used 2.72717s (cpu); 1.8169s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc)
    │ │ │ + -- used 0.477227s (cpu); 0.356693s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │  
    │ │ │  i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc)
    │ │ │ + -- used 0.988081s (cpu); 0.792663s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc)
    │ │ │ + -- used 1.22464s (cpu); 0.967794s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc)
    │ │ │ + -- used 1.98063s (cpu); 1.49924s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │  
    │ │ │  i33 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html
    │ │ │ @@ -620,71 +620,71 @@
    │ │ │          
    │ │ │

    Here the $1$ passed to the function says how many minors to compute. For instance, let's compute 8 minors for each of these strategies and see if that was enough to verify that the ring is regular in codimension 1. In other words, if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/J$ has dimension 3).

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc)
    │ │ │ + -- used 0.219958s (cpu); 0.15362s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │
    │ │ │
    i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc)
    │ │ │ + -- used 0.355877s (cpu); 0.224017s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │
    │ │ │
    i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc)
    │ │ │ + -- used 0.563589s (cpu); 0.360913s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │
    │ │ │
    i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc)
    │ │ │ + -- used 0.288154s (cpu); 0.225162s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │
    │ │ │
    i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc)
    │ │ │ + -- used 0.44032s (cpu); 0.233399s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │
    │ │ │
    i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc)
    │ │ │ + -- used 0.371217s (cpu); 0.239568s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │
    │ │ │
    i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc)
    │ │ │ + -- used 0.345982s (cpu); 0.1988s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │
    │ │ │
    i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc)
    │ │ │ + -- used 17.5223s (cpu); 11.4921s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │
    │ │ │
    │ │ │

    Indeed, in this example, even computing determinants of 1,000 random submatrices is not typically enough to verify that $V(J)$ is regular in codimension 1. On the other hand, Points is almost always quite effective at finding valuable submatrices, but can be quite slow. In this particular example, we can see that LexSmallestTerm also performs very well (and does it quickly). Since different strategies work better or worse on different examples, the default strategy actually mixes and matches various strategies. The default strategy, which we now elucidate,

    │ │ │ @@ -709,15 +709,15 @@ │ │ │
    │ │ │

    says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, LexSmallestTerm, Random, RandomNonzero all with equal probability (note RandomNonzero, which we have not yet discussed chooses random submatrices where no row or column is zero, which is good for working in sparse matrices). For instance, if we run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc)
    │ │ │ + -- used 0.450381s (cpu); 0.378324s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -820,15 +820,15 @@
    │ │ │  
    │ │ │  o42 = true
    │ │ │
    │ │ │
    i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc)
    │ │ │ + -- used 0.745732s (cpu); 0.600893s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │
    │ │ │
    i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │ @@ -852,15 +852,15 @@
    │ │ │  
    │ │ │  o45 = false
    │ │ │
    │ │ │
    i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc)
    │ │ │ + -- used 0.4884s (cpu); 0.419871s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │
    │ │ │
    │ │ │

    Other options may also be passed to the RandomPoints package via the PointOptions option.

    │ │ │ @@ -868,69 +868,69 @@ │ │ │
    │ │ │

    regularInCodimension: It is reasonable to think that you should find a few minors (with one strategy or another), and see if perhaps the minors you have computed so far are enough to verify our ring is regular in codimension 1. This is exactly what regularInCodimension does. One can control at a fine level how frequently new minors are computed, and how frequently the dimension of what we have computed so far is checked, by the option codimCheckFunction. For more on that, see RegularInCodimensionTutorial and regularInCodimension. Let us finish running regularInCodimension on our example with several different strategies.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc)
    │ │ │ + -- used 3.98407s (cpu); 3.53959s (thread); 0s (gc) │ │ │
    │ │ │
    i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc)
    │ │ │ + -- used 0.864416s (cpu); 0.729779s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │
    │ │ │
    i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc)
    │ │ │ + -- used 3.24659s (cpu); 3.02979s (thread); 0s (gc) │ │ │
    │ │ │
    i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc)
    │ │ │ + -- used 2.75203s (cpu); 2.24497s (thread); 0s (gc) │ │ │
    │ │ │
    i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc)
    │ │ │ + -- used 0.87716s (cpu); 0.815091s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │
    │ │ │
    i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc)
    │ │ │ + -- used 3.06605s (cpu); 2.51926s (thread); 0s (gc) │ │ │
    │ │ │
    i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc)
    │ │ │ + -- used 3.56947s (cpu); 3.07165s (thread); 0s (gc) │ │ │
    │ │ │
    i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc)
    │ │ │ + -- used 10.7366s (cpu); 8.87559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │
    │ │ │
    i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc)
    │ │ │ + -- used 7.98092s (cpu); 6.59218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │
    │ │ │
    │ │ │

    If regularInCodimension outputs nothing, then it couldn't verify that the ring was regular in that codimension. We set MaxMinors => 100 to keep it from running too long with an ineffective strategy. Again, even though GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular example, in others they perform better than other strategies. Note similar considerations also apply to projDim.

    │ │ │ ├── html2text {} │ │ │ │ @@ -486,44 +486,44 @@ │ │ │ │ o27 : Ideal of S │ │ │ │ Here the $1$ passed to the function says how many minors to compute. For │ │ │ │ instance, let's compute 8 minors for each of these strategies and see if that │ │ │ │ was enough to verify that the ring is regular in codimension 1. In other words, │ │ │ │ if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/ │ │ │ │ J$ has dimension 3). │ │ │ │ i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random)) │ │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc) │ │ │ │ + -- used 0.219958s (cpu); 0.15362s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 2 │ │ │ │ i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest)) │ │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc) │ │ │ │ + -- used 0.355877s (cpu); 0.224017s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = 3 │ │ │ │ i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm)) │ │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc) │ │ │ │ + -- used 0.563589s (cpu); 0.360913s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 1 │ │ │ │ i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest)) │ │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc) │ │ │ │ + -- used 0.288154s (cpu); 0.225162s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 2 │ │ │ │ i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest)) │ │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc) │ │ │ │ + -- used 0.44032s (cpu); 0.233399s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = 3 │ │ │ │ i33 : time dim (J + chooseGoodMinors(8, 6, M, J, │ │ │ │ Strategy=>GRevLexSmallestTerm)) │ │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc) │ │ │ │ + -- used 0.371217s (cpu); 0.239568s (thread); 0s (gc) │ │ │ │ │ │ │ │ o33 = 3 │ │ │ │ i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest)) │ │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc) │ │ │ │ + -- used 0.345982s (cpu); 0.1988s (thread); 0s (gc) │ │ │ │ │ │ │ │ o34 = 3 │ │ │ │ i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points)) │ │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc) │ │ │ │ + -- used 17.5223s (cpu); 11.4921s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 1 │ │ │ │ Indeed, in this example, even computing determinants of 1,000 random │ │ │ │ submatrices is not typically enough to verify that $V(J)$ is regular in │ │ │ │ codimension 1. On the other hand, Points is almost always quite effective at │ │ │ │ finding valuable submatrices, but can be quite slow. In this particular │ │ │ │ example, we can see that LexSmallestTerm also performs very well (and does it │ │ │ │ @@ -544,15 +544,15 @@ │ │ │ │ says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, │ │ │ │ LexSmallestTerm, Random, RandomNonzero all with equal probability (note │ │ │ │ RandomNonzero, which we have not yet discussed chooses random submatrices where │ │ │ │ no row or column is zero, which is good for working in sparse matrices). For │ │ │ │ instance, if we run: │ │ │ │ i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, │ │ │ │ Verbose=>true); │ │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc) │ │ │ │ + -- used 0.450381s (cpu); 0.378324s (thread); 0s (gc) │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ @@ -633,15 +633,15 @@ │ │ │ │ i41 : ptsStratGeometric = new OptionTable from (options │ │ │ │ chooseGoodMinors)#PointOptions; │ │ │ │ i42 : ptsStratGeometric#ExtendField --look at the default value │ │ │ │ │ │ │ │ o42 = true │ │ │ │ i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratGeometric)) │ │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc) │ │ │ │ + -- used 0.745732s (cpu); 0.600893s (thread); 0s (gc) │ │ │ │ │ │ │ │ o43 = 2 │ │ │ │ i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that │ │ │ │ value │ │ │ │ │ │ │ │ o44 = OptionTable{DecompositionStrategy => Decompose} │ │ │ │ DimensionFunction => dim │ │ │ │ @@ -655,58 +655,58 @@ │ │ │ │ │ │ │ │ o44 : OptionTable │ │ │ │ i45 : ptsStratRational.ExtendField --look at our changed value │ │ │ │ │ │ │ │ o45 = false │ │ │ │ i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratRational)) │ │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc) │ │ │ │ + -- used 0.4884s (cpu); 0.419871s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = 2 │ │ │ │ Other options may also be passed to the _R_a_n_d_o_m_P_o_i_n_t_s package via the │ │ │ │ _P_o_i_n_t_O_p_t_i_o_n_s option. │ │ │ │ rreegguullaarrIInnCCooddiimmeennssiioonn:: It is reasonable to think that you should find a few │ │ │ │ minors (with one strategy or another), and see if perhaps the minors you have │ │ │ │ computed so far are enough to verify our ring is regular in codimension 1. This │ │ │ │ is exactly what regularInCodimension does. One can control at a fine level how │ │ │ │ frequently new minors are computed, and how frequently the dimension of what we │ │ │ │ have computed so far is checked, by the option codimCheckFunction. For more on │ │ │ │ that, see _R_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n_T_u_t_o_r_i_a_l and _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n. Let us finish │ │ │ │ running regularInCodimension on our example with several different strategies. │ │ │ │ i47 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefault) │ │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc) │ │ │ │ + -- used 3.98407s (cpu); 3.53959s (thread); 0s (gc) │ │ │ │ i48 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultNonRandom) │ │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc) │ │ │ │ + -- used 0.864416s (cpu); 0.729779s (thread); 0s (gc) │ │ │ │ │ │ │ │ o48 = true │ │ │ │ i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random) │ │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc) │ │ │ │ + -- used 3.24659s (cpu); 3.02979s (thread); 0s (gc) │ │ │ │ i50 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallest) │ │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc) │ │ │ │ + -- used 2.75203s (cpu); 2.24497s (thread); 0s (gc) │ │ │ │ i51 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallestTerm) │ │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc) │ │ │ │ + -- used 0.87716s (cpu); 0.815091s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = true │ │ │ │ i52 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallest) │ │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc) │ │ │ │ + -- used 3.06605s (cpu); 2.51926s (thread); 0s (gc) │ │ │ │ i53 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallestTerm) │ │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc) │ │ │ │ + -- used 3.56947s (cpu); 3.07165s (thread); 0s (gc) │ │ │ │ i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points) │ │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc) │ │ │ │ + -- used 10.7366s (cpu); 8.87559s (thread); 0s (gc) │ │ │ │ │ │ │ │ o54 = true │ │ │ │ i55 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultWithPoints) │ │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc) │ │ │ │ + -- used 7.98092s (cpu); 6.59218s (thread); 0s (gc) │ │ │ │ │ │ │ │ o55 = true │ │ │ │ If regularInCodimension outputs nothing, then it couldn't verify that the ring │ │ │ │ was regular in that codimension. We set MaxMinors => 100 to keep it from │ │ │ │ running too long with an ineffective strategy. Again, even though │ │ │ │ GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular │ │ │ │ example, in others they perform better than other strategies. Note similar │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ @@ -81,23 +81,23 @@ │ │ │
    │ │ │

    It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have embedded it with a Segre embedding inside $P^8$. In particular, this example is even regular in codimension 3.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ + -- used 1.12832s (cpu); 0.759775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ + -- used 11.8543s (cpu); 8.52938s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the ideal made up of a small number of minors of the Jacobian matrix. In this example, instead of computing all relevant 1465128 minors to compute the singular locus, and then trying to compute the dimension of the ideal they generate, we instead compute a few of them. regularInCodimension returns true if it verified that the ring is regular in codim 1 or 2 (respectively) and null if not. Because of the randomness that exists in terms of selecting minors, the execution time can actually vary quite a bit. Let's take a look at what is occurring by using the Verbose option. We go through the output and explain what each line is telling us.

    │ │ │
    │ │ │ │ │ │ @@ -172,29 +172,29 @@ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 49, and computed = 39 │ │ │ regularInCodimension: singularLocus dimension verified by isCodimAtLeast │ │ │ regularInCodimension: partial singular locus dimension computed, = 2 │ │ │ -regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.43458s (cpu); 1.01606s (thread); 0s (gc) │ │ │ +regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.60919s (cpu); 1.15948s (thread); 0s (gc) │ │ │ d = 39. singular locus dimension appears to be = 2 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    MaxMinors. The first output says that we will compute up to 452.9 minors before giving up. We can control that by setting the option MaxMinors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ + -- used 0.230667s (cpu); 0.176996s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │          
    │ │ │

    Selecting submatrices of the Jacobian. We also see output like: ``Choosing LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a given submatrix. For instance, we can run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ + -- used 0.171312s (cpu); 0.117678s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │          
    │ │ │

    Computing minors vs considering the dimension of what has been computed. Periodically we compute the codimension of the partial ideal of minors we have computed so far. There are two options to control this. First, we can tell the function when to first compute the dimension of the working partial ideal of minors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ + -- used 0.661642s (cpu); 0.487505s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -291,15 +291,15 @@
    │ │ │          
    │ │ │

    CodimCheckFunction. The option CodimCheckFunction controls how frequently the dimension of the partial ideal of minors is computed. For instance, setting CodimCheckFunction => t -> t/5 will say it should compute dimension after every 5 minors are examined. In general, after the output of the CodimCheckFunction increases by an integer we compute the codimension again. The default function has the space between computations grow exponentially.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ + -- used 0.754931s (cpu); 0.540222s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -348,15 +348,15 @@
    │ │ │          
    │ │ │

    isCodimAtLeast and dim. We see the lines about the ``isCodimAtLeast failed''. This means that isCodimAtLeast was not enough on its own to verify that our ring is regular in codimension 1. After this, ``partial singular locus dimension computed'' indicates we did a complete dimension computation of the partial ideal defining the singular locus. How isCodimAtLeast is called can be controlled via the options SPairsFunction and PairLimit, which are simply passed to isCodimAtLeast. You can force the function to only use isCodimAtLeast and not call dimension by setting UseOnlyFastCodim => true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ + -- used 0.493336s (cpu); 0.327536s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,19 +24,19 @@
    │ │ │ │  i3 : dim (S/J)
    │ │ │ │  
    │ │ │ │  o3 = 4
    │ │ │ │  It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have
    │ │ │ │  embedded it with a Segre embedding inside $P^8$. In particular, this example is
    │ │ │ │  even regular in codimension 3.
    │ │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ │ + -- used 1.12832s (cpu); 0.759775s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ │ + -- used 11.8543s (cpu); 8.52938s (thread); 0s (gc)
    │ │ │ │  We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the
    │ │ │ │  ideal made up of a small number of minors of the Jacobian matrix. In this
    │ │ │ │  example, instead of computing all relevant 1465128 minors to compute the
    │ │ │ │  singular locus, and then trying to compute the dimension of the ideal they
    │ │ │ │  generate, we instead compute a few of them. regularInCodimension returns true
    │ │ │ │  if it verified that the ring is regular in codim 1 or 2 (respectively) and null
    │ │ │ │  if not. Because of the randomness that exists in terms of selecting minors, the
    │ │ │ │ @@ -121,22 +121,22 @@
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 49, and computed = 39
    │ │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ │  regularInCodimension:  Loop completed, submatrices considered = 49, and compute
    │ │ │ │ --- used 1.43458s (cpu); 1.01606s (thread); 0s (gc)
    │ │ │ │ +-- used 1.60919s (cpu); 1.15948s (thread); 0s (gc)
    │ │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  MMaaxxMMiinnoorrss.. The first output says that we will compute up to 452.9 minors before
    │ │ │ │  giving up. We can control that by setting the option MaxMinors.
    │ │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ │ + -- used 0.230667s (cpu); 0.176996s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -159,15 +159,15 @@
    │ │ │ │  There are other finer ways to control the MaxMinors option, but they will not
    │ │ │ │  be discussed in this tutorial. See _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n.
    │ │ │ │  SSeelleeccttiinngg ssuubbmmaattrriicceess ooff tthhee JJaaccoobbiiaann.. We also see output like: ``Choosing
    │ │ │ │  LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a
    │ │ │ │  given submatrix. For instance, we can run:
    │ │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom,
    │ │ │ │  Verbose=>true)
    │ │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ │ + -- used 0.171312s (cpu); 0.117678s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -197,15 +197,15 @@
    │ │ │ │  CCoommppuuttiinngg mmiinnoorrss vvss ccoonnssiiddeerriinngg tthhee ddiimmeennssiioonn ooff wwhhaatt hhaass bbeeeenn ccoommppuutteedd..
    │ │ │ │  Periodically we compute the codimension of the partial ideal of minors we have
    │ │ │ │  computed so far. There are two options to control this. First, we can tell the
    │ │ │ │  function when to first compute the dimension of the working partial ideal of
    │ │ │ │  minors.
    │ │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t-
    │ │ │ │  >3, Verbose=>true)
    │ │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ │ + -- used 0.661642s (cpu); 0.487505s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │ @@ -243,15 +243,15 @@
    │ │ │ │  dimension of the partial ideal of minors is computed. For instance, setting
    │ │ │ │  CodimCheckFunction => t -> t/5 will say it should compute dimension after every
    │ │ │ │  5 minors are examined. In general, after the output of the CodimCheckFunction
    │ │ │ │  increases by an integer we compute the codimension again. The default function
    │ │ │ │  has the space between computations grow exponentially.
    │ │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t-
    │ │ │ │  >t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ │ + -- used 0.754931s (cpu); 0.540222s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 2, and computed = 2
    │ │ │ │ @@ -308,15 +308,15 @@
    │ │ │ │  dimension computed'' indicates we did a complete dimension computation of the
    │ │ │ │  partial ideal defining the singular locus. How isCodimAtLeast is called can be
    │ │ │ │  controlled via the options SPairsFunction and PairLimit, which are simply
    │ │ │ │  passed to _i_s_C_o_d_i_m_A_t_L_e_a_s_t. You can force the function to only use isCodimAtLeast
    │ │ │ │  and not call dimension by setting UseOnlyFastCodim => true.
    │ │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim =>
    │ │ │ │  true, Verbose=>true)
    │ │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ │ + -- used 0.493336s (cpu); 0.327536s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │              
    │ │ │
    i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │
    │ │ │
    i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.73127s elapsed
    │ │ │ + -- 1.44643s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │
    │ │ │ In this particular example, on one machine, we list average time to completion of each of the above strategies after 100 runs.
      │ │ │
    • StrategyDefault: 1.65 seconds
    • │ │ │ @@ -122,15 +122,15 @@ │ │ │
    • StrategyPoints: choose all submatrices via Points.
    • │ │ │
    • StrategyDefaultWithPoints: like StrategyDefault but replaces the Random and RandomNonZero submatrices as with matrices chosen as in Points.
    • │ │ │
    │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It begins as the default strategy, but the user can modify it.

    Using a single heuristic Alternatively, if the user only wants to use say LexSmallestTerm they can set, Strategy to point to that symbol, instead of a creating a custom strategy HashTable. For example: │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.19064s elapsed
    │ │ │ + -- .860053s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e- │ │ │ │ b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g- │ │ │ │ e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f- │ │ │ │ a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2- │ │ │ │ g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3- │ │ │ │ h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2); │ │ │ │ i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault) │ │ │ │ - -- 1.73127s elapsed │ │ │ │ + -- 1.44643s elapsed │ │ │ │ │ │ │ │ o2 = true │ │ │ │ In this particular example, on one machine, we list average time to completion │ │ │ │ of each of the above strategies after 100 runs. │ │ │ │ * StrategyDefault: 1.65 seconds │ │ │ │ * StrategyRandom: 8.32 seconds │ │ │ │ * StrategyDefaultNonRandom: 0.99 seconds │ │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It │ │ │ │ begins as the default strategy, but the user can modify it. │ │ │ │ │ │ │ │ UUssiinngg aa ssiinnggllee hheeuurriissttiicc Alternatively, if the user only wants to use say │ │ │ │ LexSmallestTerm they can set, Strategy to point to that symbol, instead of a │ │ │ │ creating a custom strategy HashTable. For example: │ │ │ │ i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm) │ │ │ │ - -- 1.19064s elapsed │ │ │ │ + -- .860053s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _S_t_r_a_t_e_g_y_D_e_f_a_u_l_t is an _o_p_t_i_o_n_ _t_a_b_l_e. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/FastMinors.m2:1993:0. │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc)
    │ │ │ + -- used 0.00405033s (cpu); 0.00532349s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by computing gb(I, PairLimit=>f(i)) for successive values of i. Here f(i) is a function that takes t, some approximation of the base degree value of the polynomial ring (for example, in a standard graded polynomial ring, this is probably expected to be \{1\}). And i is a counting variable. You can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=>( (i) -> f(i) ), the default function is SPairsFunction=>i->ceiling(1.5^i) Perhaps more commonly however, the user may want to instead tell the function to compute for larger values of i. This is done via the option PairLimit. This is the max value of i to be plugged into SPairsFunction before the function gives up. In other words, PairLimit=>5 will tell the function to check codimension 5 times.

    │ │ │ @@ -136,24 +136,24 @@ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7
    │ │ │
    │ │ │
    i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc)
    │ │ │ + -- used 0.00396225s (cpu); 0.00510562s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc)
    │ │ │ + -- used 0.00489081s (cpu); 0.00483486s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    │ │ │
    │ │ │

    Notice in the first case the function returned null, because the depth of search was not high enough. It only computed codim 5 times. The second returned true, but it did so as soon as the answer was found (and before we hit the PairLimit limit).

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ 30 12 │ │ │ │ o4 : Matrix R <-- R │ │ │ │ i5 : r = rank myDiff; │ │ │ │ i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom); │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : time isCodimAtLeast(3, J) │ │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc) │ │ │ │ + -- used 0.00405033s (cpu); 0.00532349s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = true │ │ │ │ The function works by computing gb(I, PairLimit=>f(i)) for successive values of │ │ │ │ i. Here f(i) is a function that takes t, some approximation of the base degree │ │ │ │ value of the polynomial ring (for example, in a standard graded polynomial │ │ │ │ ring, this is probably expected to be \{1\}). And i is a counting variable. You │ │ │ │ can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=> │ │ │ │ @@ -72,20 +72,20 @@ │ │ │ │ x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3- │ │ │ │ 3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7 │ │ │ │ i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true) │ │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc) │ │ │ │ + -- used 0.00396225s (cpu); 0.00510562s (thread); 0s (gc) │ │ │ │ isCodimAtLeast: Computing codim of monomials based on ideal generators. │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false) │ │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc) │ │ │ │ + -- used 0.00489081s (cpu); 0.00483486s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = true │ │ │ │ Notice in the first case the function returned null, because the depth of │ │ │ │ search was not high enough. It only computed codim 5 times. The second returned │ │ │ │ true, but it did so as soon as the answer was found (and before we hit the │ │ │ │ PairLimit limit). │ │ │ │ ********** WWaayyss ttoo uussee iissCCooddiimmAAttLLeeaasstt:: ********** │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ @@ -99,23 +99,23 @@ │ │ │ │ │ │ o3 = 2
    │ │ │
    │ │ │
    i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc)
    │ │ │ + -- used 0.27821s (cpu); 0.167497s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc)
    │ │ │ + -- used 0.0125711s (cpu); 0.0150857s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    │ │ │

    The option MaxMinors can be used to control how many minors are computed at each step. If this is not specified, the number of minors is a function of the dimension $d$ of the polynomial ring and the possible minors $c$. Specifically it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors => ZZ to specify that a fixed integer is used for each step. Alternatively, the user can control the number of minors computed at each step by setting the option MaxMinors => List. In this case, the list specifies how many minors to be computed at each step, (working backwards). Finally, you can also set MaxMinors to be a custom function of the dimension $d$ of the polynomial ring and the maximum number of minors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ i2 : I = ideal((x^3+y)^2, (x^2+y^2)^2, (x+y^3)^2, (x*y)^2); │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : pdim(module I) │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : time projDim(module I, Strategy=>StrategyRandom) │ │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc) │ │ │ │ + -- used 0.27821s (cpu); 0.167497s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 1 │ │ │ │ i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1) │ │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc) │ │ │ │ + -- used 0.0125711s (cpu); 0.0150857s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ The option MaxMinors can be used to control how many minors are computed at │ │ │ │ each step. If this is not specified, the number of minors is a function of the │ │ │ │ dimension $d$ of the polynomial ring and the possible minors $c$. Specifically │ │ │ │ it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors │ │ │ │ => ZZ to specify that a fixed integer is used for each step. Alternatively, the │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ 6 7 │ │ │ o2 : Matrix R <-- R
    │ │ │
    │ │ │
    i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ + -- used 0.568918s (cpu); 0.507531s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ + -- used 1.37125s (cpu); 1.25481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : I1 == I2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  strategy for minors
    │ │ │ │  i1 : R = QQ[x,y];
    │ │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │ │  
    │ │ │ │               6      7
    │ │ │ │  o2 : Matrix R  <-- R
    │ │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ │ + -- used 0.568918s (cpu); 0.507531s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 : Ideal of R
    │ │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ │ + -- used 1.37125s (cpu); 1.25481s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : I1 == I2
    │ │ │ │  
    │ │ │ │  o5 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _m_i_n_o_r_s -- ideal generated by minors
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html
    │ │ │ @@ -131,23 +131,23 @@
    │ │ │  
    │ │ │  o7 = 3
    │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc)
    │ │ │ + -- used 0.734378s (cpu); 0.588417s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc)
    │ │ │ + -- used 7.07038s (cpu); 5.35834s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    There are numerous examples where regularInCodimension is several orders of magnitude faster that calls of dim singularLocus.

    │ │ │
    │ │ │
    │ │ │ @@ -165,39 +165,39 @@ │ │ │ │ │ │ o11 = 2
    │ │ │
    │ │ │
    i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc)
    │ │ │ + -- used 0.0239444s (cpu); 0.0211436s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │
    │ │ │
    i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc)
    │ │ │ + -- used 0.198059s (cpu); 0.150608s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │
    │ │ │
    i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc)
    │ │ │ + -- used 1.05492s (cpu); 0.672474s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │
    │ │ │
    i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc)
    │ │ │ + -- used 1.46998s (cpu); 1.00868s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by choosing interesting looking submatrices, computing their determinants, and periodically (based on a logarithmic growth setting), computing the dimension of a subideal of the Jacobian. The option Verbose can be used to see this in action.

    │ │ │ @@ -537,15 +537,15 @@ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc) │ │ │ +internalChooseMinor: Ch -- used 7.64161s (cpu); 5.64553s (thread); 0s (gc) │ │ │ oosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ @@ -589,15 +589,15 @@ │ │ │
    │ │ │

    The maximum number of minors considered can be controlled by the option MaxMinors. Alternatively, it can be controlled in a more precise way by passing a function to the option MaxMinors. This function should have two inputs; the first is minimum number of minors needed to determine whether the ring is regular in codimension n, and the second is the total number of minors available in the Jacobian. The function regularInCodimension does not recompute determinants, so MaxMinors or is only an upper bound on the number of minors computed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc)
    │ │ │ + -- used 1.61781s (cpu); 1.2258s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -666,39 +666,39 @@
    │ │ │              
    │ │ │
    i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │
    │ │ │
    i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc)
    │ │ │ + -- used 0.377725s (cpu); 0.244506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc)
    │ │ │ + -- used 0.146987s (cpu); 0.083492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │
    │ │ │
    i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc)
    │ │ │ + -- used 0.452641s (cpu); 0.318563s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc)
    │ │ │ + -- used 1.94543s (cpu); 1.40704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │ @@ -708,53 +708,53 @@ │ │ │
    │ │ │
    i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │
    │ │ │
    i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc)
    │ │ │ + -- used 2.58283s (cpu); 1.8019s (thread); 0s (gc) │ │ │
    │ │ │
    i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc)
    │ │ │ + -- used 2.72717s (cpu); 1.8169s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │
    │ │ │
    i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc)
    │ │ │ + -- used 0.477227s (cpu); 0.356693s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │
    │ │ │
    i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc)
    │ │ │ + -- used 0.988081s (cpu); 0.792663s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │
    │ │ │
    i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc)
    │ │ │ + -- used 1.22464s (cpu); 0.967794s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │
    │ │ │
    i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc)
    │ │ │ + -- used 1.98063s (cpu); 1.49924s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │
    │ │ │
    │ │ │

    The minimum number of minors computed before checking the codimension can also be controlled by an option MinMinorsFunction. This is should be a function of a single variable, the number of minors computed. Finally, via the option CodimCheckFunction, you can pass the regularInCodimension a function which controls how frequently the codimension of the partial Jacobian ideal is computed. By default this is the floor of 1.3^k. Finally, passing the option Modulus => p will do the computation after changing the coefficient ring to ZZ/p.

    │ │ │ ├── html2text {} │ │ │ │ @@ -72,19 +72,19 @@ │ │ │ │ │ │ │ │ o5 : Ideal of T │ │ │ │ i6 : S = T/I; │ │ │ │ i7 : dim S │ │ │ │ │ │ │ │ o7 = 3 │ │ │ │ i8 : time regularInCodimension(1, S) │ │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc) │ │ │ │ + -- used 0.734378s (cpu); 0.588417s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : time regularInCodimension(2, S) │ │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc) │ │ │ │ + -- used 7.07038s (cpu); 5.35834s (thread); 0s (gc) │ │ │ │ There are numerous examples where regularInCodimension is several orders of │ │ │ │ magnitude faster that calls of dim singularLocus. │ │ │ │ The following is a (pruned) affine chart on an Abelian surface obtained as a │ │ │ │ product of two elliptic curves. It is nonsingular, as our function verifies. If │ │ │ │ one does not prune it, then the dim singularLocus call takes an enormous amount │ │ │ │ of time, otherwise the running times of dim singularLocus and our function are │ │ │ │ frequently about the same. │ │ │ │ @@ -92,27 +92,27 @@ │ │ │ │ (g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3- │ │ │ │ f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h- │ │ │ │ c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c); │ │ │ │ i11 : dim(R) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ i12 : time (dim singularLocus (R)) │ │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc) │ │ │ │ + -- used 0.0239444s (cpu); 0.0211436s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = -1 │ │ │ │ i13 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc) │ │ │ │ + -- used 0.198059s (cpu); 0.150608s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = true │ │ │ │ i14 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc) │ │ │ │ + -- used 1.05492s (cpu); 0.672474s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : time regularInCodimension(2, R) │ │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc) │ │ │ │ + -- used 1.46998s (cpu); 1.00868s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = true │ │ │ │ The function works by choosing interesting looking submatrices, computing their │ │ │ │ determinants, and periodically (based on a logarithmic growth setting), │ │ │ │ computing the dimension of a subideal of the Jacobian. The option Verbose can │ │ │ │ be used to see this in action. │ │ │ │ i16 : time regularInCodimension(2, S, Verbose=>true) │ │ │ │ @@ -461,15 +461,15 @@ │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc) │ │ │ │ +internalChooseMinor: Ch -- used 7.64161s (cpu); 5.64553s (thread); 0s (gc) │ │ │ │ oosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ @@ -515,15 +515,15 @@ │ │ │ │ a function to the option MaxMinors. This function should have two inputs; the │ │ │ │ first is minimum number of minors needed to determine whether the ring is │ │ │ │ regular in codimension n, and the second is the total number of minors │ │ │ │ available in the Jacobian. The function regularInCodimension does not recompute │ │ │ │ determinants, so MaxMinors or is only an upper bound on the number of minors │ │ │ │ computed. │ │ │ │ i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30) │ │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc) │ │ │ │ + -- used 1.61781s (cpu); 1.2258s (thread); 0s (gc) │ │ │ │ regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 │ │ │ │ minors, we will compute up to 30 of them. │ │ │ │ regularInCodimension: About to enter loop │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ @@ -590,51 +590,51 @@ │ │ │ │ because there are a small number of entries with nonzero constant terms, which │ │ │ │ are selected repeatedly). However, in our first example, the LexSmallestTerm is │ │ │ │ much faster, and Random does not perform well at all. │ │ │ │ i18 : StrategyCurrent#Random = 0; │ │ │ │ i19 : StrategyCurrent#LexSmallest = 100; │ │ │ │ i20 : StrategyCurrent#LexSmallestTerm = 0; │ │ │ │ i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc) │ │ │ │ + -- used 0.377725s (cpu); 0.244506s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc) │ │ │ │ + -- used 0.146987s (cpu); 0.083492s (thread); 0s (gc) │ │ │ │ │ │ │ │ o22 = true │ │ │ │ i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc) │ │ │ │ + -- used 0.452641s (cpu); 0.318563s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc) │ │ │ │ + -- used 1.94543s (cpu); 1.40704s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ i25 : StrategyCurrent#LexSmallest = 0; │ │ │ │ i26 : StrategyCurrent#LexSmallestTerm = 100; │ │ │ │ i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc) │ │ │ │ + -- used 2.58283s (cpu); 1.8019s (thread); 0s (gc) │ │ │ │ i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc) │ │ │ │ + -- used 2.72717s (cpu); 1.8169s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc) │ │ │ │ + -- used 0.477227s (cpu); 0.356693s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = true │ │ │ │ i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc) │ │ │ │ + -- used 0.988081s (cpu); 0.792663s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc) │ │ │ │ + -- used 1.22464s (cpu); 0.967794s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc) │ │ │ │ + -- used 1.98063s (cpu); 1.49924s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = true │ │ │ │ The minimum number of minors computed before checking the codimension can also │ │ │ │ be controlled by an option MinMinorsFunction. This is should be a function of a │ │ │ │ single variable, the number of minors computed. Finally, via the option │ │ │ │ CodimCheckFunction, you can pass the regularInCodimension a function which │ │ │ │ controls how frequently the codimension of the partial Jacobian ideal is │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ @@ -81,23 +81,23 @@ │ │ │ │ │ │ i14 : K3=nextDegree(gens ker Q2,2,S); │ │ │ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R │ │ │ │ │ │ i15 : time I=co1Fitting(K3) │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc) │ │ │ + -- used 0.00288562s (cpu); 0.00288218s (thread); 0s (gc) │ │ │ │ │ │ o15 = ideal (a a + a - a , a a - a , a a + a - a , a a - a ) │ │ │ 9 11 5 12 3 11 6 9 10 4 11 3 10 5 │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ │ │ i16 : time J=fittingIdeal(2-1,coker K3); │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc) │ │ │ + -- used 0.00652464s (cpu); 0.0065296s (thread); 0s (gc) │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ │ │ i17 : I==J │ │ │ │ │ │ o17 = true │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ @@ -202,26 +202,26 @@ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R
    │ │ │
    │ │ │
    i15 : time I=co1Fitting(K3)
    │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc)
    │ │ │ + -- used 0.00288562s (cpu); 0.00288218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │  
    │ │ │  o15 : Ideal of R
    │ │ │
    │ │ │
    i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc)
    │ │ │ + -- used 0.00652464s (cpu); 0.0065296s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │
    │ │ │
    i17 : I==J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -95,22 +95,22 @@
    │ │ │ │                2      6
    │ │ │ │  o13 : Matrix R  <-- R
    │ │ │ │  i14 : K3=nextDegree(gens ker Q2,2,S);
    │ │ │ │  
    │ │ │ │                8      8
    │ │ │ │  o14 : Matrix R  <-- R
    │ │ │ │  i15 : time I=co1Fitting(K3)
    │ │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00288562s (cpu); 0.00288218s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00652464s (cpu); 0.0065296s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : I==J
    │ │ │ │  
    │ │ │ │  o17 = true
    │ │ │ │  Note that our method is a bit faster for this small example, and for rank 2
    │ │ │ │  quotients of S^3=\mathbb{Z}[x,y]^3 the time difference is massive.
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Object.out
    │ │ │ @@ -4,19 +4,19 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285265f0}
    │ │ │ +o2 = int32{Address => 0x7f44129bc560}
    │ │ │  
    │ │ │  i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285265f0
    │ │ │ +o3 = 0x7f44129bc560
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : class x
    │ │ │  
    │ │ │  o4 = int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  
    │ │ │  o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog}
    │ │ │  
    │ │ │  o2 : ForeignObject of type char**
    │ │ │  
    │ │ │  i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010}
    │ │ │ +o3 = {0x7f4412a030a0, 0x7f4412a03090, 0x7f4412a03080}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │  
    │ │ │  i4 : x = charstarstar {"foo", "bar", "baz"}
    │ │ │  
    │ │ │  o4 = {foo, bar, baz}
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type_sp__Visible__List.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {foo, bar}
    │ │ │  
    │ │ │  o1 : ForeignObject of type char**
    │ │ │  
    │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ +o2 = {0x7f4412a4bee0, 0x7f4412a4bed0, 0x7f4412a4bec0}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │  
    │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │  
    │ │ │  o3 = int32[2]*
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Type_sp__Pointer.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730835169888399450
    │ │ │  
    │ │ │  i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7f7f1f69e700
    │ │ │ +o1 = 0x7f44151686f0
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7f7f1f69e700
    │ │ │ +o2 = 0x7f44151686f0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Pointer.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ +o2 = 0x7f44129bc730
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : int ptr
    │ │ │  
    │ │ │  o3 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp_st_spvoidstar.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1731230829183683930
    │ │ │  
    │ │ │  i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ +o1 = 0x7f4412a03b60
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : int * ptr
    │ │ │  
    │ │ │  o2 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = myunion
    │ │ │  
    │ │ │  o1 : ForeignUnionType
    │ │ │  
    │ │ │  i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.92598e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.91346e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │  
    │ │ │  i3 : myunion pi
    │ │ │  
    │ │ │  o3 = HashTable{"bar" => 3.14159   }
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Pointer.out
    │ │ │ @@ -4,28 +4,28 @@
    │ │ │  
    │ │ │  o1 = 20
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285264f0}
    │ │ │ +o2 = int32{Address => 0x7f44129bc5a0}
    │ │ │  
    │ │ │  i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285264f0
    │ │ │ +o3 = 0x7f44129bc5a0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7f7f285264f5
    │ │ │ +o4 = 0x7f44129bc5a5
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │  
    │ │ │  i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7f7f285264ed
    │ │ │ +o5 = 0x7f44129bc59d
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Shared__Library.out
    │ │ │ @@ -4,10 +4,10 @@
    │ │ │  
    │ │ │  o1 = mpfr
    │ │ │  
    │ │ │  o1 : SharedLibrary
    │ │ │  
    │ │ │  i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7f7f2f6e4550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7f4426873550, mpfr}
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/__st_spvoidstar_sp_eq_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f285268c0
    │ │ │ +o2 = 0x7f44129bcb20
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : *ptr = int 6
    │ │ │  
    │ │ │  o3 = 6
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_address.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730181884377373595
    │ │ │  
    │ │ │  i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563c19575b40
    │ │ │ +o1 = 0x55a43bc37b40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526a20
    │ │ │ +o2 = 0x7f44129bc990
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Function.out
    │ │ │ @@ -78,14 +78,14 @@
    │ │ │  
    │ │ │  o16 = free
    │ │ │  
    │ │ │  o16 : ForeignFunction
    │ │ │  
    │ │ │  i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7f443c06a4f0
    │ │ │ +o17 = 0x7f9fd406a4f0
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │  
    │ │ │  i18 : registerFinalizer(x, free)
    │ │ │  
    │ │ │  i19 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_get__Memory.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 10647988412767280310
    │ │ │  
    │ │ │  i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7f7f2b093240
    │ │ │ +o1 = 0x7f44213c1490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7f7f285260a0
    │ │ │ +o2 = 0x7f44129bc230
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7f7f2854afc0
    │ │ │ +o3 = 0x7f44129bc120
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out
    │ │ │ @@ -17,18 +17,18 @@
    │ │ │  o3 = finalizer
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │  
    │ │ │  i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │  
    │ │ │  i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7f7f1407f910
    │ │ │ -freeing memory at 0x7f7f1407f930
    │ │ │ -freeing memory at 0x7f7f1407f950
    │ │ │ -freeing memory at 0x7f7f1407f990
    │ │ │ -freeing memory at 0x7f7f1407f250
    │ │ │ -freeing memory at 0x7f7f1407f230
    │ │ │ -freeing memory at 0x7f7f1407f9b0
    │ │ │ -freeing memory at 0x7f7f1407f970
    │ │ │ -freeing memory at 0x7f7f1407f8f0
    │ │ │ +freeing memory at 0x7f43fc07f250
    │ │ │ +freeing memory at 0x7f43fc07f930
    │ │ │ +freeing memory at 0x7f43fc07f8f0
    │ │ │ +freeing memory at 0x7f43fc07f230
    │ │ │ +freeing memory at 0x7f43fc07f990
    │ │ │ +freeing memory at 0x7f43fc07f970
    │ │ │ +freeing memory at 0x7f43fc07f9b0
    │ │ │ +freeing memory at 0x7f43fc07f910
    │ │ │ +freeing memory at 0x7f43fc07f950
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_value_lp__Foreign__Object_rp.out
    │ │ │ @@ -20,21 +20,21 @@
    │ │ │  
    │ │ │  o4 = 5
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │  
    │ │ │  i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7f7f2854ad20
    │ │ │ +o5 = 0x7f4412a03bb0
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │  
    │ │ │  i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7f7f2854ad20
    │ │ │ +o6 = 0x7f4412a03bb0
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │  
    │ │ │  i7 : x = charstar "Hello, world!"
    │ │ │  
    │ │ │  o7 = Hello, world!
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Object.html
    │ │ │ @@ -64,27 +64,27 @@
    │ │ │  o1 : ForeignObject of type int32
    │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285265f0}
    │ │ │ +o2 = int32{Address => 0x7f44129bc560} │ │ │
    │ │ │
    │ │ │

    To get this, use address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285265f0
    │ │ │ +o3 = 0x7f44129bc560
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Use class to determine the type of the object.

    │ │ │ ├── html2text {} │ │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ i1 : x = int 5 │ │ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f7f285265f0} │ │ │ │ +o2 = int32{Address => 0x7f44129bc560} │ │ │ │ To get this, use _a_d_d_r_e_s_s. │ │ │ │ i3 : address x │ │ │ │ │ │ │ │ -o3 = 0x7f7f285265f0 │ │ │ │ +o3 = 0x7f44129bc560 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Use _c_l_a_s_s to determine the type of the object. │ │ │ │ i4 : class x │ │ │ │ │ │ │ │ o4 = int32 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type.html │ │ │ @@ -74,15 +74,15 @@ │ │ │ o2 : ForeignObject of type char**
    │ │ │
    │ │ │
    i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010}
    │ │ │ +o3 = {0x7f4412a030a0, 0x7f4412a03090, 0x7f4412a03080}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │
    │ │ │
    │ │ │

    Foreign pointer arrays may be subscripted using _.

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ "lazy", "dog"} │ │ │ │ │ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │ │ i3 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010} │ │ │ │ +o3 = {0x7f4412a030a0, 0x7f4412a03090, 0x7f4412a03080} │ │ │ │ │ │ │ │ o3 : ForeignObject of type void** │ │ │ │ Foreign pointer arrays may be subscripted using __. │ │ │ │ i4 : x = charstarstar {"foo", "bar", "baz"} │ │ │ │ │ │ │ │ o4 = {foo, bar, baz} │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type_sp__Visible__List.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type char**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ +o2 = {0x7f4412a4bee0, 0x7f4412a4bed0, 0x7f4412a4bec0}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : charstarstar {"foo", "bar"}
    │ │ │ │  
    │ │ │ │  o1 = {foo, bar}
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type char**
    │ │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │ │  
    │ │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ │ +o2 = {0x7f4412a4bee0, 0x7f4412a4bed0, 0x7f4412a4bec0}
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type void**
    │ │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ │  
    │ │ │ │  o3 = int32[2]*
    │ │ │ │  
    │ │ │ │  o3 : ForeignPointerArrayType
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Type_sp__Pointer.html
    │ │ │ @@ -73,24 +73,24 @@
    │ │ │            

    To cast a Macaulay2 pointer to a foreign object with a pointer type, give the type followed by the pointer.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7f7f1f69e700
    │ │ │ +o1 = 0x7f44151686f0
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7f7f1f69e700
    │ │ │ +o2 = 0x7f44151686f0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,20 +15,20 @@ │ │ │ │ * Outputs: │ │ │ │ o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ To cast a Macaulay2 pointer to a foreign object with a pointer type, give the │ │ │ │ type followed by the pointer. │ │ │ │ i1 : ptr = address int 0 │ │ │ │ │ │ │ │ -o1 = 0x7f7f1f69e700 │ │ │ │ +o1 = 0x7f44151686f0 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ i2 : voidstar ptr │ │ │ │ │ │ │ │ -o2 = 0x7f7f1f69e700 │ │ │ │ +o2 = 0x7f44151686f0 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _F_o_r_e_i_g_n_P_o_i_n_t_e_r_T_y_p_e_ _P_o_i_n_t_e_r -- cast a Macaulay2 pointer to a foreign │ │ │ │ pointer │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Pointer.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ +o2 = 0x7f44129bc730
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  i1 : x = int 5
    │ │ │ │  
    │ │ │ │  o1 = 5
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type int32
    │ │ │ │  i2 : ptr = address x
    │ │ │ │  
    │ │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ │ +o2 = 0x7f44129bc730
    │ │ │ │  
    │ │ │ │  o2 : Pointer
    │ │ │ │  i3 : int ptr
    │ │ │ │  
    │ │ │ │  o3 = 5
    │ │ │ │  
    │ │ │ │  o3 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp_st_spvoidstar.html
    │ │ │ @@ -73,15 +73,15 @@
    │ │ │            

    This is syntactic sugar for T value ptr (see ForeignType Pointer) for dereferencing pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ +o1 = 0x7f4412a03b60
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    i2 : int * ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, of type T;
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This is syntactic sugar for T value ptr (see _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r) for
    │ │ │ │  dereferencing pointers.
    │ │ │ │  i1 : ptr = voidstar address int 5
    │ │ │ │  
    │ │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ │ +o1 = 0x7f4412a03b60
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type void*
    │ │ │ │  i2 : int * ptr
    │ │ │ │  
    │ │ │ │  o2 = 5
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html
    │ │ │ @@ -82,15 +82,15 @@
    │ │ │  o1 : ForeignUnionType
    │ │ │
    │ │ │
    i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.92598e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.91346e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : myunion = foreignUnionType("myunion", {"foo" => int, "bar" => double}) │ │ │ │ │ │ │ │ o1 = myunion │ │ │ │ │ │ │ │ o1 : ForeignUnionType │ │ │ │ i2 : myunion 27 │ │ │ │ │ │ │ │ -o2 = HashTable{"bar" => 6.92598e-310} │ │ │ │ +o2 = HashTable{"bar" => 6.91346e-310} │ │ │ │ "foo" => 27 │ │ │ │ │ │ │ │ o2 : ForeignObject of type myunion │ │ │ │ i3 : myunion pi │ │ │ │ │ │ │ │ o3 = HashTable{"bar" => 3.14159 } │ │ │ │ "foo" => 1413754136 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Pointer.html │ │ │ @@ -64,50 +64,50 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285264f0}
    │ │ │ +o2 = int32{Address => 0x7f44129bc5a0} │ │ │
    │ │ │
    │ │ │

    These pointers can be accessed using address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285264f0
    │ │ │ +o3 = 0x7f44129bc5a0
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Simple arithmetic can be performed on pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7f7f285264f5
    │ │ │ +o4 = 0x7f44129bc5a5
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │
    │ │ │
    i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7f7f285264ed
    │ │ │ +o5 = 0x7f44129bc59d
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,30 +10,30 @@ │ │ │ │ i1 : x = int 20 │ │ │ │ │ │ │ │ o1 = 20 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f7f285264f0} │ │ │ │ +o2 = int32{Address => 0x7f44129bc5a0} │ │ │ │ These pointers can be accessed using _a_d_d_r_e_s_s. │ │ │ │ i3 : ptr = address x │ │ │ │ │ │ │ │ -o3 = 0x7f7f285264f0 │ │ │ │ +o3 = 0x7f44129bc5a0 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Simple arithmetic can be performed on pointers. │ │ │ │ i4 : ptr + 5 │ │ │ │ │ │ │ │ -o4 = 0x7f7f285264f5 │ │ │ │ +o4 = 0x7f44129bc5a5 │ │ │ │ │ │ │ │ o4 : Pointer │ │ │ │ i5 : ptr - 3 │ │ │ │ │ │ │ │ -o5 = 0x7f7f285264ed │ │ │ │ +o5 = 0x7f44129bc59d │ │ │ │ │ │ │ │ o5 : Pointer │ │ │ │ ******** MMeennuu ******** │ │ │ │ * _n_u_l_l_P_o_i_n_t_e_r -- the null pointer │ │ │ │ * _a_d_d_r_e_s_s -- pointer to type or object │ │ │ │ * _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r -- dereference a pointer │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aa ppooiinntteerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Shared__Library.html │ │ │ @@ -64,15 +64,15 @@ │ │ │ o1 : SharedLibrary │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7f7f2f6e4550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7f4426873550, mpfr} │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Menu

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563c19575b40
    │ │ │ +o1 = 0x55a43bc37b40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    │ │ │

    If x is a foreign object, then this returns the address to the object. It behaves like the & "address-of" operator in C.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526a20
    │ │ │ +o2 = 0x7f44129bc990
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,22 +11,22 @@ │ │ │ │ * Outputs: │ │ │ │ o a _p_o_i_n_t_e_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ If x is a foreign type, then this returns the address to the ffi_type struct │ │ │ │ used by libffi to identify the type. │ │ │ │ i1 : address int │ │ │ │ │ │ │ │ -o1 = 0x563c19575b40 │ │ │ │ +o1 = 0x55a43bc37b40 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ If x is a foreign object, then this returns the address to the object. It │ │ │ │ behaves like the & "address-of" operator in C. │ │ │ │ i2 : address int 5 │ │ │ │ │ │ │ │ -o2 = 0x7f7f28526a20 │ │ │ │ +o2 = 0x7f44129bc990 │ │ │ │ │ │ │ │ o2 : Pointer │ │ │ │ ********** WWaayyss ttoo uussee aaddddrreessss:: ********** │ │ │ │ * address(ForeignObject) │ │ │ │ * address(ForeignType) │ │ │ │ * address(Nothing) (missing documentation) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_foreign__Function.html │ │ │ @@ -232,15 +232,15 @@ │ │ │ o16 : ForeignFunction │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7f443c06a4f0
    │ │ │ +o17 = 0x7f9fd406a4f0
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : registerFinalizer(x, free)
    │ │ │ ├── html2text {} │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ i16 : free = foreignFunction("free", void, voidstar) │ │ │ │ │ │ │ │ o16 = free │ │ │ │ │ │ │ │ o16 : ForeignFunction │ │ │ │ i17 : x = malloc 8 │ │ │ │ │ │ │ │ -o17 = 0x7f443c06a4f0 │ │ │ │ +o17 = 0x7f9fd406a4f0 │ │ │ │ │ │ │ │ o17 : ForeignObject of type void* │ │ │ │ i18 : registerFinalizer(x, free) │ │ │ │ ********** WWaayyss ttoo uussee ffoorreeiiggnnFFuunnccttiioonn:: ********** │ │ │ │ * foreignFunction(Pointer,String,ForeignType,VisibleList) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,ForeignType) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,VisibleList) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_get__Memory.html │ │ │ @@ -77,43 +77,43 @@ │ │ │

    Allocate n bytes of memory using the GC garbage collector.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7f7f2b093240
    │ │ │ +o1 = 0x7f44213c1490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    If the memory will not contain any pointers, then set the Atomic option to true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7f7f285260a0
    │ │ │ +o2 = 0x7f44129bc230
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    Alternatively, a foreign object type T may be specified. In this case, the number of bytes and whether the Atomic option should be set will be determined automatically.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7f7f2854afc0
    │ │ │ +o3 = 0x7f44129bc120
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,30 +14,30 @@ │ │ │ │ o Atomic => ..., default value false │ │ │ │ * Outputs: │ │ │ │ o an instance of the type _v_o_i_d_s_t_a_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Allocate n bytes of memory using the _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r. │ │ │ │ i1 : ptr = getMemory 8 │ │ │ │ │ │ │ │ -o1 = 0x7f7f2b093240 │ │ │ │ +o1 = 0x7f44213c1490 │ │ │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ If the memory will not contain any pointers, then set the Atomic option to │ │ │ │ _t_r_u_e. │ │ │ │ i2 : ptr = getMemory(8, Atomic => true) │ │ │ │ │ │ │ │ -o2 = 0x7f7f285260a0 │ │ │ │ +o2 = 0x7f44129bc230 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ Alternatively, a foreign object type T may be specified. In this case, the │ │ │ │ number of bytes and whether the Atomic option should be set will be determined │ │ │ │ automatically. │ │ │ │ i3 : ptr = getMemory int │ │ │ │ │ │ │ │ -o3 = 0x7f7f2854afc0 │ │ │ │ +o3 = 0x7f44129bc120 │ │ │ │ │ │ │ │ o3 : ForeignObject of type void* │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_i_s_t_e_r_F_i_n_a_l_i_z_e_r_(_F_o_r_e_i_g_n_O_b_j_e_c_t_,_F_u_n_c_t_i_o_n_) -- register a finalizer for a │ │ │ │ foreign object │ │ │ │ ********** WWaayyss ttoo uussee ggeettMMeemmoorryy:: ********** │ │ │ │ * getMemory(ForeignType) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ @@ -100,23 +100,23 @@ │ │ │ │ │ │
    i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7f7f1407f910
    │ │ │ -freeing memory at 0x7f7f1407f930
    │ │ │ -freeing memory at 0x7f7f1407f950
    │ │ │ -freeing memory at 0x7f7f1407f990
    │ │ │ -freeing memory at 0x7f7f1407f250
    │ │ │ -freeing memory at 0x7f7f1407f230
    │ │ │ -freeing memory at 0x7f7f1407f9b0
    │ │ │ -freeing memory at 0x7f7f1407f970
    │ │ │ -freeing memory at 0x7f7f1407f8f0
    │ │ │ +freeing memory at 0x7f43fc07f250 │ │ │ +freeing memory at 0x7f43fc07f930 │ │ │ +freeing memory at 0x7f43fc07f8f0 │ │ │ +freeing memory at 0x7f43fc07f230 │ │ │ +freeing memory at 0x7f43fc07f990 │ │ │ +freeing memory at 0x7f43fc07f970 │ │ │ +freeing memory at 0x7f43fc07f9b0 │ │ │ +freeing memory at 0x7f43fc07f910 │ │ │ +freeing memory at 0x7f43fc07f950 │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7f7f2854ad20
    │ │ │ +o5 = 0x7f4412a03bb0
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │
    │ │ │
    i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7f7f2854ad20
    │ │ │ +o6 = 0x7f4412a03bb0
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Foreign string objects are converted to strings.

    │ │ │ ├── html2text {} │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = 5 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ Foreign pointer objects are converted to _P_o_i_n_t_e_r objects. │ │ │ │ i5 : x = voidstar address int 5 │ │ │ │ │ │ │ │ -o5 = 0x7f7f2854ad20 │ │ │ │ +o5 = 0x7f4412a03bb0 │ │ │ │ │ │ │ │ o5 : ForeignObject of type void* │ │ │ │ i6 : value x │ │ │ │ │ │ │ │ -o6 = 0x7f7f2854ad20 │ │ │ │ +o6 = 0x7f4412a03bb0 │ │ │ │ │ │ │ │ o6 : Pointer │ │ │ │ Foreign string objects are converted to strings. │ │ │ │ i7 : x = charstar "Hello, world!" │ │ │ │ │ │ │ │ o7 = Hello, world! │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/example-output/_put__Matrix.out │ │ │ @@ -6,27 +6,27 @@ │ │ │ | 1 2 3 4 | │ │ │ │ │ │ 2 4 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : s = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-15935-0/0 │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ i3 : F = openOut(s) │ │ │ │ │ │ -o3 = /tmp/M2-15935-0/0 │ │ │ +o3 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : putMatrix(F,A) │ │ │ │ │ │ i5 : close(F) │ │ │ │ │ │ -o5 = /tmp/M2-15935-0/0 │ │ │ +o5 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : getMatrix(s) │ │ │ │ │ │ o6 = | 1 1 1 1 | │ │ │ | 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/html/_put__Matrix.html │ │ │ @@ -79,36 +79,36 @@ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : s = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-15935-0/0
    │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : F = openOut(s)
    │ │ │  
    │ │ │ -o3 = /tmp/M2-15935-0/0
    │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : putMatrix(F,A)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : close(F)
    │ │ │  
    │ │ │ -o5 = /tmp/M2-15935-0/0
    │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : getMatrix(s)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,24 +16,24 @@
    │ │ │ │  o1 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ │ │  
    │ │ │ │                2       4
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  i2 : s = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-15935-0/0
    │ │ │ │ +o2 = /tmp/M2-20955-0/0
    │ │ │ │  i3 : F = openOut(s)
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-15935-0/0
    │ │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : putMatrix(F,A)
    │ │ │ │  i5 : close(F)
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-15935-0/0
    │ │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o5 : File
    │ │ │ │  i6 : getMatrix(s)
    │ │ │ │  
    │ │ │ │  o6 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out
    │ │ │ @@ -155,31 +155,31 @@
    │ │ │  i26 : numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) -- FinalAttempt improves the estimate slightly
    │ │ │  
    │ │ │  o26 = {.142067, .144}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc)
    │ │ │ + -- used 2.41009s (cpu); 1.42064s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc)
    │ │ │ + -- used 1.38069s (cpu); 0.852285s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │  
    │ │ │  i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc)
    │ │ │ + -- used 1.12473s (cpu); 0.686062s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out
    │ │ │ @@ -43,34 +43,34 @@
    │ │ │  o12 = 220
    │ │ │  
    │ │ │  i13 : R = ZZ/17[x,y,z];
    │ │ │  
    │ │ │  i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │  
    │ │ │  i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc)
    │ │ │ + -- used 0.00404505s (cpu); 0.00549768s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │  
    │ │ │  i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc)
    │ │ │ + -- used 0.505327s (cpu); 0.30174s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │  
    │ │ │  i17 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │  
    │ │ │  i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc)
    │ │ │ + -- used 0.359796s (cpu); 0.22315s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │  
    │ │ │  i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc)
    │ │ │ + -- used 1.4176s (cpu); 1.20019s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │  
    │ │ │  i21 : R = ZZ/3[x,y];
    │ │ │  
    │ │ │  i22 : M = ideal(x, y);
    │ │ │  
    │ │ │ @@ -85,34 +85,34 @@
    │ │ │  o24 = 8
    │ │ │  
    │ │ │  i25 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │  
    │ │ │  i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc)
    │ │ │ + -- used 1.27629s (cpu); 0.733774s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │  
    │ │ │  i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc)
    │ │ │ + -- used 1.84728s (cpu); 1.07549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │  
    │ │ │  i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc)
    │ │ │ + -- used 1.74161s (cpu); 1.43506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │  
    │ │ │  i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc)
    │ │ │ + -- used 0.553469s (cpu); 0.492482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │  
    │ │ │  i32 : R = ZZ/7[x,y];
    │ │ │  
    │ │ │  i33 : f = (x - 1)^3 - (y - 2)^2;
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html
    │ │ │ @@ -363,37 +363,37 @@
    │ │ │          
    │ │ │

    The computations performed when FinalAttempt is set to true are often slow, and often fail to improve the estimate, and for this reason, this option should be used sparingly. It is often more effective to increase the values of Attempts or DepthOfSearch, instead.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -228,29 +228,29 @@ │ │ │ │ │ │ │ │ o26 : List │ │ │ │ The computations performed when FinalAttempt is set to true are often slow, and │ │ │ │ often fail to improve the estimate, and for this reason, this option should be │ │ │ │ used sparingly. It is often more effective to increase the values of Attempts │ │ │ │ or DepthOfSearch, instead. │ │ │ │ i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) │ │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc) │ │ │ │ + -- used 2.41009s (cpu); 1.42064s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {.142067, .144} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7) │ │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc) │ │ │ │ + -- used 1.38069s (cpu); 0.852285s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o28 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o28 : QQ │ │ │ │ i29 : time fpt(f, DepthOfSearch => 4) │ │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc) │ │ │ │ + -- used 1.12473s (cpu); 0.686062s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o29 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o29 : QQ │ │ │ │ As seen in several examples above, when the exact answer is not found, a list │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ @@ -192,23 +192,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc)
    │ │ │ + -- used 2.41009s (cpu); 1.42064s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │
    │ │ │
    i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc)
    │ │ │ + -- used 1.38069s (cpu); 0.852285s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │
    │ │ │
    i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc)
    │ │ │ + -- used 1.12473s (cpu); 0.686062s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ │
    │ │ │
    i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │
    │ │ │
    i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc)
    │ │ │ + -- used 0.00404505s (cpu); 0.00549768s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │
    │ │ │
    i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc)
    │ │ │ + -- used 0.505327s (cpu); 0.30174s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │
    │ │ │
    │ │ │

    The valid values for the option ContainmentTest are FrobeniusPower, FrobeniusRoot, and StandardPower. The default value of this option depends on what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to StandardPower if frobeniusNu is passed an ideal $I$. We describe the consequences of setting ContainmentTest to each of these values below.

    │ │ │ @@ -225,23 +225,23 @@ │ │ │ │ │ │
    i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc)
    │ │ │ + -- used 0.359796s (cpu); 0.22315s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc)
    │ │ │ + -- used 1.4176s (cpu); 1.20019s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Finally, when ContainmentTest is set to FrobeniusPower, then instead of producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as defined in the paper Frobenius Powers by Hernández, Teixeira, and Witt, which can be computed with the function frobeniusPower, from the TestIdeals package. In particular, frobeniusNu(e,I,J) and frobeniusNu(e,I,J,ContainmentTest=>FrobeniusPower) need not agree. However, they will agree when $I$ is a principal ideal.

    │ │ │ @@ -287,46 +287,46 @@ │ │ │ │ │ │
    i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc)
    │ │ │ + -- used 1.27629s (cpu); 0.733774s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc)
    │ │ │ + -- used 1.84728s (cpu); 1.07549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc)
    │ │ │ + -- used 1.74161s (cpu); 1.43506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc)
    │ │ │ + -- used 0.553469s (cpu); 0.492482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    The option AtOrigin (default value true) can be turned off to tell frobeniusNu to effectively do the computation over all possible maximal ideals $J$ and take the minimum.

    │ │ │ ├── html2text {} │ │ │ │ @@ -106,19 +106,19 @@ │ │ │ │ algorithms, namely diagonal polynomials, binomials, forms in two variables, and │ │ │ │ polynomials whose factors are in simple normal crossing. This feature can be │ │ │ │ disabled by setting the option UseSpecialAlgorithms (default value true) to │ │ │ │ false. │ │ │ │ i13 : R = ZZ/17[x,y,z]; │ │ │ │ i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial │ │ │ │ i15 : time frobeniusNu(3, f) │ │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc) │ │ │ │ + -- used 0.00404505s (cpu); 0.00549768s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3756 │ │ │ │ i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false) │ │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc) │ │ │ │ + -- used 0.505327s (cpu); 0.30174s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 3756 │ │ │ │ The valid values for the option ContainmentTest are FrobeniusPower, │ │ │ │ FrobeniusRoot, and StandardPower. The default value of this option depends on │ │ │ │ what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to │ │ │ │ FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to │ │ │ │ StandardPower if frobeniusNu is passed an ideal $I$. We describe the │ │ │ │ @@ -133,19 +133,19 @@ │ │ │ │ is contained in $J$. The output is unaffected, but this option often speeds up │ │ │ │ computations, specially when a polynomial or principal ideal is passed as the │ │ │ │ second argument. │ │ │ │ i17 : R = ZZ/5[x,y,z]; │ │ │ │ i18 : f = x^3 + y^3 + z^3 + x*y*z; │ │ │ │ i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by │ │ │ │ default │ │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc) │ │ │ │ + -- used 0.359796s (cpu); 0.22315s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = 499 │ │ │ │ i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower) │ │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc) │ │ │ │ + -- used 1.4176s (cpu); 1.20019s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = 499 │ │ │ │ Finally, when ContainmentTest is set to FrobeniusPower, then instead of │ │ │ │ producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead │ │ │ │ outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius │ │ │ │ power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the │ │ │ │ $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as │ │ │ │ @@ -167,31 +167,31 @@ │ │ │ │ The function frobeniusNu works by searching through the list of potential │ │ │ │ integers $n$ and checking containments of $I^n$ in the specified Frobenius │ │ │ │ power of $J$. The way this search is approached is specified by the option │ │ │ │ Search, which can be set to Binary (the default value) or Linear. │ │ │ │ i25 : R = ZZ/5[x,y,z]; │ │ │ │ i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8; │ │ │ │ i27 : time frobeniusNu(5, f) -- uses binary search (default) │ │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc) │ │ │ │ + -- used 1.27629s (cpu); 0.733774s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = 1124 │ │ │ │ i28 : time frobeniusNu(5, f, Search => Linear) │ │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc) │ │ │ │ + -- used 1.84728s (cpu); 1.07549s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 1124 │ │ │ │ i29 : M = ideal(x, y, z); │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default) │ │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc) │ │ │ │ + -- used 1.74161s (cpu); 1.43506s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 97 │ │ │ │ i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets │ │ │ │ luckier │ │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc) │ │ │ │ + -- used 0.553469s (cpu); 0.492482s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 97 │ │ │ │ The option AtOrigin (default value true) can be turned off to tell frobeniusNu │ │ │ │ to effectively do the computation over all possible maximal ideals $J$ and take │ │ │ │ the minimum. │ │ │ │ i32 : R = ZZ/7[x,y]; │ │ │ │ i33 : f = (x - 1)^3 - (y - 2)^2; │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ @@ -208,21 +208,21 @@ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc) │ │ │ + -- used 2.01368s (cpu); 0.536994s (thread); 0s (gc) │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o27 : KClass │ │ │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc) │ │ │ + -- used 3.22205s (cpu); 1.04064s (thread); 0s (gc) │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o28 : KClass │ │ │ │ │ │ i29 : │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ @@ -386,25 +386,25 @@ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time C = orbitClosure(X,Mat)
    │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc)
    │ │ │ + -- used 2.01368s (cpu); 0.536994s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o27 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time C = orbitClosure(X,Mat, RREFMethod => true)
    │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc)
    │ │ │ + -- used 3.22205s (cpu); 1.04064s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o28 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -241,21 +241,21 @@ │ │ │ │ o26 = | 7 6 3/10 10/9 | │ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc) │ │ │ │ + -- used 2.01368s (cpu); 0.536994s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o27 : KClass │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc) │ │ │ │ + -- used 3.22205s (cpu); 1.04064s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o28 : KClass │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_l_i_z_e_d_F_l_a_g_V_a_r_i_e_t_y -- makes a generalized flag variety as a GKM │ │ │ │ variety │ │ ├── ./usr/share/doc/Macaulay2/Graphs/example-output/_new__Digraph.out │ │ │ @@ -32,12 +32,12 @@ │ │ │ 5 => {6} │ │ │ 6 => {} │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ i3 : keys H │ │ │ │ │ │ -o3 = {map, newDigraph, digraph} │ │ │ +o3 = {map, digraph, newDigraph} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Graphs/html/_new__Digraph.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys H
    │ │ │  
    │ │ │ -o3 = {map, newDigraph, digraph}
    │ │ │ +o3 = {map, digraph, newDigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 4 => {} │ │ │ │ 5 => {6} │ │ │ │ 6 => {} │ │ │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ i3 : keys H │ │ │ │ │ │ │ │ -o3 = {map, newDigraph, digraph} │ │ │ │ +o3 = {map, digraph, newDigraph} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_o_p_S_o_r_t -- topologically sort the vertices of a digraph │ │ │ │ * _S_o_r_t_e_d_D_i_g_r_a_p_h -- hashtable used in topSort │ │ │ │ * _t_o_p_o_l_o_g_i_c_a_l_S_o_r_t -- outputs a list of vertices in a topologically sorted │ │ │ │ order of a DAG. │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ @@ -103,46 +103,46 @@ │ │ │ │ │ │ i13 : #compsJ │ │ │ │ │ │ o13 = 2 │ │ │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21 │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ ----------------------------------------------------------------------- │ │ │ - -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 | │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ 1 36 │ │ │ o14 : Matrix kk <-- kk │ │ │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16 │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ ----------------------------------------------------------------------- │ │ │ - -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 | │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ 1 36 │ │ │ o15 : Matrix kk <-- kk │ │ │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ - 2 2 2 │ │ │ -o16 = ideal (a - 44b*c - 35c + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c + │ │ │ + 2 2 2 │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 15c - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c - 16a*d + 2b*d + │ │ │ + 2 2 2 │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - 19c*d + 34d , b - 30b*c + 19c - 22a*d + 21b*d + 50c*d - 12d , b*c - │ │ │ + 2 2 2 2 2 │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 │ │ │ - 29b*c*d - 36c d + 24a*d + 2b*d + 50c*d + 9d , c - 24b*c*d + 39c d - │ │ │ + 2 2 2 2 3 3 2 │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 3 │ │ │ - 8a*d - 29b*d - 29c*d - 17d ) │ │ │ + 2 2 2 3 │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ 0 1 2 3 │ │ │ o17 = total: 1 6 8 3 │ │ │ @@ -150,28 +150,28 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o17 : BettiTally │ │ │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 │ │ │ -o18 = ideal (a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c - │ │ │ + 2 2 2 │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 45c - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c + 33a*d + 16b*d │ │ │ + 2 2 2 │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , b*c - 43b*c*d + │ │ │ + 2 2 2 2 2 │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ - 19c d + 34a*d + 21b*d + 46c*d + 20d , c + 38b*c*d + 22c d - 15a*d │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 3 │ │ │ - - 47b*d - 39c*d + 40d ) │ │ │ + 2 2 3 │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ 0 1 2 3 │ │ │ o19 = total: 1 6 8 3 │ │ │ @@ -179,27 +179,30 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o19 : BettiTally │ │ │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ - +------------------------------------------------------+ │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d) | │ │ │ - +------------------------------------------------------+ │ │ │ - |ideal (c - 16d, b + d, a + 16d) | │ │ │ - +------------------------------------------------------+ │ │ │ - | 2 2 | │ │ │ - |ideal (b - 6c + 33d, a - 36c + 2d, c + 43c*d - d ) | │ │ │ - +------------------------------------------------------+ │ │ │ - | 2 2 | │ │ │ - |ideal (b + 29c + 7d, a - 19c + 24d, c - 20c*d - 30d )| │ │ │ - +------------------------------------------------------+ │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i21 : netList decompose F2 │ │ │ │ │ │ - +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ - | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ -o21 = |ideal (a*c + 2b*c - 13c + 33a*d + 16b*d - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , a*b - 20b*c - 45c - 35a*d + 21b*d - 34c*d + 10d , a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , c + 38b*c*d + 22c d - 15a*d - 47b*d - 39c*d + 40d , b*c - 43b*c*d + 19c d + 34a*d + 21b*d + 46c*d + 20d )| │ │ │ - +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ @@ -200,67 +200,72 @@ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38 │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8 │ │ │ ----------------------------------------------------------------------- │ │ │ - -24 -10 -29 | │ │ │ + -29 -22 -29 -24 | │ │ │ │ │ │ 1 24 │ │ │ o13 : Matrix kk <-- kk │ │ │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ - 2 2 2 │ │ │ -o14 = ideal (a + 33b*c - 33c + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c - │ │ │ + 2 2 2 │ │ │ +o14 = ideal (a - 30b*c + 23c - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 2c - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c - 24a*d + 3b*d - │ │ │ + 2 2 2 │ │ │ + 33c - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c - 22a*d + 32b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - 8c*d - 46d , b - 10b*c - 16c - 29a*d - 29b*d - 22c*d + 8d ) │ │ │ + 2 2 2 2 │ │ │ + + 19c*d - 4d , b - 29b*c - 29c - 24a*d - 8b*d + 19c*d - 12d ) │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ │ │ i15 : decompose F1 │ │ │ │ │ │ - 2 2 2 │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b - 10b*c - 16c - 20b*d + 24c*d - 29d ), │ │ │ + 2 2 2 │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b - 29b*c - 29c + 3b*d + 16c*d - 26d ), │ │ │ ----------------------------------------------------------------------- │ │ │ - ideal (c - 24d, b - 38d, a + 15d)} │ │ │ + ideal (c - 22d, b - 21d, a + 8d)} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19 │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47 │ │ │ ----------------------------------------------------------------------- │ │ │ - -47 -39 34 0 | │ │ │ + 34 19 21 39 0 | │ │ │ │ │ │ 1 24 │ │ │ o16 : Matrix kk <-- kk │ │ │ │ │ │ i17 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 │ │ │ -o17 = ideal (a - 8b*c + 26c - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c - │ │ │ + 2 2 2 2 │ │ │ +o17 = ideal (a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 38c + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c - 39a*d + 21b*d │ │ │ + 2 2 │ │ │ + - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c + 21a*d - 13b*d - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - - 13c*d - 35d , b + 34b*c - 18c + 19b*d + 29c*d + 41d ) │ │ │ + 2 2 2 2 │ │ │ + 39c*d - 43d , b + 39b*c - 47c + 34b*d + 40c*d - 41d ) │ │ │ │ │ │ o17 : Ideal of S │ │ │ │ │ │ i18 : decompose F2 │ │ │ │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c + │ │ │ + 2 2 2 │ │ │ +o18 = {ideal (a*c + 19b*c - 18c + 21a*d - 13b*d - 39c*d - 43d , b + 39b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 26d)} │ │ │ + 2 2 2 │ │ │ + 47c + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c - 39a*d - 29b*d - 30c*d │ │ │ + ----------------------------------------------------------------------- │ │ │ + 2 2 2 2 │ │ │ + + 16d , a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d )} │ │ │ │ │ │ o18 : List │ │ │ │ │ │ i19 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ @@ -68,54 +68,54 @@ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : netList randomPointsOnRationalVariety(compsJ_0, 10) │ │ │ │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 -18 21 -38 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 -34 38 -15 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 7 47 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 -38 36 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 -13 -37 -7 22 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 24 -20 27 30 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 -20 17 0 -48 || │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 -39 -39 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 -6 -28 -3 43 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 40 -9 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - │ │ │ -i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ - │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 37 -47 0 | | │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 -43 21 -38 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 -48 30 -48 0 || │ │ │ + || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 -47 38 -15 || │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 40 -18 0 | | │ │ │ + || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 48 7 47 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 3 13 0 | | │ │ │ + || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 -3 -38 36 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 -18 30 0 | | │ │ │ + || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 -10 -7 22 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 12 18 0 | | │ │ │ + || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 -30 27 30 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 -37 0 | | │ │ │ + || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 44 0 -48 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 6 -28 0 | | │ │ │ + || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 -8 -39 -39 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 -33 26 0 | | │ │ │ + || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 -3 43 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 -20 4 0 | | │ │ │ + || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 -13 40 -9 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ │ │ │ +i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ + │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 -35 -47 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 -48 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 -22 -18 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 30 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 -18 18 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 -39 19 20 -37 0 || │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 -9 -28 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 -28 26 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 -13 4 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ @@ -232,52 +232,52 @@ │ │ │ o13 = 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21
    │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 |
    │ │ │ +      40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o14 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16
    │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 |
    │ │ │ +      28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o15 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │ -              2              2                            2               
    │ │ │ -o16 = ideal (a  - 44b*c - 35c  + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c +
    │ │ │ +              2              2                             2               
    │ │ │ +o16 = ideal (a  + 25b*c - 43c  + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2                   2                 
    │ │ │ -      15c  - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c  - 16a*d + 2b*d +
    │ │ │ +         2                              2                  2                
    │ │ │ +      46c  + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c  + 39a*d - 20b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2   2              2                              2     2  
    │ │ │ -      19c*d + 34d , b  - 30b*c + 19c  - 22a*d + 21b*d + 50c*d - 12d , b*c  -
    │ │ │ +                  2   2              2                              2     2  
    │ │ │ +      - 22c*d - 2d , b  + 24b*c + 19c  - 10a*d + 21b*d - 16c*d - 35d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2       2        2     3   3                2   
    │ │ │ -      29b*c*d - 36c d + 24a*d  + 2b*d  + 50c*d  + 9d , c  - 24b*c*d + 39c d -
    │ │ │ +                   2         2        2        2      3   3                2 
    │ │ │ +      29b*c*d - 30c d - 36a*d  + 34b*d  + 48c*d  - 23d , c  - 24b*c*d - 16c d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2        2        2      3
    │ │ │ -      8a*d  - 29b*d  - 29c*d  - 17d )
    │ │ │ +             2        2        2      3
    │ │ │ +      + 19a*d  - 38b*d  - 29c*d  - 26d )
    │ │ │  
    │ │ │  o16 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : betti res F1
    │ │ │ @@ -291,28 +291,28 @@
    │ │ │  o17 : BettiTally
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o18 = ideal (a  - 35b*c + 22c  - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c -
    │ │ │ +              2             2                              2               
    │ │ │ +o18 = ideal (a  - 9b*c - 18c  - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                              2                  2                
    │ │ │ -      45c  - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c  + 33a*d + 16b*d
    │ │ │ +        2                              2                   2                
    │ │ │ +      6c  + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c  + 27a*d - 47b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2   2              2                   2     2            
    │ │ │ -      - 18c*d - 39d , b  - 47b*c - 28c  - 5b*d - c*d - 30d , b*c  - 43b*c*d +
    │ │ │ +                 2   2              2                      2     2          
    │ │ │ +      - 28c*d - d , b  + 19b*c - 13c  - 37b*d + 32c*d + 15d , b*c  - 43b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      19c d + 34a*d  + 21b*d  + 46c*d  + 20d , c  + 38b*c*d + 22c d - 15a*d 
    │ │ │ +           2         2        2       2      3   3               2         2
    │ │ │ +      - 47c d + 34a*d  - 22b*d  - 6c*d  + 17d , c  + 2b*c*d + 22c d - 18a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2      3
    │ │ │ -      - 47b*d  - 39c*d  + 40d )
    │ │ │ +             2        2    3
    │ │ │ +      + 38b*d  - 39c*d  - d )
    │ │ │  
    │ │ │  o18 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : betti res F2
    │ │ │ @@ -331,35 +331,38 @@
    │ │ │            

    What are the ideals F1 and F2?

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i20 : netList decompose F1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c - 16d, b + d, a + 16d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                    2            2    |
    │ │ │ -      |ideal (b - 6c + 33d, a - 36c + 2d, c  + 43c*d - d )   |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b + 29c + 7d, a - 19c + 24d, c  - 20c*d - 30d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i21 : netList decompose F2
    │ │ │  
    │ │ │ -      +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                       2                              2   2              2                   2                   2                              2   2              2                              2   3                2         2        2        2      3     2                2         2        2        2      3 |
    │ │ │ -o21 = |ideal (a*c + 2b*c - 13c  + 33a*d + 16b*d - 18c*d - 39d , b  - 47b*c - 28c  - 5b*d - c*d - 30d , a*b - 20b*c - 45c  - 35a*d + 21b*d - 34c*d + 10d , a  - 35b*c + 22c  - 25a*d + 23b*d + 43c*d + 30d , c  + 38b*c*d + 22c d - 15a*d  - 47b*d  - 39c*d  + 40d , b*c  - 43b*c*d + 19c d + 34a*d  + 21b*d  + 46c*d  + 20d )|
    │ │ │ -      +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │
    │ │ │
    │ │ │

    We can determine what these represent. One should be a set of 6 points, where 5 lie on a plane. The other should be 6 points with 3 points on one line, and the other 3 points on a skew line.

    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -170,117 +170,115 @@ │ │ │ │ 32 13 21 33 19 31 │ │ │ │ i12 : compsJ = decompose J; │ │ │ │ i13 : #compsJ │ │ │ │ │ │ │ │ o13 = 2 │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21 │ │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 | │ │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o14 : Matrix kk <-- kk │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16 │ │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 | │ │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o15 : Matrix kk <-- kk │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o16 = ideal (a - 44b*c - 35c + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c + │ │ │ │ + 2 2 2 │ │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 15c - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c - 16a*d + 2b*d + │ │ │ │ + 2 2 2 │ │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - 19c*d + 34d , b - 30b*c + 19c - 22a*d + 21b*d + 50c*d - 12d , b*c - │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 │ │ │ │ - 29b*c*d - 36c d + 24a*d + 2b*d + 50c*d + 9d , c - 24b*c*d + 39c d - │ │ │ │ + 2 2 2 2 3 3 2 │ │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 3 │ │ │ │ - 8a*d - 29b*d - 29c*d - 17d ) │ │ │ │ + 2 2 2 3 │ │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o17 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o17 : BettiTally │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o18 = ideal (a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 45c - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c + 33a*d + 16b*d │ │ │ │ + 2 2 2 │ │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , b*c - 43b*c*d + │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ │ - 19c d + 34a*d + 21b*d + 46c*d + 20d , c + 38b*c*d + 22c d - 15a*d │ │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 3 │ │ │ │ - - 47b*d - 39c*d + 40d ) │ │ │ │ + 2 2 3 │ │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o19 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o19 : BettiTally │ │ │ │ What are the ideals F1 and F2? │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ │ │ - +------------------------------------------------------+ │ │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - |ideal (c - 16d, b + d, a + 16d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b - 6c + 33d, a - 36c + 2d, c + 43c*d - d ) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b + 29c + 7d, a - 19c + 24d, c - 20c*d - 30d )| │ │ │ │ - +------------------------------------------------------+ │ │ │ │ -i21 : netList decompose F2 │ │ │ │ - │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ +--+ │ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) │ │ │ │ +| │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --+ │ │ │ │ - | 2 2 2 │ │ │ │ -2 2 2 2 2 │ │ │ │ -2 2 3 2 2 2 │ │ │ │ -2 3 2 2 2 2 2 3 | │ │ │ │ -o21 = |ideal (a*c + 2b*c - 13c + 33a*d + 16b*d - 18c*d - 39d , b - 47b*c - │ │ │ │ -28c - 5b*d - c*d - 30d , a*b - 20b*c - 45c - 35a*d + 21b*d - 34c*d + 10d , a │ │ │ │ -- 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , c + 38b*c*d + 22c d - 15a*d - │ │ │ │ -47b*d - 39c*d + 40d , b*c - 43b*c*d + 19c d + 34a*d + 21b*d + 46c*d + 20d │ │ │ │ +--+ │ │ │ │ + | 2 2 2 3 │ │ │ │ +2 2 2 3 2 2 2 3 | │ │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - │ │ │ │ +24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d │ │ │ │ )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --+ │ │ │ │ +--+ │ │ │ │ +i21 : netList decompose F2 │ │ │ │ + │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + | 2 2 | │ │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ We can determine what these represent. One should be a set of 6 points, where 5 │ │ │ │ lie on a plane. The other should be 6 points with 3 points on one line, and the │ │ │ │ other 3 points on a skew line. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y -- find a random point on a variety that can │ │ │ │ be detected to be rational │ │ │ │ ********** WWaayyss ttoo uussee nnoonnmmiinniimmaallMMaappss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ @@ -318,90 +318,95 @@ │ │ │

    There are 2 components. We attempt to find a point on the first component

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i13 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38
    │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -24 -10 -29 |
    │ │ │ +      -29 -22 -29 -24 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o13 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i14 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o14 = ideal (a  + 33b*c - 33c  + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o14 = ideal (a  - 30b*c + 23c  - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2                   2                 
    │ │ │ -      2c  - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c  - 24a*d + 3b*d -
    │ │ │ +         2                              2                   2                
    │ │ │ +      33c  - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c  - 22a*d + 32b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                2   2              2                             2
    │ │ │ -      8c*d - 46d , b  - 10b*c - 16c  - 29a*d - 29b*d - 22c*d + 8d )
    │ │ │ +                  2   2              2                             2
    │ │ │ +      + 19c*d - 4d , b  - 29b*c - 29c  - 24a*d - 8b*d + 19c*d - 12d )
    │ │ │  
    │ │ │  o14 : Ideal of S
    │ │ │
    │ │ │
    i15 : decompose F1
    │ │ │  
    │ │ │ -                                    2              2                      2
    │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b  - 10b*c - 16c  - 20b*d + 24c*d - 29d ),
    │ │ │ +                                   2              2                     2
    │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b  - 29b*c - 29c  + 3b*d + 16c*d - 26d ),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ideal (c - 24d, b - 38d, a + 15d)}
    │ │ │ +      ideal (c - 22d, b - 21d, a + 8d)}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    │ │ │
    │ │ │

    We attempt to find a point on the second component in parameter space, and its corresponding ideal.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i16 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19
    │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -47 -39 34 0 |
    │ │ │ +      34 19 21 39 0 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o16 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i17 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2             2                              2               
    │ │ │ -o17 = ideal (a  - 8b*c + 26c  - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c -
    │ │ │ +              2              2                          2                   2
    │ │ │ +o17 = ideal (a  + 17b*c - 20c  - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2                   2                
    │ │ │ -      38c  + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c  - 39a*d + 21b*d
    │ │ │ +                                   2                   2                  
    │ │ │ +      - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c  + 21a*d - 13b*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2   2              2                      2
    │ │ │ -      - 13c*d - 35d , b  + 34b*c - 18c  + 19b*d + 29c*d + 41d )
    │ │ │ +                 2   2              2                      2
    │ │ │ +      39c*d - 43d , b  + 39b*c - 47c  + 34b*d + 40c*d - 41d )
    │ │ │  
    │ │ │  o17 : Ideal of S
    │ │ │
    │ │ │
    i18 : decompose F2
    │ │ │  
    │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c +
    │ │ │ +                               2                              2   2          
    │ │ │ +o18 = {ideal (a*c + 19b*c - 18c  + 21a*d - 13b*d - 39c*d - 43d , b  + 39b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      26d)}
    │ │ │ +         2                      2                   2                        
    │ │ │ +      47c  + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c  - 39a*d - 29b*d - 30c*d
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +           2   2              2                          2
    │ │ │ +      + 16d , a  + 17b*c - 20c  - 4a*d - b*d - 2c*d + 46d )}
    │ │ │  
    │ │ │  o18 : List
    │ │ │
    │ │ │
    │ │ │

    It turns out that this is the ideal of 2 skew lines, just not defined over this field.

    │ │ │ ├── html2text {} │ │ │ │ @@ -212,67 +212,72 @@ │ │ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ There are 2 components. We attempt to find a point on the first component │ │ │ │ i13 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38 │ │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -24 -10 -29 | │ │ │ │ + -29 -22 -29 -24 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o13 : Matrix kk <-- kk │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o14 = ideal (a + 33b*c - 33c + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o14 = ideal (a - 30b*c + 23c - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 2c - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c - 24a*d + 3b*d - │ │ │ │ + 2 2 2 │ │ │ │ + 33c - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c - 22a*d + 32b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 8c*d - 46d , b - 10b*c - 16c - 29a*d - 29b*d - 22c*d + 8d ) │ │ │ │ + 2 2 2 2 │ │ │ │ + + 19c*d - 4d , b - 29b*c - 29c - 24a*d - 8b*d + 19c*d - 12d ) │ │ │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : decompose F1 │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b - 10b*c - 16c - 20b*d + 24c*d - 29d ), │ │ │ │ + 2 2 2 │ │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b - 29b*c - 29c + 3b*d + 16c*d - 26d ), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - ideal (c - 24d, b - 38d, a + 15d)} │ │ │ │ + ideal (c - 22d, b - 21d, a + 8d)} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ We attempt to find a point on the second component in parameter space, and its │ │ │ │ corresponding ideal. │ │ │ │ i16 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19 │ │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -47 -39 34 0 | │ │ │ │ + 34 19 21 39 0 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o16 : Matrix kk <-- kk │ │ │ │ i17 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o17 = ideal (a - 8b*c + 26c - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c - │ │ │ │ + 2 2 2 2 │ │ │ │ +o17 = ideal (a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 38c + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c - 39a*d + 21b*d │ │ │ │ + 2 2 │ │ │ │ + - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c + 21a*d - 13b*d - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - - 13c*d - 35d , b + 34b*c - 18c + 19b*d + 29c*d + 41d ) │ │ │ │ + 2 2 2 2 │ │ │ │ + 39c*d - 43d , b + 39b*c - 47c + 34b*d + 40c*d - 41d ) │ │ │ │ │ │ │ │ o17 : Ideal of S │ │ │ │ i18 : decompose F2 │ │ │ │ │ │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c + │ │ │ │ + 2 2 2 │ │ │ │ +o18 = {ideal (a*c + 19b*c - 18c + 21a*d - 13b*d - 39c*d - 43d , b + 39b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 26d)} │ │ │ │ + 2 2 2 │ │ │ │ + 47c + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c - 39a*d - 29b*d - 30c*d │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 2 2 2 2 │ │ │ │ + + 16d , a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d )} │ │ │ │ │ │ │ │ o18 : List │ │ │ │ It turns out that this is the ideal of 2 skew lines, just not defined over this │ │ │ │ field. │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This routine expects the input to represent an irreducible variety │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ @@ -186,64 +186,64 @@ │ │ │

    There are 2 components. We attempt to find points on each of these two components. We are successful. This indicates that the corresponding varieties are both rational. Also, if we can find one point, we can find as many as we want.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ - │ │ │ - │ │ │ │ │ │ + │ │ │ + │ │ │ + │ │ │
    │ │ │
    i13 : netList randomPointsOnRationalVariety(compsJ_0, 10)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 -18 21 -38 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 -34 38 -15 |   |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 7 47 |       |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 -38 36 |      |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 -13 -37 -7 22 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 24 -20 27 30 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 -20 17 0 -48 ||
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 -39 -39 |    |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 -6 -28 -3 43 |   |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 40 -9 |      |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -
    │ │ │ -
    i14 : netList randomPointsOnRationalVariety(compsJ_1, 10)
    │ │ │ -
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 37 -47 0 |   |
    │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 -43 21 -38 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 -48 30 -48 0 ||
    │ │ │ +      || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 -47 38 -15 ||
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 40 -18 0 |    |
    │ │ │ +      || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 48 7 47 |     |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 3 13 0 |     |
    │ │ │ +      || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 -3 -38 36 |     |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 -18 30 0 |    |
    │ │ │ +      || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 -10 -7 22 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 12 18 0 |     |
    │ │ │ +      || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 -30 27 30 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 -37 0 |      |
    │ │ │ +      || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 44 0 -48 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 6 -28 0 |    |
    │ │ │ +      || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 -8 -39 -39 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 -33 26 0 |    |
    │ │ │ +      || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 -3 43 |      |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 -20 4 0 |   |
    │ │ │ +      || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 -13 40 -9 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │
    │ │ │ +
    i14 : netList randomPointsOnRationalVariety(compsJ_1, 10)
    │ │ │ +
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 -35 -47 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 -48 0 |          |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 -22 -18 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 0 |            |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 30 0 |         |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 -18 18 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 -39 19 20 -37 0 ||
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 -9 -28 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 -28 26 0 |    |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 -13 4 0 |        |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +
    │ │ │ │ │ │
    │ │ │

    Caveat

    │ │ │
    │ │ │

    This routine expects the input to represent an irreducible variety

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -84,99 +84,99 @@ │ │ │ │ There are 2 components. We attempt to find points on each of these two │ │ │ │ components. We are successful. This indicates that the corresponding varieties │ │ │ │ are both rational. Also, if we can find one point, we can find as many as we │ │ │ │ want. │ │ │ │ i13 : netList randomPointsOnRationalVariety(compsJ_0, 10) │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 │ │ │ │ --18 21 -38 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 - │ │ │ │ -34 38 -15 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 │ │ │ │ -7 47 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 │ │ │ │ --38 36 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 - │ │ │ │ -13 -37 -7 22 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 │ │ │ │ -24 -20 27 30 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 │ │ │ │ --20 17 0 -48 || │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 │ │ │ │ --39 -39 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 - │ │ │ │ -6 -28 -3 43 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 │ │ │ │ -40 -9 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ -i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ │ - │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 │ │ │ │ -37 -47 0 | | │ │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 │ │ │ │ +-43 21 -38 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 - │ │ │ │ -48 30 -48 0 || │ │ │ │ + || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 │ │ │ │ +-47 38 -15 || │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 │ │ │ │ -40 -18 0 | | │ │ │ │ + || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 │ │ │ │ +48 7 47 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 │ │ │ │ -3 13 0 | | │ │ │ │ + || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 - │ │ │ │ +3 -38 36 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 - │ │ │ │ -18 30 0 | | │ │ │ │ + || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 │ │ │ │ +-10 -7 22 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 │ │ │ │ -12 18 0 | | │ │ │ │ + || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 │ │ │ │ +-30 27 30 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 │ │ │ │ --37 0 | | │ │ │ │ + || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 │ │ │ │ +44 0 -48 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 │ │ │ │ -6 -28 0 | | │ │ │ │ + || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 │ │ │ │ +-8 -39 -39 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 - │ │ │ │ -33 26 0 | | │ │ │ │ + || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 │ │ │ │ +-3 43 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 │ │ │ │ --20 4 0 | | │ │ │ │ + || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 │ │ │ │ +-13 40 -9 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ +i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ │ + │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 - │ │ │ │ +35 -47 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 - │ │ │ │ +48 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 - │ │ │ │ +22 -18 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 │ │ │ │ +0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 │ │ │ │ +30 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 │ │ │ │ +-18 18 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 - │ │ │ │ +39 19 20 -37 0 || │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 │ │ │ │ +-9 -28 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 │ │ │ │ +-28 26 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 - │ │ │ │ +13 4 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This routine expects the input to represent an irreducible variety │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y_(_I_d_e_a_l_) -- find a random point on a variety │ │ │ │ that can be detected to be rational │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_s_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y_(_I_d_e_a_l_,_Z_Z_) -- find random points on a │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/___Groebner__Walk.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ │ │ i5 : elapsedTime gb I2 │ │ │ - -- 3.00191s elapsed │ │ │ + -- 1.98644s elapsed │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ - -- 2.08916s elapsed │ │ │ + -- 1.63602s elapsed │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/html/index.html │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ │ │ o4 : Ideal of R2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime gb I2
    │ │ │ - -- 3.00191s elapsed
    │ │ │ + -- 1.98644s elapsed
    │ │ │  
    │ │ │  o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16]
    │ │ │  
    │ │ │  o5 : GroebnerBasis
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    but it is faster to compute directly in the first order and then use the Groebner walk.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime groebnerWalk(gb I1, R2)
    │ │ │ - -- 2.08916s elapsed
    │ │ │ + -- 1.63602s elapsed
    │ │ │  
    │ │ │  o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0]
    │ │ │  
    │ │ │  o6 : GroebnerBasis
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,23 +38,23 @@ │ │ │ │ using a different weight vector and then graded reverse lexicographic we could │ │ │ │ substitute and compute directly, │ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ i5 : elapsedTime gb I2 │ │ │ │ - -- 3.00191s elapsed │ │ │ │ + -- 1.98644s elapsed │ │ │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ but it is faster to compute directly in the first order and then use the │ │ │ │ Groebner walk. │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ │ - -- 2.08916s elapsed │ │ │ │ + -- 1.63602s elapsed │ │ │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The target ring must be the same ring as the ring of the starting ideal, except │ │ │ │ with different monomial order. The ring must be a polynomial ring over a field. │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ @@ -6,20 +6,22 @@ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ - 1 │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ - 4 │ │ │ + 1 │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ + 2 │ │ │ ------------------------------------------------------------------------ │ │ │ - 1 1 │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ - 8 2 │ │ │ + 1 │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ + 4 │ │ │ ------------------------------------------------------------------------ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ + 1 │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ + 8 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ @@ -2,12 +2,12 @@ │ │ │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ @@ -84,23 +84,25 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : hadamardPower(L,3)
    │ │ │  
    │ │ │ -                  1                                                    
    │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ -                  4                                                    
    │ │ │ +                  1                                                  
    │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4},
    │ │ │ +                  2                                                  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                                 1                               1
    │ │ │ -     Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1,
    │ │ │ -                                 8                               2
    │ │ │ +                 1                                                    
    │ │ │ +     Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ +                 4                                                    
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 1}, Point{1, 0, 4}}
    │ │ │ +                                 1
    │ │ │ +     Point{1, 0, 1}, Point{1, 1, -}}
    │ │ │ +                                 8
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,22 +22,24 @@ │ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ │ 2 │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ │ │ 1 │ │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ - 4 │ │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ │ + 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1 1 │ │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ │ - 8 2 │ │ │ │ + 1 │ │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ + 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ │ + 1 │ │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ │ + 8 │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_o_w_e_r_(_L_i_s_t_,_Z_Z_) -- computes the $r$-th Hadmard powers of a set │ │ │ │ points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
    i2 : M = {point{1,0}, point{2,2}};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : hadamardProduct(L,M)
    │ │ │  
    │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}}
    │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ Given two sets of points $L$ and $M$ returns the list of (well-defined) │ │ │ │ entrywise multiplication of pairs of points in the cartesian product $L\times │ │ │ │ M$. │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_r_o_d_u_c_t_(_L_i_s_t_,_L_i_s_t_) -- Hadamard product of two sets of points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Hadamard.m2:345:0. │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ o5 = {9, 1, 99999, 9999999, 3, 999} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : netList cssLeadTerm(Hbeta, w) │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ - -- .000004479s elapsed │ │ │ - -- .000004238s elapsed │ │ │ - -- .000003977s elapsed │ │ │ - -- .000001883s elapsed │ │ │ - -- .000001392s elapsed │ │ │ + -- .000009152s elapsed │ │ │ + -- .000007958s elapsed │ │ │ + -- .00000841s elapsed │ │ │ + -- .000008402s elapsed │ │ │ + -- .000009382s elapsed │ │ │ │ │ │ +----------------------------------------------------+ │ │ │ | 1 5 5 5 | │ │ │ | - - - - - - | │ │ │ | 2 2 2 2 | │ │ │ o6 = |x x x x | │ │ │ | 1 2 4 5 | │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : R = QQ[t_1..t_5]; │ │ │ │ │ │ i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3, t_2*t_4); │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : solveFrobeniusIdeal I │ │ │ - -- .000004088s elapsed │ │ │ + -- .000006091s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o3 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,15 +24,15 @@ │ │ │ 2 4 0 4 4 1 2 4 2 4 4 3 4 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : W = makeWeylAlgebra(QQ[x_1..x_5]); │ │ │ │ │ │ i5 : solveFrobeniusIdeal(I, W) │ │ │ - -- .00000535s elapsed │ │ │ + -- .000006339s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o5 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ @@ -134,19 +134,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │ - -- .000004479s elapsed
    │ │ │ - -- .000004238s elapsed
    │ │ │ - -- .000003977s elapsed
    │ │ │ - -- .000001883s elapsed
    │ │ │ - -- .000001392s elapsed
    │ │ │ + -- .000009152s elapsed
    │ │ │ + -- .000007958s elapsed
    │ │ │ + -- .00000841s elapsed
    │ │ │ + -- .000008402s elapsed
    │ │ │ + -- .000009382s elapsed
    │ │ │  
    │ │ │       +----------------------------------------------------+
    │ │ │       |   1 5   5 5                                        |
    │ │ │       | - - - - - -                                        |
    │ │ │       |   2 2   2 2                                        |
    │ │ │  o6 = |x   x x   x                                         |
    │ │ │       | 1   2 4   5                                        |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -57,19 +57,19 @@
    │ │ │ │  o5 = {9, 1, 99999, 9999999, 3, 999}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │ - -- .000004479s elapsed
    │ │ │ │ - -- .000004238s elapsed
    │ │ │ │ - -- .000003977s elapsed
    │ │ │ │ - -- .000001883s elapsed
    │ │ │ │ - -- .000001392s elapsed
    │ │ │ │ + -- .000009152s elapsed
    │ │ │ │ + -- .000007958s elapsed
    │ │ │ │ + -- .00000841s elapsed
    │ │ │ │ + -- .000008402s elapsed
    │ │ │ │ + -- .000009382s elapsed
    │ │ │ │  
    │ │ │ │       +----------------------------------------------------+
    │ │ │ │       |   1 5   5 5                                        |
    │ │ │ │       | - - - - - -                                        |
    │ │ │ │       |   2 2   2 2                                        |
    │ │ │ │  o6 = |x   x x   x                                         |
    │ │ │ │       | 1   2 4   5                                        |
    │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html
    │ │ │ @@ -84,15 +84,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : solveFrobeniusIdeal I
    │ │ │ - -- .000004088s elapsed
    │ │ │ + -- .000006091s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │              
    │ │ │                
    i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : solveFrobeniusIdeal(I, W)
    │ │ │ - -- .00000535s elapsed
    │ │ │ + -- .000006339s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  Here is [_S_S_T, Example 2.3.16]:
    │ │ │ │  i1 : R = QQ[t_1..t_5];
    │ │ │ │  i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3,
    │ │ │ │  t_2*t_4);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : solveFrobeniusIdeal I
    │ │ │ │ - -- .000004088s elapsed
    │ │ │ │ + -- .000006091s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │         1             1             1             3                 2
    │ │ │ │       - -logX logX  - -logX logX  - -logX logX  - -logX logX  + logX }
    │ │ │ │         2    4    0   4    4    1   2    4    2   4    4    3       4
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │  i5 : solveFrobeniusIdeal(I, W)
    │ │ │ │ - -- .00000535s elapsed
    │ │ │ │ + -- .000006339s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out
    │ │ │ @@ -85,19 +85,16 @@
    │ │ │  
    │ │ │  o13 = 600
    │ │ │  
    │ │ │  i14 : H' = select(keys H, k->H#k != 0);
    │ │ │  
    │ │ │  i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -151,22 +148,25 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │  
    │ │ │  i17 : bracketMatrix(A,1,2)
    │ │ │  
    │ │ │  o17 = | 0    -T_8 -T_6 -T_7 -T_10 |
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html
    │ │ │ @@ -215,19 +215,16 @@
    │ │ │                
    i14 : H' = select(keys H, k->H#k != 0);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -281,25 +278,28 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -118,19 +118,16 @@ │ │ │ │ 37 38 39 40 41 42 43 44 │ │ │ │ i13 : #keys H │ │ │ │ │ │ │ │ o13 = 600 │ │ │ │ i14 : H' = select(keys H, k->H#k != 0); │ │ │ │ i15 : H' │ │ │ │ │ │ │ │ -o15 = {({T , T }, T T + T T - z*T + y*T ), ({T , T }, - T T + y*T ), │ │ │ │ - 3 7 4 6 3 7 11 13 2 9 2 9 16 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - ({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ - 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ +o15 = {({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ + 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ({T , T }, T T - T T + x*T ), ({T , T }, - T T + z*T ), ({T , │ │ │ │ 1 10 4 6 1 10 20 5 9 5 9 16 3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T }, T T - z*T + x*T ), ({T , T }, - T T - T T - z*T + x*T ), │ │ │ │ 7 3 7 11 12 5 6 5 6 1 9 14 17 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -184,21 +181,24 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ z*T ), ({T , T }, T T - T T - z*T + z*T ), ({T , T }, T T + │ │ │ │ 17 5 10 4 9 5 10 17 19 3 8 2 6 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T T + T T + y*T - z*T ), ({T , T }, T T + y*T - z*T ), ({T , │ │ │ │ 3 8 4 9 14 17 3 6 3 6 11 12 5 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - T }, - T T - T T + z*T + z*T )} │ │ │ │ - 7 5 7 4 10 12 20 │ │ │ │ + T }, - T T - T T + z*T + z*T ), ({T , T }, T T + T T - z*T + │ │ │ │ + 7 5 7 4 10 12 20 3 7 4 6 3 7 11 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + y*T ), ({T , T }, - T T + y*T )} │ │ │ │ + 13 2 9 2 9 16 │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : H#(H'_0) │ │ │ │ │ │ │ │ -o16 = 1 │ │ │ │ +o16 = -1 │ │ │ │ │ │ │ │ o16 : S[T ..T ] │ │ │ │ 1 99 │ │ │ │ From this we see that [T_5, T_6] sends T_37 to -1 in kk. │ │ │ │ Another, often simpler view of the pairing is given by _b_r_a_c_k_e_t_M_a_t_r_i_x, where the │ │ │ │ rows and columns correspond to the generators of Pi^d and Pi^e, and the entries │ │ │ │ are the bracket products, interpreted as elements of Pi^{d+e}. Note the anti- │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/example-output/_cone_lp__Arrangement_cm__Ring__Element_rp.out │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ │ │ o13 = {x, y, x - y, 0, - x + y, x} │ │ │ │ │ │ o13 : Hyperplane Arrangement │ │ │ │ │ │ i14 : cA'' = trim cone(A, x) │ │ │ │ │ │ -o14 = {x - y, y, x} │ │ │ +o14 = {y, x, x - y} │ │ │ │ │ │ o14 : Hyperplane Arrangement │ │ │ │ │ │ i15 : assert isCentral cA'' │ │ │ │ │ │ i16 : assert(# hyperplanes cA'' =!= 1 + # hyperplanes A) │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/example-output/_type__B_lp__Z__Z_cm__Ring_rp.out │ │ │ @@ -33,16 +33,16 @@ │ │ │ o5 = {x , x + x , x + x , x } │ │ │ 1 1 2 1 2 2 │ │ │ │ │ │ o5 : Hyperplane Arrangement │ │ │ │ │ │ i6 : trim A3 │ │ │ │ │ │ -o6 = {x , x , x + x } │ │ │ - 2 1 1 2 │ │ │ +o6 = {x + x , x , x } │ │ │ + 1 2 2 1 │ │ │ │ │ │ o6 : Hyperplane Arrangement │ │ │ │ │ │ i7 : ring A3 │ │ │ │ │ │ ZZ │ │ │ o7 = --[x ..x ] │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/html/_cone_lp__Arrangement_cm__Ring__Element_rp.html │ │ │ @@ -167,15 +167,15 @@ │ │ │ o13 : Hyperplane Arrangement
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : cA'' = trim cone(A, x)
    │ │ │  
    │ │ │ -o14 = {x - y, y, x}
    │ │ │ +o14 = {y, x, x - y}
    │ │ │  
    │ │ │  o14 : Hyperplane Arrangement 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : assert isCentral cA''
    │ │ │ ├── html2text {} │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ i13 : cone(A, x) │ │ │ │ │ │ │ │ o13 = {x, y, x - y, 0, - x + y, x} │ │ │ │ │ │ │ │ o13 : Hyperplane Arrangement │ │ │ │ i14 : cA'' = trim cone(A, x) │ │ │ │ │ │ │ │ -o14 = {x - y, y, x} │ │ │ │ +o14 = {y, x, x - y} │ │ │ │ │ │ │ │ o14 : Hyperplane Arrangement │ │ │ │ i15 : assert isCentral cA'' │ │ │ │ i16 : assert(# hyperplanes cA'' =!= 1 + # hyperplanes A) │ │ │ │ When the second input is a _S_y_m_b_o_l, this method creates a new ring from the │ │ │ │ underlying ring of $A$ by adjoining the symbol as a variable and constructs the │ │ │ │ cone in this new ring. │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/html/_type__B_lp__Z__Z_cm__Ring_rp.html │ │ │ @@ -125,16 +125,16 @@ │ │ │ o5 : Hyperplane Arrangement
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : trim A3
    │ │ │  
    │ │ │ -o6 = {x , x , x  + x }
    │ │ │ -       2   1   1    2
    │ │ │ +o6 = {x  + x , x , x }
    │ │ │ +       1    2   2   1
    │ │ │  
    │ │ │  o6 : Hyperplane Arrangement 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : ring A3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,16 +51,16 @@
    │ │ │ │  
    │ │ │ │  o5 = {x , x  + x , x  + x , x }
    │ │ │ │         1   1    2   1    2   2
    │ │ │ │  
    │ │ │ │  o5 : Hyperplane Arrangement
    │ │ │ │  i6 : trim A3
    │ │ │ │  
    │ │ │ │ -o6 = {x , x , x  + x }
    │ │ │ │ -       2   1   1    2
    │ │ │ │ +o6 = {x  + x , x , x }
    │ │ │ │ +       1    2   2   1
    │ │ │ │  
    │ │ │ │  o6 : Hyperplane Arrangement
    │ │ │ │  i7 : ring A3
    │ │ │ │  
    │ │ │ │       ZZ
    │ │ │ │  o7 = --[x ..x ]
    │ │ │ │        2  1   2
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -16,15 +16,15 @@
    │ │ │  i3 : R = S/f
    │ │ │  
    │ │ │  o3 = R
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : time R' = integralClosure R
    │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc)
    │ │ │ + -- used 0.773624s (cpu); 0.40907s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  i9 : R = S/f
    │ │ │  
    │ │ │  o9 = R
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc)
    │ │ │ + -- used 0.837092s (cpu); 0.431171s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -150,15 +150,15 @@
    │ │ │  i15 : R = S/f
    │ │ │  
    │ │ │  o15 = R
    │ │ │  
    │ │ │  o15 : QuotientRing
    │ │ │  
    │ │ │  i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc)
    │ │ │ + -- used 0.841117s (cpu); 0.413169s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -208,15 +208,15 @@
    │ │ │  i20 : R = S/f
    │ │ │  
    │ │ │  o20 = R
    │ │ │  
    │ │ │  o20 : QuotientRing
    │ │ │  
    │ │ │  i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc)
    │ │ │ + -- used 0.937218s (cpu); 0.469773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │  
    │ │ │  i22 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -266,15 +266,15 @@
    │ │ │  i25 : R = S/f
    │ │ │  
    │ │ │  o25 = R
    │ │ │  
    │ │ │  o25 : QuotientRing
    │ │ │  
    │ │ │  i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc)
    │ │ │ + -- used 1.80255s (cpu); 0.811293s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │  
    │ │ │  i27 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │  i30 : R = S/f
    │ │ │  
    │ │ │  o30 = R
    │ │ │  
    │ │ │  o30 : QuotientRing
    │ │ │  
    │ │ │  i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc)
    │ │ │ + -- used 0.586979s (cpu); 0.410297s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │  
    │ │ │  i32 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -382,15 +382,15 @@
    │ │ │  i35 : R = S/f
    │ │ │  
    │ │ │  o35 = R
    │ │ │  
    │ │ │  o35 : QuotientRing
    │ │ │  
    │ │ │  i36 : time R' = integralClosure R
    │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc)
    │ │ │ + -- used 0.0528371s (cpu); 0.0528351s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │  
    │ │ │  i37 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -432,15 +432,15 @@
    │ │ │  i40 : R = S/I
    │ │ │  
    │ │ │  o40 = R
    │ │ │  
    │ │ │  o40 : QuotientRing
    │ │ │  
    │ │ │  i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc)
    │ │ │ + -- used 0.0515378s (cpu); 0.0515377s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │  
    │ │ │  i42 : icFractions R
    │ │ │  
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  i45 : R = S/I
    │ │ │  
    │ │ │  o45 = R
    │ │ │  
    │ │ │  o45 : QuotientRing
    │ │ │  
    │ │ │  i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc)
    │ │ │ + -- used 0.0746811s (cpu); 0.074676s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │  
    │ │ │  i47 : icFractions R
    │ │ │  
    │ │ │ @@ -501,15 +501,15 @@
    │ │ │  i50 : R = S/I
    │ │ │  
    │ │ │  o50 = R
    │ │ │  
    │ │ │  o50 : QuotientRing
    │ │ │  
    │ │ │  i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc)
    │ │ │ + -- used 0.0578376s (cpu); 0.0578344s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │  
    │ │ │  i52 : icFractions R
    │ │ │  
    │ │ │ @@ -536,15 +536,15 @@
    │ │ │  i55 : R = S/I
    │ │ │  
    │ │ │  o55 = R
    │ │ │  
    │ │ │  o55 : QuotientRing
    │ │ │  
    │ │ │  i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc)
    │ │ │ + -- used 0.0707296s (cpu); 0.0707291s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │  
    │ │ │  i57 : icFractions R
    │ │ │  
    │ │ │ @@ -632,15 +632,15 @@
    │ │ │  i66 : R = S/I
    │ │ │  
    │ │ │  o66 = R
    │ │ │  
    │ │ │  o66 : QuotientRing
    │ │ │  
    │ │ │  i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc)
    │ │ │ + -- used 0.192702s (cpu); 0.101797s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │  
    │ │ │  i68 : icFractions R
    │ │ │  
    │ │ │ @@ -721,15 +721,15 @@
    │ │ │  i77 : R = S/I
    │ │ │  
    │ │ │  o77 = R
    │ │ │  
    │ │ │  o77 : QuotientRing
    │ │ │  
    │ │ │  i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc)
    │ │ │ + -- used 0.460915s (cpu); 0.384805s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │  
    │ │ │  i79 : icFractions R
    │ │ │  
    │ │ │ @@ -749,15 +749,15 @@
    │ │ │  i81 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o81 = R
    │ │ │  
    │ │ │  o81 : QuotientRing
    │ │ │  
    │ │ │  i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc)
    │ │ │ + -- used 0.543551s (cpu); 0.397206s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │  
    │ │ │  i83 : icFractions R
    │ │ │  
    │ │ │ @@ -777,20 +777,20 @@
    │ │ │  i85 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o85 = R
    │ │ │  
    │ │ │  o85 : QuotientRing
    │ │ │  
    │ │ │  i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time .000568686 sec #minors 4]
    │ │ │ + [jacobian time .000603284 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .205692 sec  #fractions 6]
    │ │ │ - [step 1:   time .231823 sec  #fractions 6]
    │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc)
    │ │ │ + [step 0:   time .213744 sec  #fractions 6]
    │ │ │ + [step 1:   time .259694 sec  #fractions 6]
    │ │ │ + -- used 0.477789s (cpu); 0.323215s (thread); 0s (gc)
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │  
    │ │ │  i87 : icFractions R
    │ │ │  
    │ │ │ @@ -810,20 +810,20 @@
    │ │ │  i89 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o89 = R
    │ │ │  
    │ │ │  o89 : QuotientRing
    │ │ │  
    │ │ │  i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ - [jacobian time .000531076 sec #minors 4]
    │ │ │ + [jacobian time .00057524 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0900187 sec  #fractions 6]
    │ │ │ - [step 1:   time .361551 sec  #fractions 6]
    │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc)
    │ │ │ + [step 0:   time .105492 sec  #fractions 6]
    │ │ │ + [step 1:   time .461168 sec  #fractions 6]
    │ │ │ + -- used 0.570765s (cpu); 0.394537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │  
    │ │ │  i91 : icFractions R
    │ │ │  
    │ │ │ @@ -843,20 +843,20 @@
    │ │ │  i93 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o93 = R
    │ │ │  
    │ │ │  o93 : QuotientRing
    │ │ │  
    │ │ │  i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │ - [jacobian time .000614342 sec #minors 1]
    │ │ │ + [jacobian time .000766695 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .115349 sec  #fractions 6]
    │ │ │ - [step 1:   time .476597 sec  #fractions 6]
    │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc)
    │ │ │ + [step 0:   time .136626 sec  #fractions 6]
    │ │ │ + [step 1:   time .525447 sec  #fractions 6]
    │ │ │ + -- used 0.666555s (cpu); 0.486827s (thread); 0s (gc)
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │  
    │ │ │  i95 : icFractions R
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out
    │ │ │ @@ -1,50 +1,50 @@
    │ │ │  -- -*- M2-comint -*- hash: 13177954069434615273
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │  
    │ │ │  i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .000590017 sec #minors 3]
    │ │ │ + [jacobian time .000607332 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │ -      radical (use minprimes) .00261628 seconds
    │ │ │ -      idlizer1:  .00964141 seconds
    │ │ │ -      idlizer2:  .00985369 seconds
    │ │ │ -      minpres:   .00867646 seconds
    │ │ │ -  time .0425597 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00346468 seconds
    │ │ │ +      idlizer1:  .0097807 seconds
    │ │ │ +      idlizer2:  .0110849 seconds
    │ │ │ +      minpres:   .0106139 seconds
    │ │ │ +  time .0481789 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00239377 seconds
    │ │ │ -      idlizer1:  .0111541 seconds
    │ │ │ -      idlizer2:  .00992828 seconds
    │ │ │ -      minpres:   .0111938 seconds
    │ │ │ -  time .0454337 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00275511 seconds
    │ │ │ +      idlizer1:  .014126 seconds
    │ │ │ +      idlizer2:  .0125221 seconds
    │ │ │ +      minpres:   .0146113 seconds
    │ │ │ +  time .0571029 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │ -      radical (use minprimes) .00239345 seconds
    │ │ │ -      idlizer1:  .0115122 seconds
    │ │ │ -      idlizer2:  .00971861 seconds
    │ │ │ -      minpres:   .00890232 seconds
    │ │ │ -  time .0434159 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00285978 seconds
    │ │ │ +      idlizer1:  .0141329 seconds
    │ │ │ +      idlizer2:  .0117474 seconds
    │ │ │ +      minpres:   .0110254 seconds
    │ │ │ +  time .0527172 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) .00252848 seconds
    │ │ │ -      idlizer1:  .118442 seconds
    │ │ │ -      idlizer2:  .0133284 seconds
    │ │ │ -      minpres:   .0156925 seconds
    │ │ │ -  time .162067 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00297411 seconds
    │ │ │ +      idlizer1:  .137512 seconds
    │ │ │ +      idlizer2:  .0150726 seconds
    │ │ │ +      minpres:   .0185573 seconds
    │ │ │ +  time .188397 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) .00282827 seconds
    │ │ │ -      idlizer1:  .00924351 seconds
    │ │ │ -      idlizer2:  .0162379 seconds
    │ │ │ -      minpres:   .0120262 seconds
    │ │ │ -  time .0536223 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00285856 seconds
    │ │ │ +      idlizer1:  .0112043 seconds
    │ │ │ +      idlizer2:  .0182633 seconds
    │ │ │ +      minpres:   .0190476 seconds
    │ │ │ +  time .0671292 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00232149 seconds
    │ │ │ -      idlizer1:  .00789534 seconds
    │ │ │ -  time .0169089 sec  #fractions 5]
    │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc)
    │ │ │ +      radical (use minprimes) .00283719 seconds
    │ │ │ +      idlizer1:  .0103612 seconds
    │ │ │ +  time .0217275 sec  #fractions 5]
    │ │ │ + -- used 0.439793s (cpu); 0.360658s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │  i3 : trim ideal R'
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out
    │ │ │ @@ -13,26 +13,26 @@
    │ │ │  
    │ │ │                  2      2    2        2   2 2     2
    │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │  
    │ │ │  o3 : Ideal of S
    │ │ │  
    │ │ │  i4 : time integralClosure J
    │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ + -- used 1.41194s (cpu); 0.808542s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │  
    │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ + -- used 0.952755s (cpu); 0.556928s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time R' = integralClosure R
    │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc)
    │ │ │ + -- used 0.773624s (cpu); 0.40907s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -186,15 +186,15 @@ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc)
    │ │ │ + -- used 0.837092s (cpu); 0.431171s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -273,15 +273,15 @@ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc)
    │ │ │ + -- used 0.841117s (cpu); 0.413169s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -348,15 +348,15 @@ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc)
    │ │ │ + -- used 0.937218s (cpu); 0.469773s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -423,15 +423,15 @@ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc)
    │ │ │ + -- used 1.80255s (cpu); 0.811293s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -498,15 +498,15 @@ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc)
    │ │ │ + -- used 0.586979s (cpu); 0.410297s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i36 : time R' = integralClosure R
    │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc)
    │ │ │ + -- used 0.0528371s (cpu); 0.0528351s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -643,15 +643,15 @@ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc)
    │ │ │ + -- used 0.0515378s (cpu); 0.0515377s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -695,15 +695,15 @@ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc)
    │ │ │ + -- used 0.0746811s (cpu); 0.074676s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -746,15 +746,15 @@ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc)
    │ │ │ + -- used 0.0578376s (cpu); 0.0578344s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc)
    │ │ │ + -- used 0.0707296s (cpu); 0.0707291s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -932,15 +932,15 @@ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc)
    │ │ │ + -- used 0.192702s (cpu); 0.101797s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1056,15 +1056,15 @@ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc)
    │ │ │ + -- used 0.460915s (cpu); 0.384805s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1098,15 +1098,15 @@ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc)
    │ │ │ + -- used 0.543551s (cpu); 0.397206s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1140,20 +1140,20 @@ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time .000568686 sec #minors 4]
    │ │ │ + [jacobian time .000603284 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .205692 sec  #fractions 6]
    │ │ │ - [step 1:   time .231823 sec  #fractions 6]
    │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc)
    │ │ │ + [step 0:   time .213744 sec  #fractions 6]
    │ │ │ + [step 1:   time .259694 sec  #fractions 6]
    │ │ │ + -- used 0.477789s (cpu); 0.323215s (thread); 0s (gc)
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1187,20 +1187,20 @@ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ - [jacobian time .000531076 sec #minors 4]
    │ │ │ + [jacobian time .00057524 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0900187 sec  #fractions 6]
    │ │ │ - [step 1:   time .361551 sec  #fractions 6]
    │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc)
    │ │ │ + [step 0:   time .105492 sec  #fractions 6]
    │ │ │ + [step 1:   time .461168 sec  #fractions 6]
    │ │ │ + -- used 0.570765s (cpu); 0.394537s (thread); 0s (gc)
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1237,20 +1237,20 @@ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │ - [jacobian time .000614342 sec #minors 1]
    │ │ │ + [jacobian time .000766695 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .115349 sec  #fractions 6]
    │ │ │ - [step 1:   time .476597 sec  #fractions 6]
    │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc)
    │ │ │ + [step 0:   time .136626 sec  #fractions 6]
    │ │ │ + [step 1:   time .525447 sec  #fractions 6]
    │ │ │ + -- used 0.666555s (cpu); 0.486827s (thread); 0s (gc)
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,15 +48,15 @@ │ │ │ │ o2 : Ideal of S │ │ │ │ i3 : R = S/f │ │ │ │ │ │ │ │ o3 = R │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : time R' = integralClosure R │ │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc) │ │ │ │ + -- used 0.773624s (cpu); 0.40907s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = R' │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------+ │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : R = S/f │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc) │ │ │ │ + -- used 0.837092s (cpu); 0.431171s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = R' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : R = S/f │ │ │ │ │ │ │ │ o15 = R │ │ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ i16 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc) │ │ │ │ + -- used 0.841117s (cpu); 0.413169s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = R' │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ i17 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -281,15 +281,15 @@ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : R = S/f │ │ │ │ │ │ │ │ o20 = R │ │ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ i21 : time R' = integralClosure(R, Strategy => SimplifyFractions) │ │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc) │ │ │ │ + -- used 0.937218s (cpu); 0.469773s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = R' │ │ │ │ │ │ │ │ o21 : QuotientRing │ │ │ │ i22 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -363,15 +363,15 @@ │ │ │ │ o24 : Ideal of S │ │ │ │ i25 : R = S/f │ │ │ │ │ │ │ │ o25 = R │ │ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ i26 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc) │ │ │ │ + -- used 1.80255s (cpu); 0.811293s (thread); 0s (gc) │ │ │ │ │ │ │ │ o26 = R' │ │ │ │ │ │ │ │ o26 : QuotientRing │ │ │ │ i27 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -445,15 +445,15 @@ │ │ │ │ o29 : Ideal of S │ │ │ │ i30 : R = S/f │ │ │ │ │ │ │ │ o30 = R │ │ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ i31 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc) │ │ │ │ + -- used 0.586979s (cpu); 0.410297s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = R' │ │ │ │ │ │ │ │ o31 : QuotientRing │ │ │ │ i32 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -527,15 +527,15 @@ │ │ │ │ o34 : Ideal of S │ │ │ │ i35 : R = S/f │ │ │ │ │ │ │ │ o35 = R │ │ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ i36 : time R' = integralClosure R │ │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc) │ │ │ │ + -- used 0.0528371s (cpu); 0.0528351s (thread); 0s (gc) │ │ │ │ │ │ │ │ o36 = R' │ │ │ │ │ │ │ │ o36 : QuotientRing │ │ │ │ i37 : netList (ideal R')_* │ │ │ │ │ │ │ │ +-----------+ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ o39 : Ideal of S │ │ │ │ i40 : R = S/I │ │ │ │ │ │ │ │ o40 = R │ │ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ i41 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc) │ │ │ │ + -- used 0.0515378s (cpu); 0.0515377s (thread); 0s (gc) │ │ │ │ │ │ │ │ o41 = R' │ │ │ │ │ │ │ │ o41 : QuotientRing │ │ │ │ i42 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -603,15 +603,15 @@ │ │ │ │ o44 : Ideal of S │ │ │ │ i45 : R = S/I │ │ │ │ │ │ │ │ o45 = R │ │ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ i46 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc) │ │ │ │ + -- used 0.0746811s (cpu); 0.074676s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = R' │ │ │ │ │ │ │ │ o46 : QuotientRing │ │ │ │ i47 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -632,15 +632,15 @@ │ │ │ │ o49 : Ideal of S │ │ │ │ i50 : R = S/I │ │ │ │ │ │ │ │ o50 = R │ │ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ i51 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc) │ │ │ │ + -- used 0.0578376s (cpu); 0.0578344s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = R' │ │ │ │ │ │ │ │ o51 : QuotientRing │ │ │ │ i52 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -662,15 +662,15 @@ │ │ │ │ o54 : Ideal of S │ │ │ │ i55 : R = S/I │ │ │ │ │ │ │ │ o55 = R │ │ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ i56 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc) │ │ │ │ + -- used 0.0707296s (cpu); 0.0707291s (thread); 0s (gc) │ │ │ │ │ │ │ │ o56 = R' │ │ │ │ │ │ │ │ o56 : QuotientRing │ │ │ │ i57 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -754,15 +754,15 @@ │ │ │ │ o65 : BettiTally │ │ │ │ i66 : R = S/I │ │ │ │ │ │ │ │ o66 = R │ │ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ i67 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc) │ │ │ │ + -- used 0.192702s (cpu); 0.101797s (thread); 0s (gc) │ │ │ │ │ │ │ │ o67 = R' │ │ │ │ │ │ │ │ o67 : QuotientRing │ │ │ │ i68 : icFractions R │ │ │ │ │ │ │ │ 2 2 │ │ │ │ @@ -838,15 +838,15 @@ │ │ │ │ o76 : BettiTally │ │ │ │ i77 : R = S/I │ │ │ │ │ │ │ │ o77 = R │ │ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ i78 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc) │ │ │ │ + -- used 0.460915s (cpu); 0.384805s (thread); 0s (gc) │ │ │ │ │ │ │ │ o78 = R' │ │ │ │ │ │ │ │ o78 : QuotientRing │ │ │ │ i79 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -862,15 +862,15 @@ │ │ │ │ o80 : PolynomialRing │ │ │ │ i81 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o81 = R │ │ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ i82 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc) │ │ │ │ + -- used 0.543551s (cpu); 0.397206s (thread); 0s (gc) │ │ │ │ │ │ │ │ o82 = R' │ │ │ │ │ │ │ │ o82 : QuotientRing │ │ │ │ i83 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -886,20 +886,20 @@ │ │ │ │ o84 : PolynomialRing │ │ │ │ i85 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o85 = R │ │ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1) │ │ │ │ - [jacobian time .000568686 sec #minors 4] │ │ │ │ + [jacobian time .000603284 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .205692 sec #fractions 6] │ │ │ │ - [step 1: time .231823 sec #fractions 6] │ │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc) │ │ │ │ + [step 0: time .213744 sec #fractions 6] │ │ │ │ + [step 1: time .259694 sec #fractions 6] │ │ │ │ + -- used 0.477789s (cpu); 0.323215s (thread); 0s (gc) │ │ │ │ │ │ │ │ o86 = R' │ │ │ │ │ │ │ │ o86 : QuotientRing │ │ │ │ i87 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -915,20 +915,20 @@ │ │ │ │ o88 : PolynomialRing │ │ │ │ i89 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o89 = R │ │ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1) │ │ │ │ - [jacobian time .000531076 sec #minors 4] │ │ │ │ + [jacobian time .00057524 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .0900187 sec #fractions 6] │ │ │ │ - [step 1: time .361551 sec #fractions 6] │ │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc) │ │ │ │ + [step 0: time .105492 sec #fractions 6] │ │ │ │ + [step 1: time .461168 sec #fractions 6] │ │ │ │ + -- used 0.570765s (cpu); 0.394537s (thread); 0s (gc) │ │ │ │ │ │ │ │ o90 = R' │ │ │ │ │ │ │ │ o90 : QuotientRing │ │ │ │ i91 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -947,20 +947,20 @@ │ │ │ │ i93 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o93 = R │ │ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, │ │ │ │ StartWithOneMinor}, Verbosity => 1) │ │ │ │ - [jacobian time .000614342 sec #minors 1] │ │ │ │ + [jacobian time .000766695 sec #minors 1] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .115349 sec #fractions 6] │ │ │ │ - [step 1: time .476597 sec #fractions 6] │ │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc) │ │ │ │ + [step 0: time .136626 sec #fractions 6] │ │ │ │ + [step 1: time .525447 sec #fractions 6] │ │ │ │ + -- used 0.666555s (cpu); 0.486827s (thread); 0s (gc) │ │ │ │ │ │ │ │ o94 = R' │ │ │ │ │ │ │ │ o94 : QuotientRing │ │ │ │ i95 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 2 3 2 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ @@ -71,52 +71,52 @@ │ │ │ │ │ │
    i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .000590017 sec #minors 3]
    │ │ │ + [jacobian time .000607332 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │ -      radical (use minprimes) .00261628 seconds
    │ │ │ -      idlizer1:  .00964141 seconds
    │ │ │ -      idlizer2:  .00985369 seconds
    │ │ │ -      minpres:   .00867646 seconds
    │ │ │ -  time .0425597 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00346468 seconds
    │ │ │ +      idlizer1:  .0097807 seconds
    │ │ │ +      idlizer2:  .0110849 seconds
    │ │ │ +      minpres:   .0106139 seconds
    │ │ │ +  time .0481789 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00239377 seconds
    │ │ │ -      idlizer1:  .0111541 seconds
    │ │ │ -      idlizer2:  .00992828 seconds
    │ │ │ -      minpres:   .0111938 seconds
    │ │ │ -  time .0454337 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00275511 seconds
    │ │ │ +      idlizer1:  .014126 seconds
    │ │ │ +      idlizer2:  .0125221 seconds
    │ │ │ +      minpres:   .0146113 seconds
    │ │ │ +  time .0571029 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │ -      radical (use minprimes) .00239345 seconds
    │ │ │ -      idlizer1:  .0115122 seconds
    │ │ │ -      idlizer2:  .00971861 seconds
    │ │ │ -      minpres:   .00890232 seconds
    │ │ │ -  time .0434159 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00285978 seconds
    │ │ │ +      idlizer1:  .0141329 seconds
    │ │ │ +      idlizer2:  .0117474 seconds
    │ │ │ +      minpres:   .0110254 seconds
    │ │ │ +  time .0527172 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) .00252848 seconds
    │ │ │ -      idlizer1:  .118442 seconds
    │ │ │ -      idlizer2:  .0133284 seconds
    │ │ │ -      minpres:   .0156925 seconds
    │ │ │ -  time .162067 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00297411 seconds
    │ │ │ +      idlizer1:  .137512 seconds
    │ │ │ +      idlizer2:  .0150726 seconds
    │ │ │ +      minpres:   .0185573 seconds
    │ │ │ +  time .188397 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) .00282827 seconds
    │ │ │ -      idlizer1:  .00924351 seconds
    │ │ │ -      idlizer2:  .0162379 seconds
    │ │ │ -      minpres:   .0120262 seconds
    │ │ │ -  time .0536223 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00285856 seconds
    │ │ │ +      idlizer1:  .0112043 seconds
    │ │ │ +      idlizer2:  .0182633 seconds
    │ │ │ +      minpres:   .0190476 seconds
    │ │ │ +  time .0671292 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00232149 seconds
    │ │ │ -      idlizer1:  .00789534 seconds
    │ │ │ -  time .0169089 sec  #fractions 5]
    │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc)
    │ │ │ +      radical (use minprimes) .00283719 seconds
    │ │ │ +      idlizer1:  .0103612 seconds
    │ │ │ +  time .0217275 sec  #fractions 5]
    │ │ │ + -- used 0.439793s (cpu); 0.360658s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,52 +12,52 @@ │ │ │ │ displayed. A value of 0 means: keep quiet. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ When the computation takes a considerable time, this function can be used to │ │ │ │ decide if it will ever finish, or to get a feel for what is happening during │ │ │ │ the computation. │ │ │ │ i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); │ │ │ │ i2 : time R' = integralClosure(R, Verbosity => 2) │ │ │ │ - [jacobian time .000590017 sec #minors 3] │ │ │ │ + [jacobian time .000607332 sec #minors 3] │ │ │ │ integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ [step 0: │ │ │ │ - radical (use minprimes) .00261628 seconds │ │ │ │ - idlizer1: .00964141 seconds │ │ │ │ - idlizer2: .00985369 seconds │ │ │ │ - minpres: .00867646 seconds │ │ │ │ - time .0425597 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00346468 seconds │ │ │ │ + idlizer1: .0097807 seconds │ │ │ │ + idlizer2: .0110849 seconds │ │ │ │ + minpres: .0106139 seconds │ │ │ │ + time .0481789 sec #fractions 4] │ │ │ │ [step 1: │ │ │ │ - radical (use minprimes) .00239377 seconds │ │ │ │ - idlizer1: .0111541 seconds │ │ │ │ - idlizer2: .00992828 seconds │ │ │ │ - minpres: .0111938 seconds │ │ │ │ - time .0454337 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00275511 seconds │ │ │ │ + idlizer1: .014126 seconds │ │ │ │ + idlizer2: .0125221 seconds │ │ │ │ + minpres: .0146113 seconds │ │ │ │ + time .0571029 sec #fractions 4] │ │ │ │ [step 2: │ │ │ │ - radical (use minprimes) .00239345 seconds │ │ │ │ - idlizer1: .0115122 seconds │ │ │ │ - idlizer2: .00971861 seconds │ │ │ │ - minpres: .00890232 seconds │ │ │ │ - time .0434159 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00285978 seconds │ │ │ │ + idlizer1: .0141329 seconds │ │ │ │ + idlizer2: .0117474 seconds │ │ │ │ + minpres: .0110254 seconds │ │ │ │ + time .0527172 sec #fractions 5] │ │ │ │ [step 3: │ │ │ │ - radical (use minprimes) .00252848 seconds │ │ │ │ - idlizer1: .118442 seconds │ │ │ │ - idlizer2: .0133284 seconds │ │ │ │ - minpres: .0156925 seconds │ │ │ │ - time .162067 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00297411 seconds │ │ │ │ + idlizer1: .137512 seconds │ │ │ │ + idlizer2: .0150726 seconds │ │ │ │ + minpres: .0185573 seconds │ │ │ │ + time .188397 sec #fractions 5] │ │ │ │ [step 4: │ │ │ │ - radical (use minprimes) .00282827 seconds │ │ │ │ - idlizer1: .00924351 seconds │ │ │ │ - idlizer2: .0162379 seconds │ │ │ │ - minpres: .0120262 seconds │ │ │ │ - time .0536223 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00285856 seconds │ │ │ │ + idlizer1: .0112043 seconds │ │ │ │ + idlizer2: .0182633 seconds │ │ │ │ + minpres: .0190476 seconds │ │ │ │ + time .0671292 sec #fractions 5] │ │ │ │ [step 5: │ │ │ │ - radical (use minprimes) .00232149 seconds │ │ │ │ - idlizer1: .00789534 seconds │ │ │ │ - time .0169089 sec #fractions 5] │ │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc) │ │ │ │ + radical (use minprimes) .00283719 seconds │ │ │ │ + idlizer1: .0103612 seconds │ │ │ │ + time .0217275 sec #fractions 5] │ │ │ │ + -- used 0.439793s (cpu); 0.360658s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = R' │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : trim ideal R' │ │ │ │ │ │ │ │ 3 2 2 2 4 4 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ @@ -109,29 +109,29 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time integralClosure J
    │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ + -- used 1.41194s (cpu); 0.808542s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ + -- used 0.952755s (cpu); 0.556928s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,25 +46,25 @@
    │ │ │ │  i3 : J = ideal jacobian ideal F
    │ │ │ │  
    │ │ │ │                  2      2    2        2   2 2     2
    │ │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : time integralClosure J
    │ │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ │ + -- used 1.41194s (cpu); 0.808542s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ │ + -- used 0.952755s (cpu); 0.556928s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o3 : DiagonalAction
    │ │ │  
    │ │ │  i4 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o4 = false
    │ │ │  
    │ │ │  i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00274702s elapsed
    │ │ │ + -- .0034381s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -51,10 +51,10 @@
    │ │ │           0   1
    │ │ │  
    │ │ │  i6 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000427798s elapsed
    │ │ │ + -- .000586542s elapsed
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out
    │ │ │ @@ -23,23 +23,23 @@
    │ │ │  o3 = QQ[x..z] <- {| 0 -1 0  |, | 0 -1 0 |}
    │ │ │                    | 1 0  0  |  | 1 0  0 |
    │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ + -- used 0.943442s (cpu); 0.638119s (thread); 0s (gc)
    │ │ │  
    │ │ │         2   2    2   3       3
    │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ + -- used 0.784327s (cpu); 0.41924s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -90,23 +90,23 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │          2 6    8
    │ │ │       90y z  + z }
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ + -- used 0.0256658s (cpu); 0.0256669s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ + -- used 2.68634s (cpu); 1.52762s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out
    │ │ │ @@ -14,15 +14,15 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .779956s elapsed
    │ │ │ + -- .599156s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -32,15 +32,15 @@
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .524625s elapsed
    │ │ │ + -- .480397s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out
    │ │ │ @@ -14,28 +14,28 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .677194s elapsed
    │ │ │ + -- .570454s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .104964s elapsed
    │ │ │ + -- .0721791s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00274702s elapsed
    │ │ │ + -- .0034381s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000427798s elapsed
    │ │ │ + -- .000586542s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ | 0 -1 1 | │ │ │ │ │ │ │ │ o3 : DiagonalAction │ │ │ │ i4 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : elapsedTime equivariantHilbertSeries(T, Order => 5) │ │ │ │ - -- .00274702s elapsed │ │ │ │ + -- .0034381s elapsed │ │ │ │ │ │ │ │ -1 -1 2 2 -2 -1 -1 -2 2 │ │ │ │ o5 = 1 + (z z + z + z )T + (z z + z + z + z + z z + z )T + │ │ │ │ 0 1 1 0 0 1 0 1 1 0 1 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 2 -1 -3 -1 -1 -2 -2 -1 -3 3 │ │ │ │ (z z + z z + z z + z z + 1 + z + z z + z z + z z + z )T │ │ │ │ @@ -54,13 +54,13 @@ │ │ │ │ │ │ │ │ o5 : ZZ[z ..z ][T] │ │ │ │ 0 1 │ │ │ │ i6 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime equivariantHilbertSeries(T, Order => 5); │ │ │ │ - -- .000427798s elapsed │ │ │ │ + -- .000586542s elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _e_q_u_i_v_a_r_i_a_n_t_H_i_l_b_e_r_t is a _s_y_m_b_o_l. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/InvariantRing/AbelianGroupsDoc.m2:185:0. │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ @@ -92,26 +92,26 @@ │ │ │ │ │ │ │ │ │

    The two algorithms used in primaryInvariants are timed. One sees that the Dade algorithm is faster, however the primary invariants output are all of degree 8 and have ugly coefficients.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ + -- used 0.943442s (cpu); 0.638119s (thread); 0s (gc)
    │ │ │  
    │ │ │         2   2    2   3       3
    │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ + -- used 0.784327s (cpu); 0.41924s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -168,26 +168,26 @@
    │ │ │            
    │ │ │

    The extra work done by the default algorithm to ensure an optimal hsop is rewarded by needing to calculate a smaller collection of corresponding secondary invariants. In fact, it has proved quicker overall to calculate the invariant ring based on the optimal algorithm rather than the Dade algorithm.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ + -- used 0.0256658s (cpu); 0.0256669s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ + -- used 2.68634s (cpu); 1.52762s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  The two algorithms used in _p_r_i_m_a_r_y_I_n_v_a_r_i_a_n_t_s are timed. One sees that the Dade
    │ │ │ │  algorithm is faster, however the primary invariants output are all of degree 8
    │ │ │ │  and have ugly coefficients.
    │ │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ │ + -- used 0.943442s (cpu); 0.638119s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2   2    2   3       3
    │ │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ │ + -- used 0.784327s (cpu); 0.41924s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                     8                 7                   6 2
    │ │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     5 3                  4 4                 3 5
    │ │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -138,22 +138,22 @@
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  The extra work done by the default algorithm to ensure an optimal hsop is
    │ │ │ │  rewarded by needing to calculate a smaller collection of corresponding
    │ │ │ │  secondary invariants. In fact, it has proved quicker overall to calculate the
    │ │ │ │  invariant ring based on the optimal algorithm rather than the Dade algorithm.
    │ │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0256658s (cpu); 0.0256669s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            4    4
    │ │ │ │  o6 = {1, x  + y }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ │ + -- used 2.68634s (cpu); 1.52762s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4
    │ │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .779956s elapsed
    │ │ │ + -- .599156s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -117,15 +117,15 @@
    │ │ │              
    │ │ │
    i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .524625s elapsed
    │ │ │ + -- .480397s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .779956s elapsed
    │ │ │ │ + -- .599156s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ │  
    │ │ │ │  Warning: stopping condition not met!
    │ │ │ │  Output may not generate the entire ring of invariants.
    │ │ │ │  Increase value of DegreeBound.
    │ │ │ │  
    │ │ │ │ - -- .524625s elapsed
    │ │ │ │ + -- .480397s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .677194s elapsed
    │ │ │ + -- .570454s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .104964s elapsed
    │ │ │ + -- .0721791s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,27 +35,27 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .677194s elapsed
    │ │ │ │ + -- .570454s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │        4
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ │ - -- .104964s elapsed
    │ │ │ │ + -- .0721791s elapsed
    │ │ │ │  
    │ │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out
    │ │ │ @@ -156,20 +156,20 @@
    │ │ │                     {-1} | 0 0 0  0 0 0 0 0 0 0  0 0  0 0  0 0 0  0 0 0 0  0 0 0 0   0   0   0   0   0   0    0    0   0   0    0   0   0    0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    x_2  x_1  x_0  |  {-1} | 0   0    0   0    0   0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0    0    0    0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    x_0  0    0    0    0    0    0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     x_2 x_1 x_0^2 |
    │ │ │                     {-1} | 0 0 0  0 0 0 0 0 0 0  0 0  0 0  0 0 0  0 0 0 0  0 0 1 0   0   0   0   0   0   0    0    0   0   0    0   0   0    0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    |  {-1} | 0   0    0   0    0   0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0    0    0    0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0    x_0  -x_2 x_1  -x_3 x_2  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     x_3 x_2 x_1^2 |
    │ │ │  
    │ │ │                                  40
    │ │ │  o22 : S-module, subquotient of S
    │ │ │  
    │ │ │  i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ - -- 1.4004s elapsed
    │ │ │ + -- 1.60473s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ - -- .00002087s elapsed
    │ │ │ + -- .000037281s elapsed
    │ │ │  
    │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677  
    │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098 
    │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393 
    │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851 
    │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html
    │ │ │ @@ -328,23 +328,23 @@
    │ │ │                                  40
    │ │ │  o22 : S-module, subquotient of S
    │ │ │
    │ │ │
    i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ - -- 1.4004s elapsed
    │ │ │ + -- 1.60473s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ - -- .00002087s elapsed
    │ │ │ + -- .000037281s elapsed
    │ │ │  
    │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677  
    │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098 
    │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393 
    │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851 
    │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -684,19 +684,19 @@
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     x_3 x_2 x_1^2 |
    │ │ │ │  
    │ │ │ │                                  40
    │ │ │ │  o22 : S-module, subquotient of S
    │ │ │ │  i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ │ - -- 1.4004s elapsed
    │ │ │ │ + -- 1.60473s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ │ - -- .00002087s elapsed
    │ │ │ │ + -- .000037281s elapsed
    │ │ │ │  
    │ │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677
    │ │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098
    │ │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393
    │ │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851
    │ │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/example-output/_from__J__S__O__N.out
    │ │ │ @@ -39,19 +39,19 @@
    │ │ │  
    │ │ │  o8 = {1, 2, 3}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79402-0/0.json
    │ │ │  
    │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79402-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │  
    │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │  
    │ │ │  o11 = {1, 2, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/html/_from__J__S__O__N.html
    │ │ │ @@ -167,22 +167,22 @@
    │ │ │            

    The input may also be a file containing JSON data.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79402-0/0.json │ │ │
    │ │ │
    i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79402-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │
    │ │ │
    i11 : fromJSON openIn jsonFile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -53,18 +53,18 @@
    │ │ │ │  
    │ │ │ │  o8 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  The input may also be a file containing JSON data.
    │ │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o9 = /tmp/M2-79402-0/0.json
    │ │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │ │  
    │ │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o10 = /tmp/M2-79402-0/0.json
    │ │ │ │  
    │ │ │ │  o10 : File
    │ │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │ │  
    │ │ │ │  o11 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out
    │ │ │ @@ -17,24 +17,24 @@
    │ │ │  o3 = ideal (y0*z0*x2 + x0*z0*y2 + x0*y0*z2 + z0*x1*y1 + y0*x1*z1 + x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1 + x0*z0*y1 + x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o3 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00226289s elapsed
    │ │ │ + -- .00268378s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i5 : elapsedTime radical J2I
    │ │ │ - -- .297009s elapsed
    │ │ │ + -- .255297s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : I.cache.?jet
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ - -- .0247993s elapsed
    │ │ │ + -- .0110744s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i9 : I.cache.?jet
    │ │ │ @@ -53,23 +53,23 @@
    │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │                                 | 2x0x1-y1       |
    │ │ │                                 | x0^2-y0        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ - -- .0146144s elapsed
    │ │ │ + -- .00308626s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00634335s elapsed
    │ │ │ + -- .0027243s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │  
    │ │ │  i13 : Q = R/I
    │ │ │ @@ -148,15 +148,15 @@
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : f.cache.?jet
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0116862s elapsed
    │ │ │ + -- .0150734s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │                                 | t1 2t0t1       |
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000613795s elapsed
    │ │ │ + -- .000798654s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html
    │ │ │ @@ -87,27 +87,27 @@
    │ │ │          
    │ │ │

    However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is generated by the individual terms in the generators of the ideal of jets. This observation provides an alternative algorithm for computing radicals of jets of monomial ideals, which can be faster than the default radical computation in Macaulay2.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial │ │ │ │ ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is │ │ │ │ generated by the individual terms in the generators of the ideal of jets. This │ │ │ │ observation provides an alternative algorithm for computing radicals of jets of │ │ │ │ monomial ideals, which can be faster than the default radical computation in │ │ │ │ Macaulay2. │ │ │ │ i4 : elapsedTime jetsRadical(2,I) │ │ │ │ - -- .00226289s elapsed │ │ │ │ + -- .00268378s elapsed │ │ │ │ │ │ │ │ o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0) │ │ │ │ │ │ │ │ o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ i5 : elapsedTime radical J2I │ │ │ │ - -- .297009s elapsed │ │ │ │ + -- .255297s elapsed │ │ │ │ │ │ │ │ o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ For a monomial hypersurface, [GS06, Theorem 3.2] describes the minimal primes │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ │ │ │ o7 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -146,26 +146,26 @@ │ │ │ | x0^2-y0 | │ │ │ jetsMaxOrder => 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -290,15 +290,15 @@ │ │ │ │ │ │ o23 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00226289s elapsed
    │ │ │ + -- .00268378s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i5 : elapsedTime radical J2I
    │ │ │ - -- .297009s elapsed
    │ │ │ + -- .255297s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i8 : elapsedTime jets(3,I)
    │ │ │ - -- .0247993s elapsed
    │ │ │ + -- .0110744s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i11 : elapsedTime jets(3,I)
    │ │ │ - -- .0146144s elapsed
    │ │ │ + -- .00308626s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00634335s elapsed
    │ │ │ + -- .0027243s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │
    │ │ │
    i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0116862s elapsed
    │ │ │ + -- .0150734s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │
    │ │ │
    i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000613795s elapsed
    │ │ │ + -- .000798654s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,15 +41,15 @@
    │ │ │ │  o6 = ideal(x  - y)
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : I.cache.?jet
    │ │ │ │  
    │ │ │ │  o7 = false
    │ │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ │ - -- .0247993s elapsed
    │ │ │ │ + -- .0110744s elapsed
    │ │ │ │  
    │ │ │ │                                                    2                 2
    │ │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i9 : I.cache.?jet
    │ │ │ │  
    │ │ │ │ @@ -58,22 +58,22 @@
    │ │ │ │  
    │ │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │ │                                 | 2x0x1-y1       |
    │ │ │ │                                 | x0^2-y0        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ │ - -- .0146144s elapsed
    │ │ │ │ + -- .00308626s elapsed
    │ │ │ │  
    │ │ │ │                                                     2                 2
    │ │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ │ - -- .00634335s elapsed
    │ │ │ │ + -- .0027243s elapsed
    │ │ │ │  
    │ │ │ │                               2                 2
    │ │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  For quotient rings, data is stored under *.jet. Each jets order gives rise to a
    │ │ │ │  different quotient that is stored separately under *.jet.jetsRing (order zero
    │ │ │ │ @@ -153,15 +153,15 @@
    │ │ │ │  i22 : isWellDefined f
    │ │ │ │  
    │ │ │ │  o22 = true
    │ │ │ │  i23 : f.cache.?jet
    │ │ │ │  
    │ │ │ │  o23 = false
    │ │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ │ - -- .0116862s elapsed
    │ │ │ │ + -- .0150734s elapsed
    │ │ │ │  
    │ │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3,
    │ │ │ │  y3]                                                      2                    2
    │ │ │ │  o24 = map (QQ[t0][t1][t2][t3], ------------------------------------------------
    │ │ │ │  ----------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                                                        2
    │ │ │ │  2
    │ │ │ │ @@ -183,15 +183,15 @@
    │ │ │ │  
    │ │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │ │                                 | t1 2t0t1       |
    │ │ │ │                                 | t0 t0^2        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ │ - -- .000613795s elapsed
    │ │ │ │ + -- .000798654s elapsed
    │ │ │ │  
    │ │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  2                    2
    │ │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2,
    │ │ │ │  2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                              2                 2
    │ │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out
    │ │ │ @@ -19,15 +19,15 @@
    │ │ │        32003  0   5   0   5         32003  0   5   0   5          32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5          32003  0   5   0   5
    │ │ │                                                                                                                                                                                                                                                                                           
    │ │ │       0                            1                             2                              3                              4                              5                              6                              7                              8                             9
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │  
    │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0269396s elapsed
    │ │ │ + -- .0281998s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │  
    │ │ │  i6 : betti F_a, betti F
    │ │ │  
    │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ @@ -46,19 +46,19 @@
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │  
    │ │ │  o9 = 14
    │ │ │  
    │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .0024042s elapsed
    │ │ │ - -- .00650777s elapsed
    │ │ │ - -- .0527064s elapsed
    │ │ │ - -- .0736751s elapsed
    │ │ │ - -- .016221s elapsed
    │ │ │ + -- .00266166s elapsed
    │ │ │ + -- .00750364s elapsed
    │ │ │ + -- .0271065s elapsed
    │ │ │ + -- .0421727s elapsed
    │ │ │ + -- .00367907s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out
    │ │ │ @@ -3,20 +3,20 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00223679s elapsed
    │ │ │ - -- .00804055s elapsed
    │ │ │ - -- .0226273s elapsed
    │ │ │ - -- .00963621s elapsed
    │ │ │ - -- .00349231s elapsed
    │ │ │ - -- .474407s elapsed
    │ │ │ + -- .00281292s elapsed
    │ │ │ + -- .00724451s elapsed
    │ │ │ + -- .0263822s elapsed
    │ │ │ + -- .0098365s elapsed
    │ │ │ + -- .00401185s elapsed
    │ │ │ + -- .424124s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .247702s elapsed
    │ │ │ + -- .204316s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,22 +48,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │  
    │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00450803s elapsed
    │ │ │ - -- .017145s elapsed
    │ │ │ - -- .132278s elapsed
    │ │ │ - -- 1.14139s elapsed
    │ │ │ - -- .517143s elapsed
    │ │ │ - -- .0710902s elapsed
    │ │ │ - -- .00652267s elapsed
    │ │ │ - -- 6.47678s elapsed
    │ │ │ + -- .00486174s elapsed
    │ │ │ + -- .0189692s elapsed
    │ │ │ + -- .106582s elapsed
    │ │ │ + -- .94934s elapsed
    │ │ │ + -- .412653s elapsed
    │ │ │ + -- .0407239s elapsed
    │ │ │ + -- .00717644s elapsed
    │ │ │ + -- 5.64329s elapsed
    │ │ │  
    │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out
    │ │ │ @@ -3,19 +3,19 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .0103685s elapsed
    │ │ │ - -- .00662677s elapsed
    │ │ │ - -- .0228435s elapsed
    │ │ │ - -- .0337852s elapsed
    │ │ │ - -- .00363175s elapsed
    │ │ │ + -- .00288797s elapsed
    │ │ │ + -- .00994783s elapsed
    │ │ │ + -- .0254836s elapsed
    │ │ │ + -- .0100659s elapsed
    │ │ │ + -- .00418197s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .248736s elapsed
    │ │ │ + -- .212131s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -70,22 +70,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │  
    │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00536115s elapsed
    │ │ │ - -- .0370005s elapsed
    │ │ │ - -- .204983s elapsed
    │ │ │ - -- 1.32933s elapsed
    │ │ │ - -- .430969s elapsed
    │ │ │ - -- .0511654s elapsed
    │ │ │ - -- .00654992s elapsed
    │ │ │ - -- 6.84149s elapsed
    │ │ │ + -- .00494279s elapsed
    │ │ │ + -- .0185525s elapsed
    │ │ │ + -- .105768s elapsed
    │ │ │ + -- .978405s elapsed
    │ │ │ + -- .441955s elapsed
    │ │ │ + -- .0408685s elapsed
    │ │ │ + -- .00778108s elapsed
    │ │ │ + -- 5.77872s elapsed
    │ │ │  
    │ │ │  i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out
    │ │ │ @@ -3,82 +3,82 @@
    │ │ │  i1 : a=4,b=4
    │ │ │  
    │ │ │  o1 = (4, 4)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : d=carpetDet(a,b)
    │ │ │ - -- .00694639s elapsed
    │ │ │ - -- .0123481s elapsed
    │ │ │ + -- .009874s elapsed
    │ │ │ + -- .0126587s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000297184s elapsed
    │ │ │ + -- .00027455s elapsed
    │ │ │  1
    │ │ │ - -- .000143437s elapsed
    │ │ │ + -- .000185688s elapsed
    │ │ │  1
    │ │ │ - -- .000131295s elapsed
    │ │ │ + -- .000178379s elapsed
    │ │ │  1
    │ │ │ - -- .000128579s elapsed
    │ │ │ + -- .000177481s elapsed
    │ │ │  1
    │ │ │ - -- .000143327s elapsed
    │ │ │ + -- .000169209s elapsed
    │ │ │  2
    │ │ │ - -- .000142685s elapsed
    │ │ │ + -- .000169714s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154078s elapsed
    │ │ │ + -- .000187978s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000160099s elapsed
    │ │ │ + -- .00023802s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000140462s elapsed
    │ │ │ + -- .000167793s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00013971s elapsed
    │ │ │ + -- .000186754s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000138028s elapsed
    │ │ │ + -- .000195247s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132678s elapsed
    │ │ │ + -- .000178733s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000120584s elapsed
    │ │ │ + -- .000147258s elapsed
    │ │ │  2
    │ │ │ - -- .000122919s elapsed
    │ │ │ + -- .000150579s elapsed
    │ │ │  2
    │ │ │ - -- .000134922s elapsed
    │ │ │ + -- .000177083s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012317s elapsed
    │ │ │ + -- .000161338s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000140812s elapsed
    │ │ │ + -- .000175536s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000133859s elapsed
    │ │ │ + -- .000157713s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000142265s elapsed
    │ │ │ + -- .000166284s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000130654s elapsed
    │ │ │ + -- .000178353s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000167486s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000117308s elapsed
    │ │ │ + -- .000184007s elapsed
    │ │ │  2
    │ │ │ - -- .000119734s elapsed
    │ │ │ + -- .0001629s elapsed
    │ │ │  1
    │ │ │ - -- .000126405s elapsed
    │ │ │ + -- .000148492s elapsed
    │ │ │  1
    │ │ │ - -- .000127438s elapsed
    │ │ │ + -- .000184538s elapsed
    │ │ │  1
    │ │ │ - -- .000133549s elapsed
    │ │ │ + -- .000162316s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │  
    │ │ │  i3 : factor d
    │ │ │  
    │ │ │        32 6
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out
    │ │ │ @@ -3,17 +3,17 @@
    │ │ │  i1 : (a,b)=computeBound(6,4,3)
    │ │ │  
    │ │ │  o1 = (9, 7)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : computeBound 3
    │ │ │ - -- .193447s elapsed
    │ │ │ - -- .265378s elapsed
    │ │ │ - -- .211761s elapsed
    │ │ │ - -- .284175s elapsed
    │ │ │ - -- .322238s elapsed
    │ │ │ - -- .410165s elapsed
    │ │ │ + -- .150832s elapsed
    │ │ │ + -- .192664s elapsed
    │ │ │ + -- .165033s elapsed
    │ │ │ + -- .185753s elapsed
    │ │ │ + -- .222014s elapsed
    │ │ │ + -- .24144s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out
    │ │ │ @@ -9,19 +9,19 @@
    │ │ │  i2 : e=(-1,5)
    │ │ │  
    │ │ │  o2 = (-1, 5)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │  
    │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .0634893s elapsed
    │ │ │ - -- .00657433s elapsed
    │ │ │ - -- .0254523s elapsed
    │ │ │ - -- .00879327s elapsed
    │ │ │ - -- .00336788s elapsed
    │ │ │ + -- .0220704s elapsed
    │ │ │ + -- .00774523s elapsed
    │ │ │ + -- .0268594s elapsed
    │ │ │ + -- .0104728s elapsed
    │ │ │ + -- .00402033s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │  i4 : keys h
    │ │ │  
    │ │ │  o4 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .309166s elapsed
    │ │ │ + -- .318165s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -77,19 +77,19 @@
    │ │ │  i7 : e=(-1,5^2)
    │ │ │  
    │ │ │  o7 = (-1, 25)
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00250595s elapsed
    │ │ │ - -- .00659358s elapsed
    │ │ │ - -- .0231823s elapsed
    │ │ │ - -- .0102019s elapsed
    │ │ │ - -- .00377573s elapsed
    │ │ │ + -- .00302061s elapsed
    │ │ │ + -- .00669575s elapsed
    │ │ │ + -- .0258951s elapsed
    │ │ │ + -- .0192743s elapsed
    │ │ │ + -- .00438701s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out
    │ │ │ @@ -1,172 +1,172 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729182891690704738
    │ │ │  
    │ │ │  i1 : a=4
    │ │ │  
    │ │ │  o1 = 4
    │ │ │  
    │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0177477s elapsed
    │ │ │ + -- .01833s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000051325s elapsed
    │ │ │ + -- .000037929s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000095639s elapsed
    │ │ │ + -- .000083524s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000076743s elapsed
    │ │ │ + -- .000094981s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000079969s elapsed
    │ │ │ + -- .000103907s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000083625s elapsed
    │ │ │ + -- .000106622s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000093434s elapsed
    │ │ │ + -- .000089873s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000024326s elapsed
    │ │ │ + -- .000027256s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000067026s elapsed
    │ │ │ + -- .00006535s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .00009138s elapsed
    │ │ │ + -- .000107582s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000095969s elapsed
    │ │ │ + -- .000101465s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000090488s elapsed
    │ │ │ + -- .000100193s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081492s elapsed
    │ │ │ + -- .000083782s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .00009612s elapsed
    │ │ │ + -- .000080151s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000065421s elapsed
    │ │ │ + -- .0000702s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .000077685s elapsed
    │ │ │ + -- .000064338s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000024636s elapsed
    │ │ │ + -- .000025545s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000076392s elapsed
    │ │ │ + -- .000069319s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000027041s elapsed
    │ │ │ + -- .000027655s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html
    │ │ │ @@ -102,15 +102,15 @@
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │
    │ │ │
    i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0269396s elapsed
    │ │ │ + -- .0281998s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │
    │ │ │
    i6 : betti F_a, betti F
    │ │ │ @@ -141,19 +141,19 @@
    │ │ │  
    │ │ │  o9 = 14
    │ │ │
    │ │ │
    i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .0024042s elapsed
    │ │ │ - -- .00650777s elapsed
    │ │ │ - -- .0527064s elapsed
    │ │ │ - -- .0736751s elapsed
    │ │ │ - -- .016221s elapsed
    │ │ │ + -- .00266166s elapsed
    │ │ │ + -- .00750364s elapsed
    │ │ │ + -- .0271065s elapsed
    │ │ │ + -- .0421727s elapsed
    │ │ │ + -- .00367907s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,15 +49,15 @@
    │ │ │ │       0                            1                             2
    │ │ │ │  3                              4                              5
    │ │ │ │  6                              7                              8
    │ │ │ │  9
    │ │ │ │  
    │ │ │ │  o3 : Complex
    │ │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ │ - -- .0269396s elapsed
    │ │ │ │ + -- .0281998s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 350
    │ │ │ │  i6 : betti F_a, betti F
    │ │ │ │  
    │ │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ │            6: 350      0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │ @@ -72,19 +72,19 @@
    │ │ │ │  o7 = 2   3
    │ │ │ │  
    │ │ │ │  o7 : Expression of class Product
    │ │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │ │  
    │ │ │ │  o9 = 14
    │ │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ │ - -- .0024042s elapsed
    │ │ │ │ - -- .00650777s elapsed
    │ │ │ │ - -- .0527064s elapsed
    │ │ │ │ - -- .0736751s elapsed
    │ │ │ │ - -- .016221s elapsed
    │ │ │ │ + -- .00266166s elapsed
    │ │ │ │ + -- .00750364s elapsed
    │ │ │ │ + -- .0271065s elapsed
    │ │ │ │ + -- .0421727s elapsed
    │ │ │ │ + -- .00367907s elapsed
    │ │ │ │  
    │ │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html
    │ │ │ @@ -83,20 +83,20 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00223679s elapsed
    │ │ │ - -- .00804055s elapsed
    │ │ │ - -- .0226273s elapsed
    │ │ │ - -- .00963621s elapsed
    │ │ │ - -- .00349231s elapsed
    │ │ │ - -- .474407s elapsed
    │ │ │ + -- .00281292s elapsed
    │ │ │ + -- .00724451s elapsed
    │ │ │ + -- .0263822s elapsed
    │ │ │ + -- .0098365s elapsed
    │ │ │ + -- .00401185s elapsed
    │ │ │ + -- .424124s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .247702s elapsed
    │ │ │ + -- .204316s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -140,22 +140,22 @@
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │
    │ │ │
    i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00450803s elapsed
    │ │ │ - -- .017145s elapsed
    │ │ │ - -- .132278s elapsed
    │ │ │ - -- 1.14139s elapsed
    │ │ │ - -- .517143s elapsed
    │ │ │ - -- .0710902s elapsed
    │ │ │ - -- .00652267s elapsed
    │ │ │ - -- 6.47678s elapsed
    │ │ │ + -- .00486174s elapsed │ │ │ + -- .0189692s elapsed │ │ │ + -- .106582s elapsed │ │ │ + -- .94934s elapsed │ │ │ + -- .412653s elapsed │ │ │ + -- .0407239s elapsed │ │ │ + -- .00717644s elapsed │ │ │ + -- 5.64329s elapsed │ │ │
    │ │ │
    i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,20 +25,20 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00223679s elapsed
    │ │ │ │ - -- .00804055s elapsed
    │ │ │ │ - -- .0226273s elapsed
    │ │ │ │ - -- .00963621s elapsed
    │ │ │ │ - -- .00349231s elapsed
    │ │ │ │ - -- .474407s elapsed
    │ │ │ │ + -- .00281292s elapsed
    │ │ │ │ + -- .00724451s elapsed
    │ │ │ │ + -- .0263822s elapsed
    │ │ │ │ + -- .0098365s elapsed
    │ │ │ │ + -- .00401185s elapsed
    │ │ │ │ + -- .424124s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │  o2 : BettiTally
    │ │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .247702s elapsed
    │ │ │ │ + -- .204316s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -66,22 +66,22 @@
    │ │ │ │  o5 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00450803s elapsed
    │ │ │ │ - -- .017145s elapsed
    │ │ │ │ - -- .132278s elapsed
    │ │ │ │ - -- 1.14139s elapsed
    │ │ │ │ - -- .517143s elapsed
    │ │ │ │ - -- .0710902s elapsed
    │ │ │ │ - -- .00652267s elapsed
    │ │ │ │ - -- 6.47678s elapsed
    │ │ │ │ + -- .00486174s elapsed
    │ │ │ │ + -- .0189692s elapsed
    │ │ │ │ + -- .106582s elapsed
    │ │ │ │ + -- .94934s elapsed
    │ │ │ │ + -- .412653s elapsed
    │ │ │ │ + -- .0407239s elapsed
    │ │ │ │ + -- .00717644s elapsed
    │ │ │ │ + -- 5.64329s elapsed
    │ │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │ │  
    │ │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ │ │           2: .  .   .   .    .    . 1155 1408 891 320 55  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .0103685s elapsed
    │ │ │ - -- .00662677s elapsed
    │ │ │ - -- .0228435s elapsed
    │ │ │ - -- .0337852s elapsed
    │ │ │ - -- .00363175s elapsed
    │ │ │ + -- .00288797s elapsed
    │ │ │ + -- .00994783s elapsed
    │ │ │ + -- .0254836s elapsed
    │ │ │ + -- .0100659s elapsed
    │ │ │ + -- .00418197s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -134,15 +134,15 @@
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .248736s elapsed
    │ │ │ + -- .212131s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -162,22 +162,22 @@
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │
    │ │ │
    i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00536115s elapsed
    │ │ │ - -- .0370005s elapsed
    │ │ │ - -- .204983s elapsed
    │ │ │ - -- 1.32933s elapsed
    │ │ │ - -- .430969s elapsed
    │ │ │ - -- .0511654s elapsed
    │ │ │ - -- .00654992s elapsed
    │ │ │ - -- 6.84149s elapsed
    │ │ │ + -- .00494279s elapsed │ │ │ + -- .0185525s elapsed │ │ │ + -- .105768s elapsed │ │ │ + -- .978405s elapsed │ │ │ + -- .441955s elapsed │ │ │ + -- .0408685s elapsed │ │ │ + -- .00778108s elapsed │ │ │ + -- 5.77872s elapsed │ │ │
    │ │ │
    i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,19 +21,19 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ │ - -- .0103685s elapsed
    │ │ │ │ - -- .00662677s elapsed
    │ │ │ │ - -- .0228435s elapsed
    │ │ │ │ - -- .0337852s elapsed
    │ │ │ │ - -- .00363175s elapsed
    │ │ │ │ + -- .00288797s elapsed
    │ │ │ │ + -- .00994783s elapsed
    │ │ │ │ + -- .0254836s elapsed
    │ │ │ │ + -- .0100659s elapsed
    │ │ │ │ + -- .00418197s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .248736s elapsed
    │ │ │ │ + -- .212131s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -83,22 +83,22 @@
    │ │ │ │  o6 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o6 : BettiTally
    │ │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00536115s elapsed
    │ │ │ │ - -- .0370005s elapsed
    │ │ │ │ - -- .204983s elapsed
    │ │ │ │ - -- 1.32933s elapsed
    │ │ │ │ - -- .430969s elapsed
    │ │ │ │ - -- .0511654s elapsed
    │ │ │ │ - -- .00654992s elapsed
    │ │ │ │ - -- 6.84149s elapsed
    │ │ │ │ + -- .00494279s elapsed
    │ │ │ │ + -- .0185525s elapsed
    │ │ │ │ + -- .105768s elapsed
    │ │ │ │ + -- .978405s elapsed
    │ │ │ │ + -- .441955s elapsed
    │ │ │ │ + -- .0408685s elapsed
    │ │ │ │ + -- .00778108s elapsed
    │ │ │ │ + -- 5.77872s elapsed
    │ │ │ │  i8 : keys h
    │ │ │ │  
    │ │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  i9 : carpetBettiTable(h,7)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html
    │ │ │ @@ -80,82 +80,82 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : d=carpetDet(a,b)
    │ │ │ - -- .00694639s elapsed
    │ │ │ - -- .0123481s elapsed
    │ │ │ + -- .009874s elapsed
    │ │ │ + -- .0126587s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000297184s elapsed
    │ │ │ + -- .00027455s elapsed
    │ │ │  1
    │ │ │ - -- .000143437s elapsed
    │ │ │ + -- .000185688s elapsed
    │ │ │  1
    │ │ │ - -- .000131295s elapsed
    │ │ │ + -- .000178379s elapsed
    │ │ │  1
    │ │ │ - -- .000128579s elapsed
    │ │ │ + -- .000177481s elapsed
    │ │ │  1
    │ │ │ - -- .000143327s elapsed
    │ │ │ + -- .000169209s elapsed
    │ │ │  2
    │ │ │ - -- .000142685s elapsed
    │ │ │ + -- .000169714s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154078s elapsed
    │ │ │ + -- .000187978s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000160099s elapsed
    │ │ │ + -- .00023802s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000140462s elapsed
    │ │ │ + -- .000167793s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00013971s elapsed
    │ │ │ + -- .000186754s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000138028s elapsed
    │ │ │ + -- .000195247s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132678s elapsed
    │ │ │ + -- .000178733s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000120584s elapsed
    │ │ │ + -- .000147258s elapsed
    │ │ │  2
    │ │ │ - -- .000122919s elapsed
    │ │ │ + -- .000150579s elapsed
    │ │ │  2
    │ │ │ - -- .000134922s elapsed
    │ │ │ + -- .000177083s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012317s elapsed
    │ │ │ + -- .000161338s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000140812s elapsed
    │ │ │ + -- .000175536s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000133859s elapsed
    │ │ │ + -- .000157713s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000142265s elapsed
    │ │ │ + -- .000166284s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000130654s elapsed
    │ │ │ + -- .000178353s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000167486s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000117308s elapsed
    │ │ │ + -- .000184007s elapsed
    │ │ │  2
    │ │ │ - -- .000119734s elapsed
    │ │ │ + -- .0001629s elapsed
    │ │ │  1
    │ │ │ - -- .000126405s elapsed
    │ │ │ + -- .000148492s elapsed
    │ │ │  1
    │ │ │ - -- .000127438s elapsed
    │ │ │ + -- .000184538s elapsed
    │ │ │  1
    │ │ │ - -- .000133549s elapsed
    │ │ │ + -- .000162316s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,82 +19,82 @@ │ │ │ │ determinants and return their product. │ │ │ │ i1 : a=4,b=4 │ │ │ │ │ │ │ │ o1 = (4, 4) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : d=carpetDet(a,b) │ │ │ │ - -- .00694639s elapsed │ │ │ │ - -- .0123481s elapsed │ │ │ │ + -- .009874s elapsed │ │ │ │ + -- .0126587s elapsed │ │ │ │ (number Of blocks, 26) │ │ │ │ - -- .000297184s elapsed │ │ │ │ + -- .00027455s elapsed │ │ │ │ 1 │ │ │ │ - -- .000143437s elapsed │ │ │ │ + -- .000185688s elapsed │ │ │ │ 1 │ │ │ │ - -- .000131295s elapsed │ │ │ │ + -- .000178379s elapsed │ │ │ │ 1 │ │ │ │ - -- .000128579s elapsed │ │ │ │ + -- .000177481s elapsed │ │ │ │ 1 │ │ │ │ - -- .000143327s elapsed │ │ │ │ + -- .000169209s elapsed │ │ │ │ 2 │ │ │ │ - -- .000142685s elapsed │ │ │ │ + -- .000169714s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000154078s elapsed │ │ │ │ + -- .000187978s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000160099s elapsed │ │ │ │ + -- .00023802s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000140462s elapsed │ │ │ │ + -- .000167793s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .00013971s elapsed │ │ │ │ + -- .000186754s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000138028s elapsed │ │ │ │ + -- .000195247s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000132678s elapsed │ │ │ │ + -- .000178733s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000120584s elapsed │ │ │ │ + -- .000147258s elapsed │ │ │ │ 2 │ │ │ │ - -- .000122919s elapsed │ │ │ │ + -- .000150579s elapsed │ │ │ │ 2 │ │ │ │ - -- .000134922s elapsed │ │ │ │ + -- .000177083s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .00012317s elapsed │ │ │ │ + -- .000161338s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000140812s elapsed │ │ │ │ + -- .000175536s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000133859s elapsed │ │ │ │ + -- .000157713s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000142265s elapsed │ │ │ │ + -- .000166284s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000130654s elapsed │ │ │ │ + -- .000178353s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000132116s elapsed │ │ │ │ + -- .000167486s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000117308s elapsed │ │ │ │ + -- .000184007s elapsed │ │ │ │ 2 │ │ │ │ - -- .000119734s elapsed │ │ │ │ + -- .0001629s elapsed │ │ │ │ 1 │ │ │ │ - -- .000126405s elapsed │ │ │ │ + -- .000148492s elapsed │ │ │ │ 1 │ │ │ │ - -- .000127438s elapsed │ │ │ │ + -- .000184538s elapsed │ │ │ │ 1 │ │ │ │ - -- .000133549s elapsed │ │ │ │ + -- .000162316s elapsed │ │ │ │ 1 │ │ │ │ │ │ │ │ o2 = 3131031158784 │ │ │ │ i3 : factor d │ │ │ │ │ │ │ │ 32 6 │ │ │ │ o3 = 2 3 │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ @@ -85,20 +85,20 @@ │ │ │ │ │ │ o1 : Sequence │ │ │
    │ │ │
    i2 : computeBound 3
    │ │ │ - -- .193447s elapsed
    │ │ │ - -- .265378s elapsed
    │ │ │ - -- .211761s elapsed
    │ │ │ - -- .284175s elapsed
    │ │ │ - -- .322238s elapsed
    │ │ │ - -- .410165s elapsed
    │ │ │ + -- .150832s elapsed
    │ │ │ + -- .192664s elapsed
    │ │ │ + -- .165033s elapsed
    │ │ │ + -- .185753s elapsed
    │ │ │ + -- .222014s elapsed
    │ │ │ + -- .24144s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,20 +25,20 @@ │ │ │ │ classes mod k. We conjecture that c=k^2-k. │ │ │ │ i1 : (a,b)=computeBound(6,4,3) │ │ │ │ │ │ │ │ o1 = (9, 7) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : computeBound 3 │ │ │ │ - -- .193447s elapsed │ │ │ │ - -- .265378s elapsed │ │ │ │ - -- .211761s elapsed │ │ │ │ - -- .284175s elapsed │ │ │ │ - -- .322238s elapsed │ │ │ │ - -- .410165s elapsed │ │ │ │ + -- .150832s elapsed │ │ │ │ + -- .192664s elapsed │ │ │ │ + -- .165033s elapsed │ │ │ │ + -- .185753s elapsed │ │ │ │ + -- .222014s elapsed │ │ │ │ + -- .24144s elapsed │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_l_a_t_i_v_e_E_q_u_a_t_i_o_n_s -- compute the relative quadrics │ │ │ │ ********** WWaayyss ttoo uussee ccoommppuutteeBBoouunndd:: ********** │ │ │ │ * computeBound(ZZ) │ │ │ │ * computeBound(ZZ,ZZ,ZZ) │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ @@ -90,19 +90,19 @@ │ │ │ │ │ │ o2 : Sequence
    │ │ │
    │ │ │
    i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .0634893s elapsed
    │ │ │ - -- .00657433s elapsed
    │ │ │ - -- .0254523s elapsed
    │ │ │ - -- .00879327s elapsed
    │ │ │ - -- .00336788s elapsed
    │ │ │ + -- .0220704s elapsed
    │ │ │ + -- .00774523s elapsed
    │ │ │ + -- .0268594s elapsed
    │ │ │ + -- .0104728s elapsed
    │ │ │ + -- .00402033s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .309166s elapsed
    │ │ │ + -- .318165s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -178,19 +178,19 @@
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │
    │ │ │
    i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00250595s elapsed
    │ │ │ - -- .00659358s elapsed
    │ │ │ - -- .0231823s elapsed
    │ │ │ - -- .0102019s elapsed
    │ │ │ - -- .00377573s elapsed
    │ │ │ + -- .00302061s elapsed
    │ │ │ + -- .00669575s elapsed
    │ │ │ + -- .0258951s elapsed
    │ │ │ + -- .0192743s elapsed
    │ │ │ + -- .00438701s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : e=(-1,5)
    │ │ │ │  
    │ │ │ │  o2 = (-1, 5)
    │ │ │ │  
    │ │ │ │  o2 : Sequence
    │ │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .0634893s elapsed
    │ │ │ │ - -- .00657433s elapsed
    │ │ │ │ - -- .0254523s elapsed
    │ │ │ │ - -- .00879327s elapsed
    │ │ │ │ - -- .00336788s elapsed
    │ │ │ │ + -- .0220704s elapsed
    │ │ │ │ + -- .00774523s elapsed
    │ │ │ │ + -- .0268594s elapsed
    │ │ │ │ + -- .0104728s elapsed
    │ │ │ │ + -- .00402033s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -65,15 +65,15 @@
    │ │ │ │  o3 : HashTable
    │ │ │ │  i4 : keys h
    │ │ │ │  
    │ │ │ │  o4 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ │ - -- .309166s elapsed
    │ │ │ │ + -- .318165s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -94,19 +94,19 @@
    │ │ │ │  these mistakes.
    │ │ │ │  i7 : e=(-1,5^2)
    │ │ │ │  
    │ │ │ │  o7 = (-1, 25)
    │ │ │ │  
    │ │ │ │  o7 : Sequence
    │ │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00250595s elapsed
    │ │ │ │ - -- .00659358s elapsed
    │ │ │ │ - -- .0231823s elapsed
    │ │ │ │ - -- .0102019s elapsed
    │ │ │ │ - -- .00377573s elapsed
    │ │ │ │ + -- .00302061s elapsed
    │ │ │ │ + -- .00669575s elapsed
    │ │ │ │ + -- .0258951s elapsed
    │ │ │ │ + -- .0192743s elapsed
    │ │ │ │ + -- .00438701s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html
    │ │ │ @@ -78,172 +78,172 @@
    │ │ │  
    │ │ │  o1 = 4
    │ │ │
    │ │ │
    i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0177477s elapsed
    │ │ │ + -- .01833s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000051325s elapsed
    │ │ │ + -- .000037929s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000095639s elapsed
    │ │ │ + -- .000083524s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000076743s elapsed
    │ │ │ + -- .000094981s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000079969s elapsed
    │ │ │ + -- .000103907s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000083625s elapsed
    │ │ │ + -- .000106622s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000093434s elapsed
    │ │ │ + -- .000089873s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000024326s elapsed
    │ │ │ + -- .000027256s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000067026s elapsed
    │ │ │ + -- .00006535s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .00009138s elapsed
    │ │ │ + -- .000107582s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000095969s elapsed
    │ │ │ + -- .000101465s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000090488s elapsed
    │ │ │ + -- .000100193s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081492s elapsed
    │ │ │ + -- .000083782s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .00009612s elapsed
    │ │ │ + -- .000080151s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000065421s elapsed
    │ │ │ + -- .0000702s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .000077685s elapsed
    │ │ │ + -- .000064338s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000024636s elapsed
    │ │ │ + -- .000025545s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000076392s elapsed
    │ │ │ + -- .000069319s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000027041s elapsed
    │ │ │ + -- .000027655s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,172 +19,172 @@
    │ │ │ │  grading. Viewed as a resolution over QQ(e_1,e_2), this resolution is non-
    │ │ │ │  minimal and carries further gradings. We decompose the crucial map of the a-th
    │ │ │ │  strand into blocks, compute their determinants, and factor the product.
    │ │ │ │  i1 : a=4
    │ │ │ │  
    │ │ │ │  o1 = 4
    │ │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ │ - -- .0177477s elapsed
    │ │ │ │ + -- .01833s elapsed
    │ │ │ │  (number of blocks= , 18)
    │ │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │ │                               2 => 6
    │ │ │ │                               3 => 2
    │ │ │ │                               4 => 6
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      7: 1 1
    │ │ │ │ - -- .000051325s elapsed
    │ │ │ │ + -- .000037929s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . 2
    │ │ │ │ - -- .000095639s elapsed
    │ │ │ │ + -- .000083524s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . .
    │ │ │ │      9: . 2
    │ │ │ │ - -- .000076743s elapsed
    │ │ │ │ + -- .000094981s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │      7: 2 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: . 1
    │ │ │ │     10: . 2
    │ │ │ │ - -- .000079969s elapsed
    │ │ │ │ + -- .000103907s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (-3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      7: 1 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 2
    │ │ │ │     10: . 1
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000083625s elapsed
    │ │ │ │ + -- .000106622s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 2
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000093434s elapsed
    │ │ │ │ + -- .000089873s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      9: 1 1
    │ │ │ │ - -- .000024326s elapsed
    │ │ │ │ + -- .000027256s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      9: 1 1
    │ │ │ │     10: 1 1
    │ │ │ │ - -- .000067026s elapsed
    │ │ │ │ + -- .00006535s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .00009138s elapsed
    │ │ │ │ + -- .000107582s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 2 1
    │ │ │ │     11: 1 2
    │ │ │ │     12: . 1
    │ │ │ │ - -- .000095969s elapsed
    │ │ │ │ + -- .000101465s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 1 .
    │ │ │ │     11: 2 2
    │ │ │ │     12: . 1
    │ │ │ │     13: . 1
    │ │ │ │ - -- .000090488s elapsed
    │ │ │ │ + -- .000100193s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .000081492s elapsed
    │ │ │ │ + -- .000083782s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │     10: 2 .
    │ │ │ │     11: 1 .
    │ │ │ │     12: . 1
    │ │ │ │     13: . 2
    │ │ │ │ - -- .00009612s elapsed
    │ │ │ │ + -- .000080151s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .000065421s elapsed
    │ │ │ │ + -- .0000702s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     11: 2 .
    │ │ │ │     12: . .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000077685s elapsed
    │ │ │ │ + -- .000064338s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .000024636s elapsed
    │ │ │ │ + -- .000025545s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     12: 2 .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000076392s elapsed
    │ │ │ │ + -- .000069319s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     13: 1 1
    │ │ │ │ - -- .000027041s elapsed
    │ │ │ │ + -- .000027655s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │  
    │ │ │ │         6      32    32
    │ │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -7,55 +7,55 @@
    │ │ │  
    │ │ │  i2 : m = syz m1;
    │ │ │  
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i3 : time LLL m;
    │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc)
    │ │ │ + -- used 0.00980062s (cpu); 0.00979899s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc)
    │ │ │ + -- used 0.0286954s (cpu); 0.0287021s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc)
    │ │ │ + -- used 0.122055s (cpu); 0.122061s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc)
    │ │ │ + -- used 0.0130634s (cpu); 0.013068s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc)
    │ │ │ + -- used 0.0623315s (cpu); 0.0621652s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc)
    │ │ │ + -- used 0.0654061s (cpu); 0.0654061s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc)
    │ │ │ + -- used 0.344305s (cpu); 0.344311s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc)
    │ │ │ + -- used 0.155317s (cpu); 0.155322s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -139,78 +139,78 @@
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i3 : time LLL m;
    │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc)
    │ │ │ + -- used 0.00980062s (cpu); 0.00979899s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc)
    │ │ │ + -- used 0.0286954s (cpu); 0.0287021s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc)
    │ │ │ + -- used 0.122055s (cpu); 0.122061s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc)
    │ │ │ + -- used 0.0130634s (cpu); 0.013068s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc)
    │ │ │ + -- used 0.0623315s (cpu); 0.0621652s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc)
    │ │ │ + -- used 0.0654061s (cpu); 0.0654061s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc)
    │ │ │ + -- used 0.344305s (cpu); 0.344311s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc)
    │ │ │ + -- used 0.155317s (cpu); 0.155322s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -115,50 +115,50 @@ │ │ │ │ 50 50 │ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ i2 : m = syz m1; │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : time LLL m; │ │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc) │ │ │ │ + -- used 0.00980062s (cpu); 0.00979899s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o3 : Matrix ZZ <-- ZZ │ │ │ │ i4 : time LLL(m, Strategy=>CohenEngine); │ │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc) │ │ │ │ + -- used 0.0286954s (cpu); 0.0287021s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : time LLL(m, Strategy=>CohenTopLevel); │ │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc) │ │ │ │ + -- used 0.122055s (cpu); 0.122061s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o5 : Matrix ZZ <-- ZZ │ │ │ │ i6 : time LLL(m, Strategy=>{Givens,RealFP}); │ │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc) │ │ │ │ + -- used 0.0130634s (cpu); 0.013068s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o6 : Matrix ZZ <-- ZZ │ │ │ │ i7 : time LLL(m, Strategy=>{Givens,RealQP}); │ │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc) │ │ │ │ + -- used 0.0623315s (cpu); 0.0621652s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o7 : Matrix ZZ <-- ZZ │ │ │ │ i8 : time LLL(m, Strategy=>{Givens,RealXD}); │ │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc) │ │ │ │ + -- used 0.0654061s (cpu); 0.0654061s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o8 : Matrix ZZ <-- ZZ │ │ │ │ i9 : time LLL(m, Strategy=>{Givens,RealRR}); │ │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc) │ │ │ │ + -- used 0.344305s (cpu); 0.344311s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o9 : Matrix ZZ <-- ZZ │ │ │ │ i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP}); │ │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc) │ │ │ │ + -- used 0.155317s (cpu); 0.155322s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o10 : Matrix ZZ <-- ZZ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For most of the options, the columns do not need to be linearly independent. │ │ │ │ The strategies CohenEngine and CohenTopLevel currently require the columns to │ │ │ │ be linearly independent. │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ @@ -16,14 +16,14 @@ │ │ │ │ │ │ 3 8 │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc) │ │ │ + -- used 1.08404s (cpu); 0.538763s (thread); 0s (gc) │ │ │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc) │ │ │ + -- used 0.968266s (cpu); 0.377071s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ @@ -120,21 +120,21 @@ │ │ │
    │ │ │
    i5 : P = convexHull(M);
    │ │ │
    │ │ │
    i6 : time areIsomorphic(P,P);
    │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc)
    │ │ │ + -- used 1.08404s (cpu); 0.538763s (thread); 0s (gc) │ │ │
    │ │ │
    i7 : time areIsomorphic(P,P,smoothTest=>false);
    │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc)
    │ │ │ + -- used 0.968266s (cpu); 0.377071s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use areIsomorphic:

    │ │ │ ├── html2text {} │ │ │ │ @@ -35,17 +35,17 @@ │ │ │ │ | 0 0 1 0 1 0 1 1 | │ │ │ │ | 0 0 0 1 0 1 1 1 | │ │ │ │ │ │ │ │ 3 8 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc) │ │ │ │ + -- used 1.08404s (cpu); 0.538763s (thread); 0s (gc) │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc) │ │ │ │ + -- used 0.968266s (cpu); 0.377071s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee aarreeIIssoommoorrpphhiicc:: ********** │ │ │ │ * areIsomorphic(Matrix,Matrix) │ │ │ │ * areIsomorphic(Polyhedron,Polyhedron) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _a_r_e_I_s_o_m_o_r_p_h_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ @@ -29,21 +29,21 @@ │ │ │ i5 : findRegion({{0,0},{4,4}},M,f) │ │ │ │ │ │ o5 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ - -- .129699s elapsed │ │ │ + -- .0819399s elapsed │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}}) │ │ │ - -- .0121746s elapsed │ │ │ + -- .0148293s elapsed │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_linear__Truncations__Bound.out │ │ │ @@ -30,21 +30,21 @@ │ │ │ i5 : apply(L, d -> isLinearComplex res prune truncate(d,M)) │ │ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ - -- 4.16059s elapsed │ │ │ + -- 3.05188s elapsed │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ - -- .0266295s elapsed │ │ │ + -- .0275374s elapsed │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    If some degrees d are known to satisfy f(d,M), then they can be specified using the option Inner in order to expedite the computation. Similarly, degrees not above those given in Outer will be assumed not to satisfy f(d,M). If f takes options these can also be given to findRegion.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime findRegion({{0,0},{4,4}},M,f)
    │ │ │ - -- .129699s elapsed
    │ │ │ + -- .0819399s elapsed
    │ │ │  
    │ │ │  o6 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}})
    │ │ │ - -- .0121746s elapsed
    │ │ │ + -- .0148293s elapsed
    │ │ │  
    │ │ │  o7 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ │ │ │ │ o5 : List │ │ │ │ If some degrees d are known to satisfy f(d,M), then they can be specified using │ │ │ │ the option Inner in order to expedite the computation. Similarly, degrees not │ │ │ │ above those given in Outer will be assumed not to satisfy f(d,M). If f takes │ │ │ │ options these can also be given to findRegion. │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ │ - -- .129699s elapsed │ │ │ │ + -- .0819399s elapsed │ │ │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{ │ │ │ │ {1,1}}) │ │ │ │ - -- .0121746s elapsed │ │ │ │ + -- .0148293s elapsed │ │ │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCoonnttrriibbuuttoorrss ********** │ │ │ │ Mahrud Sayrafi contributed to the code for this function. │ │ │ │ ********** CCaavveeaatt ********** │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations__Bound.html │ │ │ @@ -123,25 +123,25 @@ │ │ │
    │ │ │

    The output is a list of the minimal multidegrees $d$ such that the sum of the positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in the i-th step of the resolution of $M$.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M)
    │ │ │ - -- 4.16059s elapsed
    │ │ │ + -- 3.05188s elapsed
    │ │ │  
    │ │ │  o6 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime linearTruncationsBound M
    │ │ │ - -- .0266295s elapsed
    │ │ │ + -- .0275374s elapsed
    │ │ │  
    │ │ │  o7 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ The output is a list of the minimal multidegrees $d$ such that the sum of the │ │ │ │ positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in │ │ │ │ the i-th step of the resolution of $M$. │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ │ - -- 4.16059s elapsed │ │ │ │ + -- 3.05188s elapsed │ │ │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ │ - -- .0266295s elapsed │ │ │ │ + -- .0275374s elapsed │ │ │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ In general linearTruncationsBound will not find the minimal degrees where $M$ │ │ │ │ has a linear resolution but will be faster than repeatedly truncating $M$. │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ - -- .238651s elapsed │ │ │ + -- .199547s elapsed │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oo//sum │ │ │ │ │ │ @@ -44,21 +44,21 @@ │ │ │ │ │ │ 2 3 │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ - -- .0754774s elapsed │ │ │ + -- .0166883s elapsed │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ o11 : List │ │ │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ - -- .381402s elapsed │ │ │ + -- .263885s elapsed │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime hilbertSamuelFunction(M, 0, 6)
    │ │ │ - -- .238651s elapsed
    │ │ │ + -- .199547s elapsed
    │ │ │  
    │ │ │  o5 = {1, 3, 6, 7, 6, 3, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -163,25 +163,25 @@ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds
    │ │ │ - -- .0754774s elapsed
    │ │ │ + -- .0166883s elapsed
    │ │ │  
    │ │ │  o11 = {1, 2, 3, 4, 5, 6}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds
    │ │ │ - -- .381402s elapsed
    │ │ │ + -- .263885s elapsed
    │ │ │  
    │ │ │  o12 = {6, 12, 18, 24, 30, 36}
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i4 : M = RP^1/I │ │ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ │ │ 1 │ │ │ │ o4 : RP-module, quotient of RP │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ │ - -- .238651s elapsed │ │ │ │ + -- .199547s elapsed │ │ │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oo//sum │ │ │ │ │ │ │ │ o6 = 27 │ │ │ │ @@ -65,21 +65,21 @@ │ │ │ │ i10 : q = ideal"x2,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ │ - -- .0754774s elapsed │ │ │ │ + -- .0166883s elapsed │ │ │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ │ - -- .381402s elapsed │ │ │ │ + -- .263885s elapsed │ │ │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Hilbert-Samuel function with respect to a parameter ideal other than the │ │ │ │ maximal ideal can be slower. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Command.out │ │ │ @@ -5,12 +5,12 @@ │ │ │ i2 : f │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ │ │ i3 : (c = Command "date";) │ │ │ │ │ │ i4 : c │ │ │ -Sun Dec 14 15:26:56 UTC 2025 │ │ │ +Thu Jan 1 11:02:31 UTC 2026 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Database.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 9579076464446459296 │ │ │ │ │ │ i1 : filename = temporaryFileName () | ".dbm" │ │ │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ i2 : x = openDatabaseOut filename │ │ │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm │ │ │ +o2 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ o2 : Database │ │ │ │ │ │ i3 : x#"first" = "hi there" │ │ │ │ │ │ o3 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 1731899428494721487 │ │ │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706 } │ │ │ +o1 = HashTable{"bytesAlloc" => 43062247930 } │ │ │ "GC_free_space_divisor" => 3 │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ "gcCpuTimeSecs" => 0 │ │ │ - "heapSize" => 206680064 │ │ │ - "numGCs" => 795 │ │ │ - "numGCThreads" => 6 │ │ │ + "heapSize" => 225296384 │ │ │ + "numGCs" => 783 │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ o1 : HashTable │ │ │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ -o2 = 206680064 │ │ │ +o2 = 225296384 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ @@ -40,20 +40,20 @@ │ │ │ o6 : PolynomialRing │ │ │ │ │ │ i7 : I = monomialCurveIdeal(R, {1,4,5,9}); │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time J = truncate(8, I, MinimalGenerators => false); │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc) │ │ │ + -- used 0.00528296s (cpu); 0.00527776s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of R │ │ │ │ │ │ i9 : time K = truncate(8, I, MinimalGenerators => true); │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc) │ │ │ + -- used 0.0550328s (cpu); 0.0550419s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : numgens J │ │ │ │ │ │ o10 = 1067 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ @@ -3,13 +3,13 @@ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ 200 200 │ │ │ o1 : Matrix RR <-- RR │ │ │ 53 53 │ │ │ │ │ │ i2 : time SVD(M); │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc) │ │ │ + -- used 0.0380489s (cpu); 0.0379843s (thread); 0s (gc) │ │ │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc) │ │ │ + -- used 0.0381925s (cpu); 0.0379757s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ @@ -351,15 +351,15 @@ │ │ │ | b e h k n q | │ │ │ | c f i l o r | │ │ │ │ │ │ 3 │ │ │ o58 : R-module, quotient of R │ │ │ │ │ │ i59 : time C = resolution M │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc) │ │ │ + -- used 0.00195051s (cpu); 0.00194491s (thread); 0s (gc) │ │ │ │ │ │ 3 6 15 18 6 │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ @@ -14,10 +14,10 @@ │ │ │ │ │ │ i4 : peek read f │ │ │ │ │ │ o4 = "hi there" │ │ │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ -o5 = false │ │ │ +o5 = true │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1330379359420 │ │ │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ -o1 = .000290697861367332 │ │ │ +o1 = .0003478640801445259 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ @@ -4,20 +4,20 @@ │ │ │ │ │ │ i2 : R = QQ[x,y,z]; │ │ │ │ │ │ i3 : M = coker vars R; │ │ │ │ │ │ i4 : elapsedTime pdim' M │ │ │ -- computing pdim' │ │ │ - -- .00670047s elapsed │ │ │ + -- .00382538s elapsed │ │ │ │ │ │ o4 = 3 │ │ │ │ │ │ i5 : elapsedTime pdim' M │ │ │ - -- .000001513s elapsed │ │ │ + -- .000002683s elapsed │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : peek M.cache │ │ │ │ │ │ o6 = CacheTable{cache => MutableHashTable{} } │ │ │ isHomogeneous => true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ @@ -18,29 +18,29 @@ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ o4 : Task │ │ │ │ │ │ i5 : n │ │ │ │ │ │ -o5 = 711206 │ │ │ +o5 = 1095015 │ │ │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ o6 = 0 │ │ │ │ │ │ i7 : t │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ o7 : Task │ │ │ │ │ │ i8 : n │ │ │ │ │ │ -o8 = 1453533 │ │ │ +o8 = 2220814 │ │ │ │ │ │ i9 : isReady t │ │ │ │ │ │ o9 = false │ │ │ │ │ │ i10 : cancelTask t │ │ │ │ │ │ @@ -53,22 +53,22 @@ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ o12 : Task │ │ │ │ │ │ i13 : n │ │ │ │ │ │ -o13 = 1453746 │ │ │ +o13 = 2221001 │ │ │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ o14 = 0 │ │ │ │ │ │ i15 : n │ │ │ │ │ │ -o15 = 1453746 │ │ │ +o15 = 2221001 │ │ │ │ │ │ i16 : isReady t │ │ │ │ │ │ o16 = false │ │ │ │ │ │ i17 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8535510246140175278 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_check.out │ │ │ @@ -4,51 +4,51 @@ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ o1 : Package │ │ │ │ │ │ i2 : check_1 FirstPackage │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this package │ │ │ - -- capturing check(1, "FirstPackage") -- .15147s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .122544s elapsed │ │ │ │ │ │ i3 : check FirstPackage │ │ │ - -- capturing check(0, "FirstPackage") -- .150181s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .150965s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .116342s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ - -- capturing check(1, "FirstPackage") -- .152579s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │ │ │ │ i5 : check "FirstPackage" │ │ │ - -- capturing check(0, "FirstPackage") -- .152053s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .151867s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .120072s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .119513s elapsed │ │ │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ i7 : check oo │ │ │ - -- capturing check(1, "FirstPackage") -- .153083s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .119399s elapsed │ │ │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ │ │ i9 : check oo │ │ │ - -- capturing check(0, "FirstPackage") -- .152703s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .150901s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .118011s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .116374s elapsed │ │ │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ i11 : check 1 │ │ │ - -- capturing check(1, "FirstPackage") -- .151346s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .123542s elapsed │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 10365735446967377456 │ │ │ │ │ │ i1 : run "uname -a" │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ ba │ │ │ ad │ │ │ │ │ │ o2 = !grep a │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │ │ │ │ i4 : f = openInOut "!grep -E '^in'" │ │ │ │ │ │ o4 = !grep -E '^in' │ │ │ │ │ │ o4 : File │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ ZZ │ │ │ o23 : Ideal of ----[x..z, w] │ │ │ 1277 │ │ │ │ │ │ i24 : gb I │ │ │ │ │ │ - -- registering gb 5 at 0x7f67b957e540 │ │ │ + -- registering gb 5 at 0x7fb15fc15540 │ │ │ │ │ │ -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4 │ │ │ -- number of monomials = 8 │ │ │ -- #reduction steps = 2 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ @@ -177,15 +177,15 @@ │ │ │ │ │ │ i32 : f = random(R^1,R^{-3,-3,-5,-6}); │ │ │ │ │ │ 1 4 │ │ │ o32 : Matrix R <-- R │ │ │ │ │ │ i33 : time betti gb f │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc) │ │ │ + -- used 0.219908s (cpu); 0.21961s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o33 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ │ @@ -208,15 +208,15 @@ │ │ │ │ │ │ 3 5 8 9 12 14 17 │ │ │ o35 = 1 - 2T - T + 2T + 2T - T - 2T + T │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ │ │ i36 : time betti gb f │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc) │ │ │ + -- used 0.00304346s (cpu); 0.00303251s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o36 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,76 +1,76 @@ │ │ │ -- -*- M2-comint -*- hash: 11422793294564310273 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ o13 = ho there │ │ │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__File_lp__String_cm__String_rp.out │ │ │ @@ -1,41 +1,41 @@ │ │ │ -- -*- M2-comint -*- hash: 11539475420155775110 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i9 : get dst │ │ │ │ │ │ o9 = hi there │ │ │ │ │ │ i10 : removeFile src │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 15508153783232232453 │ │ │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ -o1 = 354.029649282 │ │ │ +o1 = 319.890774352 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ -o3 = 355.996910491 │ │ │ +o3 = 320.686724796 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ -o4 = 1.967261209000014 │ │ │ +o4 = .7959504440000273 │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ @@ -1,24 +1,24 @@ │ │ │ -- -*- M2-comint -*- hash: 3660839476107967259 │ │ │ │ │ │ i1 : currentTime() │ │ │ │ │ │ -o1 = 1765726091 │ │ │ +o1 = 1767265403 │ │ │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ -o2 = 55.95363237235333 │ │ │ +o2 = 56.00241122780173 │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ -o3 = 11.44358846823999 │ │ │ +o3 = .02893473362075838 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : run "date" │ │ │ -Sun Dec 14 15:28:11 UTC 2025 │ │ │ +Thu Jan 1 11:03:23 UTC 2026 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1330565958025 │ │ │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ - -- 1.00015s elapsed │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1731106803207298715 │ │ │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ o1 = 0 │ │ │ - -- 1.00015 seconds │ │ │ + -- 1.00014 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{1.00015, 0} │ │ │ +o2 = Time{1.00014, 0} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o2 = ideal (- s - s*t + x - 1, - t - 3t - t + y, - s*t + z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : time leadTerm gens gb I │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc) │ │ │ + -- used 0.163882s (cpu); 0.163881s (thread); 0s (gc) │ │ │ │ │ │ o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4 │ │ │ ------------------------------------------------------------------------ │ │ │ 563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2 │ │ │ ------------------------------------------------------------------------ │ │ │ 267076255345488270sy3z4 5256861933965245618410txyz6 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o7 = ideal (- s - s*t + x - 1, - t - 3t + y - t, - s*t + z) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time G = eliminate(I,{s,t}) │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc) │ │ │ + -- used 0.403807s (cpu); 0.181s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o8 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ------------------------------------------------------------------------ │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -154,15 +154,15 @@ │ │ │ i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}]; │ │ │ │ │ │ i11 : I1 = substitute(I,R1); │ │ │ │ │ │ o11 : Ideal of R1 │ │ │ │ │ │ i12 : time G = eliminate(I1,{s,t}) │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc) │ │ │ + -- used 0.0304523s (cpu); 0.0304574s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 6 3 3 6 9 2 8 5 4 2 7 │ │ │ o12 = ideal(x y - 3x y z + 3x*y z - z - 6x y z - 15x*y z + 21y z - │ │ │ ----------------------------------------------------------------------- │ │ │ 2 9 2 5 3 6 3 7 3 2 6 3 6 7 2 │ │ │ 3x y - 324x y z + 6x*y z - y z - 405x*y z - 3y z + 7x*y z - │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -228,15 +228,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o16 = map (A, B, {s + s*t + 1, t + 3t + t, s*t }) │ │ │ │ │ │ o16 : RingMap A <-- B │ │ │ │ │ │ i17 : time G = kernel F │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc) │ │ │ + -- used 0.100185s (cpu); 0.100191s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o17 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -297,23 +297,23 @@ │ │ │ i19 : use ring I │ │ │ │ │ │ o19 = R │ │ │ │ │ │ o19 : PolynomialRing │ │ │ │ │ │ i20 : time f1 = resultant(I_0,I_2,s) │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc) │ │ │ + -- used 0.00161638s (cpu); 0.00161341s (thread); 0s (gc) │ │ │ │ │ │ 9 9 7 3 │ │ │ o20 = x*t - t - z*t - z │ │ │ │ │ │ o20 : R │ │ │ │ │ │ i21 : time f2 = resultant(I_1,f1,t) │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc) │ │ │ + -- used 0.0355171s (cpu); 0.0355287s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 7 2 │ │ │ o21 = - x y + 3x y + 6x y z + 3x y z - 3x*y + x y z - 12x*y z - 7x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 2 5 3 6 3 7 3 5 4 3 6 9 7 8 │ │ │ 324x y z - 6x*y z + y z + 15x*y z - 3x*y z + y - 2x*y z + 6y z + │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ @@ -59,15 +59,15 @@ │ │ │ Version => 0.0 │ │ │ package prefix => /usr/ │ │ │ PackageIsLoaded => true │ │ │ pkgname => Foo │ │ │ private dictionary => Foo#"private dictionary" │ │ │ processed documentation => MutableHashTable{} │ │ │ raw documentation => MutableHashTable{} │ │ │ - source directory => /tmp/M2-10191-0/91-rundir/ │ │ │ + source directory => /tmp/M2-10311-0/91-rundir/ │ │ │ source file => stdio │ │ │ test inputs => MutableList{} │ │ │ │ │ │ i7 : dictionaryPath │ │ │ │ │ │ o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary, │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Exists.out │ │ │ @@ -1,20 +1,20 @@ │ │ │ -- -*- M2-comint -*- hash: 7475038936570224899 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10558-0/0 │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │ │ │ │ i2 : fileExists fn │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10558-0/0 │ │ │ +o3 = /tmp/M2-11028-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : fileExists fn │ │ │ │ │ │ o4 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Length.out │ │ │ @@ -1,28 +1,28 @@ │ │ │ -- -*- M2-comint -*- hash: 1216695447195237994 │ │ │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o1 : File │ │ │ │ │ │ i2 : fileLength f │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ i3 : close f │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ o5 = 8 │ │ │ │ │ │ i6 : get filename │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__File_rp.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 11202140621123993633 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode f │ │ │ │ │ │ o3 = 420 │ │ │ │ │ │ i4 : close f │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782570202197464532 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10989-0/0 │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-10989-0/0 │ │ │ +o2 = /tmp/M2-11899-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__File_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 17473878267845575442 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10854-0/0 │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-10854-0/0 │ │ │ +o2 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = 7 + 7*8 + 7*64 │ │ │ │ │ │ o3 = 511 │ │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ │ i5 : fileMode f │ │ │ │ │ │ o5 = 511 │ │ │ │ │ │ i6 : close f │ │ │ │ │ │ -o6 = /tmp/M2-10854-0/0 │ │ │ +o6 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : fileMode fn │ │ │ │ │ │ o7 = 511 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 16772784390799334723 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11977-0/0 │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-11977-0/0 │ │ │ +o2 = /tmp/M2-13917-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Time.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331310711075 │ │ │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ -o1 = 61 │ │ │ +o1 = 46 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.out │ │ │ @@ -29,15 +29,15 @@ │ │ │ {4} | 0 x2-3 y3-1 | │ │ │ │ │ │ 3 3 │ │ │ o6 : Matrix R <-- R │ │ │ │ │ │ i7 : syz f │ │ │ │ │ │ - -- registering gb 0 at 0x7f5498d2ce00 │ │ │ + -- registering gb 0 at 0x7f1938812e00 │ │ │ │ │ │ -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3 │ │ │ -- number of monomials = 9 │ │ │ -- #reduction steps = 6 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_get.out │ │ │ @@ -10,11 +10,11 @@ │ │ │ │ │ │ o2 = hi there │ │ │ │ │ │ i3 : removeFile "test-file" │ │ │ │ │ │ i4 : get "!date" │ │ │ │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025 │ │ │ +o4 = Thu Jan 1 11:02:48 UTC 2026 │ │ │ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Directory.out │ │ │ @@ -2,19 +2,19 @@ │ │ │ │ │ │ i1 : isDirectory "." │ │ │ │ │ │ o1 = true │ │ │ │ │ │ i2 : fn = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10380-0/0 │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10380-0/0 │ │ │ +o3 = /tmp/M2-10670-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : isDirectory fn │ │ │ │ │ │ o4 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Pseudoprime_lp__Z__Z_rp.out │ │ │ @@ -75,15 +75,15 @@ │ │ │ o17 = false │ │ │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ o18 = false │ │ │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ - -- 4.33674s elapsed │ │ │ + -- 5.79079s elapsed │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ @@ -97,17 +97,17 @@ │ │ │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ - -- .0569545s elapsed │ │ │ + -- .0555585s elapsed │ │ │ │ │ │ o23 = true │ │ │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ - -- .000114113s elapsed │ │ │ + -- .000106514s elapsed │ │ │ │ │ │ o24 = true │ │ │ │ │ │ i25 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Regular__File.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782205245758053629 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-12188-0/0 │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-12188-0/0 │ │ │ +o2 = /tmp/M2-14348-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : isRegularFile fn │ │ │ │ │ │ o3 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_make__Directory_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 5113372159204571746 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331887830690 │ │ │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ -o1 = 7 │ │ │ +o1 = 17 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ @@ -3,31 +3,31 @@ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ │ │ i2 : time fib 28 │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc) │ │ │ + -- used 0.754762s (cpu); 0.577694s (thread); 0s (gc) │ │ │ │ │ │ o2 = 514229 │ │ │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ i4 : time fib 28 │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc) │ │ │ + -- used 8.2955e-05s (cpu); 8.1779e-05s (thread); 0s (gc) │ │ │ │ │ │ o4 = 514229 │ │ │ │ │ │ i5 : time fib 28 │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc) │ │ │ + -- used 3.696e-06s (cpu); 3.447e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = 514229 │ │ │ │ │ │ i6 : fib = memoize( n -> fib(n-1) + fib(n-2) ) │ │ │ │ │ │ o6 = fib │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ @@ -17,20 +17,20 @@ │ │ │ {12 => (poincare, BettiTally) } │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ - {19 => (codim, BettiTally) } │ │ │ + {19 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ {20 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {21 => (dual, BettiTally) } │ │ │ - {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {21 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ + {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (codim, BettiTally) } │ │ │ + {24 => (dual, BettiTally) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList │ │ │ │ │ │ i2 : methods resolution │ │ │ │ │ │ o2 = {0 => (resolution, Ideal) } │ │ │ @@ -60,20 +60,20 @@ │ │ │ {1 => (++, Module, GradedModule)} │ │ │ {2 => (++, Module, Module) } │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : methods( Matrix, Matrix ) │ │ │ │ │ │ -o5 = {0 => (contract, Matrix, Matrix) } │ │ │ - {1 => (diff, Matrix, Matrix) } │ │ │ - {2 => (diff', Matrix, Matrix) } │ │ │ - {3 => (-, Matrix, Matrix) } │ │ │ +o5 = {0 => (+, Matrix, Matrix) } │ │ │ + {1 => (-, Matrix, Matrix) } │ │ │ + {2 => (contract, Matrix, Matrix) } │ │ │ + {3 => (diff, Matrix, Matrix) } │ │ │ {4 => (contract', Matrix, Matrix) } │ │ │ - {5 => (+, Matrix, Matrix) } │ │ │ + {5 => (diff', Matrix, Matrix) } │ │ │ {6 => (markedGB, Matrix, Matrix) } │ │ │ {7 => (Hom, Matrix, Matrix) } │ │ │ {8 => (==, Matrix, Matrix) } │ │ │ {9 => (*, Matrix, Matrix) } │ │ │ {10 => (|, Matrix, Matrix) } │ │ │ {11 => (||, Matrix, Matrix) } │ │ │ {12 => (subquotient, Matrix, Matrix) } │ │ │ @@ -88,18 +88,18 @@ │ │ │ {21 => (quotient, Matrix, Matrix) } │ │ │ {22 => (quotient', Matrix, Matrix) } │ │ │ {23 => (remainder', Matrix, Matrix) } │ │ │ {24 => (%, Matrix, Matrix) } │ │ │ {25 => (remainder, Matrix, Matrix) } │ │ │ {26 => (pushout, Matrix, Matrix) } │ │ │ {27 => (solve, Matrix, Matrix) } │ │ │ - {28 => (pullback, Matrix, Matrix) } │ │ │ + {28 => (intersect, Matrix, Matrix, Matrix, Matrix) } │ │ │ {29 => (intersect, Matrix, Matrix) } │ │ │ - {30 => (intersect, Matrix, Matrix, Matrix, Matrix) } │ │ │ - {31 => (tensor, Matrix, Matrix) } │ │ │ + {30 => (tensor, Matrix, Matrix) } │ │ │ + {31 => (pullback, Matrix, Matrix) } │ │ │ {32 => (substitute, Matrix, Matrix) } │ │ │ {33 => (yonedaProduct, Matrix, Matrix) } │ │ │ {34 => (isShortExactSequence, Matrix, Matrix) } │ │ │ {35 => (horseshoeResolution, Matrix, Matrix) } │ │ │ {36 => (connectingExtMap, Module, Matrix, Matrix) } │ │ │ {37 => (connectingExtMap, Matrix, Matrix, Module) } │ │ │ {38 => (connectingTorMap, Module, Matrix, Matrix) } │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = minimalBetti I │ │ │ - -- 1.82886s elapsed │ │ │ + -- 2.45521s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o3 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -26,44 +26,44 @@ │ │ │ o3 : BettiTally │ │ │ │ │ │ i4 : I = ideal I_*; │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2) │ │ │ - -- .745147s elapsed │ │ │ + -- .925445s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o5 = total: 1 35 140 385 819 1080 735 196 │ │ │ 0: 1 . . . . . . . │ │ │ 1: . 35 140 189 84 . . . │ │ │ 2: . . . 196 735 1080 735 196 │ │ │ │ │ │ o5 : BettiTally │ │ │ │ │ │ i6 : I = ideal I_*; │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5) │ │ │ - -- .0317322s elapsed │ │ │ + -- .0362305s elapsed │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o7 = total: 1 35 140 189 84 │ │ │ 0: 1 . . . . │ │ │ 1: . 35 140 189 84 │ │ │ │ │ │ o7 : BettiTally │ │ │ │ │ │ i8 : I = ideal I_*; │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5) │ │ │ - -- 1.20016s elapsed │ │ │ + -- 3.28835s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o9 = total: 1 35 140 385 819 1080 │ │ │ 0: 1 . . . . . │ │ │ 1: . 35 140 189 84 . │ │ │ 2: . . . 196 735 1080 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mkdir.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 15555226809509933135 │ │ │ │ │ │ i1 : p = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-10741-0/0/ │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │ │ │ │ i2 : mkdir p │ │ │ │ │ │ i3 : isDirectory p │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : (fn = p | "foo") << "hi there" << close │ │ │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo │ │ │ +o4 = /tmp/M2-11391-0/0/foo │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_move__File_lp__String_cm__String_rp.out │ │ │ @@ -1,31 +1,31 @@ │ │ │ -- -*- M2-comint -*- hash: 4857944042471093218 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ │ │ i7 : removeFile bak │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_nanosleep.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1331114612441 │ │ │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ - -- .500135s elapsed │ │ │ + -- .500115s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ @@ -5,26 +5,26 @@ │ │ │ o1 = {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ - -- .640674s elapsed │ │ │ + -- .681356s elapsed │ │ │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ - -- .307919s elapsed │ │ │ + -- .182068s elapsed │ │ │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ o5 = 5 │ │ │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ -o6 = 7 │ │ │ +o6 = 17 │ │ │ │ │ │ i7 : R = QQ[x,y,z]; │ │ │ │ │ │ i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o8 = ideal (x + 2y - y - 2z, x - 8y + 10z - 1, x - 7y*z) │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ o10 = <> │ │ │ │ │ │ o10 : Task │ │ │ │ │ │ i11 : t │ │ │ │ │ │ -o11 = <> │ │ │ +o11 = <> │ │ │ │ │ │ o11 : Task │ │ │ │ │ │ i12 : isReady t │ │ │ │ │ │ o12 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ @@ -67,15 +67,15 @@ │ │ │ i3 : S = ring I │ │ │ │ │ │ o3 = S │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ - -- 2.07143s elapsed │ │ │ + -- 2.1915s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -84,15 +84,15 @@ │ │ │ o4 : BettiTally │ │ │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ - -- 1.82839s elapsed │ │ │ + -- 2.25423s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -105,15 +105,15 @@ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ o8 = 1 │ │ │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ - -- 1.75494s elapsed │ │ │ + -- 2.17331s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -132,15 +132,15 @@ │ │ │ o11 = 0 │ │ │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.23687s elapsed │ │ │ + -- 3.78121s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o13 : Complex │ │ │ @@ -150,15 +150,15 @@ │ │ │ o14 = 1 │ │ │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.55496s elapsed │ │ │ + -- 2.48371s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o16 : Complex │ │ │ @@ -174,43 +174,43 @@ │ │ │ o18 : PolynomialRing │ │ │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 5.136s elapsed │ │ │ + -- 3.695s elapsed │ │ │ │ │ │ 1 108 │ │ │ o20 : Matrix S <-- S │ │ │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ o21 = 1 │ │ │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 7.09108s elapsed │ │ │ + -- 8.58327s elapsed │ │ │ │ │ │ 1 108 │ │ │ o23 : Matrix S <-- S │ │ │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ o24 = 10 │ │ │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.22028s elapsed │ │ │ + -- 3.71049s elapsed │ │ │ │ │ │ 1 108 │ │ │ o26 : Matrix S <-- S │ │ │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ │ │ o27 = AssociativeAlgebras │ │ │ @@ -233,15 +233,15 @@ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ ZZ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.006s elapsed │ │ │ + -- 1.04567s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ @@ -253,14 +253,14 @@ │ │ │ 101 │ │ │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.19796s elapsed │ │ │ + -- 1.55933s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i35 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ @@ -146,65 +146,65 @@ │ │ │ o26 : ZZ[T] │ │ │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ o27 = 3 │ │ │ │ │ │ i28 : time poincare I │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc) │ │ │ + -- used 0.00166338s (cpu); 1.2346e-05s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ - -- registering gb 19 at 0x7f3fe9e7e540 │ │ │ + -- registering gb 19 at 0x7fb20a72f380 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 4186 │ │ │ -- #reduction steps = 38 │ │ │ -- #spairs done = 11 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 29 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc) │ │ │ + -- -- used 0.0143391s (cpu); 0.0143519s (thread); 0s (gc) │ │ │ │ │ │ 1 11 │ │ │ o29 : Matrix R <-- R │ │ │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ - -- registering gb 20 at 0x7f3fe9e7e380 │ │ │ + -- registering gb 20 at 0x7fb20a72f000 │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ -- number of monomials = 0 │ │ │ -- #reduction steps = 0 │ │ │ -- #spairs done = 0 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ -- nsaved = 0 │ │ │ -- │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ - -- registering gb 21 at 0x7f3fe9e7e000 │ │ │ + -- registering gb 21 at 0x7fb207cf1c40 │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 267 │ │ │ -- #reduction steps = 236 │ │ │ -- #spairs done = 30 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 20 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc) │ │ │ + -- -- used 0.00776975s (cpu); 0.00544307s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ @@ -254,27 +254,27 @@ │ │ │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ o36 = 3 │ │ │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ - -- registering gb 22 at 0x7f3fe9ab3e00 │ │ │ + -- registering gb 22 at 0x7fb207cf1a80 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39 │ │ │ -- number of monomials = 1051 │ │ │ -- #reduction steps = 284 │ │ │ -- #spairs done = 53 │ │ │ -- ncalls = 46 │ │ │ -- nloop = 54 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc) │ │ │ + -- -- used 0.0519744s (cpu); 0.0506s (thread); 0s (gc) │ │ │ │ │ │ 1 39 │ │ │ o37 : Matrix S <-- S │ │ │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_printing_spto_spa_spfile.out │ │ │ @@ -12,19 +12,19 @@ │ │ │ │ │ │ o2 = stdio │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fn = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-10932-0/0 │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │ │ │ │ i4 : fn << "hi there" << endl << close │ │ │ │ │ │ -o4 = /tmp/M2-10932-0/0 │ │ │ +o4 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ @@ -49,27 +49,27 @@ │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x + 1 │ │ │ o8 = stdio │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : fn << f << close │ │ │ │ │ │ -o9 = /tmp/M2-10932-0/0 │ │ │ +o9 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o9 : File │ │ │ │ │ │ i10 : get fn │ │ │ │ │ │ o10 = 10 9 8 7 6 5 4 3 2 │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x │ │ │ + 1 │ │ │ │ │ │ i11 : fn << toExternalString f << close │ │ │ │ │ │ -o11 = /tmp/M2-10932-0/0 │ │ │ +o11 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o11 : File │ │ │ │ │ │ i12 : get fn │ │ │ │ │ │ o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+ │ │ │ 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_process__I__D.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1330513630563 │ │ │ │ │ │ i1 : processID() │ │ │ │ │ │ -o1 = 10191 │ │ │ +o1 = 10311 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ @@ -9,35 +9,35 @@ │ │ │ │ │ │ 4 5 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : profileSummary │ │ │ │ │ │ o2 = #run %time position │ │ │ - 1 94.52 ../../m2/matrix1.m2:279:4-282:58 │ │ │ - 1 92.12 ../../m2/matrix1.m2:281:22-281:43 │ │ │ - 1 44.16 ../../m2/matrix1.m2:193:25-193:52 │ │ │ - 1 30.59 ../../m2/matrix1.m2:114:5-156:72 │ │ │ - 1 29.47 ../../m2/matrix1.m2:140:10-155:16 │ │ │ - 1 23.83 ../../m2/matrix1.m2:181:4-181:42 │ │ │ - 1 22.54 ../../m2/set.m2:127:5-127:61 │ │ │ - 1 20.86 ../../m2/matrix1.m2:45:10-49:22 │ │ │ - 1 3.30 ../../m2/matrix1.m2:112:5-112:29 │ │ │ - 1 2.34 ../../m2/matrix1.m2:141:13-141:78 │ │ │ - 1 2.18 ../../m2/matrix1.m2:96:5-109:11 │ │ │ - 1 1.42 ../../m2/matrix1.m2:281:7-281:16 │ │ │ - 1 1.29 ../../m2/matrix1.m2:147:20-147:64 │ │ │ - 1 1.29 ../../m2/matrix1.m2:111:5-111:91 │ │ │ - 1 1.27 ../../m2/matrix1.m2:276:4-277:73 │ │ │ - 1 1.02 ../../m2/matrix1.m2:98:10-98:46 │ │ │ - 1 .97 ../../m2/matrix1.m2:182:4-184:74 │ │ │ - 1 .81 ../../m2/modules.m2:279:4-279:52 │ │ │ - 20 .64 ../../m2/matrix1.m2:191:14-192:67 │ │ │ - 20 .47 ../../m2/matrix1.m2:47:43-47:71 │ │ │ - 1 .0038s elapsed total │ │ │ + 1 93.35 ../../m2/matrix1.m2:279:4-282:58 │ │ │ + 1 90.65 ../../m2/matrix1.m2:281:22-281:43 │ │ │ + 1 43.01 ../../m2/matrix1.m2:193:25-193:52 │ │ │ + 1 29.94 ../../m2/matrix1.m2:114:5-156:72 │ │ │ + 1 28.72 ../../m2/matrix1.m2:140:10-155:16 │ │ │ + 1 23.46 ../../m2/matrix1.m2:181:4-181:42 │ │ │ + 1 22.12 ../../m2/set.m2:127:5-127:61 │ │ │ + 1 20.2 ../../m2/matrix1.m2:45:10-49:22 │ │ │ + 1 3.26 ../../m2/matrix1.m2:112:5-112:29 │ │ │ + 1 2.8 ../../m2/matrix1.m2:141:13-141:78 │ │ │ + 1 2.16 ../../m2/matrix1.m2:96:5-109:11 │ │ │ + 1 1.69 ../../m2/matrix1.m2:281:7-281:16 │ │ │ + 1 1.37 ../../m2/matrix1.m2:276:4-277:73 │ │ │ + 1 1.26 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 1.14 ../../m2/matrix1.m2:111:5-111:91 │ │ │ + 1 1.10 ../../m2/matrix1.m2:182:4-184:74 │ │ │ + 1 1.08 ../../m2/matrix1.m2:98:10-98:46 │ │ │ + 20 .95 ../../m2/matrix1.m2:191:14-192:67 │ │ │ + 20 .67 ../../m2/matrix1.m2:47:43-47:71 │ │ │ + 20 .60 ../../m2/matrix1.m2:190:17-190:29 │ │ │ + 1 .0035s elapsed total │ │ │ │ │ │ i3 : coverageSummary │ │ │ │ │ │ o3 = covered lines: │ │ │ ../../m2/lists.m2:145:24-145:32 │ │ │ ../../m2/lists.m2:145:34-145:58 │ │ │ ../../m2/matrix.m2:12:5-12:35 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc) │ │ │ + -- used 0.247677s (cpu); 0.101492s (thread); 0s (gc) │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ @@ -33,15 +33,15 @@ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc) │ │ │ + -- used 0.767075s (cpu); 0.303818s (thread); 0s (gc) │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : p=10007,kk=ZZ/p,R=kk[x_0..x_2] │ │ │ @@ -58,12 +58,12 @@ │ │ │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c); │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc) │ │ │ + -- used 4.37816s (cpu); 1.88301s (thread); 0s (gc) │ │ │ │ │ │ o15 = 58 │ │ │ │ │ │ i16 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_read__Directory.out │ │ │ @@ -1,26 +1,26 @@ │ │ │ -- -*- M2-comint -*- hash: 20910736704070514 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : removeDirectory dir │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reading_spfiles.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 13513555104200944796 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ │ │ i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : get fn │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ +8*y^3 │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ │ │ o6 : Expression of class Product │ │ │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ print sample │ │ │ " << close │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : get fn │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_readlink.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 4408639611478781130 │ │ │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ │ │ i3 : readlink p │ │ │ │ │ │ o3 = foo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_realpath.out │ │ │ @@ -1,39 +1,39 @@ │ │ │ -- -*- M2-comint -*- hash: 324072347213224656 │ │ │ │ │ │ i1 : realpath "." │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ │ │ i5 : p << close │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : readlink q │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i7 : realpath q │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i8 : removeFile p │ │ │ │ │ │ i9 : removeFile q │ │ │ │ │ │ i10 : realpath "" │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 1729384374372662693 │ │ │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --")) │ │ │ │ │ │ i2 : collectGarbage() │ │ │ --finalization: (1)[3]: -- finalizing sequence #4 -- │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 -- │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 -- │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 -- │ │ │ ---finalization: (5)[6]: -- finalizing sequence #7 -- │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 -- │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (2)[6]: -- finalizing sequence #7 -- │ │ │ +--finalization: (3)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (5)[8]: -- finalizing sequence #9 -- │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (8)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (9)[7]: -- finalizing sequence #8 -- │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remove__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8532980310097060089 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ -o3 = {., ..} │ │ │ +o3 = {.., .} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : removeDirectory dir │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__Path.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420232148149387 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__U__R__I.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420231525572968 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_saving_sppolynomials_spand_spmatrices_spin_spfiles.out │ │ │ @@ -25,19 +25,19 @@ │ │ │ o4 = image | x2 x2-y2 xyz7 | │ │ │ │ │ │ 1 │ │ │ o4 : R-module, submodule of R │ │ │ │ │ │ i5 : f = temporaryFileName() │ │ │ │ │ │ -o5 = /tmp/M2-11356-0/0 │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │ │ │ │ i6 : f << toString (p,m,M) << close │ │ │ │ │ │ -o6 = /tmp/M2-11356-0/0 │ │ │ +o6 = /tmp/M2-12646-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : get f │ │ │ │ │ │ o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2, │ │ │ x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}}) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_serial__Number.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 5271760183816554957 │ │ │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ -o1 = 1426273 │ │ │ +o1 = 1526273 │ │ │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ -o2 = 1426275 │ │ │ +o2 = 1526275 │ │ │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ @@ -189,18 +189,18 @@ │ │ │ o25 = 40 │ │ │ │ │ │ i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A; │ │ │ │ │ │ i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B; │ │ │ │ │ │ i30 : time X = solve(A,B); │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc) │ │ │ + -- used 0.000227852s (cpu); 0.00021655s (thread); 0s (gc) │ │ │ │ │ │ i31 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc) │ │ │ + -- used 0.000112839s (cpu); 0.000112646s (thread); 0s (gc) │ │ │ │ │ │ i32 : norm(A*X-B) │ │ │ │ │ │ o32 = 5.111850690840453e-15 │ │ │ │ │ │ o32 : RR (of precision 53) │ │ │ │ │ │ @@ -209,18 +209,18 @@ │ │ │ o33 = 100 │ │ │ │ │ │ i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A; │ │ │ │ │ │ i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B; │ │ │ │ │ │ i38 : time X = solve(A,B); │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc) │ │ │ + -- used 0.135732s (cpu); 0.13574s (thread); 0s (gc) │ │ │ │ │ │ i39 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc) │ │ │ + -- used 0.138289s (cpu); 0.138302s (thread); 0s (gc) │ │ │ │ │ │ i40 : norm(A*X-B) │ │ │ │ │ │ o40 = 1.491578274689709814082355885932e-28 │ │ │ │ │ │ o40 : RR (of precision 100) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,60 +1,60 @@ │ │ │ -- -*- M2-comint -*- hash: 2989513528213557691 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11147-0/0/ │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11147-0/1/ │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/ │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/ │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f │ │ │ +o6 = /tmp/M2-12217-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g │ │ │ +o7 = /tmp/M2-12217-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : symlinkDirectory(src,dst,Verbose=>true) │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i10 : get (dst|"b/c/g") │ │ │ │ │ │ o10 = ho there │ │ │ │ │ │ i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true) │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ o12 = rm │ │ │ │ │ │ o12 : FunctionClosure │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__File.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 9343844672940306595 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ o3 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_temporary__File__Name.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731926531291302106 │ │ │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1332435500723 │ │ │ │ │ │ i1 : time 3^30 │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc) │ │ │ + -- used 1.9043e-05s (cpu); 5.659e-06s (thread); 0s (gc) │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1730988300469098603 │ │ │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ o1 = 205891132094649 │ │ │ - -- .000018144 seconds │ │ │ + -- .000019906 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{.000018144, 205891132094649} │ │ │ +o2 = Time{.000019906, 205891132094649} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ @@ -34,15 +34,15 @@ │ │ │ "memtailor version" => 1.1 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.11.0 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.11 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Command.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │
    i3 : (c = Command "date";)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : c
    │ │ │ -Sun Dec 14 15:26:56 UTC 2025
    │ │ │ +Thu Jan  1 11:02:31 UTC 2026
    │ │ │  
    │ │ │  o4 = 0
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ in a file), then it gets executed with empty argument list. │ │ │ │ i1 : (f = Command ( () -> 2^30 );) │ │ │ │ i2 : f │ │ │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ i3 : (c = Command "date";) │ │ │ │ i4 : c │ │ │ │ -Sun Dec 14 15:26:56 UTC 2025 │ │ │ │ +Thu Jan 1 11:02:31 UTC 2026 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_u_n -- run an external command │ │ │ │ * _A_f_t_e_r_E_v_a_l -- top level method applied after evaluation │ │ │ │ ********** MMeetthhooddss tthhaatt uussee aa ccoommmmaanndd:: ********** │ │ │ │ * code(Command) -- see _c_o_d_e -- display source code │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Database.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ A database file is just like a hash table, except both the keys and values have to be strings. In this example we create a database file, store a few entries, remove an entry with remove, close the file, and then remove the file. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : filename = temporaryFileName () | ".dbm"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │
    │ │ │
    i2 : x = openDatabaseOut filename
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │  
    │ │ │  o2 : Database
    │ │ │
    │ │ │
    i3 : x#"first" = "hi there"
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -7,18 +7,18 @@
    │ │ │ │  ************ DDaattaabbaassee ---- tthhee ccllaassss ooff aallll ddaattaabbaassee ffiilleess ************
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A database file is just like a hash table, except both the keys and values have
    │ │ │ │  to be strings. In this example we create a database file, store a few entries,
    │ │ │ │  remove an entry with _r_e_m_o_v_e, close the file, and then remove the file.
    │ │ │ │  i1 : filename = temporaryFileName () | ".dbm"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o1 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  i2 : x = openDatabaseOut filename
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  
    │ │ │ │  o2 : Database
    │ │ │ │  i3 : x#"first" = "hi there"
    │ │ │ │  
    │ │ │ │  o3 = hi there
    │ │ │ │  i4 : x#"first"
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html
    │ │ │ @@ -53,33 +53,33 @@
    │ │ │          

    Description

    │ │ │

    Macaulay2 uses the Hans Boehm garbage collector to reclaim unused memory. The function GCstats provides information about its status, such as the total number of bytes allocated, the current heap size, the number of garbage collections done, the number of threads used in each collection, the total cpu time spent in garbage collection, etc.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : s = GCstats()
    │ │ │  
    │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706        }
    │ │ │ +o1 = HashTable{"bytesAlloc" => 43062247930        }
    │ │ │                 "GC_free_space_divisor" => 3
    │ │ │                 "GC_LARGE_ALLOC_WARN_INTERVAL" => 1
    │ │ │                 "gcCpuTimeSecs" => 0
    │ │ │ -               "heapSize" => 206680064
    │ │ │ -               "numGCs" => 795
    │ │ │ -               "numGCThreads" => 6
    │ │ │ +               "heapSize" => 225296384
    │ │ │ +               "numGCs" => 783
    │ │ │ +               "numGCThreads" => 16
    │ │ │  
    │ │ │  o1 : HashTable
    │ │ │
    │ │ │

    The value returned is a hash table, from which individual bits of information can be easily extracted, as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : s#"heapSize"
    │ │ │  
    │ │ │ -o2 = 206680064
    │ │ │ +o2 = 225296384 │ │ │
    │ │ │

    Any entries whose keys are all upper case give the values of environment variables affecting the operation of the garbage collector that have been specified by the user.

    │ │ │

    For further information about the individual items in the table, we refer the user to the source code and documentation of the garbage collector.

    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,28 +9,28 @@ │ │ │ │ Macaulay2 uses the Hans Boehm _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r to reclaim unused memory. The │ │ │ │ function GCstats provides information about its status, such as the total │ │ │ │ number of bytes allocated, the current heap size, the number of garbage │ │ │ │ collections done, the number of threads used in each collection, the total cpu │ │ │ │ time spent in garbage collection, etc. │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706 } │ │ │ │ +o1 = HashTable{"bytesAlloc" => 43062247930 } │ │ │ │ "GC_free_space_divisor" => 3 │ │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ │ "gcCpuTimeSecs" => 0 │ │ │ │ - "heapSize" => 206680064 │ │ │ │ - "numGCs" => 795 │ │ │ │ - "numGCThreads" => 6 │ │ │ │ + "heapSize" => 225296384 │ │ │ │ + "numGCs" => 783 │ │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ │ │ o1 : HashTable │ │ │ │ The value returned is a hash table, from which individual bits of information │ │ │ │ can be easily extracted, as follows. │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ │ │ -o2 = 206680064 │ │ │ │ +o2 = 225296384 │ │ │ │ Any entries whose keys are all upper case give the values of environment │ │ │ │ variables affecting the operation of the garbage collector that have been │ │ │ │ specified by the user. │ │ │ │ For further information about the individual items in the table, we refer the │ │ │ │ user to the source code and documentation of the garbage collector. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ @@ -128,23 +128,23 @@ │ │ │ │ │ │ o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc)
    │ │ │ + -- used 0.00528296s (cpu); 0.00527776s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │
    │ │ │
    i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc)
    │ │ │ + -- used 0.0550328s (cpu); 0.0550419s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │
    │ │ │
    i10 : numgens J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,19 +46,19 @@
    │ │ │ │  o6 = R
    │ │ │ │  
    │ │ │ │  o6 : PolynomialRing
    │ │ │ │  i7 : I = monomialCurveIdeal(R, {1,4,5,9});
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00528296s (cpu); 0.00527776s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0550328s (cpu); 0.0550419s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : numgens J
    │ │ │ │  
    │ │ │ │  o10 = 1067
    │ │ │ │  i11 : numgens K
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html
    │ │ │ @@ -68,21 +68,21 @@
    │ │ │  o1 : Matrix RR      <-- RR
    │ │ │                53          53
    │ │ │
    │ │ │
    i2 : time SVD(M);
    │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc)
    │ │ │ + -- used 0.0380489s (cpu); 0.0379843s (thread); 0s (gc) │ │ │
    │ │ │
    i3 : time SVD(M, DivideConquer=>true);
    │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc)
    │ │ │ + -- used 0.0381925s (cpu); 0.0379757s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Functions with optional argument named DivideConquer:

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,17 +11,17 @@ │ │ │ │ For large matrices, this algorithm is often much faster. │ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ │ │ 200 200 │ │ │ │ o1 : Matrix RR <-- RR │ │ │ │ 53 53 │ │ │ │ i2 : time SVD(M); │ │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc) │ │ │ │ + -- used 0.0380489s (cpu); 0.0379843s (thread); 0s (gc) │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc) │ │ │ │ + -- used 0.0381925s (cpu); 0.0379757s (thread); 0s (gc) │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd DDiivviiddeeCCoonnqquueerr:: ********** │ │ │ │ * _S_V_D_(_._._._,_D_i_v_i_d_e_C_o_n_q_u_e_r_=_>_._._._) -- whether to use the LAPACK divide and │ │ │ │ conquer SVD algorithm │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: _t_r_u_e │ │ │ │ * Function: _S_V_D -- singular value decomposition of a matrix │ │ │ │ * Option key: _D_i_v_i_d_e_C_o_n_q_u_e_r -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ @@ -826,15 +826,15 @@ │ │ │
    │ │ │

    We may use resolution to produce a projective resolution of it, and time to report the time required.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i59 : time C = resolution M
    │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc)
    │ │ │ + -- used 0.00195051s (cpu); 0.00194491s (thread); 0s (gc)
    │ │ │  
    │ │ │         3      6      15      18      6
    │ │ │  o59 = R  <-- R  <-- R   <-- R   <-- R  <-- 0
    │ │ │                                              
    │ │ │        0      1      2       3       4      5
    │ │ │  
    │ │ │  o59 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -390,15 +390,15 @@ │ │ │ │ | c f i l o r | │ │ │ │ │ │ │ │ 3 │ │ │ │ o58 : R-module, quotient of R │ │ │ │ We may use _r_e_s_o_l_u_t_i_o_n to produce a projective resolution of it, and _t_i_m_e to │ │ │ │ report the time required. │ │ │ │ i59 : time C = resolution M │ │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc) │ │ │ │ + -- used 0.00195051s (cpu); 0.00194491s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 15 18 6 │ │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ o4 = "hi there" │ │ │
    │ │ │
    i5 : atEndOfFile f
    │ │ │  
    │ │ │ -o5 = false
    │ │ │ +o5 = true │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,13 +23,13 @@ │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : peek read f │ │ │ │ │ │ │ │ o4 = "hi there" │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ │ │ -o5 = false │ │ │ │ +o5 = true │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _a_t_E_n_d_O_f_F_i_l_e_(_F_i_l_e_) -- test for end of file │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_files.m2:374:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │ Produces an accurate timing for the code contained in the string s. The value returned is the number of seconds. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : benchmark "sqrt 2p100000"
    │ │ │  
    │ │ │ -o1 = .000290697861367332
    │ │ │ +o1 = .0003478640801445259
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │ The snippet of code provided will be run enough times to register meaningfully on the clock, and the garbage collector will be called beforehand.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds it takes to evaluate the code │ │ │ │ in s │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Produces an accurate timing for the code contained in the string s. The value │ │ │ │ returned is the number of seconds. │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ │ │ -o1 = .000290697861367332 │ │ │ │ +o1 = .0003478640801445259 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ The snippet of code provided will be run enough times to register meaningfully │ │ │ │ on the clock, and the garbage collector will be called beforehand. │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _b_e_n_c_h_m_a_r_k is a _f_u_n_c_t_i_o_n_ _c_l_o_s_u_r_e. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ @@ -69,23 +69,23 @@ │ │ │
    i3 : M = coker vars R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime pdim' M
    │ │ │   -- computing pdim'
    │ │ │ - -- .00670047s elapsed
    │ │ │ + -- .00382538s elapsed
    │ │ │  
    │ │ │  o4 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime pdim' M
    │ │ │ - -- .000001513s elapsed
    │ │ │ + -- .000002683s elapsed
    │ │ │  
    │ │ │  o5 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : peek M.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -8,19 +8,19 @@
    │ │ │ │  Here is a simple example of caching a computation in a _C_a_c_h_e_T_a_b_l_e, using the
    │ │ │ │  augmented null coalescing operator _?_?_=.
    │ │ │ │  i1 : pdim' = M -> M.cache.pdim' ??= ( printerr "computing pdim'"; pdim M );
    │ │ │ │  i2 : R = QQ[x,y,z];
    │ │ │ │  i3 : M = coker vars R;
    │ │ │ │  i4 : elapsedTime pdim' M
    │ │ │ │   -- computing pdim'
    │ │ │ │ - -- .00670047s elapsed
    │ │ │ │ + -- .00382538s elapsed
    │ │ │ │  
    │ │ │ │  o4 = 3
    │ │ │ │  i5 : elapsedTime pdim' M
    │ │ │ │ - -- .000001513s elapsed
    │ │ │ │ + -- .000002683s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 3
    │ │ │ │  i6 : peek M.cache
    │ │ │ │  
    │ │ │ │  o6 = CacheTable{cache => MutableHashTable{}
    │ │ │ │  }
    │ │ │ │                  isHomogeneous => true
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  o4 : Task
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : n
    │ │ │  
    │ │ │ -o5 = 711206
    │ │ │ +o5 = 1095015 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : sleep 1
    │ │ │  
    │ │ │  o6 = 0
    │ │ │ @@ -127,15 +127,15 @@ │ │ │ o7 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : n
    │ │ │  
    │ │ │ -o8 = 1453533
    │ │ │ +o8 = 2220814 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : isReady t
    │ │ │  
    │ │ │  o9 = false
    │ │ │ @@ -163,29 +163,29 @@ │ │ │ o12 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : n
    │ │ │  
    │ │ │ -o13 = 1453746
    │ │ │ +o13 = 2221001 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : sleep 1
    │ │ │  
    │ │ │  o14 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : n
    │ │ │  
    │ │ │ -o15 = 1453746
    │ │ │ +o15 = 2221001 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : isReady t
    │ │ │  
    │ │ │  o16 = false
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,26 +28,26 @@ │ │ │ │ i4 : t │ │ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ │ │ o4 : Task │ │ │ │ i5 : n │ │ │ │ │ │ │ │ -o5 = 711206 │ │ │ │ +o5 = 1095015 │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ │ │ o6 = 0 │ │ │ │ i7 : t │ │ │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ │ │ o7 : Task │ │ │ │ i8 : n │ │ │ │ │ │ │ │ -o8 = 1453533 │ │ │ │ +o8 = 2220814 │ │ │ │ i9 : isReady t │ │ │ │ │ │ │ │ o9 = false │ │ │ │ i10 : cancelTask t │ │ │ │ i11 : sleep 2 │ │ │ │ stdio:2:25:(3):[1]: error: interrupted │ │ │ │ │ │ │ │ @@ -55,21 +55,21 @@ │ │ │ │ i12 : t │ │ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ │ │ o12 : Task │ │ │ │ i13 : n │ │ │ │ │ │ │ │ -o13 = 1453746 │ │ │ │ +o13 = 2221001 │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ │ │ o14 = 0 │ │ │ │ i15 : n │ │ │ │ │ │ │ │ -o15 = 1453746 │ │ │ │ +o15 = 2221001 │ │ │ │ i16 : isReady t │ │ │ │ │ │ │ │ o16 = false │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_a_n_c_e_l_T_a_s_k_(_T_a_s_k_) -- stop a task │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -71,36 +71,36 @@ │ │ │

    Change the current working directory to dir.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10463-0/0
    │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10463-0/0
    │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i3 : changeDirectory dir
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10463-0/0/
    │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    i4 : currentDirectory()
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10463-0/0/
    │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    │ │ │

    If dir is omitted, then the current working directory is changed to the user's home directory.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,24 @@ │ │ │ │ o dir, a _s_t_r_i_n_g, │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the new working directory; │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Change the current working directory to dir. │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ If dir is omitted, then the current working directory is changed to the user's │ │ │ │ home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_D_i_r_e_c_t_o_r_y -- current working directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_a_n_g_e_D_i_r_e_c_t_o_r_y is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_check.html │ │ │ @@ -95,40 +95,40 @@ │ │ │ o1 : Package │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : check_1 FirstPackage
    │ │ │   -- warning: reloading FirstPackage; recreate instances of types from this package
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .15147s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .122544s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : check FirstPackage
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .150181s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .150965s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .116342s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Alternatively, if the package is installed somewhere accessible, one can do the following.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : check_1 "FirstPackage"
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .152579s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │
    │ │ │
    i5 : check "FirstPackage"
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .152053s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .151867s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .120072s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .119513s elapsed │ │ │
    │ │ │
    │ │ │

    A TestInput object (or a list of such objects) can also be run directly.

    │ │ │
    │ │ │ │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : check oo
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .153083s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .119399s elapsed │ │ │
    │ │ │
    i8 : tests "FirstPackage"
    │ │ │  
    │ │ │  o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]}
    │ │ │ @@ -156,16 +156,16 @@
    │ │ │  
    │ │ │  o8 : NumberedVerticalList
    │ │ │
    │ │ │
    i9 : check oo
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .152703s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .150901s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .118011s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .116374s elapsed │ │ │
    │ │ │
    │ │ │

    If only an integer is passed as an argument, then the test with that index from the last call to tests is run.

    │ │ │
    │ │ │ │ │ │ @@ -178,15 +178,15 @@ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : check 1
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .151346s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .123542s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,52 +42,52 @@ │ │ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ │ │ o1 : Package │ │ │ │ i2 : check_1 FirstPackage │ │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- capturing check(1, "FirstPackage") -- .15147s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .122544s elapsed │ │ │ │ i3 : check FirstPackage │ │ │ │ - -- capturing check(0, "FirstPackage") -- .150181s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .150965s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .116342s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │ │ Alternatively, if the package is installed somewhere accessible, one can do the │ │ │ │ following. │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ │ - -- capturing check(1, "FirstPackage") -- .152579s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .118608s elapsed │ │ │ │ i5 : check "FirstPackage" │ │ │ │ - -- capturing check(0, "FirstPackage") -- .152053s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .151867s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .120072s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .119513s elapsed │ │ │ │ A _T_e_s_t_I_n_p_u_t object (or a list of such objects) can also be run directly. │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ │ │ o6 : TestInput │ │ │ │ i7 : check oo │ │ │ │ - -- capturing check(1, "FirstPackage") -- .153083s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .119399s elapsed │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ i9 : check oo │ │ │ │ - -- capturing check(0, "FirstPackage") -- .152703s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .150901s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .118011s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .116374s elapsed │ │ │ │ If only an integer is passed as an argument, then the test with that index from │ │ │ │ the last call to _t_e_s_t_s is run. │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ i11 : check 1 │ │ │ │ - -- capturing check(1, "FirstPackage") -- .151346s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .123542s elapsed │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Currently, if the package was only partially loaded because the documentation │ │ │ │ was obtainable from a database (see _b_e_g_i_n_D_o_c_u_m_e_n_t_a_t_i_o_n), then the package will │ │ │ │ be reloaded, this time completely, to ensure that all tests are considered; │ │ │ │ this may affect user objects of types declared by the package, as they may be │ │ │ │ not usable by the new instance of the package. In a future version, either the │ │ │ │ tests and the documentation will both be cached, or neither will. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ @@ -50,15 +50,15 @@ │ │ │
    │ │ │

    communicating with programs

    │ │ │
    │ │ │ The most naive way to interact with another program is simply to run it, let it communicate directly with the user, and wait for it to finish. This is done with the run command. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : run "uname -a"
    │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
    │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │ To run a program and provide it with input, one way is use the operator <<, with a file name whose first character is an exclamation point; the rest of the file name will be taken as the command to run, as in the following example. │ │ │ │ │ │ @@ -74,15 +74,15 @@ │ │ │ │ │ │
    │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the output from the other program. If the program requires no input data, then we can use get with a file name whose first character is an exclamation point. In the following example, we also peek at the string to see whether it includes a newline character. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : peek get "!uname -a"
    │ │ │  
    │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │       6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n"
    │ │ │
    │ │ │ Bidirectional communication with a program is also possible. We use openInOut to create a file that serves as a bidirectional connection to a program. That file is called an input output file. In this example we open a connection to the unix utility grep and use it to locate the symbol names in Macaulay2 that begin with in. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ take(N,-2)); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ i5 : ? X │ │ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ i6 : time f = X ===> Y; │ │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc) │ │ │ │ + -- used 4.13499s (cpu); 2.08126s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ i7 : f X │ │ │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, curve in PP^8 │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ i9 : V = random({{2},{1}},X); │ │ │ │ │ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i11 : time g = V ===> W; │ │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc) │ │ │ │ + -- used 3.69451s (cpu); 2.10155s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ i12 : g||W │ │ │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 │ │ │ │ hypersurfaces of degrees 1^1 2^1 │ │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ i15 : Z = projectiveVariety pfaffians(4,A); │ │ │ │ │ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ i16 : ? Z │ │ │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc) │ │ │ │ + -- used 6.52083s (cpu); 4.57396s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = h │ │ │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ i18 : h || GG_K(1,4) │ │ │ │ │ │ │ │ o18 = multi-rational map consisting of one single rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,24 +25,24 @@ │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^7 x PP^7) │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ i5 : time Phi Z; │ │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc) │ │ │ │ + -- used 0.130263s (cpu); 0.111376s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc) │ │ │ │ + -- used 2.51637s (cpu); 1.40924s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of │ │ │ │ multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ @@ -93,31 +93,31 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -5,16 +5,16 @@ │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ ccoommmmuunniiccaattiinngg wwiitthh pprrooggrraammss ************ │ │ │ │ The most naive way to interact with another program is simply to run it, let it │ │ │ │ communicate directly with the user, and wait for it to finish. This is done │ │ │ │ with the _r_u_n command. │ │ │ │ i1 : run "uname -a" │ │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025- │ │ │ │ -11-05) x86_64 GNU/Linux │ │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 │ │ │ │ +(2025-11-05) x86_64 GNU/Linux │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ To run a program and provide it with input, one way is use the operator _<_<, │ │ │ │ with a file name whose first character is an exclamation point; the rest of the │ │ │ │ file name will be taken as the command to run, as in the following example. │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ │ ba │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the │ │ │ │ output from the other program. If the program requires no input data, then we │ │ │ │ can use _g_e_t with a file name whose first character is an exclamation point. In │ │ │ │ the following example, we also peek at the string to see whether it includes a │ │ │ │ newline character. │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │ │ Bidirectional communication with a program is also possible. We use _o_p_e_n_I_n_O_u_t │ │ │ │ to create a file that serves as a bidirectional connection to a program. That │ │ │ │ file is called an input output file. In this example we open a connection to │ │ │ │ the unix utility grep and use it to locate the symbol names in Macaulay2 that │ │ │ │ begin with in. │ │ │ │ i4 : f = openInOut "!grep -E '^in'" │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ @@ -269,15 +269,15 @@ │ │ │ 1277 │ │ │
    │ │ │
    i24 : gb I
    │ │ │  
    │ │ │ -   -- registering gb 5 at 0x7f67b957e540
    │ │ │ +   -- registering gb 5 at 0x7fb15fc15540
    │ │ │  
    │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │     -- number of monomials                = 8
    │ │ │     -- #reduction steps = 2
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -373,15 +373,15 @@
    │ │ │                1      4
    │ │ │  o32 : Matrix R  <-- R
    │ │ │
    │ │ │
    i33 : time betti gb f
    │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc)
    │ │ │ + -- used 0.219908s (cpu); 0.21961s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o33 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ @@ -417,15 +417,15 @@
    │ │ │  
    │ │ │  o35 : ZZ[T]
    │ │ │
    │ │ │
    i36 : time betti gb f
    │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc)
    │ │ │ + -- used 0.00304346s (cpu); 0.00303251s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o36 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -140,15 +140,15 @@
    │ │ │ │  o23 = ideal (x*y - z , y  - w )
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o23 : Ideal of ----[x..z, w]
    │ │ │ │                 1277
    │ │ │ │  i24 : gb I
    │ │ │ │  
    │ │ │ │ -   -- registering gb 5 at 0x7f67b957e540
    │ │ │ │ +   -- registering gb 5 at 0x7fb15fc15540
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │ │     -- number of monomials                = 8
    │ │ │ │     -- #reduction steps = 2
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ │ │     -- nloop = 0
    │ │ │ │ @@ -213,15 +213,15 @@
    │ │ │ │  
    │ │ │ │  o31 : ZZ[T]
    │ │ │ │  i32 : f = random(R^1,R^{-3,-3,-5,-6});
    │ │ │ │  
    │ │ │ │                1      4
    │ │ │ │  o32 : Matrix R  <-- R
    │ │ │ │  i33 : time betti gb f
    │ │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc)
    │ │ │ │ + -- used 0.219908s (cpu); 0.21961s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o33 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ │ │ @@ -245,15 +245,15 @@
    │ │ │ │  i35 : poincare cokernel f = (1-T^3)*(1-T^3)*(1-T^5)*(1-T^6) -- cache poincare
    │ │ │ │  
    │ │ │ │              3    5     8     9    12     14    17
    │ │ │ │  o35 = 1 - 2T  - T  + 2T  + 2T  - T   - 2T   + T
    │ │ │ │  
    │ │ │ │  o35 : ZZ[T]
    │ │ │ │  i36 : time betti gb f
    │ │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00304346s (cpu); 0.00303251s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o36 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,112 +80,112 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11185-0/0/
    │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11185-0/1/
    │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11185-0/0/a/
    │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11185-0/0/b/
    │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11185-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12295-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11185-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12295-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : stack findFiles src
    │ │ │  
    │ │ │ -o9 = /tmp/M2-11185-0/0/
    │ │ │ -     /tmp/M2-11185-0/0/b/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/g
    │ │ │ -     /tmp/M2-11185-0/0/a/
    │ │ │ -     /tmp/M2-11185-0/0/a/g
    │ │ │ -     /tmp/M2-11185-0/0/a/f
    │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │
    │ │ │
    i10 : copyDirectory(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f
    │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f
    │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i12 : stack findFiles dst
    │ │ │  
    │ │ │ -o12 = /tmp/M2-11185-0/1/
    │ │ │ -      /tmp/M2-11185-0/1/a/
    │ │ │ -      /tmp/M2-11185-0/1/a/f
    │ │ │ -      /tmp/M2-11185-0/1/a/g
    │ │ │ -      /tmp/M2-11185-0/1/b/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/g
    │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i13 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o13 = ho there
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,68 +25,68 @@ │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o a copy of the directory tree rooted at src is created, rooted at │ │ │ │ dst │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ │ │ o6 : File │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ │ │ o8 : File │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ │ │ o13 = ho there │ │ │ │ Now we remove the files and directories we created. │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ │ │ o14 = rm │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__File_lp__String_cm__String_rp.html │ │ │ @@ -78,65 +78,65 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,16 +31,16 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/ │ │ │ │ -M2-53632-0/0-out.ms │ │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84650-0/0-in.ms -o /tmp/ │ │ │ │ +M2-84650-0/0-out.ms │ │ │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ │ #variables 3 │ │ │ │ #equations 3 │ │ │ │ #invalid equations 0 │ │ │ │ field characteristic 0 │ │ │ │ homogeneous input? 1 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ initial hash table size 131072 (2^17) │ │ │ │ max pair selection ALL │ │ │ │ reduce gb 1 │ │ │ │ #threads 6 │ │ │ │ info level 2 │ │ │ │ generate pbm files 0 │ │ │ │ ------------------------------------------ │ │ │ │ -Initial prime = 1196244169 │ │ │ │ +Initial prime = 1266683059 │ │ │ │ │ │ │ │ Legend for f4 information │ │ │ │ -------------------------------------------------------- │ │ │ │ deg current degree of pairs selected in this round │ │ │ │ sel number of pairs selected in this round │ │ │ │ pairs total number of pairs in pair list │ │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ │ @@ -73,26 +73,26 @@ │ │ │ │ deg sel pairs mat density new data │ │ │ │ time(rd) in sec (real|cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ reduce final basis 3 x 3 33.33% 3 new 0 zero │ │ │ │ -0.02 | 0.07 │ │ │ │ +0.00 | 0.00 │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -overall(elapsed) 0.06 sec │ │ │ │ -overall(cpu) 0.17 sec │ │ │ │ +overall(elapsed) 0.00 sec │ │ │ │ +overall(cpu) 0.00 sec │ │ │ │ select 0.00 sec 0.0% │ │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ │ -update 0.03 sec 57.3% │ │ │ │ -convert 0.02 sec 42.4% │ │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ │ +symbolic prep. 0.00 sec 0.3% │ │ │ │ +update 0.00 sec 73.3% │ │ │ │ +convert 0.00 sec 7.6% │ │ │ │ +linear algebra 0.00 sec 1.0% │ │ │ │ reduce gb 0.00 sec 0.0% │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ size of basis 3 │ │ │ │ #terms in basis 3 │ │ │ │ #pairs reduced 0 │ │ │ │ @@ -106,18 +106,18 @@ │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ [3] │ │ │ │ #polynomials to lift 3 │ │ │ │ ----------------------------------------- │ │ │ │ -New prime = 1107170621 │ │ │ │ +New prime = 1184773069 │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -multi-mod overall(elapsed) 0.02 sec │ │ │ │ +multi-mod overall(elapsed) 0.00 sec │ │ │ │ learning phase 0.00 Gops/sec │ │ │ │ application phase 0.00 Gops/sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ multi-modular steps │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ @@ -136,15 +136,15 @@ │ │ │ │ CRT (elapsed) 0.00 sec │ │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ -msolve overall time 0.19 sec (elapsed) / 0.49 sec (cpu) │ │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.04 sec (cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ @@ -23,19 +23,19 @@ │ │ │ o4 : RingMap S <-- R │ │ │ │ │ │ i5 : peek componentsOfKernel(2, F) │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 6 │ │ │ number of distinct multidegrees = 6 │ │ │ - -- .00186857s elapsed │ │ │ + -- .00246071s elapsed │ │ │ computing total degree: 2 │ │ │ number of monomials = 21 │ │ │ number of distinct multidegrees = 18 │ │ │ - -- .00833047s elapsed │ │ │ + -- .0106961s elapsed │ │ │ │ │ │ o5 = MutableHashTable{{0, 1, 0, 0, 1} => {} } │ │ │ {0, 1, 0, 1, 0} => {} │ │ │ {0, 1, 1, 0, 0} => {} │ │ │ {0, 2, 0, 0, 2} => {} │ │ │ {0, 2, 0, 1, 1} => {} │ │ │ {0, 2, 0, 2, 0} => {} │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ @@ -117,19 +117,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,23 +20,23 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal"xy,yz,zx" │ │ │ │ │ │ │ │ o2 = ideal (x*y, y*z, x*z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime jMult I │ │ │ │ - -- .0234547s elapsed │ │ │ │ + -- .027638s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : elapsedTime monjMult I │ │ │ │ - -- .107713s elapsed │ │ │ │ + -- .0842469s elapsed │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : elapsedTime multiplicitySequence I │ │ │ │ - -- .181349s elapsed │ │ │ │ + -- .140034s elapsed │ │ │ │ │ │ │ │ o5 = HashTable{2 => 3} │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o5 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10970-0/0
    │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10970-0/1
    │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10970-0/0
    │ │ │ +o3 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : copyFile(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1
    │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i7 : src << "ho there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-10970-0/0
    │ │ │ +o7 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i9 : get dst
    │ │ │  
    │ │ │  o9 = hi there
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,37 +18,37 @@ │ │ │ │ o Verbose => a _B_o_o_l_e_a_n_ _v_a_l_u_e, default value false, whether to report │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o the file may be copied │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i9 : get dst │ │ │ │ │ │ │ │ o9 = hi there │ │ │ │ i10 : removeFile src │ │ │ │ i11 : removeFile dst │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_D_i_r_e_c_t_o_r_y │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ @@ -64,38 +64,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : t1 = cpuTime()
    │ │ │  
    │ │ │ -o1 = 354.029649282
    │ │ │ +o1 = 319.890774352
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │
    i2 : for i from 0 to 1000000 do 223131321321*324234324324;
    │ │ │
    │ │ │
    i3 : t2 = cpuTime()
    │ │ │  
    │ │ │ -o3 = 355.996910491
    │ │ │ +o3 = 320.686724796
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │
    i4 : t2-t1
    │ │ │  
    │ │ │ -o4 = 1.967261209000014
    │ │ │ +o4 = .7959504440000273
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,26 +9,26 @@ │ │ │ │ cpuTime() │ │ │ │ * Outputs: │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds of cpu time used since the │ │ │ │ program was started │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ │ │ -o1 = 354.029649282 │ │ │ │ +o1 = 319.890774352 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ │ │ -o3 = 355.996910491 │ │ │ │ +o3 = 320.686724796 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ │ │ -o4 = 1.967261209000014 │ │ │ │ +o4 = .7959504440000273 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ @@ -64,48 +64,48 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime()
    │ │ │  
    │ │ │ -o1 = 1765726091
    │ │ │ +o1 = 1767265403 │ │ │
    │ │ │

    We can compute, roughly, how many years ago the epoch began as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 )
    │ │ │  
    │ │ │ -o2 = 55.95363237235333
    │ │ │ +o2 = 56.00241122780173
    │ │ │  
    │ │ │  o2 : RR (of precision 53)
    │ │ │
    │ │ │

    We can also compute how many months account for the fractional part of that number.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : 12 * (oo - floor oo)
    │ │ │  
    │ │ │ -o3 = 11.44358846823999
    │ │ │ +o3 = .02893473362075838
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │

    Compare that to the current date, available from a standard Unix command.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : run "date"
    │ │ │ -Sun Dec 14 15:28:11 UTC 2025
    │ │ │ +Thu Jan  1 11:03:23 UTC 2026
    │ │ │  
    │ │ │  o4 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,31 +9,31 @@ │ │ │ │ currentTime() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the current time, in seconds since 00:00:00 1970-01-01 │ │ │ │ UTC, the beginning of the epoch │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : currentTime() │ │ │ │ │ │ │ │ -o1 = 1765726091 │ │ │ │ +o1 = 1767265403 │ │ │ │ We can compute, roughly, how many years ago the epoch began as follows. │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ │ │ -o2 = 55.95363237235333 │ │ │ │ +o2 = 56.00241122780173 │ │ │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ We can also compute how many months account for the fractional part of that │ │ │ │ number. │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ │ │ -o3 = 11.44358846823999 │ │ │ │ +o3 = .02893473362075838 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ Compare that to the current date, available from a standard Unix command. │ │ │ │ i4 : run "date" │ │ │ │ -Sun Dec 14 15:28:11 UTC 2025 │ │ │ │ +Thu Jan 1 11:03:23 UTC 2026 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_u_r_r_e_n_t_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:1849:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the value of e. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime sleep 1
    │ │ │ - -- 1.00015s elapsed
    │ │ │ + -- 1.00013s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ ************ eellaappsseeddTTiimmee ---- ttiimmee aa ccoommppuuttaattiioonn iinncclluuddiinngg ttiimmee eellaappsseedd ************ │ │ │ │ * Usage: │ │ │ │ elapsedTime e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the │ │ │ │ value of e. │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ │ - -- 1.00015s elapsed │ │ │ │ + -- 1.00013s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _G_C_s_t_a_t_s -- information about the status of the garbage collector │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ @@ -54,24 +54,24 @@ │ │ │ elapsedTiming e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of time elapsed, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTiming sleep 1
    │ │ │  
    │ │ │  o1 = 0
    │ │ │ -     -- 1.00015 seconds
    │ │ │ +     -- 1.00014 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{1.00015, 0}
    │ │ │ +o2 = Time{1.00014, 0} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ where t is the number of seconds of time elapsed, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : elapsedTiming sleep 1 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ - -- 1.00015 seconds │ │ │ │ + -- 1.00014 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{1.00015, 0} │ │ │ │ +o2 = Time{1.00014, 0} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │
    │ │ │
    i3 : time leadTerm gens gb I
    │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc)
    │ │ │ + -- used 0.163882s (cpu); 0.163881s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time G = eliminate(I,{s,t})
    │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc)
    │ │ │ + -- used 0.403807s (cpu); 0.181s (thread); 0s (gc)
    │ │ │  
    │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │       ------------------------------------------------------------------------
    │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -245,15 +245,15 @@
    │ │ │  
    │ │ │  o11 : Ideal of R1
    │ │ │
    │ │ │
    i12 : time G = eliminate(I1,{s,t})
    │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc)
    │ │ │ + -- used 0.0304523s (cpu); 0.0304574s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7  
    │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2  
    │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -337,15 +337,15 @@
    │ │ │  
    │ │ │  o16 : RingMap A <-- B
    │ │ │
    │ │ │
    i17 : time G = kernel F
    │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc)
    │ │ │ + -- used 0.100185s (cpu); 0.100191s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -418,26 +418,26 @@
    │ │ │  
    │ │ │  o19 : PolynomialRing
    │ │ │
    │ │ │
    i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc)
    │ │ │ + -- used 0.00161638s (cpu); 0.00161341s (thread); 0s (gc)
    │ │ │  
    │ │ │           9    9      7    3
    │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │  
    │ │ │  o20 : R
    │ │ │
    │ │ │
    i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc)
    │ │ │ + -- used 0.0355171s (cpu); 0.0355287s (thread); 0s (gc)
    │ │ │  
    │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2  
    │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8   
    │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,15 +13,15 @@
    │ │ │ │  i2 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o2 = ideal (- s  - s*t + x - 1, - t  - 3t  - t + y, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time leadTerm gens gb I
    │ │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc)
    │ │ │ │ + -- used 0.163882s (cpu); 0.163881s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -89,15 +89,15 @@
    │ │ │ │  i7 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o7 = ideal (- s  - s*t + x - 1, - t  - 3t  + y - t, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time G = eliminate(I,{s,t})
    │ │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc)
    │ │ │ │ + -- used 0.403807s (cpu); 0.181s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -156,15 +156,15 @@
    │ │ │ │  Sometimes giving the variables different degrees will speed up the
    │ │ │ │  computations. Here, we set the degrees of x, y, and z to be the total degrees.
    │ │ │ │  i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}];
    │ │ │ │  i11 : I1 = substitute(I,R1);
    │ │ │ │  
    │ │ │ │  o11 : Ideal of R1
    │ │ │ │  i12 : time G = eliminate(I1,{s,t})
    │ │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0304523s (cpu); 0.0304574s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7
    │ │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2
    │ │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -227,15 +227,15 @@
    │ │ │ │  i16 : F = map(A,B,{s^3+s*t+1, t^3+3*t^2+t, s*t^3})
    │ │ │ │  
    │ │ │ │                     3             3     2         3
    │ │ │ │  o16 = map (A, B, {s  + s*t + 1, t  + 3t  + t, s*t })
    │ │ │ │  
    │ │ │ │  o16 : RingMap A <-- B
    │ │ │ │  i17 : time G = kernel F
    │ │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc)
    │ │ │ │ + -- used 0.100185s (cpu); 0.100191s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -296,22 +296,22 @@
    │ │ │ │  involve the variables s and t.
    │ │ │ │  i19 : use ring I
    │ │ │ │  
    │ │ │ │  o19 = R
    │ │ │ │  
    │ │ │ │  o19 : PolynomialRing
    │ │ │ │  i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00161638s (cpu); 0.00161341s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9    9      7    3
    │ │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │ │  
    │ │ │ │  o20 : R
    │ │ │ │  i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0355171s (cpu); 0.0355287s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2
    │ │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8
    │ │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html
    │ │ │ @@ -154,15 +154,15 @@
    │ │ │                                      Version => 0.0
    │ │ │               package prefix => /usr/
    │ │ │               PackageIsLoaded => true
    │ │ │               pkgname => Foo
    │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │               processed documentation => MutableHashTable{}
    │ │ │               raw documentation => MutableHashTable{}
    │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │               source file => stdio
    │ │ │               test inputs => MutableList{}
    │ │ │
    │ │ │
    i7 : dictionaryPath
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,15 +77,15 @@
    │ │ │ │                                      Version => 0.0
    │ │ │ │               package prefix => /usr/
    │ │ │ │               PackageIsLoaded => true
    │ │ │ │               pkgname => Foo
    │ │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │ │               processed documentation => MutableHashTable{}
    │ │ │ │               raw documentation => MutableHashTable{}
    │ │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │ │               source file => stdio
    │ │ │ │               test inputs => MutableList{}
    │ │ │ │  i7 : dictionaryPath
    │ │ │ │  
    │ │ │ │  o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       Truncations.Dictionary, Polyhedra.Dictionary, Saturation.Dictionary,
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Exists.html
    │ │ │ @@ -68,29 +68,29 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -510,27 +510,27 @@ │ │ │ o36 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │
    │ │ │
    i2 : fileExists fn
    │ │ │  
    │ │ │  o2 = false
    │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : fileExists fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -10,21 +10,21 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether a file with the filename or path fn exists
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ │ +o1 = /tmp/M2-11028-0/0
    │ │ │ │  i2 : fileExists fn
    │ │ │ │  
    │ │ │ │  o2 = false
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : fileExists fn
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  If fn refers to a symbolic link, then whether the file exists is determined by
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Length.html
    │ │ │ @@ -69,15 +69,15 @@
    │ │ │          

    Description

    │ │ │

    The length of an open output file is determined from the internal count of the number of bytes written so far.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : f = temporaryFileName() << "hi there"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12150-0/0
    │ │ │ +o1 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o1 : File
    │ │ │
    │ │ │
    i2 : fileLength f
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o2 = 8
    │ │ │
    │ │ │
    i3 : close f
    │ │ │  
    │ │ │ -o3 = /tmp/M2-12150-0/0
    │ │ │ +o3 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : filename = toString f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-12150-0/0
    │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │
    │ │ │
    i5 : fileLength filename
    │ │ │  
    │ │ │  o5 = 8
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,28 +12,28 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the length of the file f or the file whose name is f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The length of an open output file is determined from the internal count of the │ │ │ │ number of bytes written so far. │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o1 : File │ │ │ │ i2 : fileLength f │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : close f │ │ │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ │ │ o5 = 8 │ │ │ │ i6 : get filename │ │ │ │ │ │ │ │ o6 = hi there │ │ │ │ i7 : length oo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__File_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -425,15 +425,15 @@ │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11375-0/0
    │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11375-0/0
    │ │ │ +o2 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode f
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  o3 = 420
    │ │ │
    │ │ │
    i4 : close f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11375-0/0
    │ │ │ +o4 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,26 +11,26 @@ │ │ │ │ * Inputs: │ │ │ │ o f, a _f_i_l_e │ │ │ │ * Outputs: │ │ │ │ o the mode of the open file f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : fileMode f │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : close f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o4 : File │ │ │ │ i5 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _f_i_l_e_M_o_d_e_(_F_i_l_e_) -- get file mode │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__String_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -11,18 +11,18 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o an _i_n_t_e_g_e_r, the mode of the file located at the filename or path fn
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ │ +o1 = /tmp/M2-11899-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__File_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -245,23 +245,23 @@ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = 7 + 7*8 + 7*64
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │  o5 = 511
    │ │ │
    │ │ │
    i6 : close f
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,30 +12,30 @@
    │ │ │ │            o mo, an _i_n_t_e_g_e_r
    │ │ │ │            o f, a _f_i_l_e
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the open file f is set to mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ │ +o1 = /tmp/M2-11624-0/0
    │ │ │ │  i2 : f = fn << "hi there"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = 7 + 7*8 + 7*64
    │ │ │ │  
    │ │ │ │  o3 = 511
    │ │ │ │  i4 : fileMode(m,f)
    │ │ │ │  i5 : fileMode f
    │ │ │ │  
    │ │ │ │  o5 = 511
    │ │ │ │  i6 : close f
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : fileMode fn
    │ │ │ │  
    │ │ │ │  o7 = 511
    │ │ │ │  i8 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__String_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the file located at the filename or path fn is set to
    │ │ │ │              mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ │ +o1 = /tmp/M2-13917-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : fileMode(m|7,fn)
    │ │ │ │  i5 : fileMode fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Time.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning of the epoch, so the number of seconds ago a file or directory was modified may be found by using the following code. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime() - fileTime "."
    │ │ │  
    │ │ │ -o1 = 61
    │ │ │ +o1 = 46 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ returns null if no error occurs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning │ │ │ │ of the epoch, so the number of seconds ago a file or directory was modified may │ │ │ │ be found by using the following code. │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ │ │ -o1 = 61 │ │ │ │ +o1 = 46 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ * _f_i_l_e_ _m_a_n_i_p_u_l_a_t_i_o_n -- Unix file manipulation functions │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _f_i_l_e_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ o6 : Matrix R <-- R
    │ │ │
    │ │ │
    i7 : syz f
    │ │ │  
    │ │ │ -   -- registering gb 0 at 0x7f5498d2ce00
    │ │ │ +   -- registering gb 0 at 0x7f1938812e00
    │ │ │  
    │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3
    │ │ │     -- number of monomials                = 9
    │ │ │     -- #reduction steps = 6
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       {3} | x2-3  0     -z4+2 |
    │ │ │ │       {4} | 0     x2-3  y3-1  |
    │ │ │ │  
    │ │ │ │               3      3
    │ │ │ │  o6 : Matrix R  <-- R
    │ │ │ │  i7 : syz f
    │ │ │ │  
    │ │ │ │ -   -- registering gb 0 at 0x7f5498d2ce00
    │ │ │ │ +   -- registering gb 0 at 0x7f1938812e00
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb
    │ │ │ │  elements = 3
    │ │ │ │     -- number of monomials                = 9
    │ │ │ │     -- #reduction steps = 6
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_get.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │                
    i3 : removeFile "test-file"
    │ │ │
    │ │ │
    i4 : get "!date"
    │ │ │  
    │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025
    │ │ │ +o4 = Thu Jan 1 11:02:48 UTC 2026 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ o1 : File │ │ │ │ i2 : get "test-file" │ │ │ │ │ │ │ │ o2 = hi there │ │ │ │ i3 : removeFile "test-file" │ │ │ │ i4 : get "!date" │ │ │ │ │ │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025 │ │ │ │ +o4 = Thu Jan 1 11:02:48 UTC 2026 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d -- read from a file │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ │ │ * _c_l_o_s_e -- close a file │ │ │ │ * _F_i_l_e_ _<_<_ _T_h_i_n_g -- print to a file │ │ │ │ ********** WWaayyss ttoo uussee ggeett:: ********** │ │ │ │ * get(File) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ defaultPrecision => 53 │ │ │ │ engineDebugLevel => 0 │ │ │ │ errorDepth => 0 │ │ │ │ gbTrace => 0 │ │ │ │ interpreterDepth => 1 │ │ │ │ lineNumber => 2 │ │ │ │ loadDepth => 3 │ │ │ │ - maxAllowableThreads => 7 │ │ │ │ + maxAllowableThreads => 17 │ │ │ │ maxExponent => 1073741823 │ │ │ │ minExponent => -1073741824 │ │ │ │ numTBBThreads => 0 │ │ │ │ o1 => 2432902008176640000 │ │ │ │ oo => 2432902008176640000 │ │ │ │ printingAccuracy => -1 │ │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Directory.html │ │ │ @@ -75,22 +75,22 @@ │ │ │ o1 = true
    │ │ │
    │ │ │
    i2 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : isDirectory fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a directory
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : isDirectory "."
    │ │ │ │  
    │ │ │ │  o1 = true
    │ │ │ │  i2 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ │ +o2 = /tmp/M2-10670-0/0
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : isDirectory fn
    │ │ │ │  
    │ │ │ │  o4 = false
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Pseudoprime_lp__Z__Z_rp.html
    │ │ │ @@ -211,15 +211,15 @@
    │ │ │  
    │ │ │  o18 = false
    │ │ │
    │ │ │
    i19 : elapsedTime facs = factor(m*m1)
    │ │ │ - -- 4.33674s elapsed
    │ │ │ + -- 5.79079s elapsed
    │ │ │  
    │ │ │  o19 = 1000000000000000000000000000057*1000000000000000000010000000083
    │ │ │  
    │ │ │  o19 : Expression of class Product
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime m3
    │ │ │ - -- .0569545s elapsed
    │ │ │ + -- .0555585s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : elapsedTime isPseudoprime m3
    │ │ │ - -- .000114113s elapsed
    │ │ │ + -- .000106514s elapsed
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ i17 : isPrime (m*m1) │ │ │ │ │ │ │ │ o17 = false │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ │ │ o18 = false │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ │ - -- 4.33674s elapsed │ │ │ │ + -- 5.79079s elapsed │ │ │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ │ │ o20 = {{1000000000000000000000000000057, 1}, │ │ │ │ @@ -98,19 +98,19 @@ │ │ │ │ o20 : List │ │ │ │ i21 : assert(set facs === set {{m,1}, {m1,1}}) │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ │ 00000000000000185613 │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ │ - -- .0569545s elapsed │ │ │ │ + -- .0555585s elapsed │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ │ - -- .000114113s elapsed │ │ │ │ + -- .000106514s elapsed │ │ │ │ │ │ │ │ o24 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_P_r_i_m_e_(_Z_Z_) -- whether a integer or polynomial is prime │ │ │ │ * _f_a_c_t_o_r_(_Z_Z_) -- factor a ring element │ │ │ │ * _n_e_x_t_P_r_i_m_e_(_N_u_m_b_e_r_) -- compute the smallest prime greater than or equal to │ │ │ │ a given number │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Regular__File.html │ │ │ @@ -68,22 +68,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ In UNIX, a regular file is one that is not special in some way. Special files include symbolic links and directories. A regular file is a sequence of bytes stored permanently in a file system. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : isRegularFile fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a regular file
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  In UNIX, a regular file is one that is not special in some way. Special files
    │ │ │ │  include symbolic links and directories. A regular file is a sequence of bytes
    │ │ │ │  stored permanently in a file system.
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ │ +o1 = /tmp/M2-14348-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : isRegularFile fn
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_make__Directory_lp__String_rp.html
    │ │ │ @@ -76,22 +76,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -13,18 +13,18 @@ │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the name of the newly made directory │ │ │ │ * Consequences: │ │ │ │ o the directory is made, with as many new path components as needed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ │ │ A filename starting with ~/ will have the tilde replaced by the home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_k_d_i_r │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ @@ -64,15 +64,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10722-0/0
    │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │
    │ │ │
    i2 : makeDirectory (dir|"/a/b/c")
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c
    │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │
    │ │ │
    i3 : removeDirectory (dir|"/a/b/c")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : maxAllowableThreads
    │ │ │  
    │ │ │ -o1 = 7
    │ │ │ +o1 = 17 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -9,15 +9,15 @@ │ │ │ │ * Usage: │ │ │ │ maxAllowableThreads │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the maximum number to which _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s can be set │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ │ │ -o1 = 7 │ │ │ │ +o1 = 17 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_a_x_A_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s is an _i_n_t_e_g_e_r. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_threads.m2:498:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ │ o1 : FunctionClosure
    │ │ │
    │ │ │
    i2 : time fib 28
    │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc)
    │ │ │ + -- used 0.754762s (cpu); 0.577694s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 514229
    │ │ │
    │ │ │
    i3 : fib = memoize fib
    │ │ │ @@ -78,23 +78,23 @@
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │
    │ │ │
    i4 : time fib 28
    │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc)
    │ │ │ + -- used 8.2955e-05s (cpu); 8.1779e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 514229
    │ │ │
    │ │ │
    i5 : time fib 28
    │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.696e-06s (cpu); 3.447e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 514229
    │ │ │
    │ │ │

    An optional second argument to memoize provides a list of initial values, each of the form x => v, where v is the value to be provided for the argument x.

    │ │ │

    Alternatively, values can be provided after defining the memoized function using the syntax f x = v. A slightly more efficient implementation of the above would be

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,28 +11,28 @@ │ │ │ │ arguments are presented. │ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ i2 : time fib 28 │ │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc) │ │ │ │ + -- used 0.754762s (cpu); 0.577694s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 514229 │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ i4 : time fib 28 │ │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc) │ │ │ │ + -- used 8.2955e-05s (cpu); 8.1779e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 514229 │ │ │ │ i5 : time fib 28 │ │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc) │ │ │ │ + -- used 3.696e-06s (cpu); 3.447e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 514229 │ │ │ │ An optional second argument to memoize provides a list of initial values, each │ │ │ │ of the form x => v, where v is the value to be provided for the argument x. │ │ │ │ Alternatively, values can be provided after defining the memoized function │ │ │ │ using the syntax f x = v. A slightly more efficient implementation of the above │ │ │ │ would be │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ @@ -89,20 +89,20 @@ │ │ │ {12 => (poincare, BettiTally) } │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ - {19 => (codim, BettiTally) } │ │ │ + {19 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ {20 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {21 => (dual, BettiTally) } │ │ │ - {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {21 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ + {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (codim, BettiTally) } │ │ │ + {24 => (dual, BettiTally) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList
    │ │ │
    │ │ │ @@ -188,20 +188,20 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : methods( Matrix, Matrix )
    │ │ │  
    │ │ │ -o5 = {0 => (contract, Matrix, Matrix)                            }
    │ │ │ -     {1 => (diff, Matrix, Matrix)                                }
    │ │ │ -     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ -     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ +     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ +     {2 => (contract, Matrix, Matrix)                            }
    │ │ │ +     {3 => (diff, Matrix, Matrix)                                }
    │ │ │       {4 => (contract', Matrix, Matrix)                           }
    │ │ │ -     {5 => (+, Matrix, Matrix)                                   }
    │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ @@ -216,18 +216,18 @@
    │ │ │       {21 => (quotient, Matrix, Matrix)                           }
    │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │       {24 => (%, Matrix, Matrix)                                  }
    │ │ │       {25 => (remainder, Matrix, Matrix)                          }
    │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ -     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ +     {28 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │       {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ -     {30 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {31 => (pullback, Matrix, Matrix)                           }
    │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,20 +29,20 @@
    │ │ │ │       {12 => (poincare, BettiTally)                                }
    │ │ │ │       {13 => (hilbertPolynomial, ZZ, BettiTally)                   }
    │ │ │ │       {14 => (degree, BettiTally)                                  }
    │ │ │ │       {15 => (hilbertSeries, ZZ, BettiTally)                       }
    │ │ │ │       {16 => (pdim, BettiTally)                                    }
    │ │ │ │       {17 => (regularity, BettiTally)                              }
    │ │ │ │       {18 => (mathML, BettiTally)                                  }
    │ │ │ │ -     {19 => (codim, BettiTally)                                   }
    │ │ │ │ +     {19 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │       {20 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ -     {21 => (dual, BettiTally)                                    }
    │ │ │ │ -     {22 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ -     {23 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ -     {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {21 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ +     {22 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {23 => (codim, BettiTally)                                   }
    │ │ │ │ +     {24 => (dual, BettiTally)                                    }
    │ │ │ │       {25 => (^, Ring, BettiTally)                                 }
    │ │ │ │  
    │ │ │ │  o1 : NumberedVerticalList
    │ │ │ │  i2 : methods resolution
    │ │ │ │  
    │ │ │ │  o2 = {0 => (resolution, Ideal) }
    │ │ │ │       {1 => (resolution, Module)}
    │ │ │ │ @@ -85,20 +85,20 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o X, a _t_y_p_e
    │ │ │ │            o Y, a _t_y_p_e
    │ │ │ │      * Outputs:
    │ │ │ │            o a _v_e_r_t_i_c_a_l_ _l_i_s_t of those methods associated with
    │ │ │ │  i5 : methods( Matrix, Matrix )
    │ │ │ │  
    │ │ │ │ -o5 = {0 => (contract, Matrix, Matrix)                            }
    │ │ │ │ -     {1 => (diff, Matrix, Matrix)                                }
    │ │ │ │ -     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ │ -     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ │ +     {2 => (contract, Matrix, Matrix)                            }
    │ │ │ │ +     {3 => (diff, Matrix, Matrix)                                }
    │ │ │ │       {4 => (contract', Matrix, Matrix)                           }
    │ │ │ │ -     {5 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ │ @@ -113,18 +113,18 @@
    │ │ │ │       {21 => (quotient, Matrix, Matrix)                           }
    │ │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │ │       {24 => (%, Matrix, Matrix)                                  }
    │ │ │ │       {25 => (remainder, Matrix, Matrix)                          }
    │ │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ │ -     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ +     {28 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ │       {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ │ -     {30 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {31 => (pullback, Matrix, Matrix)                           }
    │ │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │
    │ │ │
    i3 : elapsedTime C = minimalBetti I
    │ │ │ - -- 1.82886s elapsed
    │ │ │ + -- 2.45521s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ - -- .745147s elapsed
    │ │ │ + -- .925445s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7
    │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │  
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ - -- .0317322s elapsed
    │ │ │ + -- .0362305s elapsed
    │ │ │  
    │ │ │              0  1   2   3  4
    │ │ │  o7 = total: 1 35 140 189 84
    │ │ │           0: 1  .   .   .  .
    │ │ │           1: . 35 140 189 84
    │ │ │  
    │ │ │  o7 : BettiTally
    │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │
    │ │ │
    i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ - -- 1.20016s elapsed
    │ │ │ + -- 3.28835s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5
    │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │           0: 1  .   .   .   .    .
    │ │ │           1: . 35 140 189  84    .
    │ │ │           2: .  .   . 196 735 1080
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -43,15 +43,15 @@
    │ │ │ │  0,5   1,5   2,5   3,5   4,5   0,6   1,6   2,6   3,6   4,6   5,6
    │ │ │ │  i2 : S = ring I
    │ │ │ │  
    │ │ │ │  o2 = S
    │ │ │ │  
    │ │ │ │  o2 : PolynomialRing
    │ │ │ │  i3 : elapsedTime C = minimalBetti I
    │ │ │ │ - -- 1.82886s elapsed
    │ │ │ │ + -- 2.45521s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ │ @@ -60,40 +60,40 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  One can compute smaller parts of the Betti table, by using _D_e_g_r_e_e_L_i_m_i_t and/or
    │ │ │ │  _L_e_n_g_t_h_L_i_m_i_t.
    │ │ │ │  i4 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ │ - -- .745147s elapsed
    │ │ │ │ + -- .925445s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7
    │ │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o6 : Ideal of S
    │ │ │ │  i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ │ - -- .0317322s elapsed
    │ │ │ │ + -- .0362305s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3  4
    │ │ │ │  o7 = total: 1 35 140 189 84
    │ │ │ │           0: 1  .   .   .  .
    │ │ │ │           1: . 35 140 189 84
    │ │ │ │  
    │ │ │ │  o7 : BettiTally
    │ │ │ │  i8 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ │ - -- 1.20016s elapsed
    │ │ │ │ + -- 3.28835s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5
    │ │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │ │           0: 1  .   .   .   .    .
    │ │ │ │           1: . 35 140 189  84    .
    │ │ │ │           2: .  .   . 196 735 1080
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mkdir.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │          

    Description

    │ │ │

    Only one directory will be made, so the components of the path p other than the last must already exist.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ o3 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : p = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │
    │ │ │
    i2 : mkdir p
    │ │ │
    │ │ │
    i4 : (fn = p | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,22 +12,22 @@
    │ │ │ │      * Consequences:
    │ │ │ │            o a directory will be created at the path p
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Only one directory will be made, so the components of the path p other than the
    │ │ │ │  last must already exist.
    │ │ │ │  i1 : p = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ │ +o1 = /tmp/M2-11391-0/0/
    │ │ │ │  i2 : mkdir p
    │ │ │ │  i3 : isDirectory p
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : (fn = p | "foo") << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : removeFile fn
    │ │ │ │  i7 : removeDirectory p
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_move__File_lp__String_cm__String_rp.html
    │ │ │ @@ -81,52 +81,52 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,32 +20,32 @@ │ │ │ │ o the name of the backup file if one was created, or _n_u_l_l │ │ │ │ * Consequences: │ │ │ │ o the file will be moved by creating a new link to the file and │ │ │ │ removing the old one │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ i7 : removeFile bak │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_F_i_l_e │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * moveFile(String) │ │ │ │ * _m_o_v_e_F_i_l_e_(_S_t_r_i_n_g_,_S_t_r_i_n_g_) │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_nanosleep.html │ │ │ @@ -51,15 +51,15 @@ │ │ │

    nanosleep -- sleep for a given number of nanoseconds

    │ │ │
    │ │ │

    Description

    │ │ │ nanosleep n -- sleeps for n nanoseconds.
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10615-0/0
    │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10615-0/1
    │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10615-0/0
    │ │ │ +o3 = /tmp/M2-11145-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : moveFile(src,dst,Verbose=>true)
    │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1
    │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : bak = moveFile(dst,Verbose=>true)
    │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak
    │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10615-0/1.bak
    │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │
    │ │ │
    i7 : removeFile bak
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nanosleep 500000000
    │ │ │ - -- .500135s elapsed
    │ │ │ + -- .500115s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ [q ] │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ nnaannoosslleeeepp ---- sslleeeepp ffoorr aa ggiivveenn nnuummbbeerr ooff nnaannoosseeccoonnddss ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ nanosleep n -- sleeps for n nanoseconds. │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ │ - -- .500135s elapsed │ │ │ │ + -- .500115s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_l_e_e_p -- sleep for a while │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _n_a_n_o_s_l_e_e_p is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ @@ -72,21 +72,21 @@ │ │ │
    │ │ │
    i2 : L = random toList (1..10000);
    │ │ │
    │ │ │
    i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ - -- .640674s elapsed
    │ │ │ + -- .681356s elapsed │ │ │
    │ │ │
    i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ - -- .307919s elapsed
    │ │ │ + -- .182068s elapsed │ │ │
    │ │ │
    │ │ │

    You will have to try it on your examples to see how much they speed up.

    │ │ │

    Warning: Threads computing in parallel can give wrong answers if their code is not "thread safe", meaning they make modifications to memory without ensuring the modifications get safely communicated to other threads. (Thread safety can slow computations some.) Currently, modifications to Macaulay2 variables and mutable hash tables are thread safe, but not changes inside mutable lists. Also, access to external libraries such as singular, etc., may not currently be thread safe.

    │ │ │

    The rest of this document describes how to control parallel tasks more directly.

    │ │ │ @@ -100,15 +100,15 @@ │ │ │ o5 = 5
    │ │ │
    │ │ │
    i6 : allowableThreads = maxAllowableThreads
    │ │ │  
    │ │ │ -o6 = 7
    │ │ │ +o6 = 17 │ │ │
    │ │ │
    │ │ │

    To run a function in another thread use schedule, as in the following example.

    │ │ │
    │ │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │

    Note that schedule returns a task, not the result of the computation, which will be accessible only after the task has completed the computation.

    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : t
    │ │ │  
    │ │ │ -o11 = <<task, running>>
    │ │ │ +o11 = <<task, created>>
    │ │ │  
    │ │ │  o11 : Task
    │ │ │
    │ │ │
    │ │ │

    Use isReady to check whether the result is available yet.

    │ │ │ ├── html2text {} │ │ │ │ @@ -17,17 +17,17 @@ │ │ │ │ big computation. If the list is long, it will be split into chunks for each │ │ │ │ core, reducing the overhead. But the speedup is still limited by the different │ │ │ │ threads competing for memory, including cpu caches; it is like running │ │ │ │ Macaulay2 on a computer that is running other big programs at the same time. We │ │ │ │ can see this using _e_l_a_p_s_e_d_T_i_m_e. │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ │ - -- .640674s elapsed │ │ │ │ + -- .681356s elapsed │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ │ - -- .307919s elapsed │ │ │ │ + -- .182068s elapsed │ │ │ │ You will have to try it on your examples to see how much they speed up. │ │ │ │ Warning: Threads computing in parallel can give wrong answers if their code is │ │ │ │ not "thread safe", meaning they make modifications to memory without ensuring │ │ │ │ the modifications get safely communicated to other threads. (Thread safety can │ │ │ │ slow computations some.) Currently, modifications to Macaulay2 variables and │ │ │ │ mutable hash tables are thread safe, but not changes inside mutable lists. │ │ │ │ Also, access to external libraries such as singular, etc., may not currently be │ │ │ │ @@ -39,15 +39,15 @@ │ │ │ │ _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s, and may be examined and changed as follows. (_a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s │ │ │ │ is temporarily increased if necessary inside _p_a_r_a_l_l_e_l_A_p_p_l_y.) │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ │ │ o5 = 5 │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ │ │ -o6 = 7 │ │ │ │ +o6 = 17 │ │ │ │ To run a function in another thread use _s_c_h_e_d_u_l_e, as in the following example. │ │ │ │ i7 : R = QQ[x,y,z]; │ │ │ │ i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o8 = ideal (x + 2y - y - 2z, x - 8y + 10z - 1, x - 7y*z) │ │ │ │ │ │ │ │ @@ -62,15 +62,15 @@ │ │ │ │ o10 = <> │ │ │ │ │ │ │ │ o10 : Task │ │ │ │ Note that _s_c_h_e_d_u_l_e returns a task, not the result of the computation, which │ │ │ │ will be accessible only after the task has completed the computation. │ │ │ │ i11 : t │ │ │ │ │ │ │ │ -o11 = <> │ │ │ │ +o11 = <> │ │ │ │ │ │ │ │ o11 : Task │ │ │ │ Use _i_s_R_e_a_d_y to check whether the result is available yet. │ │ │ │ i12 : isReady t │ │ │ │ │ │ │ │ o12 = false │ │ │ │ To wait for the result and then retrieve it, use _t_a_s_k_R_e_s_u_l_t. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ @@ -137,15 +137,15 @@ │ │ │ │ │ │ o3 : PolynomialRing │ │ │
    │ │ │
    i4 : elapsedTime minimalBetti I
    │ │ │ - -- 2.07143s elapsed
    │ │ │ + -- 2.1915s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o4 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -160,15 +160,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true)
    │ │ │ - -- 1.82839s elapsed
    │ │ │ + -- 2.25423s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o6 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  
    │ │ │  o8 = 1
    │ │ │
    │ │ │
    i9 : elapsedTime minimalBetti(I)
    │ │ │ - -- 1.75494s elapsed
    │ │ │ + -- 2.17331s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o9 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -231,15 +231,15 @@
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │
    │ │ │
    i13 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.23687s elapsed
    │ │ │ + -- 3.78121s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o13 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o13 : Complex
    │ │ │ @@ -258,15 +258,15 @@ │ │ │ │ │ │ o15 : Ideal of S │ │ │
    │ │ │
    i16 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.55496s elapsed
    │ │ │ + -- 2.48371s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o16 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o16 : Complex
    │ │ │ @@ -299,15 +299,15 @@ │ │ │ │ │ │ o19 : Ideal of S │ │ │
    │ │ │
    i20 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 5.136s elapsed
    │ │ │ + -- 3.695s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o20 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │ o22 : Ideal of S │ │ │
    │ │ │
    i23 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 7.09108s elapsed
    │ │ │ + -- 8.58327s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o23 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -345,15 +345,15 @@ │ │ │ │ │ │ o25 : Ideal of S │ │ │
    │ │ │
    i26 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.22028s elapsed
    │ │ │ + -- 3.71049s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o26 : Matrix S  <-- S
    │ │ │
    │ │ │
    │ │ │ @@ -396,15 +396,15 @@ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │
    │ │ │
    i31 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.006s elapsed
    │ │ │ + -- 1.04567s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o31 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │
    i34 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.19796s elapsed
    │ │ │ + -- 1.55933s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o34 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -93,30 +93,30 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i3 : S = ring I │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ │ - -- 2.07143s elapsed │ │ │ │ + -- 2.1915s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ 4: . . . . . . . . . . 1 │ │ │ │ │ │ │ │ o4 : BettiTally │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ │ - -- 1.82839s elapsed │ │ │ │ + -- 2.25423s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ i7 : I = ideal I_*; │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o8 = 1 │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ │ - -- 1.75494s elapsed │ │ │ │ + -- 2.17331s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ i11 : numTBBThreads = 0 │ │ │ │ │ │ │ │ o11 = 0 │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.23687s elapsed │ │ │ │ + -- 3.78121s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -168,15 +168,15 @@ │ │ │ │ i14 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o14 = 1 │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.55496s elapsed │ │ │ │ + -- 2.48371s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -195,37 +195,37 @@ │ │ │ │ o18 = S │ │ │ │ │ │ │ │ o18 : PolynomialRing │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 5.136s elapsed │ │ │ │ + -- 3.695s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o20 : Matrix S <-- S │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o21 = 1 │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 7.09108s elapsed │ │ │ │ + -- 8.58327s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o23 : Matrix S <-- S │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ │ │ o24 = 10 │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.22028s elapsed │ │ │ │ + -- 3.71049s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o26 : Matrix S <-- S │ │ │ │ For Gröbner basis computation in associative algebras, ParallelizeByDegree is │ │ │ │ not relevant. In this case, use numTBBThreads to control the amount of │ │ │ │ parallelism. │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ @@ -246,15 +246,15 @@ │ │ │ │ 2 2 2 │ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.006s elapsed │ │ │ │ + -- 1.04567s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ @@ -263,15 +263,15 @@ │ │ │ │ ZZ │ │ │ │ o32 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o33 = 1 │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.19796s elapsed │ │ │ │ + -- 1.55933s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_i_m_a_l_B_e_t_t_i -- minimal betti numbers of (the minimal free resolution of) │ │ │ │ a homogeneous ideal or module │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ @@ -370,36 +370,36 @@ │ │ │ │ │ │ o27 = 3 │ │ │
    │ │ │
    i28 : time poincare I
    │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00166338s (cpu); 1.2346e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o28 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o28 : ZZ[T]
    │ │ │
    │ │ │
    i29 : time gens gb I;
    │ │ │  
    │ │ │ -   -- registering gb 19 at 0x7f3fe9e7e540
    │ │ │ +   -- registering gb 19 at 0x7fb20a72f380
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 4186
    │ │ │     -- #reduction steps = 38
    │ │ │     -- #spairs done = 11
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 29
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0143391s (cpu); 0.0143519s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      11
    │ │ │  o29 : Matrix R  <-- R
    │ │ │
    │ │ │
    │ │ │ @@ -411,15 +411,15 @@ │ │ │
    i30 : R = QQ[a..d];
    │ │ │
    │ │ │
    i31 : I = ideal random(R^1, R^{3:-3});
    │ │ │  
    │ │ │ -   -- registering gb 20 at 0x7f3fe9e7e380
    │ │ │ +   -- registering gb 20 at 0x7fb20a72f000
    │ │ │  
    │ │ │     -- [gb]number of (nonminimal) gb elements = 0
    │ │ │     -- number of monomials                = 0
    │ │ │     -- #reduction steps = 0
    │ │ │     -- #spairs done = 0
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -428,24 +428,24 @@
    │ │ │  o31 : Ideal of R
    │ │ │
    │ │ │
    i32 : time p = poincare I
    │ │ │  
    │ │ │ -   -- registering gb 21 at 0x7f3fe9e7e000
    │ │ │ +   -- registering gb 21 at 0x7fb207cf1c40
    │ │ │  
    │ │ │     -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 267
    │ │ │     -- #reduction steps = 236
    │ │ │     -- #spairs done = 30
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 20
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.00776975s (cpu); 0.00544307s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o32 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o32 : ZZ[T]
    │ │ │
    │ │ │
    i37 : time gens gb J;
    │ │ │  
    │ │ │ -   -- registering gb 22 at 0x7f3fe9ab3e00
    │ │ │ +   -- registering gb 22 at 0x7fb207cf1a80
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m
    │ │ │     -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m
    │ │ │     -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m
    │ │ │     -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39
    │ │ │     -- number of monomials                = 1051
    │ │ │     -- #reduction steps = 284
    │ │ │     -- #spairs done = 53
    │ │ │     -- ncalls = 46
    │ │ │     -- nloop = 54
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0519744s (cpu); 0.0506s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      39
    │ │ │  o37 : Matrix S  <-- S
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -177,66 +177,66 @@ │ │ │ │ o26 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o26 : ZZ[T] │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ │ │ o27 = 3 │ │ │ │ i28 : time poincare I │ │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00166338s (cpu); 1.2346e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ │ │ - -- registering gb 19 at 0x7f3fe9e7e540 │ │ │ │ + -- registering gb 19 at 0x7fb20a72f380 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 4186 │ │ │ │ -- #reduction steps = 38 │ │ │ │ -- #spairs done = 11 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 29 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc) │ │ │ │ + -- -- used 0.0143391s (cpu); 0.0143519s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 11 │ │ │ │ o29 : Matrix R <-- R │ │ │ │ In this case, the savings is minimal, but often it can be dramatic. Another │ │ │ │ important situation is to compute a Gröbner basis using a different monomial │ │ │ │ order. │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ │ │ - -- registering gb 20 at 0x7f3fe9e7e380 │ │ │ │ + -- registering gb 20 at 0x7fb20a72f000 │ │ │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ │ -- number of monomials = 0 │ │ │ │ -- #reduction steps = 0 │ │ │ │ -- #spairs done = 0 │ │ │ │ -- ncalls = 0 │ │ │ │ -- nloop = 0 │ │ │ │ -- nsaved = 0 │ │ │ │ -- │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ │ │ - -- registering gb 21 at 0x7f3fe9e7e000 │ │ │ │ + -- registering gb 21 at 0x7fb207cf1c40 │ │ │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 267 │ │ │ │ -- #reduction steps = 236 │ │ │ │ -- #spairs done = 30 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 20 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc) │ │ │ │ + -- -- used 0.00776975s (cpu); 0.00544307s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ │ │ │ │ │ @@ -281,30 +281,30 @@ │ │ │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ │ │ o36 = 3 │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ │ │ - -- registering gb 22 at 0x7f3fe9ab3e00 │ │ │ │ + -- registering gb 22 at 0x7fb207cf1a80 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9} │ │ │ │ (3,9)m │ │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m │ │ │ │ {24}(1,3)m │ │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements │ │ │ │ = 39 │ │ │ │ -- number of monomials = 1051 │ │ │ │ -- #reduction steps = 284 │ │ │ │ -- #spairs done = 53 │ │ │ │ -- ncalls = 46 │ │ │ │ -- nloop = 54 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc) │ │ │ │ + -- -- used 0.0519744s (cpu); 0.0506s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 39 │ │ │ │ o37 : Matrix S <-- S │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_printing_spto_spa_spfile.html │ │ │ @@ -97,22 +97,22 @@ │ │ │ o2 : File │ │ │
    │ │ │
    i3 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │
    │ │ │
    i4 : fn << "hi there" << endl << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ @@ -151,15 +151,15 @@
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : fn << f << close
    │ │ │  
    │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o9 : File
    │ │ │
    │ │ │
    i10 : get fn
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │        + 1
    │ │ │
    │ │ │
    i11 : fn << toExternalString f << close
    │ │ │  
    │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o11 : File
    │ │ │
    │ │ │
    i12 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,18 +36,18 @@
    │ │ │ │  -- ho there --
    │ │ │ │  
    │ │ │ │  o2 = stdio
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ │ +o3 = /tmp/M2-11782-0/0
    │ │ │ │  i4 : fn << "hi there" << endl << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : R = QQ[x]
    │ │ │ │  
    │ │ │ │ @@ -66,25 +66,25 @@
    │ │ │ │   10      9      8       7       6       5       4       3      2
    │ │ │ │  x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x + 1
    │ │ │ │  o8 = stdio
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : fn << f << close
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o9 : File
    │ │ │ │  i10 : get fn
    │ │ │ │  
    │ │ │ │  o10 =  10      9      8       7       6       5       4       3      2
    │ │ │ │        x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x
    │ │ │ │        + 1
    │ │ │ │  i11 : fn << toExternalString f << close
    │ │ │ │  
    │ │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o11 : File
    │ │ │ │  i12 : get fn
    │ │ │ │  
    │ │ │ │  o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+
    │ │ │ │        1
    │ │ │ │  i13 : value get fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_process__I__D.html
    │ │ │ @@ -64,15 +64,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : processID()
    │ │ │  
    │ │ │ -o1 = 10191
    │ │ │ +o1 = 10311 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ * Usage: │ │ │ │ processID() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the process identifier of the current Macaulay2 process │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : processID() │ │ │ │ │ │ │ │ -o1 = 10191 │ │ │ │ +o1 = 10311 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_r_o_u_p_I_D -- the process group identifier │ │ │ │ * _s_e_t_G_r_o_u_p_I_D -- set the process group identifier │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _p_r_o_c_e_s_s_I_D is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ @@ -91,35 +91,35 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -173,15 +173,15 @@ │ │ │ o14 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : profileSummary
    │ │ │  
    │ │ │  o2 = #run  %time   position                         
    │ │ │ -     1     94.52   ../../m2/matrix1.m2:279:4-282:58 
    │ │ │ -     1     92.12   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ -     1     44.16   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ -     1     30.59   ../../m2/matrix1.m2:114:5-156:72 
    │ │ │ -     1     29.47   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ -     1     23.83   ../../m2/matrix1.m2:181:4-181:42 
    │ │ │ -     1     22.54   ../../m2/set.m2:127:5-127:61     
    │ │ │ -     1     20.86   ../../m2/matrix1.m2:45:10-49:22  
    │ │ │ -     1     3.30    ../../m2/matrix1.m2:112:5-112:29 
    │ │ │ -     1     2.34    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ -     1     2.18    ../../m2/matrix1.m2:96:5-109:11  
    │ │ │ -     1     1.42    ../../m2/matrix1.m2:281:7-281:16 
    │ │ │ -     1     1.29    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ -     1     1.29    ../../m2/matrix1.m2:111:5-111:91 
    │ │ │ -     1     1.27    ../../m2/matrix1.m2:276:4-277:73 
    │ │ │ -     1     1.02    ../../m2/matrix1.m2:98:10-98:46  
    │ │ │ -     1     .97     ../../m2/matrix1.m2:182:4-184:74 
    │ │ │ -     1     .81     ../../m2/modules.m2:279:4-279:52 
    │ │ │ -     20    .64     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ -     20    .47     ../../m2/matrix1.m2:47:43-47:71  
    │ │ │ -     1     .0038s  elapsed total                    
    │ │ │ + 1 93.35 ../../m2/matrix1.m2:279:4-282:58 │ │ │ + 1 90.65 ../../m2/matrix1.m2:281:22-281:43 │ │ │ + 1 43.01 ../../m2/matrix1.m2:193:25-193:52 │ │ │ + 1 29.94 ../../m2/matrix1.m2:114:5-156:72 │ │ │ + 1 28.72 ../../m2/matrix1.m2:140:10-155:16 │ │ │ + 1 23.46 ../../m2/matrix1.m2:181:4-181:42 │ │ │ + 1 22.12 ../../m2/set.m2:127:5-127:61 │ │ │ + 1 20.2 ../../m2/matrix1.m2:45:10-49:22 │ │ │ + 1 3.26 ../../m2/matrix1.m2:112:5-112:29 │ │ │ + 1 2.8 ../../m2/matrix1.m2:141:13-141:78 │ │ │ + 1 2.16 ../../m2/matrix1.m2:96:5-109:11 │ │ │ + 1 1.69 ../../m2/matrix1.m2:281:7-281:16 │ │ │ + 1 1.37 ../../m2/matrix1.m2:276:4-277:73 │ │ │ + 1 1.26 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 1.14 ../../m2/matrix1.m2:111:5-111:91 │ │ │ + 1 1.10 ../../m2/matrix1.m2:182:4-184:74 │ │ │ + 1 1.08 ../../m2/matrix1.m2:98:10-98:46 │ │ │ + 20 .95 ../../m2/matrix1.m2:191:14-192:67 │ │ │ + 20 .67 ../../m2/matrix1.m2:47:43-47:71 │ │ │ + 20 .60 ../../m2/matrix1.m2:190:17-190:29 │ │ │ + 1 .0035s elapsed total │ │ │
    │ │ │
    i3 : coverageSummary
    │ │ │  
    │ │ │  o3 = covered lines:
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,35 +25,35 @@
    │ │ │ │                4       5
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  Afterwards, running profileSummary and coverageSummary produces easy to read
    │ │ │ │  tables summarizing the accumulated data so far in different ways.
    │ │ │ │  i2 : profileSummary
    │ │ │ │  
    │ │ │ │  o2 = #run  %time   position
    │ │ │ │ -     1     94.52   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ -     1     92.12   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ -     1     44.16   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ -     1     30.59   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ -     1     29.47   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ -     1     23.83   ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ -     1     22.54   ../../m2/set.m2:127:5-127:61
    │ │ │ │ -     1     20.86   ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ -     1     3.30    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ -     1     2.34    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ -     1     2.18    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ -     1     1.42    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ -     1     1.29    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ -     1     1.29    ../../m2/matrix1.m2:111:5-111:91
    │ │ │ │ -     1     1.27    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ -     1     1.02    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │ -     1     .97     ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ -     1     .81     ../../m2/modules.m2:279:4-279:52
    │ │ │ │ -     20    .64     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ -     20    .47     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │ -     1     .0038s  elapsed total
    │ │ │ │ +     1     93.35   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ +     1     90.65   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ +     1     43.01   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ +     1     29.94   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ +     1     28.72   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ +     1     23.46   ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ +     1     22.12   ../../m2/set.m2:127:5-127:61
    │ │ │ │ +     1     20.2    ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ +     1     3.26    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ +     1     2.8     ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ +     1     2.16    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ +     1     1.69    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ +     1     1.37    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ +     1     1.26    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ +     1     1.14    ../../m2/matrix1.m2:111:5-111:91
    │ │ │ │ +     1     1.10    ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ +     1     1.08    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │ +     20    .95     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ +     20    .67     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │ +     20    .60     ../../m2/matrix1.m2:190:17-190:29
    │ │ │ │ +     1     .0035s  elapsed total
    │ │ │ │  i3 : coverageSummary
    │ │ │ │  
    │ │ │ │  o3 = covered lines:
    │ │ │ │       ../../m2/lists.m2:145:24-145:32
    │ │ │ │       ../../m2/lists.m2:145:34-145:58
    │ │ │ │       ../../m2/matrix.m2:12:5-12:35
    │ │ │ │       ../../m2/matrix.m2:13:5-13:46
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │
    │ │ │
    i6 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc)
    │ │ │ + -- used 0.247677s (cpu); 0.101492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal (x  - 53x , x  + 8x , x  - 4x )
    │ │ │               2      3   1     3   0     3
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i10 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc)
    │ │ │ + -- used 0.767075s (cpu); 0.303818s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = ideal (x  - 27x , x  - 16x , x  - 9x , x  + 44x , x  - 52x )
    │ │ │                4      5   3      5   2     5   1      5   0      5
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    │ │ │
    i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c);
    │ │ │                       #select(degs,d->d==1))),f->f>0))
    │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc)
    │ │ │ + -- used 4.37816s (cpu); 1.88301s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 58
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc) │ │ │ │ + -- used 0.247677s (cpu); 0.101492s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ │ i8 : I=minors(3,random(R^5,R^{3:-1})); │ │ │ │ @@ -45,15 +45,15 @@ │ │ │ │ o8 : Ideal of R │ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc) │ │ │ │ + -- used 0.767075s (cpu); 0.303818s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ The claim that $63 \%$ of the intersections contain a K-rational point can be │ │ │ │ experimentally tested: │ │ │ │ @@ -69,15 +69,15 @@ │ │ │ │ o13 : RR (of precision 53) │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c- │ │ │ │ >degree c); │ │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc) │ │ │ │ + -- used 4.37816s (cpu); 1.88301s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 58 │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommKKRRaattiioonnaallPPooiinntt:: ********** │ │ │ │ * randomKRationalPoint(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_read__Directory.html │ │ │ @@ -68,38 +68,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11565-0/0
    │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11565-0/0
    │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i3 : (fn = dir | "/" | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11565-0/0/foo
    │ │ │ +o3 = /tmp/M2-13075-0/0/foo
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : readDirectory dir
    │ │ │  
    │ │ │ -o4 = {., .., foo}
    │ │ │ +o4 = {.., ., foo}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,26 +10,26 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Outputs: │ │ │ │ o a _l_i_s_t, the list of filenames stored in the directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : removeFile fn │ │ │ │ i6 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_m_o_v_e_D_i_r_e_c_t_o_r_y -- remove a directory │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reading_spfiles.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │ Sometimes a file will contain a single expression whose value you wish to have access to. For example, it might be a polynomial produced by another program. The function get can be used to obtain the entire contents of a file as a single string. We illustrate this here with a file whose name is expression.

    │ │ │ First we create the file by writing the desired text to it. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11107-0/0
    │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │
    │ │ │
    i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11107-0/0
    │ │ │ +o2 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ │ │ @@ -116,15 +116,15 @@ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create such a file.
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : fn << "sample = 2^100
    │ │ │       print sample
    │ │ │       " << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11107-0/0
    │ │ │ +o7 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │ Now verify that it contains the desired text with get. │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -8,20 +8,20 @@ │ │ │ │ Sometimes a file will contain a single expression whose value you wish to have │ │ │ │ access to. For example, it might be a polynomial produced by another program. │ │ │ │ The function _g_e_t can be used to obtain the entire contents of a file as a │ │ │ │ single string. We illustrate this here with a file whose name is expression. │ │ │ │ First we create the file by writing the desired text to it. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ i2 : fn << │ │ │ │ "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" │ │ │ │ << endl << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ i3 : get fn │ │ │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ │ +8*y^3 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ o6 : Expression of class Product │ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create │ │ │ │ such a file. │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ │ print sample │ │ │ │ " << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ Now verify that it contains the desired text with _g_e_t. │ │ │ │ i8 : get fn │ │ │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_readlink.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the resolved path to a symbolic link, or null if the file │ │ │ │ was not a symbolic link. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ i3 : readlink p │ │ │ │ │ │ │ │ o3 = foo │ │ │ │ i4 : removeFile p │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_l_p_a_t_h -- convert a filename to one passing through no symbolic links │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_realpath.html │ │ │ @@ -68,57 +68,57 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : p = temporaryFileName ()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11806-0/0
    │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │
    │ │ │
    i2 : symlinkFile ("foo", p)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -130,15 +130,15 @@ │ │ │
    │ │ │
    i1 : realpath "."
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    i2 : p = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11825-0/0
    │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i3 : q = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11825-0/1
    │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │
    │ │ │
    i4 : symlinkFile(p,q)
    │ │ │
    │ │ │
    i5 : p << close
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11825-0/0
    │ │ │ +o5 = /tmp/M2-13595-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │
    │ │ │
    i6 : readlink q
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11825-0/0
    │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i7 : realpath q
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11825-0/0
    │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i8 : removeFile p
    │ │ │
    │ │ │

    The empty string is interpreted as a reference to the current directory.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : realpath ""
    │ │ │  
    │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ Every component of the path must exist in the file system and be accessible to the user. Terminal slashes will be dropped. Warning: under most operating systems, the value returned is an absolute path (one starting at the root of the file system), but under Solaris, this system call may, in certain circumstances, return a relative path when given a relative path.
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,39 +12,39 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename, or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, a pathname to fn passing through no symbolic links, and │ │ │ │ ending with a slash if fn refers to a directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : realpath "." │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ i5 : p << close │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ │ │ o5 : File │ │ │ │ i6 : readlink q │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ i7 : realpath q │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ i8 : removeFile p │ │ │ │ i9 : removeFile q │ │ │ │ The empty string is interpreted as a reference to the current directory. │ │ │ │ i10 : realpath "" │ │ │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Every component of the path must exist in the file system and be accessible to │ │ │ │ the user. Terminal slashes will be dropped. Warning: under most operating │ │ │ │ systems, the value returned is an absolute path (one starting at the root of │ │ │ │ the file system), but under Solaris, this system call may, in certain │ │ │ │ circumstances, return a relative path when given a relative path. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ @@ -77,22 +77,22 @@ │ │ │
    i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --"))
    │ │ │
    │ │ │
    i2 : collectGarbage() 
    │ │ │  --finalization: (1)[3]: -- finalizing sequence #4 --
    │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 --
    │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 --
    │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 --
    │ │ │ ---finalization: (5)[6]: -- finalizing sequence #7 --
    │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 --
    │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 --
    │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 --
    │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 --
    │ │ │ +--finalization: (2)[6]: -- finalizing sequence #7 -- │ │ │ +--finalization: (3)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (5)[8]: -- finalizing sequence #9 -- │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (8)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (9)[7]: -- finalizing sequence #8 -- │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ This function should mainly be used for debugging. Having a large number of finalizers might degrade the performance of the program. Moreover, registering two or more objects that are members of a circular chain of pointers for finalization will result in a memory leak, with none of the objects in the chain being freed, even if nothing else points to any of them.
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,22 +15,22 @@ │ │ │ │ o A finalizer is registered with the garbage collector to print a │ │ │ │ string when that object is collected as garbage │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "- │ │ │ │ - finalizing sequence #"|i|" --")) │ │ │ │ i2 : collectGarbage() │ │ │ │ --finalization: (1)[3]: -- finalizing sequence #4 -- │ │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 -- │ │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 -- │ │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 -- │ │ │ │ ---finalization: (5)[6]: -- finalizing sequence #7 -- │ │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 -- │ │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (2)[6]: -- finalizing sequence #7 -- │ │ │ │ +--finalization: (3)[1]: -- finalizing sequence #2 -- │ │ │ │ +--finalization: (4)[5]: -- finalizing sequence #6 -- │ │ │ │ +--finalization: (5)[8]: -- finalizing sequence #9 -- │ │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (8)[4]: -- finalizing sequence #5 -- │ │ │ │ +--finalization: (9)[7]: -- finalizing sequence #8 -- │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This function should mainly be used for debugging. Having a large number of │ │ │ │ finalizers might degrade the performance of the program. Moreover, registering │ │ │ │ two or more objects that are members of a circular chain of pointers for │ │ │ │ finalization will result in a memory leak, with none of the objects in the │ │ │ │ chain being freed, even if nothing else points to any of them. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_remove__Directory.html │ │ │ @@ -71,29 +71,29 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10779-0/0
    │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10779-0/0
    │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i3 : readDirectory dir
    │ │ │  
    │ │ │ -o3 = {., ..}
    │ │ │ +o3 = {.., .}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : removeDirectory dir
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,21 +10,21 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Consequences: │ │ │ │ o the directory is removed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ │ │ -o3 = {., ..} │ │ │ │ +o3 = {.., .} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d_D_i_r_e_c_t_o_r_y -- read the contents of a directory │ │ │ │ * _m_a_k_e_D_i_r_e_c_t_o_r_y -- make a directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__Path.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

    Description

    │ │ │

    This string may be concatenated with an absolute path to get one understandable by external programs.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10283-0/0
    │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │
    │ │ │
    i2 : rootPath | fn
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10283-0/0
    │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by external programs, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by external programs. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_U_R_I │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_P_a_t_h is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2025:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__U__R__I.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

      Description

      │ │ │

      This string may be concatenated with an absolute path to get one understandable by an external browser.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i1 : fn = temporaryFileName()
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11508-0/0
      │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │
      │ │ │
      i2 : rootURI | fn
      │ │ │  
      │ │ │ -o2 = file:///tmp/M2-11508-0/0
      │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │
      │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by an external browser, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by an external browser. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_P_a_t_h │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_U_R_I is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2041:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_saving_sppolynomials_spand_spmatrices_spin_spfiles.html │ │ │ @@ -90,22 +90,22 @@ │ │ │ o4 : R-module, submodule of R │ │ │
    │ │ │
    i5 : f = temporaryFileName()
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │
    │ │ │
    i6 : f << toString (p,m,M) << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : get f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,18 +28,18 @@
    │ │ │ │  
    │ │ │ │  o4 = image | x2 x2-y2 xyz7 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o4 : R-module, submodule of R
    │ │ │ │  i5 : f = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ │ +o5 = /tmp/M2-12646-0/0
    │ │ │ │  i6 : f << toString (p,m,M) << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : get f
    │ │ │ │  
    │ │ │ │  o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2,
    │ │ │ │       x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}})
    │ │ │ │  i8 : (p',m',M') = value get f
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_serial__Number.html
    │ │ │ @@ -68,22 +68,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : serialNumber asdf
    │ │ │  
    │ │ │ -o1 = 1426273
    │ │ │ +o1 = 1526273 │ │ │
    │ │ │
    i2 : serialNumber foo
    │ │ │  
    │ │ │ -o2 = 1426275
    │ │ │ +o2 = 1526275 │ │ │
    │ │ │
    i3 : serialNumber ZZ
    │ │ │  
    │ │ │  o3 = 1000050
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,18 +10,18 @@ │ │ │ │ * Inputs: │ │ │ │ o x │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the serial number of x │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ │ │ -o1 = 1426273 │ │ │ │ +o1 = 1526273 │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ │ │ -o2 = 1426275 │ │ │ │ +o2 = 1526275 │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _s_e_r_i_a_l_N_u_m_b_e_r is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ @@ -366,21 +366,21 @@ │ │ │
    │ │ │
    i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i30 : time X = solve(A,B);
    │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc)
    │ │ │ + -- used 0.000227852s (cpu); 0.00021655s (thread); 0s (gc) │ │ │
    │ │ │
    i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc)
    │ │ │ + -- used 0.000112839s (cpu); 0.000112646s (thread); 0s (gc) │ │ │
    │ │ │
    i32 : norm(A*X-B)
    │ │ │  
    │ │ │  o32 = 5.111850690840453e-15
    │ │ │ @@ -411,21 +411,21 @@
    │ │ │              
    │ │ │
    i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i38 : time X = solve(A,B);
    │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc)
    │ │ │ + -- used 0.135732s (cpu); 0.13574s (thread); 0s (gc) │ │ │
    │ │ │
    i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc)
    │ │ │ + -- used 0.138289s (cpu); 0.138302s (thread); 0s (gc) │ │ │
    │ │ │
    i40 : norm(A*X-B)
    │ │ │  
    │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -192,33 +192,33 @@
    │ │ │ │  i24 : printingPrecision = 4;
    │ │ │ │  i25 : N = 40
    │ │ │ │  
    │ │ │ │  o25 = 40
    │ │ │ │  i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A;
    │ │ │ │  i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │ │  i30 : time X = solve(A,B);
    │ │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000227852s (cpu); 0.00021655s (thread); 0s (gc)
    │ │ │ │  i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000112839s (cpu); 0.000112646s (thread); 0s (gc)
    │ │ │ │  i32 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o32 = 5.111850690840453e-15
    │ │ │ │  
    │ │ │ │  o32 : RR (of precision 53)
    │ │ │ │  Over higher precision RR or CC, these routines will be much slower than the
    │ │ │ │  lower precision LAPACK routines.
    │ │ │ │  i33 : N = 100
    │ │ │ │  
    │ │ │ │  o33 = 100
    │ │ │ │  i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A;
    │ │ │ │  i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │ │  i38 : time X = solve(A,B);
    │ │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc)
    │ │ │ │ + -- used 0.135732s (cpu); 0.13574s (thread); 0s (gc)
    │ │ │ │  i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc)
    │ │ │ │ + -- used 0.138289s (cpu); 0.138302s (thread); 0s (gc)
    │ │ │ │  i40 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ │  
    │ │ │ │  o40 : RR (of precision 100)
    │ │ │ │  Giving the option ClosestFit=>true, in the case when the field is RR or CC,
    │ │ │ │  uses a least squares algorithm to find a best fit solution.
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,93 +80,93 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │
    i10 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o10 = ho there
    │ │ │
    │ │ │
    i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │ Now we remove the files and directories we created. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,53 +30,53 @@
    │ │ │ │            o The directory tree rooted at src is duplicated by a directory tree
    │ │ │ │              rooted at dst. The files in the source tree are represented by
    │ │ │ │              relative symbolic links in the destination tree to the original
    │ │ │ │              files in the source tree.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : src = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ │ +o1 = /tmp/M2-12217-0/0/
    │ │ │ │  i2 : dst = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ │ +o2 = /tmp/M2-12217-0/1/
    │ │ │ │  i3 : makeDirectory (src|"a/")
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ │ +o3 = /tmp/M2-12217-0/0/a/
    │ │ │ │  i4 : makeDirectory (src|"b/")
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ │ +o4 = /tmp/M2-12217-0/0/b/
    │ │ │ │  i5 : makeDirectory (src|"b/c/")
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/
    │ │ │ │  i6 : src|"a/f" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : src|"a/g" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │ │  
    │ │ │ │  o7 : File
    │ │ │ │  i8 : src|"b/c/g" << "ho there" << close
    │ │ │ │  
    │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  i10 : get (dst|"b/c/g")
    │ │ │ │  
    │ │ │ │  o10 = ho there
    │ │ │ │  i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  Now we remove the files and directories we created.
    │ │ │ │  i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ │  
    │ │ │ │  o12 = rm
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : scan(reverse findFiles src, rm)
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__File.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o dst, a _s_t_r_i_n_g │ │ │ │ * Consequences: │ │ │ │ o a symbolic link at the location in the directory tree specified by │ │ │ │ dst is created, pointing to src │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : readlink fn │ │ │ │ │ │ │ │ o4 = qwert │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_temporary__File__Name.html │ │ │ @@ -64,22 +64,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ The file name is so unique that even with various suffixes appended, no collision with existing files will occur. The files will be removed when the program terminates, unless it terminates as the result of an error.
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11204-0/0
    │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │
    │ │ │
    i2 : symlinkFile("qwert", fn)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : temporaryFileName () | ".tex"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12169-0/0.tex
    │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │
    │ │ │
    i2 : temporaryFileName () | ".html"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12169-0/1.html
    │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │
    │ │ │

    This function will work under Unix, and also under Windows if you have a directory on the same drive called /tmp.

    │ │ │

    If the name of the temporary file will be given to an external program, it may be necessary to concatenate it with rootPath or rootURI to enable the external program to find the file.

    │ │ │

    The temporary file name is derived from the value of the environment variable TMPDIR, if it has one.

    │ │ │

    If fork is used, then the parent and child Macaulay2 processes will each remove their own temporary files upon termination, with the parent removing any files created before fork was called.

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a unique temporary file name. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The file name is so unique that even with various suffixes appended, no │ │ │ │ collision with existing files will occur. The files will be removed when the │ │ │ │ program terminates, unless it terminates as the result of an error. │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ This function will work under Unix, and also under Windows if you have a │ │ │ │ directory on the same drive called /tmp. │ │ │ │ If the name of the temporary file will be given to an external program, it may │ │ │ │ be necessary to concatenate it with _r_o_o_t_P_a_t_h or _r_o_o_t_U_R_I to enable the external │ │ │ │ program to find the file. │ │ │ │ The temporary file name is derived from the value of the environment variable │ │ │ │ TMPDIR, if it has one. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value of e. The time used by the the current thread and garbage collection during the evaluation of e is also shown. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time 3^30
    │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.9043e-05s (cpu); 5.659e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ * Usage: │ │ │ │ time e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value │ │ │ │ of e. The time used by the the current thread and garbage collection during the │ │ │ │ evaluation of e is also shown. │ │ │ │ i1 : time 3^30 │ │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.9043e-05s (cpu); 5.659e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ @@ -54,24 +54,24 @@ │ │ │ timing e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of cpu timing used, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : timing 3^30
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │ -     -- .000018144 seconds
    │ │ │ +     -- .000019906 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{.000018144, 205891132094649}
    │ │ │ +o2 = Time{.000019906, 205891132094649} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ is the number of seconds of cpu timing used, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ - -- .000018144 seconds │ │ │ │ + -- .000019906 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{.000018144, 205891132094649} │ │ │ │ +o2 = Time{.000019906, 205891132094649} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ "memtailor version" => 1.1 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.11.0 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.11 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ │ ├── html2text {} │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ "memtailor version" => 1.1 │ │ │ │ "mpfi version" => 1.5.4 │ │ │ │ "mpfr version" => 4.2.2 │ │ │ │ "mpsolve version" => 3.2.2 │ │ │ │ "mysql version" => not present │ │ │ │ "normaliz version" => 3.11.0 │ │ │ │ "ntl version" => 11.5.1 │ │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ │ "operating system" => Linux │ │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic │ │ │ │ Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition │ │ │ │ FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato │ │ │ │ ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure │ │ │ │ HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra │ │ │ │ Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes │ │ ├── ./usr/share/doc/Macaulay2/Markov/example-output/___Markov.out │ │ │ @@ -70,15 +70,15 @@ │ │ │ | 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2| 1,2,2,2 2,2,2,1 1,2,2,1 2,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ |- p p + p p |- p p + p p | │ │ │ | 1,1,2,1 1,2,1,1 1,1,1,1 1,2,2,1| 1,1,2,2 1,2,1,2 1,1,1,2 1,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ │ │ │ i8 : time netList primaryDecomposition J │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc) │ │ │ + -- used 3.77883s (cpu); 1.63154s (thread); 0s (gc) │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o8 = |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,2,1,2 1,2,1,1 1,1,2,2 2,1,2,1 1,1,2,1 2,1,2,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,1,2,2 1,1,2,1 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ ├── ./usr/share/doc/Macaulay2/Markov/html/index.html │ │ │ @@ -161,15 +161,15 @@ │ │ │
      │ │ │

      This ideal has 5 primary components. The first is the one that has statistical significance. The significance of the other components is still poorly understood.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i8 : time netList primaryDecomposition J
      │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc)
      │ │ │ + -- used 3.77883s (cpu); 1.63154s (thread); 0s (gc)
      │ │ │  
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │  o8 = |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,2,1,2   1,2,1,1   1,1,2,2 2,1,2,1    1,1,2,1 2,1,2,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │       |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,1,2,2   1,1,2,1   1,2,1,2 2,2,1,1    1,2,1,1 2,2,1,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -102,15 +102,15 @@
      │ │ │ │  1,2,2,2|
      │ │ │ │       +-------------------------------------+-----------------------------------
      │ │ │ │  --+
      │ │ │ │  This ideal has 5 primary components. The first is the one that has statistical
      │ │ │ │  significance. The significance of the other components is still poorly
      │ │ │ │  understood.
      │ │ │ │  i8 : time netList primaryDecomposition J
      │ │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc)
      │ │ │ │ + -- used 3.77883s (cpu); 1.63154s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │       +-------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out
      │ │ │ @@ -212,17 +212,17 @@
      │ │ │        | 1 -1 1 |
      │ │ │        | 0 1  0 |
      │ │ │  
      │ │ │                 3       3
      │ │ │  o22 : Matrix ZZ  <-- ZZ
      │ │ │  
      │ │ │  i23 : time schubertRegularity B
      │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc)
      │ │ │ + -- used 0.104907s (cpu); 0.0345186s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │  
      │ │ │  i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc)
      │ │ │ + -- used 0.0177392s (cpu); 0.017746s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │  
      │ │ │  i25 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out
      │ │ │ @@ -178,17 +178,17 @@
      │ │ │        z   z   z   , z   z   z    - z   z   , z   z   z    - z   z   )
      │ │ │         1,2 1,3 2,4   1,2 1,4 2,2    1,2 2,4   1,2 1,3 2,2    1,2 2,3
      │ │ │  
      │ │ │  o15 : Ideal of QQ[z   ..z   ]
      │ │ │                     1,1   5,5
      │ │ │  
      │ │ │  i16 : time schubertRegularity p
      │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc)
      │ │ │ + -- used 0.000290339s (cpu); 0.000285063s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │  
      │ │ │  i17 : time regularity comodule I
      │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc)
      │ │ │ + -- used 0.0164383s (cpu); 0.0164441s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │  
      │ │ │  i18 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out
      │ │ │ @@ -3,25 +3,25 @@
      │ │ │  i1 : w = {2,1,4,3}
      │ │ │  
      │ │ │  o1 = {2, 1, 4, 3}
      │ │ │  
      │ │ │  o1 : List
      │ │ │  
      │ │ │  i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc)
      │ │ │ + -- used 0.00552377s (cpu); 0.00549102s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │  
      │ │ │  i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc)
      │ │ │ + -- used 0.00263547s (cpu); 0.00263637s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html
      │ │ │ @@ -383,23 +383,23 @@
      │ │ │          
      │ │ │

      Additionally, this package facilitates investigating homological invariants of ASM ideals such as regularity (schubertRegularity) and codimension (schubertCodim). efficiently by computing the associated invariants for their antidiagonal initial ideals, which are known to be squarefree by [Wei17]. Therefore the extremal Betti numbers (which encode regularity, depth, and projective dimension) of ASM ideals coincide with those of their antidiagonal initial ideals by [CV20].

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i23 : time schubertRegularity B
      │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc)
      │ │ │ + -- used 0.104907s (cpu); 0.0345186s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │
      │ │ │
      i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc)
      │ │ │ + -- used 0.0177392s (cpu); 0.017746s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating ASM varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -244,19 +244,19 @@ │ │ │ │ ASM ideals such as regularity (_s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y) and codimension │ │ │ │ (_s_c_h_u_b_e_r_t_C_o_d_i_m). efficiently by computing the associated invariants for their │ │ │ │ antidiagonal initial ideals, which are known to be squarefree by [Wei17]. │ │ │ │ Therefore the extremal Betti numbers (which encode regularity, depth, and │ │ │ │ projective dimension) of ASM ideals coincide with those of their antidiagonal │ │ │ │ initial ideals by [CV20]. │ │ │ │ i23 : time schubertRegularity B │ │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc) │ │ │ │ + -- used 0.104907s (cpu); 0.0345186s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = 1 │ │ │ │ i24 : time regularity comodule schubertDeterminantalIdeal B │ │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc) │ │ │ │ + -- used 0.0177392s (cpu); 0.017746s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = 1 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg AASSMM vvaarriieettiieess ********** │ │ │ │ * _i_s_P_a_r_t_i_a_l_A_S_M_(_M_a_t_r_i_x_) -- whether a matrix is a partial alternating sign │ │ │ │ matrix │ │ │ │ * _p_a_r_t_i_a_l_A_S_M_T_o_A_S_M_(_M_a_t_r_i_x_) -- extend a partial alternating sign matrix to an │ │ │ │ alternating sign matrix │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ @@ -315,23 +315,23 @@ │ │ │
      │ │ │

      Finally, this package contains functions for investigating homological invariants of matrix Schubert varieties efficiently through combinatorial algorithms produced in [PSW24] via schubertRegularityschubertCodim.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i16 : time schubertRegularity p
      │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc)
      │ │ │ + -- used 0.000290339s (cpu); 0.000285063s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │
      │ │ │
      i17 : time regularity comodule I
      │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc)
      │ │ │ + -- used 0.0164383s (cpu); 0.0164441s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating matrix Schubert varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -545,19 +545,19 @@ │ │ │ │ │ │ │ │ o15 : Ideal of QQ[z ..z ] │ │ │ │ 1,1 5,5 │ │ │ │ Finally, this package contains functions for investigating homological │ │ │ │ invariants of matrix Schubert varieties efficiently through combinatorial │ │ │ │ algorithms produced in [PSW24] via _s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y_s_c_h_u_b_e_r_t_C_o_d_i_m. │ │ │ │ i16 : time schubertRegularity p │ │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc) │ │ │ │ + -- used 0.000290339s (cpu); 0.000285063s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 5 │ │ │ │ i17 : time regularity comodule I │ │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc) │ │ │ │ + -- used 0.0164383s (cpu); 0.0164441s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = 5 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg mmaattrriixx SScchhuubbeerrtt vvaarriieettiieess ********** │ │ │ │ * _a_n_t_i_D_i_a_g_I_n_i_t_(_L_i_s_t_) -- compute the (unique) antidiagonal initial ideal of │ │ │ │ an ASM ideal │ │ │ │ * _r_a_n_k_T_a_b_l_e_(_L_i_s_t_) -- compute a table of rank conditions that determines the │ │ │ │ corresponding ASM or matrix Schubert variety │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ @@ -80,28 +80,28 @@ │ │ │ │ │ │ o1 : List
      │ │ │
      │ │ │
      i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc)
      │ │ │ + -- used 0.00552377s (cpu); 0.00549102s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │
      │ │ │
      i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc)
      │ │ │ + -- used 0.00263547s (cpu); 0.00263637s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │ ├── html2text {} │ │ │ │ @@ -19,24 +19,24 @@ │ │ │ │ PipeDream. │ │ │ │ i1 : w = {2,1,4,3} │ │ │ │ │ │ │ │ o1 = {2, 1, 4, 3} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time grothendieckPolynomial w │ │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc) │ │ │ │ + -- used 0.00552377s (cpu); 0.00549102s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 1 4 │ │ │ │ i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream") │ │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc) │ │ │ │ + -- used 0.00263547s (cpu); 0.00263637s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o3 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o3 : QQ[x ..x ] │ │ │ │ 1 4 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ @@ -51,20 +51,20 @@ │ │ │ i9 : keys R10.cache │ │ │ │ │ │ o9 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o9 : List │ │ │ │ │ │ i10 : time isWellDefined R10 │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc) │ │ │ + -- used 0.055972s (cpu); 0.0545941s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : time fVector R10 │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc) │ │ │ + -- used 0.219357s (cpu); 0.0791931s (thread); 0s (gc) │ │ │ │ │ │ o11 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ │ @@ -76,15 +76,15 @@ │ │ │ o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats, │ │ │ ----------------------------------------------------------------------- │ │ │ groundSet, dual, storedRepresentation} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : time fVector R10 │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc) │ │ │ + -- used 0.000356673s (cpu); 0.000195219s (thread); 0s (gc) │ │ │ │ │ │ o13 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ o2 : Matroid │ │ │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ - -- .0861244s elapsed │ │ │ + -- .0610617s elapsed │ │ │ │ │ │ i4 : #L │ │ │ │ │ │ o4 = 64 │ │ │ │ │ │ i5 : netList L_{0..4} │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ @@ -33,14 +33,14 @@ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ o6 : Matroid │ │ │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc) │ │ │ + -- used 0.150518s (cpu); 0.0618682s (thread); 0s (gc) │ │ │ │ │ │ i8 : #autF7 │ │ │ │ │ │ o8 = 168 │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ @@ -9,12 +9,12 @@ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc) │ │ │ + -- used 1.79693s (cpu); 1.22252s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7}) │ │ │ │ │ │ o4 = a "matroid" of rank 4 on 10 elements │ │ │ │ │ │ o4 : Matroid │ │ │ │ │ │ i5 : time isomorphism(M5, minorM6) │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc) │ │ │ + -- used 0.0120337s (cpu); 0.0136404s (thread); 0s (gc) │ │ │ │ │ │ o5 = HashTable{0 => 1} │ │ │ 1 => 0 │ │ │ 2 => 3 │ │ │ 3 => 2 │ │ │ 4 => 6 │ │ │ 5 => 5 │ │ │ @@ -56,15 +56,15 @@ │ │ │ i7 : N = relabel M6 │ │ │ │ │ │ o7 = a "matroid" of rank 5 on 15 elements │ │ │ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : time phi = isomorphism(N,M6) │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc) │ │ │ + -- used 4.58452s (cpu); 2.76376s (thread); 0s (gc) │ │ │ │ │ │ o8 = HashTable{0 => 11 } │ │ │ 1 => 0 │ │ │ 2 => 1 │ │ │ 3 => 6 │ │ │ 4 => 9 │ │ │ 5 => 8 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ @@ -37,15 +37,15 @@ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R) │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time quickIsomorphismTest(M0, M1) │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc) │ │ │ + -- used 0.00190617s (cpu); 0.000572848s (thread); 0s (gc) │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : value oo === false │ │ │ │ │ │ o11 = true │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i5 : keys M.cache │ │ │ │ │ │ o5 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime fVector M │ │ │ - -- .0246909s elapsed │ │ │ + -- .0137558s elapsed │ │ │ │ │ │ o6 = HashTable{0 => 1 } │ │ │ 1 => 6 │ │ │ 2 => 15 │ │ │ 3 => 20 │ │ │ 4 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ @@ -148,23 +148,23 @@ │ │ │ │ │ │ o9 : List │ │ │
      │ │ │
      i10 : time isWellDefined R10
      │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc)
      │ │ │ + -- used 0.055972s (cpu); 0.0545941s (thread); 0s (gc)
      │ │ │  
      │ │ │  o10 = true
      │ │ │
      │ │ │
      i11 : time fVector R10
      │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc)
      │ │ │ + -- used 0.219357s (cpu); 0.0791931s (thread); 0s (gc)
      │ │ │  
      │ │ │  o11 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ @@ -182,15 +182,15 @@
      │ │ │  
      │ │ │  o12 : List
      │ │ │
      │ │ │
      i13 : time fVector R10
      │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc)
      │ │ │ + -- used 0.000356673s (cpu); 0.000195219s (thread); 0s (gc)
      │ │ │  
      │ │ │  o13 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -71,19 +71,19 @@
      │ │ │ │  o8 : Matroid
      │ │ │ │  i9 : keys R10.cache
      │ │ │ │  
      │ │ │ │  o9 = {groundSet, rankFunction, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o9 : List
      │ │ │ │  i10 : time isWellDefined R10
      │ │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc)
      │ │ │ │ + -- used 0.055972s (cpu); 0.0545941s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o10 = true
      │ │ │ │  i11 : time fVector R10
      │ │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc)
      │ │ │ │ + -- used 0.219357s (cpu); 0.0791931s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o11 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ │ │ @@ -93,15 +93,15 @@
      │ │ │ │  
      │ │ │ │  o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats,
      │ │ │ │        -----------------------------------------------------------------------
      │ │ │ │        groundSet, dual, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o12 : List
      │ │ │ │  i13 : time fVector R10
      │ │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc)
      │ │ │ │ + -- used 0.000356673s (cpu); 0.000195219s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o13 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html
      │ │ │ @@ -92,15 +92,15 @@
      │ │ │  
      │ │ │  o2 : Matroid
      │ │ │
      │ │ │
      i3 : elapsedTime L = allMinors(V, U25);
      │ │ │ - -- .0861244s elapsed
      │ │ │ + -- .0610617s elapsed │ │ │
      │ │ │
      i4 : #L
      │ │ │  
      │ │ │  o4 = 64
      │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ o1 : Matroid │ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ │ │ o2 : Matroid │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ │ - -- .0861244s elapsed │ │ │ │ + -- .0610617s elapsed │ │ │ │ i4 : #L │ │ │ │ │ │ │ │ o4 = 64 │ │ │ │ i5 : netList L_{0..4} │ │ │ │ │ │ │ │ +----------+-------+ │ │ │ │ o5 = |set {5, 3}|set {2}| │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ │ │ o6 : Matroid │ │ │
      │ │ │
      i7 : time autF7 = getIsos(F7, F7);
      │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc)
      │ │ │ + -- used 0.150518s (cpu); 0.0618682s (thread); 0s (gc) │ │ │
      │ │ │
      i8 : #autF7
      │ │ │  
      │ │ │  o8 = 168
      │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ symmetric group S_7: │ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ │ │ o6 : Matroid │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc) │ │ │ │ + -- used 0.150518s (cpu); 0.0618682s (thread); 0s (gc) │ │ │ │ i8 : #autF7 │ │ │ │ │ │ │ │ o8 = 168 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between │ │ │ │ isomorphic matroids │ │ │ │ * _q_u_i_c_k_I_s_o_m_o_r_p_h_i_s_m_T_e_s_t -- quick checks for isomorphism between matroids │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 = false │ │ │
      │ │ │
      i3 : time hasMinor(M6, M5)
      │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc)
      │ │ │ + -- used 1.79693s (cpu); 1.22252s (thread); 0s (gc)
      │ │ │  
      │ │ │  o3 = true
      │ │ │
      │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ elements, a "matroid" of rank 5 on 15 elements) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ │ │ o2 = false │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc) │ │ │ │ + -- used 1.79693s (cpu); 1.22252s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_o_r -- minor of matroid │ │ │ │ * _i_s_B_i_n_a_r_y -- whether a matroid is representable over F_2 │ │ │ │ ********** WWaayyss ttoo uussee hhaassMMiinnoorr:: ********** │ │ │ │ * hasMinor(Matroid,Matroid) │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ @@ -118,15 +118,15 @@ │ │ │ │ │ │ o4 : Matroid
    │ │ │
    │ │ │
    i5 : time isomorphism(M5, minorM6)
    │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc)
    │ │ │ + -- used 0.0120337s (cpu); 0.0136404s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{0 => 1}
    │ │ │                 1 => 0
    │ │ │                 2 => 3
    │ │ │                 3 => 2
    │ │ │                 4 => 6
    │ │ │                 5 => 5
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o7 : Matroid
    │ │ │
    │ │ │
    i8 : time phi = isomorphism(N,M6)
    │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc)
    │ │ │ + -- used 4.58452s (cpu); 2.76376s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HashTable{0 => 11 }
    │ │ │                 1 => 0
    │ │ │                 2 => 1
    │ │ │                 3 => 6
    │ │ │                 4 => 9
    │ │ │                 5 => 8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7})
    │ │ │ │  
    │ │ │ │  o4 = a "matroid" of rank 4 on 10 elements
    │ │ │ │  
    │ │ │ │  o4 : Matroid
    │ │ │ │  i5 : time isomorphism(M5, minorM6)
    │ │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0120337s (cpu); 0.0136404s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{0 => 1}
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 3
    │ │ │ │                 3 => 2
    │ │ │ │                 4 => 6
    │ │ │ │                 5 => 5
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  o6 : HashTable
    │ │ │ │  i7 : N = relabel M6
    │ │ │ │  
    │ │ │ │  o7 = a "matroid" of rank 5 on 15 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : time phi = isomorphism(N,M6)
    │ │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc)
    │ │ │ │ + -- used 4.58452s (cpu); 2.76376s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = HashTable{0 => 11 }
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 1
    │ │ │ │                 3 => 6
    │ │ │ │                 4 => 9
    │ │ │ │                 5 => 8
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc)
    │ │ │ + -- used 0.00190617s (cpu); 0.000572848s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = false
    │ │ │
    │ │ │
    i11 : value oo === false
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,15 +51,15 @@
    │ │ │ │  o7 = a "matroid" of rank 7 on 11 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00190617s (cpu); 0.000572848s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : value oo === false
    │ │ │ │  
    │ │ │ │  o11 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : elapsedTime fVector M
    │ │ │ - -- .0246909s elapsed
    │ │ │ + -- .0137558s elapsed
    │ │ │  
    │ │ │  o6 = HashTable{0 => 1 }
    │ │ │                 1 => 6
    │ │ │                 2 => 15
    │ │ │                 3 => 20
    │ │ │                 4 => 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -48,15 +48,15 @@
    │ │ │ │  o4 : Matrix QQ  <-- QQ
    │ │ │ │  i5 : keys M.cache
    │ │ │ │  
    │ │ │ │  o5 = {groundSet, rankFunction, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : elapsedTime fVector M
    │ │ │ │ - -- .0246909s elapsed
    │ │ │ │ + -- .0137558s elapsed
    │ │ │ │  
    │ │ │ │  o6 = HashTable{0 => 1 }
    │ │ │ │                 1 => 6
    │ │ │ │                 2 => 15
    │ │ │ │                 3 => 20
    │ │ │ │                 4 => 1
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out
    │ │ │ @@ -5,16 +5,16 @@
    │ │ │  i2 : R = ZZ/101[w..z];
    │ │ │  
    │ │ │  i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2);
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000976812)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0138253)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000020849)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .00119882)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0466845)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000401013)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020574)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000617178
    │ │ │ - -- .0423566s elapsed
    │ │ │ + --  Time taken : .00082124
    │ │ │ + -- .0310278s elapsed
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out
    │ │ │ @@ -30,21 +30,21 @@
    │ │ │  
    │ │ │               2        2   3     2
    │ │ │  o5 = ideal (c , a*c, a , b , a*b )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │  
    │ │ │  i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000461911s elapsed
    │ │ │ + -- .000567822s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0117995s elapsed
    │ │ │ + -- .0143449s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out
    │ │ │ @@ -29,22 +29,22 @@
    │ │ │  o5 = 840
    │ │ │  
    │ │ │  i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .102182s elapsed
    │ │ │ + -- .0756223s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00174825s elapsed
    │ │ │ + -- .00184297s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00126877s elapsed
    │ │ │ + -- .00151659s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html
    │ │ │ @@ -72,21 +72,21 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000976812)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0138253)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000020849)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .00119882)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0466845)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000401013)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020574)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000617178
    │ │ │ - -- .0423566s elapsed
    │ │ │ + -- Time taken : .00082124 │ │ │ + -- .0310278s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,23 @@ │ │ │ │ i1 : debug MinimalPrimes │ │ │ │ i2 : R = ZZ/101[w..z]; │ │ │ │ i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2); │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid │ │ │ │ {Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2); │ │ │ │ - Strategy: Linear (time .000976812) #primes = 0 #prunedViaCodim = │ │ │ │ + Strategy: Linear (time .00119882) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Birational (time .0466845) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Factorization (time .000401013) #primes = 0 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ - Strategy: Birational (time .0138253) #primes = 0 #prunedViaCodim = 0 │ │ │ │ - Strategy: Factorization (time .000355486) #primes = 0 #prunedViaCodim = │ │ │ │ -0 │ │ │ │ - Strategy: DecomposeMonomials(time .000020849) #primes = 1 #prunedViaCodim = │ │ │ │ + Strategy: DecomposeMonomials(time .000020574) #primes = 1 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ -- Converting annotated ideals to ideals and selecting minimal primes... │ │ │ │ - -- Time taken : .000617178 │ │ │ │ - -- .0423566s elapsed │ │ │ │ + -- Time taken : .00082124 │ │ │ │ + -- .0310278s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n_(_._._._,_S_t_r_a_t_e_g_y_=_>_._._._) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _H_y_b_r_i_d is a _s_e_l_f_ _i_n_i_t_i_a_l_i_z_i_n_g_ _t_y_p_e, with ancestor classes _L_i_s_t < │ │ │ │ _V_i_s_i_b_l_e_L_i_s_t < _B_a_s_i_c_L_i_s_t < _T_h_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ @@ -131,25 +131,25 @@ │ │ │ │ │ │ o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000461911s elapsed
    │ │ │ + -- .000567822s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0117995s elapsed
    │ │ │ + -- .0143449s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -62,21 +62,21 @@ │ │ │ │ i5 : I = intersect(ideal(a^2,b^2,c), ideal(a,b^3,c^2)) │ │ │ │ │ │ │ │ 2 2 3 2 │ │ │ │ o5 = ideal (c , a*c, a , b , a*b ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : elapsedTime radical(ideal I_*, Strategy => Monomial) │ │ │ │ - -- .000461911s elapsed │ │ │ │ + -- .000567822s elapsed │ │ │ │ │ │ │ │ o6 = ideal (a, b, c) │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime radical(ideal I_*, Unmixed => true) │ │ │ │ - -- .0117995s elapsed │ │ │ │ + -- .0143449s elapsed │ │ │ │ │ │ │ │ o7 = ideal (c, b, a) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ For another example, see _P_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n. │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ Eisenbud, Huneke, Vasconcelos, Invent. Math. 110 207-235 (1992). │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ @@ -125,31 +125,31 @@ │ │ │ │ │ │ o6 = true
    │ │ │
    │ │ │
    i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .102182s elapsed
    │ │ │ + -- .0756223s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00174825s elapsed
    │ │ │ + -- .00184297s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00126877s elapsed
    │ │ │ + -- .00151659s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,23 +50,23 @@ │ │ │ │ i5 : D = product(I_*/degree/sum) │ │ │ │ │ │ │ │ o5 = 840 │ │ │ │ i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime radicalContainment(x_0, I) │ │ │ │ - -- .102182s elapsed │ │ │ │ + -- .0756223s elapsed │ │ │ │ │ │ │ │ o7 = true │ │ │ │ i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar") │ │ │ │ - -- .00174825s elapsed │ │ │ │ + -- .00184297s elapsed │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar") │ │ │ │ - -- .00126877s elapsed │ │ │ │ + -- .00151659s elapsed │ │ │ │ │ │ │ │ o9 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ │ │ ********** WWaayyss ttoo uussee rraaddiiccaallCCoonnttaaiinnmmeenntt:: ********** │ │ │ │ * radicalContainment(Ideal,Ideal) │ │ │ │ * radicalContainment(RingElement,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ @@ -57,29 +57,29 @@ │ │ │ i9 : J = ideal vars U │ │ │ │ │ │ o9 = ideal (a, b, c) │ │ │ │ │ │ o9 : Ideal of U │ │ │ │ │ │ i10 : time multiReesIdeal J │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc) │ │ │ + -- used 0.185119s (cpu); 0.082016s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o10 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ │ 0 2 1 0 2 0 1 2 0 1 2 │ │ │ │ │ │ o10 : Ideal of U[X ..X ] │ │ │ 0 2 │ │ │ │ │ │ i11 : time multiReesIdeal (J, a) │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc) │ │ │ + -- used 0.0930233s (cpu); 0.0265471s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o11 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ @@ -173,15 +173,15 @@ │ │ │ │ │ │ o9 : Ideal of U
    │ │ │
    │ │ │
    i10 : time multiReesIdeal J
    │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc)
    │ │ │ + -- used 0.185119s (cpu); 0.082016s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │                    0   2
    │ │ │
    │ │ │
    i11 : time multiReesIdeal (J, a)
    │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc)
    │ │ │ + -- used 0.0930233s (cpu); 0.0265471s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -79,28 +79,28 @@
    │ │ │ │  i8 : U = T/minors(2,m);
    │ │ │ │  i9 : J = ideal vars U
    │ │ │ │  
    │ │ │ │  o9 = ideal (a, b, c)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of U
    │ │ │ │  i10 : time multiReesIdeal J
    │ │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc)
    │ │ │ │ + -- used 0.185119s (cpu); 0.082016s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ │           0      2   1    0 2   0 1    2   0    1 2
    │ │ │ │  
    │ │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │ │                    0   2
    │ │ │ │  i11 : time multiReesIdeal (J, a)
    │ │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0930233s (cpu); 0.0265471s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  
    │ │ │  o7 = image | x2 y2 |
    │ │ │  
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │  
    │ │ │  i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ + -- used 0.553944s (cpu); 0.355909s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  o10 = cokernel | x2 y2  |
    │ │ │                 | -y -x2 |
    │ │ │  
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │  
    │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ + -- used 0.760664s (cpu); 0.585757s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html
    │ │ │ @@ -145,15 +145,15 @@
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │
    │ │ │
    i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ + -- used 0.553944s (cpu); 0.355909s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -186,15 +186,15 @@
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │
    │ │ │
    i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ + -- used 0.760664s (cpu); 0.585757s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -70,15 +70,15 @@
    │ │ │ │  i7 : N0 = module ideal (x^2,y^2)
    │ │ │ │  
    │ │ │ │  o7 = image | x2 y2 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o7 : R-module, submodule of R
    │ │ │ │  i8 : (S,N) = time deformMCMModule N0
    │ │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ │ + -- used 0.553944s (cpu); 0.355909s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │ │                    {8} | xxi_4-y+xi_3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │ │  
    │ │ │ │ @@ -103,15 +103,15 @@
    │ │ │ │  
    │ │ │ │  o10 = cokernel | x2 y2  |
    │ │ │ │                 | -y -x2 |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o10 : R-module, quotient of R
    │ │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ │ + -- used 0.760664s (cpu); 0.585757s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │ │                      | xxi_4-y+xi_3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out
    │ │ │ @@ -3,27 +3,27 @@
    │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │  
    │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │  
    │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │  
    │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00296506s elapsed
    │ │ │ - -- .00282693s elapsed
    │ │ │ - -- .000335866s elapsed
    │ │ │ - -- .0027534s elapsed
    │ │ │ - -- .00295554s elapsed
    │ │ │ - -- .000235038s elapsed
    │ │ │ - -- .00283445s elapsed
    │ │ │ - -- .00295772s elapsed
    │ │ │ - -- .000236902s elapsed
    │ │ │ - -- .00296333s elapsed
    │ │ │ - -- .0029042s elapsed
    │ │ │ - -- .000232784s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .00359142s elapsed
    │ │ │ + -- .00352355s elapsed
    │ │ │ + -- .000396332s elapsed
    │ │ │ + -- .00349357s elapsed
    │ │ │ + -- .00358184s elapsed
    │ │ │ + -- .000337732s elapsed
    │ │ │ + -- .0030646s elapsed
    │ │ │ + -- .00346339s elapsed
    │ │ │ + -- .000302745s elapsed
    │ │ │ + -- .0033665s elapsed
    │ │ │ + -- .0034413s elapsed
    │ │ │ + -- .000296716s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49481-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out
    │ │ │ @@ -15,128 +15,128 @@
    │ │ │  
    │ │ │  i7 : dLoss = diff(varMatrix, gateMatrix{{loss}});
    │ │ │  
    │ │ │  i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │  
    │ │ │  i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html
    │ │ │ @@ -96,27 +96,27 @@
    │ │ │              
    │ │ │
    i3 : (p0, x0) = createSeedPair polys;
    │ │ │
    │ │ │
    i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00296506s elapsed
    │ │ │ - -- .00282693s elapsed
    │ │ │ - -- .000335866s elapsed
    │ │ │ - -- .0027534s elapsed
    │ │ │ - -- .00295554s elapsed
    │ │ │ - -- .000235038s elapsed
    │ │ │ - -- .00283445s elapsed
    │ │ │ - -- .00295772s elapsed
    │ │ │ - -- .000236902s elapsed
    │ │ │ - -- .00296333s elapsed
    │ │ │ - -- .0029042s elapsed
    │ │ │ - -- .000232784s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .00359142s elapsed
    │ │ │ + -- .00352355s elapsed
    │ │ │ + -- .000396332s elapsed
    │ │ │ + -- .00349357s elapsed
    │ │ │ + -- .00358184s elapsed
    │ │ │ + -- .000337732s elapsed
    │ │ │ + -- .0030646s elapsed
    │ │ │ + -- .00346339s elapsed
    │ │ │ + -- .000302745s elapsed
    │ │ │ + -- .0033665s elapsed
    │ │ │ + -- .0034413s elapsed
    │ │ │ + -- .000296716s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49481-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -22,27 +22,27 @@
    │ │ │ │            o npaths, an _i_n_t_e_g_e_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Output is verbose. For other dynamic strategies, see _M_o_n_o_d_r_o_m_y_S_o_l_v_e_r_O_p_t_i_o_n_s.
    │ │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ │ - -- .00296506s elapsed
    │ │ │ │ - -- .00282693s elapsed
    │ │ │ │ - -- .000335866s elapsed
    │ │ │ │ - -- .0027534s elapsed
    │ │ │ │ - -- .00295554s elapsed
    │ │ │ │ - -- .000235038s elapsed
    │ │ │ │ - -- .00283445s elapsed
    │ │ │ │ - -- .00295772s elapsed
    │ │ │ │ - -- .000236902s elapsed
    │ │ │ │ - -- .00296333s elapsed
    │ │ │ │ - -- .0029042s elapsed
    │ │ │ │ - -- .000232784s elapsed
    │ │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ │ + -- .00359142s elapsed
    │ │ │ │ + -- .00352355s elapsed
    │ │ │ │ + -- .000396332s elapsed
    │ │ │ │ + -- .00349357s elapsed
    │ │ │ │ + -- .00358184s elapsed
    │ │ │ │ + -- .000337732s elapsed
    │ │ │ │ + -- .0030646s elapsed
    │ │ │ │ + -- .00346339s elapsed
    │ │ │ │ + -- .000302745s elapsed
    │ │ │ │ + -- .0033665s elapsed
    │ │ │ │ + -- .0034413s elapsed
    │ │ │ │ + -- .000296716s elapsed
    │ │ │ │ +--backup directory created: /tmp/M2-49481-0/1
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 2
    │ │ │ │  found 1 points in the fiber so far
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_monodromy__Group.html
    │ │ │ @@ -118,131 +118,131 @@
    │ │ │                
    i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │
    │ │ │
    i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,131 +32,131 @@ │ │ │ │ i4 : varMatrix = gateMatrix{{t_1,t_2}}; │ │ │ │ i5 : phi = transpose gateMatrix{{t_1^3, t_1^2*t_2, t_1*t_2^2, t_2^3}}; │ │ │ │ i6 : loss = sum for i from 0 to 3 list (u_i - phi_(i,0))^2; │ │ │ │ i7 : dLoss = diff(varMatrix, gateMatrix{{loss}}); │ │ │ │ i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss); │ │ │ │ i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10}) │ │ │ │ │ │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, │ │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, │ │ │ │ + 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, │ │ │ │ + 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, │ │ │ │ + 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, │ │ │ │ + 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ + 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, │ │ │ │ + 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, │ │ │ │ + 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, │ │ │ │ + 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, │ │ │ │ + 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, │ │ │ │ + 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, │ │ │ │ + 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, │ │ │ │ + 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, │ │ │ │ + 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, │ │ │ │ + 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, │ │ │ │ + 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, │ │ │ │ + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, │ │ │ │ + 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, │ │ │ │ + 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, │ │ │ │ + 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, │ │ │ │ + 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, │ │ │ │ + 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ + 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, │ │ │ │ + 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, │ │ │ │ + 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, │ │ │ │ + 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, │ │ │ │ + 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, │ │ │ │ + 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, │ │ │ │ + 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, │ │ │ │ + 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, │ │ │ │ + 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, │ │ │ │ + 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, │ │ │ │ + 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, │ │ │ │ + {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ + 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, │ │ │ │ + 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, │ │ │ │ + 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, │ │ │ │ + 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, │ │ │ │ + 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, │ │ │ │ + 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, │ │ │ │ + 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, │ │ │ │ + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, │ │ │ │ + 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, │ │ │ │ + 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, │ │ │ │ + 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, │ │ │ │ + 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, │ │ │ │ + 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, │ │ │ │ + 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, │ │ │ │ + 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, │ │ │ │ + {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, │ │ │ │ + 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, │ │ │ │ + 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 9, 4}} │ │ │ │ + 18, 9, 4, 6}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This is still somewhat experimental. │ │ │ │ ********** WWaayyss ttoo uussee mmoonnooddrroommyyGGrroouupp:: ********** │ │ │ │ * monodromyGroup(System) │ │ │ │ * monodromyGroup(System,AbstractPoint,List) │ │ ├── ./usr/share/doc/Macaulay2/MonomialIntegerPrograms/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=12 │ │ │ R3JhZGVkQmV0dGlz │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/___Msolve.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/M2-53632-0/0-out.ms │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84650-0/0-in.ms -o /tmp/M2-84650-0/0-out.ms │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ #variables 3 │ │ │ #equations 3 │ │ │ #invalid equations 0 │ │ │ field characteristic 0 │ │ │ homogeneous input? 1 │ │ │ @@ -28,15 +28,15 @@ │ │ │ initial hash table size 131072 (2^17) │ │ │ max pair selection ALL │ │ │ reduce gb 1 │ │ │ #threads 6 │ │ │ info level 2 │ │ │ generate pbm files 0 │ │ │ ------------------------------------------ │ │ │ -Initial prime = 1196244169 │ │ │ +Initial prime = 1266683059 │ │ │ │ │ │ Legend for f4 information │ │ │ -------------------------------------------------------- │ │ │ deg current degree of pairs selected in this round │ │ │ sel number of pairs selected in this round │ │ │ pairs total number of pairs in pair list │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ @@ -46,25 +46,25 @@ │ │ │ time(rd) time of the current f4 round in seconds given │ │ │ for real and cpu time │ │ │ -------------------------------------------------------- │ │ │ │ │ │ deg sel pairs mat density new data time(rd) in sec (real|cpu) │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ -reduce final basis 3 x 3 33.33% 3 new 0 zero 0.02 | 0.07 │ │ │ +reduce final basis 3 x 3 33.33% 3 new 0 zero 0.00 | 0.00 │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -overall(elapsed) 0.06 sec │ │ │ -overall(cpu) 0.17 sec │ │ │ +overall(elapsed) 0.00 sec │ │ │ +overall(cpu) 0.00 sec │ │ │ select 0.00 sec 0.0% │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ -update 0.03 sec 57.3% │ │ │ -convert 0.02 sec 42.4% │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ +symbolic prep. 0.00 sec 0.3% │ │ │ +update 0.00 sec 73.3% │ │ │ +convert 0.00 sec 7.6% │ │ │ +linear algebra 0.00 sec 1.0% │ │ │ reduce gb 0.00 sec 0.0% │ │ │ ----------------------------------------- │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ size of basis 3 │ │ │ #terms in basis 3 │ │ │ #pairs reduced 0 │ │ │ @@ -78,18 +78,18 @@ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ [3] │ │ │ #polynomials to lift 3 │ │ │ ----------------------------------------- │ │ │ -New prime = 1107170621 │ │ │ +New prime = 1184773069 │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -multi-mod overall(elapsed) 0.02 sec │ │ │ +multi-mod overall(elapsed) 0.00 sec │ │ │ learning phase 0.00 Gops/sec │ │ │ application phase 0.00 Gops/sec │ │ │ ----------------------------------------- │ │ │ │ │ │ multi-modular steps │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ {1}{2}<100.00%> │ │ │ @@ -105,15 +105,15 @@ │ │ │ ---------------- TIMINGS ---------------- │ │ │ CRT (elapsed) 0.00 sec │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------------ │ │ │ -msolve overall time 0.19 sec (elapsed) / 0.49 sec (cpu) │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.04 sec (cpu) │ │ │ ------------------------------------------------------------------------------------ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/index.html │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : msolveGB(I, Verbosity => 2, Threads => 6) 
    │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/M2-53632-0/0-out.ms
    │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84650-0/0-in.ms -o /tmp/M2-84650-0/0-out.ms
    │ │ │  
    │ │ │  --------------- INPUT DATA ---------------
    │ │ │  #variables                       3
    │ │ │  #equations                       3
    │ │ │  #invalid equations               0
    │ │ │  field characteristic             0
    │ │ │  homogeneous input?               1
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  initial hash table size     131072 (2^17)
    │ │ │  max pair selection             ALL
    │ │ │  reduce gb                        1
    │ │ │  #threads                         6
    │ │ │  info level                       2
    │ │ │  generate pbm files               0
    │ │ │  ------------------------------------------
    │ │ │ -Initial prime = 1196244169
    │ │ │ +Initial prime = 1266683059
    │ │ │  
    │ │ │  Legend for f4 information
    │ │ │  --------------------------------------------------------
    │ │ │  deg       current degree of pairs selected in this round
    │ │ │  sel       number of pairs selected in this round
    │ │ │  pairs     total number of pairs in pair list
    │ │ │  mat       matrix dimensions (# rows x # columns)
    │ │ │ @@ -115,25 +115,25 @@
    │ │ │  time(rd)  time of the current f4 round in seconds given
    │ │ │            for real and cpu time
    │ │ │  --------------------------------------------------------
    │ │ │  
    │ │ │  deg     sel   pairs        mat          density            new data         time(rd) in sec (real|cpu)
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │ -reduce final basis        3 x 3          33.33%        3 new       0 zero         0.02 | 0.07         
    │ │ │ +reduce final basis        3 x 3          33.33%        3 new       0 zero         0.00 | 0.00         
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -overall(elapsed)        0.06 sec
    │ │ │ -overall(cpu)            0.17 sec
    │ │ │ +overall(elapsed)        0.00 sec
    │ │ │ +overall(cpu)            0.00 sec
    │ │ │  select                  0.00 sec   0.0%
    │ │ │ -symbolic prep.          0.00 sec   0.0%
    │ │ │ -update                  0.03 sec  57.3%
    │ │ │ -convert                 0.02 sec  42.4%
    │ │ │ -linear algebra          0.00 sec   0.0%
    │ │ │ +symbolic prep.          0.00 sec   0.3%
    │ │ │ +update                  0.00 sec  73.3%
    │ │ │ +convert                 0.00 sec   7.6%
    │ │ │ +linear algebra          0.00 sec   1.0%
    │ │ │  reduce gb               0.00 sec   0.0%
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  size of basis                     3
    │ │ │  #terms in basis                   3
    │ │ │  #pairs reduced                    0
    │ │ │ @@ -147,18 +147,18 @@
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  [3]
    │ │ │  #polynomials to lift              3
    │ │ │  -----------------------------------------
    │ │ │ -New prime = 1107170621
    │ │ │ +New prime = 1184773069
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -multi-mod overall(elapsed)      0.02 sec
    │ │ │ +multi-mod overall(elapsed)      0.00 sec
    │ │ │  learning phase                  0.00 Gops/sec
    │ │ │  application phase               0.00 Gops/sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  multi-modular steps
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  {1}{2}<100.00%> 
    │ │ │ @@ -174,15 +174,15 @@
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │  CRT     (elapsed)               0.00 sec
    │ │ │  ratrecon(elapsed)               0.00 sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │ -msolve overall time           0.19 sec (elapsed) /  0.49 sec (cpu)
    │ │ │ +msolve overall time           0.01 sec (elapsed) /  0.04 sec (cpu)
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  o3 = | z y x |
    │ │ │  
    │ │ │               1      3
    │ │ │  o3 : Matrix R  <-- R
    │ │ │
    │ │ │
    i5 : peek componentsOfKernel(2, F)
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 6
    │ │ │  number of distinct multidegrees = 6
    │ │ │ - -- .00186857s elapsed
    │ │ │ + -- .00246071s elapsed
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 21
    │ │ │  number of distinct multidegrees = 18
    │ │ │ - -- .00833047s elapsed
    │ │ │ + -- .0106961s elapsed
    │ │ │  
    │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,19 +51,19 @@
    │ │ │ │  o4 : RingMap S <-- R
    │ │ │ │  i5 : peek componentsOfKernel(2, F)
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 6
    │ │ │ │  number of distinct multidegrees = 6
    │ │ │ │ - -- .00186857s elapsed
    │ │ │ │ + -- .00246071s elapsed
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 21
    │ │ │ │  number of distinct multidegrees = 18
    │ │ │ │ - -- .00833047s elapsed
    │ │ │ │ + -- .0106961s elapsed
    │ │ │ │  
    │ │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : I = ideal"xy,yz,zx"
    │ │ │  
    │ │ │  o2 = ideal (x*y, y*z, x*z)
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime jMult I
    │ │ │ - -- .0234547s elapsed
    │ │ │ + -- .027638s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : elapsedTime monjMult I
    │ │ │ - -- .107713s elapsed
    │ │ │ + -- .0842469s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .181349s elapsed
    │ │ │ + -- .140034s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out
    │ │ │ @@ -10,12 +10,12 @@
    │ │ │  
    │ │ │               2        3
    │ │ │  o2 = ideal (x , x*y, y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .171404s elapsed
    │ │ │ + -- .0976458s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out
    │ │ │ @@ -13,17 +13,17 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │        10 11   8 12   9 11   10 10   11 9   12 8
    │ │ │       x  y  , x y  , x y  , x  y  , x  y , x  y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monjMult I
    │ │ │ - -- .119902s elapsed
    │ │ │ + -- .106255s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │  
    │ │ │  i4 : elapsedTime jMult I
    │ │ │ - -- 1.54599s elapsed
    │ │ │ + -- 1.37349s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html
    │ │ │ @@ -88,31 +88,31 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : elapsedTime jMult I
    │ │ │ - -- .0234547s elapsed
    │ │ │ + -- .027638s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    i4 : elapsedTime monjMult I
    │ │ │ - -- .107713s elapsed
    │ │ │ + -- .0842469s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .181349s elapsed
    │ │ │ + -- .140034s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │
    │ │ │
    i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .171404s elapsed
    │ │ │ + -- .0976458s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : I = ideal"x2,xy,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o2 = ideal (x , x*y, y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monAnalyticSpread I │ │ │ │ - -- .171404s elapsed │ │ │ │ + -- .0976458s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ │ │ ********** WWaayyss ttoo uussee mmoonnAAnnaallyyttiiccSSpprreeaadd:: ********** │ │ │ │ * monAnalyticSpread(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │
    │ │ │
    i3 : elapsedTime monjMult I
    │ │ │ - -- .119902s elapsed
    │ │ │ + -- .106255s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │
    │ │ │
    i4 : elapsedTime jMult I
    │ │ │ - -- 1.54599s elapsed
    │ │ │ + -- 1.37349s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,19 +24,19 @@ │ │ │ │ o2 = ideal (x y , x y , x y , x y , x y , x y , x y , x y , x y , │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 10 11 8 12 9 11 10 10 11 9 12 8 │ │ │ │ x y , x y , x y , x y , x y , x y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monjMult I │ │ │ │ - -- .119902s elapsed │ │ │ │ + -- .106255s elapsed │ │ │ │ │ │ │ │ o3 = 192 │ │ │ │ i4 : elapsedTime jMult I │ │ │ │ - -- 1.54599s elapsed │ │ │ │ + -- 1.37349s elapsed │ │ │ │ │ │ │ │ o4 = 192 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ │ │ * _j_M_u_l_t -- the j-multiplicity of an ideal │ │ │ │ * _m_o_n_R_e_d_u_c_t_i_o_n -- the minimal monomial reduction of a monomial ideal │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ │ │ i5 : ? X │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ │ │ i6 : time f = X ===> Y; │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc) │ │ │ + -- used 4.13499s (cpu); 2.08126s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i7 : f X │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i11 : time g = V ===> W; │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc) │ │ │ + -- used 3.69451s (cpu); 2.10155s (thread); 0s (gc) │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i12 : g||W │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 hypersurfaces of degrees 1^1 2^1 │ │ │ @@ -129,15 +129,15 @@ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ │ │ i16 : ? Z │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc) │ │ │ + -- used 6.52083s (cpu); 4.57396s (thread); 0s (gc) │ │ │ │ │ │ o17 = h │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ │ │ i18 : h || GG_K(1,4) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ @@ -7,15 +7,15 @@ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi)); │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ i4 : time X = Phi^* Y; │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc) │ │ │ + -- used 4.40229s (cpu); 3.72029s (thread); 0s (gc) │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 ) │ │ │ │ │ │ i5 : dim X, degree X, degrees X │ │ │ │ │ │ o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1), │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ @@ -11,26 +11,26 @@ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7 x PP^7) │ │ │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ │ │ i5 : time Phi Z; │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc) │ │ │ + -- used 0.130263s (cpu); 0.111376s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc) │ │ │ + -- used 2.51637s (cpu); 1.40924s (thread); 0s (gc) │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ @@ -11,22 +11,22 @@ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc) │ │ │ + -- used 4.33556s (cpu); 2.47925s (thread); 0s (gc) │ │ │ │ │ │ o4 = 2 │ │ │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc) │ │ │ + -- used 0.35768s (cpu); 0.283995s (thread); 0s (gc) │ │ │ │ │ │ o5 = 2 │ │ │ │ │ │ i6 : time degree Phi │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc) │ │ │ + -- used 0.332341s (cpu); 0.262557s (thread); 0s (gc) │ │ │ │ │ │ o6 = 2 │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ @@ -3,12 +3,12 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time degree Phi │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc) │ │ │ + -- used 0.574524s (cpu); 0.371837s (thread); 0s (gc) │ │ │ │ │ │ o3 = 1 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ @@ -1,52 +1,52 @@ │ │ │ -- -*- M2-comint -*- hash: 11533721324852072161 │ │ │ │ │ │ i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ i2 : time ? Phi │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc) │ │ │ + -- used 0.000922781s (cpu); 0.000167482s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 │ │ │ target variety: PP^4 x PP^5 │ │ │ ------------------------------------------------------------------------ │ │ │ hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i3 : image Phi; │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ i4 : time ? Phi │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc) │ │ │ + -- used 0.0010021s (cpu); 0.000243723s (thread); 0s (gc) │ │ │ │ │ │ o4 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i5 : time describe Phi │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc) │ │ │ + -- used 1.25956s (cpu); 1.04959s (thread); 0s (gc) │ │ │ │ │ │ o5 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ multidegree: {51, 51, 51, 51, 51} │ │ │ degree: 1 │ │ │ degree sequence (map 1/2): [(1,0), (0,2)] │ │ │ degree sequence (map 2/2): [(0,1), (2,0)] │ │ │ coefficient ring: ZZ/65521 │ │ │ │ │ │ i6 : time ? Phi │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc) │ │ │ + -- used 0.000130585s (cpu); 0.000457767s (thread); 0s (gc) │ │ │ │ │ │ o6 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ @@ -3,45 +3,45 @@ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc) │ │ │ + -- used 0.11519s (cpu); 0.0525209s (thread); 0s (gc) │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : Phi1; │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4) │ │ │ │ │ │ i4 : Phi2; │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc) │ │ │ + -- used 0.0750556s (cpu); 0.0584397s (thread); 0s (gc) │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : Phi21; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : Phi22; │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc) │ │ │ + -- used 0.347284s (cpu); 0.207232s (thread); 0s (gc) │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : Phi211; │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ @@ -11,25 +11,25 @@ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ i5 : time Z = image Phi; │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc) │ │ │ + -- used 0.185535s (cpu); 0.12657s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc) │ │ │ + -- used 10.319s (cpu); 2.72855s (thread); 0s (gc) │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i8 : assert(Z == Z') │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ @@ -4,25 +4,25 @@ │ │ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational normal curve of degree 6 │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2)); │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc) │ │ │ + -- used 0.408651s (cpu); 0.322879s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc) │ │ │ + -- used 1.20589s (cpu); 1.03972s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ @@ -7,33 +7,33 @@ │ │ │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time inverse Phi; │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc) │ │ │ + -- used 0.114552s (cpu); 0.0638305s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time inverse Psi; │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc) │ │ │ + -- used 0.295237s (cpu); 0.112553s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : time inverse Eta; │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc) │ │ │ + -- used 0.568476s (cpu); 0.328152s (thread); 0s (gc) │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ @@ -6,32 +6,32 @@ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ │ │ i4 : time isIsomorphism Phi │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc) │ │ │ + -- used 0.00336491s (cpu); 8.46e-06s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3) │ │ │ │ │ │ i6 : time isIsomorphism Psi │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc) │ │ │ + -- used 0.423703s (cpu); 0.190694s (thread); 0s (gc) │ │ │ │ │ │ o6 = false │ │ │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i8 : time isIsomorphism Eta │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc) │ │ │ + -- used 1.69466s (cpu); 0.865677s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2-a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │ │ │ │ i3 : time isMorphism Phi │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc) │ │ │ + -- used 0.506281s (cpu); 0.258799s (thread); 0s (gc) │ │ │ │ │ │ o3 = false │ │ │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc) │ │ │ + -- used 0.128697s (cpu); 0.0729765s (thread); 0s (gc) │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ │ │ i5 : time isMorphism Psi │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc) │ │ │ + -- used 3.59347s (cpu); 2.98975s (thread); 0s (gc) │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : K = ZZ/333331; │ │ │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc) │ │ │ + -- used 0.108782s (cpu); 0.0340201s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3 │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc) │ │ │ + -- used 0.515086s (cpu); 0.434805s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ │ │ i7 : describe g │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time multidegree Phi │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc) │ │ │ + -- used 0.50863s (cpu); 0.364535s (thread); 0s (gc) │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ @@ -1,21 +1,21 @@ │ │ │ -- -*- M2-comint -*- hash: 16199733219210081214 │ │ │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc) │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc) │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc) │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc) │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc) │ │ │ + -- used 0.00399531s (cpu); 0.0012992s (thread); 0s (gc) │ │ │ + -- used 0.221072s (cpu); 0.147087s (thread); 0s (gc) │ │ │ + -- used 0.243298s (cpu); 0.168701s (thread); 0s (gc) │ │ │ + -- used 0.221095s (cpu); 0.152101s (thread); 0s (gc) │ │ │ + -- used 0.191018s (cpu); 0.12145s (thread); 0s (gc) │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc) │ │ │ + -- used 0.2182s (cpu); 0.0975932s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -3,26 +3,26 @@ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i3 : time p := point X │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc) │ │ │ + -- used 0.0319696s (cpu); 0.0192418s (thread); 0s (gc) │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i5 : time q = point Y │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc) │ │ │ + -- used 1.52734s (cpu); 0.994378s (thread); 0s (gc) │ │ │ │ │ │ o5 = q │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ o4 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i5 : Phi = rationalMap {f,g,h}; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ i6 : time segre Phi; │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc) │ │ │ + -- used 1.11502s (cpu); 0.590124s (thread); 0s (gc) │ │ │ │ │ │ o6 : RationalMap (rational map from PP^4 to PP^149) │ │ │ │ │ │ i7 : describe segre Phi │ │ │ │ │ │ o7 = rational map defined by forms of degree 6 │ │ │ source variety: PP^4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i2 : time describe Phi │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc) │ │ │ + -- used 0.225094s (cpu); 0.149449s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 3 rational maps │ │ │ source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1) │ │ │ target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 │ │ │ base locus: empty subscheme of PP^3 x PP^2 │ │ │ dominance: true │ │ │ multidegree: {10, 14, 19, 25} │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15
    │ │ │
    │ │ │
    i6 : time f = X ===> Y;
    │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc)
    │ │ │ + -- used 4.13499s (cpu); 2.08126s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (automorphism of PP^8)
    │ │ │
    │ │ │
    i7 : f X
    │ │ │ @@ -143,15 +143,15 @@
    │ │ │  
    │ │ │  o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │
    │ │ │
    i11 : time g = V ===> W;
    │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc)
    │ │ │ + -- used 3.69451s (cpu); 2.10155s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : MultirationalMap (automorphism of PP^8)
    │ │ │
    │ │ │
    i12 : g||W
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │  
    │ │ │  o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │
    │ │ │
    i17 : time h = Z ===> GG_K(1,4)
    │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc)
    │ │ │ + -- used 6.52083s (cpu); 4.57396s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = h
    │ │ │  
    │ │ │  o17 : MultirationalMap (isomorphism from PP^9 to PP^9)
    │ │ │
    │ │ │
    i4 : time X = Phi^* Y;
    │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc)
    │ │ │ + -- used 4.40229s (cpu); 3.72029s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │
    │ │ │
    i5 : dim X, degree X, degrees X
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,15 +26,15 @@
    │ │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to
    │ │ │ │  PP^2 x PP^4)
    │ │ │ │  i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random(
    │ │ │ │  {1,1},ring target Phi));
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
    │ │ │ │  i4 : time X = Phi^* Y;
    │ │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc)
    │ │ │ │ + -- used 4.40229s (cpu); 3.72029s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension
    │ │ │ │  2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-
    │ │ │ │  degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │  i5 : dim X, degree X, degrees X
    │ │ │ │  
    │ │ │ │  o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1),
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
    │ │ │
    │ │ │
    i5 : time Phi Z;
    │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc)
    │ │ │ + -- used 0.130263s (cpu); 0.111376s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
    │ │ │
    │ │ │
    i6 : dim oo, degree oo, degrees oo
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o6 : Sequence
    │ │ │
    │ │ │
    i7 : time Phi (point Z + point Z + point Z)
    │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc)
    │ │ │ + -- used 2.51637s (cpu); 1.40924s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
    │ │ │
    │ │ │
    i4 : time degree(Phi,Strategy=>"random point")
    │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc)
    │ │ │ + -- used 4.33556s (cpu); 2.47925s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    i5 : time degree(Phi,Strategy=>"0-th projective degree")
    │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc)
    │ │ │ + -- used 0.35768s (cpu); 0.283995s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    │ │ │
    i6 : time degree Phi
    │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc)
    │ │ │ + -- used 0.332341s (cpu); 0.262557s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = 2
    │ │ │
    │ │ │

    Note, as in the example above, that calculation times may vary depending on the strategy used.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc) │ │ │ │ + -- used 4.33556s (cpu); 2.47925s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc) │ │ │ │ + -- used 0.35768s (cpu); 0.283995s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : time degree Phi │ │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc) │ │ │ │ + -- used 0.332341s (cpu); 0.262557s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = 2 │ │ │ │ Note, as in the example above, that calculation times may vary depending on the │ │ │ │ strategy used. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- degree of a multi-rational map │ │ │ │ * _d_e_g_r_e_e_M_a_p_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time degree Phi
    │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc)
    │ │ │ + -- used 0.574524s (cpu); 0.371837s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 1
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time degree Phi │ │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc) │ │ │ │ + -- used 0.574524s (cpu); 0.371837s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 1 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_,_O_p_t_i_o_n_) -- degree of a multi-rational map using a │ │ │ │ probabilistic approach │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time ? Phi
    │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc)
    │ │ │ + -- used 0.000922781s (cpu); 0.000167482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       ------------------------------------------------------------------------
    │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │ │ │ @@ -96,27 +96,27 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time ? Phi
    │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc)
    │ │ │ + -- used 0.0010021s (cpu); 0.000243723s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time describe Phi
    │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc)
    │ │ │ + -- used 1.25956s (cpu); 1.04959s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │       coefficient ring: ZZ/65521
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time ? Phi
    │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc)
    │ │ │ + -- used 0.000130585s (cpu); 0.000457767s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,36 +16,36 @@
    │ │ │ │  ? Phi is a lite version of describe Phi. The latter has a different behavior
    │ │ │ │  than _d_e_s_c_r_i_b_e_(_R_a_t_i_o_n_a_l_M_a_p_), since it performs computations.
    │ │ │ │  i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 to PP^4 x PP^5)
    │ │ │ │  i2 : time ? Phi
    │ │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000922781s (cpu); 0.000167482s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i3 : image Phi;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5
    │ │ │ │  i4 : time ? Phi
    │ │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0010021s (cpu); 0.000243723s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i5 : time describe Phi
    │ │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc)
    │ │ │ │ + -- used 1.25956s (cpu); 1.04959s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       multidegree: {51, 51, 51, 51, 51}
    │ │ │ │       degree: 1
    │ │ │ │       degree sequence (map 1/2): [(1,0), (0,2)]
    │ │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │ │       coefficient ring: ZZ/65521
    │ │ │ │  i6 : time ? Phi
    │ │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000130585s (cpu); 0.000457767s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (Phi1,Phi2) = graph Phi
    │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc)
    │ │ │ + -- used 0.11519s (cpu); 0.0525209s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (Phi1, Phi2)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (Phi21,Phi22) = graph Phi2
    │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc)
    │ │ │ + -- used 0.0750556s (cpu); 0.0584397s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = (Phi21, Phi22)
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time (Phi211,Phi212) = graph Phi21
    │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc)
    │ │ │ + -- used 0.347284s (cpu); 0.207232s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (Phi211, Phi212)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,43 +19,43 @@ │ │ │ │ Phi)^-1 * (last graph Phi) == Phi are always satisfied. │ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc) │ │ │ │ + -- used 0.11519s (cpu); 0.0525209s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : Phi1; │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^4) │ │ │ │ i4 : Phi2; │ │ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc) │ │ │ │ + -- used 0.0750556s (cpu); 0.0584397s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : Phi21; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : Phi22; │ │ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc) │ │ │ │ + -- used 0.347284s (cpu); 0.207232s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ │ │ o8 : Sequence │ │ │ │ i9 : Phi211; │ │ │ │ │ │ │ │ o9 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time Z = image Phi;
    │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc)
    │ │ │ + -- used 0.185535s (cpu); 0.12657s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : dim Z, degree Z, degrees Z
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    Alternatively, the calculation can be performed using the Segre embedding as follows:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time multidegree Phi │ │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc) │ │ │ │ + -- used 0.50863s (cpu); 0.364535s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ │ │ │ │ │ │ o4 = (66, 20) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ @@ -77,29 +77,29 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4");
    │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc)
    │ │ │ + -- used 10.319s (cpu); 2.72855s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │
    │ │ │
    i8 : assert(Z == Z')
    │ │ │ ├── html2text {} │ │ │ │ @@ -23,26 +23,26 @@ │ │ │ │ 3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2}; │ │ │ │ │ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ i5 : time Z = image Phi; │ │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc) │ │ │ │ + -- used 0.185535s (cpu); 0.12657s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ Alternatively, the calculation can be performed using the Segre embedding as │ │ │ │ follows: │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc) │ │ │ │ + -- used 10.319s (cpu); 2.72855s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i8 : assert(Z == Z') │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y -- direct image via a multi- │ │ │ │ rational map │ │ │ │ * _i_m_a_g_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- closure of the image of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │
    │ │ │
    i3 : time Psi = inverse2 Phi;
    │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc)
    │ │ │ + -- used 0.408651s (cpu); 0.322879s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from GG(2,4) to PP^6)
    │ │ │
    │ │ │
    i4 : assert(Phi * Psi == 1)
    │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │
    │ │ │
    i6 : time Psi' = inverse2 Phi';
    │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc)
    │ │ │ + -- used 1.20589s (cpu); 1.03972s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6)
    │ │ │
    │ │ │
    i7 : assert(Phi' * Psi' == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational │ │ │ │ normal curve of degree 6 │ │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal │ │ │ │ PP_K([6],2)); │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc) │ │ │ │ + -- used 0.408651s (cpu); 0.322879s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc) │ │ │ │ + -- used 1.20589s (cpu); 1.03972s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _<_=_=_>_ _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p -- equality of multi-rational maps │ │ │ │ with checks on internal data │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ @@ -88,45 +88,45 @@ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │
    │ │ │
    i3 : time inverse Phi;
    │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc)
    │ │ │ + -- used 0.114552s (cpu); 0.0638305s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4)
    │ │ │
    │ │ │
    i4 : Psi = last graph Phi;
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i5 : time inverse Psi;
    │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc)
    │ │ │ + -- used 0.295237s (cpu); 0.112553s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i6 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i7 : time inverse Eta;
    │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc)
    │ │ │ + -- used 0.568476s (cpu); 0.328152s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5)
    │ │ │
    │ │ │
    i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,32 +24,32 @@ │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from PP^4 to PP^5) │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i3 : time inverse Phi; │ │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc) │ │ │ │ + -- used 0.114552s (cpu); 0.0638305s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time inverse Psi; │ │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc) │ │ │ │ + -- used 0.295237s (cpu); 0.112553s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4- │ │ │ │ dimensional subvariety of PP^4 x PP^5) │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : time inverse Eta; │ │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc) │ │ │ │ + -- used 0.568476s (cpu); 0.328152s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ │ │ i10 : assert(Eta * Eta^-1 == 1 and Eta^-1 * Eta == 1) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ @@ -83,45 +83,45 @@ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │
    │ │ │
    i4 : time isIsomorphism Phi
    │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc)
    │ │ │ + -- used 0.00336491s (cpu); 8.46e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │
    │ │ │
    i5 : Psi = first graph Phi;
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3)
    │ │ │
    │ │ │
    i6 : time isIsomorphism Psi
    │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc)
    │ │ │ + -- used 0.423703s (cpu); 0.190694s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │
    │ │ │
    i8 : time isIsomorphism Eta
    │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc)
    │ │ │ + -- used 1.69466s (cpu); 0.865677s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : assert(o8 and (not o6) and (not o4))
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,31 +17,31 @@ │ │ │ │ ZZ/33331[a..d]; f = rationalMap {c^2-b*d,b*c-a*d,b^2-a*c}; │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ i4 : time isIsomorphism Phi │ │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc) │ │ │ │ + -- used 0.00336491s (cpu); 8.46e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to │ │ │ │ PP^3) │ │ │ │ i6 : time isIsomorphism Psi │ │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc) │ │ │ │ + -- used 0.423703s (cpu); 0.190694s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x │ │ │ │ PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ i8 : time isIsomorphism Eta │ │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc) │ │ │ │ + -- used 1.69466s (cpu); 0.865677s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a multi-rational map is a │ │ │ │ morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ @@ -80,31 +80,31 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │
    │ │ │
    i3 : time isMorphism Phi
    │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc)
    │ │ │ + -- used 0.506281s (cpu); 0.258799s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = false
    │ │ │
    │ │ │
    i4 : time Psi = first graph Phi;
    │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc)
    │ │ │ + -- used 0.128697s (cpu); 0.0729765s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7)
    │ │ │
    │ │ │
    i5 : time isMorphism Psi
    │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc)
    │ │ │ + -- used 3.59347s (cpu); 2.98975s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │
    │ │ │
    i6 : assert((not o3) and o5)
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,24 +17,24 @@ │ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2- │ │ │ │ a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^4 x PP^2) │ │ │ │ i3 : time isMorphism Phi │ │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc) │ │ │ │ + -- used 0.506281s (cpu); 0.258799s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc) │ │ │ │ + -- used 0.128697s (cpu); 0.0729765s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ i5 : time isMorphism Psi │ │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc) │ │ │ │ + -- used 3.59347s (cpu); 2.98975s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_I_s_o_m_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a birational map is an │ │ │ │ isomorphism │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_R_a_t_i_o_n_a_l_M_a_p_) -- whether a rational map is a morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ @@ -79,30 +79,30 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │
    │ │ │
    i3 : time f = linearlyNormalEmbedding X;
    │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc)
    │ │ │ + -- used 0.108782s (cpu); 0.0340201s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (automorphism of X)
    │ │ │
    │ │ │
    i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3
    │ │ │
    │ │ │
    i5 : time g = linearlyNormalEmbedding Y;
    │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc)
    │ │ │ + -- used 0.515086s (cpu); 0.434805s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from Y to curve in PP^7)
    │ │ │
    │ │ │
    i6 : assert(isIsomorphism g)
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,23 +13,23 @@ │ │ │ │ is a linear projection │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/333331; │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc) │ │ │ │ + -- used 0.108782s (cpu); 0.0340201s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an │ │ │ │ isomorphic projection of X in PP^3 │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc) │ │ │ │ + -- used 0.515086s (cpu); 0.434805s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ i7 : describe g │ │ │ │ │ │ │ │ o7 = multi-rational map consisting of one single rational map │ │ │ │ source variety: curve in PP^3 cut out by 6 hypersurfaces of degree 4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │
    │ │ │
    i3 : time multidegree Phi
    │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc)
    │ │ │ + -- used 0.50863s (cpu); 0.364535s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {66, 46, 31, 20}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi)
    │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc)
    │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc)
    │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc)
    │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc)
    │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc)
    │ │ │ + -- used 0.00399531s (cpu); 0.0012992s (thread); 0s (gc)
    │ │ │ + -- used 0.221072s (cpu); 0.147087s (thread); 0s (gc)
    │ │ │ + -- used 0.243298s (cpu); 0.168701s (thread); 0s (gc)
    │ │ │ + -- used 0.221095s (cpu); 0.152101s (thread); 0s (gc)
    │ │ │ + -- used 0.191018s (cpu); 0.12145s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time assert(oo == multidegree Phi)
    │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc)
    │ │ │ + -- used 0.2182s (cpu); 0.0975932s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    References

    │ │ │ ArXiv preprint: Computations with rational maps between multi-projective varieties.
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,25 +17,25 @@ │ │ │ │ This is calculated by means of the inverse image of an appropriate random │ │ │ │ subvariety of the target. │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^5) │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc) │ │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc) │ │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc) │ │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc) │ │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc) │ │ │ │ + -- used 0.00399531s (cpu); 0.0012992s (thread); 0s (gc) │ │ │ │ + -- used 0.221072s (cpu); 0.147087s (thread); 0s (gc) │ │ │ │ + -- used 0.243298s (cpu); 0.168701s (thread); 0s (gc) │ │ │ │ + -- used 0.221095s (cpu); 0.152101s (thread); 0s (gc) │ │ │ │ + -- used 0.191018s (cpu); 0.12145s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc) │ │ │ │ + -- used 0.2182s (cpu); 0.0975932s (thread); 0s (gc) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ ArXiv preprint: _C_o_m_p_u_t_a_t_i_o_n_s_ _w_i_t_h_ _r_a_t_i_o_n_a_l_ _m_a_p_s_ _b_e_t_w_e_e_n_ _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e │ │ │ │ _v_a_r_i_e_t_i_e_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ │ │ map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s_(_R_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p := point X
    │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc)
    │ │ │ + -- used 0.0319696s (cpu); 0.0192418s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time q = point Y
    │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc)
    │ │ │ + -- used 1.52734s (cpu); 0.994378s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = q
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -14,25 +14,25 @@ │ │ │ │ o a _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e_ _v_a_r_i_e_t_y, a random rational point on $X$ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ i3 : time p := point X │ │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc) │ │ │ │ + -- used 0.0319696s (cpu); 0.0192418s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1], │ │ │ │ [3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ i5 : time q = point Y │ │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc) │ │ │ │ + -- used 1.52734s (cpu); 0.994378s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = q │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ │ │ The list of homogeneous coordinates can be obtained with the operator |-. │ │ │ │ i7 : |- p │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ @@ -101,15 +101,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time segre Phi;
    │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc)
    │ │ │ + -- used 1.11502s (cpu); 0.590124s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe segre Phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (quadratic rational map from PP^4 to PP^4)
    │ │ │ │  i5 : Phi = rationalMap {f,g,h};
    │ │ │ │  
    │ │ │ │  o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x
    │ │ │ │  PP^4)
    │ │ │ │  i6 : time segre Phi;
    │ │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc)
    │ │ │ │ + -- used 1.11502s (cpu); 0.590124s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │  i7 : describe segre Phi
    │ │ │ │  
    │ │ │ │  o7 = rational map defined by forms of degree 6
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^149
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time describe Phi
    │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc)
    │ │ │ + -- used 0.225094s (cpu); 0.149449s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1)
    │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 
    │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ │       dominance: true
    │ │ │       multidegree: {10, 14, 19, 25}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3)
    │ │ │ │  
    │ │ │ │  o1 = Phi
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to
    │ │ │ │  threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │  i2 : time describe Phi
    │ │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc)
    │ │ │ │ + -- used 0.225094s (cpu); 0.149449s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of
    │ │ │ │  multi-degree (1,1)
    │ │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces
    │ │ │ │  of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2
    │ │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out
    │ │ │ @@ -26,22 +26,22 @@
    │ │ │  
    │ │ │  i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true};
    │ │ │  
    │ │ │  i8 : prob = n -> log(n)/n;
    │ │ │  
    │ │ │  i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96,
    │ │ │ +o9 = (67, 75, 93, 93, 96, 92, 96, 91, 96, 97, 93, 95, 96, 98, 97, 96, 97, 97,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99)
    │ │ │ +     98, 96, 99, 99, 98, 98, 97, 99, 99, 99, 100)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,
    │ │ │ +o10 = (19, 16, 7, 4, 3, 3, 2, 1, 2, 0, 1, 1, 2, 2, 1, 0, 1, 3, 1, 0, 0, 0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1, 0, 0, 0, 1)
    │ │ │ +      1, 0, 0, 0, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ +o2 = {Dhk, DdG, DPK, Dk[, DES}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729831171060067675
    │ │ │  
    │ │ │  i1 : R = QQ[a..e];
    │ │ │  
    │ │ │  i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │       Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out
    │ │ │ @@ -13,13 +13,13 @@
    │ │ │  i3 : graphComplement "Dhc"
    │ │ │  
    │ │ │  o3 = DUW
    │ │ │  
    │ │ │  i4 : G = generateBipartiteGraphs 7;
    │ │ │  
    │ │ │  i5 : time graphComplement G;
    │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc)
    │ │ │ + -- used 0.000672568s (cpu); 0.000645755s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc)
    │ │ │ + -- used 0.162324s (cpu); 0.0773518s (thread); 0s (gc)
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html
    │ │ │ @@ -117,28 +117,28 @@
    │ │ │                
    i8 : prob = n -> log(n)/n;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96,
    │ │ │ +o9 = (67, 75, 93, 93, 96, 92, 96, 91, 96, 97, 93, 95, 96, 98, 97, 96, 97, 97,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99)
    │ │ │ +     98, 96, 99, 99, 98, 98, 97, 99, 99, 99, 100)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,
    │ │ │ +o10 = (19, 16, 7, 4, 3, 3, 2, 1, 2, 0, 1, 1, 2, 2, 1, 0, 1, 3, 1, 0, 0, 0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1, 0, 0, 0, 1)
    │ │ │ +      1, 0, 0, 0, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96, │ │ │ │ +o9 = (67, 75, 93, 93, 96, 92, 96, 91, 96, 97, 93, 95, 96, 98, 97, 96, 97, 97, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99) │ │ │ │ + 98, 96, 99, 99, 98, 98, 97, 99, 99, 99, 100) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, │ │ │ │ +o10 = (19, 16, 7, 4, 3, 3, 2, 1, 2, 0, 1, 1, 2, 2, 1, 0, 1, 3, 1, 0, 0, 0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 1, 1, 0, 0, 0, 1) │ │ │ │ + 1, 0, 0, 0, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ @@ -100,15 +100,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ +o2 = {Dhk, DdG, DPK, Dk[, DES}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ │ +o2 = {Dhk, DdG, DPK, Dk[, DES}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -87,23 +87,23 @@
    │ │ │                
    i1 : R = QQ[a..e];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │       Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ If a _P_o_l_y_n_o_m_i_a_l_R_i_n_g $R$ is supplied instead, then the number of vertices is the │ │ │ │ number of generators. Moreover, the nauty-based strings are automatically │ │ │ │ converted to instances of the class _G_r_a_p_h in $R$. │ │ │ │ i1 : R = QQ[a..e]; │ │ │ │ i2 : generateRandomRegularGraphs(R, 3, 2) │ │ │ │ │ │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}, │ │ │ │ +o2 = {Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}} │ │ │ │ + Graph{"edges" => {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}}} │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ @@ -116,21 +116,21 @@ │ │ │ │ │ │
    i4 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time graphComplement G;
    │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc)
    │ │ │ + -- used 0.000672568s (cpu); 0.000645755s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc)
    │ │ │ + -- used 0.162324s (cpu); 0.0773518s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -41,17 +41,17 @@ │ │ │ │ │ │ │ │ o3 = DUW │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i4 : G = generateBipartiteGraphs 7; │ │ │ │ i5 : time graphComplement G; │ │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc) │ │ │ │ + -- used 0.000672568s (cpu); 0.000645755s (thread); 0s (gc) │ │ │ │ i6 : time (graphComplement \ G); │ │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc) │ │ │ │ + -- used 0.162324s (cpu); 0.0773518s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_m_p_l_e_m_e_n_t_G_r_a_p_h -- returns the complement of a graph or hypergraph │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ @@ -26,22 +26,22 @@ │ │ │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true}; │ │ │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected)) │ │ │ │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99, │ │ │ +o9 = (70, 80, 87, 93, 91, 95, 96, 91, 98, 92, 96, 94, 97, 97, 98, 95, 96, 97, │ │ │ ------------------------------------------------------------------------ │ │ │ - 94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98) │ │ │ + 93, 99, 99, 98, 98, 99, 98, 98, 100, 97, 98) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected)) │ │ │ │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, │ │ │ +o10 = (24, 8, 4, 1, 5, 7, 3, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 0, 1, 0, 1, 0, │ │ │ ----------------------------------------------------------------------- │ │ │ - 0, 1, 1, 1, 0, 0) │ │ │ + 1, 1, 0, 0, 1, 0) │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : generateRandomGraphs(5, 5) │ │ │ │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC} │ │ │ +o2 = {DDs, DQG, DL[, DVg, Dck} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : generateRandomGraphs(5, 5, RandomSeed => 314159) │ │ │ │ │ │ o3 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1331287392268 │ │ │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ -o1 = {DMg, DLo, DLo} │ │ │ +o1 = {D[S, DLo, Dbg} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ @@ -13,13 +13,13 @@ │ │ │ 4 => {2, 1} │ │ │ │ │ │ o2 : Graph │ │ │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ │ │ i4 : time graphComplement G; │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc) │ │ │ + -- used 0.000667562s (cpu); 0.000536291s (thread); 0s (gc) │ │ │ │ │ │ i5 : time (graphComplement \ G); │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc) │ │ │ + -- used 0.150279s (cpu); 0.0756606s (thread); 0s (gc) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ @@ -117,28 +117,28 @@ │ │ │
      i8 : prob = n -> log(n)/n;
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
      │ │ │  
      │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99,
      │ │ │ +o9 = (70, 80, 87, 93, 91, 95, 96, 91, 98, 92, 96, 94, 97, 97, 98, 95, 96, 97,
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98)
      │ │ │ +     93, 99, 99, 98, 98, 99, 98, 98, 100, 97, 98)
      │ │ │  
      │ │ │  o9 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
      │ │ │  
      │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      │ │ │ +o10 = (24, 8, 4, 1, 5, 7, 3, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 0, 1, 0, 1, 0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ -      0, 1, 1, 1, 0, 0)
      │ │ │ +      1, 1, 0, 0, 1, 0)
      │ │ │  
      │ │ │  o10 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99, │ │ │ │ +o9 = (70, 80, 87, 93, 91, 95, 96, 91, 98, 92, 96, 94, 97, 97, 98, 95, 96, 97, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98) │ │ │ │ + 93, 99, 99, 98, 98, 99, 98, 98, 100, 97, 98) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, │ │ │ │ +o10 = (24, 8, 4, 1, 5, 7, 3, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 0, 1, 0, 1, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 0, 1, 1, 1, 0, 0) │ │ │ │ + 1, 1, 0, 0, 1, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC}
    │ │ │ +o2 = {DDs, DQG, DL[, DVg, Dck}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC}
    │ │ │ │ +o2 = {DDs, DQG, DL[, DVg, Dck}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │            

    This method generates a specified number of random graphs on a given number of vertices with a given regularity. Note that some graphs may be isomorphic.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : generateRandomRegularGraphs(5, 3, 2)
    │ │ │  
    │ │ │ -o1 = {DMg, DLo, DLo}
    │ │ │ +o1 = {D[S, DLo, Dbg}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o G, a _l_i_s_t, the randomly generated regular graphs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method generates a specified number of random graphs on a given number of │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ │ │ -o1 = {DMg, DLo, DLo} │ │ │ │ +o1 = {D[S, DLo, Dbg} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_t_e_R_a_n_d_o_m_G_r_a_p_h_s -- generates random graphs on a given number of │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ @@ -110,21 +110,21 @@ │ │ │ │ │ │
    i3 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time graphComplement G;
    │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc)
    │ │ │ + -- used 0.000667562s (cpu); 0.000536291s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (graphComplement \ G);
    │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc)
    │ │ │ + -- used 0.150279s (cpu); 0.0756606s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use graphComplement:

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,17 +38,17 @@ │ │ │ │ │ │ │ │ o2 : Graph │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ i4 : time graphComplement G; │ │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc) │ │ │ │ + -- used 0.000667562s (cpu); 0.000536291s (thread); 0s (gc) │ │ │ │ i5 : time (graphComplement \ G); │ │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc) │ │ │ │ + -- used 0.150279s (cpu); 0.0756606s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _g_r_a_p_h_C_o_m_p_l_e_m_e_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ @@ -47,15 +47,15 @@ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ - -- .113138s elapsed │ │ │ + -- .0874811s elapsed │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ ------------------------------------------------------------------------ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ │ │ │ o5 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot")
    │ │ │ - -- .113138s elapsed
    │ │ │ + -- .0874811s elapsed
    │ │ │  
    │ │ │  o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, |
    │ │ │       ------------------------------------------------------------------------
    │ │ │       2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ 1 2 3 2 3 │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ │ - -- .113138s elapsed │ │ │ │ + -- .0874811s elapsed │ │ │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ @@ -78,15 +78,15 @@ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc) │ │ │ + -- used 0.241848s (cpu); 0.242193s (thread); 0s (gc) │ │ │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ @@ -110,19 +110,19 @@ │ │ │ 2 2 2 2 2 2 2 2 3 2 │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc) │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc) │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc) │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc) │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc) │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc) │ │ │ + -- used 0.00395355s (cpu); 0.00182835s (thread); 0s (gc) │ │ │ + -- used 2.9369e-05s (cpu); 0.000103096s (thread); 0s (gc) │ │ │ + -- used 1.0757e-05s (cpu); 8.2799e-05s (thread); 0s (gc) │ │ │ + -- used 9.926e-06s (cpu); 7.5793e-05s (thread); 0s (gc) │ │ │ + -- used 9.64e-06s (cpu); 7.7367e-05s (thread); 0s (gc) │ │ │ + -- used 9.662e-06s (cpu); 7.1582e-05s (thread); 0s (gc) │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_is__Well__Defined_lp__Normal__Toric__Variety_rp.out │ │ │ @@ -1,29 +1,29 @@ │ │ │ -- -*- M2-comint -*- hash: 16408385764843695632 │ │ │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ - -- setting random seed to 1765726817 │ │ │ + -- setting random seed to 1767265970 │ │ │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ -o3 = {2, 4, 5} │ │ │ +o3 = {0, 3, 4} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i7 : q │ │ │ │ │ │ -o7 = {5, 7, 7, 9, 9} │ │ │ +o7 = {4, 6, 7, 9, 9} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ @@ -6,61 +6,61 @@ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ 0 │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ - -- .0534782s elapsed │ │ │ + -- .0375704s elapsed │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1)) │ │ │ - -- .0017525s elapsed │ │ │ + -- .00125292s elapsed │ │ │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ 0 1 │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ - -- .0763581s elapsed │ │ │ + -- .0323888s elapsed │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2)) │ │ │ - -- .00167424s elapsed │ │ │ + -- .00121086s elapsed │ │ │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ 0 1 │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ - -- 40.8741s elapsed │ │ │ + -- 28.5986s elapsed │ │ │ │ │ │ o11 = 7909 │ │ │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3)) │ │ │ - -- .0293459s elapsed │ │ │ + -- .0309196s elapsed │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ @@ -24,19 +24,19 @@ │ │ │ o3 : List │ │ │ │ │ │ i4 : X = normalToricVariety F; │ │ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc) │ │ │ + -- used 3.9133e-05s (cpu); 2.9122e-05s (thread); 0s (gc) │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc) │ │ │ + -- used 0.0531533s (cpu); 0.0531637s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ @@ -88,15 +88,15 @@ │ │ │ o18 = | 0 1 0 | │ │ │ | 0 0 1 | │ │ │ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc) │ │ │ + -- used 0.0270248s (cpu); 0.0270239s (thread); 0s (gc) │ │ │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc) │ │ │ + -- used 0.00264935s (cpu); 0.00265533s (thread); 0s (gc) │ │ │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ @@ -207,15 +207,15 @@ │ │ │
    │ │ │

    We end with a slightly larger example.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -254,20 +254,20 @@ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : Y = time smoothFanoToricVariety(5,100);
    │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc)
    │ │ │ + -- used 0.241848s (cpu); 0.242193s (thread); 0s (gc) │ │ │
    │ │ │
    i15 : A2 = intersectionRing Y;
    │ │ │
    │ │ │
    i19 : for i to dim Y list time hilbertFunction (i, A2)
    │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc)
    │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc)
    │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00395355s (cpu); 0.00182835s (thread); 0s (gc)
    │ │ │ + -- used 2.9369e-05s (cpu); 0.000103096s (thread); 0s (gc)
    │ │ │ + -- used 1.0757e-05s (cpu); 8.2799e-05s (thread); 0s (gc)
    │ │ │ + -- used 9.926e-06s (cpu); 7.5793e-05s (thread); 0s (gc)
    │ │ │ + -- used 9.64e-06s (cpu); 7.7367e-05s (thread); 0s (gc)
    │ │ │ + -- used 9.662e-06s (cpu); 7.1582e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = {1, 6, 13, 13, 6, 1}
    │ │ │  
    │ │ │  o19 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ We end with a slightly larger example. │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc) │ │ │ │ + -- used 0.241848s (cpu); 0.242193s (thread); 0s (gc) │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ │ │ o17 = ideal (t t , t t , t t , t t , t t , t t , t t , t t , t t t , │ │ │ │ 2 3 2 5 4 5 3 6 4 6 1 7 7 9 8 9 0 1 10 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -129,20 +129,20 @@ │ │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t │ │ │ │ t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 │ │ │ │ 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc) │ │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc) │ │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00395355s (cpu); 0.00182835s (thread); 0s (gc) │ │ │ │ + -- used 2.9369e-05s (cpu); 0.000103096s (thread); 0s (gc) │ │ │ │ + -- used 1.0757e-05s (cpu); 8.2799e-05s (thread); 0s (gc) │ │ │ │ + -- used 9.926e-06s (cpu); 7.5793e-05s (thread); 0s (gc) │ │ │ │ + -- used 9.64e-06s (cpu); 7.7367e-05s (thread); 0s (gc) │ │ │ │ + -- used 9.662e-06s (cpu); 7.1582e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _s_h_e_a_v_e_s -- information about coherent sheaves and total │ │ │ │ coordinate rings (a.k.a. Cox rings) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_is__Well__Defined_lp__Normal__Toric__Variety_rp.html │ │ │ @@ -93,22 +93,22 @@ │ │ │
    │ │ │

    The second examples show that a randomly selected Kleinschmidt toric variety and a weighted projective space are also well-defined.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : setRandomSeed (currentTime ());
    │ │ │ - -- setting random seed to 1765726817
    │ │ │ + -- setting random seed to 1767265970 │ │ │
    │ │ │
    i3 : a = sort apply (3, i -> random (7))
    │ │ │  
    │ │ │ -o3 = {2, 4, 5}
    │ │ │ +o3 = {0, 3, 4}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : assert isWellDefined kleinschmidt (4,a)
    │ │ │ @@ -126,15 +126,15 @@ │ │ │
    i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9));
    │ │ │
    │ │ │
    i7 : q
    │ │ │  
    │ │ │ -o7 = {5, 7, 7, 9, 9}
    │ │ │ +o7 = {4, 6, 7, 9, 9}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : assert isWellDefined weightedProjectiveSpace q
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,27 +28,27 @@ │ │ │ │ * the intersection of the cones associated to two elements of coneList is a │ │ │ │ face of each cone. │ │ │ │ The first examples illustrate that small projective spaces are well-defined. │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ The second examples show that a randomly selected Kleinschmidt toric variety │ │ │ │ and a weighted projective space are also well-defined. │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ │ - -- setting random seed to 1765726817 │ │ │ │ + -- setting random seed to 1767265970 │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ │ │ -o3 = {2, 4, 5} │ │ │ │ +o3 = {0, 3, 4} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j │ │ │ │ -> random (1,9)); │ │ │ │ i7 : q │ │ │ │ │ │ │ │ -o7 = {5, 7, 7, 9, 9} │ │ │ │ +o7 = {4, 6, 7, 9, 9} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ The next ten examples illustrate various ways that two lists can fail to define │ │ │ │ a normal toric variety. By making the current debugging level greater than one, │ │ │ │ one gets some addition information about the nature of the failure. │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │
    │ │ │
    i3 : M1 = elapsedTime monomials D1
    │ │ │ - -- .0534782s elapsed
    │ │ │ + -- .0375704s elapsed
    │ │ │  
    │ │ │         5     4     4   2 3       3   2 3   3 2     2 2   2   2   3 2   4   
    │ │ │  o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x ,
    │ │ │         2   1 2   0 2   1 2   0 1 2   0 2   1 2   0 1 2   0 1 2   0 2   1 2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │          3     2 2     3       4     5     4   2 3   3 2   4     5
    │ │ │       x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1))
    │ │ │ - -- .0017525s elapsed
    │ │ │ + -- .00125292s elapsed │ │ │
    │ │ │
    │ │ │

    Toric varieties of Picard-rank 2 are slightly more interesting.

    │ │ │
    │ │ │ │ │ │ @@ -138,27 +138,27 @@ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -171,23 +171,23 @@ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : M2 = elapsedTime monomials D2
    │ │ │ - -- .0763581s elapsed
    │ │ │ + -- .0323888s elapsed
    │ │ │  
    │ │ │         2     3 2     3     2 3
    │ │ │  o7 = {x x , x x , x x x , x x }
    │ │ │         1 3   1 2   0 1 2   0 1
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2))
    │ │ │ - -- .00167424s elapsed
    │ │ │ + -- .00121086s elapsed │ │ │
    │ │ │
    i9 : X = kleinschmidt (5, {1,2,3});
    │ │ │
    │ │ │
    i11 : m3 = elapsedTime # monomials D3
    │ │ │ - -- 40.8741s elapsed
    │ │ │ + -- 28.5986s elapsed
    │ │ │  
    │ │ │  o11 = 7909
    │ │ │
    │ │ │
    i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3))
    │ │ │ - -- .0293459s elapsed
    │ │ │ + -- .0309196s elapsed │ │ │
    │ │ │
    │ │ │

    By exploiting latticePoints, this method function avoids using the basis function.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,61 +27,61 @@ │ │ │ │ i2 : D1 = 5*PP2_0 │ │ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ │ 0 │ │ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ │ - -- .0534782s elapsed │ │ │ │ + -- .0375704s elapsed │ │ │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring │ │ │ │ variety D1)) │ │ │ │ - -- .0017525s elapsed │ │ │ │ + -- .00125292s elapsed │ │ │ │ Toric varieties of Picard-rank 2 are slightly more interesting. │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ │ - -- .0763581s elapsed │ │ │ │ + -- .0323888s elapsed │ │ │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring │ │ │ │ variety D2)) │ │ │ │ - -- .00167424s elapsed │ │ │ │ + -- .00121086s elapsed │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ │ - -- 40.8741s elapsed │ │ │ │ + -- 28.5986s elapsed │ │ │ │ │ │ │ │ o11 = 7909 │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety │ │ │ │ D3)) │ │ │ │ - -- .0293459s elapsed │ │ │ │ + -- .0309196s elapsed │ │ │ │ By exploiting _l_a_t_t_i_c_e_P_o_i_n_t_s, this method function avoids using the _b_a_s_i_s │ │ │ │ function. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _d_i_v_i_s_o_r_s -- information about toric divisors and their │ │ │ │ related groups │ │ │ │ * _r_i_n_g_(_N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_) -- make the total coordinate ring (a.k.a. Cox │ │ │ │ ring) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    The recommended method for creating a NormalToricVariety from a fan is normalToricVariety(List,List). In fact, this package avoids using objects from the Polyhedra package whenever possible. Here is a trivial example, namely projective 2-space, illustrating the substantial increase in time resulting from the use of a Polyhedra fan.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ The recommended method for creating a _N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y from a fan is │ │ │ │ _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_L_i_s_t_,_L_i_s_t_). In fact, this package avoids using objects from │ │ │ │ the _P_o_l_y_h_e_d_r_a package whenever possible. Here is a trivial example, namely │ │ │ │ projective 2-space, illustrating the substantial increase in time resulting │ │ │ │ from the use of a _P_o_l_y_h_e_d_r_a fan. │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc) │ │ │ │ + -- used 3.9133e-05s (cpu); 2.9122e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull │ │ │ │ matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc) │ │ │ │ + -- used 0.0531533s (cpu); 0.0531637s (thread); 0s (gc) │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y -- make a normal toric variety │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_F_a_n_) -- make a normal toric variety from a 'Polyhedra' │ │ │ │ fan │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ @@ -233,21 +233,21 @@ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -102,17 +102,17 @@ │ │ │ │ │ │ │ │ o18 = | 0 1 0 | │ │ │ │ | 0 0 1 | │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc) │ │ │ │ + -- used 0.0270248s (cpu); 0.0270239s (thread); 0s (gc) │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc) │ │ │ │ + -- used 0.00264935s (cpu); 0.00265533s (thread); 0s (gc) │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_M_a_t_r_i_x_) -- make a normal toric variety from a polytope │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_P_o_l_y_h_e_d_r_o_n_) -- make a normal toric variety from a │ │ │ │ 'Polyhedra' polyhedron │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ @@ -21,21 +21,21 @@ │ │ │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue == 0 │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ Sampling image points ... │ │ │ - -- used .0884675 seconds │ │ │ + -- used .0873637 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00923927 seconds │ │ │ + -- used .0256302 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00487238 seconds │ │ │ + -- used .00304949 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000642635 seconds │ │ │ + -- used .000463706 seconds │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ Sampling image points ... │ │ │ - -- used .00368858 seconds │ │ │ + -- used .00413492 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00273464 seconds │ │ │ + -- used .00298022 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00106818 seconds │ │ │ + -- used .00114695 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000315712 seconds │ │ │ + -- used .000333959 seconds │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ 53 0 3 53 0 3 │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ @@ -11,40 +11,40 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ Sampling image points ... │ │ │ - -- used .0123198 seconds │ │ │ + -- used .0139219 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0108776 seconds │ │ │ + -- used .0132317 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00719824 seconds │ │ │ + -- used .00708841 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000762781 seconds │ │ │ + -- used .000853255 seconds │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0026712 seconds │ │ │ + -- used .00311279 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00778446 seconds │ │ │ + -- used .0079176 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000791835 seconds │ │ │ + -- used .00102141 seconds │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ @@ -20,12 +20,12 @@ │ │ │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc) │ │ │ + -- used 0.0702269s (cpu); 0.0702192s (thread); 0s (gc) │ │ │ │ │ │ o9 = 69 │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ @@ -31,15 +31,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ - -- .638062s elapsed │ │ │ + -- .489357s elapsed │ │ │ │ │ │ o7 = p │ │ │ │ │ │ o7 : Point │ │ │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ @@ -100,21 +100,21 @@ │ │ │ o4 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,21 +33,21 @@ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue │ │ │ │ == 0 │ │ │ │ │ │ │ │ o4 = true │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .0884675 seconds │ │ │ │ + -- used .0873637 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00923927 seconds │ │ │ │ + -- used .0256302 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00487238 seconds │ │ │ │ + -- used .00304949 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000642635 seconds │ │ │ │ + -- used .000463706 seconds │ │ │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ @@ -102,21 +102,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,21 +38,21 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .00368858 seconds │ │ │ │ + -- used .00413492 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00273464 seconds │ │ │ │ + -- used .00298022 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00106818 seconds │ │ │ │ + -- used .00114695 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000315712 seconds │ │ │ │ + -- used .000333959 seconds │ │ │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ │ 53 0 3 53 0 3 │ │ │ │ Here is how to do the same computation symbolically. │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ @@ -107,21 +107,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -147,19 +147,19 @@ │ │ │
    i6 : S = numericalImageSample(F, ideal 0_R, 60);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,39 +57,39 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .0123198 seconds │ │ │ │ + -- used .0139219 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0108776 seconds │ │ │ │ + -- used .0132317 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00719824 seconds │ │ │ │ + -- used .00708841 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000762781 seconds │ │ │ │ + -- used .000853255 seconds │ │ │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ The following example computes the dimension of Plücker quadrics in the │ │ │ │ defining ideal of the Grassmannian $Gr(2,4)$ of $P^1$'s in $P^3$, in the │ │ │ │ ambient space $P^5$. │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0026712 seconds │ │ │ │ + -- used .00311279 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00778446 seconds │ │ │ │ + -- used .0079176 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000791835 seconds │ │ │ │ + -- used .00102141 seconds │ │ │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_u_m_e_r_i_c_a_l_I_n_t_e_r_p_o_l_a_t_i_o_n_T_a_b_l_e -- the class of all │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ @@ -140,15 +140,15 @@ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}})
    │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.9133e-05s (cpu); 2.9122e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = X1
    │ │ │  
    │ │ │  o6 : NormalToricVariety
    │ │ │
    │ │ │
    i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}};
    │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc)
    │ │ │ + -- used 0.0531533s (cpu); 0.0531637s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2)
    │ │ │
    │ │ │
    i19 : X1 = time normalToricVariety convexHull (vertMatrix);
    │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc)
    │ │ │ + -- used 0.0270248s (cpu); 0.0270239s (thread); 0s (gc) │ │ │
    │ │ │
    i20 : X2 = time normalToricVariety vertMatrix;
    │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc)
    │ │ │ + -- used 0.00264935s (cpu); 0.00265533s (thread); 0s (gc) │ │ │
    │ │ │
    i21 : assert (set rays X2 === set rays X1 and max X1 === max X2)
    │ │ │
    │ │ │
    i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .0884675 seconds
    │ │ │ +     -- used .0873637 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00923927 seconds
    │ │ │ +     -- used .0256302 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00487238 seconds
    │ │ │ +     -- used .00304949 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000642635 seconds
    │ │ │ +     -- used .000463706 seconds
    │ │ │  
    │ │ │  o5 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 3 forms in the ideal of the image has dimension 3
    │ │ │  
    │ │ │  o5 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .00368858 seconds
    │ │ │ +     -- used .00413492 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00273464 seconds
    │ │ │ +     -- used .00298022 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00106818 seconds
    │ │ │ +     -- used .00114695 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000315712 seconds
    │ │ │ +     -- used .000333959 seconds
    │ │ │  
    │ │ │  o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 |
    │ │ │  
    │ │ │                            1                   3
    │ │ │  o3 : Matrix (CC  [y ..y ])  <-- (CC  [y ..y ])
    │ │ │                 53  0   3           53  0   3
    │ │ │
    │ │ │
    i3 : numericalHilbertFunction(F, ideal 0_R, 4)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .0123198 seconds
    │ │ │ +     -- used .0139219 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0108776 seconds
    │ │ │ +     -- used .0132317 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00719824 seconds
    │ │ │ +     -- used .00708841 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000762781 seconds
    │ │ │ +     -- used .000853255 seconds
    │ │ │  
    │ │ │  o3 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 4 forms in the ideal of the image has dimension 22
    │ │ │  
    │ │ │  o3 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true)
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0026712 seconds
    │ │ │ +     -- used .00311279 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00778446 seconds
    │ │ │ +     -- used .0079176 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000791835 seconds
    │ │ │ +     -- used .00102141 seconds
    │ │ │  
    │ │ │  o7 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 2 forms in the ideal of the image has dimension 1
    │ │ │  
    │ │ │  o7 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i9 : time numericalImageDim(F, ideal 0_R)
    │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc)
    │ │ │ + -- used 0.0702269s (cpu); 0.0702192s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = 69
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ 201-222. We numerically verify this below. │ │ │ │ i7 : R = CC[a_(1,1)..a_(14,5)]; │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ │ │ 1 70 │ │ │ │ o8 : Matrix R <-- R │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc) │ │ │ │ + -- used 0.0702269s (cpu); 0.0702192s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 = 69 │ │ │ │ ********** WWaayyss ttoo uussee nnuummeerriiccaallIImmaaggeeDDiimm:: ********** │ │ │ │ * numericalImageDim(List,Ideal) │ │ │ │ * numericalImageDim(List,Ideal,Point) │ │ │ │ * numericalImageDim(Matrix,Ideal) │ │ │ │ * numericalImageDim(Matrix,Ideal,Point) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ @@ -132,15 +132,15 @@ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime p = realPoint(I, Iterations => 100)
    │ │ │ - -- .638062s elapsed
    │ │ │ + -- .489357s elapsed
    │ │ │  
    │ │ │  o7 = p
    │ │ │  
    │ │ │  o7 : Point
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ i5 : I2 = ideal apply(entries transpose A, row -> sum(row, v -> v^2) - 1); │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ │ - -- .638062s elapsed │ │ │ │ + -- .489357s elapsed │ │ │ │ │ │ │ │ o7 = p │ │ │ │ │ │ │ │ o7 : Point │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ │ │ │ │ │ │ o8 = | .722359 .289465 -.295808 .591752 -.454678 | │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ @@ -52,92 +52,92 @@ │ │ │ │ │ │ i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm)) │ │ │ │ │ │ i5 : setVerboseLevel 1; │ │ │ │ │ │ i6 : S = solveSchubertProblem(SchPblm,2,4) │ │ │ -- playCheckers │ │ │ --- cpu time = .00800386 │ │ │ +-- cpu time = .0119375 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00400121 │ │ │ +-- cpu time = .00801091 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00400194 │ │ │ +-- cpu time = 0 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00479222 │ │ │ +-- time to make equations: .00797632 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .01877 │ │ │ --- time of performing one checker move: .0033589 │ │ │ --- time of performing one checker move: .00399169 │ │ │ --- time to make equations: .00398021 │ │ │ + -- trackHomotopy time = .00834612 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .0240051 │ │ │ +-- time of performing one checker move: .00396347 │ │ │ +-- time of performing one checker move: 0 │ │ │ +-- time to make equations: .00814426 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0199622 │ │ │ --- time to make equations: .00399873 │ │ │ + -- trackHomotopy time = .00809053 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0245578 │ │ │ +-- time to make equations: .00801786 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .105096 │ │ │ --- time to make equations: .00399983 │ │ │ + -- trackHomotopy time = .022167 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .100524 │ │ │ +-- time to make equations: .00803429 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ --- time of performing one checker move: .0159996 │ │ │ --- time to make equations: .0996534 │ │ │ + -- trackHomotopy time = .00670951 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ +-- time of performing one checker move: .0160682 │ │ │ +-- time to make equations: .0948392 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ --- time of performing one checker move: .107588 │ │ │ --- time to make equations: .011977 │ │ │ + -- trackHomotopy time = .00868241 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ +-- time of performing one checker move: .106909 │ │ │ +-- time to make equations: .0158668 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ --- time of performing one checker move: .107635 │ │ │ --- time of performing one checker move: 0 │ │ │ + -- trackHomotopy time = .022452 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ +-- time of performing one checker move: .107199 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time to make equations: .00799983 │ │ │ -Setup time: 0 │ │ │ +-- time of performing one checker move: .00408582 │ │ │ +-- time to make equations: .0159268 │ │ │ +Setup time: 1 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ --- time of performing one checker move: .108513 │ │ │ + -- trackHomotopy time = .0233384 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ +-- time of performing one checker move: .111805 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00664616 │ │ │ +-- cpu time = .00802985 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ -- cpu time = 0 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00400042 │ │ │ +-- time to make equations: .00800243 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .0997514 │ │ │ --- time of performing one checker move: .00399816 │ │ │ --- time to make equations: .00400027 │ │ │ + -- trackHomotopy time = .00937261 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .111982 │ │ │ +-- time of performing one checker move: .00400104 │ │ │ +-- time to make equations: .00802771 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0159585 │ │ │ --- time of performing one checker move: .0923873 │ │ │ + -- trackHomotopy time = .00767974 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0199981 │ │ │ +-- time of performing one checker move: .104028 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .003972 │ │ │ +-- time of performing one checker move: .00402681 │ │ │ +-- time of performing one checker move: .00401052 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00399838 │ │ │ +-- time of performing one checker move: .00397717 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00400062 │ │ │ --- time to make equations: .0120026 │ │ │ +-- time to make equations: .0159139 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ --- time of performing one checker move: .113179 │ │ │ --- time of performing one checker move: 0 │ │ │ + -- trackHomotopy time = .0361492 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ +-- time of performing one checker move: .121209 │ │ │ +-- time of performing one checker move: .00395312 │ │ │ │ │ │ o6 = {| -1.65573-.600637ii .0201935+.0437095ii |, | -.154703+.175591ii │ │ │ | -1.23037-1.66989ii -.0308057-.00120618ii | | -.801221-.0354303ii │ │ │ | 1.35971-.743988ii -.0713133-.049047ii | | .325581-2.08048ii │ │ │ | -.397038-1.8974ii .0102261-.024397ii | | -.475895-.209388ii │ │ │ ------------------------------------------------------------------------ │ │ │ .0376857+.0683239ii |} │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ @@ -147,92 +147,92 @@ │ │ │
    i5 : setVerboseLevel 1; 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00800386
    │ │ │ +-- cpu time = .0119375
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00400121
    │ │ │ +-- cpu time = .00801091
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00400194
    │ │ │ +-- cpu time = 0
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00479222
    │ │ │ +-- time to make equations: .00797632
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .01877
    │ │ │ --- time of performing one checker move: .0033589
    │ │ │ --- time of performing one checker move: .00399169
    │ │ │ --- time to make equations: .00398021
    │ │ │ + -- trackHomotopy time = .00834612 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .0240051
    │ │ │ +-- time of performing one checker move: .00396347
    │ │ │ +-- time of performing one checker move: 0
    │ │ │ +-- time to make equations: .00814426
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0199622
    │ │ │ --- time to make equations: .00399873
    │ │ │ + -- trackHomotopy time = .00809053 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0245578
    │ │ │ +-- time to make equations: .00801786
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .105096
    │ │ │ --- time to make equations: .00399983
    │ │ │ + -- trackHomotopy time = .022167 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .100524
    │ │ │ +-- time to make equations: .00803429
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ --- time of performing one checker move: .0159996
    │ │ │ --- time to make equations: .0996534
    │ │ │ + -- trackHomotopy time = .00670951 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .0160682
    │ │ │ +-- time to make equations: .0948392
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ --- time of performing one checker move: .107588
    │ │ │ --- time to make equations: .011977
    │ │ │ + -- trackHomotopy time = .00868241 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .106909
    │ │ │ +-- time to make equations: .0158668
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ --- time of performing one checker move: .107635
    │ │ │ --- time of performing one checker move: 0
    │ │ │ + -- trackHomotopy time = .022452 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .107199
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time to make equations: .00799983
    │ │ │ -Setup time: 0
    │ │ │ +-- time of performing one checker move: .00408582
    │ │ │ +-- time to make equations: .0159268
    │ │ │ +Setup time: 1
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ --- time of performing one checker move: .108513
    │ │ │ + -- trackHomotopy time = .0233384 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .111805
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00664616
    │ │ │ +-- cpu time = .00802985
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │  -- cpu time = 0
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00400042
    │ │ │ +-- time to make equations: .00800243
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .0997514
    │ │ │ --- time of performing one checker move: .00399816
    │ │ │ --- time to make equations: .00400027
    │ │ │ + -- trackHomotopy time = .00937261 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .111982
    │ │ │ +-- time of performing one checker move: .00400104
    │ │ │ +-- time to make equations: .00802771
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0159585
    │ │ │ --- time of performing one checker move: .0923873
    │ │ │ + -- trackHomotopy time = .00767974 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0199981
    │ │ │ +-- time of performing one checker move: .104028
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .003972
    │ │ │ +-- time of performing one checker move: .00402681
    │ │ │ +-- time of performing one checker move: .00401052
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00399838
    │ │ │ +-- time of performing one checker move: .00397717
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00400062
    │ │ │ --- time to make equations: .0120026
    │ │ │ +-- time to make equations: .0159139
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ --- time of performing one checker move: .113179
    │ │ │ --- time of performing one checker move: 0
    │ │ │ + -- trackHomotopy time = .0361492 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ +-- time of performing one checker move: .121209
    │ │ │ +-- time of performing one checker move: .00395312
    │ │ │  
    │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii 
    │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii  
    │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       .0376857+.0683239ii   |}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -65,102 +65,102 @@
    │ │ │ │       -.0336427+.0141017ii  |
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm))
    │ │ │ │  i5 : setVerboseLevel 1;
    │ │ │ │  i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00800386
    │ │ │ │ +-- cpu time = .0119375
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00400121
    │ │ │ │ +-- cpu time = .00801091
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00400194
    │ │ │ │ +-- cpu time = 0
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00479222
    │ │ │ │ +-- time to make equations: .00797632
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00834612 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .01877
    │ │ │ │ --- time of performing one checker move: .0033589
    │ │ │ │ --- time of performing one checker move: .00399169
    │ │ │ │ --- time to make equations: .00398021
    │ │ │ │ +-- time of performing one checker move: .0240051
    │ │ │ │ +-- time of performing one checker move: .00396347
    │ │ │ │ +-- time of performing one checker move: 0
    │ │ │ │ +-- time to make equations: .00814426
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .00809053 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0199622
    │ │ │ │ --- time to make equations: .00399873
    │ │ │ │ +-- time of performing one checker move: .0245578
    │ │ │ │ +-- time to make equations: .00801786
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .022167 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .105096
    │ │ │ │ --- time to make equations: .00399983
    │ │ │ │ +-- time of performing one checker move: .100524
    │ │ │ │ +-- time to make equations: .00803429
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │ + -- trackHomotopy time = .00670951 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .0159996
    │ │ │ │ --- time to make equations: .0996534
    │ │ │ │ +-- time of performing one checker move: .0160682
    │ │ │ │ +-- time to make equations: .0948392
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │ + -- trackHomotopy time = .00868241 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .107588
    │ │ │ │ --- time to make equations: .011977
    │ │ │ │ +-- time of performing one checker move: .106909
    │ │ │ │ +-- time to make equations: .0158668
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │ + -- trackHomotopy time = .022452 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .107635
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ +-- time of performing one checker move: .107199
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time to make equations: .00799983
    │ │ │ │ -Setup time: 0
    │ │ │ │ +-- time of performing one checker move: .00408582
    │ │ │ │ +-- time to make equations: .0159268
    │ │ │ │ +Setup time: 1
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │ + -- trackHomotopy time = .0233384 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .108513
    │ │ │ │ +-- time of performing one checker move: .111805
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00664616
    │ │ │ │ +-- cpu time = .00802985
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │  -- cpu time = 0
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00400042
    │ │ │ │ +-- time to make equations: .00800243
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00937261 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .0997514
    │ │ │ │ --- time of performing one checker move: .00399816
    │ │ │ │ --- time to make equations: .00400027
    │ │ │ │ +-- time of performing one checker move: .111982
    │ │ │ │ +-- time of performing one checker move: .00400104
    │ │ │ │ +-- time to make equations: .00802771
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │ + -- trackHomotopy time = .00767974 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0159585
    │ │ │ │ --- time of performing one checker move: .0923873
    │ │ │ │ +-- time of performing one checker move: .0199981
    │ │ │ │ +-- time of performing one checker move: .104028
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .003972
    │ │ │ │ +-- time of performing one checker move: .00402681
    │ │ │ │ +-- time of performing one checker move: .00401052
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00399838
    │ │ │ │ +-- time of performing one checker move: .00397717
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00400062
    │ │ │ │ --- time to make equations: .0120026
    │ │ │ │ +-- time to make equations: .0159139
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity,
    │ │ │ │ -3}]
    │ │ │ │ --- time of performing one checker move: .113179
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ + -- trackHomotopy time = .0361492 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ +infinity, 3}]
    │ │ │ │ +-- time of performing one checker move: .121209
    │ │ │ │ +-- time of performing one checker move: .00395312
    │ │ │ │  
    │ │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii
    │ │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii
    │ │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       .0376857+.0683239ii   |}
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -14,35 +14,35 @@
    │ │ │  
    │ │ │  i4 : LL7a=select(LL7,L->not knownExample L);#LL7a
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .146189s elapsed
    │ │ │ + -- .114155s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .126375s elapsed
    │ │ │ + -- .0969787s elapsed
    │ │ │  next gb
    │ │ │ - -- .000828707s elapsed
    │ │ │ + -- .000812128s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .190454s elapsed
    │ │ │ + -- .0951526s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .151259s elapsed
    │ │ │ + -- .090677s elapsed
    │ │ │  next gb
    │ │ │ - -- .000705507s elapsed
    │ │ │ + -- .000598621s elapsed
    │ │ │  true
    │ │ │ - -- 1.58898s elapsed
    │ │ │ + -- 1.2188s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.5313s elapsed
    │ │ │ + -- 1.1263s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : LL7b=={}
    │ │ │  
    │ │ │ @@ -75,23 +75,23 @@
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .207946s elapsed
    │ │ │ + -- .192485s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .134913s elapsed
    │ │ │ + -- .111815s elapsed
    │ │ │  next gb
    │ │ │ - -- .000914878s elapsed
    │ │ │ + -- .000896207s elapsed
    │ │ │  true
    │ │ │ - -- .683163s elapsed
    │ │ │ + -- .526892s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .716582s elapsed
    │ │ │ + -- .560064s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : L={6,8,9,11}
    │ │ │  
    │ │ │ @@ -100,22 +100,22 @@
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : genus L
    │ │ │  
    │ │ │  o13 = 8
    │ │ │  
    │ │ │  i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0484596s elapsed
    │ │ │ + -- .075721s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .370099s elapsed
    │ │ │ + -- .296697s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │   -- setting random seed to 1644814534404491274313411285186041988099567563905780374824086062516559438
    │ │ │  
    │ │ │  i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.62892s elapsed
    │ │ │ + -- 2.98967s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.05053s elapsed
    │ │ │ + -- .789243s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.34178s elapsed
    │ │ │ + -- 3.33826s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out
    │ │ │ @@ -7,12 +7,12 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.3542s elapsed
    │ │ │ + -- 3.02136s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 6860996532851631556
    │ │ │  
    │ │ │  i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.35152s elapsed
    │ │ │ + -- 1.17924s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : LLdifficult={{6, 8, 9, 11}}
    │ │ │  
    │ │ │ @@ -14,61 +14,61 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .514484s elapsed
    │ │ │ + -- .348027s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .187751s elapsed
    │ │ │ + -- .143963s elapsed
    │ │ │  next gb
    │ │ │ - -- .00166673s elapsed
    │ │ │ + -- .00194033s elapsed
    │ │ │  true
    │ │ │ - -- 1.09437s elapsed
    │ │ │ + -- .809672s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .483431s elapsed
    │ │ │ + -- .334811s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .204984s elapsed
    │ │ │ + -- .209567s elapsed
    │ │ │  next gb
    │ │ │ - -- .0026011s elapsed
    │ │ │ + -- .00364996s elapsed
    │ │ │  decompose
    │ │ │ - -- .13498s elapsed
    │ │ │ + -- .130883s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 3.11814s elapsed
    │ │ │ + -- 2.38925s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .139467s elapsed
    │ │ │ + -- .120298s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .154163s elapsed
    │ │ │ + -- .0883283s elapsed
    │ │ │  next gb
    │ │ │ - -- .000485587s elapsed
    │ │ │ + -- .000442622s elapsed
    │ │ │  true
    │ │ │ - -- .687947s elapsed
    │ │ │ + -- .583484s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .550391s elapsed
    │ │ │ + -- .448255s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .233636s elapsed
    │ │ │ + -- .177409s elapsed
    │ │ │  next gb
    │ │ │ - -- .00395566s elapsed
    │ │ │ + -- .00458298s elapsed
    │ │ │  decompose
    │ │ │ - -- .975039s elapsed
    │ │ │ + -- .811769s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.73979s elapsed
    │ │ │ - -- 7.64035s elapsed
    │ │ │ + -- 2.28763s elapsed
    │ │ │ + -- 6.07018s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003787s elapsed
    │ │ │ - -- 7.67511s elapsed
    │ │ │ + -- .000003683s elapsed
    │ │ │ + -- 6.10673s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html
    │ │ │ @@ -96,38 +96,38 @@
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .146189s elapsed
    │ │ │ + -- .114155s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .126375s elapsed
    │ │ │ + -- .0969787s elapsed
    │ │ │  next gb
    │ │ │ - -- .000828707s elapsed
    │ │ │ + -- .000812128s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .190454s elapsed
    │ │ │ + -- .0951526s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .151259s elapsed
    │ │ │ + -- .090677s elapsed
    │ │ │  next gb
    │ │ │ - -- .000705507s elapsed
    │ │ │ + -- .000598621s elapsed
    │ │ │  true
    │ │ │ - -- 1.58898s elapsed
    │ │ │ + -- 1.2188s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.5313s elapsed
    │ │ │ + -- 1.1263s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -184,23 +184,23 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .207946s elapsed
    │ │ │ + -- .192485s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .134913s elapsed
    │ │ │ + -- .111815s elapsed
    │ │ │  next gb
    │ │ │ - -- .000914878s elapsed
    │ │ │ + -- .000896207s elapsed
    │ │ │  true
    │ │ │ - -- .683163s elapsed
    │ │ │ + -- .526892s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .716582s elapsed
    │ │ │ + -- .560064s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -223,22 +223,22 @@ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0484596s elapsed
    │ │ │ + -- .075721s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .370099s elapsed
    │ │ │ + -- .296697s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,34 +26,34 @@ │ │ │ │ o3 = 39 │ │ │ │ i4 : LL7a=select(LL7,L->not knownExample L);#LL7a │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup │ │ │ │ (L,0.25,0,Verbose=>true)) │ │ │ │ unfolding │ │ │ │ - -- .146189s elapsed │ │ │ │ + -- .114155s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .126375s elapsed │ │ │ │ + -- .0969787s elapsed │ │ │ │ next gb │ │ │ │ - -- .000828707s elapsed │ │ │ │ + -- .000812128s elapsed │ │ │ │ true │ │ │ │ unfolding │ │ │ │ - -- .190454s elapsed │ │ │ │ + -- .0951526s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .151259s elapsed │ │ │ │ + -- .090677s elapsed │ │ │ │ next gb │ │ │ │ - -- .000705507s elapsed │ │ │ │ + -- .000598621s elapsed │ │ │ │ true │ │ │ │ - -- 1.58898s elapsed │ │ │ │ + -- 1.2188s elapsed │ │ │ │ │ │ │ │ o6 = {} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0)) │ │ │ │ - -- 1.5313s elapsed │ │ │ │ + -- 1.1263s elapsed │ │ │ │ │ │ │ │ o7 = {} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : LL7b=={} │ │ │ │ │ │ │ │ o8 = true │ │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ o10 = (5, 8) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true) │ │ │ │ (13, 1) │ │ │ │ {5, 8, 11, 12} │ │ │ │ unfolding │ │ │ │ - -- .207946s elapsed │ │ │ │ + -- .192485s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .134913s elapsed │ │ │ │ + -- .111815s elapsed │ │ │ │ next gb │ │ │ │ - -- .000914878s elapsed │ │ │ │ + -- .000896207s elapsed │ │ │ │ true │ │ │ │ - -- .683163s elapsed │ │ │ │ + -- .526892s elapsed │ │ │ │ (5, 8, all semigroups are smoothable) │ │ │ │ - -- .716582s elapsed │ │ │ │ + -- .560064s elapsed │ │ │ │ │ │ │ │ o11 = {} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (13,1), indicates that there 13 semigroups of │ │ │ │ multiplicity 5 and genus 8 of which only 1 is not flagged as smoothable by the │ │ │ │ @@ -120,22 +120,22 @@ │ │ │ │ o12 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : genus L │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true) │ │ │ │ - -- .0484596s elapsed │ │ │ │ + -- .075721s elapsed │ │ │ │ 6 │ │ │ │ false │ │ │ │ 5 │ │ │ │ false │ │ │ │ 4 │ │ │ │ decompose │ │ │ │ - -- .370099s elapsed │ │ │ │ + -- .296697s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(1, 1), (16, 3)} │ │ │ │ {0, -1} │ │ │ │ │ │ │ │ o14 = true │ │ │ │ The first integer, 6, tells that in this attempt deformation parameters of │ │ │ │ degree >= 6 were used and no smooth fiber was found. Finally with all │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.62892s elapsed
    │ │ │ + -- 2.98967s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ -- setting random seed to │ │ │ │ 1644814534404491274313411285186041988099567563905780374824086062516559438 │ │ │ │ i4 : elapsedTime tally apply(10,i-> ( │ │ │ │ c=minors(2,random(S^2,S^{3:-2})); │ │ │ │ c=sub(c,x_0=>1); │ │ │ │ R=kk[support c];c=sub(c,R); │ │ │ │ heuristicSmoothness c)) │ │ │ │ - -- 3.62892s elapsed │ │ │ │ + -- 2.98967s elapsed │ │ │ │ │ │ │ │ o4 = Tally{false => 6} │ │ │ │ true => 4 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ ********** WWaayyss ttoo uussee hheeuurriissttiiccSSmmooootthhnneessss:: ********** │ │ │ │ * heuristicSmoothness(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.05053s elapsed
    │ │ │ + -- .789243s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.34178s elapsed
    │ │ │ + -- 3.33826s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,19 +29,19 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isSmoothableSemigroup(L,0.30,0) │ │ │ │ - -- 1.05053s elapsed │ │ │ │ + -- .789243s elapsed │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : elapsedTime isSmoothableSemigroup(L,0.14,0) │ │ │ │ - -- 4.34178s elapsed │ │ │ │ + -- 3.33826s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.3542s elapsed
    │ │ │ + -- 3.02136s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isWeierstrassSemigroup(L,0.15) │ │ │ │ - -- 4.3542s elapsed │ │ │ │ + -- 3.02136s elapsed │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ @@ -79,15 +79,15 @@ │ │ │

    We test which semigroups of multiplicity m and genus g are smoothable. If no smoothing was found then L is a candidate for a non Weierstrass semigroup. In this search certain semigroups L in LLdifficult, where the computation is particular heavy are excluded.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -101,62 +101,62 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.35152s elapsed
    │ │ │ + -- 1.17924s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .514484s elapsed
    │ │ │ + -- .348027s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .187751s elapsed
    │ │ │ + -- .143963s elapsed
    │ │ │  next gb
    │ │ │ - -- .00166673s elapsed
    │ │ │ + -- .00194033s elapsed
    │ │ │  true
    │ │ │ - -- 1.09437s elapsed
    │ │ │ + -- .809672s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .483431s elapsed
    │ │ │ + -- .334811s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .204984s elapsed
    │ │ │ + -- .209567s elapsed
    │ │ │  next gb
    │ │ │ - -- .0026011s elapsed
    │ │ │ + -- .00364996s elapsed
    │ │ │  decompose
    │ │ │ - -- .13498s elapsed
    │ │ │ + -- .130883s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 3.11814s elapsed
    │ │ │ + -- 2.38925s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .139467s elapsed
    │ │ │ + -- .120298s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .154163s elapsed
    │ │ │ + -- .0883283s elapsed
    │ │ │  next gb
    │ │ │ - -- .000485587s elapsed
    │ │ │ + -- .000442622s elapsed
    │ │ │  true
    │ │ │ - -- .687947s elapsed
    │ │ │ + -- .583484s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .550391s elapsed
    │ │ │ + -- .448255s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .233636s elapsed
    │ │ │ + -- .177409s elapsed
    │ │ │  next gb
    │ │ │ - -- .00395566s elapsed
    │ │ │ + -- .00458298s elapsed
    │ │ │  decompose
    │ │ │ - -- .975039s elapsed
    │ │ │ + -- .811769s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.73979s elapsed
    │ │ │ - -- 7.64035s elapsed
    │ │ │ + -- 2.28763s elapsed
    │ │ │ + -- 6.07018s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003787s elapsed
    │ │ │ - -- 7.67511s elapsed
    │ │ │ + -- .000003683s elapsed
    │ │ │ + -- 6.10673s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,76 +22,76 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ We test which semigroups of multiplicity m and genus g are smoothable. If no │ │ │ │ smoothing was found then L is a candidate for a non Weierstrass semigroup. In │ │ │ │ this search certain semigroups L in LLdifficult, where the computation is │ │ │ │ particular heavy are excluded. │ │ │ │ i1 : elapsedTime nonWeierstrassSemigroups(6,7) │ │ │ │ (6, 7, all semigroups are smoothable) │ │ │ │ - -- 1.35152s elapsed │ │ │ │ + -- 1.17924s elapsed │ │ │ │ │ │ │ │ o1 = {} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : LLdifficult={{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true) │ │ │ │ (17, 5) │ │ │ │ {6, 7, 8, 17} │ │ │ │ unfolding │ │ │ │ - -- .514484s elapsed │ │ │ │ + -- .348027s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .187751s elapsed │ │ │ │ + -- .143963s elapsed │ │ │ │ next gb │ │ │ │ - -- .00166673s elapsed │ │ │ │ + -- .00194033s elapsed │ │ │ │ true │ │ │ │ - -- 1.09437s elapsed │ │ │ │ + -- .809672s elapsed │ │ │ │ {6, 7, 9, 17} │ │ │ │ unfolding │ │ │ │ - -- .483431s elapsed │ │ │ │ + -- .334811s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .204984s elapsed │ │ │ │ + -- .209567s elapsed │ │ │ │ next gb │ │ │ │ - -- .0026011s elapsed │ │ │ │ + -- .00364996s elapsed │ │ │ │ decompose │ │ │ │ - -- .13498s elapsed │ │ │ │ + -- .130883s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(2, 2), (5, 2)} │ │ │ │ {0, -1} │ │ │ │ - -- 3.11814s elapsed │ │ │ │ + -- 2.38925s elapsed │ │ │ │ {6, 8, 9, 10} │ │ │ │ unfolding │ │ │ │ - -- .139467s elapsed │ │ │ │ + -- .120298s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .154163s elapsed │ │ │ │ + -- .0883283s elapsed │ │ │ │ next gb │ │ │ │ - -- .000485587s elapsed │ │ │ │ + -- .000442622s elapsed │ │ │ │ true │ │ │ │ - -- .687947s elapsed │ │ │ │ + -- .583484s elapsed │ │ │ │ {6, 8, 10, 11, 13} │ │ │ │ unfolding │ │ │ │ - -- .550391s elapsed │ │ │ │ + -- .448255s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .233636s elapsed │ │ │ │ + -- .177409s elapsed │ │ │ │ next gb │ │ │ │ - -- .00395566s elapsed │ │ │ │ + -- .00458298s elapsed │ │ │ │ decompose │ │ │ │ - -- .975039s elapsed │ │ │ │ + -- .811769s elapsed │ │ │ │ number of components: 1 │ │ │ │ support c, codim c: {(5, 1)} │ │ │ │ {-1} │ │ │ │ - -- 2.73979s elapsed │ │ │ │ - -- 7.64035s elapsed │ │ │ │ + -- 2.28763s elapsed │ │ │ │ + -- 6.07018s elapsed │ │ │ │ 0 │ │ │ │ │ │ │ │ {} │ │ │ │ - -- .000003787s elapsed │ │ │ │ - -- 7.67511s elapsed │ │ │ │ + -- .000003683s elapsed │ │ │ │ + -- 6.10673s elapsed │ │ │ │ │ │ │ │ o3 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (17,5), indicates that there 17 semigroups of │ │ │ │ multiplicity 6 and genus 8 of which only 5 is not flagged as smoothable by the │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-3, -4}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-4, -3}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc) │ │ │ + -- used 0.0941109s (cpu); 0.0941099s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc) │ │ │ + -- used 0.18889s (cpu); 0.111741s (thread); 0s (gc) │ │ │ │ │ │ i6 : C_0 │ │ │ │ │ │ o6 = Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc) │ │ │ + -- used 0.496292s (cpu); 0.309998s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc) │ │ │ + -- used 0.228812s (cpu); 0.122847s (thread); 0s (gc) │ │ │ │ │ │ i6 : describeFull C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,21 +10,18 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : describe phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ - ------------------------------------------------------------------------ │ │ │ - } │ │ │ - 5},1 │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc) │ │ │ + -- used 0.0975082s (cpu); 0.0975089s (thread); 0s (gc) │ │ │ │ │ │ i6 : describe C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ @@ -17,21 +17,21 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : G' = oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d , x d - x d - │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ + - x d - x d , x d - │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : H = getFreeOIModule G'#0 │ │ │ │ │ │ o7 = Basis symbol: d │ │ │ Basis element widths: {2, 3} │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : image phi │ │ │ │ │ │ -o7 = {x x e0 - x x e0 - x x e0 │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ +o7 = {-x e0 + x e0 + x e0 - │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - + x x e0 , -x e0 + x e0 │ │ │ - 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ + x e0 , x x e0 - x x e0 - │ │ │ + 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - + x e0 - x e0 } │ │ │ - 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ + x x e0 + x x e0 } │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc) │ │ │ + -- used 0.35275s (cpu); 0.268012s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : isOIGB {b1, b2} │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc) │ │ │ + -- used 0.0339962s (cpu); 0.0340002s (thread); 0s (gc) │ │ │ │ │ │ o11 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc) │ │ │ + -- used 0.0293353s (cpu); 0.0293339s (thread); 0s (gc) │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ @@ -41,18 +41,17 @@ │ │ │ - x x e } │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ - │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ + 2 │ │ │ +o14 = {x e + x e , x x x e - x x e │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 │ │ │ - x x e , x e + x e } │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ + , x x e + x x e } │ │ │ + 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,10 +10,10 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : net phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc) │ │ │ + -- used 0.229739s (cpu); 0.121814s (thread); 0s (gc) │ │ │ │ │ │ i6 : net C │ │ │ │ │ │ o6 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i9 : time oiGB {b1, b2} │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc) │ │ │ + -- used 0.0345071s (cpu); 0.034507s (thread); 0s (gc) │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ------------------------------------------------------------------------ │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc) │ │ │ + -- used 0.482852s (cpu); 0.292221s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ @@ -17,18 +17,18 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d , x d - x d - │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ + - x d - x d , x d - │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2); │ │ │ │ │ │ i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal) │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc) │ │ │ + -- used 0.188856s (cpu); 0.13352s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 2,1 1,{1},2 1,1 1,{1},2 1,2 1,1 2,{2},1 2,2 1,2 2,{2},2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ x x e - x x e } │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,15 +19,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1)
    │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc)
    │ │ │ + -- used 0.0941109s (cpu); 0.0941099s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ complex, use _i_s_C_o_m_p_l_e_x. To get the $n$th differential in an OI-resolution C, │ │ │ │ use C.dd_n. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc) │ │ │ │ + -- used 0.0941109s (cpu); 0.0941099s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc)
    │ │ │ + -- used 0.18889s (cpu); 0.111741s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : C_0
    │ │ │  
    │ │ │  o6 = Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Returns the free OI-module of $C$ in homological degree $n$.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc)
    │ │ │ │ + -- used 0.18889s (cpu); 0.111741s (thread); 0s (gc)
    │ │ │ │  i6 : C_0
    │ │ │ │  
    │ │ │ │  o6 = Basis symbol: e0
    │ │ │ │       Basis element widths: {2}
    │ │ │ │       Degree shifts: {-2}
    │ │ │ │       Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │       Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc)
    │ │ │ + -- used 0.496292s (cpu); 0.309998s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ homological degree $n-1$ to be minimized. Therefore, use TopNonminimal => true │ │ │ │ for no minimization of the basis in degree $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc) │ │ │ │ + -- used 0.496292s (cpu); 0.309998s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd TTooppNNoonnmmiinniimmaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc)
    │ │ │ + -- used 0.228812s (cpu); 0.122847s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describeFull C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  Displays the free OI-modules and describes the differentials of an OI-
    │ │ │ │  resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc)
    │ │ │ │ + -- used 0.228812s (cpu); 0.122847s (thread); 0s (gc)
    │ │ │ │  i6 : describeFull C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,26 +102,23 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ -     Basis element images: {-x   e0              + x   e0              +
    │ │ │ -                              2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1  
    │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ +     Basis element images: {x   x   e0              - x   x   e0             
    │ │ │ +                             2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   e0              - x   e0             , x   x   e0              -
    │ │ │ -      2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1  
    │ │ │ +     - x   x   e0              + x   x   e0             , -x   e0        
    │ │ │ +        2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   x   e0              - x   x   e0              + x   x   e0        
    │ │ │ -      2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -         }
    │ │ │ -     5},1
    │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,24 +18,21 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : describe phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - } │ │ │ │ - 5},1 │ │ │ │ + + x e0 + x e0 - x e0 } │ │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_e_s_c_r_i_b_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1979:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc)
    │ │ │ + -- used 0.0975082s (cpu); 0.0975089s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describe C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Displays the free OI-modules and differentials of an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0975082s (cpu); 0.0975089s (thread); 0s (gc)
    │ │ │ │  i6 : describe C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html
    │ │ │ @@ -105,21 +105,21 @@
    │ │ │              
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i6 : G' = oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : H = getFreeOIModule G'#0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,21 +29,21 @@
    │ │ │ │       x   x   x   e       }
    │ │ │ │        2,3 2,1 1,2 3,{1},2
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : G' = oiSyz(G, d)
    │ │ │ │  
    │ │ │ │  o6 = {x   d           - x   d           + 1d             , x   d
    │ │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2
    │ │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   d             }
    │ │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : H = getFreeOIModule G'#0
    │ │ │ │  
    │ │ │ │  o7 = Basis symbol: d
    │ │ │ │       Basis element widths: {2, 3}
    │ │ │ │       Degree shifts: {-2, -3}
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,22 +102,22 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : image phi
    │ │ │  
    │ │ │ -o7 = {x   x   e0              - x   x   e0              - x   x   e0        
    │ │ │ -       2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4,
    │ │ │ +o7 = {-x   e0              + x   e0              + x   e0              -
    │ │ │ +        2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1    2,3  5,{1, 2, 5},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -          + x   x   e0             , -x   e0              + x   e0        
    │ │ │ -     5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │ +     x   e0             , x   x   e0              - x   x   e0              -
    │ │ │ +      2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -          + x   e0              - x   e0             }
    │ │ │ -     4},1    2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1
    │ │ │ +     x   x   e0              + x   x   e0             }
    │ │ │ +      2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,22 +18,22 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : image phi │ │ │ │ │ │ │ │ -o7 = {x x e0 - x x e0 - x x e0 │ │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ │ +o7 = {-x e0 + x e0 + x e0 - │ │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - + x x e0 , -x e0 + x e0 │ │ │ │ - 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ + x e0 , x x e0 - x x e0 - │ │ │ │ + 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - + x e0 - x e0 } │ │ │ │ - 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ + x x e0 + x x e0 } │ │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_m_a_g_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- get the basis element images of a free OI- │ │ │ │ module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc)
    │ │ │ + -- used 0.35275s (cpu); 0.268012s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ option must be either true or false, depending on whether one wants debug │ │ │ │ information printed. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc) │ │ │ │ + -- used 0.35275s (cpu); 0.268012s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : isComplex C │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ @@ -116,15 +116,15 @@ │ │ │ │ │ │ o10 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc)
    │ │ │ + -- used 0.0339962s (cpu); 0.0340002s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │  i5 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i10 : isOIGB {b1, b2}
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : time B = oiGB {b1, b2}
    │ │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0339962s (cpu); 0.0340002s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │              
    │ │ │                
    i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc)
    │ │ │ + -- used 0.0293353s (cpu); 0.0293339s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │  
    │ │ │ @@ -148,21 +148,20 @@
    │ │ │  o13 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : minimizeOIGB C -- an element gets removed
    │ │ │  
    │ │ │ -                                                                        
    │ │ │ -o14 = {x   x   e        + x   x   e          , x   x   x   e           -
    │ │ │ -        1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3   2,3 2,2 1,1 3,{2, 3},3  
    │ │ │ +                                                                   2
    │ │ │ +o14 = {x   e        + x   e       , x   x   x   e           - x   x   e     
    │ │ │ +        1,1 1,{1},1    2,1 1,{1},2   2,3 2,2 1,1 3,{2, 3},3    2,1 1,2 3,{1,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2
    │ │ │ -      x   x   e          , x   e        + x   e       }
    │ │ │ -       2,1 1,2 3,{1, 3},3   1,1 1,{1},1    2,1 1,{1},2
    │ │ │ +          , x   x   e        + x   x   e          }
    │ │ │ +      3},3   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 1); │ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc) │ │ │ │ + -- used 0.0293353s (cpu); 0.0293339s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x x e - x x x e } │ │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ @@ -49,21 +49,20 @@ │ │ │ │ 2 │ │ │ │ - x x e } │ │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ │ │ - │ │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ │ + 2 │ │ │ │ +o14 = {x e + x e , x x x e - x x e │ │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 │ │ │ │ - x x e , x e + x e } │ │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ │ + , x x e + x x e } │ │ │ │ + 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** WWaayyss ttoo uussee mmiinniimmiizzeeOOIIGGBB:: ********** │ │ │ │ * minimizeOIGB(List) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_i_n_i_m_i_z_e_O_I_G_B is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ @@ -102,15 +102,15 @@ │ │ │
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : net phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,13 +18,13 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : net phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_e_t_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map source and target │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1931:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc)
    │ │ │ + -- used 0.229739s (cpu); 0.121814s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : net C
    │ │ │  
    │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  Displays the basis element widths and degree shifts of the free OI-modules in
    │ │ │ │  an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc)
    │ │ │ │ + -- used 0.229739s (cpu); 0.121814s (thread); 0s (gc)
    │ │ │ │  i6 : net C
    │ │ │ │  
    │ │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _n_e_t_(_O_I_R_e_s_o_l_u_t_i_o_n_) -- display an OI-resolution
    │ │ │ │  ===============================================================================
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time oiGB {b1, b2}
    │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc)
    │ │ │ + -- used 0.0345071s (cpu); 0.034507s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i9 : time oiGB {b1, b2}
    │ │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0345071s (cpu); 0.034507s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc)
    │ │ │ + -- used 0.482852s (cpu); 0.292221s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ Therefore, use TopNonminimal => true for no minimization of the basis in degree │ │ │ │ $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc) │ │ │ │ + -- used 0.482852s (cpu); 0.292221s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** WWaayyss ttoo uussee ooiiRReess:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    References:

    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ x x x e } │ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - - x d , x d - x d - │ │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ │ + - x d - x d , x d - │ │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x d } │ │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ RReeffeerreenncceess:: │ │ │ │ [1] M. Morrow and U. Nagel, Computing Gröbner Bases and Free Resolutions of │ │ │ │ OI-Modules, Preprint, arXiv:2303.06725, 2023. │ │ │ │ ********** WWaayyss ttoo uussee ooiiSSyyzz:: ********** │ │ │ │ * oiSyz(List,Symbol) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc)
    │ │ │ + -- used 0.188856s (cpu); 0.13352s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2                  2
    │ │ │       x   x   e        - x   x   e       }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │  i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc)
    │ │ │ │ + -- used 0.188856s (cpu); 0.13352s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2                  2
    │ │ │ │       x   x   e        - x   x   e       }
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Fast__Nonminimal.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.28836s elapsed
    │ │ │ + -- 2.51763s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │  
    │ │ │  i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.58344s elapsed
    │ │ │ + -- 1.35367s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out
    │ │ │ @@ -9,15 +9,15 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 1.96896s elapsed
    │ │ │ + -- 2.57819s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out
    │ │ │ @@ -36,16 +36,16 @@
    │ │ │            << res M << endl << endl;
    │ │ │            break;
    │ │ │            ) else (
    │ │ │            << "-- computation interrupted" << endl;
    │ │ │            status M.cache.resolution;
    │ │ │            << "-- continuing the computation" << endl;
    │ │ │            ))
    │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc)
    │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc)
    │ │ │ + -- used 1.14031s (cpu); 0.992318s (thread); 0s (gc)
    │ │ │ + -- used 0.653268s (cpu); 0.572673s (thread); 0s (gc)
    │ │ │  -- computation started: 
    │ │ │  -- computation interrupted
    │ │ │  -- continuing the computation
    │ │ │  -- computation complete
    │ │ │   4      11      89      122      40
    │ │ │  R  <-- R   <-- R   <-- R    <-- R   <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Fast__Nonminimal.html
    │ │ │ @@ -89,28 +89,28 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.28836s elapsed
    │ │ │ + -- 2.51763s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.58344s elapsed
    │ │ │ + -- 1.35367s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,28 +29,28 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 2.28836s elapsed │ │ │ │ + -- 2.51763s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ │ │ │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 │ │ │ │ 9 10 11 │ │ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ i4 : elapsedTime C1 = res ideal(I_*) │ │ │ │ - -- 1.58344s elapsed │ │ │ │ + -- 1.35367s elapsed │ │ │ │ │ │ │ │ 1 35 140 385 819 1080 819 385 140 │ │ │ │ 35 1 │ │ │ │ o4 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_betti_lp..._cm__Minimize_eq_gt..._rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 1.96896s elapsed
    │ │ │ + -- 2.57819s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 1.96896s elapsed │ │ │ │ + -- 2.57819s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ @@ -112,16 +112,16 @@ │ │ │ << res M << endl << endl; │ │ │ break; │ │ │ ) else ( │ │ │ << "-- computation interrupted" << endl; │ │ │ status M.cache.resolution; │ │ │ << "-- continuing the computation" << endl; │ │ │ )) │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc) │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc) │ │ │ + -- used 1.14031s (cpu); 0.992318s (thread); 0s (gc) │ │ │ + -- used 0.653268s (cpu); 0.572673s (thread); 0s (gc) │ │ │ -- computation started: │ │ │ -- computation interrupted │ │ │ -- continuing the computation │ │ │ -- computation complete │ │ │ 4 11 89 122 40 │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ │ ├── html2text {} │ │ │ │ @@ -50,16 +50,16 @@ │ │ │ │ << res M << endl << endl; │ │ │ │ break; │ │ │ │ ) else ( │ │ │ │ << "-- computation interrupted" << endl; │ │ │ │ status M.cache.resolution; │ │ │ │ << "-- continuing the computation" << endl; │ │ │ │ )) │ │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc) │ │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc) │ │ │ │ + -- used 1.14031s (cpu); 0.992318s (thread); 0s (gc) │ │ │ │ + -- used 0.653268s (cpu); 0.572673s (thread); 0s (gc) │ │ │ │ -- computation started: │ │ │ │ -- computation interrupted │ │ │ │ -- continuing the computation │ │ │ │ -- computation complete │ │ │ │ 4 11 89 122 40 │ │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ @@ -182,25 +182,25 @@ │ │ │ o15 = 4 │ │ │ │ │ │ i16 : for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .280854s elapsed │ │ │ - -- .263174s elapsed │ │ │ - -- .501439s elapsed │ │ │ - -- .231638s elapsed │ │ │ - -- .342923s elapsed │ │ │ - -- .34852s elapsed │ │ │ - -- .619954s elapsed │ │ │ - -- .456734s elapsed │ │ │ - -- .648967s elapsed │ │ │ - -- .367209s elapsed │ │ │ - -- .250328s elapsed │ │ │ + -- .23795s elapsed │ │ │ + -- .277177s elapsed │ │ │ + -- .477459s elapsed │ │ │ + -- .252176s elapsed │ │ │ + -- .259965s elapsed │ │ │ + -- .309722s elapsed │ │ │ + -- .534615s elapsed │ │ │ + -- .45729s elapsed │ │ │ + -- .476608s elapsed │ │ │ + -- .311675s elapsed │ │ │ + -- .215434s elapsed │ │ │ │ │ │ i17 : netList oo │ │ │ │ │ │ +---------------+---------------+ │ │ │ o17 = |{3, 4, 4} |{2, 3, 5} | │ │ │ +---------------+---------------+ │ │ │ |{3, 4, 4} |{2, 3, 5} | │ │ │ @@ -242,75 +242,75 @@ │ │ │ o22 = 15 │ │ │ │ │ │ i23 : allcomps = for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .536601s elapsed │ │ │ - -- .816725s elapsed │ │ │ - -- 1.00632s elapsed │ │ │ - -- 1.37164s elapsed │ │ │ - -- .718355s elapsed │ │ │ - -- 1.00236s elapsed │ │ │ - -- 1.18305s elapsed │ │ │ - -- 1.31195s elapsed │ │ │ - -- .727806s elapsed │ │ │ - -- .774958s elapsed │ │ │ - -- .333808s elapsed │ │ │ - -- .5035s elapsed │ │ │ - -- .490585s elapsed │ │ │ - -- .637754s elapsed │ │ │ - -- .880246s elapsed │ │ │ - -- 1.2462s elapsed │ │ │ - -- .940742s elapsed │ │ │ - -- 1.01084s elapsed │ │ │ - -- 1.44951s elapsed │ │ │ - -- 1.31812s elapsed │ │ │ - -- 1.00162s elapsed │ │ │ - -- 1.3528s elapsed │ │ │ - -- 1.90187s elapsed │ │ │ - -- 1.44103s elapsed │ │ │ - -- .432654s elapsed │ │ │ - -- .573037s elapsed │ │ │ - -- 1.40316s elapsed │ │ │ - -- .640916s elapsed │ │ │ - -- .945512s elapsed │ │ │ - -- .952893s elapsed │ │ │ - -- 1.08722s elapsed │ │ │ - -- .825525s elapsed │ │ │ - -- .672893s elapsed │ │ │ - -- 1.13429s elapsed │ │ │ - -- .81054s elapsed │ │ │ - -- 1.14908s elapsed │ │ │ - -- 1.49209s elapsed │ │ │ - -- 1.09431s elapsed │ │ │ - -- 1.18828s elapsed │ │ │ - -- .875916s elapsed │ │ │ - -- .6899s elapsed │ │ │ - -- 1.08621s elapsed │ │ │ - -- 1.59117s elapsed │ │ │ - -- 1.88666s elapsed │ │ │ - -- 1.39064s elapsed │ │ │ - -- 1.01948s elapsed │ │ │ - -- 1.47672s elapsed │ │ │ - -- 1.19724s elapsed │ │ │ - -- .910329s elapsed │ │ │ - -- 1.02771s elapsed │ │ │ - -- 1.06676s elapsed │ │ │ - -- .986144s elapsed │ │ │ - -- .739995s elapsed │ │ │ - -- 1.05189s elapsed │ │ │ - -- .696168s elapsed │ │ │ - -- 1.4284s elapsed │ │ │ - -- 1.25123s elapsed │ │ │ - -- 1.4209s elapsed │ │ │ - -- .786654s elapsed │ │ │ - -- .485612s elapsed │ │ │ - -- .40177s elapsed │ │ │ + -- .400714s elapsed │ │ │ + -- .461488s elapsed │ │ │ + -- .820326s elapsed │ │ │ + -- 1.10107s elapsed │ │ │ + -- .660756s elapsed │ │ │ + -- .798543s elapsed │ │ │ + -- .922777s elapsed │ │ │ + -- .991239s elapsed │ │ │ + -- .688378s elapsed │ │ │ + -- .68108s elapsed │ │ │ + -- .350612s elapsed │ │ │ + -- .39335s elapsed │ │ │ + -- .415792s elapsed │ │ │ + -- .608201s elapsed │ │ │ + -- .829812s elapsed │ │ │ + -- 1.10574s elapsed │ │ │ + -- .961423s elapsed │ │ │ + -- .854882s elapsed │ │ │ + -- 1.12791s elapsed │ │ │ + -- .993617s elapsed │ │ │ + -- .753886s elapsed │ │ │ + -- .905183s elapsed │ │ │ + -- 1.21524s elapsed │ │ │ + -- 1.22511s elapsed │ │ │ + -- .508206s elapsed │ │ │ + -- .647445s elapsed │ │ │ + -- 1.20647s elapsed │ │ │ + -- .625125s elapsed │ │ │ + -- .528831s elapsed │ │ │ + -- .757064s elapsed │ │ │ + -- .984286s elapsed │ │ │ + -- .766153s elapsed │ │ │ + -- .523541s elapsed │ │ │ + -- .956656s elapsed │ │ │ + -- .744038s elapsed │ │ │ + -- 1.03215s elapsed │ │ │ + -- .920567s elapsed │ │ │ + -- 1.10685s elapsed │ │ │ + -- 1.1441s elapsed │ │ │ + -- .713198s elapsed │ │ │ + -- .629638s elapsed │ │ │ + -- 1.05435s elapsed │ │ │ + -- 1.33413s elapsed │ │ │ + -- 1.67678s elapsed │ │ │ + -- 1.04044s elapsed │ │ │ + -- 1.02841s elapsed │ │ │ + -- 1.44305s elapsed │ │ │ + -- 1.17036s elapsed │ │ │ + -- .921718s elapsed │ │ │ + -- .977289s elapsed │ │ │ + -- 1.17595s elapsed │ │ │ + -- .796097s elapsed │ │ │ + -- .840068s elapsed │ │ │ + -- .982611s elapsed │ │ │ + -- .5935s elapsed │ │ │ + -- 1.12292s elapsed │ │ │ + -- 1.20133s elapsed │ │ │ + -- 1.26307s elapsed │ │ │ + -- .711245s elapsed │ │ │ + -- .465595s elapsed │ │ │ + -- .366061s elapsed │ │ │ │ │ │ i24 : netList ({{"codimensions", "degrees"}} | allcomps) │ │ │ │ │ │ +------------------------+------------------------+ │ │ │ o24 = |codimensions |degrees | │ │ │ +------------------------+------------------------+ │ │ │ |{3, 5, 5} |{2, 4, 6} | │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ @@ -39,15 +39,15 @@ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ ------------------------------------------------------------------------ │ │ │ .954}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ - -- .662s elapsed │ │ │ + -- .955s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ @@ -60,15 +60,15 @@ │ │ │ +---+---+---+---+ │ │ │ |72 |144|216|288| │ │ │ +---+---+---+---+ │ │ │ |288|216|144|72 | │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ - -- .721s elapsed │ │ │ + -- 1s elapsed │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ ------------------------------------------------------------------------ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ - -- .763s elapsed │ │ │ + -- .798s elapsed │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97} │ │ │ - -- .659s elapsed │ │ │ - -- .88s elapsed │ │ │ - -- 1.02s elapsed │ │ │ + -- .69s elapsed │ │ │ + -- .907s elapsed │ │ │ + -- 1.13s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ 1 => {3, 4} │ │ │ 2 => {0, 4} │ │ │ 3 => {0, 1} │ │ │ 4 => {2, 1} │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ @@ -70,19 +70,19 @@ │ │ │ |144|288|72 |216| │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ |216|72 |288|144| │ │ │ +---+---+---+---+ │ │ │ -- 1.3s elapsed │ │ │ - -- 1.31s elapsed │ │ │ + -- 1.37s elapsed │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60} │ │ │ - -- 1.68s elapsed │ │ │ + -- 1.75s elapsed │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34} │ │ │ - -- 1.32s elapsed │ │ │ - -- 1.4s elapsed │ │ │ + -- 1.47s elapsed │ │ │ + -- 1.5s elapsed │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ - -- 1.79s elapsed │ │ │ + -- 1.6s elapsed │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78} │ │ │ - -- 1.59s elapsed │ │ │ + -- 1.42s elapsed │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1729328129346969841 │ │ │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .250068s elapsed │ │ │ + -- .256068s elapsed │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21} │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ 4 => {0, 3} │ │ │ │ │ │ o1 : Graph │ │ │ │ │ │ i2 : showExoticSolutions G │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .943746s elapsed │ │ │ + -- 1.05722s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ @@ -50,14 +50,14 @@ │ │ │ 2 => {1, 3, 4} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ o3 : Graph │ │ │ │ │ │ i4 : showExoticSolutions G │ │ │ - -- 1.24035s elapsed │ │ │ + -- 1.24998s elapsed │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ @@ -295,25 +295,25 @@ │ │ │ │ │ │ │ │ │
    i16 : for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .280854s elapsed
    │ │ │ - -- .263174s elapsed
    │ │ │ - -- .501439s elapsed
    │ │ │ - -- .231638s elapsed
    │ │ │ - -- .342923s elapsed
    │ │ │ - -- .34852s elapsed
    │ │ │ - -- .619954s elapsed
    │ │ │ - -- .456734s elapsed
    │ │ │ - -- .648967s elapsed
    │ │ │ - -- .367209s elapsed
    │ │ │ - -- .250328s elapsed
    │ │ │ + -- .23795s elapsed │ │ │ + -- .277177s elapsed │ │ │ + -- .477459s elapsed │ │ │ + -- .252176s elapsed │ │ │ + -- .259965s elapsed │ │ │ + -- .309722s elapsed │ │ │ + -- .534615s elapsed │ │ │ + -- .45729s elapsed │ │ │ + -- .476608s elapsed │ │ │ + -- .311675s elapsed │ │ │ + -- .215434s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : netList oo
    │ │ │  
    │ │ │        +---------------+---------------+
    │ │ │ @@ -380,75 +380,75 @@
    │ │ │            
    │ │ │              
    │ │ │                
    i23 : allcomps = for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .536601s elapsed
    │ │ │ - -- .816725s elapsed
    │ │ │ - -- 1.00632s elapsed
    │ │ │ - -- 1.37164s elapsed
    │ │ │ - -- .718355s elapsed
    │ │ │ - -- 1.00236s elapsed
    │ │ │ - -- 1.18305s elapsed
    │ │ │ - -- 1.31195s elapsed
    │ │ │ - -- .727806s elapsed
    │ │ │ - -- .774958s elapsed
    │ │ │ - -- .333808s elapsed
    │ │ │ - -- .5035s elapsed
    │ │ │ - -- .490585s elapsed
    │ │ │ - -- .637754s elapsed
    │ │ │ - -- .880246s elapsed
    │ │ │ - -- 1.2462s elapsed
    │ │ │ - -- .940742s elapsed
    │ │ │ - -- 1.01084s elapsed
    │ │ │ - -- 1.44951s elapsed
    │ │ │ - -- 1.31812s elapsed
    │ │ │ - -- 1.00162s elapsed
    │ │ │ - -- 1.3528s elapsed
    │ │ │ - -- 1.90187s elapsed
    │ │ │ - -- 1.44103s elapsed
    │ │ │ - -- .432654s elapsed
    │ │ │ - -- .573037s elapsed
    │ │ │ - -- 1.40316s elapsed
    │ │ │ - -- .640916s elapsed
    │ │ │ - -- .945512s elapsed
    │ │ │ - -- .952893s elapsed
    │ │ │ - -- 1.08722s elapsed
    │ │ │ - -- .825525s elapsed
    │ │ │ - -- .672893s elapsed
    │ │ │ - -- 1.13429s elapsed
    │ │ │ - -- .81054s elapsed
    │ │ │ - -- 1.14908s elapsed
    │ │ │ - -- 1.49209s elapsed
    │ │ │ - -- 1.09431s elapsed
    │ │ │ - -- 1.18828s elapsed
    │ │ │ - -- .875916s elapsed
    │ │ │ - -- .6899s elapsed
    │ │ │ - -- 1.08621s elapsed
    │ │ │ - -- 1.59117s elapsed
    │ │ │ - -- 1.88666s elapsed
    │ │ │ - -- 1.39064s elapsed
    │ │ │ - -- 1.01948s elapsed
    │ │ │ - -- 1.47672s elapsed
    │ │ │ - -- 1.19724s elapsed
    │ │ │ - -- .910329s elapsed
    │ │ │ - -- 1.02771s elapsed
    │ │ │ - -- 1.06676s elapsed
    │ │ │ - -- .986144s elapsed
    │ │ │ - -- .739995s elapsed
    │ │ │ - -- 1.05189s elapsed
    │ │ │ - -- .696168s elapsed
    │ │ │ - -- 1.4284s elapsed
    │ │ │ - -- 1.25123s elapsed
    │ │ │ - -- 1.4209s elapsed
    │ │ │ - -- .786654s elapsed
    │ │ │ - -- .485612s elapsed
    │ │ │ - -- .40177s elapsed
    │ │ │ + -- .400714s elapsed │ │ │ + -- .461488s elapsed │ │ │ + -- .820326s elapsed │ │ │ + -- 1.10107s elapsed │ │ │ + -- .660756s elapsed │ │ │ + -- .798543s elapsed │ │ │ + -- .922777s elapsed │ │ │ + -- .991239s elapsed │ │ │ + -- .688378s elapsed │ │ │ + -- .68108s elapsed │ │ │ + -- .350612s elapsed │ │ │ + -- .39335s elapsed │ │ │ + -- .415792s elapsed │ │ │ + -- .608201s elapsed │ │ │ + -- .829812s elapsed │ │ │ + -- 1.10574s elapsed │ │ │ + -- .961423s elapsed │ │ │ + -- .854882s elapsed │ │ │ + -- 1.12791s elapsed │ │ │ + -- .993617s elapsed │ │ │ + -- .753886s elapsed │ │ │ + -- .905183s elapsed │ │ │ + -- 1.21524s elapsed │ │ │ + -- 1.22511s elapsed │ │ │ + -- .508206s elapsed │ │ │ + -- .647445s elapsed │ │ │ + -- 1.20647s elapsed │ │ │ + -- .625125s elapsed │ │ │ + -- .528831s elapsed │ │ │ + -- .757064s elapsed │ │ │ + -- .984286s elapsed │ │ │ + -- .766153s elapsed │ │ │ + -- .523541s elapsed │ │ │ + -- .956656s elapsed │ │ │ + -- .744038s elapsed │ │ │ + -- 1.03215s elapsed │ │ │ + -- .920567s elapsed │ │ │ + -- 1.10685s elapsed │ │ │ + -- 1.1441s elapsed │ │ │ + -- .713198s elapsed │ │ │ + -- .629638s elapsed │ │ │ + -- 1.05435s elapsed │ │ │ + -- 1.33413s elapsed │ │ │ + -- 1.67678s elapsed │ │ │ + -- 1.04044s elapsed │ │ │ + -- 1.02841s elapsed │ │ │ + -- 1.44305s elapsed │ │ │ + -- 1.17036s elapsed │ │ │ + -- .921718s elapsed │ │ │ + -- .977289s elapsed │ │ │ + -- 1.17595s elapsed │ │ │ + -- .796097s elapsed │ │ │ + -- .840068s elapsed │ │ │ + -- .982611s elapsed │ │ │ + -- .5935s elapsed │ │ │ + -- 1.12292s elapsed │ │ │ + -- 1.20133s elapsed │ │ │ + -- 1.26307s elapsed │ │ │ + -- .711245s elapsed │ │ │ + -- .465595s elapsed │ │ │ + -- .366061s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │  
    │ │ │        +------------------------+------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -180,25 +180,25 @@
    │ │ │ │  
    │ │ │ │  o15 = 4
    │ │ │ │  i16 : for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .280854s elapsed
    │ │ │ │ - -- .263174s elapsed
    │ │ │ │ - -- .501439s elapsed
    │ │ │ │ - -- .231638s elapsed
    │ │ │ │ - -- .342923s elapsed
    │ │ │ │ - -- .34852s elapsed
    │ │ │ │ - -- .619954s elapsed
    │ │ │ │ - -- .456734s elapsed
    │ │ │ │ - -- .648967s elapsed
    │ │ │ │ - -- .367209s elapsed
    │ │ │ │ - -- .250328s elapsed
    │ │ │ │ + -- .23795s elapsed
    │ │ │ │ + -- .277177s elapsed
    │ │ │ │ + -- .477459s elapsed
    │ │ │ │ + -- .252176s elapsed
    │ │ │ │ + -- .259965s elapsed
    │ │ │ │ + -- .309722s elapsed
    │ │ │ │ + -- .534615s elapsed
    │ │ │ │ + -- .45729s elapsed
    │ │ │ │ + -- .476608s elapsed
    │ │ │ │ + -- .311675s elapsed
    │ │ │ │ + -- .215434s elapsed
    │ │ │ │  i17 : netList oo
    │ │ │ │  
    │ │ │ │        +---------------+---------------+
    │ │ │ │  o17 = |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │        |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │ @@ -233,75 +233,75 @@
    │ │ │ │  
    │ │ │ │  o22 = 15
    │ │ │ │  i23 : allcomps = for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .536601s elapsed
    │ │ │ │ - -- .816725s elapsed
    │ │ │ │ - -- 1.00632s elapsed
    │ │ │ │ - -- 1.37164s elapsed
    │ │ │ │ - -- .718355s elapsed
    │ │ │ │ - -- 1.00236s elapsed
    │ │ │ │ - -- 1.18305s elapsed
    │ │ │ │ - -- 1.31195s elapsed
    │ │ │ │ - -- .727806s elapsed
    │ │ │ │ - -- .774958s elapsed
    │ │ │ │ - -- .333808s elapsed
    │ │ │ │ - -- .5035s elapsed
    │ │ │ │ - -- .490585s elapsed
    │ │ │ │ - -- .637754s elapsed
    │ │ │ │ - -- .880246s elapsed
    │ │ │ │ - -- 1.2462s elapsed
    │ │ │ │ - -- .940742s elapsed
    │ │ │ │ - -- 1.01084s elapsed
    │ │ │ │ - -- 1.44951s elapsed
    │ │ │ │ - -- 1.31812s elapsed
    │ │ │ │ - -- 1.00162s elapsed
    │ │ │ │ - -- 1.3528s elapsed
    │ │ │ │ - -- 1.90187s elapsed
    │ │ │ │ - -- 1.44103s elapsed
    │ │ │ │ - -- .432654s elapsed
    │ │ │ │ - -- .573037s elapsed
    │ │ │ │ - -- 1.40316s elapsed
    │ │ │ │ - -- .640916s elapsed
    │ │ │ │ - -- .945512s elapsed
    │ │ │ │ - -- .952893s elapsed
    │ │ │ │ - -- 1.08722s elapsed
    │ │ │ │ - -- .825525s elapsed
    │ │ │ │ - -- .672893s elapsed
    │ │ │ │ - -- 1.13429s elapsed
    │ │ │ │ - -- .81054s elapsed
    │ │ │ │ - -- 1.14908s elapsed
    │ │ │ │ - -- 1.49209s elapsed
    │ │ │ │ - -- 1.09431s elapsed
    │ │ │ │ - -- 1.18828s elapsed
    │ │ │ │ - -- .875916s elapsed
    │ │ │ │ - -- .6899s elapsed
    │ │ │ │ - -- 1.08621s elapsed
    │ │ │ │ - -- 1.59117s elapsed
    │ │ │ │ - -- 1.88666s elapsed
    │ │ │ │ - -- 1.39064s elapsed
    │ │ │ │ - -- 1.01948s elapsed
    │ │ │ │ - -- 1.47672s elapsed
    │ │ │ │ - -- 1.19724s elapsed
    │ │ │ │ - -- .910329s elapsed
    │ │ │ │ - -- 1.02771s elapsed
    │ │ │ │ - -- 1.06676s elapsed
    │ │ │ │ - -- .986144s elapsed
    │ │ │ │ - -- .739995s elapsed
    │ │ │ │ - -- 1.05189s elapsed
    │ │ │ │ - -- .696168s elapsed
    │ │ │ │ - -- 1.4284s elapsed
    │ │ │ │ - -- 1.25123s elapsed
    │ │ │ │ - -- 1.4209s elapsed
    │ │ │ │ - -- .786654s elapsed
    │ │ │ │ - -- .485612s elapsed
    │ │ │ │ - -- .40177s elapsed
    │ │ │ │ + -- .400714s elapsed
    │ │ │ │ + -- .461488s elapsed
    │ │ │ │ + -- .820326s elapsed
    │ │ │ │ + -- 1.10107s elapsed
    │ │ │ │ + -- .660756s elapsed
    │ │ │ │ + -- .798543s elapsed
    │ │ │ │ + -- .922777s elapsed
    │ │ │ │ + -- .991239s elapsed
    │ │ │ │ + -- .688378s elapsed
    │ │ │ │ + -- .68108s elapsed
    │ │ │ │ + -- .350612s elapsed
    │ │ │ │ + -- .39335s elapsed
    │ │ │ │ + -- .415792s elapsed
    │ │ │ │ + -- .608201s elapsed
    │ │ │ │ + -- .829812s elapsed
    │ │ │ │ + -- 1.10574s elapsed
    │ │ │ │ + -- .961423s elapsed
    │ │ │ │ + -- .854882s elapsed
    │ │ │ │ + -- 1.12791s elapsed
    │ │ │ │ + -- .993617s elapsed
    │ │ │ │ + -- .753886s elapsed
    │ │ │ │ + -- .905183s elapsed
    │ │ │ │ + -- 1.21524s elapsed
    │ │ │ │ + -- 1.22511s elapsed
    │ │ │ │ + -- .508206s elapsed
    │ │ │ │ + -- .647445s elapsed
    │ │ │ │ + -- 1.20647s elapsed
    │ │ │ │ + -- .625125s elapsed
    │ │ │ │ + -- .528831s elapsed
    │ │ │ │ + -- .757064s elapsed
    │ │ │ │ + -- .984286s elapsed
    │ │ │ │ + -- .766153s elapsed
    │ │ │ │ + -- .523541s elapsed
    │ │ │ │ + -- .956656s elapsed
    │ │ │ │ + -- .744038s elapsed
    │ │ │ │ + -- 1.03215s elapsed
    │ │ │ │ + -- .920567s elapsed
    │ │ │ │ + -- 1.10685s elapsed
    │ │ │ │ + -- 1.1441s elapsed
    │ │ │ │ + -- .713198s elapsed
    │ │ │ │ + -- .629638s elapsed
    │ │ │ │ + -- 1.05435s elapsed
    │ │ │ │ + -- 1.33413s elapsed
    │ │ │ │ + -- 1.67678s elapsed
    │ │ │ │ + -- 1.04044s elapsed
    │ │ │ │ + -- 1.02841s elapsed
    │ │ │ │ + -- 1.44305s elapsed
    │ │ │ │ + -- 1.17036s elapsed
    │ │ │ │ + -- .921718s elapsed
    │ │ │ │ + -- .977289s elapsed
    │ │ │ │ + -- 1.17595s elapsed
    │ │ │ │ + -- .796097s elapsed
    │ │ │ │ + -- .840068s elapsed
    │ │ │ │ + -- .982611s elapsed
    │ │ │ │ + -- .5935s elapsed
    │ │ │ │ + -- 1.12292s elapsed
    │ │ │ │ + -- 1.20133s elapsed
    │ │ │ │ + -- 1.26307s elapsed
    │ │ │ │ + -- .711245s elapsed
    │ │ │ │ + -- .465595s elapsed
    │ │ │ │ + -- .366061s elapsed
    │ │ │ │  i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │ │  
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │  o24 = |codimensions            |degrees                 |
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │        |{3, 5, 5}               |{2, 4, 6}               |
    │ │ │ │        +------------------------+------------------------+
    │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html
    │ │ │ @@ -110,15 +110,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime stablesolsPent = showExoticSolutions Pent
    │ │ │ - -- .662s elapsed
    │ │ │ + -- .955s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +----+-----+-----+----+-----+-----+-----+-----+
    │ │ │  |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951|
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  +---+---+---+---+
    │ │ │  |72 |144|216|288|
    │ │ │  +---+---+---+---+
    │ │ │  |288|216|144|72 |
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │ - -- .721s elapsed
    │ │ │ + -- 1s elapsed
    │ │ │  
    │ │ │  o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .954}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ │ - -- .662s elapsed │ │ │ │ + -- .955s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ +---+---+---+---+ │ │ │ │ |72 |144|216|288| │ │ │ │ +---+---+---+---+ │ │ │ │ |288|216|144|72 | │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ - -- .721s elapsed │ │ │ │ + -- 1s elapsed │ │ │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ Computing the (linearly) stable solutions for K5C5 takes a minute or two: │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ @@ -115,19 +115,19 @@ │ │ │ o5 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : for G in Gs list showExoticSolutions G;
    │ │ │  warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89}
    │ │ │ - -- .763s elapsed
    │ │ │ + -- .798s elapsed
    │ │ │  warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97}
    │ │ │ - -- .659s elapsed
    │ │ │ - -- .88s elapsed
    │ │ │ - -- 1.02s elapsed
    │ │ │ + -- .69s elapsed
    │ │ │ + -- .907s elapsed
    │ │ │ + -- 1.13s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {2, 3}} --
    │ │ │                                                  1 => {3, 4}
    │ │ │                                                  2 => {0, 4}
    │ │ │                                                  3 => {0, 1}
    │ │ │                                                  4 => {2, 1}
    │ │ │  +-----+----+----+-----+-----+-----+-----+-----+
    │ │ │  |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588|
    │ │ │ @@ -141,24 +141,24 @@
    │ │ │  |144|288|72 |216|
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │  |216|72 |288|144|
    │ │ │  +---+---+---+---+
    │ │ │   -- 1.3s elapsed
    │ │ │ - -- 1.31s elapsed
    │ │ │ + -- 1.37s elapsed
    │ │ │  warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60}
    │ │ │ - -- 1.68s elapsed
    │ │ │ + -- 1.75s elapsed
    │ │ │  warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34}
    │ │ │ - -- 1.32s elapsed
    │ │ │ - -- 1.4s elapsed
    │ │ │ + -- 1.47s elapsed
    │ │ │ + -- 1.5s elapsed
    │ │ │  warning: some solutions are not regular: {26, 29, 30, 32, 33}
    │ │ │ - -- 1.79s elapsed
    │ │ │ + -- 1.6s elapsed
    │ │ │  warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78}
    │ │ │ - -- 1.59s elapsed
    │ │ │ + -- 1.42s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ │ │ o5 = 3 │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, │ │ │ │ 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, │ │ │ │ 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ │ - -- .763s elapsed │ │ │ │ + -- .798s elapsed │ │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, │ │ │ │ 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, │ │ │ │ 89, 90, 91, 97} │ │ │ │ - -- .659s elapsed │ │ │ │ - -- .88s elapsed │ │ │ │ - -- 1.02s elapsed │ │ │ │ + -- .69s elapsed │ │ │ │ + -- .907s elapsed │ │ │ │ + -- 1.13s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ │ 1 => {3, 4} │ │ │ │ 2 => {0, 4} │ │ │ │ 3 => {0, 1} │ │ │ │ 4 => {2, 1} │ │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ │ @@ -76,23 +76,23 @@ │ │ │ │ |144|288|72 |216| │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ |216|72 |288|144| │ │ │ │ +---+---+---+---+ │ │ │ │ -- 1.3s elapsed │ │ │ │ - -- 1.31s elapsed │ │ │ │ + -- 1.37s elapsed │ │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, │ │ │ │ 53, 54, 56, 57, 59, 60} │ │ │ │ - -- 1.68s elapsed │ │ │ │ + -- 1.75s elapsed │ │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, │ │ │ │ 25, 26, 27, 28, 29, 31, 34} │ │ │ │ - -- 1.32s elapsed │ │ │ │ - -- 1.4s elapsed │ │ │ │ + -- 1.47s elapsed │ │ │ │ + -- 1.5s elapsed │ │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ │ - -- 1.79s elapsed │ │ │ │ + -- 1.6s elapsed │ │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, │ │ │ │ 72, 77, 78} │ │ │ │ - -- 1.59s elapsed │ │ │ │ + -- 1.42s elapsed │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Oscillators/Documentation.m2:812:0. │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : getLinearlyStableSolutions(G)
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .250068s elapsed
    │ │ │ + -- .256068s elapsed
    │ │ │  warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
    │ │ │  
    │ │ │  o2 = {{1, 1, 1, 0, 0, 0}}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ of each oscillator is given by the Kuramoto model. The linear stability of a │ │ │ │ solution is determined by the eigenvalues of the Jacobian matrix of the system │ │ │ │ evaluated at the solution. │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .250068s elapsed │ │ │ │ + -- .256068s elapsed │ │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, │ │ │ │ 17, 18, 19, 20, 21} │ │ │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_show__Exotic__Solutions.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : showExoticSolutions G
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .943746s elapsed
    │ │ │ + -- 1.05722s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +-------+--------+--------+-------+--------+--------+--------+--------+
    │ │ │  |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057|
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │  
    │ │ │  o3 : Graph
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : showExoticSolutions G
    │ │ │ - -- 1.24035s elapsed
    │ │ │ + -- 1.24998s elapsed
    │ │ │  
    │ │ │  o4 = {{1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ │ │ │ │ o1 : Graph │ │ │ │ i2 : showExoticSolutions G │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .943746s elapsed │ │ │ │ + -- 1.05722s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3, 4} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ │ │ o3 : Graph │ │ │ │ i4 : showExoticSolutions G │ │ │ │ - -- 1.24035s elapsed │ │ │ │ + -- 1.24998s elapsed │ │ │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_t_L_i_n_e_a_r_l_y_S_t_a_b_l_e_S_o_l_u_t_i_o_n_s -- Compute linearly stable solutions for the │ │ │ │ Kuramoto oscillator system associated to a graph │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ @@ -80,20 +80,20 @@ │ │ │ i19 : needsPackage "MultigradedImplicitization"; │ │ │ │ │ │ i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S); │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 9 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .00892428s elapsed │ │ │ + -- .0108714s elapsed │ │ │ WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation. │ │ │ computing total degree: 2 │ │ │ number of monomials = 45 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .568854s elapsed │ │ │ + -- .56807s elapsed │ │ │ │ │ │ o20 : Ideal of S │ │ │ │ │ │ i21 : dim I │ │ │ │ │ │ o21 = 5 │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ @@ -208,20 +208,20 @@ │ │ │ │ │ │ │ │ │
    i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S);
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 9
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .00892428s elapsed
    │ │ │ + -- .0108714s elapsed
    │ │ │  WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation.
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 45
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .568854s elapsed
    │ │ │ + -- .56807s elapsed
    │ │ │  
    │ │ │  o20 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : dim I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,21 +77,21 @@
    │ │ │ │  i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix
    │ │ │ │  {toList(9:1)}), S);
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 9
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .00892428s elapsed
    │ │ │ │ + -- .0108714s elapsed
    │ │ │ │  WARNING: There are linear relations. You may want to reduce the number of
    │ │ │ │  variables to speed up the computation.
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 45
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .568854s elapsed
    │ │ │ │ + -- .56807s elapsed
    │ │ │ │  
    │ │ │ │  o20 : Ideal of S
    │ │ │ │  i21 : dim I
    │ │ │ │  
    │ │ │ │  o21 = 5
    │ │ │ │  i22 : isPrime I
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -41,15 +41,15 @@
    │ │ │  i3 : g=3
    │ │ │  
    │ │ │  o3 = 3
    │ │ │  
    │ │ │  i4 : kk= ZZ/101;
    │ │ │  
    │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.19915s elapsed
    │ │ │ + -- 1.03951s elapsed
    │ │ │  
    │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o6 : CliffordModule
    │ │ │  
    │ │ │ @@ -67,30 +67,30 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .463669s elapsed
    │ │ │ + -- .345431s elapsed
    │ │ │  
    │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │            -4: 16  .     -2: 32  .
    │ │ │            -3: 16  .     -1:  .  .
    │ │ │            -2:  .  .      0:  .  .
    │ │ │            -1:  . 16      1:  . 32
    │ │ │             0:  . 16
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │  
    │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 20.5845s elapsed
    │ │ │ + -- 13.3419s elapsed
    │ │ │  
    │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │  o14 : Matrix S   <-- S
    │ │ │  
    │ │ │  i15 : r=2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out
    │ │ │ @@ -46,30 +46,30 @@
    │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o11 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │  
    │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .684809s elapsed
    │ │ │ + -- .548698s elapsed
    │ │ │  
    │ │ │  i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │  o13 = total: 8 16 8
    │ │ │            0: 8 16 8
    │ │ │  
    │ │ │  o13 : BettiTally
    │ │ │  
    │ │ │  i14 : ann Ulr == ideal qs
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.41016s elapsed
    │ │ │ + -- 1.68676s elapsed
    │ │ │  
    │ │ │  i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │  o16 = total: 12 24 12
    │ │ │            0: 12 24 12
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/___Lab__Book__Protocol.html
    │ │ │ @@ -128,15 +128,15 @@
    │ │ │              
    │ │ │                
    i4 : kk= ZZ/101;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.19915s elapsed
    │ │ │ + -- 1.03951s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │ @@ -172,15 +172,15 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .463669s elapsed
    │ │ │ + -- .345431s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │ @@ -193,15 +193,15 @@
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 20.5845s elapsed
    │ │ │ + -- 13.3419s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │              -- will give an Ulrich bundle, with betti table
    │ │ │ │              -- 16 32 16
    │ │ │ │  i3 : g=3
    │ │ │ │  
    │ │ │ │  o3 = 3
    │ │ │ │  i4 : kk= ZZ/101;
    │ │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ │ - -- 1.19915s elapsed
    │ │ │ │ + -- 1.03951s elapsed
    │ │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o6 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o6 : CliffordModule
    │ │ │ │  i7 : Mor = vectorBundleOnE M.evenCenter;
    │ │ │ │  i8 : Mor1= vectorBundleOnE M.oddCenter;
    │ │ │ │ @@ -75,29 +75,29 @@
    │ │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │ │            V = vectorBundleOnE m12;
    │ │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ │ - -- .463669s elapsed
    │ │ │ │ + -- .345431s elapsed
    │ │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │ │  
    │ │ │ │                 0  1          0  1
    │ │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │ │            -4: 16  .     -2: 32  .
    │ │ │ │            -3: 16  .     -1:  .  .
    │ │ │ │            -2:  .  .      0:  .  .
    │ │ │ │            -1:  . 16      1:  . 32
    │ │ │ │             0:  . 16
    │ │ │ │  
    │ │ │ │  o12 : Sequence
    │ │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the
    │ │ │ │  actions of generators
    │ │ │ │ - -- 20.5845s elapsed
    │ │ │ │ + -- 13.3419s elapsed
    │ │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │ │  
    │ │ │ │                32      32
    │ │ │ │  o14 : Matrix S   <-- S
    │ │ │ │  i15 : r=2
    │ │ │ │  
    │ │ │ │  o15 = 2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html
    │ │ │ @@ -161,15 +161,15 @@
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .684809s elapsed
    │ │ │ + -- .548698s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │ @@ -185,15 +185,15 @@
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.41016s elapsed
    │ │ │ + -- 1.68676s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -64,27 +64,27 @@
    │ │ │ │  o10 : Matrix S  <-- S
    │ │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o11 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o11 : CliffordModule
    │ │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ │ - -- .684809s elapsed
    │ │ │ │ + -- .548698s elapsed
    │ │ │ │  i13 : betti freeResolution Ulr
    │ │ │ │  
    │ │ │ │               0  1 2
    │ │ │ │  o13 = total: 8 16 8
    │ │ │ │            0: 8 16 8
    │ │ │ │  
    │ │ │ │  o13 : BettiTally
    │ │ │ │  i14 : ann Ulr == ideal qs
    │ │ │ │  
    │ │ │ │  o14 = true
    │ │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ │ - -- 2.41016s elapsed
    │ │ │ │ + -- 1.68676s elapsed
    │ │ │ │  i16 : betti freeResolution Ulr3
    │ │ │ │  
    │ │ │ │                0  1  2
    │ │ │ │  o16 = total: 12 24 12
    │ │ │ │            0: 12 24 12
    │ │ │ │  
    │ │ │ │  o16 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out
    │ │ │ @@ -66,17 +66,17 @@
    │ │ │  i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3}
    │ │ │  
    │ │ │  o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.81759s elapsed
    │ │ │ + -- 1.71305s elapsed
    │ │ │  
    │ │ │  i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.60723s elapsed
    │ │ │ + -- 3.9836s elapsed
    │ │ │  
    │ │ │  i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html
    │ │ │ @@ -177,21 +177,21 @@
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.81759s elapsed
    │ │ │ + -- 1.71305s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.60723s elapsed
    │ │ │ + -- 3.9836s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,17 +81,17 @@ │ │ │ │ o8 : Matrix K <-- K │ │ │ │ i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3} │ │ │ │ │ │ │ │ o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R); │ │ │ │ - -- 2.81759s elapsed │ │ │ │ + -- 1.71305s elapsed │ │ │ │ i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R); │ │ │ │ - -- 4.60723s elapsed │ │ │ │ + -- 3.9836s elapsed │ │ │ │ i12 : G==H │ │ │ │ │ │ │ │ o12 = true │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For reduced points, this function may be a bit slower than _a_f_f_i_n_e_P_o_i_n_t_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _a_f_f_i_n_e_F_a_t_P_o_i_n_t_s_B_y_I_n_t_e_r_s_e_c_t_i_o_n_(_M_a_t_r_i_x_,_L_i_s_t_,_R_i_n_g_) -- computes ideal of fat │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ @@ -31,27 +31,27 @@ │ │ │ o5 = CacheTable{name => P} │ │ │ │ │ │ i6 : C == P │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : time isDistributive C │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc) │ │ │ + -- used 1.325e-05s (cpu); 6.367e-06s (thread); 0s (gc) │ │ │ │ │ │ o7 = true │ │ │ │ │ │ i8 : time isDistributive P │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc) │ │ │ + -- used 6.85424s (cpu); 4.29966s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : C' = dual C; │ │ │ │ │ │ i10 : time isDistributive C' │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc) │ │ │ + -- used 6.635e-06s (cpu); 4.866e-06s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : peek C'.cache │ │ │ │ │ │ o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} } │ │ │ coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4}, {6, 5}, {7, 6}, {8, 7}, {9, 8}} │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ @@ -7,22 +7,22 @@ │ │ │ o2 = Partition{4, 2} │ │ │ │ │ │ o2 : Partition │ │ │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc) │ │ │ + -- used 0.393378s (cpu); 0.218701s (thread); 0s (gc) │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ o4 : Partition │ │ │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc) │ │ │ + -- used 1.2207e-05s (cpu); 1.1426e-05s (thread); 0s (gc) │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ o5 : Partition │ │ │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ @@ -107,23 +107,23 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDistributive C
    │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc)
    │ │ │ + -- used 1.325e-05s (cpu); 6.367e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time isDistributive P
    │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc)
    │ │ │ + -- used 6.85424s (cpu); 4.29966s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    We also know that the dual of a distributive lattice is again a distributive lattice. Other information is copied when possible.

    │ │ │ @@ -133,15 +133,15 @@ │ │ │ │ │ │
    i9 : C' = dual C;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time isDistributive C'
    │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc)
    │ │ │ + -- used 6.635e-06s (cpu); 4.866e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : peek C'.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,26 +41,26 @@
    │ │ │ │  i5 : peek P.cache
    │ │ │ │  
    │ │ │ │  o5 = CacheTable{name => P}
    │ │ │ │  i6 : C == P
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  i7 : time isDistributive C
    │ │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 1.325e-05s (cpu); 6.367e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 = true
    │ │ │ │  i8 : time isDistributive P
    │ │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc)
    │ │ │ │ + -- used 6.85424s (cpu); 4.29966s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  We also know that the dual of a distributive lattice is again a distributive
    │ │ │ │  lattice. Other information is copied when possible.
    │ │ │ │  i9 : C' = dual C;
    │ │ │ │  i10 : time isDistributive C'
    │ │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 6.635e-06s (cpu); 4.866e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  i11 : peek C'.cache
    │ │ │ │  
    │ │ │ │  o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
    │ │ │ │  }
    │ │ │ │                   coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4},
    │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html
    │ │ │ @@ -100,25 +100,25 @@
    │ │ │              
    │ │ │                
    i3 : D = dominanceLattice 6;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time greeneKleitmanPartition(D, Strategy => "antichains")
    │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc)
    │ │ │ + -- used 0.393378s (cpu); 0.218701s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Partition{9, 2}
    │ │ │  
    │ │ │  o4 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time greeneKleitmanPartition(D, Strategy => "chains")
    │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.2207e-05s (cpu); 1.1426e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = Partition{9, 2}
    │ │ │  
    │ │ │  o5 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,21 +28,21 @@ │ │ │ │ │ │ │ │ o2 : Partition │ │ │ │ The conjugate of $l$ has the same property, but with chains replaced by │ │ │ │ _a_n_t_i_c_h_a_i_n_s. Because of this, it is often better to count via antichains instead │ │ │ │ of chains. This can be done by passing "antichains" as the Strategy. │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc) │ │ │ │ + -- used 0.393378s (cpu); 0.218701s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ │ │ o4 : Partition │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.2207e-05s (cpu); 1.1426e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ │ │ o5 : Partition │ │ │ │ The Greene-Kleitman partition of the $n$ _c_h_a_i_n is the partition of $n$ with $1$ │ │ │ │ part. │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_associated__Primes.out │ │ │ @@ -125,24 +125,24 @@ │ │ │ ----------------------------------------------------------------------- │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o20 : Set │ │ │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o21 : Set │ │ │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ │ │ i23 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ @@ -24,35 +24,35 @@ │ │ │ | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ - -- .0780135s elapsed │ │ │ + -- .0955757s elapsed │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 1 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o4 : R-module, subquotient of R │ │ │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ - -- .0175249s elapsed │ │ │ + -- .022387s elapsed │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o5 : R-module, subquotient of R │ │ │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ - -- .126458s elapsed │ │ │ + -- .0488983s elapsed │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 1 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o6 : R-module, subquotient of R │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ x x ) │ │ │ 0 4 │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ - -- .157633s elapsed │ │ │ + -- .0543088s elapsed │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ │ │ i4 : R = QQ[h,l,s,x,y,z] │ │ │ @@ -41,15 +41,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ - -- .00961892s elapsed │ │ │ + -- .00777296s elapsed │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ @@ -286,28 +286,28 @@ │ │ │ o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : M1 = set apply(L1, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a},
    │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {c, b, a}, {e, c, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o20 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : M2 = set apply(L2, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a},
    │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {c, b, a}, {e, c, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o21 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i22 : assert(M1 === M2)
    │ │ │ ├── html2text {} │ │ │ │ @@ -155,24 +155,24 @@ │ │ │ │ o19 = {ideal (a, e), ideal (a, b, c), ideal (a, b, d), ideal (a, b, c, d), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o20 : Set │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o21 : Set │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ The method using Ext modules comes from Eisenbud-Huneke-Vasconcelos, Invent. │ │ │ │ Math 110 (1992) 207-235. │ │ │ │ Original author (for ideals): _C_._ _Y_a_c_k_e_l. Updated for modules by J. Chen. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ @@ -107,41 +107,41 @@ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime kernelOfLocalization(M, I1)
    │ │ │ - -- .0780135s elapsed
    │ │ │ + -- .0955757s elapsed
    │ │ │  
    │ │ │  o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 1 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o4 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime kernelOfLocalization(M, I2)
    │ │ │ - -- .0175249s elapsed
    │ │ │ + -- .022387s elapsed
    │ │ │  
    │ │ │  o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o5 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime kernelOfLocalization(M, I3)
    │ │ │ - -- .126458s elapsed
    │ │ │ + -- .0488983s elapsed
    │ │ │  
    │ │ │  o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 1 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 0 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o6 : R-module, subquotient of R
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,39 +41,39 @@ │ │ │ │ | │ │ │ │ | 0 0 0 0 x_1^5- │ │ │ │ x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o3 : R-module, quotient of R │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ │ - -- .0780135s elapsed │ │ │ │ + -- .0955757s elapsed │ │ │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 1 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o4 : R-module, subquotient of R │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ │ - -- .0175249s elapsed │ │ │ │ + -- .022387s elapsed │ │ │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o5 : R-module, subquotient of R │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ │ - -- .126458s elapsed │ │ │ │ + -- .0488983s elapsed │ │ │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 1 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 0 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime regSeqInIdeal I
    │ │ │ - -- .157633s elapsed
    │ │ │ + -- .0543088s elapsed
    │ │ │  
    │ │ │  o3 = ideal (x x , x x  + x x , x x  + x x , x x  + x x )
    │ │ │               2 7   3 6    0 7   2 5    0 7   1 4    0 7
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1)
    │ │ │ - -- .00961892s elapsed
    │ │ │ + -- .00777296s elapsed
    │ │ │  
    │ │ │                     2                3    2     2    8    3    2     2
    │ │ │  o7 = ideal (h*l - l  - 4l*s + h*y, h  + l s - h x, s  + h  + l s - h x)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ 2 7 0 7 3 6 2 6 1 6 0 6 2 5 0 5 3 4 2 4 1 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 4 │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ │ - -- .157633s elapsed │ │ │ │ + -- .0543088s elapsed │ │ │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ If I is the unit ideal, then an ideal of variables of the ring is returned. │ │ │ │ If the codimension of I is already known, then one can specify this, along with │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ l , s ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ │ - -- .00961892s elapsed │ │ │ │ + -- .00777296s elapsed │ │ │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_iterator_lp__Python__Object_rp.out │ │ │ @@ -10,12 +10,12 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_next_lp__Python__Object_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : next i │ │ │ │ │ │ o4 = 0 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_python__Run__Script.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 447449196062331972 │ │ │ │ │ │ i1 : pyfile = temporaryFileName() | ".py" │ │ │ │ │ │ -o1 = /tmp/M2-47275-0/0.py │ │ │ +o1 = /tmp/M2-73748-0/0.py │ │ │ │ │ │ i2 : pyfile << "import math" << endl │ │ │ │ │ │ -o2 = /tmp/M2-47275-0/0.py │ │ │ +o2 = /tmp/M2-73748-0/0.py │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : pyfile << "x = math.sin(3.4)" << endl << close │ │ │ │ │ │ -o3 = /tmp/M2-47275-0/0.py │ │ │ +o3 = /tmp/M2-73748-0/0.py │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : get pyfile │ │ │ │ │ │ o4 = import math │ │ │ x = math.sin(3.4) │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_to__Python.out │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o12 = m2sqrt │ │ │ │ │ │ o12 : FunctionClosure │ │ │ │ │ │ i13 : pysqrt = toPython m2sqrt │ │ │ │ │ │ -o13 = │ │ │ +o13 = │ │ │ │ │ │ o13 : PythonObject of class builtin_function_or_method │ │ │ │ │ │ i14 : pysqrt 2 │ │ │ calling Macaulay2 code from Python! │ │ │ │ │ │ o14 = 1.4142135623730951 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_use_lp__Python__Context_rp.out │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ │ │ o7 : Symbol │ │ │ │ │ │ i8 : use ctx │ │ │ │ │ │ i9 : f │ │ │ │ │ │ -o9 = at 0x7fdae521ccc0> │ │ │ +o9 = at 0x7fd4a13dccc0> │ │ │ │ │ │ o9 : PythonObject of class function │ │ │ │ │ │ i10 : x │ │ │ │ │ │ o10 = 5 │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_iterator_lp__Python__Object_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7fdae5265860>
    │ │ │ +o3 = <range_iterator object at 0x7fd4a14250b0>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : x = builtins@@range 3 │ │ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ │ │ -o3 = │ │ │ │ +o3 = │ │ │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _n_e_x_t_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- retrieve the next item from a python iterator │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_t_e_r_a_t_o_r_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- get iterator of iterable python object │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_next_lp__Python__Object_rp.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7fdae5259ec0>
    │ │ │ +o3 = <range_iterator object at 0x7fd4a14196b0>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : next i
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i2 : x = builtins@@range 3
    │ │ │ │  
    │ │ │ │  o2 = range(0, 3)
    │ │ │ │  
    │ │ │ │  o2 : PythonObject of class range
    │ │ │ │  i3 : i = iterator x
    │ │ │ │  
    │ │ │ │ -o3 = 
    │ │ │ │ +o3 = 
    │ │ │ │  
    │ │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │  i4 : next i
    │ │ │ │  
    │ │ │ │  o4 = 0
    │ │ │ │  
    │ │ │ │  o4 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_python__Run__Script.html
    │ │ │ @@ -76,31 +76,31 @@
    │ │ │            

    The return value is a Python dictionary containing all the variables defined in the global scope.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : pyfile = temporaryFileName() | ".py"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-47275-0/0.py
    │ │ │ +o1 = /tmp/M2-73748-0/0.py │ │ │
    │ │ │
    i2 : pyfile << "import math" << endl
    │ │ │  
    │ │ │ -o2 = /tmp/M2-47275-0/0.py
    │ │ │ +o2 = /tmp/M2-73748-0/0.py
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-47275-0/0.py
    │ │ │ +o3 = /tmp/M2-73748-0/0.py
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : get pyfile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,23 +16,23 @@
    │ │ │ │  Execute a sequence of statements as if they were read from a Python file. This
    │ │ │ │  is for multi-line code that might contain definitions, control structures,
    │ │ │ │  imports, etc. It is great for running Python code from a file.
    │ │ │ │  The return value is a Python dictionary containing all the variables defined in
    │ │ │ │  the global scope.
    │ │ │ │  i1 : pyfile = temporaryFileName() | ".py"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o1 = /tmp/M2-73748-0/0.py
    │ │ │ │  i2 : pyfile << "import math" << endl
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o2 = /tmp/M2-73748-0/0.py
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o3 = /tmp/M2-73748-0/0.py
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : get pyfile
    │ │ │ │  
    │ │ │ │  o4 = import math
    │ │ │ │       x = math.sin(3.4)
    │ │ │ │  i5 : pythonRunScript oo
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_to__Python.html
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │  o12 : FunctionClosure
    │ │ │
    │ │ │
    i13 : pysqrt = toPython m2sqrt
    │ │ │  
    │ │ │ -o13 = <built-in method m2sqrt of PyCapsule object at 0x7fdae523ac50>
    │ │ │ +o13 = <built-in method m2sqrt of PyCapsule object at 0x7fd4a13fec00>
    │ │ │  
    │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │
    │ │ │
    i14 : pysqrt 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -72,15 +72,15 @@
    │ │ │ │            sqrt x)
    │ │ │ │  
    │ │ │ │  o12 = m2sqrt
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : pysqrt = toPython m2sqrt
    │ │ │ │  
    │ │ │ │ -o13 = 
    │ │ │ │ +o13 = 
    │ │ │ │  
    │ │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │ │  i14 : pysqrt 2
    │ │ │ │  calling Macaulay2 code from Python!
    │ │ │ │  
    │ │ │ │  o14 = 1.4142135623730951
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_use_lp__Python__Context_rp.html
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │                
    i8 : use ctx
    │ │ │
    │ │ │
    i9 : f
    │ │ │  
    │ │ │ -o9 = <function <lambda> at 0x7fdae521ccc0>
    │ │ │ +o9 = <function <lambda> at 0x7fd4a13dccc0>
    │ │ │  
    │ │ │  o9 : PythonObject of class function
    │ │ │
    │ │ │
    i10 : x
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  
    │ │ │ │  o7 = y
    │ │ │ │  
    │ │ │ │  o7 : Symbol
    │ │ │ │  i8 : use ctx
    │ │ │ │  i9 : f
    │ │ │ │  
    │ │ │ │ -o9 =  at 0x7fdae521ccc0>
    │ │ │ │ +o9 =  at 0x7fd4a13dccc0>
    │ │ │ │  
    │ │ │ │  o9 : PythonObject of class function
    │ │ │ │  i10 : x
    │ │ │ │  
    │ │ │ │  o10 = 5
    │ │ │ │  
    │ │ │ │  o10 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │  
    │ │ │  o21 : Ideal of T
    │ │ │  
    │ │ │  i22 : assert(dim L == 18)
    │ │ │  
    │ │ │  i23 : elapsedTime isPrime L
    │ │ │ - -- 2.78979s elapsed
    │ │ │ + -- 2.37585s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : I = pointsIdeal randomPoints(S, 6)
    │ │ │  
    │ │ │                               2                              2   2          
    │ │ │  o24 = ideal (a*c - 7b*c - 49c  + 40a*d - 42b*d + 12c*d + 28d , b  - 36b*c -
    │ │ │ @@ -302,15 +302,15 @@
    │ │ │  o38 = true
    │ │ │  
    │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │  
    │ │ │  o39 : Ideal of T
    │ │ │  
    │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.4524s elapsed
    │ │ │ + -- 1.20257s elapsed
    │ │ │  
    │ │ │  i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │  
    │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │  
    │ │ │ @@ -320,37 +320,37 @@
    │ │ │  
    │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │  
    │ │ │  o43 = true
    │ │ │  
    │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │                2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2                   2                            2     2  
    │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ +                   2                  2                              2     2
    │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ +         2         2        2        2      3
    │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │  
    │ │ │  i46 : betti res Fa
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o46 = total: 1 6 8 3
    │ │ │ @@ -358,81 +358,83 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o46 : BettiTally
    │ │ │  
    │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)                                                                                                                              |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2        2      3     2                2         2        2 |
    │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d)                                                             |
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +      |ideal (c + 18d, b - 12d, a + 47d)                                                             |
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │ +      |                                   2                      2   2      2                      2 |
    │ │ │ +      |ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c  - 14b*d + 27c*d - 38d )|
    │ │ │ +      +----------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                      2  
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ +                                                                            
    │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                      2   3                2         2  
    │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ +                                         2                      2   2      2
    │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2      3     2                2         2        2
    │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ +                           2
    │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │  
    │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ +o49 = c + 18d
    │ │ │  
    │ │ │  o49 : S
    │ │ │  
    │ │ │  i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 5}
    │ │ │ +o50 = {1, 1, 4}
    │ │ │  
    │ │ │  o50 : List
    │ │ │  
    │ │ │  i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true}
    │ │ │ +o51 = {false, true, false}
    │ │ │  
    │ │ │  o51 : List
    │ │ │  
    │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 5
    │ │ │ +o52 = 1
    │ │ │  
    │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2             2                             2              
    │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +         2                             2   2             2                  
    │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                  2                             2     2           
    │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +         2         2       2        2      3   3                2         2  
    │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2        2      3
    │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │  
    │ │ │  i55 : betti res Fb
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o55 = total: 1 6 8 3
    │ │ │ @@ -440,114 +442,84 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o55 : BettiTally
    │ │ │  
    │ │ │  i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d)                              |
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +      |                                     3      2         2      3 |
    │ │ │ +      |ideal (b + 39c - 21d, a + 4c - 27d, c  + 43c d + 39c*d  - 15d )|
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │ +      |                                    2             2            |
    │ │ │ +      |ideal (b + 8c + 40d, a + 5c - 33d, c  + 4c*d + 45d )           |
    │ │ │ +      +---------------------------------------------------------------+
    │ │ │  
    │ │ │  i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                       2                             2   2             2                      2                  2                             2   2             2                             2   3                2         2        2        2      3     2               2         2       2        2      3 |
    │ │ │ +o57 = |ideal (a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b  + 47b*c + 9c  + 19b*d - 22c*d - 32d , a*b + 7b*c + 16c  - 42a*d - 45b*d - 24c*d - 3d , a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , c  + 21b*c*d - 47c d + 38a*d  + 21b*d  - 37c*d  + 33d , b*c  - 9b*c*d - 29c d + 17a*d  + 2b*d  + 26c*d  - 17d )|
    │ │ │ +      +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                              2               
    │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ +              2              2                      2                   2  
    │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ +                             2              2                             2 
    │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ +                      2                           2     2                2   
    │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2        2    3   3                2   
    │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ +             2      3
    │ │ │ +      - 24c*d  + 17d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │  
    │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2              2                           2                  2
    │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +                                  2   2              2                  
    │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +         2                   2                             2     2          
    │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2      2        2     3   3               2         2  
    │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +          2        2      3
    │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │  
    │ │ │  i62 : betti res I0
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o62 = total: 1 6 8 3
    │ │ │ @@ -565,37 +537,33 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o63 : BettiTally
    │ │ │  
    │ │ │  i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)                                                             |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)                                                            |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |                                  2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  - 41b*d + 35c*d - 39d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c - 49d, b - 33d, a - 30d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c + 41d, b + 33d, a - 35d)                  |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |ideal (c + d, b + 40d, a - 5d)                     |
    │ │ │ +      +---------------------------------------------------+
    │ │ │ +      |                                    2            2 |
    │ │ │ +      |ideal (b + c - 47d, a - 38c - 17d, c  + 4c*d - 8d )|
    │ │ │ +      +---------------------------------------------------+
    │ │ │  
    │ │ │  i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                        2                             2   2              2                      2                  2                             2   2              2                           2   3               2         2       2        2      3     2                2         2      2        2     3 |
    │ │ │ +o65 = |ideal (a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b  - 49b*c + 32c  + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c  + 5a*d + 11b*d + 15c*d - 40d , a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , c  + 3b*c*d + 33c d + 21a*d  + 3b*d  - 50c*d  + 15d , b*c  - 15b*c*d + 10c d - 18a*d  + b*d  + 26c*d  + 3d )|
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │  
    │ │ │  o66 : Ideal of T
    │ │ │  
    │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html
    │ │ │ @@ -344,15 +344,15 @@
    │ │ │              
    │ │ │
    i22 : assert(dim L == 18)
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime L
    │ │ │ - -- 2.78979s elapsed
    │ │ │ + -- 2.37585s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    │ │ │

    The Schreyer resolution and minimal Betti numbers

    │ │ │ @@ -556,15 +556,15 @@ │ │ │ │ │ │ o39 : Ideal of T
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.4524s elapsed
    │ │ │ + -- 1.20257s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │ @@ -591,40 +591,40 @@ │ │ │

    Both components are rational, and here are random points, one on each component:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │                2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2                   2                            2     2  
    │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ +                   2                  2                              2     2
    │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ +                     2         2        2        2      3   3            
    │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ +         2         2        2        2      3
    │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │
    │ │ │
    i46 : betti res Fa
    │ │ │ @@ -638,104 +638,106 @@
    │ │ │  o46 : BettiTally
    │ │ │
    │ │ │
    i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)                                                                                                                              |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2        2      3     2                2         2        2 |
    │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d) | │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ + |ideal (c + 18d, b - 12d, a + 47d) | │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 | │ │ │ + |ideal (a + 37b + 5c - 4d, b*c - 13c + 45b*d - 28c*d - 29d , b - 48c - 14b*d + 27c*d - 38d )| │ │ │ + +----------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                      2  
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ +                                                                            
    │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                      2   3                2         2  
    │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ +                                         2                      2   2      2
    │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2      3     2                2         2        2
    │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ +                           2
    │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │
    │ │ │
    i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ +o49 = c + 18d
    │ │ │  
    │ │ │  o49 : S
    │ │ │
    │ │ │
    i50 : CFa/degree
    │ │ │  
    │ │ │ -o50 = {1, 5}
    │ │ │ +o50 = {1, 1, 4}
    │ │ │  
    │ │ │  o50 : List
    │ │ │
    │ │ │
    i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │  
    │ │ │ -o51 = {false, true}
    │ │ │ +o51 = {false, true, false}
    │ │ │  
    │ │ │  o51 : List
    │ │ │
    │ │ │
    i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │ -o52 = 5
    │ │ │ +o52 = 1 │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2             2                             2              
    │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +         2                             2   2             2                  
    │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                  2                             2     2           
    │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +         2         2       2        2      3   3                2         2  
    │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2        2      3
    │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │
    │ │ │
    i55 : betti res Fb
    │ │ │ @@ -749,136 +751,106 @@
    │ │ │  o55 : BettiTally
    │ │ │
    │ │ │
    i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------+ │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d) | │ │ │ + +---------------------------------------------------------------+ │ │ │ + | 3 2 2 3 | │ │ │ + |ideal (b + 39c - 21d, a + 4c - 27d, c + 43c d + 39c*d - 15d )| │ │ │ + +---------------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 8c + 40d, a + 5c - 33d, c + 4c*d + 45d ) | │ │ │ + +---------------------------------------------------------------+ │ │ │
    │ │ │
    i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ +o57 = |ideal (a*c - 13b*c + 2c - 15a*d - 23b*d - 4c*d - 21d , b + 47b*c + 9c + 19b*d - 22c*d - 32d , a*b + 7b*c + 16c - 42a*d - 45b*d - 24c*d - 3d , a + 16b*c + 2c - 26a*d + 5b*d - 29c*d - 31d , c + 21b*c*d - 47c d + 38a*d + 21b*d - 37c*d + 33d , b*c - 9b*c*d - 29c d + 17a*d + 2b*d + 26c*d - 17d )| │ │ │ + +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    │ │ │

    We compute the ideal of the corresponding zero dimensional scheme with length 6, corresponding to the points pt0, pt1 in Hilb.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                              2               
    │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ +              2              2                      2                   2  
    │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ +                             2              2                             2 
    │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ +                      2                           2     2                2   
    │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2        2    3   3                2   
    │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2        2        2      3
    │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ +             2      3
    │ │ │ +      - 24c*d  + 17d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │
    │ │ │
    i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2              2                           2                  2
    │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +                                  2   2              2                  
    │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +         2                   2                             2     2          
    │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2      2        2     3   3               2         2  
    │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +          2        2      3
    │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │
    │ │ │
    i62 : betti res I0
    │ │ │ @@ -907,40 +879,36 @@
    │ │ │            
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)                                                             |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)                                                            |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |                                  2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  - 41b*d + 35c*d - 39d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ + +---------------------------------------------------+ │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c - 49d, b - 33d, a - 30d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c + 41d, b + 33d, a - 35d) | │ │ │ + +---------------------------------------------------+ │ │ │ + |ideal (c + d, b + 40d, a - 5d) | │ │ │ + +---------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + c - 47d, a - 38c - 17d, c + 4c*d - 8d )| │ │ │ + +---------------------------------------------------+ │ │ │
    │ │ │
    i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ +o65 = |ideal (a*c + 46b*c - 35c - 7a*d + 37b*d - 14c*d - 28d , b - 49b*c + 32c + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c + 5a*d + 11b*d + 15c*d - 40d , a + 31b*c + 29c - 37a*d - 8b*d - 6c*d - 5d , c + 3b*c*d + 33c d + 21a*d + 3b*d - 50c*d + 15d , b*c - 15b*c*d + 10c d - 18a*d + b*d + 26c*d + 3d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -251,15 +251,15 @@
    │ │ │ │        |      31         33        32       34        35        36    |
    │ │ │ │        +--------------------------------------------------------------+
    │ │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o21 : Ideal of T
    │ │ │ │  i22 : assert(dim L == 18)
    │ │ │ │  i23 : elapsedTime isPrime L
    │ │ │ │ - -- 2.78979s elapsed
    │ │ │ │ + -- 2.37585s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  ********** TThhee SScchhrreeyyeerr rreessoolluuttiioonn aanndd mmiinniimmaall BBeettttii nnuummbbeerrss **********
    │ │ │ │  Schreyer's construction of a nonminimal free resolution starts with a Groebner
    │ │ │ │  basis. First, one constructs the SScchhrreeyyeerr ffrraammee (see La Scala, Stillman). This
    │ │ │ │  is determined solely from the initial ideal $J$ and its minimal generators (but
    │ │ │ │  depends on some choices of ordering, but otherwise is combinatorial). This
    │ │ │ │ @@ -415,15 +415,15 @@
    │ │ │ │  We now compute the locus in $V(L)$ where the Betti diagram has no cancellation.
    │ │ │ │  This is a closed subscheme of $V(L)$, which is a closed subscheme of the
    │ │ │ │  Hilbert scheme. Notice that there are two components.
    │ │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │ │  
    │ │ │ │  o39 : Ideal of T
    │ │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ │ - -- 2.4524s elapsed
    │ │ │ │ + -- 1.20257s elapsed
    │ │ │ │  i41 : #compsL441
    │ │ │ │  
    │ │ │ │  o41 = 2
    │ │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │ │  
    │ │ │ │  o42 = {16, 14}
    │ │ │ │  
    │ │ │ │ @@ -431,36 +431,36 @@
    │ │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │ │  
    │ │ │ │  o43 = true
    │ │ │ │  Both components are rational, and here are random points, one on each
    │ │ │ │  component:
    │ │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │ │  
    │ │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ │ +o44 = | 32 -41 22 15 22 -46 43 42 -27 -27 -13 10 -24 19 -25 48 31 10 41 49 39
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ │ +      -28 -29 -10 -48 5 15 18 45 19 49 37 -32 34 26 -50 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o44 : Matrix kk  <-- kk
    │ │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │ │  
    │ │ │ │                2              2                              2
    │ │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ │ +o45 = ideal (a  - 25b*c - 27c  + 10a*d - 46b*d + 22c*d + 32d , a*b - 48b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │           2                              2   2              2
    │ │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ │ +      41c  + 39a*d - 24b*d - 27c*d - 41d , b  + 26b*c + 18c  - 32a*d - 28b*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                  2                   2                            2     2
    │ │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ │ +                   2                  2                              2     2
    │ │ │ │ +      + 48c*d + 43d , a*c + 37b*c + 5c  + 45a*d + 49b*d + 19c*d + 22d , b*c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                   2         2        2        2      3   3                2
    │ │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ │ +                     2         2        2        2      3   3
    │ │ │ │ +      + 19b*c*d - 29c d + 15a*d  + 31b*d  - 13c*d  + 15d , c  - 50b*c*d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2        2      3
    │ │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ │ +         2         2        2        2      3
    │ │ │ │ +      49c d + 34a*d  - 10b*d  + 10c*d  + 42d )
    │ │ │ │  
    │ │ │ │  o45 : Ideal of S
    │ │ │ │  i46 : betti res Fa
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o46 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -468,254 +468,177 @@
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o46 : BettiTally
    │ │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another
    │ │ │ │  point
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)
    │ │ │ │ +----------------------+
    │ │ │ │ +o47 = |ideal (c + 45d, b - 34d, a - 35d)
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ -      |                             2              2                      2   3
    │ │ │ │ -2         2        2      3     2                2         2        2 |
    │ │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c
    │ │ │ │ -+ 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  -
    │ │ │ │ -14c*d )|
    │ │ │ │ +----------------------+
    │ │ │ │ +      |ideal (c + 18d, b - 12d, a + 47d)
    │ │ │ │ +|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ +----------------------+
    │ │ │ │ +      |                                   2                      2   2      2
    │ │ │ │ +2 |
    │ │ │ │ +      |ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c  -
    │ │ │ │ +14b*d + 27c*d - 38d )|
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +----------------------+
    │ │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │ │  
    │ │ │ │ -                                                                      2
    │ │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ │ +
    │ │ │ │ +o48 = {ideal (c + 45d, b - 34d, a - 35d), ideal (c + 18d, b - 12d, a + 47d),
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                 2                      2   3                2         2
    │ │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ │ +                                         2                      2   2      2
    │ │ │ │ +      ideal (a + 37b + 5c - 4d, b*c - 13c  + 45b*d - 28c*d - 29d , b  - 48c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2      3     2                2         2        2
    │ │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ │ +                           2
    │ │ │ │ +      - 14b*d + 27c*d - 38d )}
    │ │ │ │  
    │ │ │ │  o48 : List
    │ │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │ │  
    │ │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ │ +o49 = c + 18d
    │ │ │ │  
    │ │ │ │  o49 : S
    │ │ │ │  i50 : CFa/degree
    │ │ │ │  
    │ │ │ │ -o50 = {1, 5}
    │ │ │ │ +o50 = {1, 1, 4}
    │ │ │ │  
    │ │ │ │  o50 : List
    │ │ │ │  i51 : CFa/(I -> lin % I == 0) -- so 5 points on the plane.
    │ │ │ │  
    │ │ │ │ -o51 = {false, true}
    │ │ │ │ +o51 = {false, true, false}
    │ │ │ │  
    │ │ │ │  o51 : List
    │ │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of
    │ │ │ │  the 5 points
    │ │ │ │  
    │ │ │ │ -o52 = 5
    │ │ │ │ +o52 = 1
    │ │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │ │  
    │ │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ │ +o53 = | -31 -3 -29 -17 -21 5 -32 33 -24 2 26 -26 -45 -4 16 -22 2 -37 16 -23
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ │ +      -42 19 -29 21 7 2 17 9 -15 -9 -47 -13 0 38 47 21 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o53 : Matrix kk  <-- kk
    │ │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │ │  
    │ │ │ │ -              2              2                             2
    │ │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ │ +              2             2                             2
    │ │ │ │ +o54 = ideal (a  + 16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , a*b + 7b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │           2                             2   2             2
    │ │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ │ +      16c  - 42a*d - 45b*d - 24c*d - 3d , b  + 47b*c + 9c  + 19b*d - 22c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                 2                             2     2
    │ │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ │ +         2                  2                             2     2
    │ │ │ │ +      32d , a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b*c  - 9b*c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d
    │ │ │ │ +         2         2       2        2      3   3                2         2
    │ │ │ │ +      29c d + 17a*d  + 2b*d  + 26c*d  - 17d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2     3
    │ │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ │ +           2        2      3
    │ │ │ │ +      21b*d  - 37c*d  + 33d )
    │ │ │ │  
    │ │ │ │  o54 : Ideal of S
    │ │ │ │  i55 : betti res Fb
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o55 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o55 : BettiTally
    │ │ │ │  i56 : netList decompose Fb --
    │ │ │ │  
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |                                      2              2 |
    │ │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +o56 = |ideal (c - 17d, b - 26d, a - 49d)                              |
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +      |                                     3      2         2      3 |
    │ │ │ │ +      |ideal (b + 39c - 21d, a + 4c - 27d, c  + 43c d + 39c*d  - 15d )|
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │ +      |                                    2             2            |
    │ │ │ │ +      |ideal (b + 8c + 40d, a + 5c - 33d, c  + 4c*d + 45d )           |
    │ │ │ │ +      +---------------------------------------------------------------+
    │ │ │ │  i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                      2
    │ │ │ │ -|
    │ │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d +
    │ │ │ │ -18d , b  + 28b*d - 32c*d + 16d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                      2
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d
    │ │ │ │ -+ 39d , b  - 20b*d + 29c*d + 38d )
    │ │ │ │ -|
    │ │ │ │ +---------------------------------------------------------------------------+
    │ │ │ │ +      |                       2                             2   2             2
    │ │ │ │ +2                  2                             2   2             2
    │ │ │ │ +2   3                2         2        2        2      3     2               2
    │ │ │ │ +2       2        2      3 |
    │ │ │ │ +o57 = |ideal (a*c - 13b*c + 2c  - 15a*d - 23b*d - 4c*d - 21d , b  + 47b*c + 9c
    │ │ │ │ ++ 19b*d - 22c*d - 32d , a*b + 7b*c + 16c  - 42a*d - 45b*d - 24c*d - 3d , a  +
    │ │ │ │ +16b*c + 2c  - 26a*d + 5b*d - 29c*d - 31d , c  + 21b*c*d - 47c d + 38a*d  +
    │ │ │ │ +21b*d  - 37c*d  + 33d , b*c  - 9b*c*d - 29c d + 17a*d  + 2b*d  + 26c*d  - 17d
    │ │ │ │ +)|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                     2
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d
    │ │ │ │ -- 32d , b  - 8b*d - 12c*d - 46d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     3      2         2      3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     2                      2   2      2
    │ │ │ │ -2   3      2         2        2      3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c
    │ │ │ │ -+ 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                   2                      2   2      2
    │ │ │ │ -2   3      2         2        2     3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  +
    │ │ │ │ -34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                            2                                 2
    │ │ │ │ -2   2                              2                                  2   2
    │ │ │ │ -2 |
    │ │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d
    │ │ │ │ -, a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b +
    │ │ │ │ -3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     2                     2   2      2
    │ │ │ │ -2   3      2         2        2     3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c
    │ │ │ │ -+ 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                              2
    │ │ │ │ -2                                   2   2                              2
    │ │ │ │ -2   2                           2  |
    │ │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d
    │ │ │ │ -, a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b -
    │ │ │ │ -6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                              2
    │ │ │ │ -2                                  2   2                      2
    │ │ │ │ -2   2                              2      |
    │ │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d
    │ │ │ │ -, a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d -
    │ │ │ │ -30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ +---------------------------------------------------------------------------+
    │ │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │ │  
    │ │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ │ +o58 = | 49 0 -30 -36 -1 0 -9 17 37 29 34 13 19 8 -10 -47 21 -24 -44 42 9 46
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ │ +      15 -29 35 -40 18 -22 -21 -42 39 -2 -33 -23 -13 -18 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o58 : Matrix kk  <-- kk
    │ │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │ │  
    │ │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ │ +o59 = | -5 -40 -6 3 -28 -8 -25 15 15 29 26 -37 11 -14 31 14 1 -50 43 37 5 50
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ │ +      10 3 -3 -35 -18 32 -7 -15 33 46 0 21 -49 3 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o59 : Matrix kk  <-- kk
    │ │ │ │  We compute the ideal of the corresponding zero dimensional scheme with length
    │ │ │ │  6, corresponding to the points pt0, pt1 in Hilb.
    │ │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2            2                              2
    │ │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ │ +              2              2                      2                   2
    │ │ │ │ +o60 = ideal (a  - 10b*c + 29c  + 13a*d - 30c*d + 49d , a*b + 35b*c - 44c  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -        2                              2   2              2
    │ │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ │ +                             2              2                             2
    │ │ │ │ +      9a*d + 19b*d + 37c*d, b  - 13b*c - 22c  - 33a*d + 46b*d - 47c*d - 9d ,
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                 2                  2                             2     2
    │ │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ │ +                      2                           2     2                2
    │ │ │ │ +      a*c - 2b*c - 40c  - 21a*d + 42b*d + 8c*d - d , b*c  - 42b*c*d + 15c d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                  2         2        2        2    3   3                2
    │ │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ │ +           2        2        2      3   3                2         2        2
    │ │ │ │ +      18a*d  + 21b*d  + 34c*d  - 36d , c  - 18b*c*d + 39c d - 23a*d  - 29b*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2        2        2      3
    │ │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ │ +             2      3
    │ │ │ │ +      - 24c*d  + 17d )
    │ │ │ │  
    │ │ │ │  o60 : Ideal of S
    │ │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2              2                             2
    │ │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ │ +              2              2                           2                  2
    │ │ │ │ +o61 = ideal (a  + 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , a*b - 3b*c + 43c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                             2   2              2
    │ │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ │ +                                  2   2              2
    │ │ │ │ +      + 5a*d + 11b*d + 15c*d - 40d , b  - 49b*c + 32c  + 50b*d + 14c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                   2                              2     2
    │ │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ │ +         2                   2                             2     2
    │ │ │ │ +      25d , a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b*c  - 15b*c*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d
    │ │ │ │ +           2         2      2        2     3   3               2         2
    │ │ │ │ +      + 10c d - 18a*d  + b*d  + 26c*d  + 3d , c  + 3b*c*d + 33c d + 21a*d  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2     3
    │ │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ │ +          2        2      3
    │ │ │ │ +      3b*d  - 50c*d  + 15d )
    │ │ │ │  
    │ │ │ │  o61 : Ideal of S
    │ │ │ │  i62 : betti res I0
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o62 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -730,44 +653,44 @@
    │ │ │ │            0: 1 . . .
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o63 : BettiTally
    │ │ │ │  i64 : netList decompose I0
    │ │ │ │  
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -      |                                  2                      2   2      2
    │ │ │ │ -2 |
    │ │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  -
    │ │ │ │ -41b*d + 35c*d - 39d )|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +o64 = |ideal (c - 21d, b - 26d, a - 50d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c - 49d, b - 33d, a - 30d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c + 41d, b + 33d, a - 35d)                  |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |ideal (c + d, b + 40d, a - 5d)                     |
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │ +      |                                    2            2 |
    │ │ │ │ +      |ideal (b + c - 47d, a - 38c - 17d, c  + 4c*d - 8d )|
    │ │ │ │ +      +---------------------------------------------------+
    │ │ │ │  i65 : netList decompose I1
    │ │ │ │  
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |                                     2              2 |
    │ │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------+
    │ │ │ │ +      |                        2                             2   2
    │ │ │ │ +2                      2                  2                             2   2
    │ │ │ │ +2                           2   3               2         2       2        2
    │ │ │ │ +3     2                2         2      2        2     3 |
    │ │ │ │ +o65 = |ideal (a*c + 46b*c - 35c  - 7a*d + 37b*d - 14c*d - 28d , b  - 49b*c +
    │ │ │ │ +32c  + 50b*d + 14c*d - 25d , a*b - 3b*c + 43c  + 5a*d + 11b*d + 15c*d - 40d , a
    │ │ │ │ ++ 31b*c + 29c  - 37a*d - 8b*d - 6c*d - 5d , c  + 3b*c*d + 33c d + 21a*d  + 3b*d
    │ │ │ │ +- 50c*d  + 15d , b*c  - 15b*c*d + 10c d - 18a*d  + b*d  + 26c*d  + 3d )|
    │ │ │ │ +      +------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------------
    │ │ │ │ +-------------------------------------------------------------------------+
    │ │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o66 : Ideal of T
    │ │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ │ │  
    │ │ │ │         1      4      5      2
    │ │ │ │  o67 = S  <-- S  <-- S  <-- S  <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  i2 : g=14;
    │ │ │  
    │ │ │  i3 : FF=ZZ/10007;
    │ │ │  
    │ │ │  i4 : R=FF[x_0..x_(g-1)];
    │ │ │  
    │ │ │  i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc)
    │ │ │ + -- used 7.06347s (cpu); 5.60269s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │              
    │ │ │
    i4 : R=FF[x_0..x_(g-1)];
    │ │ │
    │ │ │
    i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc)
    │ │ │ + -- used 7.06347s (cpu); 5.60269s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ unirationality of $M_g$ by Severi, Sernesi, Chang-Ran and Verra. │ │ │ │ i1 : setRandomSeed "alpha"; │ │ │ │ -- setting random seed to 10206284518 │ │ │ │ i2 : g=14; │ │ │ │ i3 : FF=ZZ/10007; │ │ │ │ i4 : R=FF[x_0..x_(g-1)]; │ │ │ │ i5 : time betti(I=(random canonicalCurve)(g,R)) │ │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc) │ │ │ │ + -- used 7.06347s (cpu); 5.60269s (thread); 0s (gc) │ │ │ │ │ │ │ │ 0 1 │ │ │ │ o5 = total: 1 66 │ │ │ │ 0: 1 . │ │ │ │ 1: . 66 │ │ │ │ │ │ │ │ o5 : BettiTally │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ @@ -7,42 +7,42 @@ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731) │ │ │ +o3 = ({5, 2.91596e52, 9}, .00192931, .000933583) │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355) │ │ │ +o4 = ({50, 2.30853e454, 98}, .00500121, .0392925) │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245}, │ │ │ +o5 = {{.00507434, .0137547}, {.00479582, .00426515}, {.00584127, .00769176}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526}, │ │ │ + {.00636604, .0106617}, {.00568013, .0143842}, {.0859937, .014311}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569}, │ │ │ + {.00453487, .00927446}, {.00426814, .0084229}, {.0034686, .00596937}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00753335, .00820152}} │ │ │ + {.00547447, .0091573}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ -o6 = .01492759439999993 │ │ │ +o6 = .01314973480000003 │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ -o7 = .008820477599999954 │ │ │ +o7 = .009789265800000013 │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ @@ -93,57 +93,57 @@ │ │ │ o2 : Sequence │ │ │
    │ │ │
    i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)
    │ │ │  
    │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731)
    │ │ │ +o3 = ({5, 2.91596e52, 9}, .00192931, .000933583)
    │ │ │  
    │ │ │  o3 : Sequence
    │ │ │
    │ │ │
    i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
    │ │ │  
    │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355)
    │ │ │ +o4 = ({50, 2.30853e454, 98}, .00500121, .0392925)
    │ │ │  
    │ │ │  o4 : Sequence
    │ │ │
    │ │ │
    i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})
    │ │ │  
    │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245},
    │ │ │ +o5 = {{.00507434, .0137547}, {.00479582, .00426515}, {.00584127, .00769176},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526},
    │ │ │ +     {.00636604, .0106617}, {.00568013, .0143842}, {.0859937, .014311},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569},
    │ │ │ +     {.00453487, .00927446}, {.00426814, .0084229}, {.0034686, .00596937},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00753335, .00820152}}
    │ │ │ +     {.00547447, .0091573}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : 1/10*sum(L,t->t_0)
    │ │ │  
    │ │ │ -o6 = .01492759439999993
    │ │ │ +o6 = .01314973480000003
    │ │ │  
    │ │ │  o6 : RR (of precision 53)
    │ │ │
    │ │ │
    i7 : 1/10*sum(L,t->t_1)
    │ │ │  
    │ │ │ -o7 = .008820477599999954
    │ │ │ +o7 = .009789265800000013
    │ │ │  
    │ │ │  o7 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,41 +25,41 @@ │ │ │ │ i2 : r=10,n=20 │ │ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731) │ │ │ │ +o3 = ({5, 2.91596e52, 9}, .00192931, .000933583) │ │ │ │ │ │ │ │ o3 : Sequence │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355) │ │ │ │ +o4 = ({50, 2.30853e454, 98}, .00500121, .0392925) │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245}, │ │ │ │ +o5 = {{.00507434, .0137547}, {.00479582, .00426515}, {.00584127, .00769176}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526}, │ │ │ │ + {.00636604, .0106617}, {.00568013, .0143842}, {.0859937, .014311}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569}, │ │ │ │ + {.00453487, .00927446}, {.00426814, .0084229}, {.0034686, .00596937}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00753335, .00820152}} │ │ │ │ + {.00547447, .0091573}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ │ │ -o6 = .01492759439999993 │ │ │ │ +o6 = .01314973480000003 │ │ │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ │ │ -o7 = .008820477599999954 │ │ │ │ +o7 = .009789265800000013 │ │ │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ ********** WWaayyss ttoo uussee tteessttTTiimmeeFFoorrLLLLLLoonnSSyyzzyyggiieess:: ********** │ │ │ │ * testTimeForLLLonSyzygies(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_T_i_m_e_F_o_r_L_L_L_o_n_S_y_z_y_g_i_e_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/example-output/_smooth__Canonical__Curve.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 11549527689790345152 │ │ │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc) │ │ │ + -- used 1.47082s (cpu); 1.18233s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ 5 0 10 │ │ │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/html/_smooth__Canonical__Curve.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    If the option Printing is set to true then printings about the current step in the construction are displayed.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ For g<=10 the curves are constructed via plane models. │ │ │ │ For g<=13 the curves are constructed via space models. │ │ │ │ For g=14 the curves are constructed by Verra's method. │ │ │ │ For g=15 the curves are constructed via matrix factorizations. │ │ │ │ If the option Printing is set to true then printings about the current step in │ │ │ │ the construction are displayed. │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc) │ │ │ │ + -- used 1.47082s (cpu); 1.18233s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ │ 5 0 10 │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ │ │ │ │ │ │ o2 = (2, 11, 20) │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ -- setting random seed to 10206284518 │ │ │ │ │ │ i2 : FF=ZZ/10007; │ │ │ │ │ │ i3 : S=FF[x_0..x_6]; │ │ │ │ │ │ i4 : time I=randomCurveGenus14Degree18inP6(S); │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc) │ │ │ + -- used 1.7615s (cpu); 1.52378s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : betti res I │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o5 = total: 1 13 45 56 25 2 │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time ICan = smoothCanonicalCurve(11,5);
    │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc)
    │ │ │ + -- used 1.47082s (cpu); 1.18233s (thread); 0s (gc)
    │ │ │  
    │ │ │                ZZ
    │ │ │  o1 : Ideal of --[t ..t  ]
    │ │ │                 5  0   10
    │ │ │
    │ │ │
    i3 : S=FF[x_0..x_6];
    │ │ │
    │ │ │
    i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc)
    │ │ │ + -- used 1.7615s (cpu); 1.52378s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : betti res I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  fields of the chosen finite characteristic 10007, for fields of characteristic
    │ │ │ │  0 by semi-continuity, and, hence, for all but finitely many primes $p$.
    │ │ │ │  i1 : setRandomSeed("alpha");
    │ │ │ │   -- setting random seed to 10206284518
    │ │ │ │  i2 : FF=ZZ/10007;
    │ │ │ │  i3 : S=FF[x_0..x_6];
    │ │ │ │  i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc)
    │ │ │ │ + -- used 1.7615s (cpu); 1.52378s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : betti res I
    │ │ │ │  
    │ │ │ │              0  1  2  3  4 5
    │ │ │ │  o5 = total: 1 13 45 56 25 2
    │ │ │ │           0: 1  .  .  .  . .
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out
    │ │ │ @@ -1,24 +1,23 @@
    │ │ │  -- -*- M2-comint -*- hash: 9542801742429495161
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726966
    │ │ │ + -- setting random seed to 1767266088
    │ │ │  
    │ │ │ -o1 = 1765726966
    │ │ │ +o1 = 1767266088
    │ │ │  
    │ │ │  i2 : kk=ZZ/101;
    │ │ │  
    │ │ │  i3 : S=kk[vars(0..5)];
    │ │ │  
    │ │ │  i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc)
    │ │ │ + -- used 2.9617s (cpu); 1.52285s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 50 }
    │ │ │ -           5 => 198
    │ │ │ -           6 => 177
    │ │ │ -           7 => 62
    │ │ │ -           8 => 12
    │ │ │ -           9 => 1
    │ │ │ +o4 = Tally{4 => 46 }
    │ │ │ +           5 => 217
    │ │ │ +           6 => 174
    │ │ │ +           7 => 52
    │ │ │ +           8 => 11
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5959465567197821046
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726971
    │ │ │ + -- setting random seed to 1767266092
    │ │ │  
    │ │ │ -o1 = 1765726971
    │ │ │ +o1 = 1767266092
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -15,13 +15,13 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      2
    │ │ │ -o4 = a c
    │ │ │ +      3
    │ │ │ +o4 = b
    │ │ │  
    │ │ │  o4 : S
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 8876340562021865447
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726980
    │ │ │ + -- setting random seed to 1767266098
    │ │ │  
    │ │ │ -o1 = 1765726980
    │ │ │ +o1 = 1767266098
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -28,12 +28,12 @@
    │ │ │  
    │ │ │  o5 = ideal(a*c*d)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │  
    │ │ │  i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d)
    │ │ │ +o6 = ideal (c*e, a*c, c*d, a*e, b*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 10504911213508281315
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726975
    │ │ │ + -- setting random seed to 1767266095
    │ │ │  
    │ │ │ -o1 = 1765726975
    │ │ │ +o1 = 1767266095
    │ │ │  
    │ │ │  i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │ @@ -15,17 +15,15 @@
    │ │ │  
    │ │ │  o3 = monomialIdeal (a*b, a*d, b*c*d)
    │ │ │  
    │ │ │  o3 : MonomialIdeal of S
    │ │ │  
    │ │ │  i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c*d, b*c*d), {a*b, a*c*d, b*c*d}, {c*d, b*d, a*d,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     b*c, a*c}}
    │ │ │ +o4 = {monomialIdeal (a*b, a*d, b*d), {a*b, a*d, b*d}, {c*d, b*c, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : setRandomSeed(1)
    │ │ │   -- setting random seed to 1
    │ │ │  
    │ │ │  o5 = 1
    │ │ │ @@ -39,15 +37,15 @@
    │ │ │  i7 : J = monomialIdeal 0_S
    │ │ │  
    │ │ │  o7 = monomialIdeal ()
    │ │ │  
    │ │ │  o7 : MonomialIdeal of S
    │ │ │  
    │ │ │  i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc)
    │ │ │ + -- used 4.46924s (cpu); 3.07173s (thread); 0s (gc)
    │ │ │  
    │ │ │  i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │  
    │ │ │  i10 : T
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html
    │ │ │ @@ -71,17 +71,17 @@
    │ │ │          
    │ │ │

    Chooses a random monomial.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726971
    │ │ │ + -- setting random seed to 1767266092
    │ │ │  
    │ │ │ -o1 = 1765726971
    │ │ │ +o1 = 1767266092 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -98,16 +98,16 @@
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      2
    │ │ │ -o4 = a c
    │ │ │ +      3
    │ │ │ +o4 = b
    │ │ │  
    │ │ │  o4 : S
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,31 +11,31 @@ │ │ │ │ o d, an _i_n_t_e_g_e_r, non-negative │ │ │ │ o S, a _r_i_n_g, polynomial ring │ │ │ │ * Outputs: │ │ │ │ o m, a _r_i_n_g_ _e_l_e_m_e_n_t, monomial of S │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Chooses a random monomial. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726971 │ │ │ │ + -- setting random seed to 1767266092 │ │ │ │ │ │ │ │ -o1 = 1765726971 │ │ │ │ +o1 = 1767266092 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : randomMonomial(3,S) │ │ │ │ │ │ │ │ - 2 │ │ │ │ -o4 = a c │ │ │ │ + 3 │ │ │ │ +o4 = b │ │ │ │ │ │ │ │ o4 : S │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_M_o_n_o_m_i_a_l_I_d_e_a_l -- random monomial ideal with given degree generators │ │ │ │ * _r_a_n_d_o_m_S_q_u_a_r_e_F_r_e_e_M_o_n_o_m_i_a_l_I_d_e_a_l -- random square-free monomial ideal with │ │ │ │ given degree generators │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommMMoonnoommiiaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ @@ -71,17 +71,17 @@ │ │ │
    │ │ │

    Choose a random square-free monomial ideal whose generators have the degrees specified by the list or sequence L.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726980
    │ │ │ + -- setting random seed to 1767266098
    │ │ │  
    │ │ │ -o1 = 1765726980
    │ │ │ +o1 = 1767266098 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -117,15 +117,15 @@
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d)
    │ │ │ +o6 = ideal (c*e, a*c, c*d, a*e, b*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,17 +13,17 @@ │ │ │ │ * Outputs: │ │ │ │ o I, an _i_d_e_a_l, square-free monomial ideal with generators of │ │ │ │ specified degrees │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Choose a random square-free monomial ideal whose generators have the degrees │ │ │ │ specified by the list or sequence L. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726980 │ │ │ │ + -- setting random seed to 1767266098 │ │ │ │ │ │ │ │ -o1 = 1765726980 │ │ │ │ +o1 = 1767266098 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a..e] │ │ │ │ │ │ │ │ @@ -39,15 +39,15 @@ │ │ │ │ low degree gens generated everything │ │ │ │ │ │ │ │ o5 = ideal(a*c*d) │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : randomSquareFreeMonomialIdeal(5:2, S) │ │ │ │ │ │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d) │ │ │ │ +o6 = ideal (c*e, a*c, c*d, a*e, b*d) │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The ideal is constructed degree by degree, starting from the lowest degree │ │ │ │ specified. If there are not enough monomials of the next specified degree that │ │ │ │ are not already in the ideal, the function prints a warning and returns an │ │ │ │ ideal containing all the generators of that degree. │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ @@ -79,17 +79,17 @@ │ │ │

    With probability p the routine takes the Alexander dual of I; the default value of p is .05, and it can be set with the option AlexanderProbility.

    │ │ │

    Otherwise uses the Metropolis algorithm to produce a random walk on the space of square-free ideals. Note that there are a LOT of square-free ideals; these are the Dedekind numbers, and the sequence (with 1,2,3,4,5,6,7,8 variables) begins 3,6,20,168,7581, 7828354, 2414682040998, 56130437228687557907788. (see the Online Encyclopedia of Integer Sequences for more information). Given I in a polynomial ring S, we make a list ISocgens of the square-free minimal monomial generators of the socle of S/(squares+I) and a list of minimal generators Igens of I. A candidate "next" ideal J is formed as follows: We choose randomly from the union of these lists; if a socle element is chosen, it's added to I; if a minimal generator is chosen, it's replaced by the square-free part of the maximal ideal times it. the chance of making the given move is then 1/(#ISocgens+#Igens), and the chance of making the move back would be the similar quantity for J, so we make the move or not depending on whether random RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1].

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726975
    │ │ │ + -- setting random seed to 1767266095
    │ │ │  
    │ │ │ -o1 = 1765726975
    │ │ │ +o1 = 1767266095 │ │ │
    │ │ │
    i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │ @@ -106,17 +106,15 @@
    │ │ │  o3 : MonomialIdeal of S
    │ │ │
    │ │ │
    i4 : randomSquareFreeStep J
    │ │ │  
    │ │ │ -o4 = {monomialIdeal (a*b, a*c*d, b*c*d), {a*b, a*c*d, b*c*d}, {c*d, b*d, a*d,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     b*c, a*c}}
    │ │ │ +o4 = {monomialIdeal (a*b, a*d, b*d), {a*b, a*d, b*d}, {c*d, b*c, a*c}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    │ │ │

    With 4 variables and 168 possible monomial ideals, a run of 5000 takes less than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 takes about 2 seconds.

    │ │ │ @@ -147,15 +145,15 @@ │ │ │ │ │ │ o7 : MonomialIdeal of S
    │ │ │
    │ │ │
    i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc)
    │ │ │ + -- used 4.46924s (cpu); 3.07173s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │ ├── html2text {} │ │ │ │ @@ -35,32 +35,30 @@ │ │ │ │ choose randomly from the union of these lists; if a socle element is chosen, │ │ │ │ it's added to I; if a minimal generator is chosen, it's replaced by the square- │ │ │ │ free part of the maximal ideal times it. the chance of making the given move is │ │ │ │ then 1/(#ISocgens+#Igens), and the chance of making the move back would be the │ │ │ │ similar quantity for J, so we make the move or not depending on whether random │ │ │ │ RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1]. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726975 │ │ │ │ + -- setting random seed to 1767266095 │ │ │ │ │ │ │ │ -o1 = 1765726975 │ │ │ │ +o1 = 1767266095 │ │ │ │ i2 : S=ZZ/2[vars(0..3)] │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : J = monomialIdeal"ab,ad, bcd" │ │ │ │ │ │ │ │ o3 = monomialIdeal (a*b, a*d, b*c*d) │ │ │ │ │ │ │ │ o3 : MonomialIdeal of S │ │ │ │ i4 : randomSquareFreeStep J │ │ │ │ │ │ │ │ -o4 = {monomialIdeal (a*b, a*c*d, b*c*d), {a*b, a*c*d, b*c*d}, {c*d, b*d, a*d, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - b*c, a*c}} │ │ │ │ +o4 = {monomialIdeal (a*b, a*d, b*d), {a*b, a*d, b*d}, {c*d, b*c, a*c}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ With 4 variables and 168 possible monomial ideals, a run of 5000 takes less │ │ │ │ than 6 seconds on a reasonably fast machine. With 10 variables a run of 1000 │ │ │ │ takes about 2 seconds. │ │ │ │ i5 : setRandomSeed(1) │ │ │ │ -- setting random seed to 1 │ │ │ │ @@ -74,15 +72,15 @@ │ │ │ │ i7 : J = monomialIdeal 0_S │ │ │ │ │ │ │ │ o7 = monomialIdeal () │ │ │ │ │ │ │ │ o7 : MonomialIdeal of S │ │ │ │ i8 : time T=tally for t from 1 to 5000 list first (J=rsfs │ │ │ │ (J,AlexanderProbability => .01)); │ │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc) │ │ │ │ + -- used 4.46924s (cpu); 3.07173s (thread); 0s (gc) │ │ │ │ i9 : #T │ │ │ │ │ │ │ │ o9 = 168 │ │ │ │ i10 : T │ │ │ │ │ │ │ │ o10 = Tally{monomialIdeal () => 45 } │ │ │ │ monomialIdeal (a*b*c, a*b*d) => 33 │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ @@ -54,17 +54,17 @@ │ │ │
    │ │ │

    This package can be used to make experiments, trying many ideals, perhaps over small fields. For example...what would you expect the regularities of "typical" monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a bunch of examples -- it's fast. Here we do only 500 -- this takes about a second on a fast machine -- but with a little patience, thousands can be done conveniently.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -72,22 +72,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726966
    │ │ │ + -- setting random seed to 1767266088
    │ │ │  
    │ │ │ -o1 = 1765726966
    │ │ │ +o1 = 1767266088 │ │ │
    │ │ │
    i2 : kk=ZZ/101;
    │ │ │
    │ │ │
    i3 : S=kk[vars(0..5)];
    │ │ │
    │ │ │
    i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc)
    │ │ │ + -- used 2.9617s (cpu); 1.52285s (thread); 0s (gc)
    │ │ │  
    │ │ │ -o4 = Tally{4 => 50 }
    │ │ │ -           5 => 198
    │ │ │ -           6 => 177
    │ │ │ -           7 => 62
    │ │ │ -           8 => 12
    │ │ │ -           9 => 1
    │ │ │ +o4 = Tally{4 => 46 }
    │ │ │ +           5 => 217
    │ │ │ +           6 => 174
    │ │ │ +           7 => 52
    │ │ │ +           8 => 11
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │
    │ │ │
    │ │ │

    How does this compare with the case of binomial ideals? or pure binomial ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger numbers of examples. Click the link "Finding Extreme Examples" below to see some other, more elaborate ways to search.

    │ │ │ ├── html2text {} │ │ │ │ @@ -9,28 +9,27 @@ │ │ │ │ This package can be used to make experiments, trying many ideals, perhaps over │ │ │ │ small fields. For example...what would you expect the regularities of "typical" │ │ │ │ monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a │ │ │ │ bunch of examples -- it's fast. Here we do only 500 -- this takes about a │ │ │ │ second on a fast machine -- but with a little patience, thousands can be done │ │ │ │ conveniently. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726966 │ │ │ │ + -- setting random seed to 1767266088 │ │ │ │ │ │ │ │ -o1 = 1765726966 │ │ │ │ +o1 = 1767266088 │ │ │ │ i2 : kk=ZZ/101; │ │ │ │ i3 : S=kk[vars(0..5)]; │ │ │ │ i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S) │ │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc) │ │ │ │ + -- used 2.9617s (cpu); 1.52285s (thread); 0s (gc) │ │ │ │ │ │ │ │ -o4 = Tally{4 => 50 } │ │ │ │ - 5 => 198 │ │ │ │ - 6 => 177 │ │ │ │ - 7 => 62 │ │ │ │ - 8 => 12 │ │ │ │ - 9 => 1 │ │ │ │ +o4 = Tally{4 => 46 } │ │ │ │ + 5 => 217 │ │ │ │ + 6 => 174 │ │ │ │ + 7 => 52 │ │ │ │ + 8 => 11 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ How does this compare with the case of binomial ideals? or pure binomial │ │ │ │ ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" │ │ │ │ above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger │ │ │ │ numbers of examples. Click the link "Finding Extreme Examples" below to see │ │ │ │ some other, more elaborate ways to search. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ @@ -5,17 +5,17 @@ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ - -- 1.63992s elapsed │ │ │ + -- 1.33023s elapsed │ │ │ │ │ │ o4 = 4 │ │ │ │ │ │ i5 : elapsedTime dim I │ │ │ - -- 3.02509s elapsed │ │ │ + -- 3.20197s elapsed │ │ │ │ │ │ o5 = 4 │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i8 : i = 0; │ │ │ │ │ │ i9 : J = I; │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ - -- 2.0239s elapsed │ │ │ + -- 1.51607s elapsed │ │ │ │ │ │ i11 : dim J │ │ │ │ │ │ o11 = 1 │ │ │ │ │ │ i12 : i │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ @@ -27,24 +27,24 @@ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable) │ │ │ - -- 3.12043s elapsed │ │ │ + -- 2.6456s elapsed │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ ------------------------------------------------------------------------ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose) │ │ │ - -- 2.62392s elapsed │ │ │ + -- 1.95895s elapsed │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ ------------------------------------------------------------------------ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ o9 : List │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │
    │ │ │
    i4 : elapsedTime dimViaBezout(I)
    │ │ │ - -- 1.63992s elapsed
    │ │ │ + -- 1.33023s elapsed
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : elapsedTime dim I
    │ │ │ - -- 3.02509s elapsed
    │ │ │ + -- 3.20197s elapsed
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    │ │ │

    The user may set the MinimumFieldSize to ensure that the field being worked over is big enough. For instance, there are relatively few linear spaces over a field of characteristic 2, and this can cause incorrect results to be provided. If no size is provided, the function tries to guess a good size based on ambient ring.

    │ │ │ ├── html2text {} │ │ │ │ @@ -32,19 +32,19 @@ │ │ │ │ examples, the built in dim function is much faster. │ │ │ │ i1 : kk=ZZ/101; │ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ │ - -- 1.63992s elapsed │ │ │ │ + -- 1.33023s elapsed │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : elapsedTime dim I │ │ │ │ - -- 3.02509s elapsed │ │ │ │ + -- 3.20197s elapsed │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ The user may set the MinimumFieldSize to ensure that the field being worked │ │ │ │ over is big enough. For instance, there are relatively few linear spaces over a │ │ │ │ field of characteristic 2, and this can cause incorrect results to be provided. │ │ │ │ If no size is provided, the function tries to guess a good size based on │ │ │ │ ambient ring. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ @@ -155,15 +155,15 @@ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) );
    │ │ │ - -- 2.0239s elapsed
    │ │ │ + -- 1.51607s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : dim J
    │ │ │  
    │ │ │  o11 = 1
    │ │ │ ├── html2text {} │ │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ o7 : Matrix T <-- T │ │ │ │ i8 : i = 0; │ │ │ │ i9 : J = I; │ │ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = │ │ │ │ extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ │ - -- 2.0239s elapsed │ │ │ │ + -- 1.51607s elapsed │ │ │ │ i11 : dim J │ │ │ │ │ │ │ │ o11 = 1 │ │ │ │ i12 : i │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ In this particular example, there tend to be about 5 associated primes when │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ @@ -144,27 +144,27 @@ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable)
    │ │ │ - -- 3.12043s elapsed
    │ │ │ + -- 2.6456s elapsed
    │ │ │  
    │ │ │  o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose)
    │ │ │ - -- 2.62392s elapsed
    │ │ │ + -- 1.95895s elapsed
    │ │ │  
    │ │ │  o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,24 +66,24 @@ │ │ │ │ first in rings with more variables. │ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>MultiplicationTable) │ │ │ │ - -- 3.12043s elapsed │ │ │ │ + -- 2.6456s elapsed │ │ │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>Decompose) │ │ │ │ - -- 2.62392s elapsed │ │ │ │ + -- 1.95895s elapsed │ │ │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommPPooiinnttss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc) │ │ │ + -- used 0.80984s (cpu); 0.455423s (thread); 0s (gc) │ │ │ │ │ │ 125 124 120 5 124 100 25 104 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 28 90 7 32 85 8 36 80 9 40 75 10 44 70 11 48 65 12 52 60 13 56 55 14 60 50 15 64 45 16 68 40 17 72 35 18 76 30 19 80 25 20 84 20 21 88 15 22 92 10 23 96 5 24 100 25 24 100 28 95 32 90 2 36 85 3 40 80 4 44 75 5 48 70 6 52 65 7 56 60 8 60 55 9 64 50 10 68 45 11 72 40 12 76 35 13 80 30 14 84 25 15 88 20 16 92 15 17 96 10 18 100 5 19 104 20 48 75 2 52 70 2 56 65 2 2 60 60 3 2 64 55 4 2 68 50 5 2 72 45 6 2 76 40 7 2 80 35 8 2 84 30 9 2 88 25 10 2 92 20 11 2 96 15 12 2 100 10 13 2 104 5 14 2 108 15 2 72 50 3 76 45 3 80 40 2 3 84 35 3 3 88 30 4 3 92 25 5 3 96 20 6 3 100 15 7 3 104 10 8 3 108 5 9 3 112 10 3 96 25 4 100 20 4 104 15 2 4 108 10 3 4 112 5 4 4 116 5 4 120 5 124 │ │ │ o14 = Proj Q - - - > Proj Q {x , x y, - x y + x z, x y - 5x y z + 10x y z - 10x y z + 5x y z - x z + x t, - y + 25x y z - 300x y z + 2300x y z - 12650x y z + 53130x y z - 177100x y z + 480700x y z - 1081575x y z + 2042975x y z - 3268760x y z + 4457400x y z - 5200300x y z + 5200300x y z - 4457400x y z + 3268760x y z - 2042975x y z + 1081575x y z - 480700x y z + 177100x y z - 53130x y z + 12650x y z - 2300x y z + 300x y z - 25x y z + x z - 5x y t + 100x y z*t - 950x y z t + 5700x y z t - 24225x y z t + 77520x y z t - 193800x y z t + 387600x y z t - 629850x y z t + 839800x y z t - 923780x y z t + 839800x y z t - 629850x y z t + 387600x y z t - 193800x y z t + 77520x y z t - 24225x y z t + 5700x y z t - 950x y z t + 100x y z t - 5x z t - 10x y t + 150x y z*t - 1050x y z t + 4550x y z t - 13650x y z t + 30030x y z t - 50050x y z t + 64350x y z t - 64350x y z t + 50050x y z t - 30030x y z t + 13650x y z t - 4550x y z t + 1050x y z t - 150x y z t + 10x z t - 10x y t + 100x y z*t - 450x y z t + 1200x y z t - 2100x y z t + 2520x y z t - 2100x y z t + 1200x y z t - 450x y z t + 100x y z t - 10x z t - 5x y t + 25x y z*t - 50x y z t + 50x y z t - 25x y z t + 5x z t - x t + x u} │ │ │ │ │ │ o14 : RationalMapping │ │ │ │ │ │ i15 : R=QQ[x,y,z,t]/(z-2*t); │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ @@ -189,15 +189,15 @@ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0)
    │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc)
    │ │ │ + -- used 0.80984s (cpu); 0.455423s (thread); 0s (gc)
    │ │ │  
    │ │ │                                  125   124      120 5    124    100 25     104 20       108 15 2      112 10 3     116 5 4    120 5    124      125      4 120        8 115 2        12 110 3         16 105 4         20 100 5          24 95 6          28 90 7           32 85 8           36 80 9           40 75 10           44 70 11           48 65 12           52 60 13           56 55 14           60 50 15           64 45 16           68 40 17          72 35 18          76 30 19         80 25 20         84 20 21        88 15 22       92 10 23      96 5 24    100 25     24 100        28 95          32 90 2         36 85 3          40 80 4          44 75 5           48 70 6           52 65 7           56 60 8           60 55 9           64 50 10           68 45 11           72 40 12           76 35 13           80 30 14          84 25 15          88 20 16         92 15 17        96 10 18        100 5 19      104 20       48 75 2       52 70   2        56 65 2 2        60 60 3 2         64 55 4 2         68 50 5 2         72 45 6 2         76 40 7 2         80 35 8 2         84 30 9 2         88 25 10 2         92 20 11 2        96 15 12 2        100 10 13 2       104 5 14 2      108 15 2      72 50 3       76 45   3       80 40 2 3        84 35 3 3        88 30 4 3        92 25 5 3        96 20 6 3        100 15 7 3       104 10 8 3       108 5 9 3      112 10 3     96 25 4      100 20   4      104 15 2 4      108 10 3 4      112 5 4 4     116 5 4    120 5    124
    │ │ │  o14 = Proj Q - - - > Proj Q   {x   , x   y, - x   y  + x   z, x   y   - 5x   y  z + 10x   y  z  - 10x   y  z  + 5x   y z  - x   z  + x   t, - y    + 25x y   z - 300x y   z  + 2300x  y   z  - 12650x  y   z  + 53130x  y   z  - 177100x  y  z  + 480700x  y  z  - 1081575x  y  z  + 2042975x  y  z  - 3268760x  y  z   + 4457400x  y  z   - 5200300x  y  z   + 5200300x  y  z   - 4457400x  y  z   + 3268760x  y  z   - 2042975x  y  z   + 1081575x  y  z   - 480700x  y  z   + 177100x  y  z   - 53130x  y  z   + 12650x  y  z   - 2300x  y  z   + 300x  y  z   - 25x  y z   + x   z   - 5x  y   t + 100x  y  z*t - 950x  y  z t + 5700x  y  z t - 24225x  y  z t + 77520x  y  z t - 193800x  y  z t + 387600x  y  z t - 629850x  y  z t + 839800x  y  z t - 923780x  y  z  t + 839800x  y  z  t - 629850x  y  z  t + 387600x  y  z  t - 193800x  y  z  t + 77520x  y  z  t - 24225x  y  z  t + 5700x  y  z  t - 950x  y  z  t + 100x   y z  t - 5x   z  t - 10x  y  t  + 150x  y  z*t  - 1050x  y  z t  + 4550x  y  z t  - 13650x  y  z t  + 30030x  y  z t  - 50050x  y  z t  + 64350x  y  z t  - 64350x  y  z t  + 50050x  y  z t  - 30030x  y  z  t  + 13650x  y  z  t  - 4550x  y  z  t  + 1050x   y  z  t  - 150x   y z  t  + 10x   z  t  - 10x  y  t  + 100x  y  z*t  - 450x  y  z t  + 1200x  y  z t  - 2100x  y  z t  + 2520x  y  z t  - 2100x  y  z t  + 1200x   y  z t  - 450x   y  z t  + 100x   y z t  - 10x   z  t  - 5x  y  t  + 25x   y  z*t  - 50x   y  z t  + 50x   y  z t  - 25x   y z t  + 5x   z t  - x   t  + x   u}
    │ │ │  
    │ │ │  o14 : RationalMapping
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ o11 : Ideal of blowUpSubvar │ │ │ │ The next example is a birational map on $\mathbb{P}^4$. │ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc) │ │ │ │ + -- used 0.80984s (cpu); 0.455423s (thread); 0s (gc) │ │ │ │ │ │ │ │ 125 124 120 5 124 100 25 104 │ │ │ │ 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 │ │ │ │ 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 │ │ │ │ 28 90 7 32 85 8 36 80 9 40 75 10 44 70 │ │ │ │ 11 48 65 12 52 60 13 56 55 14 60 50 15 │ │ │ │ 64 45 16 68 40 17 72 35 18 76 30 19 80 25 │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ @@ -48,15 +48,15 @@ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc) │ │ │ + -- used 0.00457055s (cpu); 0.0045688s (thread); 0s (gc) │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ │ │ o16 : Ideal of QQ[x..z] │ │ │ │ │ │ @@ -142,23 +142,23 @@ │ │ │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc) │ │ │ + -- used 1.04689s (cpu); 0.856754s (thread); 0s (gc) │ │ │ │ │ │ i33 : #oo │ │ │ │ │ │ o33 = 31 │ │ │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc) │ │ │ + -- used 0.289067s (cpu); 0.219977s (thread); 0s (gc) │ │ │ │ │ │ o35 = 31 │ │ │ │ │ │ i36 : │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ @@ -178,15 +178,15 @@ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time rationalPoints(I, Amount => true)
    │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc)
    │ │ │ + -- used 0.00457055s (cpu); 0.0045688s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 110462212541120451001
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Over number fields

    │ │ │ @@ -348,15 +348,15 @@ │ │ │ o31 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true);
    │ │ │  -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25)
    │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc)
    │ │ │ + -- used 1.04689s (cpu); 0.856754s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : #oo
    │ │ │  
    │ │ │  o33 = 31
    │ │ │ @@ -373,15 +373,15 @@ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true)
    │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc)
    │ │ │ + -- used 0.289067s (cpu); 0.219977s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 31
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ o13 = ideal(u + u + u + u + u + u + u + u + u + u + u ) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ │ 101 0 10 │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc) │ │ │ │ + -- used 0.00457055s (cpu); 0.0045688s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ ****** OOvveerr nnuummbbeerr ffiieellddss ****** │ │ │ │ Over a number field one can use the option Bound to specify a maximal │ │ │ │ multiplicative height given by $(x_0:\dots:x_n)\mapsto \prod_{v}\max_i|x_i|_v ^ │ │ │ │ {d_v/d}$ (this is also available as a method _g_l_o_b_a_l_H_e_i_g_h_t). │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ @@ -197,24 +197,24 @@ │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc) │ │ │ │ + -- used 1.04689s (cpu); 0.856754s (thread); 0s (gc) │ │ │ │ i33 : #oo │ │ │ │ │ │ │ │ o33 = 31 │ │ │ │ Still it runs a lot faster when reduced to a positive characteristic. │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc) │ │ │ │ + -- used 0.289067s (cpu); 0.219977s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 31 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For a number field other than QQ, the enumeration of elements with bounded │ │ │ │ height depends on an algorithm by Doyle–Krumm, which is currently only │ │ │ │ implemented in Sage. │ │ │ │ ******** MMeennuu ******** │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ @@ -331,15 +331,15 @@ │ │ │ 2 2 2 2 2 2 2 │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc) │ │ │ + -- used 0.959232s (cpu); 0.804259s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ 32003 0 2 0 1 │ │ │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ @@ -58,15 +58,15 @@ │ │ │ o5 : Matrix S <-- S │ │ │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc) │ │ │ + -- used 1.02858s (cpu); 0.80405s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ 0 4 │ │ │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ @@ -77,19 +77,19 @@ │ │ │ o10 : Matrix S <-- S │ │ │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc) │ │ │ + -- used 1.78483s (cpu); 1.46876s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc) │ │ │ + -- used 1.60907s (cpu); 1.39787s (thread); 0s (gc) │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i14 : │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ @@ -13,21 +13,21 @@ │ │ │ 3 2 │ │ │ - x x x , x - x x ) │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc) │ │ │ + -- used 0.0793139s (cpu); 0.0320054s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc) │ │ │ + -- used 0.327239s (cpu); 0.164424s (thread); 0s (gc) │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ o6 = S │ │ │ @@ -47,21 +47,21 @@ │ │ │ │ │ │ 2 2 │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc) │ │ │ + -- used 0.137162s (cpu); 0.03244s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc) │ │ │ + -- used 0.0203954s (cpu); 0.00915512s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ @@ -587,15 +587,15 @@ │ │ │
    │ │ │

    We compute the singular locus once again:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -325,15 +325,15 @@ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ We compute the singular locus once again: │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc) │ │ │ │ + -- used 0.959232s (cpu); 0.804259s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ │ 32003 0 2 0 1 │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ │ │ │ │ │ │ o49 = ideal 1 │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ @@ -151,15 +151,15 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i48 : time sing2 = ideal singularLocus strictTransform2;
    │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc)
    │ │ │ + -- used 0.959232s (cpu); 0.804259s (thread); 0s (gc)
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o48 : Ideal of -----[p ..p , w ..w , x..y]
    │ │ │                 32003  0   2   0   1
    │ │ │
    │ │ │
    i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec.
    │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc)
    │ │ │ + -- used 1.02858s (cpu); 0.80405s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S[w ..w ]
    │ │ │                   0   4
    │ │ │
    │ │ │ @@ -185,24 +185,24 @@ │ │ │ │ │ │ o11 : Ideal of S │ │ │
    │ │ │
    i12 : time reesIdeal (I, I_0);
    │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc)
    │ │ │ + -- used 1.78483s (cpu); 1.46876s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    i13 : time reesIdeal (I, I_0, Jacobian =>false);
    │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc)
    │ │ │ + -- used 1.60907s (cpu); 1.39787s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -86,34 +86,34 @@ │ │ │ │ │ │ │ │ 5 4 │ │ │ │ o5 : Matrix S <-- S │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc) │ │ │ │ + -- used 1.02858s (cpu); 0.80405s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ │ 0 4 │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ │ i10 : m = random(S^3, S^{4:-2}); │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o10 : Matrix S <-- S │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc) │ │ │ │ + -- used 1.78483s (cpu); 1.46876s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc) │ │ │ │ + -- used 1.60907s (cpu); 1.39787s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_m_e_t_r_i_c_A_l_g_e_b_r_a_I_d_e_a_l -- Ideal of the symmetric algebra of an ideal or │ │ │ │ module │ │ │ │ * _j_a_c_o_b_i_a_n_D_u_a_l -- Computes the 'jacobian dual', part of a method of finding │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ @@ -110,24 +110,24 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time V1 = reesIdeal i;
    │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc)
    │ │ │ + -- used 0.0793139s (cpu); 0.0320054s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time V2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc)
    │ │ │ + -- used 0.327239s (cpu); 0.164424s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ @@ -164,24 +164,24 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time I1 = reesIdeal i;
    │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc)
    │ │ │ + -- used 0.137162s (cpu); 0.03244s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of S[w ..w ]
    │ │ │                   0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time I2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc)
    │ │ │ + -- used 0.0203954s (cpu); 0.00915512s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of S[w ..w ]
    │ │ │                    0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,20 +51,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 │ │ │ │ - x x x , x - x x ) │ │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc) │ │ │ │ + -- used 0.0793139s (cpu); 0.0320054s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc) │ │ │ │ + -- used 0.327239s (cpu); 0.164424s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ The following example shows how we handle degrees │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o6 = S │ │ │ │ @@ -81,20 +81,20 @@ │ │ │ │ i8 : i=minors(2,m) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc) │ │ │ │ + -- used 0.137162s (cpu); 0.03244s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc) │ │ │ │ + -- used 0.0203954s (cpu); 0.00915512s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ │ │ {-1, -3} | aw_0-bw_1 | │ │ ├── ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out │ │ │ @@ -71,15 +71,15 @@ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ -o8 = .2590714710000002 │ │ │ +o8 = .2568463147272727 │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ o9 = R │ │ │ │ │ │ @@ -87,17 +87,17 @@ │ │ │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ -o11 = .07735652088059701 │ │ │ +o11 = .07241933712244897 │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ │ │ i12 : time regularity I2 │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc) │ │ │ + -- used 0.00216214s (cpu); 0.00216562s (thread); 0s (gc) │ │ │ │ │ │ o12 = 4 │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html │ │ │ @@ -176,15 +176,15 @@ │ │ │ o7 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : benchmark "mRegularity I1"
    │ │ │  
    │ │ │ -o8 = .2590714710000002
    │ │ │ +o8 = .2568463147272727
    │ │ │  
    │ │ │  o8 : RR (of precision 53)
    │ │ │ │ │ │ │ │ │ │ │ │

    This is an example where regularity is faster than mRegularity.

    │ │ │ │ │ │ @@ -204,23 +204,23 @@ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : benchmark " mRegularity I2"
    │ │ │  
    │ │ │ -o11 = .07735652088059701
    │ │ │ +o11 = .07241933712244897
    │ │ │  
    │ │ │  o11 : RR (of precision 53)
    │ │ │
    │ │ │
    i12 : time regularity I2  
    │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc)
    │ │ │ + -- used 0.00216214s (cpu); 0.00216562s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = 4
    │ │ │
    │ │ │

    This symbol is provided by the package Regularity.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -94,34 +94,34 @@ │ │ │ │ 3 2 2 3 3 2 │ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ │ │ -o8 = .2590714710000002 │ │ │ │ +o8 = .2568463147272727 │ │ │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ This is an example where regularity is faster than mRegularity. │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : PolynomialRing │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, │ │ │ │ x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ │ │ -o11 = .07735652088059701 │ │ │ │ +o11 = .07241933712244897 │ │ │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ i12 : time regularity I2 │ │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc) │ │ │ │ + -- used 0.00216214s (cpu); 0.00216562s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ This symbol is provided by the package Regularity. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_u_l_a_r_i_t_y -- compute the Castelnuovo-Mumford regularity │ │ │ │ ********** WWaayyss ttoo uussee mmRReegguullaarriittyy:: ********** │ │ │ │ * mRegularity(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ @@ -5,18 +5,18 @@ │ │ │ o2 = ideal(x x - x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc) │ │ │ + -- used 0.131859s (cpu); 0.0745575s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc) │ │ │ + -- used 0.139932s (cpu); 0.0797331s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ @@ -37,17 +37,17 @@ │ │ │ 2 2 │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc) │ │ │ + -- used 0.17014s (cpu); 0.114168s (thread); 0s (gc) │ │ │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc) │ │ │ + -- used 0.177206s (cpu); 0.115764s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ i3 : -- Chow equations of C │ │ │ time eqsC = chowEquations chowForm C │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc) │ │ │ + -- used 0.135471s (cpu); 0.0630562s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ @@ -72,15 +72,15 @@ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ │ │ i6 : -- Chow equations of D │ │ │ time eqsD = chowEquations chowForm D │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc) │ │ │ + -- used 0.13548s (cpu); 0.0604597s (thread); 0s (gc) │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ @@ -117,24 +117,24 @@ │ │ │ o9 = ideal(x x + x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2)) │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc) │ │ │ + -- used 0.263346s (cpu); 0.119511s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x ) │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2)) │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc) │ │ │ + -- used 0.158772s (cpu); 0.0913561s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ 3331 0 5 │ │ │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian) │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc) │ │ │ + -- used 5.21966s (cpu); 4.85951s (thread); 0s (gc) │ │ │ │ │ │ 4 2 2 2 2 │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ x x - x x x + x x x x + │ │ │ @@ -143,19 +143,19 @@ │ │ │ 3331 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 0,1,5 0,2,5 1,2,5 0,3,5 1,3,5 2,3,5 0,4,5 1,4,5 2,4,5 3,4,5 │ │ │ o3 : ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) │ │ │ 2,3,5 1,4,5 1,3,5 2,4,5 1,2,5 3,4,5 2,3,4 1,4,5 1,3,4 2,4,5 1,2,4 3,4,5 2,3,5 0,4,5 0,3,5 2,4,5 0,2,5 3,4,5 1,3,5 0,4,5 0,3,5 1,4,5 0,1,5 3,4,5 1,2,5 0,4,5 0,2,5 1,4,5 0,1,5 2,4,5 2,3,4 0,4,5 0,3,4 2,4,5 0,2,4 3,4,5 1,3,4 0,4,5 0,3,4 1,4,5 0,1,4 3,4,5 1,2,4 0,4,5 0,2,4 1,4,5 0,1,4 2,4,5 1,2,3 0,4,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 1,3,5 1,3,4 2,3,5 1,2,3 3,4,5 1,2,5 0,3,5 0,2,5 1,3,5 0,1,5 2,3,5 2,3,4 0,3,5 0,3,4 2,3,5 0,2,3 3,4,5 1,3,4 0,3,5 0,3,4 1,3,5 0,1,3 3,4,5 1,2,4 0,3,5 0,2,4 1,3,5 0,1,4 2,3,5 0,1,2 3,4,5 1,2,3 0,3,5 0,2,3 1,3,5 0,1,3 2,3,5 2,3,4 1,2,5 1,2,4 2,3,5 1,2,3 2,4,5 1,3,4 1,2,5 1,2,4 1,3,5 1,2,3 1,4,5 0,3,4 1,2,5 0,2,4 1,3,5 0,1,4 2,3,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 0,2,5 0,2,4 2,3,5 0,2,3 2,4,5 1,3,4 0,2,5 0,2,4 1,3,5 0,2,3 1,4,5 0,1,2 3,4,5 0,3,4 0,2,5 0,2,4 0,3,5 0,2,3 0,4,5 1,2,4 0,2,5 0,2,4 1,2,5 0,1,2 2,4,5 1,2,3 0,2,5 0,2,3 1,2,5 0,1,2 2,3,5 2,3,4 0,1,5 0,1,4 2,3,5 0,1,3 2,4,5 0,1,2 3,4,5 1,3,4 0,1,5 0,1,4 1,3,5 0,1,3 1,4,5 0,3,4 0,1,5 0,1,4 0,3,5 0,1,3 0,4,5 1,2,4 0,1,5 0,1,4 1,2,5 0,1,2 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ time assert(ChowV === chowForm f) │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc) │ │ │ + -- used 1.15009s (cpu); 1.09337s (thread); 0s (gc) │ │ │ │ │ │ i5 : -- X-resultant of V │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc) │ │ │ + -- used 0.284789s (cpu); 0.220968s (thread); 0s (gc) │ │ │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ @@ -164,12 +164,12 @@ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : -- resultant of the three forms │ │ │ time resF = resultant F; │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc) │ │ │ + -- used 0.287939s (cpu); 0.220002s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres)) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ @@ -4,30 +4,30 @@ │ │ │ │ │ │ 2 2 │ │ │ o2 = a*x + b*x*y + c*y │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ i3 : time discriminant F │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc) │ │ │ + -- used 0.00983715s (cpu); 0.00983637s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o3 = - b + 4a*c │ │ │ │ │ │ o3 : ZZ[a..c] │ │ │ │ │ │ i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3 │ │ │ │ │ │ 3 2 2 3 │ │ │ o5 = a*x + b*x y + c*x*y + d*y │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ i6 : time discriminant F │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc) │ │ │ + -- used 0.0101472s (cpu); 0.010148s (thread); 0s (gc) │ │ │ │ │ │ 2 2 3 3 2 2 │ │ │ o6 = - b c + 4a*c + 4b d - 18a*b*c*d + 27a d │ │ │ │ │ │ o6 : ZZ[a..d] │ │ │ │ │ │ i7 : x=symbol x; R=ZZ/331[x_0..x_3] │ │ │ @@ -59,15 +59,15 @@ │ │ │ 4 3 4 4 3 4 │ │ │ o12 = (t + t )x - t x x + t x + (t - t )x + t x x + t x │ │ │ 0 1 0 1 0 1 0 1 0 1 2 1 2 3 0 3 │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ i13 : time D=discriminant pencil │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc) │ │ │ + -- used 0.480519s (cpu); 0.420479s (thread); 0s (gc) │ │ │ │ │ │ 108 106 2 102 6 100 8 98 10 96 12 │ │ │ o13 = - 62t + 19t t + 160t t + 91t t + 129t t + 117t t + │ │ │ 0 0 1 0 1 0 1 0 1 0 1 │ │ │ ----------------------------------------------------------------------- │ │ │ 94 14 92 16 90 18 88 20 86 22 84 24 │ │ │ 161t t + 124t t - 82t t - 21t t - 49t t - 123t t + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ @@ -9,25 +9,25 @@ │ │ │ x x ) │ │ │ 0 3 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i2 : time V' = dualVariety V │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc) │ │ │ + -- used 0.198598s (cpu); 0.132067s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i3 : time V == dualVariety V' │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc) │ │ │ + -- used 0.230838s (cpu); 0.168205s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ 3 2 2 3 2 2 2 │ │ │ o4 = a x + a x x + a x x + a x + a x x + a x x x + a x x + a x x + │ │ │ @@ -38,22 +38,22 @@ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ ZZ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc) │ │ │ + -- used 0.0657693s (cpu); 0.065771s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ 3331 0 9 │ │ │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc) │ │ │ + -- used 0.730716s (cpu); 0.662534s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ 3331 0 9 │ │ │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc) │ │ │ + -- used 0.134421s (cpu); 0.0678798s (thread); 0s (gc) │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 2 │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ @@ -56,15 +56,15 @@ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ 0,0 1,3 │ │ │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc) │ │ │ + -- used 0.0498309s (cpu); 0.0498325s (thread); 0s (gc) │ │ │ │ │ │ 3 2 2 │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 │ │ │ 2x x + x + x │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ o4 : QQ[a ..a ] │ │ │ 0,0 1,1 │ │ │ │ │ │ i5 : w = chowForm C; │ │ │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s)) │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc) │ │ │ + -- used 0.0249667s (cpu); 0.0249684s (thread); 0s (gc) │ │ │ │ │ │ 3 2 3 2 │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 3 2 │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ @@ -130,14 +130,14 @@ │ │ │ 2 3 2 │ │ │ 2x x - x + x )} │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc) │ │ │ + -- used 0.0211123s (cpu); 0.0211149s (thread); 0s (gc) │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ + -p + -p p + 7p p + 6p p + -p p + --p ) │ │ │ 4 3 9 0 4 1 4 2 4 9 3 4 10 4 │ │ │ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i2 : time hurwitzForm Q │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc) │ │ │ + -- used 0.0449735s (cpu); 0.0449738s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o2 = 11966535p + 14645610p p + 11354175p + 1666980p p + │ │ │ 0,1 0,1 0,2 0,2 0,1 1,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ 4456620p p + 1127196p + 54176850p p + 20326950p p + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ @@ -26,15 +26,15 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o1 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i2 : time isCoisotropic w │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc) │ │ │ + -- used 0.00855771s (cpu); 0.00855747s (thread); 0s (gc) │ │ │ │ │ │ o2 = true │ │ │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ @@ -56,12 +56,12 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o3 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : time isCoisotropic w' │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc) │ │ │ + -- used 0.00707054s (cpu); 0.00707066s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ @@ -31,12 +31,12 @@ │ │ │ 4 5 │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc) │ │ │ + -- used 0.0208729s (cpu); 0.0208724s (thread); 0s (gc) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ 2 2 2 3 │ │ │ c x x x + c x x + c x x + c x x + c x } │ │ │ 4 0 1 2 7 1 2 5 0 2 8 1 2 9 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc) │ │ │ + -- used 0.00419877s (cpu); 0.00419752s (thread); 0s (gc) │ │ │ │ │ │ o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0 0 0 0 0 0 0 0 0 0 0 │ │ │ | 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 0 │ │ │ | 0 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 │ │ │ | 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 0 │ │ │ | 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 │ │ │ | 0 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 │ │ │ @@ -78,15 +78,15 @@ │ │ │ 10 2 7 2 5 3 │ │ │ --p p + -p p + -p } │ │ │ 9 0 2 8 1 2 6 2 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc) │ │ │ + -- used 0.00263209s (cpu); 0.00263066s (thread); 0s (gc) │ │ │ │ │ │ o4 = (| 9/2 9/4 3/4 7/4 7/9 7/10 0 0 0 0 0 0 0 0 0 │ │ │ | 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 0 │ │ │ | 0 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 │ │ │ | 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 0 │ │ │ | 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 │ │ │ | 0 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ @@ -9,29 +9,29 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ │ │ i4 : time p = plucker L │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc) │ │ │ + -- used 0.00547559s (cpu); 0.00547367s (thread); 0s (gc) │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 11804x , x + 14854x ) │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ │ │ i5 : time L' = plucker p │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc) │ │ │ + -- used 0.12088s (cpu); 0.0581025s (thread); 0s (gc) │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ 2 3 4 1 3 4 0 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ @@ -40,25 +40,25 @@ │ │ │ i6 : assert(L' == L) │ │ │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc) │ │ │ + -- used 0.0373625s (cpu); 0.0373403s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc) │ │ │ + -- used 0.174625s (cpu); 0.17463s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ 3 2 9 7 2 9 3 1 8 4 │ │ │ -b)y*w + (-a + -b)z*w + (-a + 2b)w , 2x + -y + -z + -w} │ │ │ 4 8 8 7 4 3 5 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant(F,Algorithm=>"Poisson2") │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc) │ │ │ + -- used 0.333645s (cpu); 0.20846s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o3 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -56,15 +56,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o3 : QQ[a..b] │ │ │ │ │ │ i4 : time resultant(F,Algorithm=>"Macaulay2") │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc) │ │ │ + -- used 0.160974s (cpu); 0.0991529s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o4 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -77,15 +77,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o4 : QQ[a..b] │ │ │ │ │ │ i5 : time resultant(F,Algorithm=>"Poisson") │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc) │ │ │ + -- used 0.401593s (cpu); 0.342364s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o5 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -98,15 +98,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o5 : QQ[a..b] │ │ │ │ │ │ i6 : time resultant(F,Algorithm=>"Macaulay") │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc) │ │ │ + -- used 0.71147s (cpu); 0.643863s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o6 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant F │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc) │ │ │ + -- used 0.0283289s (cpu); 0.0283286s (thread); 0s (gc) │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ ------------------------------------------------------------------------ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -64,15 +64,15 @@ │ │ │ 3 │ │ │ + c x } │ │ │ 9 2 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : time resultant F │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc) │ │ │ + -- used 2.44305s (cpu); 1.91459s (thread); 0s (gc) │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ @@ -1690,12 +1690,12 @@ │ │ │ 2 2 2 2 │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time # terms resultant F │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc) │ │ │ + -- used 0.436586s (cpu); 0.362757s (thread); 0s (gc) │ │ │ │ │ │ o7 = 21894 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ time tangentialChowForm(S,0) │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc) │ │ │ + -- used 0.0340372s (cpu); 0.0340373s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ p p - 2p p p - p p p │ │ │ @@ -26,15 +26,15 @@ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ o3 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ time tangentialChowForm(S,1) │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc) │ │ │ + -- used 0.133792s (cpu); 0.0760563s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 3 │ │ │ 4p p - 4p p - 2p p + │ │ │ @@ -68,32 +68,32 @@ │ │ │ 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 │ │ │ o4 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S) │ │ │ time tangentialChowForm(S,2) │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc) │ │ │ + -- used 0.0393206s (cpu); 0.0393146s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o5 = p p - p p p + p p │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc) │ │ │ + -- used 0.121272s (cpu); 0.057695s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i7 : -- we then can recover S │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc) │ │ │ + -- used 0.171014s (cpu); 0.10791s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ @@ -86,24 +86,24 @@ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2);
    │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc)
    │ │ │ + -- used 0.131859s (cpu); 0.0745575s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we calculate the defining ideal of $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its dual variety.

    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1)
    │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc)
    │ │ │ + -- used 0.139932s (cpu); 0.0797331s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                             
    │ │ │  o4 = (ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │                0,3 1,2    0,2 1,3   1,0 1,1    1,2 1,3   0,3 1,1    0,1 1,3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                              
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ @@ -130,26 +130,26 @@
    │ │ │            
    │ │ │

    If the option Duality is set to true, then the method applies the so-called "dual Cayley trick".

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,20 +38,20 @@ │ │ │ │ │ │ │ │ o2 = ideal(x x - x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc) │ │ │ │ + -- used 0.131859s (cpu); 0.0745575s (thread); 0s (gc) │ │ │ │ In the next example, we calculate the defining ideal of $\mathbb │ │ │ │ {P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its │ │ │ │ dual variety. │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc) │ │ │ │ + -- used 0.139932s (cpu); 0.0797331s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ @@ -73,18 +73,18 @@ │ │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ If the option Duality is set to true, then the method applies the so-called │ │ │ │ "dual Cayley trick". │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc) │ │ │ │ + -- used 0.17014s (cpu); 0.114168s (thread); 0s (gc) │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc) │ │ │ │ + -- used 0.177206s (cpu); 0.115764s (thread); 0s (gc) │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_u_a_l_V_a_r_i_e_t_y -- projective dual variety │ │ │ │ ********** WWaayyss ttoo uussee ccaayylleeyyTTrriicckk:: ********** │ │ │ │ * cayleyTrick(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_a_y_l_e_y_T_r_i_c_k is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time cayleyTrick(P1xP1,1,Duality=>true);
    │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc)
    │ │ │ + -- used 0.17014s (cpu); 0.114168s (thread); 0s (gc) │ │ │
    │ │ │
    i6 : assert(oo == (P1xP1xP1,P1xP1xP1'))
    │ │ │
    │ │ │
    i7 : time cayleyTrick(P1xP1,2,Duality=>true);
    │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc)
    │ │ │ + -- used 0.177206s (cpu); 0.115764s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert(oo == (P1xP1xP2,P1xP1xP2'))
    │ │ │
    │ │ │
    i3 : -- Chow equations of C
    │ │ │       time eqsC = chowEquations chowForm C
    │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc)
    │ │ │ + -- used 0.135471s (cpu); 0.0630562s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2    2 2    2 2    4                2      2 2   2      
    │ │ │  o3 = ideal (x x  + x x  + x x  + x , x x x x  + x x x  + x x , x x x  +
    │ │ │               0 3    1 3    2 3    3   0 1 2 3    1 2 3    2 3   0 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2        3           2         2      3   3         2          2    2 2
    │ │ │       x x x  + x x  - 2x x x  - 2x x x  - x x , x x  + 2x x x  - x x x  + x x 
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  o5 : Ideal of P3
    │ │ │
    │ │ │
    i6 : -- Chow equations of D
    │ │ │       time eqsD = chowEquations chowForm D
    │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc)
    │ │ │ + -- used 0.13548s (cpu); 0.0604597s (thread); 0s (gc)
    │ │ │  
    │ │ │               4      3 2     3        2 2     3      2   2   2 2      2   2 
    │ │ │  o6 = ideal (x x  - x x , x x x  - x x x , x x x  - x x x , x x x  - x x x ,
    │ │ │               2 3    1 3   1 2 3    0 1 3   0 2 3    0 1 3   1 2 3    0 1 3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │            2      3 2   3        3 2   4         2         2 2       3    
    │ │ │       x x x x  - x x , x x x  - x x , x x  - 4x x x x  + 3x x x , x x x  -
    │ │ │ @@ -222,30 +222,30 @@
    │ │ │  o9 : Ideal of P3
    │ │ │
    │ │ │
    i10 : -- tangential Chow forms of Q
    │ │ │        time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2))
    │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc)
    │ │ │ + -- used 0.263346s (cpu); 0.119511s (thread); 0s (gc)
    │ │ │  
    │ │ │                       2                              2
    │ │ │  o10 = (x x  + x x , x    - 4x   x    + 2x   x    + x   , x     x      +
    │ │ │          0 1    2 3   0,1     0,2 1,3     0,1 2,3    2,3   0,1,2 0,1,3  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x     x     )
    │ │ │         0,2,3 1,2,3
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │
    │ │ │
    i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2))
    │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc)
    │ │ │ + -- used 0.158772s (cpu); 0.0913561s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │
    │ │ │

    Note that chowEquations(W,0) is not the same as chowEquations W.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,15 +28,15 @@ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ i3 : -- Chow equations of C │ │ │ │ time eqsC = chowEquations chowForm C │ │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc) │ │ │ │ + -- used 0.135471s (cpu); 0.0630562s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ 2 3 2 2 │ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ i6 : -- Chow equations of D │ │ │ │ time eqsD = chowEquations chowForm D │ │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc) │ │ │ │ + -- used 0.13548s (cpu); 0.0604597s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ │ @@ -135,27 +135,27 @@ │ │ │ │ o9 = ideal(x x + x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm │ │ │ │ (Q,1),tangentialChowForm(Q,2)) │ │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc) │ │ │ │ + -- used 0.263346s (cpu); 0.119511s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x ) │ │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations │ │ │ │ (W2,2)) │ │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc) │ │ │ │ + -- used 0.158772s (cpu); 0.0913561s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ Note that chowEquations(W,0) is not the same as chowEquations W. │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwEEqquuaattiioonnss:: ********** │ │ │ │ * chowEquations(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_o_w_E_q_u_a_t_i_o_n_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 3331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian)
    │ │ │       time ChowV = chowForm(V,AffineChartGrass=>{1,2,3})
    │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc)
    │ │ │ + -- used 5.21966s (cpu); 4.85951s (thread); 0s (gc)
    │ │ │  
    │ │ │        4               2              2     2               2            
    │ │ │  o3 = x      + 2x     x     x      + x     x      - 2x     x     x      +
    │ │ │        1,2,4     0,2,4 1,2,4 2,3,4    0,2,4 2,3,4     1,2,3 1,2,4 1,2,5  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2     2              2                                       
    │ │ │       x     x      - x     x     x      + x     x     x     x      +
    │ │ │ @@ -227,22 +227,22 @@
    │ │ │         2,3,5 1,4,5    1,3,5 2,4,5    1,2,5 3,4,5   2,3,4 1,4,5    1,3,4 2,4,5    1,2,4 3,4,5   2,3,5 0,4,5    0,3,5 2,4,5    0,2,5 3,4,5   1,3,5 0,4,5    0,3,5 1,4,5    0,1,5 3,4,5   1,2,5 0,4,5    0,2,5 1,4,5    0,1,5 2,4,5   2,3,4 0,4,5    0,3,4 2,4,5    0,2,4 3,4,5   1,3,4 0,4,5    0,3,4 1,4,5    0,1,4 3,4,5   1,2,4 0,4,5    0,2,4 1,4,5    0,1,4 2,4,5   1,2,3 0,4,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 1,3,5    1,3,4 2,3,5    1,2,3 3,4,5   1,2,5 0,3,5    0,2,5 1,3,5    0,1,5 2,3,5   2,3,4 0,3,5    0,3,4 2,3,5    0,2,3 3,4,5   1,3,4 0,3,5    0,3,4 1,3,5    0,1,3 3,4,5   1,2,4 0,3,5    0,2,4 1,3,5    0,1,4 2,3,5    0,1,2 3,4,5   1,2,3 0,3,5    0,2,3 1,3,5    0,1,3 2,3,5   2,3,4 1,2,5    1,2,4 2,3,5    1,2,3 2,4,5   1,3,4 1,2,5    1,2,4 1,3,5    1,2,3 1,4,5   0,3,4 1,2,5    0,2,4 1,3,5    0,1,4 2,3,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 0,2,5    0,2,4 2,3,5    0,2,3 2,4,5   1,3,4 0,2,5    0,2,4 1,3,5    0,2,3 1,4,5    0,1,2 3,4,5   0,3,4 0,2,5    0,2,4 0,3,5    0,2,3 0,4,5   1,2,4 0,2,5    0,2,4 1,2,5    0,1,2 2,4,5   1,2,3 0,2,5    0,2,3 1,2,5    0,1,2 2,3,5   2,3,4 0,1,5    0,1,4 2,3,5    0,1,3 2,4,5    0,1,2 3,4,5   1,3,4 0,1,5    0,1,4 1,3,5    0,1,3 1,4,5   0,3,4 0,1,5    0,1,4 0,3,5    0,1,3 0,4,5   1,2,4 0,1,5    0,1,4 1,2,5    0,1,2 1,4,5   0,2,4 0,1,5    0,1,4 0,2,5    0,1,2 0,4,5   1,2,3 0,1,5    0,1,3 1,2,5    0,1,2 1,3,5   0,2,3 0,1,5    0,1,3 0,2,5    0,1,2 0,3,5   1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- equivalently (but faster)...
    │ │ │       time assert(ChowV === chowForm f)
    │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc)
    │ │ │ + -- used 1.15009s (cpu); 1.09337s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- X-resultant of V
    │ │ │       time Xres = fromPluckerToStiefel dualize ChowV;
    │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc)
    │ │ │ + -- used 0.284789s (cpu); 0.220968s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- three generic ternary quadrics
    │ │ │       F = genericPolynomials({2,2,2},ZZ/3331)
    │ │ │  
    │ │ │ @@ -257,15 +257,15 @@
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- resultant of the three forms
    │ │ │       time resF = resultant F;
    │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc)
    │ │ │ + -- used 0.287939s (cpu); 0.220002s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres))
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ ZZ │ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 5 │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an │ │ │ │ affine chart of the Grassmannian) │ │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc) │ │ │ │ + -- used 5.21966s (cpu); 4.85951s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 2 2 2 2 │ │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 │ │ │ │ x x - x x x + x x x x + │ │ │ │ @@ -234,33 +234,33 @@ │ │ │ │ 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 │ │ │ │ 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 │ │ │ │ 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 │ │ │ │ 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 │ │ │ │ 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ │ time assert(ChowV === chowForm f) │ │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc) │ │ │ │ + -- used 1.15009s (cpu); 1.09337s (thread); 0s (gc) │ │ │ │ i5 : -- X-resultant of V │ │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc) │ │ │ │ + -- used 0.284789s (cpu); 0.220968s (thread); 0s (gc) │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : -- resultant of the three forms │ │ │ │ time resF = resultant F; │ │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc) │ │ │ │ + -- used 0.287939s (cpu); 0.220002s (thread); 0s (gc) │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring │ │ │ │ Xres)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _h_u_r_w_i_t_z_F_o_r_m -- Hurwitz form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwFFoorrmm:: ********** │ │ │ │ * chowForm(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time discriminant F
    │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc)
    │ │ │ + -- used 0.00983715s (cpu); 0.00983637s (thread); 0s (gc)
    │ │ │  
    │ │ │          2
    │ │ │  o3 = - b  + 4a*c
    │ │ │  
    │ │ │  o3 : ZZ[a..c]
    │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time discriminant F
    │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc)
    │ │ │ + -- used 0.0101472s (cpu); 0.010148s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2       3     3                   2 2
    │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │  
    │ │ │  o6 : ZZ[a..d]
    │ │ │ │ │ │ │ │ │ @@ -165,15 +165,15 @@ │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time D=discriminant pencil
    │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc)
    │ │ │ + -- used 0.480519s (cpu); 0.420479s (thread); 0s (gc)
    │ │ │  
    │ │ │             108      106 2       102 6      100 8       98 10       96 12  
    │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │             0        0   1       0   1      0   1       0  1        0  1   
    │ │ │        -----------------------------------------------------------------------
    │ │ │            94 14       92 16      90 18      88 20      86 22       84 24  
    │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,28 +23,28 @@
    │ │ │ │  i1 : ZZ[a,b,c][x,y]; F = a*x^2+b*x*y+c*y^2
    │ │ │ │  
    │ │ │ │          2              2
    │ │ │ │  o2 = a*x  + b*x*y + c*y
    │ │ │ │  
    │ │ │ │  o2 : ZZ[a..c][x..y]
    │ │ │ │  i3 : time discriminant F
    │ │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00983715s (cpu); 0.00983637s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │  o3 = - b  + 4a*c
    │ │ │ │  
    │ │ │ │  o3 : ZZ[a..c]
    │ │ │ │  i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3
    │ │ │ │  
    │ │ │ │          3      2         2      3
    │ │ │ │  o5 = a*x  + b*x y + c*x*y  + d*y
    │ │ │ │  
    │ │ │ │  o5 : ZZ[a..d][x..y]
    │ │ │ │  i6 : time discriminant F
    │ │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0101472s (cpu); 0.010148s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2 2       3     3                   2 2
    │ │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │ │  
    │ │ │ │  o6 : ZZ[a..d]
    │ │ │ │  The next example illustrates how computing the intersection of a pencil
    │ │ │ │  generated by two degree $d$ forms $F(x_0,\ldots,x_n), G(x_0,\ldots,x_n)$ with
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  
    │ │ │ │                  4        3      4             4        3      4
    │ │ │ │  o12 = (t  + t )x  - t x x  + t x  + (t  - t )x  + t x x  + t x
    │ │ │ │          0    1  0    1 0 1    0 1     0    1  2    1 2 3    0 3
    │ │ │ │  
    │ │ │ │  o12 : R'
    │ │ │ │  i13 : time D=discriminant pencil
    │ │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc)
    │ │ │ │ + -- used 0.480519s (cpu); 0.420479s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             108      106 2       102 6      100 8       98 10       96 12
    │ │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │ │             0        0   1       0   1      0   1       0  1        0  1
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            94 14       92 16      90 18      88 20      86 22       84 24
    │ │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html
    │ │ │ @@ -90,28 +90,28 @@
    │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time V' = dualVariety V
    │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc)
    │ │ │ + -- used 0.198598s (cpu); 0.132067s (thread); 0s (gc)
    │ │ │  
    │ │ │              2                 2    2
    │ │ │  o2 = ideal(x x  - x x x  + x x  + x x  - 4x x x )
    │ │ │              2 3    1 2 4    0 4    1 5     0 3 5
    │ │ │  
    │ │ │  o2 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time V == dualVariety V'
    │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc)
    │ │ │ + -- used 0.230838s (cpu); 0.168205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we verify that the discriminant of a generic ternary cubic form coincides with the dual variety of the 3-th Veronese embedding of the plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$

    │ │ │ │ │ │ @@ -131,25 +131,25 @@ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,24 +31,24 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 3 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i2 : time V' = dualVariety V │ │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc) │ │ │ │ + -- used 0.198598s (cpu); 0.132067s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i3 : time V == dualVariety V' │ │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc) │ │ │ │ + -- used 0.230838s (cpu); 0.168205s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ In the next example, we verify that the discriminant of a generic ternary cubic │ │ │ │ form coincides with the dual variety of the 3-th Veronese embedding of the │ │ │ │ plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ │ │ @@ -60,21 +60,21 @@ │ │ │ │ a x x + a x │ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ │ 3331 0 9 0 2 │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc) │ │ │ │ + -- used 0.0657693s (cpu); 0.065771s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ │ 3331 0 9 │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc) │ │ │ │ + -- used 0.730716s (cpu); 0.662534s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 9 │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ │ │ │ │ │ │ o7 = true │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ @@ -85,15 +85,15 @@ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time discF = ideal discriminant F;
    │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc)
    │ │ │ + -- used 0.0657693s (cpu); 0.065771s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o5 : Ideal of ----[a ..a ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true);
    │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc)
    │ │ │ + -- used 0.730716s (cpu); 0.662534s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o6 : Ideal of ----[x ..x ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i2 : time fromPluckerToStiefel dualize chowForm C
    │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc)
    │ │ │ + -- used 0.134421s (cpu); 0.0678798s (thread); 0s (gc)
    │ │ │  
    │ │ │          3   3          2   2              2       2          2   3    
    │ │ │  o2 = - x   x    + x   x   x   x    - x   x   x   x    + x   x   x    -
    │ │ │          0,3 1,0    0,2 0,3 1,0 1,1    0,1 0,3 1,0 1,1    0,0 0,3 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2       2               2   2                                   
    │ │ │       x   x   x   x    + 2x   x   x   x    + x   x   x   x   x   x    -
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  o2 : QQ[x   ..x   ]
    │ │ │           0,0   1,3
    │ │ │
    │ │ │
    i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1})
    │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc)
    │ │ │ + -- used 0.0498309s (cpu); 0.0498325s (thread); 0s (gc)
    │ │ │  
    │ │ │              3          2                         2                        
    │ │ │  o3 = - x   x    + x   x   x    - x   x   x    + x   x    + 3x   x   x    -
    │ │ │          0,3 1,2    0,2 1,2 1,3    0,2 0,3 1,2    0,2 1,3     0,3 1,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2      3      2
    │ │ │       2x   x    + x    + x
    │ │ │ @@ -179,15 +179,15 @@
    │ │ │              
    │ │ │
    i5 : w = chowForm C;
    │ │ │
    │ │ │
    i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s))
    │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc)
    │ │ │ + -- used 0.0249667s (cpu); 0.0249684s (thread); 0s (gc)
    │ │ │  
    │ │ │                     3          2          3                       2        
    │ │ │  o6 = {ideal(- x   x    + x   x   x    - x    - 3x   x   x    + 2x   x    +
    │ │ │                 0,3 1,2    0,2 1,2 1,3    0,2     0,2 0,3 1,2     0,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2      2            2   3               2        
    │ │ │       x   x   x    - x   x    + x   ), ideal(x   x    - 2x   x   x   x    +
    │ │ │ @@ -227,15 +227,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time apply(U,u->dim singularLocus u)
    │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc)
    │ │ │ + -- used 0.0211123s (cpu); 0.0211149s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {2, 2, 2, 2, 2, 2}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 2 2 │ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc) │ │ │ │ + -- used 0.134421s (cpu); 0.0678798s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ │ @@ -75,15 +75,15 @@ │ │ │ │ 2 2 2 2 2 2 3 3 │ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 0,0 1,3 │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc) │ │ │ │ + -- used 0.0498309s (cpu); 0.0498325s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 │ │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x + x + x │ │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ o4 : QQ[a ..a ] │ │ │ │ 0,0 1,1 │ │ │ │ As another application, we check that the singular locus of the Chow form of │ │ │ │ the twisted cubic has dimension 2 (on each standard chart). │ │ │ │ i5 : w = chowForm C; │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel │ │ │ │ (w,AffineChartGrass=>s)) │ │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc) │ │ │ │ + -- used 0.0249667s (cpu); 0.0249684s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 3 2 │ │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 3 2 │ │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x - x + x )} │ │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc) │ │ │ │ + -- used 0.0211123s (cpu); 0.0211149s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee ffrroommPPlluucckkeerrTTooSSttiieeffeell:: ********** │ │ │ │ * fromPluckerToStiefel(Ideal) │ │ │ │ * fromPluckerToStiefel(Matrix) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time hurwitzForm Q
    │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc)
    │ │ │ + -- used 0.0449735s (cpu); 0.0449738s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                 2                      
    │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │                0,1            0,1 0,2            0,2           0,1 1,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                 2                                          
    │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │         5 2   7                       2        3 2
    │ │ │ │       + -p  + -p p  + 7p p  + 6p p  + -p p  + --p )
    │ │ │ │         4 3   9 0 4     1 4     2 4   9 3 4   10 4
    │ │ │ │  
    │ │ │ │  o1 : Ideal of QQ[p ..p ]
    │ │ │ │                    0   4
    │ │ │ │  i2 : time hurwitzForm Q
    │ │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0449735s (cpu); 0.0449738s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                2                                 2
    │ │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │ │                0,1            0,1 0,2            0,2           0,1 1,2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                                 2
    │ │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time isCoisotropic w
    │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc)
    │ │ │ + -- used 0.00855771s (cpu); 0.00855747s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- random quadric in G(1,3)
    │ │ │ @@ -140,15 +140,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isCoisotropic w'
    │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc)
    │ │ │ + -- used 0.00707054s (cpu); 0.00707066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o1 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i2 : time isCoisotropic w │ │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc) │ │ │ │ + -- used 0.00855771s (cpu); 0.00855747s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = true │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ │ o3 = 6p + -p p + --p + -p p + 10p p + 5p + --p p │ │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o3 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i4 : time isCoisotropic w' │ │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc) │ │ │ │ + -- used 0.00707054s (cpu); 0.00707066s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ ********** WWaayyss ttoo uussee iissCCooiissoottrrooppiicc:: ********** │ │ │ │ * isCoisotropic(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_i_s_o_t_r_o_p_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I))
    │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc)
    │ │ │ + -- used 0.0208729s (cpu); 0.0208724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2380x + 9482x ) │ │ │ │ 4 5 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ │ 33331 0 5 │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc) │ │ │ │ + -- used 0.0208729s (cpu); 0.0208724s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _p_l_u_c_k_e_r -- get the Plücker coordinates of a linear subspace │ │ │ │ ********** WWaayyss ttoo uussee iissIInnCCooiissoottrrooppiicc:: ********** │ │ │ │ * isInCoisotropic(Ideal,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc)
    │ │ │ + -- used 0.00419877s (cpu); 0.00419752s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0  
    │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0  
    │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0  
    │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0  
    │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0  
    │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0  
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc)
    │ │ │ + -- used 0.00263209s (cpu); 0.00263066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0   
    │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0   
    │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0   
    │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0   
    │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0   
    │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     2          2        2      3
    │ │ │ │       c x x x  + c x x  + c x x  + c x x  + c x }
    │ │ │ │        4 0 1 2    7 1 2    5 0 2    8 1 2    9 2
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00419877s (cpu); 0.00419752s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0
    │ │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0
    │ │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0
    │ │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0
    │ │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0
    │ │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       10   2   7   2   5 3
    │ │ │ │       --p p  + -p p  + -p }
    │ │ │ │        9 0 2   8 1 2   6 2
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00263209s (cpu); 0.00263066s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0
    │ │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0
    │ │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0
    │ │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0
    │ │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0
    │ │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o3 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time p = plucker L
    │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc)
    │ │ │ + -- used 0.00547559s (cpu); 0.00547367s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = ideal (x    + 8480x   , x    - 6727x   , x    + 15777x   , x    +
    │ │ │               2,4        3,4   1,4        3,4   0,4         3,4   2,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11656x   , x    - 14853x   , x    + 664x   , x    + 13522x   , x    +
    │ │ │             3,4   1,3         3,4   0,3       3,4   1,2         3,4   0,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time L' = plucker p
    │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc)
    │ │ │ + -- used 0.12088s (cpu); 0.0581025s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = ideal (x  + 8480x  - 11656x , x  - 6727x  + 14853x , x  + 15777x  -
    │ │ │               2        3         4   1        3         4   0         3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       664x )
    │ │ │           4
    │ │ │  
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time W = plucker Y; -- surface swept out by the lines of Y
    │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc)
    │ │ │ + -- used 0.0373625s (cpu); 0.0373403s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : (codim W,degree W)
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb{P}^n)$ by computing the Fano variety of $k$-planes contained in $W$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Y' = plucker(W,1); -- variety of lines contained in W
    │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc)
    │ │ │ + -- used 0.174625s (cpu); 0.17463s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of G'1'4
    │ │ │
    │ │ │
    i11 : assert(Y' == Y)
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,28 +28,28 @@ │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ i4 : time p = plucker L │ │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc) │ │ │ │ + -- used 0.00547559s (cpu); 0.00547367s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11804x , x + 14854x ) │ │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ i5 : time L' = plucker p │ │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc) │ │ │ │ + -- used 0.12088s (cpu); 0.0581025s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ @@ -60,26 +60,26 @@ │ │ │ │ $W\subset\mathbb{P}^n$ swept out by the linear spaces corresponding to points │ │ │ │ of $Y$. As an example, we now compute a surface scroll $W\subset\mathbb{P}^4$ │ │ │ │ over an elliptic curve $Y\subset\mathbb{G}(1,\mathbb{P}^4)$. │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc) │ │ │ │ + -- used 0.0373625s (cpu); 0.0373403s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb │ │ │ │ {P}^n)$ by computing the Fano variety of $k$-planes contained in $W$. │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc) │ │ │ │ + -- used 0.174625s (cpu); 0.17463s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ WWaarrnniinngg: Notice that, by default, the computation is done on a randomly chosen │ │ │ │ affine chart on the Grassmannian. To change this behavior, you can use the │ │ │ │ _A_f_f_i_n_e_C_h_a_r_t_G_r_a_s_s option. │ │ │ │ ********** WWaayyss ttoo uussee pplluucckkeerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ │ │ o2 : List │ │ │
    │ │ │
    i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc)
    │ │ │ + -- used 0.333645s (cpu); 0.20846s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -132,15 +132,15 @@
    │ │ │  
    │ │ │  o3 : QQ[a..b]
    │ │ │
    │ │ │
    i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc)
    │ │ │ + -- used 0.160974s (cpu); 0.0991529s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -156,15 +156,15 @@
    │ │ │  
    │ │ │  o4 : QQ[a..b]
    │ │ │
    │ │ │
    i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc)
    │ │ │ + -- used 0.401593s (cpu); 0.342364s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o5 : QQ[a..b]
    │ │ │
    │ │ │
    i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc)
    │ │ │ + -- used 0.71147s (cpu); 0.643863s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -58,15 +58,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       3     2    9    7     2    9        3       1    8    4
    │ │ │ │       -b)y*w  + (-a + -b)z*w  + (-a + 2b)w , 2x + -y + -z + -w}
    │ │ │ │       4          8    8          7                4    3    5
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc)
    │ │ │ │ + -- used 0.333645s (cpu); 0.20846s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o3 : QQ[a..b]
    │ │ │ │  i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc)
    │ │ │ │ + -- used 0.160974s (cpu); 0.0991529s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -98,15 +98,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o4 : QQ[a..b]
    │ │ │ │  i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc)
    │ │ │ │ + -- used 0.401593s (cpu); 0.342364s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -118,15 +118,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o5 : QQ[a..b]
    │ │ │ │  i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc)
    │ │ │ │ + -- used 0.71147s (cpu); 0.643863s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time resultant F
    │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc)
    │ │ │ + -- used 0.0283289s (cpu); 0.0283286s (thread); 0s (gc)
    │ │ │  
    │ │ │            12         11 2         10 3         9 4          8 5          7 6
    │ │ │  o3 = - 81t  u - 1701t  u  - 15309t  u  - 76545t u  - 229635t u  - 413343t u 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                6 7          5 8       11          10 2         9 3  
    │ │ │       - 413343t u  - 177147t u  + 567t  u + 10206t  u  + 76545t u  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time resultant F
    │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc)
    │ │ │ + -- used 2.44305s (cpu); 1.91459s (thread); 0s (gc)
    │ │ │  
    │ │ │        6 3 2       5 2   2     2 4   2 2    3 3 3 2     2 4 2   2  
    │ │ │  o5 = a b c  - 3a a b b c  + 3a a b b c  - a a b c  + 3a a b b c  -
    │ │ │        2 3 0     1 2 3 4 0     1 2 3 4 0    1 2 4 0     1 2 3 5 0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3       2     4 2 2   2     4 2   2 2     5     2 2    6 3 2  
    │ │ │       6a a b b b c  + 3a a b b c  + 3a a b b c  - 3a a b b c  + a b c  -
    │ │ │ @@ -1790,15 +1790,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time # terms resultant F
    │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc)
    │ │ │ + -- used 0.436586s (cpu); 0.362757s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 21894
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ i2 : F = {x^2+3*t*y*z-u*z^2,(t+3*u-1)*x-y,-t*x*y^3+t*x^2*y*z+u*z^4} │ │ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time resultant F │ │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc) │ │ │ │ + -- used 0.0283289s (cpu); 0.0283286s (thread); 0s (gc) │ │ │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 │ │ │ │ + c x } │ │ │ │ 9 2 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : time resultant F │ │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc) │ │ │ │ + -- used 2.44305s (cpu); 1.91459s (thread); 0s (gc) │ │ │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time # terms resultant F │ │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc) │ │ │ │ + -- used 0.436586s (cpu); 0.362757s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 21894 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_R_i_n_g_E_l_e_m_e_n_t_) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * resultant(List) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form)
    │ │ │       time tangentialChowForm(S,0)
    │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc)
    │ │ │ + -- used 0.0340372s (cpu); 0.0340373s (thread); 0s (gc)
    │ │ │  
    │ │ │        2                                                       2        
    │ │ │  o3 = p   p    - p   p   p    - p   p   p    + p   p   p    + p   p    +
    │ │ │        1,3 2,3    1,2 1,3 2,4    0,3 1,3 2,4    0,2 1,4 2,4    1,2 3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2
    │ │ │       p   p    - 2p   p   p    - p   p   p
    │ │ │ @@ -118,15 +118,15 @@
    │ │ │         2,3 1,4    1,3 2,4    1,2 3,4   2,3 0,4    0,3 2,4    0,2 3,4   1,3 0,4    0,3 1,4    0,1 3,4   1,2 0,4    0,2 1,4    0,1 2,4   1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- 1-th associated hypersurface of S in G(2,4)
    │ │ │       time tangentialChowForm(S,1)
    │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc)
    │ │ │ + -- used 0.133792s (cpu); 0.0760563s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2        2     2               3        2     2      
    │ │ │  o4 = p     p      + p     p      - 2p     p      + p     p      -
    │ │ │        1,2,3 1,2,4    0,2,4 1,2,4     0,2,3 1,2,4    0,2,4 0,3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │               3         3               3            
    │ │ │       4p     p      - 4p     p      - 2p     p      +
    │ │ │ @@ -163,43 +163,43 @@
    │ │ │         1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S)
    │ │ │       time tangentialChowForm(S,2)
    │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc)
    │ │ │ + -- used 0.0393206s (cpu); 0.0393146s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                             2
    │ │ │  o5 = p       p        - p       p       p        + p       p
    │ │ │        0,1,3,4 0,2,3,4    0,1,2,4 0,2,3,4 1,2,3,4    0,1,2,3 1,2,3,4
    │ │ │  
    │ │ │  o5 : QQ[p       ..p       , p       , p       , p       ]
    │ │ │           0,1,2,3   0,1,2,4   0,1,3,4   0,2,3,4   1,2,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing
    │ │ │       time S' = ideal dualize tangentialChowForm(S,2)
    │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc)
    │ │ │ + -- used 0.121272s (cpu); 0.057695s (thread); 0s (gc)
    │ │ │  
    │ │ │              2               2
    │ │ │  o6 = ideal(p p  - p p p  + p p )
    │ │ │              1 2    0 1 3    0 4
    │ │ │  
    │ │ │  o6 : Ideal of QQ[p ..p ]
    │ │ │                    0   4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- we then can recover S
    │ │ │       time assert(dualize tangentialChowForm(S',3) == S)
    │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc)
    │ │ │ + -- used 0.171014s (cpu); 0.10791s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -63,15 +63,15 @@ │ │ │ │ o2 = ideal (- p p + p p , - p p + p p , - p + p p ) │ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ │ time tangentialChowForm(S,0) │ │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc) │ │ │ │ + -- used 0.0340372s (cpu); 0.0340373s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ p p - 2p p p - p p p │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ - p p + p p , p p - p p + p p , p p - p p + p │ │ │ │ p ) │ │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 │ │ │ │ 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 │ │ │ │ 2,3 │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ │ time tangentialChowForm(S,1) │ │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc) │ │ │ │ + -- used 0.133792s (cpu); 0.0760563s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 3 │ │ │ │ 4p p - 4p p - 2p p + │ │ │ │ @@ -138,35 +138,35 @@ │ │ │ │ p + p p , p p - p p + p p ) │ │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 │ │ │ │ 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 │ │ │ │ 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent │ │ │ │ hyperplanes to S) │ │ │ │ time tangentialChowForm(S,2) │ │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc) │ │ │ │ + -- used 0.0393206s (cpu); 0.0393146s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o5 = p p - p p p + p p │ │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc) │ │ │ │ + -- used 0.121272s (cpu); 0.057695s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i7 : -- we then can recover S │ │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc) │ │ │ │ + -- used 0.171014s (cpu); 0.10791s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_C_o_i_s_o_t_r_o_p_i_c -- whether a hypersurface of a Grassmannian is a tangential │ │ │ │ Chow form │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee ttaannggeennttiiaallCChhoowwFFoorrmm:: ********** │ │ │ │ * tangentialChowForm(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63811 │ │ │ +process 63521 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ @@ -1,137 +1,137 @@ │ │ │ -- -*- M2-comint -*- hash: 2927978066455787395 │ │ │ │ │ │ i1 : fn=temporaryFileName()|".m2" │ │ │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2 │ │ │ +o1 = /tmp/M2-43124-0/0.m2 │ │ │ │ │ │ i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i7 : h │ │ │ │ │ │ o7 = HashTable{"answer file" => null} │ │ │ "exit code" => 0 │ │ │ "output file" => null │ │ │ "return code" => 0 │ │ │ "statistics" => null │ │ │ - "time used" => 3 │ │ │ + "time used" => 2 │ │ │ value => 16 │ │ │ │ │ │ o7 : HashTable │ │ │ │ │ │ i8 : h#value===4^2 │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : h#"exit code"===0 │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : h=runExternalM2(fn,"justexit",()); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i11 : h │ │ │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans} │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans} │ │ │ "exit code" => 27 │ │ │ - "output file" => /tmp/M2-29954-0/2.out │ │ │ + "output file" => /tmp/M2-43124-0/2.out │ │ │ "return code" => 6912 │ │ │ "statistics" => null │ │ │ - "time used" => 1 │ │ │ + "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o11 : HashTable │ │ │ │ │ │ i12 : fileExists(h#"output file") │ │ │ │ │ │ o12 = true │ │ │ │ │ │ i13 : fileExists(h#"answer file") │ │ │ │ │ │ o13 = false │ │ │ │ │ │ i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2"); │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 )) │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 )) │ │ │ Killed │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i15 : h │ │ │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans} │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans} │ │ │ "exit code" => 0 │ │ │ - "output file" => /tmp/M2-29954-0/3.out │ │ │ + "output file" => /tmp/M2-43124-0/3.out │ │ │ "return code" => 9 │ │ │ "statistics" => null │ │ │ - "time used" => 2 │ │ │ + "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o15 : HashTable │ │ │ │ │ │ i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file") │ │ │ │ │ │ o16 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43124-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10)); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10)); │ │ │ Spinning!! │ │ │ │ │ │ │ │ │ i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file") │ │ │ │ │ │ i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true); │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 )) │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1') >"/tmp/M2-43124-0/4.stat" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i19 : h#"statistics" │ │ │ │ │ │ -o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1" │ │ │ - User time (seconds): 5.25 │ │ │ - System time (seconds): 0.12 │ │ │ - Percent of CPU this job got: 77% │ │ │ - Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97 │ │ │ +o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1" │ │ │ + User time (seconds): 4.34 │ │ │ + System time (seconds): 0.28 │ │ │ + Percent of CPU this job got: 119% │ │ │ + Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.86 │ │ │ Average shared text size (kbytes): 0 │ │ │ Average unshared data size (kbytes): 0 │ │ │ Average stack size (kbytes): 0 │ │ │ Average total size (kbytes): 0 │ │ │ - Maximum resident set size (kbytes): 251780 │ │ │ + Maximum resident set size (kbytes): 338928 │ │ │ Average resident set size (kbytes): 0 │ │ │ Major (requiring I/O) page faults: 0 │ │ │ - Minor (reclaiming a frame) page faults: 8554 │ │ │ - Voluntary context switches: 1820 │ │ │ - Involuntary context switches: 2015 │ │ │ + Minor (reclaiming a frame) page faults: 11480 │ │ │ + Voluntary context switches: 5569 │ │ │ + Involuntary context switches: 899 │ │ │ Swaps: 0 │ │ │ File system inputs: 0 │ │ │ - File system outputs: 0 │ │ │ + File system outputs: 16 │ │ │ Socket messages sent: 0 │ │ │ Socket messages received: 0 │ │ │ Signals delivered: 0 │ │ │ Page size (bytes): 4096 │ │ │ Exit status: 0 │ │ │ │ │ │ │ │ │ i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///; │ │ │ │ │ │ i21 : (runExternalM2(fn,identity,v))#value===v │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o21 = true │ │ │ │ │ │ i22 : R=QQ[x,y]; │ │ │ │ │ │ i23 : v=coker random(R^2,R^{3:-1}) │ │ │ @@ -139,54 +139,54 @@ │ │ │ o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y | │ │ │ | 3/4x+7/4y 7/10x+7/3y 6/7x+6y | │ │ │ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │ │ │ │ i24 : h=runExternalM2(fn,identity,v) │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans} │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans} │ │ │ "exit code" => 1 │ │ │ - "output file" => /tmp/M2-29954-0/7.out │ │ │ + "output file" => /tmp/M2-43124-0/7.out │ │ │ "return code" => 256 │ │ │ "statistics" => null │ │ │ - "time used" => 1 │ │ │ + "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o24 : HashTable │ │ │ │ │ │ i25 : get(h#"output file") │ │ │ │ │ │ o25 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43124-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects: │ │ │ R (of class Symbol) │ │ │ ^ 2 (of class ZZ) │ │ │ │ │ │ │ │ │ i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o27 = true │ │ │ │ │ │ i28 : v=R; │ │ │ │ │ │ i29 : h=runExternalM2(fn,identity,v); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i30 : h#value │ │ │ │ │ │ o30 = QQ[x..y] │ │ │ │ │ │ o30 : PolynomialRing │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ @@ -75,15 +75,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63811 │ │ │ +process 63521 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ time(seconds) 700 │ │ │ │ file(blocks) unlimited │ │ │ │ data(kbytes) unlimited │ │ │ │ stack(kbytes) 8192 │ │ │ │ coredump(blocks) unlimited │ │ │ │ memory(kbytes) 850000 │ │ │ │ locked memory(kbytes) 8192 │ │ │ │ -process 63811 │ │ │ │ +process 63521 │ │ │ │ nofiles 512 │ │ │ │ vmemory(kbytes) unlimited │ │ │ │ locks unlimited │ │ │ │ rtprio 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ This starts a new shell and executes the command given, which in this case │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ @@ -84,15 +84,15 @@ │ │ │

      For example, we can write a few functions to a temporary file:

      │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -115,28 +115,28 @@ │ │ │
    │ │ │

    and then call them:

    │ │ │
    │ │ │
    │ │ │
    i1 : fn=temporaryFileName()|".m2"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ +o1 = /tmp/M2-43124-0/0.m2 │ │ │
    │ │ │
    i2 : fn<</// square = (x) -> (stderr<<"Running"<<endl; sleep(1); x^2); ///<<endl;
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : h=runExternalM2(fn,"square",(4));
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/1.m2" >"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i7 : h
    │ │ │  
    │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │                 "exit code" => 0
    │ │ │                 "output file" => null
    │ │ │                 "return code" => 0
    │ │ │                 "statistics" => null
    │ │ │ -               "time used" => 3
    │ │ │ +               "time used" => 2
    │ │ │                 value => 16
    │ │ │  
    │ │ │  o7 : HashTable
    │ │ │
    │ │ │ @@ -157,29 +157,29 @@ │ │ │

    │ │ │

    An abnormal program exit will have a nonzero exit code; also, the value will be null, the output file should exist, but the answer file may not exist unless the routine finished successfully.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i11 : h
    │ │ │  
    │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans}
    │ │ │                  "exit code" => 27
    │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/2.out
    │ │ │                  "return code" => 6912
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 1
    │ │ │ +                "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o11 : HashTable
    │ │ │
    │ │ │ @@ -199,46 +199,46 @@ │ │ │
    │ │ │

    Here, we use resource limits to limit the routine to 2 seconds of computational time, while the system is asked to use 10 seconds of computational time:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -248,40 +248,40 @@ │ │ │

    │ │ │

    We can get quite a lot of detail on the resources used with the KeepStatistics command:

    │ │ │ │ │ │
    │ │ │
    i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 ))
    │ │ │  Killed
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i15 : h
    │ │ │  
    │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans}
    │ │ │                  "exit code" => 0
    │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/3.out
    │ │ │                  "return code" => 9
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 2
    │ │ │ +                "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o15 : HashTable
    │ │ │
    │ │ │
    i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file")
    │ │ │  
    │ │ │  o16 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10));
    │ │ │        Spinning!!
    │ │ │
    │ │ │
    i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -295,15 +295,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1') >"/tmp/M2-43124-0/4.stat" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i19 : h#"statistics"
    │ │ │  
    │ │ │ -o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ -              User time (seconds): 5.25
    │ │ │ -              System time (seconds): 0.12
    │ │ │ -              Percent of CPU this job got: 77%
    │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97
    │ │ │ +o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1"
    │ │ │ +              User time (seconds): 4.34
    │ │ │ +              System time (seconds): 0.28
    │ │ │ +              Percent of CPU this job got: 119%
    │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.86
    │ │ │                Average shared text size (kbytes): 0
    │ │ │                Average unshared data size (kbytes): 0
    │ │ │                Average stack size (kbytes): 0
    │ │ │                Average total size (kbytes): 0
    │ │ │ -              Maximum resident set size (kbytes): 251780
    │ │ │ +              Maximum resident set size (kbytes): 338928
    │ │ │                Average resident set size (kbytes): 0
    │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ -              Minor (reclaiming a frame) page faults: 8554
    │ │ │ -              Voluntary context switches: 1820
    │ │ │ -              Involuntary context switches: 2015
    │ │ │ +              Minor (reclaiming a frame) page faults: 11480
    │ │ │ +              Voluntary context switches: 5569
    │ │ │ +              Involuntary context switches: 899
    │ │ │                Swaps: 0
    │ │ │                File system inputs: 0
    │ │ │ -              File system outputs: 0
    │ │ │ +              File system outputs: 16
    │ │ │                Socket messages sent: 0
    │ │ │                Socket messages received: 0
    │ │ │                Signals delivered: 0
    │ │ │                Page size (bytes): 4096
    │ │ │                Exit status: 0
    │ │ │
    │ │ │
    i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │
    │ │ │
    i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │ @@ -325,24 +325,24 @@ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │
    │ │ │
    i24 : h=runExternalM2(fn,identity,v)
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │  
    │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans}
    │ │ │                  "exit code" => 1
    │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/7.out
    │ │ │                  "return code" => 256
    │ │ │                  "statistics" => null
    │ │ │ -                "time used" => 1
    │ │ │ +                "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o24 : HashTable
    │ │ │
    │ │ │
    │ │ │ @@ -350,20 +350,20 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i25 : get(h#"output file")
    │ │ │  
    │ │ │  o25 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects:
    │ │ │                    R (of class Symbol)
    │ │ │              ^     2 (of class ZZ)
    │ │ │
    │ │ │
    │ │ │ @@ -374,15 +374,15 @@ │ │ │
    │ │ │
    i26 : fn<<///R=QQ[x,y];///<<endl<<flush;
    │ │ │
    │ │ │
    i27 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/8.m2" >"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o27 = true
    │ │ │
    │ │ │
    │ │ │ @@ -394,15 +394,15 @@ │ │ │ │ │ │
    i28 : v=R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : h=runExternalM2(fn,identity,v);
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : h#value
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -45,201 +45,201 @@
    │ │ │ │  the output file (unless it was deleted), the name of the answer file (unless it
    │ │ │ │  was deleted), any statistics recorded about the resource usage, and the value
    │ │ │ │  returned by the function func. If the child process terminates abnormally, then
    │ │ │ │  usually the exit code is nonzero and the value returned is _n_u_l_l.
    │ │ │ │  For example, we can write a few functions to a temporary file:
    │ │ │ │  i1 : fn=temporaryFileName()|".m2"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ │ +o1 = /tmp/M2-43124-0/0.m2
    │ │ │ │  i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i7 : h
    │ │ │ │  
    │ │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │ │                 "exit code" => 0
    │ │ │ │                 "output file" => null
    │ │ │ │                 "return code" => 0
    │ │ │ │                 "statistics" => null
    │ │ │ │ -               "time used" => 3
    │ │ │ │ +               "time used" => 2
    │ │ │ │                 value => 16
    │ │ │ │  
    │ │ │ │  o7 : HashTable
    │ │ │ │  i8 : h#value===4^2
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  i9 : h#"exit code"===0
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  An abnormal program exit will have a nonzero exit code; also, the value will be
    │ │ │ │  null, the output file should exist, but the answer file may not exist unless
    │ │ │ │  the routine finished successfully.
    │ │ │ │  i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i11 : h
    │ │ │ │  
    │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans}
    │ │ │ │                  "exit code" => 27
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/2.out
    │ │ │ │                  "return code" => 6912
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 1
    │ │ │ │ +                "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o11 : HashTable
    │ │ │ │  i12 : fileExists(h#"output file")
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : fileExists(h#"answer file")
    │ │ │ │  
    │ │ │ │  o13 = false
    │ │ │ │  Here, we use _r_e_s_o_u_r_c_e_ _l_i_m_i_t_s to limit the routine to 2 seconds of computational
    │ │ │ │  time, while the system is asked to use 10 seconds of computational time:
    │ │ │ │  i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ │  Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -
    │ │ │ │ -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ │ +q  <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 ))
    │ │ │ │  Killed
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i15 : h
    │ │ │ │  
    │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans}
    │ │ │ │                  "exit code" => 0
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/3.out
    │ │ │ │                  "return code" => 9
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 2
    │ │ │ │ +                "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o15 : HashTable
    │ │ │ │  i16 : if h#"output file" =!= null and fileExists(h#"output file") then get
    │ │ │ │  (h#"output file")
    │ │ │ │  
    │ │ │ │  o16 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10));
    │ │ │ │        Spinning!!
    │ │ │ │  i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get
    │ │ │ │  (h#"answer file")
    │ │ │ │  We can get quite a lot of detail on the resources used with the _K_e_e_p_S_t_a_t_i_s_t_i_c_s
    │ │ │ │  command:
    │ │ │ │  i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ │  Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop -
    │ │ │ │ --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1')
    │ │ │ │ ->"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ │ +-no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1')
    │ │ │ │ +>"/tmp/M2-43124-0/4.stat" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i19 : h#"statistics"
    │ │ │ │  
    │ │ │ │  o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug
    │ │ │ │ ---silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ │ -              User time (seconds): 5.25
    │ │ │ │ -              System time (seconds): 0.12
    │ │ │ │ -              Percent of CPU this job got: 77%
    │ │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97
    │ │ │ │ +--silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1"
    │ │ │ │ +              User time (seconds): 4.34
    │ │ │ │ +              System time (seconds): 0.28
    │ │ │ │ +              Percent of CPU this job got: 119%
    │ │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.86
    │ │ │ │                Average shared text size (kbytes): 0
    │ │ │ │                Average unshared data size (kbytes): 0
    │ │ │ │                Average stack size (kbytes): 0
    │ │ │ │                Average total size (kbytes): 0
    │ │ │ │ -              Maximum resident set size (kbytes): 251780
    │ │ │ │ +              Maximum resident set size (kbytes): 338928
    │ │ │ │                Average resident set size (kbytes): 0
    │ │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ │ -              Minor (reclaiming a frame) page faults: 8554
    │ │ │ │ -              Voluntary context switches: 1820
    │ │ │ │ -              Involuntary context switches: 2015
    │ │ │ │ +              Minor (reclaiming a frame) page faults: 11480
    │ │ │ │ +              Voluntary context switches: 5569
    │ │ │ │ +              Involuntary context switches: 899
    │ │ │ │                Swaps: 0
    │ │ │ │                File system inputs: 0
    │ │ │ │ -              File system outputs: 0
    │ │ │ │ +              File system outputs: 16
    │ │ │ │                Socket messages sent: 0
    │ │ │ │                Socket messages received: 0
    │ │ │ │                Signals delivered: 0
    │ │ │ │                Page size (bytes): 4096
    │ │ │ │                Exit status: 0
    │ │ │ │  We can handle most kinds of objects as return values, although _M_u_t_a_b_l_e_M_a_t_r_i_x
    │ │ │ │  does not work. Here, we use the built-in _i_d_e_n_t_i_t_y function:
    │ │ │ │  i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │ │  i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o21 = true
    │ │ │ │  Some care is required, however:
    │ │ │ │  i22 : R=QQ[x,y];
    │ │ │ │  i23 : v=coker random(R^2,R^{3:-1})
    │ │ │ │  
    │ │ │ │  o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y |
    │ │ │ │                 | 3/4x+7/4y 7/10x+7/3y 6/7x+6y |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o23 : R-module, quotient of R
    │ │ │ │  i24 : h=runExternalM2(fn,identity,v)
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  
    │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans}
    │ │ │ │                  "exit code" => 1
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/7.out
    │ │ │ │                  "return code" => 256
    │ │ │ │                  "statistics" => null
    │ │ │ │ -                "time used" => 1
    │ │ │ │ +                "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o24 : HashTable
    │ │ │ │  To view the error message:
    │ │ │ │  i25 : get(h#"output file")
    │ │ │ │  
    │ │ │ │  o25 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel
    │ │ │ │  (map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/
    │ │ │ │  4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to
    │ │ │ │  objects:
    │ │ │ │                    R (of class Symbol)
    │ │ │ │              ^     2 (of class ZZ)
    │ │ │ │  Keep in mind that the object you are passing must make sense in the context of
    │ │ │ │  the file containing your function! For instance, here we need to define the
    │ │ │ │  ring:
    │ │ │ │  i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o27 = true
    │ │ │ │  This problem can be avoided by following some _s_u_g_g_e_s_t_i_o_n_s_ _f_o_r_ _u_s_i_n_g
    │ │ │ │  _R_u_n_E_x_t_e_r_n_a_l_M_2.
    │ │ │ │  The objects may unavoidably lose some internal references, though:
    │ │ │ │  i28 : v=R;
    │ │ │ │  i29 : h=runExternalM2(fn,identity,v);
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i30 : h#value
    │ │ │ │  
    │ │ │ │  o30 = QQ[x..y]
    │ │ │ │  
    │ │ │ │  o30 : PolynomialRing
    │ │ │ │  i31 : v===h#value
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out
    │ │ │ @@ -30,23 +30,23 @@
    │ │ │                                              )
    │ │ │  
    │ │ │                            "variable positions" => {-1}
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │  
    │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ + -- used 0.00117205s (cpu); 0.000228059s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │  
    │ │ │  i7 : ZZ[y];
    │ │ │  
    │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ + -- used 4.27824s (cpu); 3.0255s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html
    │ │ │ @@ -104,29 +104,29 @@
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ + -- used 0.00117205s (cpu); 0.000228059s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : ZZ[y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ + -- used 4.27824s (cpu); 3.0255s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,21 +38,21 @@
    │ │ │ │                                              output nodes: 1
    │ │ │ │                                              )
    │ │ │ │  
    │ │ │ │                            "variable positions" => {-1}
    │ │ │ │  
    │ │ │ │  o5 : InterpretedSLProgram
    │ │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00117205s (cpu); 0.000228059s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1       1
    │ │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │  i7 : ZZ[y];
    │ │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ │ + -- used 4.27824s (cpu); 3.0255s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={5,11,3,2}
    │ │ │  
    │ │ │  o3 = {5, 11, 3, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .00628004s elapsed
    │ │ │ + -- .00749109s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -51,15 +51,15 @@
    │ │ │         53        53         53         53        53
    │ │ │                                                  
    │ │ │       -1        0          1          2         3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00224378s elapsed
    │ │ │ + -- .00294503s elapsed
    │ │ │  
    │ │ │  i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │                 0 => 3
    │ │ │                 1 => 5
    │ │ │                 2 => 2
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  i12 : maximalEntry chainComplex errors
    │ │ │  
    │ │ │  o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15}
    │ │ │  
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00497913s elapsed
    │ │ │ + -- .00611395s elapsed
    │ │ │  
    │ │ │  i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : SigmaL =source U;
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={4,3,3}
    │ │ │  
    │ │ │  o3 = {4, 3, 3}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00283463s elapsed
    │ │ │ + -- .00300798s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -47,25 +47,25 @@
    │ │ │         53        53         53         53
    │ │ │                                        
    │ │ │       0         1          2          3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000620476s elapsed
    │ │ │ + -- .000634316s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00139661s elapsed
    │ │ │ + -- .00146477s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,5}
    │ │ │  
    │ │ │  o4 = {4, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00359076s elapsed
    │ │ │ + -- .00400183s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .0027493s elapsed
    │ │ │ + -- .00296269s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00303026s elapsed
    │ │ │ + -- .00309145s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .00628004s elapsed
    │ │ │ + -- .00749109s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -150,15 +150,15 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00224378s elapsed
    │ │ │ + -- .00294503s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │ @@ -212,15 +212,15 @@
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00497913s elapsed
    │ │ │ + -- .00611395s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -37,15 +37,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={5,11,3,2} │ │ │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>4) │ │ │ │ - -- .00628004s elapsed │ │ │ │ + -- .00749109s elapsed │ │ │ │ │ │ │ │ 6 19 19 7 3 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 53 │ │ │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,U)=SVDComplex CR; │ │ │ │ - -- .00224378s elapsed │ │ │ │ + -- .00294503s elapsed │ │ │ │ i8 : h │ │ │ │ │ │ │ │ o8 = HashTable{-1 => 1} │ │ │ │ 0 => 3 │ │ │ │ 1 => 5 │ │ │ │ 2 => 2 │ │ │ │ 3 => 1 │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ 1)*Sigma.dd_ell*transpose U_ell); │ │ │ │ i12 : maximalEntry chainComplex errors │ │ │ │ │ │ │ │ o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian); │ │ │ │ - -- .00497913s elapsed │ │ │ │ + -- .00611395s elapsed │ │ │ │ i14 : hL === h │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : SigmaL =source U; │ │ │ │ i16 : for i from min CR+1 to max CR list maximalEntry(SigmaL.dd_i -Sigma.dd_i) │ │ │ │ │ │ │ │ o16 = {1.77636e-14, 6.39488e-14, 8.52651e-14, 3.55271e-15} │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00283463s elapsed
    │ │ │ + -- .00300798s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -148,28 +148,28 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000620476s elapsed
    │ │ │ + -- .000634316s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00139661s elapsed
    │ │ │ + -- .00146477s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={4,3,3} │ │ │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00283463s elapsed │ │ │ │ + -- .00300798s elapsed │ │ │ │ │ │ │ │ 5 10 11 5 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -69,24 +69,24 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,h1)=SVDHomology CR │ │ │ │ - -- .000620476s elapsed │ │ │ │ + -- .000634316s elapsed │ │ │ │ │ │ │ │ o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, ) }) │ │ │ │ 1 => 3 2 => (37.9214, 30.3707, 1.61954e-14) │ │ │ │ 2 => 5 3 => (14.972, 8.57847, 3.90646e-15) │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o7 : Sequence │ │ │ │ i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian) │ │ │ │ - -- .00139661s elapsed │ │ │ │ + -- .00146477s elapsed │ │ │ │ │ │ │ │ o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14) }) │ │ │ │ 1 => 3 1 => (1.71747, 922.381, 2.51496e-13) │ │ │ │ 2 => 5 2 => (922.381, 73.5901, 1.81323e-13) │ │ │ │ 3 => 2 3 => (73.5901, , 2.82914e-13) │ │ │ │ │ │ │ │ o8 : Sequence │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ @@ -110,15 +110,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00359076s elapsed
    │ │ │ + -- .00400183s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,5} │ │ │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true) │ │ │ │ - -- .00359076s elapsed │ │ │ │ + -- .00400183s elapsed │ │ │ │ │ │ │ │ 6 10 13 8 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .0027493s elapsed
    │ │ │ + -- .00296269s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .0027493s elapsed │ │ │ │ + -- .00296269s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00303026s elapsed
    │ │ │ + -- .00309145s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00303026s elapsed │ │ │ │ + -- .00309145s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ @@ -37,33 +37,33 @@ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc) │ │ │ + -- used 0.375116s (cpu); 0.375118s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc) │ │ │ + -- used 0.693251s (cpu); 0.611114s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc) │ │ │ + -- used 0.0265589s (cpu); 0.0265634s (thread); 0s (gc) │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc) │ │ │ + -- used 0.0089403s (cpu); 0.00894681s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ @@ -125,23 +125,23 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time quotient(I^3, J^2, Strategy => Iterate);
    │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc)
    │ │ │ + -- used 0.375116s (cpu); 0.375118s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time quotient(I^3, J^2, Strategy => Quotient);
    │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc)
    │ │ │ + -- used 0.693251s (cpu); 0.611114s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Strategy => Quotient is faster in other cases:

    │ │ │ @@ -158,23 +158,23 @@ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time quotient(I^5, I^3, Strategy => Iterate);
    │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc)
    │ │ │ + -- used 0.0265589s (cpu); 0.0265634s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time quotient(I^5, I^3, Strategy => Quotient);
    │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc)
    │ │ │ + -- used 0.0089403s (cpu); 0.00894681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -56,32 +56,32 @@ │ │ │ │ i5 : I = monomialCurveIdeal(S, 1..n-1); │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc) │ │ │ │ + -- used 0.375116s (cpu); 0.375118s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc) │ │ │ │ + -- used 0.693251s (cpu); 0.611114s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ Strategy => Quotient is faster in other cases: │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc) │ │ │ │ + -- used 0.0265589s (cpu); 0.0265634s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc) │ │ │ │ + -- used 0.0089403s (cpu); 0.00894681s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ For further information see for example Exercise 15.41 in Eisenbud's │ │ │ │ Commutative Algebra with a View Towards Algebraic Geometry. │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd SSttrraatteeggyy:: ********** │ │ │ │ * addHook(...,Strategy=>...) -- see _a_d_d_H_o_o_k -- add a hook function to an │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ @@ -40,23 +40,23 @@ │ │ │ ) │ │ │ │ │ │ o6 = f │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc) │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc) │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc) │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc) │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc) │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc) │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc) │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc) │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc) │ │ │ + -- used 0.00640037s (cpu); 0.0063991s (thread); 0s (gc) │ │ │ + -- used 0.00766984s (cpu); 0.00767694s (thread); 0s (gc) │ │ │ + -- used 0.0104622s (cpu); 0.0104677s (thread); 0s (gc) │ │ │ + -- used 0.0175219s (cpu); 0.0175313s (thread); 0s (gc) │ │ │ + -- used 0.0437386s (cpu); 0.0437534s (thread); 0s (gc) │ │ │ + -- used 0.0600615s (cpu); 0.0600733s (thread); 0s (gc) │ │ │ + -- used 0.103727s (cpu); 0.103737s (thread); 0s (gc) │ │ │ + -- used 0.167023s (cpu); 0.167033s (thread); 0s (gc) │ │ │ + -- used 0.416645s (cpu); 0.303049s (thread); 0s (gc) │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ ------------------------------------------------------------------------ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ o7 : List │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ @@ -126,23 +126,23 @@ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : for n from 2 to 10 list time f n
    │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc)
    │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc)
    │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc)
    │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc)
    │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc)
    │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc)
    │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc)
    │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc)
    │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc)
    │ │ │ + -- used 0.00640037s (cpu); 0.0063991s (thread); 0s (gc)
    │ │ │ + -- used 0.00766984s (cpu); 0.00767694s (thread); 0s (gc)
    │ │ │ + -- used 0.0104622s (cpu); 0.0104677s (thread); 0s (gc)
    │ │ │ + -- used 0.0175219s (cpu); 0.0175313s (thread); 0s (gc)
    │ │ │ + -- used 0.0437386s (cpu); 0.0437534s (thread); 0s (gc)
    │ │ │ + -- used 0.0600615s (cpu); 0.0600733s (thread); 0s (gc)
    │ │ │ + -- used 0.103727s (cpu); 0.103737s (thread); 0s (gc)
    │ │ │ + -- used 0.167023s (cpu); 0.167033s (thread); 0s (gc)
    │ │ │ + -- used 0.416645s (cpu); 0.303049s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -56,23 +56,23 @@ │ │ │ │ integral chern symmetricPower_(2*n-3) last bundles G │ │ │ │ ) │ │ │ │ │ │ │ │ o6 = f │ │ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc) │ │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc) │ │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc) │ │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc) │ │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc) │ │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc) │ │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc) │ │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc) │ │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc) │ │ │ │ + -- used 0.00640037s (cpu); 0.0063991s (thread); 0s (gc) │ │ │ │ + -- used 0.00766984s (cpu); 0.00767694s (thread); 0s (gc) │ │ │ │ + -- used 0.0104622s (cpu); 0.0104677s (thread); 0s (gc) │ │ │ │ + -- used 0.0175219s (cpu); 0.0175313s (thread); 0s (gc) │ │ │ │ + -- used 0.0437386s (cpu); 0.0437534s (thread); 0s (gc) │ │ │ │ + -- used 0.0600615s (cpu); 0.0600733s (thread); 0s (gc) │ │ │ │ + -- used 0.103727s (cpu); 0.103737s (thread); 0s (gc) │ │ │ │ + -- used 0.167023s (cpu); 0.167033s (thread); 0s (gc) │ │ │ │ + -- used 0.416645s (cpu); 0.303049s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ Note: in characteristic zero, using Bertini's theorem, the numbers computed can │ │ ├── ./usr/share/doc/Macaulay2/SchurFunctors/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ c3BsaXRDaGFyYWN0ZXI= │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ @@ -53,15 +53,15 @@ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc) │ │ │ + -- used 7.45695s (cpu); 3.86118s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ we could confirm this with the computation: │ │ │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ @@ -71,12 +71,12 @@ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ ----------------------------------------------------------------------- │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc) │ │ │ + -- used 61.3289s (cpu); 55.8154s (thread); 0s (gc) │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ @@ -23,24 +23,24 @@ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ o5 = A │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc) │ │ │ + -- used 0.539407s (cpu); 0.185342s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = 2H + 4H H + 2H │ │ │ 1 1 2 2 │ │ │ │ │ │ o6 : A │ │ │ │ │ │ i7 : time segre(X,Y,A) │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc) │ │ │ + -- used 0.300199s (cpu); 0.127528s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ o7 : A │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time isComponentContained(X,Y)
    │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc)
    │ │ │ + -- used 7.45695s (cpu); 3.86118s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : print "we could confirm this with the computation:"
    │ │ │ @@ -189,15 +189,15 @@
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time isSubset(saturate(Y,B),saturate(X,B))
    │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc)
    │ │ │ + -- used 61.3289s (cpu); 55.8154s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -68,30 +68,30 @@ │ │ │ │ i9 : Y=ideal (z_0*W_0-z_1*W_1)+ideal(f); │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc) │ │ │ │ + -- used 7.45695s (cpu); 3.86118s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ │ we could confirm this with the computation: │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ │ │ │ │ │ o13 = ideal (a*d*g, a*d*h, a*d*i, a*e*g, a*e*h, a*e*i, a*f*g, a*f*h, a*f*i, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc) │ │ │ │ + -- used 61.3289s (cpu); 55.8154s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ ********** WWaayyss ttoo uussee iissCCoommppoonneennttCCoonnttaaiinneedd:: ********** │ │ │ │ * isComponentContained(Ideal,Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_m_p_o_n_e_n_t_C_o_n_t_a_i_n_e_d is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ @@ -118,27 +118,27 @@ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time s = segreDimX(X,Y,A)
    │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc)
    │ │ │ + -- used 0.539407s (cpu); 0.185342s (thread); 0s (gc)
    │ │ │  
    │ │ │         2             2
    │ │ │  o6 = 2H  + 4H H  + 2H
    │ │ │         1     1 2     2
    │ │ │  
    │ │ │  o6 : A
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time segre(X,Y,A)
    │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc)
    │ │ │ + -- used 0.300199s (cpu); 0.127528s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2     2             2
    │ │ │  o7 = 12H H  - 6H H  - 6H H  + 2H  + 4H H  + 2H
    │ │ │          1 2     1 2     1 2     1     1 2     2
    │ │ │  
    │ │ │  o7 : A
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,23 +48,23 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ │ │ o5 = A │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc) │ │ │ │ + -- used 0.539407s (cpu); 0.185342s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = 2H + 4H H + 2H │ │ │ │ 1 1 2 2 │ │ │ │ │ │ │ │ o6 : A │ │ │ │ i7 : time segre(X,Y,A) │ │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc) │ │ │ │ + -- used 0.300199s (cpu); 0.127528s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o7 : A │ │ │ │ ********** WWaayyss ttoo uussee sseeggrreeDDiimmXX:: ********** │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ @@ -1,6 +1,6 @@ │ │ │ -- -*- M2-comint -*- hash: 1331702921222 │ │ │ │ │ │ i1 : check SimpleDoc │ │ │ - -- capturing check(0, "SimpleDoc") -- .226545s elapsed │ │ │ + -- capturing check(0, "SimpleDoc") -- .145078s elapsed │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ @@ -74,15 +74,15 @@ │ │ │
    │ │ │

    The check method executes all package tests defined this way.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : check SimpleDoc
    │ │ │ - -- capturing check(0, "SimpleDoc")           -- .226545s elapsed
    │ │ │ + -- capturing check(0, "SimpleDoc") -- .145078s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ The variable testExample is a _S_t_r_i_n_g containing an example of the use of _T_E_S_T │ │ │ │ to write a test case. │ │ │ │ TEST /// -* test for simpleDocFrob *- │ │ │ │ assert(simpleDocFrob(2,matrix{{1,2}}) == matrix{{1,2,0,0},{0,0,1,2}}) │ │ │ │ /// │ │ │ │ The _c_h_e_c_k method executes all package tests defined this way. │ │ │ │ i1 : check SimpleDoc │ │ │ │ - -- capturing check(0, "SimpleDoc") -- .226545s elapsed │ │ │ │ + -- capturing check(0, "SimpleDoc") -- .145078s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_E_S_T -- add a test for a package │ │ │ │ * _c_h_e_c_k -- perform tests of a package │ │ │ │ * _p_a_c_k_a_g_e_T_e_m_p_l_a_t_e -- a template for a package │ │ │ │ * _d_o_c_E_x_a_m_p_l_e -- an example of a documentation string │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_E_x_a_m_p_l_e is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ @@ -9,14 +9,14 @@ │ │ │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ o5 : R │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ @@ -99,17 +99,17 @@ │ │ │
      i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)};
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1)
      │ │ │  
      │ │ │ -        2 2 2 2          2 2 2 2          2 2
      │ │ │ -o5 = - x x x x x  x   + x x x x x  x   + x x x x x x x x
      │ │ │ -        1 4 6 7 10 11    2 3 5 8 10 11    2 3 5 6 7 8 9 12
      │ │ │ +      2 2 2 2          2 2 2 2                  2 2
      │ │ │ +o5 = x x x x x  x   - x x x x x  x   + x x x x x x x x
      │ │ │ +      1 4 6 7 10 11    2 3 5 8 10 11    1 2 3 4 6 7 9 12
      │ │ │  
      │ │ │  o5 : R
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,17 +31,17 @@ │ │ │ │ │ │ │ │ 6 5 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_e_t_O_n_e_s_F_o_r_e_s_t -- sets to 1 variables in a symbolic slack matrix which │ │ │ │ corresponding to edges of a spanning forest │ │ │ │ * _s_l_a_c_k_I_d_e_a_l -- computes the slack ideal │ │ │ │ * _s_y_m_b_o_l_i_c_S_l_a_c_k_M_a_t_r_i_x -- computes the symbolic slack matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time degreeDeterminant n │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc) │ │ │ + -- used 7.8019e-05s (cpu); 7.0604e-05s (thread); 0s (gc) │ │ │ │ │ │ o2 = 6 │ │ │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 1368 or with command line option --debug 1368 │ │ │ warning: clearing value of symbol x1 to allow access to subscripted variables based on it │ │ │ @@ -19,14 +19,14 @@ │ │ │ warning: clearing value of symbol x0 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 6010 or with command line option --debug 6010 │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ 0,0,0 1,2,1 │ │ │ │ │ │ i4 : time degree determinant M │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc) │ │ │ + -- used 0.16978s (cpu); 0.0529805s (thread); 0s (gc) │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ @@ -1,13 +1,13 @@ │ │ │ -- -*- M2-comint -*- hash: 17130321902108223178 │ │ │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc) │ │ │ + -- used 0.430955s (cpu); 0.241127s (thread); 0s (gc) │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |) │ │ │ | 0 0 0 1 1 2 0 0 1 0 | │ │ │ | 0 1 2 0 1 0 0 1 0 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ @@ -9,18 +9,18 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc) │ │ │ + -- used 0.209212s (cpu); 0.151545s (thread); 0s (gc) │ │ │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc) │ │ │ + -- used 0.344805s (cpu); 0.28602s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc) │ │ │ + -- used 0.328512s (cpu); 0.29171s (thread); 0s (gc) │ │ │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ ------------------------------------------------------------------------ │ │ │ 3}}}} │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ i2 : time det M │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc) │ │ │ + -- used 0.148646s (cpu); 0.10084s (thread); 0s (gc) │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,13 +24,13 @@ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ ------------------------------------------------------------------------ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ │ │ i4 : time det M │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc) │ │ │ + -- used 0.46196s (cpu); 0.461782s (thread); 0s (gc) │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ 9257139493926586400187927813888 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ a x y z + a x y z + a x y z │ │ │ 1,1,1 1 1 1 1,2,0 1 2 0 1,2,1 1 2 1 │ │ │ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ i2 : time sparseDiscriminant f │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc) │ │ │ + -- used 2.76719s (cpu); 2.48392s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o2 = a a a a a a - a a a a a - │ │ │ 0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0 0,1,0 0,2,1 1,0,0 1,0,1 1,1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ a a a a + a a a a a - │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 16228363821945730064 │ │ │ │ │ │ i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}}) │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc) │ │ │ + -- used 0.437655s (cpu); 0.417926s (thread); 0s (gc) │ │ │ │ │ │ o1 = Res │ │ │ │ │ │ o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |}) │ │ │ | 0 0 1 1 | | 1 0 1 2 | | 0 1 0 1 | │ │ │ │ │ │ i2 : QQ[c_(1,1)..c_(3,4)][x,y]; │ │ │ @@ -18,15 +18,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ c x*y + c x + c y + c ) │ │ │ 3,3 3,4 3,2 3,1 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : time Res(f,g,h) │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc) │ │ │ + -- used 0.0105012s (cpu); 0.0105005s (thread); 0s (gc) │ │ │ │ │ │ 2 4 2 2 4 │ │ │ o4 = - c c c c c c c + c c c c c c + │ │ │ 1,2 1,3 1,4 2,1 2,2 2,3 3,1 1,2 1,3 2,1 2,2 2,4 3,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 3 2 3 │ │ │ c c c c c c - 2c c c c c c c c + │ │ │ @@ -730,30 +730,30 @@ │ │ │ │ │ │ o4 : QQ[c ..c ] │ │ │ 1,1 3,4 │ │ │ │ │ │ i5 : assert(Res(f,g,h) == sparseResultant(f,g,h)) │ │ │ │ │ │ i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331); │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc) │ │ │ + -- used 0.174291s (cpu); 0.0527137s (thread); 0s (gc) │ │ │ │ │ │ o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331) │ │ │ | 0 1 0 1 | │ │ │ │ │ │ i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y]; │ │ │ │ │ │ i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y, c_0 + c_1*x + c_2*y + c_3*x*y) │ │ │ │ │ │ o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c ) │ │ │ 3 1 2 0 3 1 2 0 3 1 2 0 │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : time Res(f,g,h) │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc) │ │ │ + -- used 0.00426482s (cpu); 0.00426298s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o9 = a b b c - a a b b c - a a b b c + a a b c - a b b c c - │ │ │ 3 1 2 0 2 3 1 3 0 1 3 2 3 0 1 2 3 0 3 0 2 0 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ a a b b c c + a a b c c + a a b b c c + a b b c c - a a b b c c + │ │ │ @@ -822,15 +822,15 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o11 : Sequence │ │ │ │ │ │ i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true)); │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc) │ │ │ + -- used 0.386656s (cpu); 0.211447s (thread); 0s (gc) │ │ │ │ │ │ i13 : quotientRemainder(UnmixedRes,MixedRes) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o13 = (b c - b b c c + b b c + b c c - 2b b c c - b b c c + b c , 0) │ │ │ 5 2 4 5 2 4 2 5 4 4 2 5 2 5 2 5 2 4 4 5 2 5 │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time degreeDeterminant n
    │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc)
    │ │ │ + -- used 7.8019e-05s (cpu); 7.0604e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = genericMultidimensionalMatrix n;
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a     ..a     ]
    │ │ │                                                        0,0,0   1,2,1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time degree determinant M
    │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc)
    │ │ │ + -- used 0.16978s (cpu); 0.0529805s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = {6}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time degreeDeterminant n │ │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc) │ │ │ │ + -- used 7.8019e-05s (cpu); 7.0604e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 1368 or with command line option -- │ │ │ │ debug 1368 │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ based on it │ │ │ │ : debug with expression debug 6010 or with command line option -- │ │ │ │ debug 6010 │ │ │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ │ 0,0,0 1,2,1 │ │ │ │ i4 : time degree determinant M │ │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc) │ │ │ │ + -- used 0.16978s (cpu); 0.0529805s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_r_m_i_n_a_n_t_(_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x_) -- hyperdeterminant of a │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │
    i1 : (d,n) := (2,3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time Disc = denseDiscriminant(d,n)
    │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc)
    │ │ │ + -- used 0.430955s (cpu); 0.241127s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = Disc
    │ │ │  
    │ │ │  o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |)
    │ │ │                                                             | 0 0 0 1 1 2 0 0 1 0 |
    │ │ │                                                             | 0 1 2 0 1 0 0 1 0 0 |
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o for (d,n), this is the same as _s_p_a_r_s_e_D_i_s_c_r_i_m_i_n_a_n_t _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x │ │ │ │ ""ggeenneerriicc ppoollyynnoommiiaall ooff ddeeggrreeee dd iinn nn vvaarriiaabblleess"";; │ │ │ │ o for f, this is the same as _a_f_f_i_n_e_D_i_s_c_r_i_m_i_n_a_n_t(f). │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc) │ │ │ │ + -- used 0.430955s (cpu); 0.241127s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 │ │ │ │ 2 |) │ │ │ │ | 0 0 0 1 1 2 0 0 1 │ │ │ │ 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ @@ -90,27 +90,27 @@ │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time denseResultant(f0,f1,f2); -- using Poisson formula
    │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc)
    │ │ │ + -- used 0.209212s (cpu); 0.151545s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula
    │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc)
    │ │ │ + -- used 0.344805s (cpu); 0.28602s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant
    │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc)
    │ │ │ + -- used 0.328512s (cpu); 0.29171s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : assert(o2 == o3 and o3 == o4)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,20 +28,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ c x x + c x + c x + c x + c ) │ │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc) │ │ │ │ + -- used 0.209212s (cpu); 0.151545s (thread); 0s (gc) │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay │ │ │ │ formula │ │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc) │ │ │ │ + -- used 0.344805s (cpu); 0.28602s (thread); 0s (gc) │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc) │ │ │ │ + -- used 0.328512s (cpu); 0.29171s (thread); 0s (gc) │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_a_r_s_e_R_e_s_u_l_t_a_n_t -- sparse resultant (A-resultant) │ │ │ │ * _a_f_f_i_n_e_R_e_s_u_l_t_a_n_t -- affine resultant │ │ │ │ * _d_e_n_s_e_D_i_s_c_r_i_m_i_n_a_n_t -- dense discriminant (classical discriminant) │ │ │ │ * _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x -- exponents in one or more polynomials │ │ │ │ * _g_e_n_e_r_i_c_L_a_u_r_e_n_t_P_o_l_y_n_o_m_i_a_l_s -- generic (Laurent) polynomials │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time det M
    │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc)
    │ │ │ + -- used 0.148646s (cpu); 0.10084s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 9698337990421512192
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = randomMultidimensionalMatrix(2,2,2,2,5)
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time det M
    │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc)
    │ │ │ + -- used 0.46196s (cpu); 0.461782s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 912984499996938980479447727885644530753184525786986940737407301278806287
    │ │ │       9257139493926586400187927813888
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3}}}} │ │ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ i2 : time det M │ │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc) │ │ │ │ + -- used 0.148646s (cpu); 0.10084s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6}}}, {{{3, 5, 7, 7, 9}, {4, 5, 0, 4, 3}}, {{1, 8, 9, 1, 2}, {9, 6, 6, │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ i4 : time det M │ │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc) │ │ │ │ + -- used 0.46196s (cpu); 0.461782s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ │ 9257139493926586400187927813888 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- the class of all multidimensional matrices │ │ │ │ * _d_e_g_r_e_e_D_e_t_e_r_m_i_n_a_n_t -- degree of the hyperdeterminant of a generic │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time sparseDiscriminant f
    │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc)
    │ │ │ + -- used 2.76719s (cpu); 2.48392s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                     2                        
    │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2     2                                2            
    │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       a     x y z  + a     x y z  + a     x y z
    │ │ │ │        1,1,1 1 1 1    1,2,0 1 2 0    1,2,1 1 2 1
    │ │ │ │  
    │ │ │ │  o1 : ZZ[a     ..a     ][x ..x , y ..y , z ..z ]
    │ │ │ │           0,0,0   1,2,1   0   1   0   2   0   1
    │ │ │ │  i2 : time sparseDiscriminant f
    │ │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc)
    │ │ │ │ + -- used 2.76719s (cpu); 2.48392s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                     2
    │ │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2     2                                2
    │ │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │          

    Description

    │ │ │

    Alternatively, one can apply the method directly to the list of Laurent polynomials $f_0,\ldots,f_n$. In this case, the matrices $A_0,\ldots,A_n$ are automatically determined by exponentsMatrix. If you want require that $A_0=\cdots=A_n$, then use the option Unmixed=>true (this could be faster). Below we consider some examples.

    │ │ │

    In the first example, we calculate the sparse (mixed) resultant associated to the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$. Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{(1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{(2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc)
    │ │ │ + -- used 0.437655s (cpu); 0.417926s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = Res
    │ │ │  
    │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |})
    │ │ │                                                              | 0 0 1 1 |  | 1 0 1 2 |  | 0 1 0 1 |
    │ │ │
    │ │ │
    i4 : time Res(f,g,h)
    │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc)
    │ │ │ + -- used 0.0105012s (cpu); 0.0105005s (thread); 0s (gc)
    │ │ │  
    │ │ │          2                       4      2   2               4    
    │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3       2       3               2                   3        
    │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ @@ -825,15 +825,15 @@
    │ │ │            
    │ │ │

    In the second example, we calculate the sparse unmixed resultant associated to the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0 + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over $\mathbb{Z}/3331$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -68,15 +68,15 @@ │ │ │ │ │ │ │ │ o4 = | 0 1 | │ │ │ │ | 2 3 | │ │ │ │ | 4 | │ │ │ │ │ │ │ │ o4 : YoungTableau │ │ │ │ i5 : time higherSpechtPolynomial(S,T,R) │ │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc) │ │ │ │ + -- used 0.00166494s (cpu); 0.00166171s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o5 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ i6 : time higherSpechtPolynomial(S,T,R, Robust => false) │ │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc) │ │ │ │ + -- used 0.00282548s (cpu); 0.00282517s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o6 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o6 : R │ │ │ │ i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true) │ │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc) │ │ │ │ + -- used 0.00215225s (cpu); 0.00215253s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = (- x + x )(- x + x )(- x + x )(- x + x )((x + x + x )(x )(x ) + (x ) │ │ │ │ (x )(x )) │ │ │ │ 0 2 0 4 2 4 1 3 0 2 4 3 1 4 │ │ │ │ 2 0 │ │ │ │ │ │ │ │ o7 : Expression of class Product │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc)
    │ │ │ + -- used 0.174291s (cpu); 0.0527137s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331)
    │ │ │                                                               | 0 1 0 1 |
    │ │ │
    │ │ │ @@ -849,15 +849,15 @@ │ │ │ │ │ │ o8 : Sequence │ │ │
    │ │ │
    i9 : time Res(f,g,h)
    │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc)
    │ │ │ + -- used 0.00426482s (cpu); 0.00426298s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2            2            2        2 2    2          
    │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2                       2                         
    │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ @@ -938,15 +938,15 @@
    │ │ │  
    │ │ │  o11 : Sequence
    │ │ │
    │ │ │
    i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true));
    │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc)
    │ │ │ + -- used 0.386656s (cpu); 0.211447s (thread); 0s (gc) │ │ │
    │ │ │
    i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │  
    │ │ │          2 2                   2    2                               2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  In the first example, we calculate the sparse (mixed) resultant associated to
    │ │ │ │  the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$.
    │ │ │ │  Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{
    │ │ │ │  (1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{
    │ │ │ │  (2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.
    │ │ │ │  i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},
    │ │ │ │  {1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc)
    │ │ │ │ + -- used 0.437655s (cpu); 0.417926s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = Res
    │ │ │ │  
    │ │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1
    │ │ │ │  2 2 |, | 0 0 1 1 |})
    │ │ │ │                                                              | 0 0 1 1 |  | 1 0
    │ │ │ │  1 2 |  | 0 1 0 1 |
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │         1,3       1,2       1,4     1,1   2,2        2,3       2,4     2,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       c   x*y + c   x + c   y + c   )
    │ │ │ │        3,3       3,4     3,2     3,1
    │ │ │ │  
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0105012s (cpu); 0.0105005s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2                       4      2   2               4
    │ │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        3       2       3               2                   3
    │ │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ │ @@ -771,29 +771,29 @@
    │ │ │ │  In the second example, we calculate the sparse unmixed resultant associated to
    │ │ │ │  the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials
    │ │ │ │  $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0
    │ │ │ │  + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over
    │ │ │ │  $\mathbb{Z}/3331$.
    │ │ │ │  i6 : time Res = sparseResultant(matrix{{0,0,1,1},
    │ │ │ │  {0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc)
    │ │ │ │ + -- used 0.174291s (cpu); 0.0527137s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over
    │ │ │ │  ZZ/3331)
    │ │ │ │                                                               | 0 1 0 1 |
    │ │ │ │  i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y];
    │ │ │ │  i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y,
    │ │ │ │  c_0 + c_1*x + c_2*y + c_3*x*y)
    │ │ │ │  
    │ │ │ │  o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c )
    │ │ │ │         3       1     2     0   3       1     2     0   3       1     2     0
    │ │ │ │  
    │ │ │ │  o8 : Sequence
    │ │ │ │  i9 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00426482s (cpu); 0.00426298s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │        2     2            2            2        2 2    2
    │ │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                           2                       2
    │ │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ │ @@ -863,15 +863,15 @@
    │ │ │ │                    2
    │ │ │ │        c x x  + c x  + c x  + c x  + c )
    │ │ │ │         4 1 2    2 2    3 1    1 2    0
    │ │ │ │  
    │ │ │ │  o11 : Sequence
    │ │ │ │  i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant
    │ │ │ │  (f,g,h,Unmixed=>true));
    │ │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc)
    │ │ │ │ + -- used 0.386656s (cpu); 0.211447s (thread); 0s (gc)
    │ │ │ │  i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │ │  
    │ │ │ │          2 2                   2    2                               2 2
    │ │ │ │  o13 = (b c  - b b c c  + b b c  + b c c  - 2b b c c  - b b c c  + b c , 0)
    │ │ │ │          5 2    4 5 2 4    2 5 4    4 2 5     2 5 2 5    2 4 4 5    2 5
    │ │ │ │  
    │ │ │ │  o13 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o4 = | 0 1 |
    │ │ │       | 2 3 |
    │ │ │       | 4 |
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │  
    │ │ │  i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc)
    │ │ │ + -- used 0.00166494s (cpu); 0.00166171s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o5 : R
    │ │ │  
    │ │ │  i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc)
    │ │ │ + -- used 0.00282548s (cpu); 0.00282517s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o6 : R
    │ │ │  
    │ │ │  i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc)
    │ │ │ + -- used 0.00215225s (cpu); 0.00215253s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : tal := tally apply (H,h->conjugacyClass h);
    │ │ │  
    │ │ │  i4 : partis = partitions 6;
    │ │ │  
    │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ + -- used 0.373775s (cpu); 0.305037s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -20,15 +20,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ + -- used 0.844622s (cpu); 0.633304s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │  o4 = HashTable{{0, 1, 2, 3, 4, 5} => HashTable{0 => - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        }
    │ │ │                                                        3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6
    │ │ │                                                      2 3 2 2     4 2 3 2     2 2 2 3     4 3 2   2   2 2 3   2   2 3   2 2   2   3 2 2   2 2   3 2   4   2 3 2   2 2 2   3   4 2   2 3   2   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     1 3 2 2     1 2 3 2     2 3 2 2     1 3 2 2     2 2 3 2     1 2 3 2     1 3 2 2     2 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 3 2     2 2 2 3     4 2 2 3     2 2 2 3     2 2 2 3     4 2 2 3     2 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 3 2   2   1 2 3   2   2 3 2   2   1 3 2   2   2 2 3   2   1 2 3   2   1 3 2   2   2 3 2   2   1 3 2   2   1 2 3   2   2 2 3   2   1 2 3   2   2 3   2 2   2   3 2 2   4 3   2 2   2 3   2 2   4   3 2 2   2   3 2 2   2 3   2 2   4 3   2 2   2 3   2 2   2   3 2 2   4   3 2 2   2   3 2 2   1 2   3 2   1   2 3 2   2 2   3 2   1 2   3 2   2   2 3 2   1   2 3 2   1 2   3 2   2 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   2 2 2   3   4 2 2   3   2 2 2   3   2 2 2   3   4 2 2   3   2 2 2   3   1 2   2 3   1   2 2 3   2 2   2 3   1 2   2 3   2   2 2 3   1   2 2 3   1 2   2 3   2 2   2 3   1 2   2 3   1   2 2 3   2   2 2 3   1   2 2 3
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │
    │ │ │
    i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc)
    │ │ │ + -- used 0.00166494s (cpu); 0.00166171s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -149,15 +149,15 @@
    │ │ │  
    │ │ │  o5 : R
    │ │ │
    │ │ │
    i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc)
    │ │ │ + -- used 0.00282548s (cpu); 0.00282517s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  
    │ │ │  o6 : R
    │ │ │
    │ │ │
    i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc)
    │ │ │ + -- used 0.00215225s (cpu); 0.00215253s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │
    │ │ │
    i4 : partis = partitions 6;
    │ │ │
    │ │ │
    i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ + -- used 0.373775s (cpu); 0.305037s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  representations of $H$ in each irreducible representation of $S_6$. We take
    │ │ │ │  into account that there are multiple copies of each representation by
    │ │ │ │  multiplying the values with the number of copies which is given by the
    │ │ │ │  hookLengthFormula.
    │ │ │ │  i4 : partis = partitions 6;
    │ │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity
    │ │ │ │  (tal,p))
    │ │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ │ + -- used 0.373775s (cpu); 0.305037s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │ │                 Partition{2, 2, 2} => 1
    │ │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ + -- used 0.844622s (cpu); 0.633304s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -56,15 +56,15 @@
    │ │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ │ + -- used 0.844622s (cpu); 0.633304s (thread); 0s (gc)
    │ │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │ │  
    │ │ │ │                                                        2 2 2       4 2   2     2
    │ │ │ │  2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2
    │ │ │ │  1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2
    │ │ │ │  1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2
    │ │ │ │  2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       of discriminant 31 = det| 8 1 |
    │ │ │                               | 1 4 |
    │ │ │       containing a surface of degree 1 and sectional genus 0
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │  
    │ │ │  i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc)
    │ │ │ + -- used 2.7641s (cpu); 1.0622s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -7,15 +7,15 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 14
    │ │ │       containing a (smooth) surface of degree 4 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degree 2
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc)
    │ │ │ + -- used 2.70739s (cpu); 1.11711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc)
    │ │ │ + -- used 7.26543s (cpu); 4.3104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -8,28 +8,28 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc)
    │ │ │ + -- used 3.13911s (cpu); 1.89488s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │  
    │ │ │  i4 : p := point ambient X -- random point on P^5
    │ │ │  
    │ │ │  o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1]
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, a point in PP^5
    │ │ │  
    │ │ │  i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc)
    │ │ │ + -- used 0.341292s (cpu); 0.28804s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ + -- used 19.4691s (cpu); 7.34788s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │  
    │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ @@ -29,15 +29,15 @@
    │ │ │  i5 : p := point Y -- random point on Y
    │ │ │  
    │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, 13402, 1]
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │  
    │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ + -- used 0.489967s (cpu); 0.302939s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │  
    │ │ │  i7 : S = surface X;
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729890813579561111
    │ │ │  
    │ │ │  i1 : X = specialCubicFourfold "quintic del Pezzo surface";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc)
    │ │ │ + -- used 0.36452s (cpu); 0.12517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730220932418738713
    │ │ │  
    │ │ │  i1 : X = specialGushelMukaiFourfold "tau-quadric";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc)
    │ │ │ + -- used 1.07787s (cpu); 0.467581s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ + -- used 0.465297s (cpu); 0.254661s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ + -- used 0.782566s (cpu); 0.507141s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │  
    │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ + -- used 3.80878s (cpu); 2.76661s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  
    │ │ │  i3 : ? X
    │ │ │  
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │  
    │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ + -- used 1.68186s (cpu); 0.773295s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_1^2*x_3+x_0*x_2*x_3-6*x_1*x_2*x_3-x_0*x_3^2-4*x_1*x_3^2-3*x_2*x_3^2+2*x_0^2*x_4-10*x_0*x_1*x_4+13*x_1^2*x_4-x_0*x_2*x_4-3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2-7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3-x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5-x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │  
    │ │ │  i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc)
    │ │ │ + -- used 0.00805083s (cpu); 0.00940807s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc)
    │ │ │ + -- used 0.930145s (cpu); 0.22887s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i7 : assert(F == X)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^8
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc)
    │ │ │ + -- used 2.02782s (cpu); 1.66963s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc)
    │ │ │ + -- used 6.22934s (cpu); 3.45221s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = specialGushelMukaiFourfold(ideal(x_6-x_7, x_5, x_3-x_4, x_1, x_0-x_4, x_2*x_7-x_4*x_8), ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8));
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc)
    │ │ │ + -- used 5.02065s (cpu); 2.80836s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8);
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc)
    │ │ │ + -- used 5.616s (cpu); 2.99969s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ + -- used 1.14275s (cpu); 0.519467s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │  
    │ │ │  i5 : degreeSequence f
    │ │ │  
    │ │ │  o5 = {[10]}
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │
    │ │ │
    i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc)
    │ │ │ + -- used 2.7641s (cpu); 1.0622s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ o2 = Complete intersection of 3 quadrics in PP^7 │ │ │ │ of discriminant 31 = det| 8 1 | │ │ │ │ | 1 4 | │ │ │ │ containing a surface of degree 1 and sectional genus 0 │ │ │ │ cut out by 5 hypersurfaces of degree 1 │ │ │ │ (This is a classical example of rational fourfold) │ │ │ │ i3 : time U' = associatedCastelnuovoSurface X; │ │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc) │ │ │ │ + -- used 2.7641s (cpu); 1.0622s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, Castelnuovo surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^7 cut out by 2 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc)
    │ │ │ + -- used 2.70739s (cpu); 1.11711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 14 │ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc) │ │ │ │ + -- used 2.70739s (cpu); 1.11711s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: PP^5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ Type: ordinary │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc)
    │ │ │ + -- used 7.26543s (cpu); 4.3104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ o2 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc) │ │ │ │ + -- used 7.26543s (cpu); 4.3104s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc)
    │ │ │ + -- used 3.13911s (cpu); 1.89488s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │
    │ │ │
    i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc)
    │ │ │ + -- used 0.341292s (cpu); 0.28804s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │
    │ │ │
    i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │ ├── html2text {} │ │ │ │ @@ -30,28 +30,28 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i3 : time f = detectCongruence(X,Verbose=>true); │ │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc) │ │ │ │ + -- used 3.13911s (cpu); 1.89488s (thread); 0s (gc) │ │ │ │ number lines contained in the image of the cubic map and passing through a │ │ │ │ general point: 8 │ │ │ │ number 2-secant lines = 7 │ │ │ │ number 5-secant conics = 1 │ │ │ │ │ │ │ │ o3 : Congruence of 5-secant conics to surface in PP^5 │ │ │ │ i4 : p := point ambient X -- random point on P^5 │ │ │ │ │ │ │ │ o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1] │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ i5 : time C = f p; -- 5-secant conic to the surface │ │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc) │ │ │ │ + -- used 0.341292s (cpu); 0.28804s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, curve in PP^5 │ │ │ │ i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree │ │ │ │ (C * surface X) == 5 and isSubset(p, C)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_c_t_C_o_n_g_r_u_e_n_c_e_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_,_Z_Z_) -- detect and return a │ │ │ │ congruence of (2e-1)-secant curves of degree e inside a del Pezzo │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ Type: ordinary │ │ │ (case 17 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ + -- used 19.4691s (cpu); 7.34788s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │
    │ │ │
    i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ + -- used 0.489967s (cpu); 0.302939s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │
    │ │ │
    i7 : S = surface X;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  o2 = Special Gushel-Mukai fourfold of discriminant 20
    │ │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │ │       Type: ordinary
    │ │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ │ + -- used 19.4691s (cpu); 7.34788s (thread); 0s (gc)
    │ │ │ │  number lines contained in the image of the quadratic map and passing through a
    │ │ │ │  general point: 7
    │ │ │ │  number 1-secant lines = 6
    │ │ │ │  number 3-secant conics = 1
    │ │ │ │  
    │ │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  i5 : p := point Y -- random point on Y
    │ │ │ │  
    │ │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937,
    │ │ │ │  13402, 1]
    │ │ │ │  
    │ │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ │ + -- used 0.489967s (cpu); 0.302939s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │ │  i7 : S = surface X;
    │ │ │ │  
    │ │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ │ │  i8 : assert(dim C == 1 and degree C == 2 and dim(C*S) == 0 and degree(C*S) == 3
    │ │ │ │  and isSubset(p,C) and isSubset(C,Y))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │
    │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc)
    │ │ │ + -- used 0.36452s (cpu); 0.12517s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ thanks to the functions _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialCubicFourfold "quintic del Pezzo surface"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and │ │ │ │ sectional genus 1 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc) │ │ │ │ + -- used 0.36452s (cpu); 0.12517s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ │ │ Gushel-Mukai fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * discriminant(HodgeSpecialFourfold) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc)
    │ │ │ + -- used 1.07787s (cpu); 0.467581s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ the functions _c_y_c_l_e_C_l_a_s_s, _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialGushelMukaiFourfold "tau-quadric"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc) │ │ │ │ + -- used 1.07787s (cpu); 0.467581s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_) -- discriminant of a special cubic │ │ │ │ fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, surface in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ + -- used 0.465297s (cpu); 0.254661s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │  i1 : K = ZZ/33331; S = PP_K^(1,5);
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ │ + -- used 0.465297s (cpu); 0.254661s (thread); 0s (gc)
    │ │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -89,15 +89,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ + -- used 0.782566s (cpu); 0.507141s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ │ + -- used 0.782566s (cpu); 0.507141s (thread); 0s (gc)
    │ │ │ │  S: Veronese surface in PP^5
    │ │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ + -- used 3.80878s (cpu); 2.76661s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ │ + -- used 3.80878s (cpu); 2.76661s (thread); 0s (gc)
    │ │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │ │  X: GM fourfold containing S
    │ │ │ │  Y: del Pezzo fivefold containing X
    │ │ │ │  h^1(N_{S,Y}) = 0
    │ │ │ │  h^0(N_{S,Y}) = 11
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ + -- used 1.68186s (cpu); 0.773295s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, 4-dimensional subvariety of PP^9
    │ │ │ │  i3 : ? X
    │ │ │ │  
    │ │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │ │       1^2 2^5
    │ │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ │ + -- used 1.68186s (cpu); 0.773295s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7
    │ │ │ │  hypersurfaces of degrees 1^2 2^5
    │ │ │ │       dominance: true
    │ │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html
    │ │ │ @@ -95,25 +95,25 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc)
    │ │ │ + -- used 0.00805083s (cpu); 0.00940807s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc)
    │ │ │ + -- used 0.930145s (cpu); 0.22887s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -115,24 +115,24 @@ │ │ │ │ 3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2- │ │ │ │ 7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3- │ │ │ │ x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5- │ │ │ │ x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^5 │ │ │ │ i5 : time F = specialCubicFourfold(S,X,NumNodes=>3); │ │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc) │ │ │ │ + -- used 0.00805083s (cpu); 0.00940807s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc) │ │ │ │ + -- used 0.930145s (cpu); 0.22887s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i7 : assert(F == X) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_(_E_m_b_e_d_d_e_d_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- random special cubic │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ @@ -93,25 +93,25 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc)
    │ │ │ + -- used 2.02782s (cpu); 1.66963s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc)
    │ │ │ + -- used 6.22934s (cpu); 3.45221s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,24 +33,24 @@ │ │ │ │ x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2- │ │ │ │ x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4- │ │ │ │ 2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2- │ │ │ │ 3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ i5 : time F = specialGushelMukaiFourfold(S,X); │ │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc) │ │ │ │ + -- used 2.02782s (cpu); 1.66963s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc) │ │ │ │ + -- used 6.22934s (cpu); 3.45221s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc)
    │ │ │ + -- used 5.02065s (cpu); 2.80836s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc) │ │ │ │ + -- used 5.02065s (cpu); 2.80836s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces │ │ │ │ of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc)
    │ │ │ + -- used 5.616s (cpu); 2.99969s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc) │ │ │ │ + -- used 5.616s (cpu); 2.99969s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ + -- used 1.14275s (cpu); 0.519467s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : degreeSequence f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ │ + -- used 1.14275s (cpu); 0.519467s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │  i5 : degreeSequence f
    │ │ │ │  
    │ │ │ │  o5 = {[10]}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_graph_lp__Mixed__Graph_rp.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                                b => {a, c}
    │ │ │                                c => {b}
    │ │ │  
    │ │ │  o2 : HashTable
    │ │ │  
    │ │ │  i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │  
    │ │ │  o4 = true
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_graph_lp__Mixed__Graph_rp.html
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │  o2 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : (graph G)#Bigraph === bigraph G
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                 Graph => Graph{a => {b}   }
    │ │ │ │                                b => {a, c}
    │ │ │ │                                c => {b}
    │ │ │ │  
    │ │ │ │  o2 : HashTable
    │ │ │ │  i3 : keys (graph G)
    │ │ │ │  
    │ │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges
    │ │ ├── ./usr/share/doc/Macaulay2/Style/example-output/_generate__Grammar.out
    │ │ │ @@ -1,16 +1,16 @@
    │ │ │  -- -*- M2-comint -*- hash: 3455701143666534588
    │ │ │  
    │ │ │  i1 : outfile = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ +o1 = /tmp/M2-10109-0/0
    │ │ │  
    │ │ │  i2 : template = outfile | ".in"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ +o2 = /tmp/M2-10109-0/0.in
    │ │ │  
    │ │ │  i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │  
    │ │ │  i4 : template << "This is an example file for the generateGrammar method!";
    │ │ │  
    │ │ │  i5 : template << endl;
    │ │ │  
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        String regex: @M2STRINGS@
    │ │ │        List of keywords: {
    │ │ │            @M2KEYWORDS@
    │ │ │        }
    │ │ │  
    │ │ │  
    │ │ │  i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ + -- generating /tmp/M2-10109-0/0
    │ │ │  
    │ │ │  i12 : get outfile
    │ │ │  
    │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │  
    │ │ │        This is an example file for the generateGrammar method!
    │ │ │        String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///"
    │ │ ├── ./usr/share/doc/Macaulay2/Style/html/_generate__Grammar.html
    │ │ │ @@ -82,22 +82,22 @@
    │ │ │            

    The function demarkf indicates how the elements of each of the lists will be demarked in the resulting file. The file outfile will then be generated, replacing each of these strings as indicated above.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,15 +143,15 @@ │ │ │ @M2KEYWORDS@ │ │ │ } │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : outfile = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ +o1 = /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i2 : template = outfile | ".in"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ +o2 = /tmp/M2-10109-0/0.in │ │ │
    │ │ │
    i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │
    │ │ │
    i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ + -- generating /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i12 : get outfile
    │ │ │  
    │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,18 +26,18 @@
    │ │ │ │      * @M2CONSTANTS@, for a list of Macaulay2 symbols and packages.
    │ │ │ │      * @M2STRINGS@, for a regular expression that matches Macaulay2 strings.
    │ │ │ │  The function demarkf indicates how the elements of each of the lists will be
    │ │ │ │  demarked in the resulting file. The file outfile will then be generated,
    │ │ │ │  replacing each of these strings as indicated above.
    │ │ │ │  i1 : outfile = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ │ +o1 = /tmp/M2-10109-0/0
    │ │ │ │  i2 : template = outfile | ".in"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ │ +o2 = /tmp/M2-10109-0/0.in
    │ │ │ │  i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │ │  i4 : template << "This is an example file for the generateGrammar method!";
    │ │ │ │  i5 : template << endl;
    │ │ │ │  i6 : template << "String regex: @M2STRINGS@" << endl;
    │ │ │ │  i7 : template << "List of keywords: {" << endl;
    │ │ │ │  i8 : template << "    @M2KEYWORDS@" << endl;
    │ │ │ │  i9 : template << "}" << endl << close;
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: @M2STRINGS@
    │ │ │ │        List of keywords: {
    │ │ │ │            @M2KEYWORDS@
    │ │ │ │        }
    │ │ │ │  i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ │ + -- generating /tmp/M2-10109-0/0
    │ │ │ │  i12 : get outfile
    │ │ │ │  
    │ │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///"
    │ │ │ │        List of keywords: {
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out
    │ │ │ @@ -31,15 +31,15 @@
    │ │ │  o5 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i6 : isHomogeneous P
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │  i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc)
    │ │ │ + -- used 0.275996s (cpu); 0.175133s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │  
    │ │ │               2         3         2     2
    │ │ │  o8 = ideal (y  - x*z, x  - y*z, x y - z )
    │ │ │ @@ -47,12 +47,12 @@
    │ │ │  o8 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i9 : isHomogeneous Q
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc)
    │ │ │ + -- used 0.0363619s (cpu); 0.036366s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html
    │ │ │ @@ -141,15 +141,15 @@
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc)
    │ │ │ + -- used 0.275996s (cpu); 0.175133s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │ @@ -166,15 +166,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc)
    │ │ │ + -- used 0.0363619s (cpu); 0.036366s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,28 +59,28 @@ │ │ │ │ o5 = ideal (y - x*z, x y - z , x - y*z) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x..z] │ │ │ │ i6 : isHomogeneous P │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : time symbolicPower(P,4); │ │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc) │ │ │ │ + -- used 0.275996s (cpu); 0.175133s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of QQ[x..z] │ │ │ │ i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5}) │ │ │ │ │ │ │ │ 2 3 2 2 │ │ │ │ o8 = ideal (y - x*z, x - y*z, x y - z ) │ │ │ │ │ │ │ │ o8 : Ideal of QQ[x..z] │ │ │ │ i9 : isHomogeneous Q │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time symbolicPower(Q,4); │ │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc) │ │ │ │ + -- used 0.0363619s (cpu); 0.036366s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of QQ[x..z] │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_b_P_o_w_e_r_P_r_i_m_e_P_o_s_C_h_a_r │ │ │ │ ********** WWaayyss ttoo uussee ssyymmbboolliiccPPoowweerr:: ********** │ │ │ │ * symbolicPower(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ o3 = 0 <-- E <-- 0 │ │ │ │ │ │ -1 0 1 │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ i4 : time T=tateExtension W; │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc) │ │ │ + -- used 0.130267s (cpu); 0.130268s (thread); 0s (gc) │ │ │ │ │ │ i5 : cohomologyMatrix(T,-{3,3},{3,3}) │ │ │ │ │ │ o5 = | 8h 4h 0 4 8 12 16 | │ │ │ | 6h 3h 0 3 6 9 12 | │ │ │ | 4h 2h 0 2 4 6 8 | │ │ │ | 2h h 0 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time T=tateExtension W;
    │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc)
    │ │ │ + -- used 0.130267s (cpu); 0.130268s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │  
    │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │               1
    │ │ │ │  o3 = 0  <-- E  <-- 0
    │ │ │ │  
    │ │ │ │       -1     0      1
    │ │ │ │  
    │ │ │ │  o3 : ChainComplex
    │ │ │ │  i4 : time T=tateExtension W;
    │ │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc)
    │ │ │ │ + -- used 0.130267s (cpu); 0.130268s (thread); 0s (gc)
    │ │ │ │  i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │ │  
    │ │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ │       | 6h  3h  0 3  6  9  12 |
    │ │ │ │       | 4h  2h  0 2  4  6  8  |
    │ │ │ │       | 2h  h   0 1  2  3  4  |
    │ │ │ │       | 0   0   0 0  0  0  0  |
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out
    │ │ │ @@ -63,20 +63,20 @@
    │ │ │  o15 : Ideal of R
    │ │ │  
    │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ + -- used 1.07015s (cpu); 0.783874s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │  
    │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ + -- used 2.81364s (cpu); 2.30175s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J1 == J2
    │ │ │  
    │ │ │  o19 = true
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- S
    │ │ │  
    │ │ │  i4 : R = S/(ker g);
    │ │ │  
    │ │ │  i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc)
    │ │ │ + -- used 0.00221578s (cpu); 0.00220983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │  
    │ │ │  i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc)
    │ │ │ + -- used 0.00582617s (cpu); 0.00583131s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v);
    │ │ │  
    │ │ │  i8 : isCohenMacaulay(R)
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out
    │ │ │ @@ -60,49 +60,49 @@
    │ │ │  i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3)
    │ │ │  
    │ │ │  o19 = R
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │  
    │ │ │  i20 : time isFInjective(R)
    │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc)
    │ │ │ + -- used 0.0329714s (cpu); 0.0329715s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │  
    │ │ │  i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc)
    │ │ │ + -- used 2.63713s (cpu); 1.43732s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │  
    │ │ │  i23 : time isFInjective(R)
    │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc)
    │ │ │ + -- used 0.157892s (cpu); 0.0959184s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc)
    │ │ │ + -- used 0.164486s (cpu); 0.104157s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt];
    │ │ │  
    │ │ │  i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2);
    │ │ │  
    │ │ │  i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t});
    │ │ │  
    │ │ │  o27 : RingMap EP1 <-- S
    │ │ │  
    │ │ │  i28 : R = S/(ker f);
    │ │ │  
    │ │ │  i29 : time isFInjective(R)
    │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc)
    │ │ │ + -- used 1.0071s (cpu); 0.797444s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │  
    │ │ │  i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc)
    │ │ │ + -- used 0.400721s (cpu); 0.271248s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o25 : Ideal of S
    │ │ │  
    │ │ │  i26 : debugLevel = 1;
    │ │ │  
    │ │ │  i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc)
    │ │ │ + -- used 0.151164s (cpu); 0.080519s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │  
    │ │ │  i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc)
    │ │ │ + -- used 0.279722s (cpu); 0.211452s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : debugLevel = 0;
    │ │ │  
    │ │ │  i30 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out
    │ │ │ @@ -81,21 +81,21 @@
    │ │ │  i22 : testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │  
    │ │ │  o22 = ideal (y, x)
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc)
    │ │ │ + -- used 0.403964s (cpu); 0.20971s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc)
    │ │ │ + -- used 0.502363s (cpu); 0.28764s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │  
    │ │ │  i25 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html
    │ │ │ @@ -226,23 +226,23 @@
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ + -- used 1.07015s (cpu); 0.783874s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ + -- used 2.81364s (cpu); 2.30175s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -106,19 +106,19 @@
    │ │ │ │  i15 : I2 = ideal(x^20*y^100, x + z^100);
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ │ + -- used 1.07015s (cpu); 0.783874s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 : Ideal of R
    │ │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ │ + -- used 2.81364s (cpu); 2.30175s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 : Ideal of R
    │ │ │ │  i19 : J1 == J2
    │ │ │ │  
    │ │ │ │  o19 = true
    │ │ │ │  For legacy reasons, the last ideal in the list can be specified separately,
    │ │ │ │  using frobeniusRoot(e, \{a_1,\ldots,a_n\}, \{I_1,\ldots,I_n\}, I). The last
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html
    │ │ │ @@ -96,23 +96,23 @@
    │ │ │              
    │ │ │                
    i4 : R = S/(ker g);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc)
    │ │ │ + -- used 0.00221578s (cpu); 0.00220983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc)
    │ │ │ + -- used 0.00582617s (cpu); 0.00583131s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,19 +23,19 @@ │ │ │ │ i1 : T = ZZ/5[x,y]; │ │ │ │ i2 : S = ZZ/5[a,b,c,d]; │ │ │ │ i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- S │ │ │ │ i4 : R = S/(ker g); │ │ │ │ i5 : time isCohenMacaulay(R) │ │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc) │ │ │ │ + -- used 0.00221578s (cpu); 0.00220983s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : time isCohenMacaulay(R, AtOrigin => true) │ │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc) │ │ │ │ + -- used 0.00582617s (cpu); 0.00583131s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v); │ │ │ │ i8 : isCohenMacaulay(R) │ │ │ │ │ │ │ │ o8 = false │ │ │ │ The function isCohenMacaulay considers $R$ as a quotient of a polynomial ring, │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ @@ -214,23 +214,23 @@ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i20 : time isFInjective(R)
    │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc)
    │ │ │ + -- used 0.0329714s (cpu); 0.0329715s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │
    │ │ │
    i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc)
    │ │ │ + -- used 2.63713s (cpu); 1.43732s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │

    If the option AtOrigin (default value false) is set to true, isFInjective will only check $F$-injectivity at the origin. Otherwise, it will check $F$-injectivity globally. Note that checking $F$-injectivity at the origin can be slower than checking it globally. Consider the following example of a non-$F$-injective ring.

    │ │ │ @@ -240,23 +240,23 @@ │ │ │ │ │ │
    i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time isFInjective(R)
    │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc)
    │ │ │ + -- used 0.157892s (cpu); 0.0959184s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc)
    │ │ │ + -- used 0.164486s (cpu); 0.104157s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumeCM (default value false) is set to true, then isFInjective only checks the Frobenius action on top cohomology (which is typically much faster). Note that it can give an incorrect answer if the non-injective Frobenius occurs in a lower degree. Consider the example of the cone over a supersingular elliptic curve times $\mathbb{P}^1$.

    │ │ │ @@ -283,23 +283,23 @@ │ │ │ │ │ │
    i28 : R = S/(ker f);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : time isFInjective(R)
    │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc)
    │ │ │ + -- used 1.0071s (cpu); 0.797444s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc)
    │ │ │ + -- used 0.400721s (cpu); 0.271248s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumedReduced is set to true (its default behavior), then the bottom local cohomology is avoided (this means the Frobenius action on the top potentially nonzero Ext is not computed).

    │ │ │ ├── html2text {} │ │ │ │ @@ -81,52 +81,52 @@ │ │ │ │ much faster. │ │ │ │ i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3) │ │ │ │ │ │ │ │ o19 = R │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : time isFInjective(R) │ │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc) │ │ │ │ + -- used 0.0329714s (cpu); 0.0329715s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = true │ │ │ │ i21 : time isFInjective(R, CanonicalStrategy => null) │ │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc) │ │ │ │ + -- used 2.63713s (cpu); 1.43732s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ If the option AtOrigin (default value false) is set to true, isFInjective will │ │ │ │ only check $F$-injectivity at the origin. Otherwise, it will check $F$- │ │ │ │ injectivity globally. Note that checking $F$-injectivity at the origin can be │ │ │ │ slower than checking it globally. Consider the following example of a non-$F$- │ │ │ │ injective ring. │ │ │ │ i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5); │ │ │ │ i23 : time isFInjective(R) │ │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc) │ │ │ │ + -- used 0.157892s (cpu); 0.0959184s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = false │ │ │ │ i24 : time isFInjective(R, AtOrigin => true) │ │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc) │ │ │ │ + -- used 0.164486s (cpu); 0.104157s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ If the option AssumeCM (default value false) is set to true, then isFInjective │ │ │ │ only checks the Frobenius action on top cohomology (which is typically much │ │ │ │ faster). Note that it can give an incorrect answer if the non-injective │ │ │ │ Frobenius occurs in a lower degree. Consider the example of the cone over a │ │ │ │ supersingular elliptic curve times $\mathbb{P}^1$. │ │ │ │ i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt]; │ │ │ │ i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2); │ │ │ │ i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t}); │ │ │ │ │ │ │ │ o27 : RingMap EP1 <-- S │ │ │ │ i28 : R = S/(ker f); │ │ │ │ i29 : time isFInjective(R) │ │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc) │ │ │ │ + -- used 1.0071s (cpu); 0.797444s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = false │ │ │ │ i30 : time isFInjective(R, AssumeCM => true) │ │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc) │ │ │ │ + -- used 0.400721s (cpu); 0.271248s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ If the option AssumedReduced is set to true (its default behavior), then the │ │ │ │ bottom local cohomology is avoided (this means the Frobenius action on the top │ │ │ │ potentially nonzero Ext is not computed). │ │ │ │ If the option AssumeNormal (default value false) is set to true, then the │ │ │ │ bottom two local cohomology modules (or, rather, their duals) need not be │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ @@ -273,23 +273,23 @@ │ │ │
    i26 : debugLevel = 1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc)
    │ │ │ + -- used 0.151164s (cpu); 0.080519s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc)
    │ │ │ + -- used 0.279722s (cpu); 0.211452s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : debugLevel = 0;
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i25 : I = minors(2, matrix {{x, y, z}, {u, v, w}}); │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : debugLevel = 1; │ │ │ │ i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1) │ │ │ │ isFRegular: This ring does not appear to be F-regular. Increasing │ │ │ │ DepthOfSearch will let the function search more deeply. │ │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc) │ │ │ │ + -- used 0.151164s (cpu); 0.080519s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = false │ │ │ │ i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2) │ │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc) │ │ │ │ + -- used 0.279722s (cpu); 0.211452s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : debugLevel = 0; │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_e_s_t_I_d_e_a_l -- compute a test ideal in a Q-Gorenstein ring │ │ │ │ * _i_s_F_R_a_t_i_o_n_a_l -- whether a ring is F-rational │ │ │ │ ********** WWaayyss ttoo uussee iissFFRReegguullaarr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ @@ -255,25 +255,25 @@ │ │ │
    │ │ │

    It is often more efficient to pass a list, as opposed to finding a common denominator and passing a single element, since testIdeal can do things in a more intelligent way for such a list.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc)
    │ │ │ + -- used 0.403964s (cpu); 0.20971s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │
    │ │ │
    i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc)
    │ │ │ + -- used 0.502363s (cpu); 0.28764s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -100,21 +100,21 @@ │ │ │ │ o22 = ideal (y, x) │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ It is often more efficient to pass a list, as opposed to finding a common │ │ │ │ denominator and passing a single element, since testIdeal can do things in a │ │ │ │ more intelligent way for such a list. │ │ │ │ i23 : time testIdeal({3/4, 2/3, 3/5}, L) │ │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc) │ │ │ │ + -- used 0.403964s (cpu); 0.20971s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = ideal (y, x) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36) │ │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc) │ │ │ │ + -- used 0.502363s (cpu); 0.28764s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = ideal (y, x) │ │ │ │ │ │ │ │ o24 : Ideal of R │ │ │ │ The option AssumeDomain (default value false) is used when finding a test │ │ │ │ element. The option FrobeniusRootStrategy (default value Substitution) is │ │ │ │ passed to internal _f_r_o_b_e_n_i_u_s_R_o_o_t calls. │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ @@ -2,16 +2,15 @@ │ │ │ │ │ │ i1 : S = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true) │ │ │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ +o3 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ @@ -2,18 +2,16 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ 2 │ │ │ - ((1, 2), 0) => c │ │ │ +o3 = LineageTable{((1, 2), 0) => c } │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ @@ -4,16 +4,20 @@ │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ 3 │ │ │ o3 = LineageTable{((0, 2), 0) => -c } │ │ │ + 2 │ │ │ + ((0, 2), 1) => a*c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ + 2 │ │ │ + (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ 2 │ │ │ 0 => a*b*c + c │ │ │ 3 2 │ │ │ 1 => - b c + a*b + a*c │ │ │ @@ -21,16 +25,18 @@ │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : minimize T │ │ │ │ │ │ o4 = LineageTable{((0, 2), 0) => null} │ │ │ + ((0, 2), 1) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ + (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ @@ -2,44 +2,35 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2" │ │ │ │ │ │ - 2 │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c } │ │ │ 3 │ │ │ - ((0, 2), 0) => -c │ │ │ - 2 │ │ │ - ((0, 2), 1) => a*c │ │ │ +o3 = LineageTable{((0, 2), 0) => -c } │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ - 2 │ │ │ - (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ 2 │ │ │ 0 => a*b*c + c │ │ │ 3 2 │ │ │ 1 => - b c + a*b + a*c │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : reduce T │ │ │ │ │ │ -o4 = LineageTable{((0, 1), 0) => null} │ │ │ - ((0, 2), 0) => null │ │ │ - ((0, 2), 1) => null │ │ │ +o4 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ - (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ @@ -6,62 +6,42 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : allowableThreads = 4; │ │ │ │ │ │ i4 : H = tgb I │ │ │ │ │ │ - 2 9 │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z } │ │ │ - 2 9 │ │ │ - (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z │ │ │ - 2 13 │ │ │ - (((((0, 1), 2), 2), 1), (0, 1)) => -22y z │ │ │ - 2 13 │ │ │ - (((((0, 1), 2), 2), 1), 2) => 16y z │ │ │ - 2 12 │ │ │ - (((((0, 1), 2), 2), 2), 2) => 16y z │ │ │ - 2 4 │ │ │ - (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), ((0, 1), 2))) => -43y z │ │ │ - 2 7 │ │ │ - (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z │ │ │ - 4 13 4 9 │ │ │ - ((((0, 1), 2), 1), 2) => 23y z + 6y z │ │ │ - 4 8 4 4 │ │ │ - ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z + 13y z │ │ │ - 4 12 4 11 │ │ │ - ((((0, 1), 2), 2), 1) => 50y z - 23y z │ │ │ - 4 11 4 6 │ │ │ - ((((0, 1), 2), 2), 2) => - 26y z + 9y z │ │ │ - 4 6 │ │ │ - ((((0, 1), 2), 2), 3) => -13y z │ │ │ - 4 6 4 5 │ │ │ - ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z + 31y z │ │ │ - 3 17 │ │ │ - ((((0, 1), 2), 3), 1) => 11y z │ │ │ - 4 5 3 16 │ │ │ - ((((0, 1), 2), 3), 2) => - 16y z + 9y z │ │ │ - 3 17 │ │ │ - ((((0, 1), 2), 3), 3) => 41y z │ │ │ - 6 4 4 6 │ │ │ - (((0, 1), 2), 1) => 19y z - 30y z │ │ │ - 5 4 4 7 │ │ │ - (((0, 1), 2), 2) => 37y z + 9y z │ │ │ - 4 14 4 11 │ │ │ - (((0, 1), 2), 3) => 27y z - 16y z │ │ │ - 5 5 4 4 │ │ │ - ((0, 1), 2) => - 24y z + 9y z │ │ │ + 2 5 2 4 │ │ │ +o4 = LineageTable{((0, 1), (0, 2)) => - 40y z - 22y z } │ │ │ + 5 2 4 │ │ │ + ((0, 1), (0, 3)) => - 46y z - 40y z │ │ │ + 2 7 2 4 │ │ │ + ((0, 1), 2) => 50y z + 19y z │ │ │ + 4 8 3 11 │ │ │ + ((0, 2), 1) => - 14y z + 43y z │ │ │ + 2 10 2 9 │ │ │ + ((0, 3), 1) => 12y z + 47y z │ │ │ + 2 6 2 4 │ │ │ + ((0, 3), 2) => 23y z + 19y z │ │ │ + 2 4 │ │ │ + ((1, 3), (0, 2)) => -y z │ │ │ + 2 4 │ │ │ + ((2, 3), 1) => -7y z │ │ │ + 2 4 │ │ │ + ((2, 3), 2) => -20y z │ │ │ 5 2 3 4 │ │ │ (0, 1) => - 25y z - 19y z │ │ │ - 3 5 2 4 │ │ │ - (0, 2) => - 24y z + 9y z │ │ │ - 5 3 4 │ │ │ - (0, 3) => 28y z - 24y z │ │ │ - 3 16 │ │ │ - (1, 2) => -19y z │ │ │ + 5 3 2 4 │ │ │ + (0, 2) => 5y z + 9y z │ │ │ + 5 2 5 │ │ │ + (0, 3) => 5y z + 28y z │ │ │ + 4 5 2 7 │ │ │ + (1, 2) => - 45y z - 14y z │ │ │ + 7 2 6 │ │ │ + (1, 3) => - 24y z - 14y z │ │ │ 3 4 2 4 │ │ │ (2, 3) => 7y z - 9y z │ │ │ 2 │ │ │ 0 => 2x + 10y z │ │ │ 2 3 │ │ │ 1 => 8x y + 10x*y*z │ │ │ 3 2 3 │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ @@ -73,16 +73,15 @@ │ │ │
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │  
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,16 +12,15 @@
    │ │ │ │  Gr\"obner basis is minimized. Lineages of non-minimal Gr\"obner basis elements
    │ │ │ │  that were added to the basis during the distributed computation are saved, with
    │ │ │ │  the corresponding entry in the table being null.
    │ │ │ │  i1 : S = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html
    │ │ │ @@ -86,18 +86,16 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │                                    2
    │ │ │ -                  ((1, 2), 0) => c
    │ │ │ +o3 = LineageTable{((1, 2), 0) => c }
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │                          2
    │ │ │                    2 => b
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,18 +19,16 @@
    │ │ │ │  This simple function just returns the Gr\"obner basis computed with threaded
    │ │ │ │  Gr\"obner basis function _t_g_b in the expected Macaulay2 format, so that further
    │ │ │ │  computation are one step easier to set up.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │                                    2
    │ │ │ │ -                  ((1, 2), 0) => c
    │ │ │ │ +o3 = LineageTable{((1, 2), 0) => c }
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html
    │ │ │ @@ -84,16 +84,20 @@
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │                                     3
    │ │ │  o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ +                                    2
    │ │ │ +                  ((0, 2), 1) => a*c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │ +                             2
    │ │ │ +                  (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │                                  2
    │ │ │                    0 => a*b*c + c
    │ │ │                            3       2
    │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ @@ -104,16 +108,18 @@
    │ │ │              
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i4 : minimize T
    │ │ │  
    │ │ │  o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ +                  ((0, 2), 1) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │ +                  (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │                          2
    │ │ │                    2 => b
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,32 +21,38 @@
    │ │ │ │  this method returns a minimal Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │                                     3
    │ │ │ │  o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │ +                                    2
    │ │ │ │ +                  ((0, 2), 1) => a*c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │ +                             2
    │ │ │ │ +                  (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │                                  2
    │ │ │ │                    0 => a*b*c + c
    │ │ │ │                            3       2
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : minimize T
    │ │ │ │  
    │ │ │ │  o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ +                  ((0, 2), 1) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │ +                  (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html
    │ │ │ @@ -82,24 +82,18 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │  
    │ │ │ -                                     2
    │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │                                     3
    │ │ │ -                  ((0, 2), 0) => -c
    │ │ │ -                                    2
    │ │ │ -                  ((0, 2), 1) => a*c
    │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │ -                             2
    │ │ │ -                  (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │                                  2
    │ │ │                    0 => a*b*c + c
    │ │ │                            3       2
    │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ @@ -109,20 +103,17 @@
    │ │ │  o3 : LineageTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : reduce T
    │ │ │  
    │ │ │ -o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ -                  ((0, 2), 0) => null
    │ │ │ -                  ((0, 2), 1) => null
    │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │ -                  (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │                          2
    │ │ │                    2 => b
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,43 +20,34 @@
    │ │ │ │  remainder on the division by the remaining values H.
    │ │ │ │  If values H constitute a Gr\"obner basis of the ideal they generate, this
    │ │ │ │  method returns a reduced Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │ │  
    │ │ │ │ -                                     2
    │ │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │ │                                     3
    │ │ │ │ -                  ((0, 2), 0) => -c
    │ │ │ │ -                                    2
    │ │ │ │ -                  ((0, 2), 1) => a*c
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │ -                             2
    │ │ │ │ -                  (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │                                  2
    │ │ │ │                    0 => a*b*c + c
    │ │ │ │                            3       2
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : reduce T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ │ -                  ((0, 2), 0) => null
    │ │ │ │ -                  ((0, 2), 1) => null
    │ │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │ -                  (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html
    │ │ │ @@ -95,62 +95,42 @@
    │ │ │                
    i3 : allowableThreads  = 4;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : H = tgb I
    │ │ │  
    │ │ │ -                                                                   2 9
    │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z                               }
    │ │ │ -                                                             2 9
    │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z
    │ │ │ -                                                         2 13
    │ │ │ -                  (((((0, 1), 2), 2), 1), (0, 1)) => -22y z
    │ │ │ -                                                   2 13
    │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 16y z
    │ │ │ -                                                   2 12
    │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 16y z
    │ │ │ -                                                                                                 2 4
    │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), ((0, 1), 2))) => -43y z
    │ │ │ -                                                                  2 7
    │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z
    │ │ │ -                                              4 13     4 9
    │ │ │ -                  ((((0, 1), 2), 1), 2) => 23y z   + 6y z
    │ │ │ -                                                        4 8      4 4
    │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z  + 13y z
    │ │ │ -                                              4 12      4 11
    │ │ │ -                  ((((0, 1), 2), 2), 1) => 50y z   - 23y z
    │ │ │ -                                                4 11     4 6
    │ │ │ -                  ((((0, 1), 2), 2), 2) => - 26y z   + 9y z
    │ │ │ -                                               4 6
    │ │ │ -                  ((((0, 1), 2), 2), 3) => -13y z
    │ │ │ -                                                             4 6      4 5
    │ │ │ -                  ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z  + 31y z
    │ │ │ -                                              3 17
    │ │ │ -                  ((((0, 1), 2), 3), 1) => 11y z
    │ │ │ -                                                4 5     3 16
    │ │ │ -                  ((((0, 1), 2), 3), 2) => - 16y z  + 9y z
    │ │ │ -                                              3 17
    │ │ │ -                  ((((0, 1), 2), 3), 3) => 41y z
    │ │ │ -                                         6 4      4 6
    │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ -                                         5 4     4 7
    │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ -                                         4 14      4 11
    │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ -                                      5 5     4 4
    │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ +                                           2 5      2 4
    │ │ │ +o4 = LineageTable{((0, 1), (0, 2)) => - 40y z  - 22y z }
    │ │ │ +                                           5       2 4
    │ │ │ +                  ((0, 1), (0, 3)) => - 46y z - 40y z
    │ │ │ +                                    2 7      2 4
    │ │ │ +                  ((0, 1), 2) => 50y z  + 19y z
    │ │ │ +                                      4 8      3 11
    │ │ │ +                  ((0, 2), 1) => - 14y z  + 43y z
    │ │ │ +                                    2 10      2 9
    │ │ │ +                  ((0, 3), 1) => 12y z   + 47y z
    │ │ │ +                                    2 6      2 4
    │ │ │ +                  ((0, 3), 2) => 23y z  + 19y z
    │ │ │ +                                        2 4
    │ │ │ +                  ((1, 3), (0, 2)) => -y z
    │ │ │ +                                    2 4
    │ │ │ +                  ((2, 3), 1) => -7y z
    │ │ │ +                                     2 4
    │ │ │ +                  ((2, 3), 2) => -20y z
    │ │ │                                   5 2      3 4
    │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ -                                 3 5     2 4
    │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ -                               5       3 4
    │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ -                                3 16
    │ │ │ -                  (1, 2) => -19y z
    │ │ │ +                              5 3     2 4
    │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ +                              5 2      5
    │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ +                                 4 5      2 7
    │ │ │ +                  (1, 2) => - 45y z  - 14y z
    │ │ │ +                                 7       2 6
    │ │ │ +                  (1, 3) => - 24y z - 14y z
    │ │ │                                3 4     2 4
    │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │                                 2
    │ │ │                    0 => 2x + 10y z
    │ │ │                           2           3
    │ │ │                    1 => 8x y + 10x*y*z
    │ │ │                             3 2       3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,65 +26,42 @@
    │ │ │ │  i2 : I = ideal {2*x + 10*y^2*z, 8*x^2*y + 10*x*y*z^3, 5*x*y^3*z^2 + 9*x*z^3,
    │ │ │ │  9*x*y^3*z + 10*x*y^3};
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : allowableThreads  = 4;
    │ │ │ │  i4 : H = tgb I
    │ │ │ │  
    │ │ │ │ -                                                                   2 9
    │ │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z
    │ │ │ │ -}
    │ │ │ │ -                                                             2 9
    │ │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z
    │ │ │ │ -                                                         2 13
    │ │ │ │ -                  (((((0, 1), 2), 2), 1), (0, 1)) => -22y z
    │ │ │ │ -                                                   2 13
    │ │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 16y z
    │ │ │ │ -                                                   2 12
    │ │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 16y z
    │ │ │ │ -
    │ │ │ │ -2 4
    │ │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), (
    │ │ │ │ -(0, 1), 2))) => -43y z
    │ │ │ │ -                                                                  2 7
    │ │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z
    │ │ │ │ -                                              4 13     4 9
    │ │ │ │ -                  ((((0, 1), 2), 1), 2) => 23y z   + 6y z
    │ │ │ │ -                                                        4 8      4 4
    │ │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z  + 13y z
    │ │ │ │ -                                              4 12      4 11
    │ │ │ │ -                  ((((0, 1), 2), 2), 1) => 50y z   - 23y z
    │ │ │ │ -                                                4 11     4 6
    │ │ │ │ -                  ((((0, 1), 2), 2), 2) => - 26y z   + 9y z
    │ │ │ │ -                                               4 6
    │ │ │ │ -                  ((((0, 1), 2), 2), 3) => -13y z
    │ │ │ │ -                                                             4 6      4 5
    │ │ │ │ -                  ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z  + 31y z
    │ │ │ │ -                                              3 17
    │ │ │ │ -                  ((((0, 1), 2), 3), 1) => 11y z
    │ │ │ │ -                                                4 5     3 16
    │ │ │ │ -                  ((((0, 1), 2), 3), 2) => - 16y z  + 9y z
    │ │ │ │ -                                              3 17
    │ │ │ │ -                  ((((0, 1), 2), 3), 3) => 41y z
    │ │ │ │ -                                         6 4      4 6
    │ │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ │ -                                         5 4     4 7
    │ │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ │ -                                         4 14      4 11
    │ │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ │ -                                      5 5     4 4
    │ │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ │ +                                           2 5      2 4
    │ │ │ │ +o4 = LineageTable{((0, 1), (0, 2)) => - 40y z  - 22y z }
    │ │ │ │ +                                           5       2 4
    │ │ │ │ +                  ((0, 1), (0, 3)) => - 46y z - 40y z
    │ │ │ │ +                                    2 7      2 4
    │ │ │ │ +                  ((0, 1), 2) => 50y z  + 19y z
    │ │ │ │ +                                      4 8      3 11
    │ │ │ │ +                  ((0, 2), 1) => - 14y z  + 43y z
    │ │ │ │ +                                    2 10      2 9
    │ │ │ │ +                  ((0, 3), 1) => 12y z   + 47y z
    │ │ │ │ +                                    2 6      2 4
    │ │ │ │ +                  ((0, 3), 2) => 23y z  + 19y z
    │ │ │ │ +                                        2 4
    │ │ │ │ +                  ((1, 3), (0, 2)) => -y z
    │ │ │ │ +                                    2 4
    │ │ │ │ +                  ((2, 3), 1) => -7y z
    │ │ │ │ +                                     2 4
    │ │ │ │ +                  ((2, 3), 2) => -20y z
    │ │ │ │                                   5 2      3 4
    │ │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ │ -                                 3 5     2 4
    │ │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ │ -                               5       3 4
    │ │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ │ -                                3 16
    │ │ │ │ -                  (1, 2) => -19y z
    │ │ │ │ +                              5 3     2 4
    │ │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ │ +                              5 2      5
    │ │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ │ +                                 4 5      2 7
    │ │ │ │ +                  (1, 2) => - 45y z  - 14y z
    │ │ │ │ +                                 7       2 6
    │ │ │ │ +                  (1, 3) => - 24y z - 14y z
    │ │ │ │                                3 4     2 4
    │ │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │ │                                 2
    │ │ │ │                    0 => 2x + 10y z
    │ │ │ │                           2           3
    │ │ │ │                    1 => 8x y + 10x*y*z
    │ │ │ │                             3 2       3
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc)
    │ │ │ + -- used 1.21839s (cpu); 0.846414s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │  
    │ │ │  i5 : time edDeg(A,ForceAmat=>true)
    │ │ │  
    │ │ │ @@ -56,14 +56,14 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc)
    │ │ │ + -- used 5.06829s (cpu); 3.28094s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 252
    │ │ │  
    │ │ │  o5 : QQ
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc)
    │ │ │ + -- used 1.21839s (cpu); 0.846414s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ ED Degree = 252 │ │ │ │ │ │ 5 4 3 2 │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc) │ │ │ + -- used 5.06829s (cpu); 3.28094s (thread); 0s (gc) │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ o5 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,30 +66,30 @@ │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc) │ │ │ │ + -- used 1.21839s (cpu); 0.846414s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 252 │ │ │ │ │ │ │ │ o4 : QQ │ │ │ │ i5 : time edDeg(A,ForceAmat=>true) │ │ │ │ │ │ │ │ The toric variety has degree = 28 │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc) │ │ │ │ + -- used 5.06829s (cpu); 3.28094s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ │ │ o5 : QQ │ │ │ │ ********** WWaayyss ttoo uussee eeddDDeegg:: ********** │ │ │ │ * edDeg(Matrix) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ - -- .0931162s elapsed │ │ │ + -- .0990036s elapsed │ │ │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ ------------------------------------------------------------------------ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -50,14 +50,14 @@ │ │ │ i7 : T = regularFineTriangulation A │ │ │ │ │ │ o7 = triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, 1, 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ o7 : Triangulation │ │ │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ - -- 1.28881s elapsed │ │ │ + -- .933174s elapsed │ │ │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ @@ -21,87 +21,15 @@ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ o3 : Triangulation │ │ │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -227,275 +155,275 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o4 : List │ │ │ - │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ - │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o4 : List │ │ │ + │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ + │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ - │ │ │ -o5 : List │ │ │ - │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ - │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ + │ │ │ +o5 : List │ │ │ + │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ + │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -621,93 +549,93 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o6 : List │ │ │ - │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ - │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o6 : List │ │ │ + │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ + │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -833,15 +761,87 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ @@ -858,191 +858,193 @@ │ │ │ o11 = Tally{false => 66} │ │ │ true => 8 │ │ │ │ │ │ o11 : Tally │ │ │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4}} │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 │ │ │ + -, --}} │ │ │ + 3 3 │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ o13 : QQ │ │ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : stars1 == stars2 │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ @@ -117,87 +117,15 @@ │ │ │ o3 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : Ts1 = generateTriangulations A -- list of Triangulation's.
    │ │ │  
    │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -323,281 +251,281 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o4 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ -
    │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o4 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ +
    │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6},
    │ │ │ +     {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o5 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ -
    │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o5 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ +
    │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -723,96 +651,96 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o6 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ -
    │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o6 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ +
    │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -938,15 +866,87 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : all(Ts4, isFine)
    │ │ │ @@ -978,131 +978,133 @@
    │ │ │  o11 : Tally
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : Ts4/gkzVector
    │ │ │  
    │ │ │ -        16     16  4     8  4       20     8  8     4  8          4  8     8 
    │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ -         3      3  3     3  3        3     3  3     3  3          3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20       16  16  4  16  4  4       8        4     16  4  16      
    │ │ │ -      4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4,
    │ │ │ -         3   3        3   3  3   3  3  3       3        3      3  3   3      
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20  4  4  20          16        8  16  4  4          20  4        4 
    │ │ │ -      4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -,
    │ │ │ -          3  3  3   3           3        3   3  3  3           3  3        3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20       16  16  4     4        8       4  4  16  8        16    16  4 
    │ │ │ -      --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -,
    │ │ │ -       3        3   3  3     3        3       3  3   3  3         3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16     4        8    4  16     4     16  8       8  8     8  8     8 
    │ │ │ -      --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -,
    │ │ │ -       3     3        3    3   3     3      3  3       3  3     3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8       8  4     20  8     8    16  4  4        16  16  4       4  16 
    │ │ │ -      -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --,
    │ │ │ -      3       3  3      3  3     3     3  3  3         3   3  3       3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  8        4    4  20              20  4    4        20  20       
    │ │ │ -      --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4,
    │ │ │ -       3  3        3    3   3               3  3    3         3   3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  16  4          4     20  20     4             4 
    │ │ │ -      -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -,
    │ │ │ -      3    3        3   3   3  3          3      3   3     3             3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  20  4          8        16     4  4  16    8        4  8  8  20 
    │ │ │ -      --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --,
    │ │ │ -       3   3  3          3         3     3  3   3    3        3  3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -           8     8  8     4  20       20  4  4  20  4  20  20  4    4  20 
    │ │ │ -      4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --,
    │ │ │ -           3     3  3     3   3        3  3  3   3  3   3   3  3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  4  20  4  4  20    20        4  4        20       8  4     4    
    │ │ │ -      --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4,
    │ │ │ -       3  3   3  3  3   3     3        3  3         3       3  3     3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  16    8        4     4  16  16    4  16     16     4  8       4    
    │ │ │ -      --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4,
    │ │ │ -       3   3    3        3     3   3   3    3   3      3     3  3       3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20     8  8  8    8  8  8     20        4    4        8     8  20 
    │ │ │ -      4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --,
    │ │ │ -          3     3  3  3    3  3  3      3        3    3        3     3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    4     16  4     8  16          4  20     8     8  8    16  4  4 
    │ │ │ -      -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -,
    │ │ │ -      3    3      3  3     3   3          3   3     3     3  3     3  3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         16        8    16     4  16  4  16     4       8  20  8  4       
    │ │ │ -      8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4,
    │ │ │ -          3        3     3     3   3  3   3     3       3   3  3  3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    8  8     8     20  4       4  16     4  16     4  16       20  8 
    │ │ │ -      -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -,
    │ │ │ -      3    3  3     3      3  3       3   3     3   3     3   3        3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  4        8    20        4  8  8  8          8  8  8  4        20  
    │ │ │ -      -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --},
    │ │ │ -      3  3        3     3        3  3  3  3          3  3  3  3         3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       16  16     4     4  8          8  4     8  8     20       20     4  4 
    │ │ │ -      {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -,
    │ │ │ -        3   3     3     3  3          3  3     3  3      3        3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20       20  4              4  20       4  20        20  4       8 
    │ │ │ -      4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-,
    │ │ │ -          3        3  3              3   3       3   3         3  3       3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20     4  8          16  4  16  8        4    4     16  16     8 
    │ │ │ -      4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -,
    │ │ │ -         3   3     3  3           3  3   3  3        3    3      3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4          4  8     16  16     4    4     20        20     4    8  8 
    │ │ │ -      -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -,
    │ │ │ -      3          3  3      3   3     3    3      3         3     3    3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8        8  8  8    8  20  8     8        4       16  8     4  16    
    │ │ │ -      -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8,
    │ │ │ -      3        3  3  3    3   3  3     3        3        3  3     3   3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  4  16       16  4     16  4     16  4    4     16 
    │ │ │ -      -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --,
    │ │ │ -      3    3        3   3  3   3        3  3      3  3      3  3    3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  4     16       8  8  8  8  8  8       20  8     8     8  4     
    │ │ │ -      -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8},
    │ │ │ -      3   3  3      3       3  3  3  3  3  3        3  3     3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     4  16     16    20     4        4     20       4  4  16 
    │ │ │ -      {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --,
    │ │ │ -          3  3     3   3      3     3     3        3      3       3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  16          8  16     4     16  4    8  8     20     8  4     
    │ │ │ -      -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4},
    │ │ │ -      3   3   3          3   3     3      3  3    3  3      3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     20     8  8       8  4     16     16  4    8  8  20     8 
    │ │ │ -      {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -,
    │ │ │ -          3  3      3     3  3       3  3      3      3  3    3  3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -            4    4        8     20  8  8    8     8  8  8  8     8    4  16 
    │ │ │ -      8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --,
    │ │ │ -            3    3        3      3  3  3    3     3  3  3  3     3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16        4  4  16       20  4     8  8     8    8        4  8  20  8
    │ │ │ -      --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -,
    │ │ │ -       3        3  3   3        3  3     3  3     3    3        3  3   3  3
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4}}
    │ │ │ +        20        4  4        20       8  4     4     16  16    8        4 
    │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -,
    │ │ │ +         3        3  3         3       3  3     3      3   3    3        3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  16    4  16     16     4  8       4        20     8  8  8  
    │ │ │ +      4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -},
    │ │ │ +         3   3   3    3   3      3     3  3       3         3     3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  8  8     20        4    4        8     8  20  8    4     16  4    
    │ │ │ +      {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4,
    │ │ │ +       3  3  3      3        3    3        3     3   3  3    3      3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  16          4  20     8     8  8    16  4  4     16        8    16 
    │ │ │ +      -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--,
    │ │ │ +      3   3          3   3     3     3  3     3  3  3      3        3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  4  16     4       8  20  8  4        8    8  8     8     20 
    │ │ │ +      4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --,
    │ │ │ +         3   3  3   3     3       3   3  3  3        3    3  3     3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4       4  16     4  16     4  16       20  8  8  4        8    20    
    │ │ │ +      -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4,
    │ │ │ +      3       3   3     3   3     3   3        3  3  3  3        3     3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  8  8  8          8  8  8  4        20    16  16     4     4  8 
    │ │ │ +      4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -,
    │ │ │ +         3  3  3  3          3  3  3  3         3     3   3     3     3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +              8  4     8  8     20       20     4  4     20       20  4    
    │ │ │ +      8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4,
    │ │ │ +              3  3     3  3      3        3     3  3      3        3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +               4  20       4  20        20  4       8     8  20     4  8     
    │ │ │ +      4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4},
    │ │ │ +               3   3       3   3         3  3       3     3   3     3  3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  4  16  8        4    4     16  16     8  4          4  8    
    │ │ │ +      {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ +           3  3   3  3        3    3      3   3     3  3          3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16  16     4    4     20        20     4    8  8  8        8  8  8  
    │ │ │ +      --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -},
    │ │ │ +       3   3     3    3      3         3     3    3  3  3        3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  20  8     8        4       16  8     4  16     4    4        8  16 
    │ │ │ +      {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --,
    │ │ │ +       3   3  3     3        3        3  3     3   3     3    3        3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  16       16  4     16  4     16  4    4     16  4  16  4     16  
    │ │ │ +      -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --},
    │ │ │ +      3   3        3  3      3  3      3  3    3      3  3   3  3      3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  8  8  8  8  8       20  8     8     8  4          4  8     4 
    │ │ │ +      {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ +          3  3  3  3  3  3        3  3     3     3  3          3  3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16     16    20     4        4     20       4  4  16  4  16  16     
    │ │ │ +      --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4},
    │ │ │ +       3      3     3     3        3      3       3  3   3  3   3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  16     4     16  4    8  8     20     8  4          4  8     20 
    │ │ │ +      {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --,
    │ │ │ +          3   3     3      3  3    3  3      3     3  3          3  3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8  8       8  4     16     16  4    8  8  20     8        4    4    
    │ │ │ +      4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4,
    │ │ │ +         3  3       3  3      3      3  3    3  3   3     3        3    3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8     20  8  8    8     8  8  8  8     8    4  16  16        4  4 
    │ │ │ +      8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -,
    │ │ │ +         3      3  3  3    3     3  3  3  3     3    3   3   3        3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16       20  4     8  8     8    8        4  8  20  8       16     16 
    │ │ │ +      --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --,
    │ │ │ +       3        3  3     3  3     3    3        3  3   3  3        3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4     8  4       20     8  8     4  8          4  8     8     8  20  
    │ │ │ +      -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --},
    │ │ │ +      3     3  3        3     3  3     3  3          3  3     3     3   3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  16  4  16  4  4       8        4     16  4  16          20  4 
    │ │ │ +      {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -,
    │ │ │ +           3   3  3   3  3  3       3        3      3  3   3           3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20          16        8  16  4  4          20  4        4  20     
    │ │ │ +      -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4},
    │ │ │ +      3   3           3        3   3  3  3           3  3        3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       16  16  4     4        8       4  4  16  8        16    16  4  16    
    │ │ │ +      {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4,
    │ │ │ +        3   3  3     3        3       3  3   3  3         3     3  3   3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4        8    4  16     4     16  8       8  8     8  8     8  8      
    │ │ │ +      -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4,
    │ │ │ +      3        3    3   3     3      3  3       3  3     3  3     3  3      
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  4     20  8     8    16  4  4        16  16  4       4  16  16  8 
    │ │ │ +      -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -,
    │ │ │ +      3  3      3  3     3     3  3  3         3   3  3       3   3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            4    4  20              20  4    4        20  20        4    4 
    │ │ │ +      8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-,
    │ │ │ +            3    3   3               3  3    3         3   3        3    3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            8  16  16  4          4     20  20     4             4  20  20 
    │ │ │ +      4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --,
    │ │ │ +            3   3   3  3          3      3   3     3             3   3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4          8        16     4  4  16    8        4  8  8  20       8    
    │ │ │ +      -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8,
    │ │ │ +      3          3         3     3  3   3    3        3  3  3   3       3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  8     4  20       20  4  4  20  4  20  20  4    4  20  20  4  20  4 
    │ │ │ +      -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -,
    │ │ │ +      3  3     3   3        3  3  3   3  3   3   3  3    3   3   3  3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20
    │ │ │ +      -, --}}
    │ │ │ +      3   3
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : volume convexHull A -- 8
    │ │ │ @@ -1112,66 +1114,66 @@
    │ │ │  o13 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8)
    │ │ │  
    │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : stars2 = select(Ts4, isStar)
    │ │ │  
    │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,87 +57,15 @@ │ │ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, │ │ │ │ 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ │ │ o3 : Triangulation │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -263,273 +191,273 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o4 : List │ │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ - │ │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o4 : List │ │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ + │ │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o5 : List │ │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ - │ │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o5 : List │ │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ + │ │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -655,92 +583,92 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o6 : List │ │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ - │ │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o6 : List │ │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ + │ │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -866,15 +794,87 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : all(Ts4, isStar) │ │ │ │ │ │ │ │ @@ -886,188 +886,190 @@ │ │ │ │ │ │ │ │ o11 = Tally{false => 66} │ │ │ │ true => 8 │ │ │ │ │ │ │ │ o11 : Tally │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4}} │ │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 │ │ │ │ + -, --}} │ │ │ │ + 3 3 │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o14 : List │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : stars1 == stars2 │ │ │ │ │ │ │ │ o16 = true │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ @@ -150,15 +150,15 @@ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime Ts = allTriangulations(A, Fine => true);
    │ │ │ - -- .0931162s elapsed
    │ │ │ + -- .0990036s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : select(Ts, T -> isStar T)
    │ │ │  
    │ │ │  o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0,
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │  
    │ │ │  o7 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime Ts2 = generateTriangulations T;
    │ │ │ - -- 1.28881s elapsed
    │ │ │ + -- .933174s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : #Ts2 == #Ts
    │ │ │  
    │ │ │  o9 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ | 0 0 0 1 0 0 -1 0 0 0 | │ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ │ │ 4 10 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ │ - -- .0931162s elapsed │ │ │ │ + -- .0990036s elapsed │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 5, 7, 9}, {0, 3, 5, 8, 9}, {0, 4, 6, 8, 9}, {0, 5, 6, 7, 9}, {0, 5, 6, │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, │ │ │ │ {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, │ │ │ │ 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, │ │ │ │ 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ │ │ o7 : Triangulation │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ │ - -- 1.28881s elapsed │ │ │ │ + -- .933174s elapsed │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ │ │ o9 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_o_l_y_h_e_d_r_a -- for computations with convex polyhedra, cones, and fans │ │ │ │ * _T_o_p_c_o_m -- interface to selected functions from topcom package │ │ │ │ * _R_e_f_l_e_x_i_v_e_P_o_l_y_t_o_p_e_s_D_B -- simple access to Kreuzer-Skarke database of │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=33 │ │ │ bGlmdERlZm9ybWF0aW9uKC4uLixWZXJib3NlPT4uLi4p │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ @@ -6,30 +6,30 @@ │ │ │ │ │ │ o2 = | xz yz z2 x3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix S <-- S │ │ │ │ │ │ i3 : time (F,R,G,C)=localHilbertScheme(F0); │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc) │ │ │ + -- used 1.06518s (cpu); 0.680372s (thread); 0s (gc) │ │ │ │ │ │ i4 : T=ring first G; │ │ │ │ │ │ i5 : sum G │ │ │ │ │ │ o5 = | t_1t_16 | │ │ │ | t_9t_16 | │ │ │ | -t_4t_16 | │ │ │ | -2t_14t_16+t_15t_16 | │ │ │ │ │ │ 4 1 │ │ │ o5 : Matrix T <-- T │ │ │ │ │ │ i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false); │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc) │ │ │ + -- used 0.716249s (cpu); 0.449181s (thread); 0s (gc) │ │ │ │ │ │ i7 : sum G │ │ │ │ │ │ o7 = | t_1t_16 │ │ │ | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+ │ │ │ | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t │ │ │ | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2- │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ │ │ │ │ │

    With the default setting SmartLift=>true we get very nice equations for the base space:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │
    │ │ │
    i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc)
    │ │ │ + -- used 1.06518s (cpu); 0.680372s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : T=ring first G;
    │ │ │
    │ │ │

    With the setting SmartLift=>false the calculation is faster, but the equations are no longer homogeneous:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc)
    │ │ │ + -- used 0.716249s (cpu); 0.449181s (thread); 0s (gc) │ │ │
    │ │ │
    i7 : sum G
    │ │ │  
    │ │ │  o7 = | t_1t_16
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,29 +18,29 @@
    │ │ │ │  o2 = | xz yz z2 x3 |
    │ │ │ │  
    │ │ │ │               1      4
    │ │ │ │  o2 : Matrix S  <-- S
    │ │ │ │  With the default setting SmartLift=>true we get very nice equations for the
    │ │ │ │  base space:
    │ │ │ │  i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc)
    │ │ │ │ + -- used 1.06518s (cpu); 0.680372s (thread); 0s (gc)
    │ │ │ │  i4 : T=ring first G;
    │ │ │ │  i5 : sum G
    │ │ │ │  
    │ │ │ │  o5 = | t_1t_16             |
    │ │ │ │       | t_9t_16             |
    │ │ │ │       | -t_4t_16            |
    │ │ │ │       | -2t_14t_16+t_15t_16 |
    │ │ │ │  
    │ │ │ │               4      1
    │ │ │ │  o5 : Matrix T  <-- T
    │ │ │ │  With the setting SmartLift=>false the calculation is faster, but the equations
    │ │ │ │  are no longer homogeneous:
    │ │ │ │  i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc)
    │ │ │ │ + -- used 0.716249s (cpu); 0.449181s (thread); 0s (gc)
    │ │ │ │  i7 : sum G
    │ │ │ │  
    │ │ │ │  o7 = | t_1t_16
    │ │ │ │       | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+
    │ │ │ │       | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t
    │ │ │ │       | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2-
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/___Basic__Divisor.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 18380296066161043289
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i2 : D = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : H = new HashTable from D
    │ │ │  
    │ │ │  o3 = HashTable{{x} => {1}                  }
    │ │ │                 {y} => {2}
    │ │ │ @@ -16,18 +16,18 @@
    │ │ │                 cache => CacheTable{...1...}
    │ │ │                 ring => R
    │ │ │  
    │ │ │  o3 : HashTable
    │ │ │  
    │ │ │  i4 : (2/3)*D
    │ │ │  
    │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z)
    │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x)
    │ │ │  
    │ │ │  o4 : QWeilDivisor on R
    │ │ │  
    │ │ │  i5 : 0.6*D
    │ │ │  
    │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z)
    │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/___Number_sp_st_sp__Basic__Divisor.out
    │ │ │ @@ -16,21 +16,21 @@
    │ │ │  
    │ │ │  o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : 8*D
    │ │ │  
    │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : (-2/3)*D
    │ │ │  
    │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │  
    │ │ │  o6 : QWeilDivisor on R
    │ │ │  
    │ │ │  i7 : 0.0*D
    │ │ │  
    │ │ │  o7 = 0, the zero divisor
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ceiling_lp__R__Weil__Divisor_rp.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 992133077988949640
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │  
    │ │ │  i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │  
    │ │ │  i3 : ceiling( D )
    │ │ │  
    │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : floor( D )
    │ │ │  
    │ │ │  o4 = Div(y, z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │  
    │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 : ceiling( E )
    │ │ │  
    │ │ │  o6 = Div(x, z)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_divisor.out
    │ │ │ @@ -1,38 +1,38 @@
    │ │ │  -- -*- M2-comint -*- hash: 16935688116980988371
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = divisor(ideal(x*y^2*z^3))
    │ │ │  
    │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}})
    │ │ │  
    │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z)
    │ │ │  
    │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,z]/ideal(x^2-y*z);
    │ │ │  
    │ │ │  i8 : D = divisor({2}, {ideal(x,y)})
    │ │ │  
    │ │ │ @@ -60,29 +60,29 @@
    │ │ │  
    │ │ │  o14 = 3*Div(xz2, xyz, xy2, x2z, x2y, x3)
    │ │ │  
    │ │ │  o14 : WeilDivisor on A
    │ │ │  
    │ │ │  i15 : E = divisor(y2z)
    │ │ │  
    │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z)
    │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y)
    │ │ │  
    │ │ │  o15 : WeilDivisor on A
    │ │ │  
    │ │ │  i16 : R = ZZ/7[x,y];
    │ │ │  
    │ │ │  i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ)
    │ │ │  
    │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o17 : QWeilDivisor on R
    │ │ │  
    │ │ │  i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x)
    │ │ │  
    │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o18 : QWeilDivisor on R
    │ │ │  
    │ │ │  i19 : R = ZZ/11[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i20 : D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, CoefficientType=>RR)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out
    │ │ │ @@ -44,51 +44,51 @@
    │ │ │  i10 : J = m^9;
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │  
    │ │ │  i11 : M = J*R^1;
    │ │ │  
    │ │ │  i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc)
    │ │ │ + -- used 0.127632s (cpu); 0.0718664s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc)
    │ │ │ + -- used 0.495472s (cpu); 0.495481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc)
    │ │ │ + -- used 0.627359s (cpu); 0.55998s (thread); 0s (gc)
    │ │ │  
    │ │ │  i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc)
    │ │ │ + -- used 0.00316931s (cpu); 0.00317578s (thread); 0s (gc)
    │ │ │  
    │ │ │  i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc)
    │ │ │ + -- used 0.00282471s (cpu); 0.00283097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i18 : I = ideal(x,u);
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J = I^15;
    │ │ │  
    │ │ │  o19 : Ideal of R
    │ │ │  
    │ │ │  i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc)
    │ │ │ + -- used 0.290507s (cpu); 0.138215s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │  
    │ │ │  i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc)
    │ │ │ + -- used 0.00726241s (cpu); 0.00726781s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i23 : J = ideal(x,y);
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Cartier.out
    │ │ │ @@ -12,15 +12,15 @@
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : isCartier( D )
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │  
    │ │ │  i15 : isCartier(D, IsGraded => true)
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Homogeneous_lp__Basic__Divisor_rp.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 18048197335381839324
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z];
    │ │ │  
    │ │ │  i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})
    │ │ │  
    │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : isHomogeneous( D )
    │ │ │  
    │ │ │  o3 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Linear__Equivalent.out
    │ │ │ @@ -1,38 +1,38 @@
    │ │ │  -- -*- M2-comint -*- hash: 6019119347082811396
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : isLinearEquivalent(D1, D2)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │  
    │ │ │  i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │  
    │ │ │  i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │  
    │ │ │  o8 = false
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Q__Cartier.out
    │ │ │ @@ -1,20 +1,20 @@
    │ │ │  -- -*- M2-comint -*- hash: 13719144060491348416
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : isQCartier(10, D1)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │ @@ -44,21 +44,21 @@
    │ │ │  
    │ │ │  o10 = 0
    │ │ │  
    │ │ │  i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │  
    │ │ │  i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │  
    │ │ │  i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │  
    │ │ │  o14 = 1
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Q__Linear__Equivalent.out
    │ │ │ @@ -36,21 +36,21 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │  
    │ │ │  i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │  
    │ │ │  i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │  
    │ │ │  o13 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__S__N__C.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 2360371518304120718
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : isSNC( D )
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │ @@ -36,15 +36,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │  
    │ │ │  o11 : WeilDivisor on R
    │ │ │  
    │ │ │  i12 : isSNC( D, IsGraded => true )
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │ @@ -60,15 +60,15 @@
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i17 : D = divisor(x*y*(x+y))
    │ │ │  
    │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │  
    │ │ │  i18 : isSNC( D, IsGraded => true)
    │ │ │  
    │ │ │  o18 = false
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_map__To__Projective__Space.out
    │ │ │ @@ -16,15 +16,15 @@
    │ │ │  o3 : RingMap R <-- QQ[YY ..YY ]
    │ │ │                          1    2
    │ │ │  
    │ │ │  i4 : R = ZZ/7[x,y,z];
    │ │ │  
    │ │ │  i5 : D = divisor(x*y)
    │ │ │  
    │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ +o5 = Div(x) + Div(y)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │  
    │ │ │               ZZ            2             2        2
    │ │ │  o6 = map (R, --[Z ..Z ], {x , x*y, x*z, y , y*z, z })
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out
    │ │ │ @@ -6,21 +6,21 @@
    │ │ │  
    │ │ │  i3 : f = map(T, R, {a^3, a^2*b, a*b^2, b^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- R
    │ │ │  
    │ │ │  i4 : D = divisor(y*z)
    │ │ │  
    │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x)
    │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : pullback(f, D, Strategy=>Primes)
    │ │ │  
    │ │ │ -o5 = 3*Div(b) + 3*Div(a)
    │ │ │ +o5 = 3*Div(a) + 3*Div(b)
    │ │ │  
    │ │ │  o5 : WeilDivisor on T
    │ │ │  
    │ │ │  i6 : pullback(f, D, Strategy=>Sheaves)
    │ │ │  
    │ │ │  o6 = 3*Div(b) + 3*Div(a)
    │ │ │  
    │ │ │ @@ -36,18 +36,18 @@
    │ │ │  
    │ │ │  i10 : D = divisor(x*y*(x+y));
    │ │ │  
    │ │ │  o10 : WeilDivisor on R
    │ │ │  
    │ │ │  i11 : D1 = pullback(f, D)
    │ │ │  
    │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o11 : WeilDivisor on S
    │ │ │  
    │ │ │  i12 : f^* D
    │ │ │  
    │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o12 : WeilDivisor on S
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out
    │ │ │ @@ -103,104 +103,104 @@
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : J = I^21;
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time reflexify(J);
    │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc)
    │ │ │ + -- used 0.271189s (cpu); 0.210021s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc)
    │ │ │ + -- used 0.44102s (cpu); 0.361892s (thread); 0s (gc)
    │ │ │  
    │ │ │  i25 : R = ZZ/13[x,y,z]/ideal(x^3 + y^3-z^11*x*y);
    │ │ │  
    │ │ │  i26 : I = ideal(x-4*y, z);
    │ │ │  
    │ │ │  o26 : Ideal of R
    │ │ │  
    │ │ │  i27 : J = I^20;
    │ │ │  
    │ │ │  o27 : Ideal of R
    │ │ │  
    │ │ │  i28 : M = J*R^1;
    │ │ │  
    │ │ │  i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc)
    │ │ │ + -- used 0.284278s (cpu); 0.146299s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc)
    │ │ │ + -- used 5.49105s (cpu); 4.34638s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │  
    │ │ │  i31 : J1 == J2
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc)
    │ │ │ + -- used 5.68386s (cpu); 4.59503s (thread); 0s (gc)
    │ │ │  
    │ │ │  i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc)
    │ │ │ + -- used 0.539944s (cpu); 0.372248s (thread); 0s (gc)
    │ │ │  
    │ │ │  i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i35 : I = ideal(x,u);
    │ │ │  
    │ │ │  o35 : Ideal of R
    │ │ │  
    │ │ │  i36 : J = I^20;
    │ │ │  
    │ │ │  o36 : Ideal of R
    │ │ │  
    │ │ │  i37 : M = I^20*R^1;
    │ │ │  
    │ │ │  i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc)
    │ │ │ + -- used 1.08794s (cpu); 0.386032s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │  
    │ │ │  i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc)
    │ │ │ + -- used 0.226139s (cpu); 0.0553398s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │  
    │ │ │  i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc)
    │ │ │ + -- used 0.254852s (cpu); 0.0903637s (thread); 0s (gc)
    │ │ │  
    │ │ │  i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc)
    │ │ │ + -- used 0.00672375s (cpu); 0.00672976s (thread); 0s (gc)
    │ │ │  
    │ │ │  i42 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i43 : I = ideal(x,y);
    │ │ │  
    │ │ │  o43 : Ideal of R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out
    │ │ │ @@ -23,44 +23,44 @@
    │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ + -- used 0.0325992s (cpu); 0.0325983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │  
    │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ + -- used 0.219399s (cpu); 0.145855s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : J20a == J20b
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ + -- used 0.0363386s (cpu); 0.0363264s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ + -- used 0.162794s (cpu); 0.0890308s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : J1 == J2
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ring_lp__Basic__Divisor_rp.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 5006859181202351713
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : ring( D )
    │ │ │  
    │ │ │  o3 = R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__R__Weil__Divisor.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 12819564349892123361
    │ │ │  
    │ │ │  i1 : R = ZZ/5[x,y];
    │ │ │  
    │ │ │  i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 : F == 2*G
    │ │ │  
    │ │ │  o6 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/___Basic__Divisor.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │                
    i1 : R = QQ[x,y,z];
    │ │ │
    │ │ │
    i2 : D = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    │ │ │
    i3 : H = new HashTable from D
    │ │ │ @@ -94,24 +94,24 @@
    │ │ │  o3 : HashTable
    │ │ │
    │ │ │
    i4 : (2/3)*D
    │ │ │  
    │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z)
    │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x)
    │ │ │  
    │ │ │  o4 : QWeilDivisor on R
    │ │ │
    │ │ │
    i5 : 0.6*D
    │ │ │  
    │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z)
    │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,34 +15,34 @@ │ │ │ │ specifies the ambient ring. Another key is cache which points to a CacheTable. │ │ │ │ The remaining keys are a Groebner basis $L$ for each prime ideal $P$ in the │ │ │ │ support with corresponding value a list with one entry {$n$} where $n$ is the │ │ │ │ coefficient of the height one prime. │ │ │ │ i1 : R = QQ[x,y,z]; │ │ │ │ i2 : D = divisor(x*y^2*z^3) │ │ │ │ │ │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : H = new HashTable from D │ │ │ │ │ │ │ │ o3 = HashTable{{x} => {1} } │ │ │ │ {y} => {2} │ │ │ │ {z} => {3} │ │ │ │ cache => CacheTable{...1...} │ │ │ │ ring => R │ │ │ │ │ │ │ │ o3 : HashTable │ │ │ │ i4 : (2/3)*D │ │ │ │ │ │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z) │ │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x) │ │ │ │ │ │ │ │ o4 : QWeilDivisor on R │ │ │ │ i5 : 0.6*D │ │ │ │ │ │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z) │ │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x) │ │ │ │ │ │ │ │ o5 : RWeilDivisor on R │ │ │ │ ********** TTyyppeess ooff BBaassiiccDDiivviissoorr:: ********** │ │ │ │ * RWeilDivisor │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aann oobbjjeecctt ooff ccllaassss BBaassiiccDDiivviissoorr:: ********** │ │ │ │ * applyToCoefficients(BasicDivisor,Function) -- see _a_p_p_l_y_T_o_C_o_e_f_f_i_c_i_e_n_t_s - │ │ │ │ - apply a function to the coefficients of a divisor │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/___Number_sp_st_sp__Basic__Divisor.html │ │ │ @@ -103,24 +103,24 @@ │ │ │ o4 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : 8*D
    │ │ │  
    │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : (-2/3)*D
    │ │ │  
    │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │  
    │ │ │  o6 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : 0.0*D
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,20 +27,20 @@
    │ │ │ │  CoefficientType=>RR)
    │ │ │ │  
    │ │ │ │  o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │ │  
    │ │ │ │  o4 : RWeilDivisor on R
    │ │ │ │  i5 : 8*D
    │ │ │ │  
    │ │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : (-2/3)*D
    │ │ │ │  
    │ │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │ │  
    │ │ │ │  o6 : QWeilDivisor on R
    │ │ │ │  i7 : 0.0*D
    │ │ │ │  
    │ │ │ │  o7 = 0, the zero divisor
    │ │ │ │  
    │ │ │ │  o7 : RWeilDivisor on R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_ceiling_lp__R__Weil__Divisor_rp.html
    │ │ │ @@ -78,24 +78,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ceiling( D )
    │ │ │  
    │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : floor( D )
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │  
    │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : ceiling( E )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,30 +15,30 @@
    │ │ │ │            o an instance of the type _W_e_i_l_D_i_v_i_s_o_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Start with a rational or real Weil divisor. We form a new divisor whose
    │ │ │ │  coefficients are obtained by applying the ceiling or floor function to them.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │ │  i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │ │  
    │ │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : QWeilDivisor on R
    │ │ │ │  i3 : ceiling( D )
    │ │ │ │  
    │ │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : WeilDivisor on R
    │ │ │ │  i4 : floor( D )
    │ │ │ │  
    │ │ │ │  o4 = Div(y, z)
    │ │ │ │  
    │ │ │ │  o4 : WeilDivisor on R
    │ │ │ │  i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │ │  
    │ │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │ │  
    │ │ │ │  o5 : RWeilDivisor on R
    │ │ │ │  i6 : ceiling( E )
    │ │ │ │  
    │ │ │ │  o6 = Div(x, z)
    │ │ │ │  
    │ │ │ │  o6 : WeilDivisor on R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_divisor.html
    │ │ │ @@ -95,51 +95,51 @@
    │ │ │                
    i1 : R = QQ[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : E = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : F = divisor(ideal(x*y^2*z^3))
    │ │ │  
    │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}})
    │ │ │  
    │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z)
    │ │ │  
    │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Next we construct the same divisor in two different ways. We are working on the quadric cone, and we are working with a divisor of a ruling of the cone. This divisor is not Cartier, but 2 times it is.

    │ │ │ @@ -204,15 +204,15 @@ │ │ │ o14 : WeilDivisor on A
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : E = divisor(y2z)
    │ │ │  
    │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z)
    │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y)
    │ │ │  
    │ │ │  o15 : WeilDivisor on A
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    We can construct a Q-divisor as well. Here are two ways to do it (we work in $A^2$ this time).

    │ │ │ @@ -223,24 +223,24 @@ │ │ │
    i16 : R = ZZ/7[x,y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ)
    │ │ │  
    │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o17 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x)
    │ │ │  
    │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o18 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Or an R-divisor. This time we work in the cone over $P^1 \times P^1$.

    │ │ │ ├── html2text {} │ │ │ │ @@ -43,35 +43,35 @@ │ │ │ │ call it. In our first example, we construct divisors on $A^3$ (which can also │ │ │ │ be viewed as divisors on $P^2$ since the ideals are homogeneous). The following │ │ │ │ creates the same Weil divisor with coefficients 1, 2 and 3 in five different │ │ │ │ ways. │ │ │ │ i1 : R = QQ[x,y,z]; │ │ │ │ i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)}) │ │ │ │ │ │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : E = divisor(x*y^2*z^3) │ │ │ │ │ │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o3 : WeilDivisor on R │ │ │ │ i4 : F = divisor(ideal(x*y^2*z^3)) │ │ │ │ │ │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o4 : WeilDivisor on R │ │ │ │ i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}}) │ │ │ │ │ │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o5 : WeilDivisor on R │ │ │ │ i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z) │ │ │ │ │ │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x) │ │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y) │ │ │ │ │ │ │ │ o6 : WeilDivisor on R │ │ │ │ Next we construct the same divisor in two different ways. We are working on the │ │ │ │ quadric cone, and we are working with a divisor of a ruling of the cone. This │ │ │ │ divisor is not Cartier, but 2 times it is. │ │ │ │ i7 : R = QQ[x,y,z]/ideal(x^2-y*z); │ │ │ │ i8 : D = divisor({2}, {ideal(x,y)}) │ │ │ │ @@ -95,28 +95,28 @@ │ │ │ │ i14 : D = divisor(x3) │ │ │ │ │ │ │ │ o14 = 3*Div(xz2, xyz, xy2, x2z, x2y, x3) │ │ │ │ │ │ │ │ o14 : WeilDivisor on A │ │ │ │ i15 : E = divisor(y2z) │ │ │ │ │ │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z) │ │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y) │ │ │ │ │ │ │ │ o15 : WeilDivisor on A │ │ │ │ We can construct a Q-divisor as well. Here are two ways to do it (we work in │ │ │ │ $A^2$ this time). │ │ │ │ i16 : R = ZZ/7[x,y]; │ │ │ │ i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ) │ │ │ │ │ │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x) │ │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2) │ │ │ │ │ │ │ │ o17 : QWeilDivisor on R │ │ │ │ i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x) │ │ │ │ │ │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x) │ │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2) │ │ │ │ │ │ │ │ o18 : QWeilDivisor on R │ │ │ │ Or an R-divisor. This time we work in the cone over $P^1 \times P^1$. │ │ │ │ i19 : R = ZZ/11[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i20 : D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, │ │ │ │ CoefficientType=>RR) │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ @@ -163,43 +163,43 @@ │ │ │ │ │ │
    i11 : M = J*R^1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc)
    │ │ │ + -- used 0.127632s (cpu); 0.0718664s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc)
    │ │ │ + -- used 0.495472s (cpu); 0.495481s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc)
    │ │ │ + -- used 0.627359s (cpu); 0.55998s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc)
    │ │ │ + -- used 0.00316931s (cpu); 0.00317578s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc)
    │ │ │ + -- used 0.00282471s (cpu); 0.00283097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    For monomial ideals in toric rings, frequently ModuleStrategy appears faster.

    │ │ │ @@ -223,23 +223,23 @@ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc)
    │ │ │ + -- used 0.290507s (cpu); 0.138215s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc)
    │ │ │ + -- used 0.00726241s (cpu); 0.00726781s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    KnownDomain is an option for dualize. If it is false (default is true), then the computer will first check whether the ring is a domain, if it is not then it will revert to ModuleStrategy. If KnownDomain is set to true for a non-domain, then the function can return an incorrect answer.

    │ │ │ ├── html2text {} │ │ │ │ @@ -60,43 +60,43 @@ │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : J = m^9; │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : M = J*R^1; │ │ │ │ i12 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc) │ │ │ │ + -- used 0.127632s (cpu); 0.0718664s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of R │ │ │ │ i13 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc) │ │ │ │ + -- used 0.495472s (cpu); 0.495481s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time dualize(M, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc) │ │ │ │ + -- used 0.627359s (cpu); 0.55998s (thread); 0s (gc) │ │ │ │ i15 : time dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc) │ │ │ │ + -- used 0.00316931s (cpu); 0.00317578s (thread); 0s (gc) │ │ │ │ i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc) │ │ │ │ + -- used 0.00282471s (cpu); 0.00283097s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ For monomial ideals in toric rings, frequently ModuleStrategy appears faster. │ │ │ │ i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i18 : I = ideal(x,u); │ │ │ │ │ │ │ │ o18 : Ideal of R │ │ │ │ i19 : J = I^15; │ │ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ i20 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc) │ │ │ │ + -- used 0.290507s (cpu); 0.138215s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 : Ideal of R │ │ │ │ i21 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc) │ │ │ │ + -- used 0.00726241s (cpu); 0.00726781s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ KnownDomain is an option for dualize. If it is false (default is true), then │ │ │ │ the computer will first check whether the ring is a domain, if it is not then │ │ │ │ it will revert to ModuleStrategy. If KnownDomain is set to true for a non- │ │ │ │ domain, then the function can return an incorrect answer. │ │ │ │ i22 : R = QQ[x,y]/ideal(x*y); │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Cartier.html │ │ │ @@ -106,15 +106,15 @@ │ │ │
    i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : isCartier( D )
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │                
    i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : isCartier(D, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  i3 : isCartier( D )
    │ │ │ │  
    │ │ │ │  o3 = false
    │ │ │ │  Neither is this divisor.
    │ │ │ │  i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : isCartier( D )
    │ │ │ │  
    │ │ │ │  o6 = false
    │ │ │ │  Of course the next divisor is Cartier.
    │ │ │ │  i7 : R = QQ[x, y, z];
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │  o11 : WeilDivisor on R
    │ │ │ │  i12 : isCartier(D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │  i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o14 : WeilDivisor on R
    │ │ │ │  i15 : isCartier(D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  The output value of this function is stored in the divisor's cache with the
    │ │ │ │  value of the last IsGraded option. If you change the IsGraded option, the value
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Homogeneous_lp__Basic__Divisor_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})
    │ │ │  
    │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : isHomogeneous( D )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns true if the divisor is graded (homogeneous), otherwise it
    │ │ │ │  returns false.
    │ │ │ │  i1 : R = QQ[x, y, z];
    │ │ │ │  i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x *
    │ │ │ │  z - y^2)})
    │ │ │ │  
    │ │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : isHomogeneous( D )
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : R = QQ[x, y, z];
    │ │ │ │  i5 : D = divisor({1, 2}, {ideal(x * y - z^2), ideal(y^2 - z^3)})
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Linear__Equivalent.html
    │ │ │ @@ -81,24 +81,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : isLinearEquivalent(D1, D2)
    │ │ │ @@ -116,24 +116,24 @@
    │ │ │                
    i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,36 +17,36 @@
    │ │ │ │            o flag, a _B_o_o_l_e_a_n_ _v_a_l_u_e,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Given two Weil divisors, this method checks whether they are linearly
    │ │ │ │  equivalent.
    │ │ │ │  i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │  i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │ │  
    │ │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : WeilDivisor on R
    │ │ │ │  i4 : isLinearEquivalent(D1, D2)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  If IsGraded is set to true (by default it is false), then it treats the
    │ │ │ │  divisors as divisors on the $Proj$ of their ambient ring.
    │ │ │ │  i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │  i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ │  
    │ │ │ │  o6 : WeilDivisor on R
    │ │ │ │  i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │ │  
    │ │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o7 : WeilDivisor on R
    │ │ │ │  i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o8 = false
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _O_O_ _R_W_e_i_l_D_i_v_i_s_o_r
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Q__Cartier.html
    │ │ │ @@ -83,24 +83,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : isQCartier(10, D1)
    │ │ │ @@ -164,24 +164,24 @@
    │ │ │                
    i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,21 +21,21 @@
    │ │ │ │  Check whether $m$ times a Weil or Q-divisor $D$ is Cartier for each $m$ from 1
    │ │ │ │  to a fixed positive integer n1 (if the divisor is a QWeilDivisor, it can search
    │ │ │ │  slightly higher than n1). If m * D1 is Cartier, it returns m. If it fails to
    │ │ │ │  find an m, it returns 0.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : QWeilDivisor on R
    │ │ │ │  i4 : isQCartier(10, D1)
    │ │ │ │  
    │ │ │ │  o4 = 2
    │ │ │ │  i5 : isQCartier(10, D2)
    │ │ │ │  
    │ │ │ │ @@ -59,21 +59,21 @@
    │ │ │ │  
    │ │ │ │  o10 = 0
    │ │ │ │  If the option IsGraded is set to true (by default it is false), then it treats
    │ │ │ │  the divisor as a divisor on the $Proj$ of their ambient ring.
    │ │ │ │  i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o12 : WeilDivisor on R
    │ │ │ │  i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o13 : QWeilDivisor on R
    │ │ │ │  i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o14 = 1
    │ │ │ │  i15 : isQCartier(10, D2, IsGraded => true)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Q__Linear__Equivalent.html
    │ │ │ @@ -155,24 +155,24 @@
    │ │ │                
    i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -52,21 +52,21 @@
    │ │ │ │  o9 = true
    │ │ │ │  If IsGraded=>true (the default is false), then it treats the divisors as if
    │ │ │ │  they are divisors on the $Proj$ of their ambient ring.
    │ │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │  i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ │  
    │ │ │ │  o11 : QWeilDivisor on R
    │ │ │ │  i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o12 : QWeilDivisor on R
    │ │ │ │  i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o13 = true
    │ │ │ │  i14 : isQLinearEquivalent(10, 3*D, E, IsGraded => true)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__S__N__C.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : isSNC( D )
    │ │ │ @@ -152,15 +152,15 @@
    │ │ │                
    i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │  
    │ │ │  o11 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : isSNC( D, IsGraded => true )
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │                
    i16 : R = QQ[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : D = divisor(x*y*(x+y))
    │ │ │  
    │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : isSNC( D, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns true if the divisor is simple normal crossings, this
    │ │ │ │  includes checking that the ambient ring is regular.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : isSNC( D )
    │ │ │ │  
    │ │ │ │  o3 = false
    │ │ │ │  i4 : R = QQ[x, y];
    │ │ │ │  i5 : D = divisor(x*y*(x+y))
    │ │ │ │ @@ -45,15 +45,15 @@
    │ │ │ │  o9 = true
    │ │ │ │  If IsGraded is set to true (default false), then the divisor is treated as if
    │ │ │ │  it is on the $Proj$ of the ambient ring. In particular, non-SNC behavior at the
    │ │ │ │  origin is ignored.
    │ │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o11 : WeilDivisor on R
    │ │ │ │  i12 : isSNC( D, IsGraded => true )
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : R = QQ[x, y];
    │ │ │ │  i14 : D = divisor(x*y*(x+y))
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  o14 : WeilDivisor on R
    │ │ │ │  i15 : isSNC( D, IsGraded => true )
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  i16 : R = QQ[x,y,z];
    │ │ │ │  i17 : D = divisor(x*y*(x+y))
    │ │ │ │  
    │ │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │ │  
    │ │ │ │  o17 : WeilDivisor on R
    │ │ │ │  i18 : isSNC( D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o18 = false
    │ │ │ │  The output value of this function is stored in the divisor's cache with the
    │ │ │ │  value of the last IsGraded option. If you change the IsGraded option, the value
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_map__To__Projective__Space.html
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │                
    i4 : R = ZZ/7[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : D = divisor(x*y)
    │ │ │  
    │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ +o5 = Div(x) + Div(y)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- QQ[YY ..YY ]
    │ │ │ │                          1    2
    │ │ │ │  The user may also specify the variable name of the new projective space.
    │ │ │ │  i4 : R = ZZ/7[x,y,z];
    │ │ │ │  i5 : D = divisor(x*y)
    │ │ │ │  
    │ │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ │ +o5 = Div(x) + Div(y)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │ │  
    │ │ │ │               ZZ            2             2        2
    │ │ │ │  o6 = map (R, --[Z ..Z ], {x , x*y, x*z, y , y*z, z })
    │ │ │ │                7  1   6
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html
    │ │ │ @@ -94,24 +94,24 @@
    │ │ │  o3 : RingMap T <-- R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : D = divisor(y*z)
    │ │ │  
    │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x)
    │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : pullback(f, D, Strategy=>Primes)
    │ │ │  
    │ │ │ -o5 = 3*Div(b) + 3*Div(a)
    │ │ │ +o5 = 3*Div(a) + 3*Div(b)
    │ │ │  
    │ │ │  o5 : WeilDivisor on T
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : pullback(f, D, Strategy=>Sheaves)
    │ │ │ @@ -150,24 +150,24 @@
    │ │ │  o10 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D1 = pullback(f, D)
    │ │ │  
    │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o11 : WeilDivisor on S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : f^* D
    │ │ │  
    │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o12 : WeilDivisor on S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    As illustrated by the previous example, the same functionality can also be accomplished by f^* (which creates a function which sends a divisor $D$ to $f^* D$).

    │ │ │ ├── html2text {} │ │ │ │ @@ -29,20 +29,20 @@ │ │ │ │ i1 : R = QQ[x,y,z,w]/ideal(z^2-y*w,y*z-x*w,y^2-x*z); │ │ │ │ i2 : T = QQ[a,b]; │ │ │ │ i3 : f = map(T, R, {a^3, a^2*b, a*b^2, b^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- R │ │ │ │ i4 : D = divisor(y*z) │ │ │ │ │ │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x) │ │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y) │ │ │ │ │ │ │ │ o4 : WeilDivisor on R │ │ │ │ i5 : pullback(f, D, Strategy=>Primes) │ │ │ │ │ │ │ │ -o5 = 3*Div(b) + 3*Div(a) │ │ │ │ +o5 = 3*Div(a) + 3*Div(b) │ │ │ │ │ │ │ │ o5 : WeilDivisor on T │ │ │ │ i6 : pullback(f, D, Strategy=>Sheaves) │ │ │ │ │ │ │ │ o6 = 3*Div(b) + 3*Div(a) │ │ │ │ │ │ │ │ o6 : WeilDivisor on T │ │ │ │ @@ -53,20 +53,20 @@ │ │ │ │ │ │ │ │ o9 : RingMap S <-- R │ │ │ │ i10 : D = divisor(x*y*(x+y)); │ │ │ │ │ │ │ │ o10 : WeilDivisor on R │ │ │ │ i11 : D1 = pullback(f, D) │ │ │ │ │ │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a) │ │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1) │ │ │ │ │ │ │ │ o11 : WeilDivisor on S │ │ │ │ i12 : f^* D │ │ │ │ │ │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a) │ │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1) │ │ │ │ │ │ │ │ o12 : WeilDivisor on S │ │ │ │ As illustrated by the previous example, the same functionality can also be │ │ │ │ accomplished by f^* (which creates a function which sends a divisor $D$ to $f^* │ │ │ │ D$). │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_r_i_m_e_s -- a value for the option Strategy for the pullback method │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ @@ -267,23 +267,23 @@ │ │ │ │ │ │ o22 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time reflexify(J);
    │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc)
    │ │ │ + -- used 0.271189s (cpu); 0.210021s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc)
    │ │ │ + -- used 0.44102s (cpu); 0.361892s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Because of this, there are two strategies for computing a reflexification (at least if the module embeds as an ideal).

    │ │ │
    │ │ │
    │ │ │ @@ -319,26 +319,26 @@ │ │ │ │ │ │
    i28 : M = J*R^1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc)
    │ │ │ + -- used 0.284278s (cpu); 0.146299s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc)
    │ │ │ + -- used 5.49105s (cpu); 4.34638s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -348,21 +348,21 @@ │ │ │ │ │ │ o31 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc)
    │ │ │ + -- used 5.68386s (cpu); 4.59503s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc)
    │ │ │ + -- used 0.539944s (cpu); 0.372248s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    However, sometimes ModuleStrategy is faster, especially for Monomial ideals.

    │ │ │
    │ │ │ │ │ │ @@ -389,15 +389,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : M = I^20*R^1;
    │ │ │
    │ │ │
    i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc)
    │ │ │ + -- used 1.08794s (cpu); 0.386032s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -406,15 +406,15 @@
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │
    │ │ │
    i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc)
    │ │ │ + -- used 0.226139s (cpu); 0.0553398s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -423,21 +423,21 @@
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │
    │ │ │
    i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc)
    │ │ │ + -- used 0.254852s (cpu); 0.0903637s (thread); 0s (gc) │ │ │
    │ │ │
    i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc)
    │ │ │ + -- used 0.00672375s (cpu); 0.00672976s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    For ideals, if KnownDomain is false (default value is true), then the function will check whether it is a domain. If it is a domain (or assumed to be a domain), it will reflexify using a strategy which can speed up computation, if not it will compute using a sometimes slower method which is essentially reflexifying it as a module.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i21 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ i22 : J = I^21; │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ i23 : time reflexify(J); │ │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc) │ │ │ │ + -- used 0.271189s (cpu); 0.210021s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time reflexify(J*R^1); │ │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc) │ │ │ │ + -- used 0.44102s (cpu); 0.361892s (thread); 0s (gc) │ │ │ │ Because of this, there are two strategies for computing a reflexification (at │ │ │ │ least if the module embeds as an ideal). │ │ │ │ IdealStrategy. In the case that $R$ is a domain, and our module is isomorphic │ │ │ │ to an ideal $I$, then one can compute the reflexification by computing colons. │ │ │ │ ModuleStrategy. This computes the reflexification simply by computing $Hom$ │ │ │ │ twice. │ │ │ │ ModuleStrategy is the default strategy for modules, IdealStrategy is the │ │ │ │ @@ -139,73 +139,73 @@ │ │ │ │ │ │ │ │ o26 : Ideal of R │ │ │ │ i27 : J = I^20; │ │ │ │ │ │ │ │ o27 : Ideal of R │ │ │ │ i28 : M = J*R^1; │ │ │ │ i29 : J1 = time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc) │ │ │ │ + -- used 0.284278s (cpu); 0.146299s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o29 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc) │ │ │ │ + -- used 5.49105s (cpu); 4.34638s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o30 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : J1 == J2 │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc) │ │ │ │ + -- used 5.68386s (cpu); 4.59503s (thread); 0s (gc) │ │ │ │ i33 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc) │ │ │ │ + -- used 0.539944s (cpu); 0.372248s (thread); 0s (gc) │ │ │ │ However, sometimes ModuleStrategy is faster, especially for Monomial ideals. │ │ │ │ i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i35 : I = ideal(x,u); │ │ │ │ │ │ │ │ o35 : Ideal of R │ │ │ │ i36 : J = I^20; │ │ │ │ │ │ │ │ o36 : Ideal of R │ │ │ │ i37 : M = I^20*R^1; │ │ │ │ i38 : time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc) │ │ │ │ + -- used 1.08794s (cpu); 0.386032s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o38 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o38 : Ideal of R │ │ │ │ i39 : time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc) │ │ │ │ + -- used 0.226139s (cpu); 0.0553398s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o39 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o39 : Ideal of R │ │ │ │ i40 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc) │ │ │ │ + -- used 0.254852s (cpu); 0.0903637s (thread); 0s (gc) │ │ │ │ i41 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc) │ │ │ │ + -- used 0.00672375s (cpu); 0.00672976s (thread); 0s (gc) │ │ │ │ For ideals, if KnownDomain is false (default value is true), then the function │ │ │ │ will check whether it is a domain. If it is a domain (or assumed to be a │ │ │ │ domain), it will reflexify using a strategy which can speed up computation, if │ │ │ │ not it will compute using a sometimes slower method which is essentially │ │ │ │ reflexifying it as a module. │ │ │ │ Consider the following example showing the importance of making the correct │ │ │ │ assumption about the ring being a domain. │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ @@ -124,30 +124,30 @@ │ │ │ │ │ │ o6 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ + -- used 0.0325992s (cpu); 0.0325983s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ + -- used 0.219399s (cpu); 0.145855s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : J20a == J20b
    │ │ │ @@ -171,23 +171,23 @@
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ + -- used 0.0363386s (cpu); 0.0363264s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ + -- used 0.162794s (cpu); 0.0890308s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,39 +40,39 @@
    │ │ │ │  of the generators of $I$. Consider the example of a cone over a point on an
    │ │ │ │  elliptic curve.
    │ │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0325992s (cpu); 0.0325983s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : I20 = I^20;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ │ + -- used 0.219399s (cpu); 0.145855s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : J20a == J20b
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  This passes the Strategy option to a reflexify call. Valid options are
    │ │ │ │  IdealStrategy and ModuleStrategy.
    │ │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o12 : Ideal of R
    │ │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0363386s (cpu); 0.0363264s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 : Ideal of R
    │ │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ │ + -- used 0.162794s (cpu); 0.0890308s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 : Ideal of R
    │ │ │ │  i15 : J1 == J2
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _r_e_f_l_e_x_i_f_y -- calculate the double dual of an ideal or module Hom(Hom(M,
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_ring_lp__Basic__Divisor_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ring( D )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,15 +12,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _r_i_n_g,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns the ambient ring of a divisor.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : ring( D )
    │ │ │ │  
    │ │ │ │  o3 = R
    │ │ │ │  
    │ │ │ │  o3 : QuotientRing
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__R__Weil__Divisor.html
    │ │ │ @@ -79,42 +79,42 @@
    │ │ │                
    i1 : R = ZZ/5[x,y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : F == 2*G
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,30 +15,30 @@
    │ │ │ │            o an instance of the type _R_W_e_i_l_D_i_v_i_s_o_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Turn a Weil divisor or a Q-divisor into a R-divisor (or do nothing to a R-
    │ │ │ │  divisor).
    │ │ │ │  i1 : R = ZZ/5[x,y];
    │ │ │ │  i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │ │  
    │ │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : E = (1/2)*D
    │ │ │ │  
    │ │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │ │  
    │ │ │ │  o3 : QWeilDivisor on R
    │ │ │ │  i4 : F = toRWeilDivisor(D)
    │ │ │ │  
    │ │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │ │  
    │ │ │ │  o4 : RWeilDivisor on R
    │ │ │ │  i5 : G = toRWeilDivisor(E)
    │ │ │ │  
    │ │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │ │  
    │ │ │ │  o5 : RWeilDivisor on R
    │ │ │ │  i6 : F == 2*G
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _t_o_W_e_i_l_D_i_v_i_s_o_r -- create a Weil divisor from a Q or R-divisor
    │ │ ├── ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out
    │ │ │ @@ -4,19 +4,19 @@
    │ │ │  
    │ │ │  o1 = R
    │ │ │  
    │ │ │  o1 : PolynomialRing, 1 differential variable(s)
    │ │ │  
    │ │ │  i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx)
    │ │ │  
    │ │ │ -                                    2         3       2                  2  
    │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1), (x dx + 3x  - x*dx + 1)(dx)(x  +
    │ │ │ +        3       2                                      3                  
    │ │ │ +o2 = {(x dx + 3x  + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               3                2         3       2                         
    │ │ │ -     1), (dx)(x dx - x*dx + 2)(x  + 1), (x dx + 3x  + x*dx - 1)(dx)(x - 1)(x
    │ │ │ +                  3       2                  2             3                2
    │ │ │ +     1)(x + 1), (x dx + 3x  - x*dx + 1)(dx)(x  + 1), (dx)(x dx - x*dx + 2)(x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                 3
    │ │ │ -     + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)}
    │ │ │ +                                         2
    │ │ │ +     + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1)}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html
    │ │ │ @@ -84,22 +84,22 @@
    │ │ │  o1 : PolynomialRing, 1 differential variable(s)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx)
    │ │ │  
    │ │ │ -                                    2         3       2                  2  
    │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1), (x dx + 3x  - x*dx + 1)(dx)(x  +
    │ │ │ +        3       2                                      3                  
    │ │ │ +o2 = {(x dx + 3x  + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               3                2         3       2                         
    │ │ │ -     1), (dx)(x dx - x*dx + 2)(x  + 1), (x dx + 3x  + x*dx - 1)(dx)(x - 1)(x
    │ │ │ +                  3       2                  2             3                2
    │ │ │ +     1)(x + 1), (x dx + 3x  - x*dx + 1)(dx)(x  + 1), (dx)(x dx - x*dx + 2)(x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                 3
    │ │ │ -     + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)}
    │ │ │ +                                         2
    │ │ │ +     + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1)}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    To reduce their number, two factorisations are considered equivalent if they can be related by (1) switching commuting irreducible factors or (2) switching monomials and degree 0 factors; a normal order is chosen where commuting factors are sorted, and monomials are pushed to the right/left if they're differential/not.

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,22 +20,22 @@ │ │ │ │ i1 : R = makeWA(QQ[x]) │ │ │ │ │ │ │ │ o1 = R │ │ │ │ │ │ │ │ o1 : PolynomialRing, 1 differential variable(s) │ │ │ │ i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx) │ │ │ │ │ │ │ │ - 2 3 2 2 │ │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x + 1), (x dx + 3x - x*dx + 1)(dx)(x + │ │ │ │ + 3 2 3 │ │ │ │ +o2 = {(x dx + 3x + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x - │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3 2 3 2 │ │ │ │ - 1), (dx)(x dx - x*dx + 2)(x + 1), (x dx + 3x + x*dx - 1)(dx)(x - 1)(x │ │ │ │ + 3 2 2 3 2 │ │ │ │ + 1)(x + 1), (x dx + 3x - x*dx + 1)(dx)(x + 1), (dx)(x dx - x*dx + 2)(x │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3 │ │ │ │ - + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)} │ │ │ │ + 2 │ │ │ │ + + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x + 1)} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ To reduce their number, two factorisations are considered equivalent if they │ │ │ │ can be related by (1) switching commuting irreducible factors or (2) switching │ │ │ │ monomials and degree 0 factors; a normal order is chosen where commuting │ │ │ │ factors are sorted, and monomials are pushed to the right/left if they're │ │ │ │ differential/not. │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ @@ -122,15 +122,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ + -- used 2.14729s (cpu); 1.1965s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List │ │ │ │ │ │ i24 : peek last ms │ │ │ │ │ │ @@ -142,15 +142,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ + -- used 6.60694s (cpu); 3.03429s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List │ │ │ │ │ │ i26 : peek last ms │ │ │ │ │ │ @@ -162,15 +162,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ + -- used 7.85829s (cpu); 3.26666s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List │ │ │ │ │ │ i28 : peek last ms │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ @@ -292,15 +292,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ + -- used 2.14729s (cpu); 1.1965s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -318,15 +318,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ + -- used 6.60694s (cpu); 3.03429s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -344,15 +344,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ + -- used 7.85829s (cpu); 3.26666s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -184,15 +184,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ │ + -- used 2.14729s (cpu); 1.1965s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : peek last ms │ │ │ │ │ │ │ │ o24 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -202,15 +202,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ │ + -- used 6.60694s (cpu); 3.03429s (thread); 0s (gc) │ │ │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o25 : List │ │ │ │ i26 : peek last ms │ │ │ │ │ │ │ │ o26 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -220,15 +220,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ │ + -- used 7.85829s (cpu); 3.26666s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : peek last ms │ │ │ │ │ │ │ │ o28 = MutableHashTable{0 => {ideal (P, M1)} } │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/example-output/___Installation_spand_sp__Configuration_spof_spgfan__Interface.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : prefixDirectory | currentLayout#"programs" │ │ │ │ │ │ o4 = /usr/x86_64-Linux- │ │ │ Debian-forky/libexec/Macaulay2/bin/ │ │ │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true); │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this package │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172 │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22465-0/172 │ │ │ This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm. │ │ │ Options: │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ @@ -38,16 +38,16 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/172 │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174 │ │ │ +using temporary file /tmp/M2-22465-0/172 │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22465-0/174 │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]). │ │ │ Options: │ │ │ -w: │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read. │ │ │ │ │ │ -r: │ │ │ Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used. │ │ │ @@ -56,69 +56,69 @@ │ │ │ Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored. │ │ │ │ │ │ -g: │ │ │ Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16949-0/174 │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176 │ │ │ +using temporary file /tmp/M2-22465-0/174 │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22465-0/176 │ │ │ This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false. │ │ │ Options: │ │ │ --remainder: │ │ │ Tell the program to output the remainders of the divisions rather than outputting 0 or 1. │ │ │ --multiplier: │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division. │ │ │ -using temporary file /tmp/M2-16949-0/176 │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178 │ │ │ +using temporary file /tmp/M2-22465-0/176 │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22465-0/178 │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ --stable: │ │ │ Compute the stable intersection. │ │ │ -using temporary file /tmp/M2-16949-0/178 │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180 │ │ │ +using temporary file /tmp/M2-22465-0/178 │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22465-0/180 │ │ │ This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector. │ │ │ Options: │ │ │ -i value: │ │ │ Specify the name of the input file. │ │ │ --symmetry: │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input. │ │ │ │ │ │ --star: │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector. │ │ │ -using temporary file /tmp/M2-16949-0/180 │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182 │ │ │ +using temporary file /tmp/M2-22465-0/180 │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22465-0/182 │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ -using temporary file /tmp/M2-16949-0/182 │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184 │ │ │ +using temporary file /tmp/M2-22465-0/182 │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22465-0/184 │ │ │ This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant. │ │ │ --pair: │ │ │ The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual. │ │ │ --asfan: │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed. │ │ │ --vectorinput: │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations. │ │ │ -using temporary file /tmp/M2-16949-0/184 │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186 │ │ │ +using temporary file /tmp/M2-22465-0/184 │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22465-0/186 │ │ │ This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/186 │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188 │ │ │ +using temporary file /tmp/M2-22465-0/186 │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22465-0/188 │ │ │ This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree. │ │ │ Example: │ │ │ Input: │ │ │ Q[x,y]{y-1} │ │ │ z │ │ │ Output: │ │ │ Q[x,y,z]{y-z} │ │ │ @@ -126,30 +126,30 @@ │ │ │ -i: │ │ │ Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it. │ │ │ -w: │ │ │ Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials. │ │ │ │ │ │ -H: │ │ │ Let the name of the new variable be H rather than reading in a name from the input. │ │ │ -using temporary file /tmp/M2-16949-0/188 │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190 │ │ │ +using temporary file /tmp/M2-22465-0/188 │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22465-0/190 │ │ │ This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list. │ │ │ Options: │ │ │ --ideal: │ │ │ Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program. │ │ │ │ │ │ --pair: │ │ │ Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal. │ │ │ │ │ │ --mark: │ │ │ If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector. │ │ │ --list: │ │ │ Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output. │ │ │ -using temporary file /tmp/M2-16949-0/190 │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192 │ │ │ +using temporary file /tmp/M2-22465-0/190 │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22465-0/192 │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program. │ │ │ Options: │ │ │ -L: │ │ │ Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi. │ │ │ │ │ │ -x: │ │ │ Exit immediately. │ │ │ @@ -164,57 +164,57 @@ │ │ │ Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis. │ │ │ │ │ │ -W: │ │ │ Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone. │ │ │ │ │ │ --tropical: │ │ │ Traverse a tropical variety interactively. │ │ │ -using temporary file /tmp/M2-16949-0/192 │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194 │ │ │ +using temporary file /tmp/M2-22465-0/192 │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22465-0/194 │ │ │ This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/194 │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196 │ │ │ +using temporary file /tmp/M2-22465-0/194 │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22465-0/196 │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -using temporary file /tmp/M2-16949-0/196 │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198 │ │ │ +using temporary file /tmp/M2-22465-0/196 │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22465-0/198 │ │ │ This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice. │ │ │ Options: │ │ │ -t: │ │ │ Compute the toric ideal of the matrix whose rows are given on the input instead. │ │ │ --convert: │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ -using temporary file /tmp/M2-16949-0/198 │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200 │ │ │ +using temporary file /tmp/M2-22465-0/198 │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22465-0/200 │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ Options: │ │ │ -m: │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/200 │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202 │ │ │ +using temporary file /tmp/M2-22465-0/200 │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22465-0/202 │ │ │ This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/202 │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204 │ │ │ +using temporary file /tmp/M2-22465-0/202 │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22465-0/204 │ │ │ This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials. │ │ │ Options: │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --nocones: │ │ │ Tell the program to not list cones in the output. │ │ │ -using temporary file /tmp/M2-16949-0/204 │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206 │ │ │ +using temporary file /tmp/M2-22465-0/204 │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22465-0/206 │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ Options: │ │ │ -r value: │ │ │ Specify r. │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ @@ -229,16 +229,16 @@ │ │ │ Do nothing but produce symmetry generators for the Pluecker ideal. │ │ │ --symmetry: │ │ │ Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names). │ │ │ --parametrize: │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials. │ │ │ --ultrametric: │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ -using temporary file /tmp/M2-16949-0/206 │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208 │ │ │ +using temporary file /tmp/M2-22465-0/206 │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22465-0/208 │ │ │ This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials. │ │ │ Options: │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ --cyclic value: │ │ │ Use cyclic-n example instead of reading input. │ │ │ --noon value: │ │ │ @@ -249,44 +249,44 @@ │ │ │ Use Katsura-n example instead of reading input. │ │ │ --gaukwa value: │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ --eco value: │ │ │ Use Eco-n example instead of reading input. │ │ │ -j value: │ │ │ Number of threads │ │ │ -using temporary file /tmp/M2-16949-0/208 │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210 │ │ │ +using temporary file /tmp/M2-22465-0/208 │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22465-0/210 │ │ │ This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets. │ │ │ Options: │ │ │ -s: │ │ │ Sort output by degree. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/210 │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212 │ │ │ +using temporary file /tmp/M2-22465-0/210 │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22465-0/212 │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables. │ │ │ Options: │ │ │ -L: │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ --shiftVariables value: │ │ │ Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0. │ │ │ -using temporary file /tmp/M2-16949-0/212 │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214 │ │ │ +using temporary file /tmp/M2-22465-0/212 │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22465-0/214 │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables. │ │ │ Options: │ │ │ -m: │ │ │ Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn. │ │ │ │ │ │ -d value: │ │ │ Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8. │ │ │ │ │ │ -w value: │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/214 │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216 │ │ │ +using temporary file /tmp/M2-22465-0/214 │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22465-0/216 │ │ │ This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution. │ │ │ Options: │ │ │ --codimension: │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ @@ -299,25 +299,25 @@ │ │ │ │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ │ │ │ --projection: │ │ │ Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/216 │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218 │ │ │ +using temporary file /tmp/M2-22465-0/216 │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22465-0/218 │ │ │ This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ Options: │ │ │ -h: │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous generators). │ │ │ │ │ │ --noideal: │ │ │ Do not treat input as an ideal but just factor out common monomial factors of the input polynomials. │ │ │ -using temporary file /tmp/M2-16949-0/218 │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220 │ │ │ +using temporary file /tmp/M2-22465-0/218 │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22465-0/220 │ │ │ This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ Options: │ │ │ --unimodular: │ │ │ Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan │ │ │ --scale value: │ │ │ Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future. │ │ │ --restrictingfan value: │ │ │ @@ -326,70 +326,70 @@ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ │ │ │ --nocones: │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/220 │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222 │ │ │ +using temporary file /tmp/M2-22465-0/220 │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22465-0/222 │ │ │ This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/222 │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224 │ │ │ +using temporary file /tmp/M2-22465-0/222 │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22465-0/224 │ │ │ This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring. │ │ │ Example: │ │ │ Input: │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ Output: │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/224 │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226 │ │ │ +using temporary file /tmp/M2-22465-0/224 │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22465-0/226 │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the options. │ │ │ Options: │ │ │ -h: │ │ │ Add a header to the output. Using this option the output will be LaTeXable right away. │ │ │ --polynomialset_: │ │ │ The data to be converted is a list of polynomials. │ │ │ --polynomialsetlist_: │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ -using temporary file /tmp/M2-16949-0/226 │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228 │ │ │ +using temporary file /tmp/M2-22465-0/226 │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22465-0/228 │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant. │ │ │ --symmetry: │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/228 │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230 │ │ │ +using temporary file /tmp/M2-22465-0/228 │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22465-0/230 │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used. │ │ │ Options: │ │ │ -h: │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous. │ │ │ -using temporary file /tmp/M2-16949-0/230 │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232 │ │ │ +using temporary file /tmp/M2-22465-0/230 │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22465-0/232 │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/232 │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234 │ │ │ +using temporary file /tmp/M2-22465-0/232 │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22465-0/234 │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/234 │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236 │ │ │ +using temporary file /tmp/M2-22465-0/234 │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22465-0/236 │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options: │ │ │ --exponents: │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ -using temporary file /tmp/M2-16949-0/236 │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238 │ │ │ +using temporary file /tmp/M2-22465-0/236 │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22465-0/238 │ │ │ This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options: │ │ │ -using temporary file /tmp/M2-16949-0/238 │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240 │ │ │ +using temporary file /tmp/M2-22465-0/238 │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22465-0/240 │ │ │ This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces. │ │ │ Options: │ │ │ --tropicalbasistest: │ │ │ This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.) │ │ │ │ │ │ --tplane: │ │ │ This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed. │ │ │ @@ -401,16 +401,16 @@ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --restrict: │ │ │ Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms. │ │ │ --stable: │ │ │ Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored. │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16949-0/240 │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242 │ │ │ +using temporary file /tmp/M2-22465-0/240 │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22465-0/242 │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 │ │ │ │ │ │ See also │ │ │ │ │ │ @@ -435,48 +435,48 @@ │ │ │ Options: │ │ │ --noMult: │ │ │ Disable the multiplicity computation. │ │ │ -n value: │ │ │ Number of variables that should have negative weight. │ │ │ -c: │ │ │ Only output a list of vectors being the possible choices. │ │ │ -using temporary file /tmp/M2-16949-0/242 │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244 │ │ │ +using temporary file /tmp/M2-22465-0/242 │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22465-0/244 │ │ │ This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input. │ │ │ Options: │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ Specify n. │ │ │ --trees: │ │ │ list the boundary trees (assumes d=3) │ │ │ -using temporary file /tmp/M2-16949-0/244 │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246 │ │ │ +using temporary file /tmp/M2-22465-0/244 │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22465-0/246 │ │ │ This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/246 │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248 │ │ │ +using temporary file /tmp/M2-22465-0/246 │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22465-0/248 │ │ │ This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM. │ │ │ Options: │ │ │ --kapranov: │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ --determinant: │ │ │ Compute the tropical determinant instead. │ │ │ -using temporary file /tmp/M2-16949-0/248 │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250 │ │ │ +using temporary file /tmp/M2-22465-0/248 │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22465-0/250 │ │ │ This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -d: │ │ │ Output dimension information to standard error. │ │ │ --stable: │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ -using temporary file /tmp/M2-16949-0/250 │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252 │ │ │ +using temporary file /tmp/M2-22465-0/250 │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22465-0/252 │ │ │ This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety. │ │ │ Options: │ │ │ --symmetry: │ │ │ Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster. │ │ │ --symsigns: │ │ │ Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix. │ │ │ --nocones: │ │ │ @@ -484,24 +484,24 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --stable: │ │ │ Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/252 │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254 │ │ │ +using temporary file /tmp/M2-22465-0/252 │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22465-0/254 │ │ │ This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ -i2 value: │ │ │ Specify the name of the Polymake input file containing the piecewise linear function. │ │ │ -using temporary file /tmp/M2-16949-0/254 │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256 │ │ │ +using temporary file /tmp/M2-22465-0/254 │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22465-0/256 │ │ │ This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n]. │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically), │ │ │ (2) computation of an initial ideal, │ │ │ (3) computation of the Groebner fan, │ │ │ (4) computation of a single Groebner cone. │ │ │ Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive. │ │ │ @@ -521,21 +521,21 @@ │ │ │ --groebnerCone: │ │ │ Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector. │ │ │ -m: │ │ │ For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list. │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/256 │ │ │ +using temporary file /tmp/M2-22465-0/256 │ │ │ │ │ │ i6 : QQ[x,y]; │ │ │ │ │ │ i7 : gfan {x,y}; │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258 │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22465-0/258 │ │ │ Q[x1,x2] │ │ │ {{ │ │ │ x2, │ │ │ x1} │ │ │ } │ │ │ -using temporary file /tmp/M2-16949-0/258 │ │ │ +using temporary file /tmp/M2-22465-0/258 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/html/___Installation_spand_sp__Configuration_spof_spgfan__Interface.html │ │ │ @@ -109,15 +109,15 @@ │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true);
    │ │ │   -- warning: reloading gfanInterface; recreate instances of types from this package
    │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172
    │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22465-0/172
    │ │ │  This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │ @@ -128,16 +128,16 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/172
    │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174
    │ │ │ +using temporary file /tmp/M2-22465-0/172
    │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22465-0/174
    │ │ │  This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]).
    │ │ │  Options:
    │ │ │  -w:
    │ │ │   Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read.
    │ │ │  
    │ │ │  -r:
    │ │ │   Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used.
    │ │ │ @@ -146,69 +146,69 @@
    │ │ │   Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored.
    │ │ │  
    │ │ │  -g:
    │ │ │   Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16949-0/174
    │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176
    │ │ │ +using temporary file /tmp/M2-22465-0/174
    │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22465-0/176
    │ │ │  This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.
    │ │ │  Options:
    │ │ │  --remainder:
    │ │ │   Tell the program to output the remainders of the divisions rather than outputting 0 or 1.
    │ │ │  --multiplier:
    │ │ │   Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.
    │ │ │ -using temporary file /tmp/M2-16949-0/176
    │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178
    │ │ │ +using temporary file /tmp/M2-22465-0/176
    │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22465-0/178
    │ │ │  This program takes two polyhedral fans and computes their common refinement.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │  --stable:
    │ │ │   Compute the stable intersection.
    │ │ │ -using temporary file /tmp/M2-16949-0/178
    │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180
    │ │ │ +using temporary file /tmp/M2-22465-0/178
    │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22465-0/180
    │ │ │  This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector.
    │ │ │  Options:
    │ │ │  -i value:
    │ │ │   Specify the name of the input file.
    │ │ │  --symmetry:
    │ │ │   Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input.
    │ │ │  
    │ │ │  --star:
    │ │ │   Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector.
    │ │ │ -using temporary file /tmp/M2-16949-0/180
    │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182
    │ │ │ +using temporary file /tmp/M2-22465-0/180
    │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22465-0/182
    │ │ │  This program takes two polyhedral fans and computes their product.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │ -using temporary file /tmp/M2-16949-0/182
    │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184
    │ │ │ +using temporary file /tmp/M2-22465-0/182
    │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22465-0/184
    │ │ │  This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant.
    │ │ │  --pair:
    │ │ │   The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual.
    │ │ │  --asfan:
    │ │ │   Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed.
    │ │ │  --vectorinput:
    │ │ │   Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations.
    │ │ │ -using temporary file /tmp/M2-16949-0/184
    │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186
    │ │ │ +using temporary file /tmp/M2-22465-0/184
    │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22465-0/186
    │ │ │  This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/186
    │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188
    │ │ │ +using temporary file /tmp/M2-22465-0/186
    │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22465-0/188
    │ │ │  This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[x,y]{y-1}
    │ │ │  z
    │ │ │  Output:
    │ │ │  Q[x,y,z]{y-z}
    │ │ │ @@ -216,30 +216,30 @@
    │ │ │  -i:
    │ │ │   Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it.
    │ │ │  -w:
    │ │ │   Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials.
    │ │ │  
    │ │ │  -H:
    │ │ │   Let the name of the new variable be H rather than reading in a name from the input.
    │ │ │ -using temporary file /tmp/M2-16949-0/188
    │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190
    │ │ │ +using temporary file /tmp/M2-22465-0/188
    │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22465-0/190
    │ │ │  This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list.
    │ │ │  Options:
    │ │ │  --ideal:
    │ │ │   Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program.
    │ │ │  
    │ │ │  --pair:
    │ │ │   Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal.
    │ │ │  
    │ │ │  --mark:
    │ │ │   If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector.
    │ │ │  --list:
    │ │ │   Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output.
    │ │ │ -using temporary file /tmp/M2-16949-0/190
    │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192
    │ │ │ +using temporary file /tmp/M2-22465-0/190
    │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22465-0/192
    │ │ │  This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi.
    │ │ │  
    │ │ │  -x:
    │ │ │   Exit immediately.
    │ │ │ @@ -254,57 +254,57 @@
    │ │ │   Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis.
    │ │ │  
    │ │ │  -W:
    │ │ │   Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone.
    │ │ │  
    │ │ │  --tropical:
    │ │ │   Traverse a tropical variety interactively.
    │ │ │ -using temporary file /tmp/M2-16949-0/192
    │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194
    │ │ │ +using temporary file /tmp/M2-22465-0/192
    │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22465-0/194
    │ │ │  This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/194
    │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196
    │ │ │ +using temporary file /tmp/M2-22465-0/194
    │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22465-0/196
    │ │ │  Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │ -using temporary file /tmp/M2-16949-0/196
    │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198
    │ │ │ +using temporary file /tmp/M2-22465-0/196
    │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22465-0/198
    │ │ │  This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice.
    │ │ │  Options:
    │ │ │  -t:
    │ │ │   Compute the toric ideal of the matrix whose rows are given on the input instead.
    │ │ │  --convert:
    │ │ │   Does not do any computation, but just converts the vectors to binomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/198
    │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200
    │ │ │ +using temporary file /tmp/M2-22465-0/198
    │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22465-0/200
    │ │ │  This program converts a list of polynomials to a list of their leading terms.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/200
    │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202
    │ │ │ +using temporary file /tmp/M2-22465-0/200
    │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22465-0/202
    │ │ │  This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/202
    │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204
    │ │ │ +using temporary file /tmp/M2-22465-0/202
    │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22465-0/204
    │ │ │  This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │  
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tell the program to not list cones in the output.
    │ │ │ -using temporary file /tmp/M2-16949-0/204
    │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206
    │ │ │ +using temporary file /tmp/M2-22465-0/204
    │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22465-0/206
    │ │ │  This program will generate the r*r minors of a d*n matrix of indeterminates.
    │ │ │  Options:
    │ │ │  -r value:
    │ │ │   Specify r.
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │ @@ -319,16 +319,16 @@
    │ │ │   Do nothing but produce symmetry generators for the Pluecker ideal.
    │ │ │  --symmetry:
    │ │ │   Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names).
    │ │ │  --parametrize:
    │ │ │   Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials.
    │ │ │  --ultrametric:
    │ │ │   Produce tropical equations cutting out the ultrametrics.
    │ │ │ -using temporary file /tmp/M2-16949-0/206
    │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208
    │ │ │ +using temporary file /tmp/M2-22465-0/206
    │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22465-0/208
    │ │ │  This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials.
    │ │ │  Options:
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  --cyclic value:
    │ │ │   Use cyclic-n example instead of reading input.
    │ │ │  --noon value:
    │ │ │ @@ -339,44 +339,44 @@
    │ │ │   Use Katsura-n example instead of reading input.
    │ │ │  --gaukwa value:
    │ │ │   Use Gaukwa-n example instead of reading input.
    │ │ │  --eco value:
    │ │ │   Use Eco-n example instead of reading input.
    │ │ │  -j value:
    │ │ │   Number of threads
    │ │ │ -using temporary file /tmp/M2-16949-0/208
    │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210
    │ │ │ +using temporary file /tmp/M2-22465-0/208
    │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22465-0/210
    │ │ │  This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets.
    │ │ │  Options:
    │ │ │  -s:
    │ │ │   Sort output by degree.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/210
    │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212
    │ │ │ +using temporary file /tmp/M2-22465-0/210
    │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22465-0/212
    │ │ │  This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Make the triangle larger so that the shape of the Groebner region appears.
    │ │ │  --shiftVariables value:
    │ │ │   Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0.
    │ │ │ -using temporary file /tmp/M2-16949-0/212
    │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214
    │ │ │ +using temporary file /tmp/M2-22465-0/212
    │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22465-0/214
    │ │ │  This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.
    │ │ │  
    │ │ │  -d value:
    │ │ │   Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.
    │ │ │  
    │ │ │  -w value:
    │ │ │   Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/214
    │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216
    │ │ │ +using temporary file /tmp/M2-22465-0/214
    │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22465-0/216
    │ │ │  This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution.
    │ │ │  Options:
    │ │ │  --codimension:
    │ │ │   Compute only the codimension of the resultant fan and return.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │ @@ -389,25 +389,25 @@
    │ │ │  
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  
    │ │ │  --projection:
    │ │ │   Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/216
    │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218
    │ │ │ +using temporary file /tmp/M2-22465-0/216
    │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22465-0/218
    │ │ │  This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Tell the program that the input is a homogeneous ideal (with homogeneous generators).
    │ │ │  
    │ │ │  --noideal:
    │ │ │   Do not treat input as an ideal but just factor out common monomial factors of the input polynomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/218
    │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220
    │ │ │ +using temporary file /tmp/M2-22465-0/218
    │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22465-0/220
    │ │ │  This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}.
    │ │ │  Options:
    │ │ │  --unimodular:
    │ │ │   Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan
    │ │ │  --scale value:
    │ │ │   Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future.
    │ │ │  --restrictingfan value:
    │ │ │ @@ -416,70 +416,70 @@
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/220
    │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222
    │ │ │ +using temporary file /tmp/M2-22465-0/220
    │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22465-0/222
    │ │ │  This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/222
    │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224
    │ │ │ +using temporary file /tmp/M2-22465-0/222
    │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22465-0/224
    │ │ │  This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x]
    │ │ │  Output:
    │ │ │  Q[b,a,c,x]{2*b-3*a,c+x}
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/224
    │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226
    │ │ │ +using temporary file /tmp/M2-22465-0/224
    │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22465-0/226
    │ │ │  This program converts ASCII math to TeX math. The data-type is specified by the options.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Add a header to the output. Using this option the output will be LaTeXable right away.
    │ │ │  --polynomialset_:
    │ │ │   The data to be converted is a list of polynomials.
    │ │ │  --polynomialsetlist_:
    │ │ │   The data to be converted is a list of lists of polynomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/226
    │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228
    │ │ │ +using temporary file /tmp/M2-22465-0/226
    │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22465-0/228
    │ │ │  This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant.
    │ │ │  --symmetry:
    │ │ │   Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/228
    │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230
    │ │ │ +using temporary file /tmp/M2-22465-0/228
    │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22465-0/230
    │ │ │  This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous.
    │ │ │ -using temporary file /tmp/M2-16949-0/230
    │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232
    │ │ │ +using temporary file /tmp/M2-22465-0/230
    │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22465-0/232
    │ │ │  This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/232
    │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234
    │ │ │ +using temporary file /tmp/M2-22465-0/232
    │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22465-0/234
    │ │ │  This program evaluates a tropical polynomial function in a given set of points.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/234
    │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236
    │ │ │ +using temporary file /tmp/M2-22465-0/234
    │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22465-0/236
    │ │ │  This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options:
    │ │ │  --exponents:
    │ │ │   Tell program to read a list of exponent vectors instead.
    │ │ │ -using temporary file /tmp/M2-16949-0/236
    │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238
    │ │ │ +using temporary file /tmp/M2-22465-0/236
    │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22465-0/238
    │ │ │  This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/238
    │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240
    │ │ │ +using temporary file /tmp/M2-22465-0/238
    │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22465-0/240
    │ │ │  This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.
    │ │ │  Options:
    │ │ │  --tropicalbasistest:
    │ │ │   This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.)
    │ │ │  
    │ │ │  --tplane:
    │ │ │   This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed.
    │ │ │ @@ -491,16 +491,16 @@
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --restrict:
    │ │ │   Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms.
    │ │ │  --stable:
    │ │ │   Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16949-0/240
    │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242
    │ │ │ +using temporary file /tmp/M2-22465-0/240
    │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22465-0/242
    │ │ │  This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in:
    │ │ │  
    │ │ │  Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
    │ │ │   tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 
    │ │ │  
    │ │ │  See also
    │ │ │  
    │ │ │ @@ -525,48 +525,48 @@
    │ │ │  Options:
    │ │ │  --noMult:
    │ │ │   Disable the multiplicity computation.
    │ │ │  -n value:
    │ │ │   Number of variables that should have negative weight.
    │ │ │  -c:
    │ │ │   Only output a list of vectors being the possible choices.
    │ │ │ -using temporary file /tmp/M2-16949-0/242
    │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244
    │ │ │ +using temporary file /tmp/M2-22465-0/242
    │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22465-0/244
    │ │ │  This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input.
    │ │ │  Options:
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │   Specify n.
    │ │ │  --trees:
    │ │ │   list the boundary trees (assumes d=3)
    │ │ │ -using temporary file /tmp/M2-16949-0/244
    │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246
    │ │ │ +using temporary file /tmp/M2-22465-0/244
    │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22465-0/246
    │ │ │  This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/246
    │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248
    │ │ │ +using temporary file /tmp/M2-22465-0/246
    │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22465-0/248
    │ │ │  This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM.
    │ │ │  Options:
    │ │ │  --kapranov:
    │ │ │   Compute Kapranov rank instead of tropical rank.
    │ │ │  --determinant:
    │ │ │   Compute the tropical determinant instead.
    │ │ │ -using temporary file /tmp/M2-16949-0/248
    │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250
    │ │ │ +using temporary file /tmp/M2-22465-0/248
    │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22465-0/250
    │ │ │  This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │  -d:
    │ │ │   Output dimension information to standard error.
    │ │ │  --stable:
    │ │ │   Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │ -using temporary file /tmp/M2-16949-0/250
    │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252
    │ │ │ +using temporary file /tmp/M2-22465-0/250
    │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22465-0/252
    │ │ │  This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster.
    │ │ │  --symsigns:
    │ │ │   Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix.
    │ │ │  --nocones:
    │ │ │ @@ -574,24 +574,24 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --stable:
    │ │ │   Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/252
    │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254
    │ │ │ +using temporary file /tmp/M2-22465-0/252
    │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22465-0/254
    │ │ │  This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the Polymake input file containing the k-cycle.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the Polymake input file containing the piecewise linear function.
    │ │ │ -using temporary file /tmp/M2-16949-0/254
    │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256
    │ │ │ +using temporary file /tmp/M2-22465-0/254
    │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22465-0/256
    │ │ │  This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n].
    │ │ │  Several operations are supported by specifying the appropriate option:
    │ │ │   (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically),
    │ │ │   (2) computation of an initial ideal,
    │ │ │   (3) computation of the Groebner fan,
    │ │ │   (4) computation of a single Groebner cone.
    │ │ │  Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive.
    │ │ │ @@ -611,32 +611,32 @@
    │ │ │  --groebnerCone:
    │ │ │   Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector.
    │ │ │  -m:
    │ │ │   For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list.
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/256
    │ │ │ +using temporary file /tmp/M2-22465-0/256 │ │ │
    │ │ │
    i6 : QQ[x,y];
    │ │ │
    │ │ │
    i7 : gfan {x,y};
    │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258
    │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22465-0/258
    │ │ │  Q[x1,x2]
    │ │ │  {{
    │ │ │  x2,
    │ │ │  x1}
    │ │ │  }
    │ │ │ -using temporary file /tmp/M2-16949-0/258
    │ │ │ +using temporary file /tmp/M2-22465-0/258 │ │ │
    │ │ │
    │ │ │

    Finally, if you want to be able to render Groebner fans and monomial staircases to .png files, you should install fig2dev. If it is installed in a non-standard location, then you may specify its path using programPaths.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ If you would like to see the input and output files used to communicate with │ │ │ │ gfan you can set the "keepfiles" configuration option to true. If "verbose" is │ │ │ │ set to true, gfanInterface will output the names of the temporary files used. │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, │ │ │ │ "verbose" => true}, Reload => true); │ │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172 │ │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22465-0/172 │ │ │ │ This is a program for computing all reduced Groebner bases of a polynomial │ │ │ │ ideal. It takes the ring and a generating set for the ideal as input. By │ │ │ │ default the enumeration is done by an almost memoryless reverse search. If the │ │ │ │ ideal is symmetric the symmetry option is useful and enumeration will be done │ │ │ │ up to symmetry using a breadth first search. The program needs a starting │ │ │ │ Groebner basis to do its computations. If the -g option is not specified it │ │ │ │ will compute one using Buchberger's algorithm. │ │ │ │ @@ -81,16 +81,16 @@ │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/172 │ │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174 │ │ │ │ +using temporary file /tmp/M2-22465-0/172 │ │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22465-0/174 │ │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial │ │ │ │ ideal given as input. The default behavior is to use Buchberger's algorithm. │ │ │ │ The ordering of the variables is $a>b>c...$ (assuming that the ring is Q │ │ │ │ [a,b,c,...]). │ │ │ │ Options: │ │ │ │ -w: │ │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with │ │ │ │ @@ -111,63 +111,63 @@ │ │ │ │ minimal Groebner basis with respect to the reverse lexicographic term order. │ │ │ │ The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16949-0/174 │ │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176 │ │ │ │ +using temporary file /tmp/M2-22465-0/174 │ │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22465-0/176 │ │ │ │ This program takes a marked Groebner basis of an ideal I and a set of │ │ │ │ polynomials on its input and tests if the polynomial set is contained in I by │ │ │ │ applying the division algorithm for each element. The output is 1 for true and │ │ │ │ 0 for false. │ │ │ │ Options: │ │ │ │ --remainder: │ │ │ │ Tell the program to output the remainders of the divisions rather than │ │ │ │ outputting 0 or 1. │ │ │ │ --multiplier: │ │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided │ │ │ │ before doing the division. │ │ │ │ -using temporary file /tmp/M2-16949-0/176 │ │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178 │ │ │ │ +using temporary file /tmp/M2-22465-0/176 │ │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22465-0/178 │ │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ --stable: │ │ │ │ Compute the stable intersection. │ │ │ │ -using temporary file /tmp/M2-16949-0/178 │ │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180 │ │ │ │ +using temporary file /tmp/M2-22465-0/178 │ │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22465-0/180 │ │ │ │ This program takes a polyhedral fan and a vector and computes the link of the │ │ │ │ polyhedral fan around that vertex. The link will have lineality space dimension │ │ │ │ equal to the dimension of the relative open polyhedral cone of the original fan │ │ │ │ containing the vector. │ │ │ │ Options: │ │ │ │ -i value: │ │ │ │ Specify the name of the input file. │ │ │ │ --symmetry: │ │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must │ │ │ │ be given on the standard input. │ │ │ │ │ │ │ │ --star: │ │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan │ │ │ │ containing all cones of the original fan containing the vector. │ │ │ │ -using temporary file /tmp/M2-16949-0/180 │ │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182 │ │ │ │ +using temporary file /tmp/M2-22465-0/180 │ │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22465-0/182 │ │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ -using temporary file /tmp/M2-16949-0/182 │ │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184 │ │ │ │ +using temporary file /tmp/M2-22465-0/182 │ │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22465-0/184 │ │ │ │ This program computes a Groebner cone. Three different cases are handled. The │ │ │ │ input may be a marked reduced Groebner basis in which case its Groebner cone is │ │ │ │ computed. The input may be just a marked minimal basis in which case the cone │ │ │ │ computed is not a Groebner cone in the usual sense but smaller. (These cones │ │ │ │ are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case │ │ │ │ is that the Groebner cone is possibly lower dimensional and given by a pair of │ │ │ │ Groebner bases as it is useful to do for tropical varieties, see option --pair. │ │ │ │ @@ -184,24 +184,24 @@ │ │ │ │ --asfan: │ │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way │ │ │ │ the extreme rays of the cone are also computed. │ │ │ │ --vectorinput: │ │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The │ │ │ │ input is an integer which specifies the dimension of the ambient space, a list │ │ │ │ of inequalities given as vectors and a list of equations. │ │ │ │ -using temporary file /tmp/M2-16949-0/184 │ │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186 │ │ │ │ +using temporary file /tmp/M2-22465-0/184 │ │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22465-0/186 │ │ │ │ This program computes the homogeneity space of a list of polynomials - as a │ │ │ │ cone. Thus generators for the homogeneity space are found in the section │ │ │ │ LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first │ │ │ │ compute a set of homogeneous generators and call the program on these. A │ │ │ │ reduced Groebner basis will always suffice for this purpose. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/186 │ │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188 │ │ │ │ +using temporary file /tmp/M2-22465-0/186 │ │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22465-0/188 │ │ │ │ This program homogenises a list of polynomials by introducing an extra │ │ │ │ variable. The name of the variable to be introduced is read from the input │ │ │ │ after the list of polynomials. Without the -w option the homogenisation is done │ │ │ │ with respect to total degree. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[x,y]{y-1} │ │ │ │ @@ -217,16 +217,16 @@ │ │ │ │ Specify a homogenisation vector. The length of the vector must be the same as │ │ │ │ the number of variables in the ring. The vector is read from the input after │ │ │ │ the list of polynomials. │ │ │ │ │ │ │ │ -H: │ │ │ │ Let the name of the new variable be H rather than reading in a name from the │ │ │ │ input. │ │ │ │ -using temporary file /tmp/M2-16949-0/188 │ │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190 │ │ │ │ +using temporary file /tmp/M2-22465-0/188 │ │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22465-0/190 │ │ │ │ This program converts a list of polynomials to a list of their initial forms │ │ │ │ with respect to the vector given after the list. │ │ │ │ Options: │ │ │ │ --ideal: │ │ │ │ Treat input as an ideal. This will make the program compute the initial ideal │ │ │ │ of the ideal generated by the input polynomials. The computation is done by │ │ │ │ computing a Groebner basis with respect to the given vector. The vector must be │ │ │ │ @@ -242,16 +242,16 @@ │ │ │ │ --mark: │ │ │ │ If the --pair option is and the --ideal option is not used this option will │ │ │ │ still make sure that the second output basis is marked consistently with the │ │ │ │ vector. │ │ │ │ --list: │ │ │ │ Read in a list of vectors instead of a single vector and produce a list of │ │ │ │ polynomial sets as output. │ │ │ │ -using temporary file /tmp/M2-16949-0/190 │ │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192 │ │ │ │ +using temporary file /tmp/M2-22465-0/190 │ │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22465-0/192 │ │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. │ │ │ │ The input is a Groebner basis defining the starting Groebner cone of the walk. │ │ │ │ The program will list all flippable facets of the Groebner cone and ask the │ │ │ │ user to choose one. The user types in the index (number) of the facet in the │ │ │ │ list. The program will walk through the selected facet and display the new │ │ │ │ Groebner basis and a list of new facet normals for the user to choose from. │ │ │ │ Since the program reads the user's choices through the the standard input it is │ │ │ │ @@ -281,54 +281,54 @@ │ │ │ │ -W: │ │ │ │ Print weight vector. This will make the program print an interior vector of │ │ │ │ the current Groebner cone and a relative interior point for each flippable │ │ │ │ facet of the current Groebner cone. │ │ │ │ │ │ │ │ --tropical: │ │ │ │ Traverse a tropical variety interactively. │ │ │ │ -using temporary file /tmp/M2-16949-0/192 │ │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194 │ │ │ │ +using temporary file /tmp/M2-22465-0/192 │ │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22465-0/194 │ │ │ │ This program checks if a set of marked polynomials is a Groebner basis with │ │ │ │ respect to its marking. First it is checked if the markings are consistent with │ │ │ │ respect to a positive vector. Then Buchberger's S-criterion is checked. The │ │ │ │ output is boolean value. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/194 │ │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196 │ │ │ │ +using temporary file /tmp/M2-22465-0/194 │ │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22465-0/196 │ │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the │ │ │ │ polynomial ring. This is done by first computing a Groebner basis. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -using temporary file /tmp/M2-16949-0/196 │ │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198 │ │ │ │ +using temporary file /tmp/M2-22465-0/196 │ │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22465-0/198 │ │ │ │ This program computes the lattice ideal of a lattice. The input is a list of │ │ │ │ generators for the lattice. │ │ │ │ Options: │ │ │ │ -t: │ │ │ │ Compute the toric ideal of the matrix whose rows are given on the input │ │ │ │ instead. │ │ │ │ --convert: │ │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/198 │ │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200 │ │ │ │ +using temporary file /tmp/M2-22465-0/198 │ │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22465-0/200 │ │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of │ │ │ │ sets of leading terms. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/200 │ │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202 │ │ │ │ +using temporary file /tmp/M2-22465-0/200 │ │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22465-0/202 │ │ │ │ This program marks a set of polynomials with respect to the vector given at the │ │ │ │ end of the input, meaning that the largest terms are moved to the front. In │ │ │ │ case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/202 │ │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204 │ │ │ │ +using temporary file /tmp/M2-22465-0/202 │ │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22465-0/204 │ │ │ │ This is a program for computing the normal fan of the Minkowski sum of the │ │ │ │ Newton polytopes of a list of polynomials. │ │ │ │ Options: │ │ │ │ --symmetry: │ │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ideal. The program checks that the ideal stays │ │ │ │ fixed when permuting the variables with respect to elements in the group. The │ │ │ │ @@ -338,16 +338,16 @@ │ │ │ │ --disableSymmetryTest: │ │ │ │ When using --symmetry this option will disable the check that the group read │ │ │ │ off from the input actually is a symmetry group with respect to the input │ │ │ │ ideal. │ │ │ │ │ │ │ │ --nocones: │ │ │ │ Tell the program to not list cones in the output. │ │ │ │ -using temporary file /tmp/M2-16949-0/204 │ │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206 │ │ │ │ +using temporary file /tmp/M2-22465-0/204 │ │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22465-0/206 │ │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ │ Options: │ │ │ │ -r value: │ │ │ │ Specify r. │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ @@ -365,16 +365,16 @@ │ │ │ │ Produces a list of generators for the group of symmetries keeping the set of │ │ │ │ minors fixed. (Only without --names). │ │ │ │ --parametrize: │ │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal │ │ │ │ to r-1 by a list of tropical polynomials. │ │ │ │ --ultrametric: │ │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ │ -using temporary file /tmp/M2-16949-0/206 │ │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208 │ │ │ │ +using temporary file /tmp/M2-22465-0/206 │ │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22465-0/208 │ │ │ │ This program computes the mixed volume of the Newton polytopes of a list of │ │ │ │ polynomials. The ring is specified on the input. After this follows the list of │ │ │ │ polynomials. │ │ │ │ Options: │ │ │ │ --vectorinput: │ │ │ │ Read in a list of point configurations instead of a polynomial ring and a list │ │ │ │ of polynomials. │ │ │ │ @@ -388,25 +388,25 @@ │ │ │ │ Use Katsura-n example instead of reading input. │ │ │ │ --gaukwa value: │ │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ │ --eco value: │ │ │ │ Use Eco-n example instead of reading input. │ │ │ │ -j value: │ │ │ │ Number of threads │ │ │ │ -using temporary file /tmp/M2-16949-0/208 │ │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210 │ │ │ │ +using temporary file /tmp/M2-22465-0/208 │ │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22465-0/210 │ │ │ │ This program computes the union of a list of polynomial sets given as input. │ │ │ │ The polynomials must all belong to the same ring. The ring is specified on the │ │ │ │ input. After this follows the list of polynomial sets. │ │ │ │ Options: │ │ │ │ -s: │ │ │ │ Sort output by degree. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/210 │ │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212 │ │ │ │ +using temporary file /tmp/M2-22465-0/210 │ │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22465-0/212 │ │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the │ │ │ │ input is the list of all reduced Groebner bases of an ideal. The output is a │ │ │ │ drawing of the Groebner fan intersected with a triangle. The corners of the │ │ │ │ triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. │ │ │ │ If there are more than three variables in the ring these coordinates are │ │ │ │ extended with zeros. It is possible to shift the 1 entry cyclic with the option │ │ │ │ --shiftVariables. │ │ │ │ @@ -414,16 +414,16 @@ │ │ │ │ -L: │ │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ │ --shiftVariables value: │ │ │ │ Shift the positions of the variables in the drawing. For example with the │ │ │ │ value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) │ │ │ │ and top: (0,0,0,1,...). The shifting is done modulo the number of variables in │ │ │ │ the polynomial ring. The default value is 0. │ │ │ │ -using temporary file /tmp/M2-16949-0/212 │ │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214 │ │ │ │ +using temporary file /tmp/M2-22465-0/212 │ │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22465-0/214 │ │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig │ │ │ │ file. The input is a Groebner basis of a (not necessarily monomial) polynomial │ │ │ │ ideal. The initial ideal is given by the leading terms in the Groebner basis. │ │ │ │ Using the -m option it is possible to render more than one staircase diagram. │ │ │ │ The program only works for ideals in a polynomial ring with three variables. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ @@ -436,16 +436,16 @@ │ │ │ │ number is large enough to give a correct picture of the standard monomials. The │ │ │ │ default value is 8. │ │ │ │ │ │ │ │ -w value: │ │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. │ │ │ │ The default value is 5. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/214 │ │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216 │ │ │ │ +using temporary file /tmp/M2-22465-0/214 │ │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22465-0/216 │ │ │ │ This program computes the resultant fan as defined in "Computing Tropical │ │ │ │ Resultants" by Jensen and Yu. The input is a polynomial ring followed by │ │ │ │ polynomials, whose coefficients are ignored. The output is the fan of │ │ │ │ coefficients such that the input system has a tropical solution. │ │ │ │ Options: │ │ │ │ --codimension: │ │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ @@ -473,28 +473,28 @@ │ │ │ │ of polynomials. │ │ │ │ │ │ │ │ --projection: │ │ │ │ Use the projection method to compute the resultant fan. This works only if the │ │ │ │ resultant fan is a hypersurface. If this option is combined with --special, │ │ │ │ then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/216 │ │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218 │ │ │ │ +using temporary file /tmp/M2-22465-0/216 │ │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22465-0/218 │ │ │ │ This program computes the saturation of the input ideal with the product of the │ │ │ │ variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous │ │ │ │ generators). │ │ │ │ │ │ │ │ --noideal: │ │ │ │ Do not treat input as an ideal but just factor out common monomial factors of │ │ │ │ the input polynomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/218 │ │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220 │ │ │ │ +using temporary file /tmp/M2-22465-0/218 │ │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22465-0/220 │ │ │ │ This program computes the secondary fan of a vector configuration. The │ │ │ │ configuration is given as an ordered list of vectors. In order to compute the │ │ │ │ secondary fan of a point configuration an additional coordinate of ones must be │ │ │ │ added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ │ Options: │ │ │ │ --unimodular: │ │ │ │ Use heuristics to search for unimodular triangulation rather than computing │ │ │ │ @@ -523,103 +523,103 @@ │ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but │ │ │ │ still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is │ │ │ │ used. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/220 │ │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222 │ │ │ │ +using temporary file /tmp/M2-22465-0/220 │ │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22465-0/222 │ │ │ │ This program takes a list of reduced Groebner bases for the same ideal and │ │ │ │ computes various statistics. The following information is listed: the number of │ │ │ │ bases in the input, the number of variables, the dimension of the homogeneity │ │ │ │ space, the maximal total degree of any polynomial in the input and the minimal │ │ │ │ total degree of any basis in the input, the maximal number of polynomials and │ │ │ │ terms in a basis in the input. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/222 │ │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224 │ │ │ │ +using temporary file /tmp/M2-22465-0/222 │ │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22465-0/224 │ │ │ │ This program changes the variable names of a polynomial ring. The input is a │ │ │ │ polynomial ring, a polynomial set in the ring and a new polynomial ring with │ │ │ │ the same coefficient field but different variable names. The output is the │ │ │ │ polynomial set written with the variable names of the second polynomial ring. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ │ Output: │ │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/224 │ │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226 │ │ │ │ +using temporary file /tmp/M2-22465-0/224 │ │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22465-0/226 │ │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the │ │ │ │ options. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Add a header to the output. Using this option the output will be LaTeXable │ │ │ │ right away. │ │ │ │ --polynomialset_: │ │ │ │ The data to be converted is a list of polynomials. │ │ │ │ --polynomialsetlist_: │ │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/226 │ │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228 │ │ │ │ +using temporary file /tmp/M2-22465-0/226 │ │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22465-0/228 │ │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all │ │ │ │ faces of these. In this way by giving the complete list of reduced Groebner │ │ │ │ bases, the Groebner fan can be computed as a polyhedral complex. The option -- │ │ │ │ restrict lets the user choose between computing the Groebner fan or the │ │ │ │ restricted Groebner fan. │ │ │ │ Options: │ │ │ │ --restrict: │ │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to │ │ │ │ the non-negative orthant. │ │ │ │ --symmetry: │ │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ring. The output is grouped according to these │ │ │ │ symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/228 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230 │ │ │ │ +using temporary file /tmp/M2-22465-0/228 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22465-0/230 │ │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. │ │ │ │ Defining a tropical curve means that the Krull dimension of R/I is at most 1 + │ │ │ │ the dimension of the homogeneity space of I where R is the polynomial ring. The │ │ │ │ input is a generating set for the ideal. If the input is not homogeneous option │ │ │ │ -h must be used. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the │ │ │ │ output. This is needed if the input generators are not already homogeneous. │ │ │ │ -using temporary file /tmp/M2-16949-0/230 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232 │ │ │ │ +using temporary file /tmp/M2-22465-0/230 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22465-0/232 │ │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and │ │ │ │ computes the tropical variety of the ideal as a subfan of the Groebner fan. The │ │ │ │ program is slow but works for any homogeneous ideal. If you know that your │ │ │ │ ideal is prime over the complex numbers or you simply know that its tropical │ │ │ │ variety is pure and connected in codimension one then use │ │ │ │ gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/232 │ │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234 │ │ │ │ +using temporary file /tmp/M2-22465-0/232 │ │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22465-0/234 │ │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/234 │ │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236 │ │ │ │ +using temporary file /tmp/M2-22465-0/234 │ │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22465-0/236 │ │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise │ │ │ │ linear function represented by a fan whose cones are the linear regions. Each │ │ │ │ ray of the fan gets the value of the tropical function assigned to it. In other │ │ │ │ words this program computes the normal fan of the Newton polytope of the input │ │ │ │ polynomial with additional information.Options: │ │ │ │ --exponents: │ │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ │ -using temporary file /tmp/M2-16949-0/236 │ │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238 │ │ │ │ +using temporary file /tmp/M2-22465-0/236 │ │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22465-0/238 │ │ │ │ This program computes the tropical hypersurface defined by a principal ideal. │ │ │ │ The input is the polynomial ring followed by a set containing just a generator │ │ │ │ of the ideal.Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/238 │ │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240 │ │ │ │ +using temporary file /tmp/M2-22465-0/238 │ │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22465-0/240 │ │ │ │ This program computes the set theoretical intersection of a set of tropical │ │ │ │ hypersurfaces (or to be precise, their common refinement as a fan). The input │ │ │ │ is a list of polynomials with each polynomial defining a hypersurface. │ │ │ │ Considering tropical hypersurfaces as fans, the intersection can be computed as │ │ │ │ the common refinement of these. Thus the output is a fan whose support is the │ │ │ │ intersection of the tropical hypersurfaces. │ │ │ │ Options: │ │ │ │ @@ -656,16 +656,16 @@ │ │ │ │ --stable: │ │ │ │ Find the stable intersection of the input polynomials using tropical │ │ │ │ intersection theory. This can be slow. Most other options are ignored. │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16949-0/240 │ │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242 │ │ │ │ +using temporary file /tmp/M2-22465-0/240 │ │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22465-0/242 │ │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and │ │ │ │ Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, │ │ │ │ 2007 │ │ │ │ │ │ │ │ @@ -693,54 +693,54 @@ │ │ │ │ Options: │ │ │ │ --noMult: │ │ │ │ Disable the multiplicity computation. │ │ │ │ -n value: │ │ │ │ Number of variables that should have negative weight. │ │ │ │ -c: │ │ │ │ Only output a list of vectors being the possible choices. │ │ │ │ -using temporary file /tmp/M2-16949-0/242 │ │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244 │ │ │ │ +using temporary file /tmp/M2-22465-0/242 │ │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22465-0/244 │ │ │ │ This program generates tropical equations for a tropical linear space in the │ │ │ │ Speyer sense given the tropical Pluecker coordinates as input. │ │ │ │ Options: │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ Specify n. │ │ │ │ --trees: │ │ │ │ list the boundary trees (assumes d=3) │ │ │ │ -using temporary file /tmp/M2-16949-0/244 │ │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246 │ │ │ │ +using temporary file /tmp/M2-22465-0/244 │ │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22465-0/246 │ │ │ │ This program computes the multiplicity of a tropical cone given a marked │ │ │ │ reduced Groebner basis for its initial ideal. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/246 │ │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248 │ │ │ │ +using temporary file /tmp/M2-22465-0/246 │ │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22465-0/248 │ │ │ │ This program will compute the tropical rank of matrix given as input. Tropical │ │ │ │ addition is MAXIMUM. │ │ │ │ Options: │ │ │ │ --kapranov: │ │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ │ --determinant: │ │ │ │ Compute the tropical determinant instead. │ │ │ │ -using temporary file /tmp/M2-16949-0/248 │ │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250 │ │ │ │ +using temporary file /tmp/M2-22465-0/248 │ │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22465-0/250 │ │ │ │ This program computes a starting pair of marked reduced Groebner bases to be │ │ │ │ used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose │ │ │ │ tropical variety is a pure d-dimensional polyhedral complex. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -d: │ │ │ │ Output dimension information to standard error. │ │ │ │ --stable: │ │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that │ │ │ │ the coefficients are genereric. │ │ │ │ -using temporary file /tmp/M2-16949-0/250 │ │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252 │ │ │ │ +using temporary file /tmp/M2-22465-0/250 │ │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22465-0/252 │ │ │ │ This program computes a polyhedral fan representation of the tropical variety │ │ │ │ of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let │ │ │ │ $\omega$ be a relative interior point of $d$-dimensional Groebner cone │ │ │ │ contained in the tropical variety. The input for this program is a pair of │ │ │ │ marked reduced Groebner bases with respect to the term order represented by │ │ │ │ $\omega$, tie-broken in some way. The first one is for the initial ideal │ │ │ │ $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point │ │ │ │ @@ -770,27 +770,27 @@ │ │ │ │ --stable: │ │ │ │ Traverse the stable intersection or, equivalently, pretend that the │ │ │ │ coefficients are genereric. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/252 │ │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254 │ │ │ │ +using temporary file /tmp/M2-22465-0/252 │ │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22465-0/254 │ │ │ │ This program computes the tropical Weil divisor of piecewise linear (or │ │ │ │ tropical rational) function on a tropical k-cycle. See the Gfan manual for more │ │ │ │ information. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the Polymake input file containing the piecewise linear │ │ │ │ function. │ │ │ │ -using temporary file /tmp/M2-16949-0/254 │ │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256 │ │ │ │ +using temporary file /tmp/M2-22465-0/254 │ │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22465-0/256 │ │ │ │ This program is an experimental implementation of Groebner bases for ideals in │ │ │ │ Z[x_1,...,x_n]. │ │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector │ │ │ │ (tiebroken lexicographically), │ │ │ │ (2) computation of an initial ideal, │ │ │ │ (3) computation of the Groebner fan, │ │ │ │ @@ -825,23 +825,23 @@ │ │ │ │ For the operations taking a vector as input, read in a list of vectors │ │ │ │ instead, and perform the operation for each vector in the list. │ │ │ │ -g: │ │ │ │ Tells the program that the input is already a Groebner basis (with the initial │ │ │ │ term of each polynomial being the first ones listed). Use this option if the │ │ │ │ usual --groebnerFan is too slow. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/256 │ │ │ │ +using temporary file /tmp/M2-22465-0/256 │ │ │ │ i6 : QQ[x,y]; │ │ │ │ i7 : gfan {x,y}; │ │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258 │ │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22465-0/258 │ │ │ │ Q[x1,x2] │ │ │ │ {{ │ │ │ │ x2, │ │ │ │ x1} │ │ │ │ } │ │ │ │ -using temporary file /tmp/M2-16949-0/258 │ │ │ │ +using temporary file /tmp/M2-22465-0/258 │ │ │ │ Finally, if you want to be able to render Groebner fans and monomial staircases │ │ │ │ to .png files, you should install fig2dev. If it is installed in a non-standard │ │ │ │ location, then you may specify its path using _p_r_o_g_r_a_m_P_a_t_h_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/gfanInterface.m2:2630:0. │ │ ├── ./usr/share/info/AInfinity.info.gz │ │ │ ├── AInfinity.info │ │ │ │ @@ -6133,16 +6133,16 @@ │ │ │ │ 00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f70: 2b0a 7c69 3320 3a20 656c 6170 7365 6454 +.|i3 : elapsedT │ │ │ │ 00017f80: 696d 6520 6275 726b 6552 6573 6f6c 7574 ime burkeResolut │ │ │ │ 00017f90: 696f 6e28 4d2c 2037 2c20 4368 6563 6b20 ion(M, 7, Check │ │ │ │ 00017fa0: 3d3e 2066 616c 7365 2920 2020 2020 2020 => false) │ │ │ │ -00017fb0: 2020 2020 7c0a 7c20 2d2d 2031 2e37 3131 |.| -- 1.711 │ │ │ │ -00017fc0: 3338 7320 656c 6170 7365 6420 2020 2020 38s elapsed │ │ │ │ +00017fb0: 2020 2020 7c0a 7c20 2d2d 2031 2e33 3238 |.| -- 1.328 │ │ │ │ +00017fc0: 3133 7320 656c 6170 7365 6420 2020 2020 13s elapsed │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ff0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ @@ -6176,15 +6176,15 @@ │ │ │ │ 000181f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018210: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 00018220: 656c 6170 7365 6454 696d 6520 6275 726b elapsedTime burk │ │ │ │ 00018230: 6552 6573 6f6c 7574 696f 6e28 4d2c 2037 eResolution(M, 7 │ │ │ │ 00018240: 2c20 4368 6563 6b20 3d3e 2074 7275 6529 , Check => true) │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018260: 2d2d 2032 2e31 3536 3935 7320 656c 6170 -- 2.15695s elap │ │ │ │ +00018260: 2d2d 2031 2e37 3238 3732 7320 656c 6170 -- 1.72872s elap │ │ │ │ 00018270: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ ├── AdjunctionForSurfaces.info │ │ │ │ @@ -741,16 +741,16 @@ │ │ │ │ 00002e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00002e70: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00002e80: 6d65 2066 493d 7265 7320 4920 2020 2020 me fI=res I │ │ │ │ 00002e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3232 3837 |.| -- .02287 │ │ │ │ -00002ec0: 3931 7320 656c 6170 7365 6420 2020 2020 91s elapsed │ │ │ │ +00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3237 3135 |.| -- .02715 │ │ │ │ +00002ec0: 3932 7320 656c 6170 7365 6420 2020 2020 92s elapsed │ │ │ │ 00002ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00002f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -1596,15 +1596,15 @@ │ │ │ │ 000063b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000063e0: 7c69 3135 203a 2065 6c61 7073 6564 5469 |i15 : elapsedTi │ │ │ │ 000063f0: 6d65 2062 6574 7469 2849 273d 7472 696d me betti(I'=trim │ │ │ │ 00006400: 206b 6572 2070 6869 2920 2020 2020 2020 ker phi) │ │ │ │ 00006410: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00006420: 2e36 3730 3236 3373 2065 6c61 7073 6564 .670263s elapsed │ │ │ │ +00006420: 2e35 3230 3535 3673 2065 6c61 7073 6564 .520556s elapsed │ │ │ │ 00006430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00006460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00006490: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ @@ -1651,15 +1651,15 @@ │ │ │ │ 00006720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006750: 2d2d 2d2b 0a7c 6931 3720 3a20 656c 6170 ---+.|i17 : elap │ │ │ │ 00006760: 7365 6454 696d 6520 6261 7365 5074 733d sedTime basePts= │ │ │ │ 00006770: 7072 696d 6172 7944 6563 6f6d 706f 7369 primaryDecomposi │ │ │ │ 00006780: 7469 6f6e 2069 6465 616c 2048 3b20 7c0a tion ideal H; |. │ │ │ │ -00006790: 7c20 2d2d 2035 2e37 3737 3937 7320 656c | -- 5.77797s el │ │ │ │ +00006790: 7c20 2d2d 2034 2e38 3233 3534 7320 656c | -- 4.82354s el │ │ │ │ 000067a0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000067b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000067c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000067d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006800: 2d2d 2d2d 2b0a 7c69 3138 203a 2074 616c ----+.|i18 : tal │ │ │ │ @@ -2608,15 +2608,15 @@ │ │ │ │ 0000a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0000a320: 3134 203a 2065 6c61 7073 6564 5469 6d65 14 : elapsedTime │ │ │ │ 0000a330: 2073 7562 2849 2c48 2920 2020 2020 2020 sub(I,H) │ │ │ │ 0000a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a350: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -0000a360: 3133 3636 3338 7320 656c 6170 7365 6420 136638s elapsed │ │ │ │ +0000a360: 3135 3539 3732 7320 656c 6170 7365 6420 155972s elapsed │ │ │ │ 0000a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000a3d0: 6f31 3420 3d20 6964 6561 6c20 2830 2c20 o14 = ideal (0, │ │ │ │ @@ -2648,15 +2648,15 @@ │ │ │ │ 0000a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a5a0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 656c -----+.|i16 : el │ │ │ │ 0000a5b0: 6170 7365 6454 696d 6520 6265 7474 6928 apsedTime betti( │ │ │ │ 0000a5c0: 4927 3d74 7269 6d20 6b65 7220 7068 6929 I'=trim ker phi) │ │ │ │ 0000a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a5e0: 7c0a 7c20 2d2d 202e 3035 3633 3733 3173 |.| -- .0563731s │ │ │ │ +0000a5e0: 7c0a 7c20 2d2d 202e 3036 3638 3932 3673 |.| -- .0668926s │ │ │ │ 0000a5f0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 0000a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ @@ -2700,15 +2700,15 @@ │ │ │ │ 0000a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a8e0: 0a7c 6931 3820 3a20 656c 6170 7365 6454 .|i18 : elapsedT │ │ │ │ 0000a8f0: 696d 6520 6261 7365 5074 733d 7072 696d ime basePts=prim │ │ │ │ 0000a900: 6172 7944 6563 6f6d 706f 7369 7469 6f6e aryDecomposition │ │ │ │ 0000a910: 2069 6465 616c 2048 3b20 7c0a 7c20 2d2d ideal H; |.| -- │ │ │ │ -0000a920: 2031 2e38 3334 3635 7320 656c 6170 7365 1.83465s elapse │ │ │ │ +0000a920: 2031 2e34 3935 3937 7320 656c 6170 7365 1.49597s elapse │ │ │ │ 0000a930: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a950: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000a960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a990: 2b0a 7c69 3139 203a 2074 616c 6c79 2061 +.|i19 : tally a │ │ ├── ./usr/share/info/BGG.info.gz │ │ │ ├── BGG.info │ │ │ │ @@ -4338,16 +4338,16 @@ │ │ │ │ 00010f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00010f40: 3134 203a 2074 696d 6520 6265 7474 6920 14 : time betti │ │ │ │ 00010f50: 2846 203d 2070 7572 6552 6573 6f6c 7574 (F = pureResolut │ │ │ │ 00010f60: 696f 6e28 4d2c 7b30 2c32 2c34 7d29 2920 ion(M,{0,2,4})) │ │ │ │ 00010f70: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00010f80: 302e 3434 3039 3235 7320 2863 7075 293b 0.440925s (cpu); │ │ │ │ -00010f90: 2030 2e33 3637 3030 3473 2028 7468 7265 0.367004s (thre │ │ │ │ +00010f80: 302e 3439 3633 3034 7320 2863 7075 293b 0.496304s (cpu); │ │ │ │ +00010f90: 2030 2e34 3132 3534 3373 2028 7468 7265 0.412543s (thre │ │ │ │ 00010fa0: 6164 293b 2030 7320 2867 6329 7c0a 7c20 ad); 0s (gc)|.| │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00010ff0: 2020 2020 3020 3120 3220 2020 2020 2020 0 1 2 │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4403,16 +4403,16 @@ │ │ │ │ 00011320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00011350: 0a7c 6931 3520 3a20 7469 6d65 2062 6574 .|i15 : time bet │ │ │ │ 00011360: 7469 2028 4620 3d20 7075 7265 5265 736f ti (F = pureReso │ │ │ │ 00011370: 6c75 7469 6f6e 2831 312c 342c 7b30 2c32 lution(11,4,{0,2 │ │ │ │ 00011380: 2c34 7d29 2920 207c 0a7c 202d 2d20 7573 ,4})) |.| -- us │ │ │ │ -00011390: 6564 2030 2e34 3737 3333 3473 2028 6370 ed 0.477334s (cp │ │ │ │ -000113a0: 7529 3b20 302e 3430 3035 3337 7320 2874 u); 0.400537s (t │ │ │ │ +00011390: 6564 2030 2e35 3438 3337 3573 2028 6370 ed 0.548375s (cp │ │ │ │ +000113a0: 7529 3b20 302e 3436 3833 3633 7320 2874 u); 0.468363s (t │ │ │ │ 000113b0: 6872 6561 6429 3b20 3073 2028 6763 297c hread); 0s (gc)| │ │ │ │ 000113c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00011400: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ 00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Benchmark.info.gz │ │ │ ├── Benchmark.info │ │ │ │ @@ -200,71 +200,76 @@ │ │ │ │ 00000c70: 2d2d 2d2d 2b0a 7c69 3120 3a20 7275 6e42 ----+.|i1 : runB │ │ │ │ 00000c80: 656e 6368 6d61 726b 7320 2272 6573 3339 enchmarks "res39 │ │ │ │ 00000c90: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00000ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cc0: 2020 2020 7c0a 7c2d 2d20 6265 6769 6e6e |.|-- beginn │ │ │ │ 00000cd0: 696e 6720 636f 6d70 7574 6174 696f 6e20 ing computation │ │ │ │ -00000ce0: 5375 6e20 4465 6320 3134 2031 353a 3331 Sun Dec 14 15:31 │ │ │ │ -00000cf0: 3a34 3220 5554 4320 3230 3235 2020 2020 :42 UTC 2025 │ │ │ │ +00000ce0: 5468 7520 4a61 6e20 2031 2031 313a 3036 Thu Jan 1 11:06 │ │ │ │ +00000cf0: 3a32 3420 5554 4320 3230 3236 2020 2020 :24 UTC 2026 │ │ │ │ 00000d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d10: 2020 2020 7c0a 7c2d 2d20 4c69 6e75 7820 |.|-- Linux │ │ │ │ 00000d20: 7362 7569 6c64 2036 2e31 322e 3537 2b64 sbuild 6.12.57+d │ │ │ │ -00000d30: 6562 3133 2d61 6d64 3634 2023 3120 534d eb13-amd64 #1 SM │ │ │ │ -00000d40: 5020 5052 4545 4d50 545f 4459 4e41 4d49 P PREEMPT_DYNAMI │ │ │ │ -00000d50: 4320 4465 6269 616e 2036 2e31 322e 3537 C Debian 6.12.57 │ │ │ │ -00000d60: 2d31 2020 7c0a 7c2d 2d20 414d 4420 4550 -1 |.|-- AMD EP │ │ │ │ -00000d70: 5943 2037 3730 3250 2036 342d 436f 7265 YC 7702P 64-Core │ │ │ │ -00000d80: 2050 726f 6365 7373 6f72 2020 4175 7468 Processor Auth │ │ │ │ -00000d90: 656e 7469 6341 4d44 2020 6370 7520 4d48 enticAMD cpu MH │ │ │ │ -00000da0: 7a20 3139 3936 2e32 3439 2020 2020 2020 z 1996.249 │ │ │ │ +00000d30: 6562 3133 2d63 6c6f 7564 2d61 6d64 3634 eb13-cloud-amd64 │ │ │ │ +00000d40: 2023 3120 534d 5020 5052 4545 4d50 545f #1 SMP PREEMPT_ │ │ │ │ +00000d50: 4459 4e41 4d49 4320 4465 6269 616e 2020 DYNAMIC Debian │ │ │ │ +00000d60: 2020 2020 7c0a 7c2d 2d20 496e 7465 6c20 |.|-- Intel │ │ │ │ +00000d70: 5865 6f6e 2050 726f 6365 7373 6f72 2028 Xeon Processor ( │ │ │ │ +00000d80: 536b 796c 616b 652c 2049 4252 5329 2020 Skylake, IBRS) │ │ │ │ +00000d90: 4765 6e75 696e 6549 6e74 656c 2020 6370 GenuineIntel cp │ │ │ │ +00000da0: 7520 4d48 7a20 3230 3939 2e39 3938 2020 u MHz 2099.998 │ │ │ │ 00000db0: 2020 2020 7c0a 7c2d 2d20 4d61 6361 756c |.|-- Macaul │ │ │ │ 00000dc0: 6179 3220 312e 3235 2e31 312c 2063 6f6d ay2 1.25.11, com │ │ │ │ 00000dd0: 7069 6c65 6420 7769 7468 2067 6363 2031 piled with gcc 1 │ │ │ │ 00000de0: 352e 322e 3020 2020 2020 2020 2020 2020 5.2.0 │ │ │ │ 00000df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000e00: 2020 2020 7c0a 7c2d 2d20 7265 7333 393a |.|-- res39: │ │ │ │ 00000e10: 2072 6573 206f 6620 6120 6765 6e65 7269 res of a generi │ │ │ │ 00000e20: 6320 3320 6279 2039 206d 6174 7269 7820 c 3 by 9 matrix │ │ │ │ -00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3135 over ZZ/101: .15 │ │ │ │ -00000e40: 3332 3135 2073 6563 6f6e 6473 2020 2020 3215 seconds │ │ │ │ +00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3139 over ZZ/101: .19 │ │ │ │ +00000e40: 3237 3833 2073 6563 6f6e 6473 2020 2020 2783 seconds │ │ │ │ 00000e50: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ 00000e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ea0: 2d2d 2d2d 7c0a 7c28 3230 3235 2d31 312d ----|.|(2025-11- │ │ │ │ -00000eb0: 3035 2920 7838 365f 3634 2047 4e55 2f4c 05) x86_64 GNU/L │ │ │ │ -00000ec0: 696e 7578 2020 2020 2020 2020 2020 2020 inux │ │ │ │ +00000ea0: 2d2d 2d2d 7c0a 7c36 2e31 322e 3537 2d31 ----|.|6.12.57-1 │ │ │ │ +00000eb0: 2028 3230 3235 2d31 312d 3035 2920 7838 (2025-11-05) x8 │ │ │ │ +00000ec0: 365f 3634 2047 4e55 2f4c 696e 7578 2020 6_64 GNU/Linux │ │ │ │ 00000ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000ef0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00000f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f40: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ -00000f50: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00000f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00000f70: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00000f80: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ -00000f90: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ -00000fa0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ -00000fb0: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ -00000fc0: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ -00000fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001010: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00001020: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00001030: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00001040: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00001050: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00001060: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00001070: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00001080: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ -00001090: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ -000010a0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ -000010b0: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ -000010c0: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ -000010d0: 5461 6720 5461 626c 650a Tag Table. │ │ │ │ +00000ef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00000f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00000f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f90: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ +00000fa0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00000fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00000fc0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00000fd0: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ +00000fe0: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ +00000ff0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ +00001000: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ +00001010: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ +00001020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001060: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00001070: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00001080: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00001090: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +000010a0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000010b0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000010c0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000010d0: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ +000010e0: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ +000010f0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ +00001100: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ +00001110: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ +00001120: 5461 6720 5461 626c 650a Tag Table. │ │ ├── ./usr/share/info/Bertini.info.gz │ │ │ ├── Bertini.info │ │ │ │ @@ -2253,16 +2253,16 @@ │ │ │ │ 00008cc0: 616c 206e 756d 6265 720a 2020 2020 2020 al number. │ │ │ │ 00008cd0: 2020 6f72 2072 616e 646f 6d20 636f 6d70 or random comp │ │ │ │ 00008ce0: 6c65 7820 6e75 6d62 6572 0a20 2020 2020 lex number. │ │ │ │ 00008cf0: 202a 202a 6e6f 7465 2054 6f70 4469 7265 * *note TopDire │ │ │ │ 00008d00: 6374 6f72 793a 2054 6f70 4469 7265 6374 ctory: TopDirect │ │ │ │ 00008d10: 6f72 792c 203d 3e20 2e2e 2e2c 2064 6566 ory, => ..., def │ │ │ │ 00008d20: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -00008d30: 2020 2022 2f74 6d70 2f4d 322d 3238 3730 "/tmp/M2-2870 │ │ │ │ -00008d40: 362d 302f 3022 2c20 4f70 7469 6f6e 2074 6-0/0", Option t │ │ │ │ +00008d30: 2020 2022 2f74 6d70 2f4d 322d 3431 3033 "/tmp/M2-4103 │ │ │ │ +00008d40: 372d 302f 3022 2c20 4f70 7469 6f6e 2074 7-0/0", Option t │ │ │ │ 00008d50: 6f20 6368 616e 6765 2064 6972 6563 746f o change directo │ │ │ │ 00008d60: 7279 2066 6f72 2066 696c 6520 7374 6f72 ry for file stor │ │ │ │ 00008d70: 6167 652e 0a20 2020 2020 202a 202a 6e6f age.. * *no │ │ │ │ 00008d80: 7465 2056 6572 626f 7365 3a20 6265 7274 te Verbose: bert │ │ │ │ 00008d90: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ 00008da0: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ 00008db0: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ @@ -4971,15 +4971,15 @@ │ │ │ │ 000136a0: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ 000136b0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ 000136c0: 7d2c 200a 2020 2020 2020 2a20 2a6e 6f74 }, . * *not │ │ │ │ 000136d0: 6520 546f 7044 6972 6563 746f 7279 3a20 e TopDirectory: │ │ │ │ 000136e0: 546f 7044 6972 6563 746f 7279 2c20 3d3e TopDirectory, => │ │ │ │ 000136f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ 00013700: 6c75 650a 2020 2020 2020 2020 222f 746d lue. "/tm │ │ │ │ -00013710: 702f 4d32 2d32 3837 3036 2d30 2f30 222c p/M2-28706-0/0", │ │ │ │ +00013710: 702f 4d32 2d34 3130 3337 2d30 2f30 222c p/M2-41037-0/0", │ │ │ │ 00013720: 204f 7074 696f 6e20 746f 2063 6861 6e67 Option to chang │ │ │ │ 00013730: 6520 6469 7265 6374 6f72 7920 666f 7220 e directory for │ │ │ │ 00013740: 6669 6c65 2073 746f 7261 6765 2e0a 2020 file storage.. │ │ │ │ 00013750: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ 00013760: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ 00013770: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ 00013780: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ @@ -5472,16 +5472,16 @@ │ │ │ │ 000155f0: 6561 6c20 6e75 6d62 6572 0a20 2020 2020 eal number. │ │ │ │ 00015600: 2020 206f 7220 7261 6e64 6f6d 2063 6f6d or random com │ │ │ │ 00015610: 706c 6578 206e 756d 6265 720a 2020 2020 plex number. │ │ │ │ 00015620: 2020 2a20 2a6e 6f74 6520 546f 7044 6972 * *note TopDir │ │ │ │ 00015630: 6563 746f 7279 3a20 546f 7044 6972 6563 ectory: TopDirec │ │ │ │ 00015640: 746f 7279 2c20 3d3e 202e 2e2e 2c20 6465 tory, => ..., de │ │ │ │ 00015650: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00015660: 2020 2020 222f 746d 702f 4d32 2d32 3837 "/tmp/M2-287 │ │ │ │ -00015670: 3036 2d30 2f30 222c 204f 7074 696f 6e20 06-0/0", Option │ │ │ │ +00015660: 2020 2020 222f 746d 702f 4d32 2d34 3130 "/tmp/M2-410 │ │ │ │ +00015670: 3337 2d30 2f30 222c 204f 7074 696f 6e20 37-0/0", Option │ │ │ │ 00015680: 746f 2063 6861 6e67 6520 6469 7265 6374 to change direct │ │ │ │ 00015690: 6f72 7920 666f 7220 6669 6c65 2073 746f ory for file sto │ │ │ │ 000156a0: 7261 6765 2e0a 2020 2020 2020 2a20 5573 rage.. * Us │ │ │ │ 000156b0: 6552 6567 656e 6572 6174 696f 6e20 286d eRegeneration (m │ │ │ │ 000156c0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ 000156d0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ 000156e0: 6661 756c 7420 7661 6c75 6520 2d31 2c20 fault value -1, │ │ ├── ./usr/share/info/BettiCharacters.info.gz │ │ │ ├── BettiCharacters.info │ │ │ │ @@ -12972,15 +12972,15 @@ │ │ │ │ 00032ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00032ad0: 0a7c 6939 203a 2065 6c61 7073 6564 5469 .|i9 : elapsedTi │ │ │ │ 00032ae0: 6d65 2063 203d 2063 6861 7261 6374 6572 me c = character │ │ │ │ 00032af0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00032b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00032b20: 0a7c 202d 2d20 2e35 3539 3133 3573 2065 .| -- .559135s e │ │ │ │ +00032b20: 0a7c 202d 2d20 2e33 3934 3834 3773 2065 .| -- .394847s e │ │ │ │ 00032b30: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00032b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -14183,15 +14183,15 @@ │ │ │ │ 00037660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037680: 2b0a 7c69 3720 3a20 656c 6170 7365 6454 +.|i7 : elapsedT │ │ │ │ 00037690: 696d 6520 633d 6368 6172 6163 7465 7220 ime c=character │ │ │ │ 000376a0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376d0: 7c0a 7c20 2d2d 202e 3437 3439 3136 7320 |.| -- .474916s │ │ │ │ +000376d0: 7c0a 7c20 2d2d 202e 3435 3138 3233 7320 |.| -- .451823s │ │ │ │ 000376e0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 000376f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00037730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15614,16 +15614,16 @@ │ │ │ │ 0003cfd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0003cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d010: 2d2b 0a7c 6932 3020 3a20 656c 6170 7365 -+.|i20 : elapse │ │ │ │ 0003d020: 6454 696d 6520 6131 203d 2063 6861 7261 dTime a1 = chara │ │ │ │ 0003d030: 6374 6572 2041 3120 2020 2020 2020 2020 cter A1 │ │ │ │ -0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3835 |.| -- .85 │ │ │ │ -0003d050: 3237 3632 7320 656c 6170 7365 6420 2020 2762s elapsed │ │ │ │ +0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3639 |.| -- .69 │ │ │ │ +0003d050: 3237 3033 7320 656c 6170 7365 6420 2020 2703s elapsed │ │ │ │ 0003d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0003d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0b0: 7c0a 7c6f 3230 203d 2043 6861 7261 6374 |.|o20 = Charact │ │ │ │ 0003d0c0: 6572 206f 7665 7220 5220 2020 2020 2020 er over R │ │ │ │ @@ -15654,16 +15654,16 @@ │ │ │ │ 0003d250: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 0003d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003d290: 6932 3120 3a20 656c 6170 7365 6454 696d i21 : elapsedTim │ │ │ │ 0003d2a0: 6520 6132 203d 2063 6861 7261 6374 6572 e a2 = character │ │ │ │ 0003d2b0: 2041 3220 2020 2020 2020 2020 2020 2020 A2 │ │ │ │ -0003d2c0: 2020 7c0a 7c20 2d2d 2033 342e 3334 3473 |.| -- 34.344s │ │ │ │ -0003d2d0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ +0003d2c0: 2020 7c0a 7c20 2d2d 2032 352e 3434 3031 |.| -- 25.4401 │ │ │ │ +0003d2d0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0003d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0003d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d320: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0003d330: 3231 203d 2043 6861 7261 6374 6572 206f 21 = Character o │ │ │ │ 0003d340: 7665 7220 5220 2020 2020 2020 2020 2020 ver R │ │ │ │ @@ -16112,16 +16112,16 @@ │ │ │ │ 0003eef0: 6f33 3120 3a20 4163 7469 6f6e 4f6e 4772 o31 : ActionOnGr │ │ │ │ 0003ef00: 6164 6564 4d6f 6475 6c65 2020 2020 2020 adedModule │ │ │ │ 0003ef10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0003ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003ef40: 6933 3220 3a20 656c 6170 7365 6454 696d i32 : elapsedTim │ │ │ │ 0003ef50: 6520 6220 3d20 6368 6172 6163 7465 7228 e b = character( │ │ │ │ -0003ef60: 422c 3231 297c 0a7c 202d 2d20 3134 2e32 B,21)|.| -- 14.2 │ │ │ │ -0003ef70: 3631 3773 2065 6c61 7073 6564 2020 2020 617s elapsed │ │ │ │ +0003ef60: 422c 3231 297c 0a7c 202d 2d20 3131 2e34 B,21)|.| -- 11.4 │ │ │ │ +0003ef70: 3530 3473 2065 6c61 7073 6564 2020 2020 504s elapsed │ │ │ │ 0003ef80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efb0: 2020 2020 207c 0a7c 6f33 3220 3d20 4368 |.|o32 = Ch │ │ │ │ 0003efc0: 6172 6163 7465 7220 6f76 6572 2052 2020 aracter over R │ │ │ │ 0003efd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Bruns.info.gz │ │ │ ├── Bruns.info │ │ │ │ @@ -1095,18 +1095,18 @@ │ │ │ │ 00004460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00004480: 6932 3320 3a20 7469 6d65 206a 3d62 7275 i23 : time j=bru │ │ │ │ 00004490: 6e73 2046 2e64 645f 333b 2020 2020 2020 ns F.dd_3; │ │ │ │ 000044a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000044d0: 202d 2d20 7573 6564 2030 2e33 3534 3231 -- used 0.35421 │ │ │ │ -000044e0: 3873 2028 6370 7529 3b20 302e 3238 3930 8s (cpu); 0.2890 │ │ │ │ -000044f0: 3037 7320 2874 6872 6561 6429 3b20 3073 07s (thread); 0s │ │ │ │ -00004500: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000044d0: 202d 2d20 7573 6564 2030 2e32 3635 3534 -- used 0.26554 │ │ │ │ +000044e0: 3373 2028 6370 7529 3b20 302e 3139 3838 3s (cpu); 0.1988 │ │ │ │ +000044f0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00004500: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00004510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004570: 6f32 3320 3a20 4964 6561 6c20 6f66 2053 o23 : Ideal of S │ │ ├── ./usr/share/info/CellularResolutions.info.gz │ │ │ ├── CellularResolutions.info │ │ │ │ @@ -984,26 +984,26 @@ │ │ │ │ 00003d70: 2843 656c 6c20 6f66 2064 696d 656e 7369 (Cell of dimensi │ │ │ │ 00003d80: 6f6e 2031 2077 6974 6820 6c61 6265 6c7c on 1 with label| │ │ │ │ 00003d90: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ 00003da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00003de0: 0a7c 2020 2020 2020 312c 2031 292c 2028 .| 1, 1), ( │ │ │ │ -00003df0: 4365 6c6c 206f 6620 6469 6d65 6e73 696f Cell of dimensio │ │ │ │ -00003e00: 6e20 3120 7769 7468 206c 6162 656c 2031 n 1 with label 1 │ │ │ │ -00003e10: 2c20 2d31 292c 2028 4365 6c6c 206f 6620 , -1), (Cell of │ │ │ │ -00003e20: 6469 6d65 6e73 696f 6e20 3120 2020 207c dimension 1 | │ │ │ │ +00003de0: 0a7c 2020 2020 2020 312c 202d 3129 2c20 .| 1, -1), │ │ │ │ +00003df0: 2843 656c 6c20 6f66 2064 696d 656e 7369 (Cell of dimensi │ │ │ │ +00003e00: 6f6e 2031 2077 6974 6820 6c61 6265 6c20 on 1 with label │ │ │ │ +00003e10: 312c 202d 3129 2c20 2843 656c 6c20 6f66 1, -1), (Cell of │ │ │ │ +00003e20: 2064 696d 656e 7369 6f6e 2031 2020 207c dimension 1 | │ │ │ │ 00003e30: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ 00003e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00003e80: 0a7c 2020 2020 2020 7769 7468 206c 6162 .| with lab │ │ │ │ -00003e90: 656c 2031 2c20 2d31 297d 2020 2020 2020 el 1, -1)} │ │ │ │ +00003e90: 656c 2031 2c20 3129 7d20 2020 2020 2020 el 1, 1)} │ │ │ │ 00003ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00003ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00003ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2973,23 +2973,23 @@ │ │ │ │ 0000b9c0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ 0000b9d0: 2048 6173 6854 6162 6c65 7b30 203d 3e20 HashTable{0 => │ │ │ │ 0000b9e0: 7b78 202c 2078 2079 2c20 7820 7920 2c20 {x , x y, x y , │ │ │ │ 0000b9f0: 7820 7920 2c20 782a 7920 2c20 7820 7d20 x y , x*y , x } │ │ │ │ 0000ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ba10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba30: 2020 3520 2020 2033 2033 2020 2035 2032 5 3 3 5 2 │ │ │ │ -0000ba40: 2020 2032 2034 2020 2035 2033 2020 2035 2 4 5 3 5 │ │ │ │ -0000ba50: 2034 2020 2035 2020 2020 3520 3220 2020 4 5 5 2 │ │ │ │ -0000ba60: 3520 3320 2020 2020 207c 0a7c 2020 2020 5 3 |.| │ │ │ │ +0000ba30: 2020 3220 3420 2020 3520 3320 2020 3520 2 4 5 3 5 │ │ │ │ +0000ba40: 3420 2020 3520 2020 2035 2032 2020 2035 4 5 5 2 5 │ │ │ │ +0000ba50: 2033 2020 2035 2034 2020 2034 2032 2020 3 5 4 4 2 │ │ │ │ +0000ba60: 2034 2034 2020 2020 207c 0a7c 2020 2020 4 4 |.| │ │ │ │ 0000ba70: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -0000ba80: 7b78 2079 2c20 7820 7920 2c20 7820 7920 {x y, x y , x y │ │ │ │ -0000ba90: 2c20 7820 7920 2c20 7820 7920 2c20 7820 , x y , x y , x │ │ │ │ -0000baa0: 7920 2c20 7820 792c 2078 2079 202c 2078 y , x y, x y , x │ │ │ │ -0000bab0: 2079 202c 2020 2020 207c 0a7c 2020 2020 y , |.| │ │ │ │ +0000ba80: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ +0000ba90: 202c 2078 2079 2c20 7820 7920 2c20 7820 , x y, x y , x │ │ │ │ +0000baa0: 7920 2c20 7820 7920 2c20 7820 7920 2c20 y , x y , x y , │ │ │ │ +0000bab0: 7820 7920 2c20 2020 207c 0a7c 2020 2020 x y , |.| │ │ │ │ 0000bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bad0: 2020 3520 3220 2020 3520 3420 2020 3520 5 2 5 4 5 │ │ │ │ 0000bae0: 3320 2020 3520 3420 2020 3520 3220 2020 3 5 4 5 2 │ │ │ │ 0000baf0: 3520 3420 2020 3520 3320 2020 3520 3420 5 4 5 3 5 4 │ │ │ │ 0000bb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000bb10: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ 0000bb20: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ @@ -3007,25 +3007,25 @@ │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 0000bc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc40: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -0000bc50: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +0000bc50: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ 0000bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc90: 2020 2020 2020 2020 207c 0a7c 2035 2034 |.| 5 4 │ │ │ │ -0000bca0: 2020 2034 2032 2020 2034 2034 2020 2020 4 2 4 4 │ │ │ │ +0000bc90: 2020 2020 2020 2020 207c 0a7c 2035 2020 |.| 5 │ │ │ │ +0000bca0: 2020 3320 3320 2020 3520 3220 2020 2020 3 3 5 2 │ │ │ │ 0000bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bce0: 2020 2020 2020 2020 207c 0a7c 7820 7920 |.|x y │ │ │ │ -0000bcf0: 2c20 7820 7920 2c20 7820 7920 7d20 2020 , x y , x y } │ │ │ │ +0000bce0: 2020 2020 2020 2020 207c 0a7c 7820 792c |.|x y, │ │ │ │ +0000bcf0: 2078 2079 202c 2078 2079 207d 2020 2020 x y , x y } │ │ │ │ 0000bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0000bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4011,17 +4011,17 @@ │ │ │ │ 0000faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000fac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -0000fb10: 7769 7468 206c 6162 656c 207a 2c20 4365 with label z, Ce │ │ │ │ +0000fb10: 7769 7468 206c 6162 656c 2078 2c20 4365 with label x, Ce │ │ │ │ 0000fb20: 6c6c 206f 6620 6469 6d65 6e73 696f 6e20 ll of dimension │ │ │ │ -0000fb30: 3020 7769 7468 206c 6162 656c 2078 7d7d 0 with label x}} │ │ │ │ +0000fb30: 3020 7769 7468 206c 6162 656c 207a 7d7d 0 with label z}} │ │ │ │ 0000fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb50: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0000fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b -------------+.+ │ │ │ │ @@ -4290,25 +4290,25 @@ │ │ │ │ 00010c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c50: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ 00010c60: 3d20 7b43 656c 6c20 6f66 2064 696d 656e = {Cell of dimen │ │ │ │ 00010c70: 7369 6f6e 2030 2077 6974 6820 6c61 6265 sion 0 with labe │ │ │ │ -00010c80: 6c20 792c 2043 656c 6c20 6f66 2064 696d l y, Cell of dim │ │ │ │ +00010c80: 6c20 782c 2043 656c 6c20 6f66 2064 696d l x, Cell of dim │ │ │ │ 00010c90: 656e 7369 6f6e 2030 2077 6974 6820 6c61 ension 0 with la │ │ │ │ -00010ca0: 6265 6c20 782c 2020 2020 7c0a 7c20 2020 bel x, |.| │ │ │ │ +00010ca0: 6265 6c20 7a2c 2020 2020 7c0a 7c20 2020 bel z, |.| │ │ │ │ 00010cb0: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ 00010cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ 00010d00: 2020 4365 6c6c 206f 6620 6469 6d65 6e73 Cell of dimens │ │ │ │ 00010d10: 696f 6e20 3020 7769 7468 206c 6162 656c ion 0 with label │ │ │ │ -00010d20: 207a 7d20 2020 2020 2020 2020 2020 2020 z} │ │ │ │ +00010d20: 2079 7d20 2020 2020 2020 2020 2020 2020 y} │ │ │ │ 00010d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00010d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010d90: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ @@ -8240,21 +8240,21 @@ │ │ │ │ 000202f0: 6c4c 6162 656c 2863 2920 2020 2020 2020 lLabel(c) │ │ │ │ 00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020310: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -00020370: 2020 2020 3220 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00020360: 2020 7c0a 7c20 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ +00020370: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ 00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 7c0a 7c6f 3133 203d 207b 6120 622c |.|o13 = {a b, │ │ │ │ -000203c0: 2062 2a63 202c 2062 202c 2061 2a63 7d20 b*c , b , a*c} │ │ │ │ +000203b0: 2020 7c0a 7c6f 3133 203d 207b 622a 6320 |.|o13 = {b*c │ │ │ │ +000203c0: 2c20 6220 2c20 612a 632c 2061 2062 7d20 , b , a*c, a b} │ │ │ │ 000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020400: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8275,22 +8275,22 @@ │ │ │ │ 00020520: 6c4c 6162 656c 2863 2920 2020 2020 2020 lLabel(c) │ │ │ │ 00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020590: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -000205a0: 2032 2020 2032 2032 2020 2032 2032 2020 2 2 2 2 2 │ │ │ │ -000205b0: 2020 2020 2032 2020 2020 2032 2020 2020 2 2 │ │ │ │ +00020590: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +000205a0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ +000205b0: 2020 3220 2020 3220 2020 3220 3220 2020 2 2 2 2 │ │ │ │ 000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000205d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205e0: 2020 7c0a 7c6f 3134 203d 207b 6120 622a |.|o14 = {a b* │ │ │ │ -000205f0: 6320 2c20 6120 6220 2c20 6220 6320 2c20 c , a b , b c , │ │ │ │ -00020600: 612a 622a 6320 2c20 612a 6220 637d 2020 a*b*c , a*b c} │ │ │ │ +000205e0: 2020 7c0a 7c6f 3134 203d 207b 6220 6320 |.|o14 = {b c │ │ │ │ +000205f0: 2c20 612a 622a 6320 2c20 612a 6220 632c , a*b*c , a*b c, │ │ │ │ +00020600: 2061 2062 2a63 202c 2061 2062 207d 2020 a b*c , a b } │ │ │ │ 00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020630: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/ChainComplexExtras.info.gz │ │ │ ├── ChainComplexExtras.info │ │ │ │ @@ -4819,17 +4819,17 @@ │ │ │ │ 00012d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00012d50: 3133 203a 2074 696d 6520 6d20 3d20 6d69 13 : time m = mi │ │ │ │ 00012d60: 6e69 6d69 7a65 2028 455b 315d 293b 2020 nimize (E[1]); │ │ │ │ 00012d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012d80: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00012d90: 302e 3239 3737 3232 7320 2863 7075 293b 0.297722s (cpu); │ │ │ │ -00012da0: 2030 2e32 3339 3538 3473 2028 7468 7265 0.239584s (thre │ │ │ │ -00012db0: 6164 293b 2030 7320 2867 6329 7c0a 2b2d ad); 0s (gc)|.+- │ │ │ │ +00012d90: 302e 3333 3839 7320 2863 7075 293b 2030 0.3389s (cpu); 0 │ │ │ │ +00012da0: 2e32 3633 3935 3973 2028 7468 7265 6164 .263959s (thread │ │ │ │ +00012db0: 293b 2030 7320 2867 6329 2020 7c0a 2b2d ); 0s (gc) |.+- │ │ │ │ 00012dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012df0: 2d2d 2d2d 2b0a 7c69 3134 203a 2069 7351 ----+.|i14 : isQ │ │ │ │ 00012e00: 7561 7369 4973 6f6d 6f72 7068 6973 6d20 uasiIsomorphism │ │ │ │ 00012e10: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00012e20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ @@ -6579,33 +6579,33 @@ │ │ │ │ 00019b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019b40: 3820 3a20 7469 6d65 206d 203d 2072 6573 8 : time m = res │ │ │ │ 00019b50: 6f6c 7574 696f 6e4f 6643 6861 696e 436f olutionOfChainCo │ │ │ │ 00019b60: 6d70 6c65 7820 433b 2020 2020 2020 2020 mplex C; │ │ │ │ 00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019b90: 2d2d 2075 7365 6420 302e 3039 3638 3333 -- used 0.096833 │ │ │ │ -00019ba0: 3673 2028 6370 7529 3b20 302e 3039 3638 6s (cpu); 0.0968 │ │ │ │ -00019bb0: 3332 3773 2028 7468 7265 6164 293b 2030 327s (thread); 0 │ │ │ │ -00019bc0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00019b90: 2d2d 2075 7365 6420 302e 3130 3335 3738 -- used 0.103578 │ │ │ │ +00019ba0: 7320 2863 7075 293b 2030 2e31 3033 3537 s (cpu); 0.10357 │ │ │ │ +00019bb0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00019bc0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00019bd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019c30: 3920 3a20 7469 6d65 206e 203d 2063 6172 9 : time n = car │ │ │ │ 00019c40: 7461 6e45 696c 656e 6265 7267 5265 736f tanEilenbergReso │ │ │ │ 00019c50: 6c75 7469 6f6e 2043 3b20 2020 2020 2020 lution C; │ │ │ │ 00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019c80: 2d2d 2075 7365 6420 302e 3232 3630 3032 -- used 0.226002 │ │ │ │ -00019c90: 7320 2863 7075 293b 2030 2e31 3536 3739 s (cpu); 0.15679 │ │ │ │ -00019ca0: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -00019cb0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00019c80: 2d2d 2075 7365 6420 302e 3234 3038 3773 -- used 0.24087s │ │ │ │ +00019c90: 2028 6370 7529 3b20 302e 3136 3438 3734 (cpu); 0.164874 │ │ │ │ +00019ca0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00019cb0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 00019cc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019d20: 3130 203a 2062 6574 7469 2073 6f75 7263 10 : betti sourc │ │ ├── ./usr/share/info/CharacteristicClasses.info.gz │ │ │ ├── CharacteristicClasses.info │ │ │ │ @@ -1215,16 +1215,16 @@ │ │ │ │ 00004be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 00004c00: 2074 696d 6520 4353 4d20 5520 2020 2020 time CSM U │ │ │ │ 00004c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00004c50: 7573 6564 2030 2e32 3436 3137 3473 2028 used 0.246174s ( │ │ │ │ -00004c60: 6370 7529 3b20 302e 3136 3436 3234 7320 cpu); 0.164624s │ │ │ │ +00004c50: 7573 6564 2030 2e32 3434 3139 3273 2028 used 0.244192s ( │ │ │ │ +00004c60: 6370 7529 3b20 302e 3136 3330 3534 7320 cpu); 0.163054s │ │ │ │ 00004c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 00004c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004c90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1300,16 +1300,16 @@ │ │ │ │ 00005130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005140: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ 00005150: 2074 696d 6520 4353 4d28 552c 4368 6563 time CSM(U,Chec │ │ │ │ 00005160: 6b53 6d6f 6f74 683d 3e66 616c 7365 2920 kSmooth=>false) │ │ │ │ 00005170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005190: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000051a0: 7573 6564 2030 2e33 3734 3331 3273 2028 used 0.374312s ( │ │ │ │ -000051b0: 6370 7529 3b20 302e 3239 3531 3235 7320 cpu); 0.295125s │ │ │ │ +000051a0: 7573 6564 2030 2e34 3133 3030 3773 2028 used 0.413007s ( │ │ │ │ +000051b0: 6370 7529 3b20 302e 3331 3330 3632 7320 cpu); 0.313062s │ │ │ │ 000051c0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 000051d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000051e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000051f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4341,17 +4341,17 @@ │ │ │ │ 00010f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ 00010f70: 2074 696d 6520 4353 4d28 492c 436f 6d70 time CSM(I,Comp │ │ │ │ 00010f80: 4d65 7468 6f64 3d3e 5072 6f6a 6563 7469 Method=>Projecti │ │ │ │ 00010f90: 7665 4465 6772 6565 2920 2020 2020 2020 veDegree) │ │ │ │ 00010fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00010fb0: 2d2d 2075 7365 6420 302e 3632 3933 3032 -- used 0.629302 │ │ │ │ -00010fc0: 7320 2863 7075 293b 2030 2e33 3031 3631 s (cpu); 0.30161 │ │ │ │ -00010fd0: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ +00010fb0: 2d2d 2075 7365 6420 302e 3836 3637 3033 -- used 0.866703 │ │ │ │ +00010fc0: 7320 2863 7075 293b 2030 2e33 3736 3936 s (cpu); 0.37696 │ │ │ │ +00010fd0: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 00010fe0: 2867 6329 2020 2020 2020 2020 2020 207c (gc) | │ │ │ │ 00010ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011030: 2020 7c0a 7c20 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ 00011040: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ @@ -4400,17 +4400,17 @@ │ │ │ │ 000112f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011310: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00011320: 4353 4d28 492c 436f 6d70 4d65 7468 6f64 CSM(I,CompMethod │ │ │ │ 00011330: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011350: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011360: 6420 322e 3133 3132 3773 2028 6370 7529 d 2.13127s (cpu) │ │ │ │ -00011370: 3b20 312e 3832 3435 3573 2028 7468 7265 ; 1.82455s (thre │ │ │ │ -00011380: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00011360: 6420 322e 3432 3232 7320 2863 7075 293b d 2.4222s (cpu); │ │ │ │ +00011370: 2032 2e31 3434 3532 7320 2874 6872 6561 2.14452s (threa │ │ │ │ +00011380: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00011390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000113a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000113e0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ 000113f0: 2020 2020 3320 2020 2020 2032 2020 2020 3 2 │ │ │ │ @@ -4488,16 +4488,16 @@ │ │ │ │ 00011870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011890: 2d2d 2b0a 7c69 3130 203a 2074 696d 6520 --+.|i10 : time │ │ │ │ 000118a0: 4353 4d28 4b2c 436f 6d70 4d65 7468 6f64 CSM(K,CompMethod │ │ │ │ 000118b0: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ 000118c0: 6565 2920 2020 2020 2020 2020 2020 2020 ee) │ │ │ │ 000118d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000118e0: 2030 2e32 3739 3130 3673 2028 6370 7529 0.279106s (cpu) │ │ │ │ -000118f0: 3b20 302e 3139 3532 3732 7320 2874 6872 ; 0.195272s (thr │ │ │ │ +000118e0: 2030 2e33 3432 3030 3973 2028 6370 7529 0.342009s (cpu) │ │ │ │ +000118f0: 3b20 302e 3235 3135 3235 7320 2874 6872 ; 0.251525s (thr │ │ │ │ 00011900: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00011910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00011920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00011960: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ @@ -4546,18 +4546,18 @@ │ │ │ │ 00011c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00011c40: 3131 203a 2074 696d 6520 4353 4d28 4b2c 11 : time CSM(K, │ │ │ │ 00011c50: 436f 6d70 4d65 7468 6f64 3d3e 506e 5265 CompMethod=>PnRe │ │ │ │ 00011c60: 7369 6475 616c 2920 2020 2020 2020 2020 sidual) │ │ │ │ 00011c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011c80: 0a7c 202d 2d20 7573 6564 2030 2e30 3832 .| -- used 0.082 │ │ │ │ -00011c90: 3531 3433 7320 2863 7075 293b 2030 2e30 5143s (cpu); 0.0 │ │ │ │ -00011ca0: 3832 3532 3039 7320 2874 6872 6561 6429 825209s (thread) │ │ │ │ -00011cb0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00011c80: 0a7c 202d 2d20 7573 6564 2030 2e31 3032 .| -- used 0.102 │ │ │ │ +00011c90: 3134 3873 2028 6370 7529 3b20 302e 3130 148s (cpu); 0.10 │ │ │ │ +00011ca0: 3231 3773 2028 7468 7265 6164 293b 2030 217s (thread); 0 │ │ │ │ +00011cb0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00011cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011d10: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ 00011d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5446,6793 +5446,6788 @@ │ │ │ │ 00015450: 2072 6574 7572 6e65 6420 696e 2074 6865 returned in the │ │ │ │ 00015460: 2073 616d 6520 7269 6e67 2e20 5765 206d same ring. We m │ │ │ │ 00015470: 6179 2061 6c73 6f20 7265 7475 726e 2061 ay also return a │ │ │ │ 00015480: 0a4d 7574 6162 6c65 4861 7368 5461 626c .MutableHashTabl │ │ │ │ 00015490: 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e...+----------- │ │ │ │ 000154a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000154c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -000154d0: 203a 2052 3d4d 756c 7469 5072 6f6a 436f : R=MultiProjCo │ │ │ │ -000154e0: 6f72 6452 696e 6728 7b32 2c32 7d29 2020 ordRing({2,2}) │ │ │ │ +000154c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +000154d0: 3a20 523d 4d75 6c74 6950 726f 6a43 6f6f : R=MultiProjCoo │ │ │ │ +000154e0: 7264 5269 6e67 287b 322c 327d 2920 2020 rdRing({2,2}) │ │ │ │ 000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015500: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015530: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -00015540: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +00015530: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +00015540: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00015550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -000155b0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -000155c0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -000155d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000155a0: 2020 2020 207c 0a7c 6f31 3120 3a20 506f |.|o11 : Po │ │ │ │ +000155b0: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +000155c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -00015620: 203a 2041 3d43 686f 7752 696e 6728 5229 : A=ChowRing(R) │ │ │ │ +00015610: 2d2d 2d2b 0a7c 6931 3220 3a20 413d 4368 ---+.|i12 : A=Ch │ │ │ │ +00015620: 6f77 5269 6e67 2852 2920 2020 2020 2020 owRing(R) │ │ │ │ 00015630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015640: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015680: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00015690: 203d 2041 2020 2020 2020 2020 2020 2020 = A │ │ │ │ +00015680: 207c 0a7c 6f31 3220 3d20 4120 2020 2020 |.|o12 = A │ │ │ │ +00015690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000156b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000156c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00015700: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ +000156e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000156f0: 0a7c 6f31 3220 3a20 5175 6f74 6965 6e74 .|o12 : Quotient │ │ │ │ +00015700: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00015710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015730: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00015720: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00015730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015760: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -00015770: 203a 2072 3d67 656e 7320 5220 2020 2020 : r=gens R │ │ │ │ +00015750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00015760: 6931 3320 3a20 723d 6765 6e73 2052 2020 i13 : r=gens R │ │ │ │ +00015770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000157a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000157b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -000157e0: 203d 207b 7820 2c20 7820 2c20 7820 2c20 = {x , x , x , │ │ │ │ -000157f0: 7820 2c20 7820 2c20 7820 7d20 2020 2020 x , x , x } │ │ │ │ -00015800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015810: 2020 7c0a 7c20 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ -00015820: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -00015830: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00015840: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000157c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000157d0: 3320 3d20 7b78 202c 2078 202c 2078 202c 3 = {x , x , x , │ │ │ │ +000157e0: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ +000157f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015800: 2020 7c0a 7c20 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015810: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +00015820: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00015830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015880: 2020 7c0a 7c6f 3133 203a 204c 6973 7420 |.|o13 : List │ │ │ │ +00015870: 7c0a 7c6f 3133 203a 204c 6973 7420 2020 |.|o13 : List │ │ │ │ +00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000158a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000158b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000158c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158f0: 2d2d 2b0a 7c69 3134 203a 204b 3d69 6465 --+.|i14 : K=ide │ │ │ │ -00015900: 616c 2872 5f30 5e32 2a72 5f33 2d72 5f34 al(r_0^2*r_3-r_4 │ │ │ │ -00015910: 2a72 5f31 2a72 5f32 2c72 5f32 5e32 2a72 *r_1*r_2,r_2^2*r │ │ │ │ -00015920: 5f35 2920 2020 2020 2020 7c0a 7c20 2020 _5) |.| │ │ │ │ +000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000158e0: 7c69 3134 203a 204b 3d69 6465 616c 2872 |i14 : K=ideal(r │ │ │ │ +000158f0: 5f30 5e32 2a72 5f33 2d72 5f34 2a72 5f31 _0^2*r_3-r_4*r_1 │ │ │ │ +00015900: 2a72 5f32 2c72 5f32 5e32 2a72 5f35 2920 *r_2,r_2^2*r_5) │ │ │ │ +00015910: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015970: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015980: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015990: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -000159a0: 203d 2069 6465 616c 2028 7820 7820 202d = ideal (x x - │ │ │ │ -000159b0: 2078 2078 2078 202c 2078 2078 2029 2020 x x x , x x ) │ │ │ │ -000159c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000159e0: 2020 2030 2033 2020 2020 3120 3220 3420 0 3 1 2 4 │ │ │ │ -000159f0: 2020 3220 3520 2020 2020 2020 2020 2020 2 5 │ │ │ │ -00015a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00015950: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00015960: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015980: 2020 207c 0a7c 6f31 3420 3d20 6964 6561 |.|o14 = idea │ │ │ │ +00015990: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ +000159a0: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ +000159b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000159c0: 2020 2020 2020 2020 2020 2030 2033 2020 0 3 │ │ │ │ +000159d0: 2020 3120 3220 3420 2020 3220 3520 2020 1 2 4 2 5 │ │ │ │ +000159e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000159f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a40: 2020 7c0a 7c6f 3134 203a 2049 6465 616c |.|o14 : Ideal │ │ │ │ -00015a50: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00015a20: 2020 2020 2020 2020 7c0a 7c6f 3134 203a |.|o14 : │ │ │ │ +00015a30: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ +00015a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ab0: 2d2d 2b0a 7c69 3135 203a 2074 696d 6520 --+.|i15 : time │ │ │ │ -00015ac0: 6373 6d4b 3d43 534d 2841 2c4b 2920 2020 csmK=CSM(A,K) │ │ │ │ -00015ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ae0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00015af0: 2075 7365 6420 302e 3938 3435 3736 7320 used 0.984576s │ │ │ │ -00015b00: 2863 7075 293b 2030 2e34 3633 3332 3673 (cpu); 0.463326s │ │ │ │ -00015b10: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00015b20: 6329 7c0a 7c20 2020 2020 2020 2020 2020 c)|.| │ │ │ │ -00015b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00015b60: 2020 2020 2032 2032 2020 2020 2032 2020 2 2 2 │ │ │ │ -00015b70: 2020 2020 2020 2032 2020 2020 3220 2020 2 2 │ │ │ │ -00015b80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00015b90: 2020 7c0a 7c6f 3135 203d 2037 6820 6820 |.|o15 = 7h h │ │ │ │ -00015ba0: 202b 2035 6820 6820 202b 2034 6820 6820 + 5h h + 4h h │ │ │ │ -00015bb0: 202b 2068 2020 2b20 3368 2068 2020 2b20 + h + 3h h + │ │ │ │ -00015bc0: 6820 2020 2020 2020 2020 7c0a 7c20 2020 h |.| │ │ │ │ -00015bd0: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ -00015be0: 2020 2020 2031 2032 2020 2020 3120 2020 1 2 1 │ │ │ │ -00015bf0: 2020 3120 3220 2020 2032 2020 2020 2020 1 2 2 │ │ │ │ -00015c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c30: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -00015c40: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ -00015c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 ----------+.|i16 │ │ │ │ -00015cb0: 203a 2063 736d 4b48 6173 683d 2043 534d : csmKHash= CSM │ │ │ │ -00015cc0: 2841 2c4b 2c4f 7574 7075 743d 3e48 6173 (A,K,Output=>Has │ │ │ │ -00015cd0: 6846 6f72 6d29 2020 2020 2020 2020 2020 hForm) │ │ │ │ -00015ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d10: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ -00015d20: 203d 204d 7574 6162 6c65 4861 7368 5461 = MutableHashTa │ │ │ │ -00015d30: 626c 657b 2e2e 2e34 2e2e 2e7d 2020 2020 ble{...4...} │ │ │ │ +00015a90: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2074 ------+.|i15 : t │ │ │ │ +00015aa0: 696d 6520 6373 6d4b 3d43 534d 2841 2c4b ime csmK=CSM(A,K │ │ │ │ +00015ab0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00015ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015ad0: 202d 2d20 7573 6564 2031 2e32 3335 3534 -- used 1.23554 │ │ │ │ +00015ae0: 7320 2863 7075 293b 2030 2e34 3134 3835 s (cpu); 0.41485 │ │ │ │ +00015af0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00015b00: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ +00015b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00015b40: 2020 2020 2020 3220 3220 2020 2020 3220 2 2 2 │ │ │ │ +00015b50: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +00015b60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00015b70: 2020 7c0a 7c6f 3135 203d 2037 6820 6820 |.|o15 = 7h h │ │ │ │ +00015b80: 202b 2035 6820 6820 202b 2034 6820 6820 + 5h h + 4h h │ │ │ │ +00015b90: 202b 2068 2020 2b20 3368 2068 2020 2b20 + h + 3h h + │ │ │ │ +00015ba0: 6820 2020 2020 2020 207c 0a7c 2020 2020 h |.| │ │ │ │ +00015bb0: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +00015bc0: 2020 2020 3120 3220 2020 2031 2020 2020 1 2 1 │ │ │ │ +00015bd0: 2031 2032 2020 2020 3220 2020 2020 2020 1 2 2 │ │ │ │ +00015be0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c10: 2020 2020 2020 207c 0a7c 6f31 3520 3a20 |.|o15 : │ │ │ │ +00015c20: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015c50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00015c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015c80: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 6373 -----+.|i16 : cs │ │ │ │ +00015c90: 6d4b 4861 7368 3d20 4353 4d28 412c 4b2c mKHash= CSM(A,K, │ │ │ │ +00015ca0: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ +00015cb0: 2920 2020 2020 2020 2020 2020 7c0a 7c20 ) |.| │ │ │ │ +00015cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015cf0: 2020 207c 0a7c 6f31 3620 3d20 4d75 7461 |.|o16 = Muta │ │ │ │ +00015d00: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ +00015d10: 342e 2e2e 7d20 2020 2020 2020 2020 2020 4...} │ │ │ │ +00015d20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d80: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ -00015d90: 203a 204d 7574 6162 6c65 4861 7368 5461 : MutableHashTa │ │ │ │ -00015da0: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ -00015db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015dc0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 ----------+.|i17 │ │ │ │ -00015e00: 203a 2063 736d 4b3d 3d63 736d 4b48 6173 : csmK==csmKHas │ │ │ │ -00015e10: 6823 2243 534d 2220 2020 2020 2020 2020 h#"CSM" │ │ │ │ +00015d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d60: 207c 0a7c 6f31 3620 3a20 4d75 7461 626c |.|o16 : Mutabl │ │ │ │ +00015d70: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ +00015d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00015da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00015dd0: 0a7c 6931 3720 3a20 6373 6d4b 3d3d 6373 .|i17 : csmK==cs │ │ │ │ +00015de0: 6d4b 4861 7368 2322 4353 4d22 2020 2020 mKHash#"CSM" │ │ │ │ +00015df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00015e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015e40: 6f31 3720 3d20 7472 7565 2020 2020 2020 o17 = true │ │ │ │ 00015e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e60: 2020 2020 2020 2020 2020 7c0a 7c6f 3137 |.|o17 │ │ │ │ -00015e70: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ -00015e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ea0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ -00015ee0: 203a 2043 534d 2841 2c69 6465 616c 284b : CSM(A,ideal(K │ │ │ │ -00015ef0: 5f30 2929 3d3d 6373 6d4b 4861 7368 237b _0))==csmKHash#{ │ │ │ │ -00015f00: 307d 2020 2020 2020 2020 2020 2020 2020 0} │ │ │ │ -00015f10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00015e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00015eb0: 3820 3a20 4353 4d28 412c 6964 6561 6c28 8 : CSM(A,ideal( │ │ │ │ +00015ec0: 4b5f 3029 293d 3d63 736d 4b48 6173 6823 K_0))==csmKHash# │ │ │ │ +00015ed0: 7b30 7d20 2020 2020 2020 2020 2020 2020 {0} │ │ │ │ +00015ee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f10: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +00015f20: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 00015f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f40: 2020 2020 2020 2020 2020 7c0a 7c6f 3138 |.|o18 │ │ │ │ -00015f50: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ -00015f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 7570 ----------+..Sup │ │ │ │ -00015fc0: 706f 7365 2077 6520 6861 7665 2061 6c72 pose we have alr │ │ │ │ -00015fd0: 6561 6479 2063 6f6d 7075 7465 6420 736f eady computed so │ │ │ │ -00015fe0: 6d65 206f 6620 4353 4d20 636c 6173 7365 me of CSM classe │ │ │ │ -00015ff0: 7320 6f66 2068 7970 6572 7375 7266 6163 s of hypersurfac │ │ │ │ -00016000: 6573 2069 6e76 6f6c 7665 640a 696e 2074 es involved.in t │ │ │ │ -00016010: 6865 2069 6e63 6c75 7369 6f6e 2d65 7863 he inclusion-exc │ │ │ │ -00016020: 6c75 7369 6f6e 2070 726f 6365 6475 7265 lusion procedure │ │ │ │ -00016030: 2c20 7468 656e 2077 6520 6d61 7920 696e , then we may in │ │ │ │ -00016040: 7075 7420 7468 6573 6520 746f 2062 6520 put these to be │ │ │ │ -00016050: 7573 6564 2062 7920 7468 650a 4353 4d20 used by the.CSM │ │ │ │ -00016060: 6675 6e63 7469 6f6e 2e20 496e 2074 6865 function. In the │ │ │ │ -00016070: 2065 7861 6d70 6c65 2062 656c 6f77 2077 example below w │ │ │ │ -00016080: 6520 696e 7075 7420 7468 6520 4353 4d20 e input the CSM │ │ │ │ -00016090: 636c 6173 7320 6f66 2056 284b 5f30 2920 class of V(K_0) │ │ │ │ -000160a0: 2874 6861 7420 6973 206f 660a 7468 6520 (that is of.the │ │ │ │ -000160b0: 6879 7065 7273 7572 6661 6365 2064 6566 hypersurface def │ │ │ │ -000160c0: 696e 6564 2062 7920 7468 6520 6669 7273 ined by the firs │ │ │ │ -000160d0: 7420 706f 6c79 6e6f 6d69 616c 2067 656e t polynomial gen │ │ │ │ -000160e0: 6572 6174 696e 6720 4b29 2061 6e64 2074 erating K) and t │ │ │ │ -000160f0: 6865 2043 534d 0a63 6c61 7373 206f 6620 he CSM.class of │ │ │ │ -00016100: 7468 6520 6879 7065 7273 7572 6661 6365 the hypersurface │ │ │ │ -00016110: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ -00016120: 7072 6f64 7563 7420 6f66 2074 6865 2067 product of the g │ │ │ │ -00016130: 656e 6572 6174 6f72 7320 6f66 204b 2e0a enerators of K.. │ │ │ │ -00016140: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00016150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00016180: 6931 3920 3a20 6d3d 6e65 7720 4d75 7461 i19 : m=new Muta │ │ │ │ -00016190: 626c 6548 6173 6854 6162 6c65 3b20 2020 bleHashTable; │ │ │ │ -000161a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000161b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000161c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ -00016200: 3a20 6d23 7b30 7d3d 6373 6d4b 4861 7368 : m#{0}=csmKHash │ │ │ │ -00016210: 237b 307d 2020 2020 2020 2020 2020 2020 #{0} │ │ │ │ +00015f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00015f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015f80: 2d2d 2d2d 2d2d 2d2b 0a0a 5375 7070 6f73 -------+..Suppos │ │ │ │ +00015f90: 6520 7765 2068 6176 6520 616c 7265 6164 e we have alread │ │ │ │ +00015fa0: 7920 636f 6d70 7574 6564 2073 6f6d 6520 y computed some │ │ │ │ +00015fb0: 6f66 2043 534d 2063 6c61 7373 6573 206f of CSM classes o │ │ │ │ +00015fc0: 6620 6879 7065 7273 7572 6661 6365 7320 f hypersurfaces │ │ │ │ +00015fd0: 696e 766f 6c76 6564 0a69 6e20 7468 6520 involved.in the │ │ │ │ +00015fe0: 696e 636c 7573 696f 6e2d 6578 636c 7573 inclusion-exclus │ │ │ │ +00015ff0: 696f 6e20 7072 6f63 6564 7572 652c 2074 ion procedure, t │ │ │ │ +00016000: 6865 6e20 7765 206d 6179 2069 6e70 7574 hen we may input │ │ │ │ +00016010: 2074 6865 7365 2074 6f20 6265 2075 7365 these to be use │ │ │ │ +00016020: 6420 6279 2074 6865 0a43 534d 2066 756e d by the.CSM fun │ │ │ │ +00016030: 6374 696f 6e2e 2049 6e20 7468 6520 6578 ction. In the ex │ │ │ │ +00016040: 616d 706c 6520 6265 6c6f 7720 7765 2069 ample below we i │ │ │ │ +00016050: 6e70 7574 2074 6865 2043 534d 2063 6c61 nput the CSM cla │ │ │ │ +00016060: 7373 206f 6620 5628 4b5f 3029 2028 7468 ss of V(K_0) (th │ │ │ │ +00016070: 6174 2069 7320 6f66 0a74 6865 2068 7970 at is of.the hyp │ │ │ │ +00016080: 6572 7375 7266 6163 6520 6465 6669 6e65 ersurface define │ │ │ │ +00016090: 6420 6279 2074 6865 2066 6972 7374 2070 d by the first p │ │ │ │ +000160a0: 6f6c 796e 6f6d 6961 6c20 6765 6e65 7261 olynomial genera │ │ │ │ +000160b0: 7469 6e67 204b 2920 616e 6420 7468 6520 ting K) and the │ │ │ │ +000160c0: 4353 4d0a 636c 6173 7320 6f66 2074 6865 CSM.class of the │ │ │ │ +000160d0: 2068 7970 6572 7375 7266 6163 6520 6465 hypersurface de │ │ │ │ +000160e0: 6669 6e65 6420 6279 2074 6865 2070 726f fined by the pro │ │ │ │ +000160f0: 6475 6374 206f 6620 7468 6520 6765 6e65 duct of the gene │ │ │ │ +00016100: 7261 746f 7273 206f 6620 4b2e 0a0a 2b2d rators of K...+- │ │ │ │ +00016110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016140: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 ----------+.|i19 │ │ │ │ +00016150: 203a 206d 3d6e 6577 204d 7574 6162 6c65 : m=new Mutable │ │ │ │ +00016160: 4861 7368 5461 626c 653b 2020 2020 2020 HashTable; │ │ │ │ +00016170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016180: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161c0: 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a 206d ------+.|i20 : m │ │ │ │ +000161d0: 237b 307d 3d63 736d 4b48 6173 6823 7b30 #{0}=csmKHash#{0 │ │ │ │ +000161e0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000161f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016200: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016280: 3220 3220 2020 2020 3220 2020 2020 2020 2 2 2 │ │ │ │ -00016290: 2020 3220 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -000162a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000162b0: 2020 207c 0a7c 6f32 3020 3d20 3868 2068 |.|o20 = 8h h │ │ │ │ -000162c0: 2020 2b20 3768 2068 2020 2b20 3668 2068 + 7h h + 6h h │ │ │ │ -000162d0: 2020 2b20 3268 2020 2b20 3568 2068 2020 + 2h + 5h h │ │ │ │ -000162e0: 2b20 3268 2020 2b20 3268 2020 2b20 6820 + 2h + 2h + h │ │ │ │ -000162f0: 207c 0a7c 2020 2020 2020 2020 3120 3220 |.| 1 2 │ │ │ │ -00016300: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00016310: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00016320: 2020 3220 2020 2020 3120 2020 2032 207c 2 1 2 | │ │ │ │ -00016330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016240: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +00016250: 2020 2020 2032 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016260: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00016270: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00016280: 7c0a 7c6f 3230 203d 2038 6820 6820 202b |.|o20 = 8h h + │ │ │ │ +00016290: 2037 6820 6820 202b 2036 6820 6820 202b 7h h + 6h h + │ │ │ │ +000162a0: 2032 6820 202b 2035 6820 6820 202b 2032 2h + 5h h + 2 │ │ │ │ +000162b0: 6820 202b 2032 6820 202b 2068 2020 7c0a h + 2h + h |. │ │ │ │ +000162c0: 7c20 2020 2020 2020 2031 2032 2020 2020 | 1 2 │ │ │ │ +000162d0: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +000162e0: 2031 2020 2020 2031 2032 2020 2020 2032 1 1 2 2 │ │ │ │ +000162f0: 2020 2020 2031 2020 2020 3220 7c0a 7c20 1 2 |.| │ │ │ │ +00016300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016330: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ +00016340: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ 00016350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016370: 6f32 3020 3a20 4120 2020 2020 2020 2020 o20 : A │ │ │ │ -00016380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000163a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000163b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ -000163f0: 3a20 6d23 7b30 2c31 7d3d 6373 6d4b 4861 : m#{0,1}=csmKHa │ │ │ │ -00016400: 7368 237b 302c 317d 2020 2020 2020 2020 sh#{0,1} │ │ │ │ +00016360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016370: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000163a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000163b0: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 206d ------+.|i21 : m │ │ │ │ +000163c0: 237b 302c 317d 3d63 736d 4b48 6173 6823 #{0,1}=csmKHash# │ │ │ │ +000163d0: 7b30 2c31 7d20 2020 2020 2020 2020 2020 {0,1} │ │ │ │ +000163e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000163f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016460: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016470: 3220 3220 2020 2020 3220 2020 2020 2020 2 2 2 │ │ │ │ -00016480: 2020 3220 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -00016490: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000164a0: 2020 207c 0a7c 6f32 3120 3d20 3968 2068 |.|o21 = 9h h │ │ │ │ -000164b0: 2020 2b20 3968 2068 2020 2b20 3968 2068 + 9h h + 9h h │ │ │ │ -000164c0: 2020 2b20 3368 2020 2b20 3768 2068 2020 + 3h + 7h h │ │ │ │ -000164d0: 2b20 3368 2020 2b20 3368 2020 2b20 3268 + 3h + 3h + 2h │ │ │ │ -000164e0: 207c 0a7c 2020 2020 2020 2020 3120 3220 |.| 1 2 │ │ │ │ -000164f0: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00016500: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00016510: 2020 3220 2020 2020 3120 2020 2020 327c 2 1 2| │ │ │ │ -00016520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016430: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +00016440: 2020 2020 2032 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016450: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00016460: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00016470: 7c0a 7c6f 3231 203d 2039 6820 6820 202b |.|o21 = 9h h + │ │ │ │ +00016480: 2039 6820 6820 202b 2039 6820 6820 202b 9h h + 9h h + │ │ │ │ +00016490: 2033 6820 202b 2037 6820 6820 202b 2033 3h + 7h h + 3 │ │ │ │ +000164a0: 6820 202b 2033 6820 202b 2032 6820 7c0a h + 3h + 2h |. │ │ │ │ +000164b0: 7c20 2020 2020 2020 2031 2032 2020 2020 | 1 2 │ │ │ │ +000164c0: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +000164d0: 2031 2020 2020 2031 2032 2020 2020 2032 1 1 2 2 │ │ │ │ +000164e0: 2020 2020 2031 2020 2020 2032 7c0a 7c20 1 2|.| │ │ │ │ +000164f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016520: 2020 2020 2020 2020 2020 7c0a 7c6f 3231 |.|o21 │ │ │ │ +00016530: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ 00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016560: 6f32 3120 3a20 4120 2020 2020 2020 2020 o21 : A │ │ │ │ -00016570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016590: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000165a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 ---------+.|i22 │ │ │ │ -000165e0: 3a20 7469 6d65 2043 534d 2841 2c4b 2c6d : time CSM(A,K,m │ │ │ │ -000165f0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00016600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016610: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00016620: 6564 2030 2e31 3131 3430 3373 2028 6370 ed 0.111403s (cp │ │ │ │ -00016630: 7529 3b20 302e 3035 3830 3932 3573 2028 u); 0.0580925s ( │ │ │ │ -00016640: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -00016650: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016690: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -000166a0: 3220 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ -000166b0: 3220 2020 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000166c0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000166d0: 207c 0a7c 6f32 3220 3d20 3768 2068 2020 |.|o22 = 7h h │ │ │ │ -000166e0: 2b20 3568 2068 2020 2b20 3468 2068 2020 + 5h h + 4h h │ │ │ │ -000166f0: 2b20 6820 202b 2033 6820 6820 202b 2068 + h + 3h h + h │ │ │ │ -00016700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016710: 0a7c 2020 2020 2020 2020 3120 3220 2020 .| 1 2 │ │ │ │ -00016720: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ -00016730: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ -00016740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016560: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000165a0: 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a 2074 ------+.|i22 : t │ │ │ │ +000165b0: 696d 6520 4353 4d28 412c 4b2c 6d29 2020 ime CSM(A,K,m) │ │ │ │ +000165c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165e0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000165f0: 302e 3130 3738 3037 7320 2863 7075 293b 0.107807s (cpu); │ │ │ │ +00016600: 2030 2e30 3733 3435 3032 7320 2874 6872 0.0734502s (thr │ │ │ │ +00016610: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00016620: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016660: 7c0a 7c20 2020 2020 2020 2032 2032 2020 |.| 2 2 │ │ │ │ +00016670: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00016680: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000166a0: 7c6f 3232 203d 2037 6820 6820 202b 2035 |o22 = 7h h + 5 │ │ │ │ +000166b0: 6820 6820 202b 2034 6820 6820 202b 2068 h h + 4h h + h │ │ │ │ +000166c0: 2020 2b20 3368 2068 2020 2b20 6820 2020 + 3h h + h │ │ │ │ +000166d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000166e0: 2020 2020 2020 2031 2032 2020 2020 2031 1 2 1 │ │ │ │ +000166f0: 2032 2020 2020 2031 2032 2020 2020 3120 2 1 2 1 │ │ │ │ +00016700: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +00016710: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00016720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016750: 2020 2020 2020 2020 7c0a 7c6f 3232 203a |.|o22 : │ │ │ │ +00016760: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00016770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016780: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00016790: 3220 3a20 4120 2020 2020 2020 2020 2020 2 : A │ │ │ │ -000167a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000167d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016800: 2d2d 2d2d 2d2d 2d2b 0a0a 496e 2074 6865 -------+..In the │ │ │ │ -00016810: 2063 6173 6520 7768 6572 6520 7468 6520 case where the │ │ │ │ -00016820: 616d 6269 656e 7420 7370 6163 6520 6973 ambient space is │ │ │ │ -00016830: 2061 2074 6f72 6963 2076 6172 6965 7479 a toric variety │ │ │ │ -00016840: 2077 6869 6368 2069 7320 6e6f 7420 6120 which is not a │ │ │ │ -00016850: 7072 6f64 7563 740a 6f66 2070 726f 6a65 product.of proje │ │ │ │ -00016860: 6374 6976 6520 7370 6163 6573 2077 6520 ctive spaces we │ │ │ │ -00016870: 6d75 7374 206c 6f61 6420 7468 6520 4e6f must load the No │ │ │ │ -00016880: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -00016890: 6573 2070 6163 6b61 6765 2061 6e64 206d es package and m │ │ │ │ -000168a0: 7573 740a 616c 736f 2069 6e70 7574 2074 ust.also input t │ │ │ │ -000168b0: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ -000168c0: 2e20 4966 2074 6865 2074 6f72 6963 2076 . If the toric v │ │ │ │ -000168d0: 6172 6965 7479 2069 7320 6120 7072 6f64 ariety is a prod │ │ │ │ -000168e0: 7563 7420 6f66 2070 726f 6a65 6374 6976 uct of projectiv │ │ │ │ -000168f0: 650a 7370 6163 6520 6974 2069 7320 7265 e.space it is re │ │ │ │ -00016900: 636f 6d6d 656e 6420 746f 2075 7365 2074 commend to use t │ │ │ │ -00016910: 6865 2066 6f72 6d20 6162 6f76 6520 7261 he form above ra │ │ │ │ -00016920: 7468 6572 2074 6861 6e20 696e 7075 7474 ther than inputt │ │ │ │ -00016930: 696e 6720 7468 6520 746f 7269 630a 7661 ing the toric.va │ │ │ │ -00016940: 7269 6574 7920 666f 7220 6566 6669 6369 riety for effici │ │ │ │ -00016950: 656e 6379 2072 6561 736f 6e73 2e0a 0a2b ency reasons...+ │ │ │ │ +00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016790: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000167a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167d0: 2d2d 2d2d 2b0a 0a49 6e20 7468 6520 6361 ----+..In the ca │ │ │ │ +000167e0: 7365 2077 6865 7265 2074 6865 2061 6d62 se where the amb │ │ │ │ +000167f0: 6965 6e74 2073 7061 6365 2069 7320 6120 ient space is a │ │ │ │ +00016800: 746f 7269 6320 7661 7269 6574 7920 7768 toric variety wh │ │ │ │ +00016810: 6963 6820 6973 206e 6f74 2061 2070 726f ich is not a pro │ │ │ │ +00016820: 6475 6374 0a6f 6620 7072 6f6a 6563 7469 duct.of projecti │ │ │ │ +00016830: 7665 2073 7061 6365 7320 7765 206d 7573 ve spaces we mus │ │ │ │ +00016840: 7420 6c6f 6164 2074 6865 204e 6f72 6d61 t load the Norma │ │ │ │ +00016850: 6c54 6f72 6963 5661 7269 6574 6965 7320 lToricVarieties │ │ │ │ +00016860: 7061 636b 6167 6520 616e 6420 6d75 7374 package and must │ │ │ │ +00016870: 0a61 6c73 6f20 696e 7075 7420 7468 6520 .also input the │ │ │ │ +00016880: 746f 7269 6320 7661 7269 6574 792e 2049 toric variety. I │ │ │ │ +00016890: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ +000168a0: 6574 7920 6973 2061 2070 726f 6475 6374 ety is a product │ │ │ │ +000168b0: 206f 6620 7072 6f6a 6563 7469 7665 0a73 of projective.s │ │ │ │ +000168c0: 7061 6365 2069 7420 6973 2072 6563 6f6d pace it is recom │ │ │ │ +000168d0: 6d65 6e64 2074 6f20 7573 6520 7468 6520 mend to use the │ │ │ │ +000168e0: 666f 726d 2061 626f 7665 2072 6174 6865 form above rathe │ │ │ │ +000168f0: 7220 7468 616e 2069 6e70 7574 7469 6e67 r than inputting │ │ │ │ +00016900: 2074 6865 2074 6f72 6963 0a76 6172 6965 the toric.varie │ │ │ │ +00016910: 7479 2066 6f72 2065 6666 6963 6965 6e63 ty for efficienc │ │ │ │ +00016920: 7920 7265 6173 6f6e 732e 0a0a 2b2d 2d2d y reasons...+--- │ │ │ │ +00016930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000169a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a --------+.|i23 : │ │ │ │ -000169b0: 206e 6565 6473 5061 636b 6167 6520 224e needsPackage "N │ │ │ │ -000169c0: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -000169d0: 6965 7322 2020 2020 2020 2020 2020 2020 ies" │ │ │ │ +00016970: 2d2d 2d2d 2d2b 0a7c 6932 3320 3a20 6e65 -----+.|i23 : ne │ │ │ │ +00016980: 6564 7350 6163 6b61 6765 2022 4e6f 726d edsPackage "Norm │ │ │ │ +00016990: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ +000169a0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +000169b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000169c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000169d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000169e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00016a40: 7c6f 3233 203d 204e 6f72 6d61 6c54 6f72 |o23 = NormalTor │ │ │ │ -00016a50: 6963 5661 7269 6574 6965 7320 2020 2020 icVarieties │ │ │ │ +000169f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a00: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00016a10: 3320 3d20 4e6f 726d 616c 546f 7269 6356 3 = NormalToricV │ │ │ │ +00016a20: 6172 6965 7469 6573 2020 2020 2020 2020 arieties │ │ │ │ +00016a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016aa0: 207c 0a7c 6f32 3320 3a20 5061 636b 6167 |.|o23 : Packag │ │ │ │ +00016ab0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00016ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ad0: 2020 2020 7c0a 7c6f 3233 203a 2050 6163 |.|o23 : Pac │ │ │ │ -00016ae0: 6b61 6765 2020 2020 2020 2020 2020 2020 kage │ │ │ │ -00016af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016b20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00016b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3234 ----------+.|i24 │ │ │ │ -00016b70: 203a 2052 686f 203d 207b 7b31 2c30 2c30 : Rho = {{1,0,0 │ │ │ │ -00016b80: 7d2c 7b30 2c31 2c30 7d2c 7b30 2c30 2c31 },{0,1,0},{0,0,1 │ │ │ │ -00016b90: 7d2c 7b2d 312c 2d31 2c30 7d2c 7b30 2c30 },{-1,-1,0},{0,0 │ │ │ │ -00016ba0: 2c2d 317d 7d20 2020 2020 2020 2020 2020 ,-1}} │ │ │ │ -00016bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c00: 7c0a 7c6f 3234 203d 207b 7b31 2c20 302c |.|o24 = {{1, 0, │ │ │ │ -00016c10: 2030 7d2c 207b 302c 2031 2c20 307d 2c20 0}, {0, 1, 0}, │ │ │ │ -00016c20: 7b30 2c20 302c 2031 7d2c 207b 2d31 2c20 {0, 0, 1}, {-1, │ │ │ │ -00016c30: 2d31 2c20 307d 2c20 7b30 2c20 302c 202d -1, 0}, {0, 0, - │ │ │ │ -00016c40: 317d 7d20 2020 2020 2020 207c 0a7c 2020 1}} |.| │ │ │ │ +00016ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ae0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00016af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b30: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3420 3a20 -------+.|i24 : │ │ │ │ +00016b40: 5268 6f20 3d20 7b7b 312c 302c 307d 2c7b Rho = {{1,0,0},{ │ │ │ │ +00016b50: 302c 312c 307d 2c7b 302c 302c 317d 2c7b 0,1,0},{0,0,1},{ │ │ │ │ +00016b60: 2d31 2c2d 312c 307d 2c7b 302c 302c 2d31 -1,-1,0},{0,0,-1 │ │ │ │ +00016b70: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00016b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00016bd0: 6f32 3420 3d20 7b7b 312c 2030 2c20 307d o24 = {{1, 0, 0} │ │ │ │ +00016be0: 2c20 7b30 2c20 312c 2030 7d2c 207b 302c , {0, 1, 0}, {0, │ │ │ │ +00016bf0: 2030 2c20 317d 2c20 7b2d 312c 202d 312c 0, 1}, {-1, -1, │ │ │ │ +00016c00: 2030 7d2c 207b 302c 2030 2c20 2d31 7d7d 0}, {0, 0, -1}} │ │ │ │ +00016c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c60: 2020 207c 0a7c 6f32 3420 3a20 4c69 7374 |.|o24 : List │ │ │ │ 00016c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c90: 2020 2020 2020 7c0a 7c6f 3234 203a 204c |.|o24 : L │ │ │ │ -00016ca0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00016cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00016d30: 3235 203a 2053 6967 6d61 203d 207b 7b30 25 : Sigma = {{0 │ │ │ │ -00016d40: 2c31 2c32 7d2c 7b31 2c32 2c33 7d2c 7b30 ,1,2},{1,2,3},{0 │ │ │ │ -00016d50: 2c32 2c33 7d2c 7b30 2c31 2c34 7d2c 7b31 ,2,3},{0,1,4},{1 │ │ │ │ -00016d60: 2c33 2c34 7d2c 7b30 2c33 2c34 7d7d 2020 ,3,4},{0,3,4}} │ │ │ │ -00016d70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016dc0: 2020 7c0a 7c6f 3235 203d 207b 7b30 2c20 |.|o25 = {{0, │ │ │ │ -00016dd0: 312c 2032 7d2c 207b 312c 2032 2c20 337d 1, 2}, {1, 2, 3} │ │ │ │ -00016de0: 2c20 7b30 2c20 322c 2033 7d2c 207b 302c , {0, 2, 3}, {0, │ │ │ │ -00016df0: 2031 2c20 347d 2c20 7b31 2c20 332c 2034 1, 4}, {1, 3, 4 │ │ │ │ -00016e00: 7d2c 207b 302c 2033 2c20 347d 7d7c 0a7c }, {0, 3, 4}}|.| │ │ │ │ +00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ca0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016cb0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00016cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3520 ---------+.|i25 │ │ │ │ +00016d00: 3a20 5369 676d 6120 3d20 7b7b 302c 312c : Sigma = {{0,1, │ │ │ │ +00016d10: 327d 2c7b 312c 322c 337d 2c7b 302c 322c 2},{1,2,3},{0,2, │ │ │ │ +00016d20: 337d 2c7b 302c 312c 347d 2c7b 312c 332c 3},{0,1,4},{1,3, │ │ │ │ +00016d30: 347d 2c7b 302c 332c 347d 7d20 2020 2020 4},{0,3,4}} │ │ │ │ +00016d40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016d90: 0a7c 6f32 3520 3d20 7b7b 302c 2031 2c20 .|o25 = {{0, 1, │ │ │ │ +00016da0: 327d 2c20 7b31 2c20 322c 2033 7d2c 207b 2}, {1, 2, 3}, { │ │ │ │ +00016db0: 302c 2032 2c20 337d 2c20 7b30 2c20 312c 0, 2, 3}, {0, 1, │ │ │ │ +00016dc0: 2034 7d2c 207b 312c 2033 2c20 347d 2c20 4}, {1, 3, 4}, │ │ │ │ +00016dd0: 7b30 2c20 332c 2034 7d7d 7c0a 7c20 2020 {0, 3, 4}}|.| │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e20: 2020 2020 207c 0a7c 6f32 3520 3a20 4c69 |.|o25 : Li │ │ │ │ +00016e30: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00016e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e50: 2020 2020 2020 2020 7c0a 7c6f 3235 203a |.|o25 : │ │ │ │ -00016e60: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ -00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ea0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00016eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00016ef0: 7c69 3236 203a 2058 203d 206e 6f72 6d61 |i26 : X = norma │ │ │ │ -00016f00: 6c54 6f72 6963 5661 7269 6574 7928 5268 lToricVariety(Rh │ │ │ │ -00016f10: 6f2c 5369 676d 612c 436f 6566 6669 6369 o,Sigma,Coeffici │ │ │ │ -00016f20: 656e 7452 696e 6720 3d3e 5a5a 2f33 3237 entRing =>ZZ/327 │ │ │ │ -00016f30: 3439 2920 2020 2020 207c 0a7c 2020 2020 49) |.| │ │ │ │ +00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00016e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00016ec0: 3620 3a20 5820 3d20 6e6f 726d 616c 546f 6 : X = normalTo │ │ │ │ +00016ed0: 7269 6356 6172 6965 7479 2852 686f 2c53 ricVariety(Rho,S │ │ │ │ +00016ee0: 6967 6d61 2c43 6f65 6666 6963 6965 6e74 igma,Coefficient │ │ │ │ +00016ef0: 5269 6e67 203d 3e5a 5a2f 3332 3734 3929 Ring =>ZZ/32749) │ │ │ │ +00016f00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f50: 207c 0a7c 6f32 3620 3d20 5820 2020 2020 |.|o26 = X │ │ │ │ 00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 2020 2020 7c0a 7c6f 3236 203d 2058 2020 |.|o26 = X │ │ │ │ -00016f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017010: 2020 2020 2020 2020 2020 7c0a 7c6f 3236 |.|o26 │ │ │ │ -00017020: 203a 204e 6f72 6d61 6c54 6f72 6963 5661 : NormalToricVa │ │ │ │ -00017030: 7269 6574 7920 2020 2020 2020 2020 2020 riety │ │ │ │ -00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017060: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00017070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000170a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000170b0: 2b0a 7c69 3237 203a 2063 736d 583d 4353 +.|i27 : csmX=CS │ │ │ │ -000170c0: 4d20 5820 2020 2020 2020 2020 2020 2020 M X │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fe0: 2020 2020 2020 207c 0a7c 6f32 3620 3a20 |.|o26 : │ │ │ │ +00016ff0: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ +00017000: 7479 2020 2020 2020 2020 2020 2020 2020 ty │ │ │ │ +00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017030: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00017040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017080: 6932 3720 3a20 6373 6d58 3d43 534d 2058 i27 : csmX=CSM X │ │ │ │ +00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017110: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +00017120: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00017150: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -00017160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 207c 0a7c 6f32 3720 3d20 3678 2078 2020 |.|o27 = 6x x │ │ │ │ -000171a0: 2b20 3378 2020 2b20 3678 2078 2020 2b20 + 3x + 6x x + │ │ │ │ -000171b0: 3378 2020 2b20 3278 2020 2b20 3120 2020 3x + 2x + 1 │ │ │ │ -000171c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000171e0: 2020 2020 2020 2033 2034 2020 2020 2033 3 4 3 │ │ │ │ -000171f0: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -00017200: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017150: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017160: 7c6f 3237 203d 2036 7820 7820 202b 2033 |o27 = 6x x + 3 │ │ │ │ +00017170: 7820 202b 2036 7820 7820 202b 2033 7820 x + 6x x + 3x │ │ │ │ +00017180: 202b 2032 7820 202b 2031 2020 2020 2020 + 2x + 1 │ │ │ │ +00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000171b0: 2020 2020 3320 3420 2020 2020 3320 2020 3 4 3 │ │ │ │ +000171c0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +000171d0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00017200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017270: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017280: 2020 2020 2020 2020 2020 205a 5a5b 7820 ZZ[x │ │ │ │ -00017290: 2e2e 7820 5d20 2020 2020 2020 2020 2020 ..x ] │ │ │ │ -000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00017240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017250: 2020 2020 2020 2020 5a5a 5b78 202e 2e78 ZZ[x ..x │ │ │ │ +00017260: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017280: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172a0: 2020 2020 2020 2030 2020 2034 2020 2020 0 4 │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172d0: 2020 2020 2020 2020 2020 3020 2020 3420 0 4 │ │ │ │ -000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017300: 2020 2020 2020 2020 7c0a 7c6f 3237 203a |.|o27 : │ │ │ │ -00017310: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ -00017320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017330: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ -00017340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017350: 2020 207c 0a7c 2020 2020 2020 2878 2078 |.| (x x │ │ │ │ -00017360: 202c 2078 2078 2078 202c 2078 2020 2d20 , x x x , x - │ │ │ │ -00017370: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ -00017380: 2d20 7820 2920 2020 2020 2020 2020 2020 - x ) │ │ │ │ -00017390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000173a0: 7c20 2020 2020 2020 2032 2034 2020 2030 | 2 4 0 │ │ │ │ -000173b0: 2031 2033 2020 2030 2020 2020 3320 2020 1 3 0 3 │ │ │ │ -000173c0: 3120 2020 2033 2020 2032 2020 2020 3420 1 3 2 4 │ │ │ │ -000173d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000172d0: 2020 2020 207c 0a7c 6f32 3720 3a20 2d2d |.|o27 : -- │ │ │ │ +000172e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000172f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017300: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017320: 7c0a 7c20 2020 2020 2028 7820 7820 2c20 |.| (x x , │ │ │ │ +00017330: 7820 7820 7820 2c20 7820 202d 2078 202c x x x , x - x , │ │ │ │ +00017340: 2078 2020 2d20 7820 2c20 7820 202d 2078 x - x , x - x │ │ │ │ +00017350: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017370: 2020 2020 2020 3220 3420 2020 3020 3120 2 4 0 1 │ │ │ │ +00017380: 3320 2020 3020 2020 2033 2020 2031 2020 3 0 3 1 │ │ │ │ +00017390: 2020 3320 2020 3220 2020 2034 2020 2020 3 2 4 │ │ │ │ +000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000173c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000173f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017430: 2d2d 2d2d 2b0a 7c69 3238 203a 2043 683d ----+.|i28 : Ch= │ │ │ │ -00017440: 7269 6e67 2063 736d 5820 2020 2020 2020 ring csmX │ │ │ │ +00017400: 2d2b 0a7c 6932 3820 3a20 4368 3d72 696e -+.|i28 : Ch=rin │ │ │ │ +00017410: 6720 6373 6d58 2020 2020 2020 2020 2020 g csmX │ │ │ │ +00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017490: 2020 2020 2020 207c 0a7c 6f32 3820 3d20 |.|o28 = │ │ │ │ +000174a0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3238 |.|o28 │ │ │ │ -000174d0: 203d 2043 6820 2020 2020 2020 2020 2020 = Ch │ │ │ │ -000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017530: 6f32 3820 3a20 5175 6f74 6965 6e74 5269 o28 : QuotientRi │ │ │ │ +00017540: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00017550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017560: 7c0a 7c6f 3238 203a 2051 756f 7469 656e |.|o28 : Quotien │ │ │ │ -00017570: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ -00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00017560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017570: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00017580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000175a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000175b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175f0: 2d2d 2d2d 2d2d 2b0a 7c69 3239 203a 2043 ------+.|i29 : C │ │ │ │ -00017600: 6865 636b 546f 7269 6356 6172 6965 7479 heckToricVariety │ │ │ │ -00017610: 5661 6c69 6428 5829 2020 2020 2020 2020 Valid(X) │ │ │ │ +000175c0: 2d2d 2d2b 0a7c 6932 3920 3a20 4368 6563 ---+.|i29 : Chec │ │ │ │ +000175d0: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ +000175e0: 6964 2858 2920 2020 2020 2020 2020 2020 id(X) │ │ │ │ +000175f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017610: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017650: 2020 2020 2020 2020 207c 0a7c 6f32 3920 |.|o29 │ │ │ │ +00017660: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 00017670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017680: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00017690: 3239 203d 2074 7275 6520 2020 2020 2020 29 = true │ │ │ │ -000176a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000176f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017720: 2d2d 2b0a 7c69 3330 203a 2052 3d72 696e --+.|i30 : R=rin │ │ │ │ -00017730: 6728 5829 2020 2020 2020 2020 2020 2020 g(X) │ │ │ │ +00017680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000176a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000176b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000176f0: 0a7c 6933 3020 3a20 523d 7269 6e67 2858 .|i30 : R=ring(X │ │ │ │ +00017700: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017730: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00017740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017780: 2020 2020 207c 0a7c 6f33 3020 3d20 5220 |.|o30 = R │ │ │ │ 00017790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177b0: 2020 2020 2020 2020 7c0a 7c6f 3330 203d |.|o30 = │ │ │ │ -000177c0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -000177d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00017850: 7c6f 3330 203a 2050 6f6c 796e 6f6d 6961 |o30 : Polynomia │ │ │ │ -00017860: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ -00017870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017890: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017810: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00017820: 3020 3a20 506f 6c79 6e6f 6d69 616c 5269 0 : PolynomialRi │ │ │ │ +00017830: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00017840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017860: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00017870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000178a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178e0: 2d2d 2d2d 2b0a 7c69 3331 203a 2049 3d69 ----+.|i31 : I=i │ │ │ │ -000178f0: 6465 616c 2852 5f30 5e34 2a52 5f31 2c52 deal(R_0^4*R_1,R │ │ │ │ -00017900: 5f30 2a52 5f33 2a52 5f34 2a52 5f32 2d52 _0*R_3*R_4*R_2-R │ │ │ │ -00017910: 5f32 5e32 2a52 5f30 5e32 2920 2020 2020 _2^2*R_0^2) │ │ │ │ -00017920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00017940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017970: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00017980: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -00017990: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000179a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179c0: 2020 2020 207c 0a7c 6f33 3120 3d20 6964 |.|o31 = id │ │ │ │ -000179d0: 6561 6c20 2878 2078 202c 202d 2078 2078 eal (x x , - x x │ │ │ │ -000179e0: 2020 2b20 7820 7820 7820 7820 2920 2020 + x x x x ) │ │ │ │ -000179f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017a20: 2030 2031 2020 2020 2030 2032 2020 2020 0 1 0 2 │ │ │ │ -00017a30: 3020 3220 3320 3420 2020 2020 2020 2020 0 2 3 4 │ │ │ │ +000178b0: 2d2b 0a7c 6933 3120 3a20 493d 6964 6561 -+.|i31 : I=idea │ │ │ │ +000178c0: 6c28 525f 305e 342a 525f 312c 525f 302a l(R_0^4*R_1,R_0* │ │ │ │ +000178d0: 525f 332a 525f 342a 525f 322d 525f 325e R_3*R_4*R_2-R_2^ │ │ │ │ +000178e0: 322a 525f 305e 3229 2020 2020 2020 2020 2*R_0^2) │ │ │ │ +000178f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017940: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00017950: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00017960: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00017970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017990: 2020 7c0a 7c6f 3331 203d 2069 6465 616c |.|o31 = ideal │ │ │ │ +000179a0: 2028 7820 7820 2c20 2d20 7820 7820 202b (x x , - x x + │ │ │ │ +000179b0: 2078 2078 2078 2078 2029 2020 2020 2020 x x x x ) │ │ │ │ +000179c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000179d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000179e0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000179f0: 3120 2020 2020 3020 3220 2020 2030 2032 1 0 2 0 2 │ │ │ │ +00017a00: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00017a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a70: 2020 207c 0a7c 6f33 3120 3a20 4964 6561 |.|o31 : Idea │ │ │ │ +00017a80: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ 00017a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017aa0: 2020 2020 2020 7c0a 7c6f 3331 203a 2049 |.|o31 : I │ │ │ │ -00017ab0: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ -00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017af0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00017b40: 3332 203a 2043 534d 2858 2c49 2920 2020 32 : CSM(X,I) │ │ │ │ -00017b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017ac0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00017ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017b00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3220 ---------+.|i32 │ │ │ │ +00017b10: 3a20 4353 4d28 582c 4929 2020 2020 2020 : CSM(X,I) │ │ │ │ +00017b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00017ba0: 0a7c 2020 2020 2020 2020 3220 2020 2020 .| 2 │ │ │ │ +00017bb0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00017bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bd0: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -00017be0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00017bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017c20: 6f33 3220 3d20 3578 2078 2020 2b20 3378 o32 = 5x x + 3x │ │ │ │ -00017c30: 2020 2b20 3478 2078 2020 2b20 7820 2020 + 4x x + x │ │ │ │ -00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00017c70: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ -00017c80: 2033 2034 2020 2020 3320 2020 2020 2020 3 4 3 │ │ │ │ +00017bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017be0: 2020 2020 2020 2020 2020 7c0a 7c6f 3332 |.|o32 │ │ │ │ +00017bf0: 203d 2035 7820 7820 202b 2033 7820 202b = 5x x + 3x + │ │ │ │ +00017c00: 2034 7820 7820 202b 2078 2020 2020 2020 4x x + x │ │ │ │ +00017c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00017c40: 3320 3420 2020 2020 3320 2020 2020 3320 3 4 3 3 │ │ │ │ +00017c50: 3420 2020 2033 2020 2020 2020 2020 2020 4 3 │ │ │ │ +00017c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00017cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00017d00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00017d10: 2020 2020 2020 205a 5a5b 7820 2e2e 7820 ZZ[x ..x │ │ │ │ -00017d20: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017ce0: 2020 2020 5a5a 5b78 202e 2e78 205d 2020 ZZ[x ..x ] │ │ │ │ +00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d30: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ +00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d60: 2020 2020 2020 3020 2020 3420 2020 2020 0 4 │ │ │ │ -00017d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d90: 2020 2020 7c0a 7c6f 3332 203a 202d 2d2d |.|o32 : --- │ │ │ │ -00017da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017dc0: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ -00017dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017de0: 0a7c 2020 2020 2020 2878 2078 202c 2078 .| (x x , x │ │ │ │ -00017df0: 2078 2078 202c 2078 2020 2d20 7820 2c20 x x , x - x , │ │ │ │ -00017e00: 7820 202d 2078 202c 2078 2020 2d20 7820 x - x , x - x │ │ │ │ -00017e10: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00017e20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00017e30: 2020 2020 2032 2034 2020 2030 2031 2033 2 4 0 1 3 │ │ │ │ -00017e40: 2020 2030 2020 2020 3320 2020 3120 2020 0 3 1 │ │ │ │ -00017e50: 2033 2020 2032 2020 2020 3420 2020 2020 3 2 4 │ │ │ │ -00017e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ec0: 2b0a 7c69 3333 203a 2043 534d 2843 682c +.|i33 : CSM(Ch, │ │ │ │ -00017ed0: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +00017d60: 207c 0a7c 6f33 3220 3a20 2d2d 2d2d 2d2d |.|o32 : ------ │ │ │ │ +00017d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017d90: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +00017da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017db0: 2020 2020 2028 7820 7820 2c20 7820 7820 (x x , x x │ │ │ │ +00017dc0: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ +00017dd0: 2d20 7820 2c20 7820 202d 2078 2029 2020 - x , x - x ) │ │ │ │ +00017de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017df0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00017e00: 2020 3220 3420 2020 3020 3120 3320 2020 2 4 0 1 3 │ │ │ │ +00017e10: 3020 2020 2033 2020 2031 2020 2020 3320 0 3 1 3 │ │ │ │ +00017e20: 2020 3220 2020 2034 2020 2020 2020 2020 2 4 │ │ │ │ +00017e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017e40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00017e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017e90: 6933 3320 3a20 4353 4d28 4368 2c58 2c49 i33 : CSM(Ch,X,I │ │ │ │ +00017ea0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f20: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +00017f30: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00017f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00017f60: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -00017f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017f70: 7c6f 3333 203d 2038 7820 7820 202b 2033 |o33 = 8x x + 3 │ │ │ │ +00017f80: 7820 202b 2035 7820 7820 202b 2078 2020 x + 5x x + x │ │ │ │ 00017f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fa0: 207c 0a7c 6f33 3320 3d20 3878 2078 2020 |.|o33 = 8x x │ │ │ │ -00017fb0: 2b20 3378 2020 2b20 3578 2078 2020 2b20 + 3x + 5x x + │ │ │ │ -00017fc0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017ff0: 2020 2020 2020 2033 2034 2020 2020 2033 3 4 3 │ │ │ │ -00018000: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ +00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017fb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017fc0: 2020 2020 3320 3420 2020 2020 3320 2020 3 4 3 │ │ │ │ +00017fd0: 2020 3320 3420 2020 2033 2020 2020 2020 3 4 3 │ │ │ │ +00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018000: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00018040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018050: 0a7c 6f33 3320 3a20 4368 2020 2020 2020 .|o33 : Ch │ │ │ │ 00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018080: 2020 7c0a 7c6f 3333 203a 2043 6820 2020 |.|o33 : Ch │ │ │ │ -00018090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018090: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000180a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000180d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018110: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6869 7320 --------+..This │ │ │ │ -00018120: 6675 6e63 7469 6f6e 206d 6179 2061 6c73 function may als │ │ │ │ -00018130: 6f20 636f 6d70 7574 6520 7468 6520 4353 o compute the CS │ │ │ │ -00018140: 4d20 636c 6173 7320 6f66 2061 206e 6f72 M class of a nor │ │ │ │ -00018150: 6d61 6c20 746f 7269 6320 7661 7269 6574 mal toric variet │ │ │ │ -00018160: 7920 6465 6669 6e65 640a 6279 2061 2066 y defined.by a f │ │ │ │ -00018170: 616e 2e20 496e 2074 6869 7320 6361 7365 an. In this case │ │ │ │ -00018180: 2061 2063 6f6d 6269 6e61 746f 7269 616c a combinatorial │ │ │ │ -00018190: 206d 6574 686f 6420 6973 2075 7365 642e method is used. │ │ │ │ -000181a0: 2054 6869 7320 6d65 7468 6f64 2069 7320 This method is │ │ │ │ -000181b0: 6163 6365 7373 6564 0a77 6974 6820 7468 accessed.with th │ │ │ │ -000181c0: 6520 7573 7561 6c20 4353 4d20 636f 6d6d e usual CSM comm │ │ │ │ -000181d0: 616e 6420 7769 7468 2065 6974 6865 7220 and with either │ │ │ │ -000181e0: 6f6e 6c79 2061 2074 6f72 6963 2076 6172 only a toric var │ │ │ │ -000181f0: 6965 7479 206f 7220 6120 746f 7269 6320 iety or a toric │ │ │ │ -00018200: 7661 7269 6574 790a 616e 6420 6120 4368 variety.and a Ch │ │ │ │ -00018210: 6f77 2072 696e 6720 6173 2069 6e70 7574 ow ring as input │ │ │ │ -00018220: 2e20 496e 2074 6869 7320 6361 7365 2077 . In this case w │ │ │ │ -00018230: 6520 6f6e 6c79 2072 6571 7569 7265 2074 e only require t │ │ │ │ -00018240: 6861 7420 7468 6520 696e 7075 7420 746f hat the input to │ │ │ │ -00018250: 7269 630a 7661 7269 6574 7920 6973 2063 ric.variety is c │ │ │ │ -00018260: 6f6d 706c 6574 6520 616e 6420 7369 6d70 omplete and simp │ │ │ │ -00018270: 6c69 6369 616c 2028 696e 2070 6172 7469 licial (in parti │ │ │ │ -00018280: 6375 6c61 7220 7765 2064 6f20 6e6f 7420 cular we do not │ │ │ │ -00018290: 6e65 6564 2069 7420 746f 2062 650a 736d need it to be.sm │ │ │ │ -000182a0: 6f6f 7468 292e 0a0a 2b2d 2d2d 2d2d 2d2d ooth)...+------- │ │ │ │ -000182b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182d0: 2d2d 2d2b 0a7c 6933 3420 3a20 6e65 6564 ---+.|i34 : need │ │ │ │ -000182e0: 7350 6163 6b61 6765 2022 4e6f 726d 616c sPackage "Normal │ │ │ │ -000182f0: 546f 7269 6356 6172 6965 7469 6573 2220 ToricVarieties" │ │ │ │ -00018300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00018310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018330: 6f33 3420 3d20 4e6f 726d 616c 546f 7269 o34 = NormalTori │ │ │ │ -00018340: 6356 6172 6965 7469 6573 2020 2020 2020 cVarieties │ │ │ │ -00018350: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000180e0: 2d2d 2d2d 2d2b 0a0a 5468 6973 2066 756e -----+..This fun │ │ │ │ +000180f0: 6374 696f 6e20 6d61 7920 616c 736f 2063 ction may also c │ │ │ │ +00018100: 6f6d 7075 7465 2074 6865 2043 534d 2063 ompute the CSM c │ │ │ │ +00018110: 6c61 7373 206f 6620 6120 6e6f 726d 616c lass of a normal │ │ │ │ +00018120: 2074 6f72 6963 2076 6172 6965 7479 2064 toric variety d │ │ │ │ +00018130: 6566 696e 6564 0a62 7920 6120 6661 6e2e efined.by a fan. │ │ │ │ +00018140: 2049 6e20 7468 6973 2063 6173 6520 6120 In this case a │ │ │ │ +00018150: 636f 6d62 696e 6174 6f72 6961 6c20 6d65 combinatorial me │ │ │ │ +00018160: 7468 6f64 2069 7320 7573 6564 2e20 5468 thod is used. Th │ │ │ │ +00018170: 6973 206d 6574 686f 6420 6973 2061 6363 is method is acc │ │ │ │ +00018180: 6573 7365 640a 7769 7468 2074 6865 2075 essed.with the u │ │ │ │ +00018190: 7375 616c 2043 534d 2063 6f6d 6d61 6e64 sual CSM command │ │ │ │ +000181a0: 2077 6974 6820 6569 7468 6572 206f 6e6c with either onl │ │ │ │ +000181b0: 7920 6120 746f 7269 6320 7661 7269 6574 y a toric variet │ │ │ │ +000181c0: 7920 6f72 2061 2074 6f72 6963 2076 6172 y or a toric var │ │ │ │ +000181d0: 6965 7479 0a61 6e64 2061 2043 686f 7720 iety.and a Chow │ │ │ │ +000181e0: 7269 6e67 2061 7320 696e 7075 742e 2049 ring as input. I │ │ │ │ +000181f0: 6e20 7468 6973 2063 6173 6520 7765 206f n this case we o │ │ │ │ +00018200: 6e6c 7920 7265 7175 6972 6520 7468 6174 nly require that │ │ │ │ +00018210: 2074 6865 2069 6e70 7574 2074 6f72 6963 the input toric │ │ │ │ +00018220: 0a76 6172 6965 7479 2069 7320 636f 6d70 .variety is comp │ │ │ │ +00018230: 6c65 7465 2061 6e64 2073 696d 706c 6963 lete and simplic │ │ │ │ +00018240: 6961 6c20 2869 6e20 7061 7274 6963 756c ial (in particul │ │ │ │ +00018250: 6172 2077 6520 646f 206e 6f74 206e 6565 ar we do not nee │ │ │ │ +00018260: 6420 6974 2074 6f20 6265 0a73 6d6f 6f74 d it to be.smoot │ │ │ │ +00018270: 6829 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d h)...+---------- │ │ │ │ +00018280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182a0: 2b0a 7c69 3334 203a 206e 6565 6473 5061 +.|i34 : needsPa │ │ │ │ +000182b0: 636b 6167 6520 224e 6f72 6d61 6c54 6f72 ckage "NormalTor │ │ │ │ +000182c0: 6963 5661 7269 6574 6965 7322 207c 0a7c icVarieties" |.| │ │ │ │ +000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3334 |.|o34 │ │ │ │ +00018300: 203d 204e 6f72 6d61 6c54 6f72 6963 5661 = NormalToricVa │ │ │ │ +00018310: 7269 6574 6965 7320 2020 2020 2020 2020 rieties │ │ │ │ +00018320: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018350: 2020 2020 7c0a 7c6f 3334 203a 2050 6163 |.|o34 : Pac │ │ │ │ +00018360: 6b61 6765 2020 2020 2020 2020 2020 2020 kage │ │ │ │ 00018370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018380: 2020 2020 2020 207c 0a7c 6f33 3420 3a20 |.|o34 : │ │ │ │ -00018390: 5061 636b 6167 6520 2020 2020 2020 2020 Package │ │ │ │ -000183a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000183c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000183d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000183e0: 2d2b 0a7c 6933 3520 3a20 5520 3d20 6869 -+.|i35 : U = hi │ │ │ │ -000183f0: 727a 6562 7275 6368 5375 7266 6163 6520 rzebruchSurface │ │ │ │ -00018400: 3720 2020 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -00018410: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00018380: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00018390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000183a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000183b0: 7c69 3335 203a 2055 203d 2068 6972 7a65 |i35 : U = hirze │ │ │ │ +000183c0: 6272 7563 6853 7572 6661 6365 2037 2020 bruchSurface 7 │ │ │ │ +000183d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000183f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018400: 2020 2020 2020 2020 7c0a 7c6f 3335 203d |.|o35 = │ │ │ │ +00018410: 2055 2020 2020 2020 2020 2020 2020 2020 U │ │ │ │ 00018420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018430: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00018440: 3520 3d20 5520 2020 2020 2020 2020 2020 5 = U │ │ │ │ +00018430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018490: 2020 2020 207c 0a7c 6f33 3520 3a20 4e6f |.|o35 : No │ │ │ │ -000184a0: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ -000184b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -000184d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000184e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000184f0: 0a7c 6933 3620 3a20 4368 3d54 6f72 6963 .|i36 : Ch=Toric │ │ │ │ -00018500: 4368 6f77 5269 6e67 2855 2920 2020 2020 ChowRing(U) │ │ │ │ -00018510: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018460: 2020 7c0a 7c6f 3335 203a 204e 6f72 6d61 |.|o35 : Norma │ │ │ │ +00018470: 6c54 6f72 6963 5661 7269 6574 7920 2020 lToricVariety │ │ │ │ +00018480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018490: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000184a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000184c0: 3336 203a 2043 683d 546f 7269 6343 686f 36 : Ch=ToricCho │ │ │ │ +000184d0: 7752 696e 6728 5529 2020 2020 2020 2020 wRing(U) │ │ │ │ +000184e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000184f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018510: 2020 2020 2020 7c0a 7c6f 3336 203d 2043 |.|o36 = C │ │ │ │ +00018520: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ 00018530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018540: 2020 2020 2020 2020 207c 0a7c 6f33 3620 |.|o36 │ │ │ │ -00018550: 3d20 4368 2020 2020 2020 2020 2020 2020 = Ch │ │ │ │ +00018540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018570: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00018580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185a0: 2020 207c 0a7c 6f33 3620 3a20 5175 6f74 |.|o36 : Quot │ │ │ │ -000185b0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ -000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000185e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000185f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018600: 6933 3720 3a20 4353 4d20 5520 2020 2020 i37 : CSM U │ │ │ │ +00018570: 7c0a 7c6f 3336 203a 2051 756f 7469 656e |.|o36 : Quotien │ │ │ │ +00018580: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ +00018590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000185a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 ----------+.|i37 │ │ │ │ +000185d0: 203a 2043 534d 2055 2020 2020 2020 2020 : CSM U │ │ │ │ +000185e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000185f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00018600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018620: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018630: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00018640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00018660: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00018670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018680: 2020 2020 7c0a 7c6f 3337 203d 202d 2033 |.|o37 = - 3 │ │ │ │ -00018690: 7820 7820 202b 2078 2020 2d20 3578 2020 x x + x - 5x │ │ │ │ -000186a0: 2b20 3278 2020 2b20 3120 2020 2020 2020 + 2x + 1 │ │ │ │ -000186b0: 207c 0a7c 2020 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -000186c0: 3320 2020 2033 2020 2020 2032 2020 2020 3 3 2 │ │ │ │ -000186d0: 2033 2020 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -000186e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000186f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018720: 205a 5a5b 7820 2e2e 7820 5d20 2020 2020 ZZ[x ..x ] │ │ │ │ -00018730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00018740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018750: 2020 3020 2020 3320 2020 2020 2020 2020 0 3 │ │ │ │ -00018760: 2020 2020 207c 0a7c 6f33 3720 3a20 2d2d |.|o37 : -- │ │ │ │ -00018770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018790: 2d2d 7c0a 7c20 2020 2020 2028 7820 7820 --|.| (x x │ │ │ │ -000187a0: 2c20 7820 7820 2c20 7820 202d 2078 202c , x x , x - x , │ │ │ │ -000187b0: 2078 2020 2b20 3778 2020 2d20 7820 297c x + 7x - x )| │ │ │ │ -000187c0: 0a7c 2020 2020 2020 2020 3020 3220 2020 .| 0 2 │ │ │ │ -000187d0: 3120 3320 2020 3020 2020 2032 2020 2031 1 3 0 2 1 │ │ │ │ -000187e0: 2020 2020 2032 2020 2020 3320 7c0a 2b2d 2 3 |.+- │ │ │ │ -000187f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018810: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 ---------+.|i38 │ │ │ │ -00018820: 3a20 6373 6d31 3d43 534d 2843 682c 5529 : csm1=CSM(Ch,U) │ │ │ │ +00018650: 207c 0a7c 6f33 3720 3d20 2d20 3378 2078 |.|o37 = - 3x x │ │ │ │ +00018660: 2020 2b20 7820 202d 2035 7820 202b 2032 + x - 5x + 2 │ │ │ │ +00018670: 7820 202b 2031 2020 2020 2020 2020 7c0a x + 1 |. │ │ │ │ +00018680: 7c20 2020 2020 2020 2020 2032 2033 2020 | 2 3 │ │ │ │ +00018690: 2020 3320 2020 2020 3220 2020 2020 3320 3 2 3 │ │ │ │ +000186a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000186b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000186c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000186d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000186e0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000186f0: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ +00018700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018710: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00018720: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00018730: 2020 7c0a 7c6f 3337 203a 202d 2d2d 2d2d |.|o37 : ----- │ │ │ │ +00018740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00018760: 0a7c 2020 2020 2020 2878 2078 202c 2078 .| (x x , x │ │ │ │ +00018770: 2078 202c 2078 2020 2d20 7820 2c20 7820 x , x - x , x │ │ │ │ +00018780: 202b 2037 7820 202d 2078 2029 7c0a 7c20 + 7x - x )|.| │ │ │ │ +00018790: 2020 2020 2020 2030 2032 2020 2031 2033 0 2 1 3 │ │ │ │ +000187a0: 2020 2030 2020 2020 3220 2020 3120 2020 0 2 1 │ │ │ │ +000187b0: 2020 3220 2020 2033 207c 0a2b 2d2d 2d2d 2 3 |.+---- │ │ │ │ +000187c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000187e0: 2d2d 2d2d 2d2d 2b0a 7c69 3338 203a 2063 ------+.|i38 : c │ │ │ │ +000187f0: 736d 313d 4353 4d28 4368 2c55 2920 2020 sm1=CSM(Ch,U) │ │ │ │ +00018800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018840: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00018850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00018880: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00018890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188a0: 7c0a 7c6f 3338 203d 202d 2033 7820 7820 |.|o38 = - 3x x │ │ │ │ -000188b0: 202b 2078 2020 2d20 3578 2020 2b20 3278 + x - 5x + 2x │ │ │ │ -000188c0: 2020 2b20 3120 2020 2020 2020 207c 0a7c + 1 |.| │ │ │ │ -000188d0: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -000188e0: 2033 2020 2020 2032 2020 2020 2033 2020 3 2 3 │ │ │ │ -000188f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00018840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018850: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00018860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018870: 6f33 3820 3d20 2d20 3378 2078 2020 2b20 o38 = - 3x x + │ │ │ │ +00018880: 7820 202d 2035 7820 202b 2032 7820 202b x - 5x + 2x + │ │ │ │ +00018890: 2031 2020 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ +000188a0: 2020 2020 2020 2032 2033 2020 2020 3320 2 3 3 │ │ │ │ +000188b0: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000188c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000188d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000188e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000188f0: 2020 2020 7c0a 7c6f 3338 203a 2043 6820 |.|o38 : Ch │ │ │ │ 00018900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018920: 2020 2020 2020 207c 0a7c 6f33 3820 3a20 |.|o38 : │ │ │ │ -00018930: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ -00018940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018950: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00018960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018980: 2d2b 0a0a 416c 6c20 7468 6520 6578 616d -+..All the exam │ │ │ │ -00018990: 706c 6573 2077 6572 6520 646f 6e65 2075 ples were done u │ │ │ │ -000189a0: 7369 6e67 2073 796d 626f 6c69 6320 636f sing symbolic co │ │ │ │ -000189b0: 6d70 7574 6174 696f 6e73 2077 6974 6820 mputations with │ │ │ │ -000189c0: 4772 5c22 6f62 6e65 7220 6261 7365 732e Gr\"obner bases. │ │ │ │ -000189d0: 0a43 6861 6e67 696e 6720 7468 6520 6f70 .Changing the op │ │ │ │ -000189e0: 7469 6f6e 202a 6e6f 7465 2043 6f6d 704d tion *note CompM │ │ │ │ -000189f0: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ -00018a00: 642c 2074 6f20 6265 7274 696e 6920 7769 d, to bertini wi │ │ │ │ -00018a10: 6c6c 2064 6f20 7468 6520 6d61 696e 0a63 ll do the main.c │ │ │ │ -00018a20: 6f6d 7075 7461 7469 6f6e 7320 6e75 6d65 omputations nume │ │ │ │ -00018a30: 7269 6361 6c6c 792c 2070 726f 7669 6465 rically, provide │ │ │ │ -00018a40: 6420 4265 7274 696e 6920 6973 202a 6e6f d Bertini is *no │ │ │ │ -00018a50: 7465 2069 6e73 7461 6c6c 6564 2061 6e64 te installed and │ │ │ │ -00018a60: 2063 6f6e 6669 6775 7265 643a 0a63 6f6e configured:.con │ │ │ │ -00018a70: 6669 6775 7269 6e67 2042 6572 7469 6e69 figuring Bertini │ │ │ │ -00018a80: 2c2e 204e 6f74 6520 7468 6174 2074 6865 ,. Note that the │ │ │ │ -00018a90: 2062 6572 7469 6e69 2061 6e64 2050 6e52 bertini and PnR │ │ │ │ -00018aa0: 6573 6964 7561 6c20 6f70 7469 6f6e 7320 esidual options │ │ │ │ -00018ab0: 6d61 7920 6f6e 6c79 2062 650a 7573 6564 may only be.used │ │ │ │ -00018ac0: 2066 6f72 2073 7562 7363 6865 6d65 7320 for subschemes │ │ │ │ -00018ad0: 6f66 205c 5050 5e6e 2e0a 0a4f 6273 6572 of \PP^n...Obser │ │ │ │ -00018ae0: 7665 2074 6861 7420 7468 6520 616c 676f ve that the algo │ │ │ │ -00018af0: 7269 7468 6d20 6973 2061 2070 726f 6261 rithm is a proba │ │ │ │ -00018b00: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00018b10: 686d 2061 6e64 206d 6179 2067 6976 6520 hm and may give │ │ │ │ -00018b20: 6120 7772 6f6e 670a 616e 7377 6572 2077 a wrong.answer w │ │ │ │ -00018b30: 6974 6820 6120 736d 616c 6c20 6275 7420 ith a small but │ │ │ │ -00018b40: 6e6f 6e7a 6572 6f20 7072 6f62 6162 696c nonzero probabil │ │ │ │ -00018b50: 6974 792e 2052 6561 6420 6d6f 7265 2075 ity. Read more u │ │ │ │ -00018b60: 6e64 6572 202a 6e6f 7465 0a70 726f 6261 nder *note.proba │ │ │ │ -00018b70: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00018b80: 686d 3a20 7072 6f62 6162 696c 6973 7469 hm: probabilisti │ │ │ │ -00018b90: 6320 616c 676f 7269 7468 6d2c 2e0a 0a0a c algorithm,.... │ │ │ │ -00018ba0: 0a57 6179 7320 746f 2075 7365 2043 534d .Ways to use CSM │ │ │ │ -00018bb0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00018bc0: 3d3d 0a0a 2020 2a20 2243 534d 2849 6465 ==.. * "CSM(Ide │ │ │ │ -00018bd0: 616c 2922 0a20 202a 2022 4353 4d28 4964 al)". * "CSM(Id │ │ │ │ -00018be0: 6561 6c2c 5379 6d62 6f6c 2922 0a20 202a eal,Symbol)". * │ │ │ │ -00018bf0: 2022 4353 4d28 5175 6f74 6965 6e74 5269 "CSM(QuotientRi │ │ │ │ -00018c00: 6e67 2c49 6465 616c 2922 0a20 202a 2022 ng,Ideal)". * " │ │ │ │ -00018c10: 4353 4d28 5175 6f74 6965 6e74 5269 6e67 CSM(QuotientRing │ │ │ │ -00018c20: 2c49 6465 616c 2c4d 7574 6162 6c65 4861 ,Ideal,MutableHa │ │ │ │ -00018c30: 7368 5461 626c 6529 220a 0a46 6f72 2074 shTable)"..For t │ │ │ │ -00018c40: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00018c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00018c60: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00018c70: 7465 2043 534d 3a20 4353 4d2c 2069 7320 te CSM: CSM, is │ │ │ │ -00018c80: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -00018c90: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ -00018ca0: 696f 6e73 3a0a 284d 6163 6175 6c61 7932 ions:.(Macaulay2 │ │ │ │ -00018cb0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00018cc0: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ -00018cd0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d20: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00018d30: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00018d40: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00018d50: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00018d60: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00018d70: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00018d80: 6163 6b61 6765 732f 0a43 6861 7261 6374 ackages/.Charact │ │ │ │ -00018d90: 6572 6973 7469 6343 6c61 7373 6573 2e6d eristicClasses.m │ │ │ │ -00018da0: 323a 3232 3231 3a30 2e0a 1f0a 4669 6c65 2:2221:0....File │ │ │ │ -00018db0: 3a20 4368 6172 6163 7465 7269 7374 6963 : Characteristic │ │ │ │ -00018dc0: 436c 6173 7365 732e 696e 666f 2c20 4e6f Classes.info, No │ │ │ │ -00018dd0: 6465 3a20 4575 6c65 722c 204e 6578 743a de: Euler, Next: │ │ │ │ -00018de0: 2045 756c 6572 4166 6669 6e65 2c20 5072 EulerAffine, Pr │ │ │ │ -00018df0: 6576 3a20 4353 4d2c 2055 703a 2054 6f70 ev: CSM, Up: Top │ │ │ │ -00018e00: 0a0a 4575 6c65 7220 2d2d 2054 6865 2045 ..Euler -- The E │ │ │ │ -00018e10: 756c 6572 2043 6861 7261 6374 6572 6973 uler Characteris │ │ │ │ -00018e20: 7469 630a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a tic.************ │ │ │ │ -00018e30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00018e40: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00018e50: 3a20 0a20 2020 2020 2020 2045 756c 6572 : . Euler │ │ │ │ -00018e60: 2049 0a20 2020 2020 2020 2045 756c 6572 I. Euler │ │ │ │ -00018e70: 2858 2c4a 290a 2020 2020 2020 2020 4575 (X,J). Eu │ │ │ │ -00018e80: 6c65 7220 6373 6d0a 2020 2a20 496e 7075 ler csm. * Inpu │ │ │ │ -00018e90: 7473 3a0a 2020 2020 2020 2a20 492c 2061 ts:. * I, a │ │ │ │ -00018ea0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ -00018eb0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ -00018ec0: 616c 2c2c 2061 206d 756c 7469 2d68 6f6d al,, a multi-hom │ │ │ │ -00018ed0: 6f67 656e 656f 7573 2069 6465 616c 2069 ogeneous ideal i │ │ │ │ -00018ee0: 6e20 610a 2020 2020 2020 2020 6772 6164 n a. grad │ │ │ │ -00018ef0: 6564 2070 6f6c 796e 6f6d 6961 6c20 7269 ed polynomial ri │ │ │ │ -00018f00: 6e67 206f 7665 7220 6120 6669 656c 6420 ng over a field │ │ │ │ -00018f10: 6465 6669 6e69 6e67 2061 2063 6c6f 7365 defining a close │ │ │ │ -00018f20: 6420 7375 6273 6368 656d 6520 5620 6f66 d subscheme V of │ │ │ │ -00018f30: 0a20 2020 2020 2020 205c 5050 5e7b 6e5f . \PP^{n_ │ │ │ │ -00018f40: 317d 782e 2e2e 785c 5050 5e7b 6e5f 6d7d 1}x...x\PP^{n_m} │ │ │ │ -00018f50: 0a20 2020 2020 202a 204a 2c20 616e 202a . * J, an * │ │ │ │ -00018f60: 6e6f 7465 2069 6465 616c 3a20 284d 6163 note ideal: (Mac │ │ │ │ -00018f70: 6175 6c61 7932 446f 6329 4964 6561 6c2c aulay2Doc)Ideal, │ │ │ │ -00018f80: 2c20 616e 2069 6465 616c 2069 6e20 7468 , an ideal in th │ │ │ │ -00018f90: 6520 6772 6164 6564 0a20 2020 2020 2020 e graded. │ │ │ │ -00018fa0: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ -00018fb0: 2077 6869 6368 2069 7320 636f 6f72 6469 which is coordi │ │ │ │ -00018fc0: 6e61 7465 2072 696e 6720 6f66 2074 6865 nate ring of the │ │ │ │ -00018fd0: 204e 6f72 6d61 6c20 546f 7269 6320 5661 Normal Toric Va │ │ │ │ -00018fe0: 7269 6574 7920 580a 2020 2020 2020 2a20 riety X. * │ │ │ │ -00018ff0: 582c 2061 202a 6e6f 7465 206e 6f72 6d61 X, a *note norma │ │ │ │ -00019000: 6c20 746f 7269 6320 7661 7269 6574 793a l toric variety: │ │ │ │ -00019010: 0a20 2020 2020 2020 2028 4e6f 726d 616c . (Normal │ │ │ │ -00019020: 546f 7269 6356 6172 6965 7469 6573 294e ToricVarieties)N │ │ │ │ -00019030: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -00019040: 792c 2c20 6120 6e6f 726d 616c 2074 6f72 y,, a normal tor │ │ │ │ -00019050: 6963 2076 6172 6965 7479 2077 6869 6368 ic variety which │ │ │ │ -00019060: 0a20 2020 2020 2020 2069 7320 7468 6520 . is the │ │ │ │ -00019070: 616d 6269 656e 7420 7370 6163 6520 7468 ambient space th │ │ │ │ -00019080: 6174 2077 6520 6172 6520 776f 726b 696e at we are workin │ │ │ │ -00019090: 6720 696e 0a20 2020 2020 202a 2063 736d g in. * csm │ │ │ │ -000190a0: 2c20 6120 2a6e 6f74 6520 7269 6e67 2065 , a *note ring e │ │ │ │ -000190b0: 6c65 6d65 6e74 3a20 284d 6163 6175 6c61 lement: (Macaula │ │ │ │ -000190c0: 7932 446f 6329 5269 6e67 456c 656d 656e y2Doc)RingElemen │ │ │ │ -000190d0: 742c 2c20 7468 6520 4353 4d20 636c 6173 t,, the CSM clas │ │ │ │ -000190e0: 7320 6f66 0a20 2020 2020 2020 2073 6f6d s of. som │ │ │ │ -000190f0: 6520 7661 7269 6574 7920 560a 2020 2a20 e variety V. * │ │ │ │ -00019100: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ -00019110: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ -00019120: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ -00019130: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -00019140: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ -00019150: 2020 2a20 436f 6d70 4d65 7468 6f64 2028 * CompMethod ( │ │ │ │ -00019160: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00019170: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ -00019180: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00019190: 2020 2020 2050 726f 6a65 6374 6976 6544 ProjectiveD │ │ │ │ -000191a0: 6567 7265 652c 2050 726f 6a65 6374 6976 egree, Projectiv │ │ │ │ -000191b0: 6544 6567 7265 652c 2061 7070 6c69 6361 eDegree, applica │ │ │ │ -000191c0: 626c 6520 666f 7220 616c 6c20 6361 7365 ble for all case │ │ │ │ -000191d0: 7320 7768 6572 6520 7468 650a 2020 2020 s where the. │ │ │ │ -000191e0: 2020 2020 6d65 7468 6f64 7320 696e 2074 methods in t │ │ │ │ -000191f0: 6865 2070 6163 6b61 6765 206d 6179 2062 he package may b │ │ │ │ -00019200: 6520 7573 6564 0a20 2020 2020 202a 2043 e used. * C │ │ │ │ -00019210: 6f6d 704d 6574 686f 6420 286d 6973 7369 ompMethod (missi │ │ │ │ -00019220: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00019230: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -00019240: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ -00019250: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ -00019260: 2c20 506e 5265 7369 6475 616c 2c20 7468 , PnResidual, th │ │ │ │ -00019270: 6973 2061 6c67 6f72 6974 686d 206d 6179 is algorithm may │ │ │ │ -00019280: 2062 6520 7573 6564 2066 6f72 2073 7562 be used for sub │ │ │ │ -00019290: 7363 6865 6d65 730a 2020 2020 2020 2020 schemes. │ │ │ │ -000192a0: 6f66 205c 5050 5e6e 206f 6e6c 790a 2020 of \PP^n only. │ │ │ │ -000192b0: 2020 2020 2a20 4d65 7468 6f64 2028 6d69 * Method (mi │ │ │ │ -000192c0: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -000192d0: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -000192e0: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -000192f0: 2020 2049 6e63 6c75 7369 6f6e 4578 636c InclusionExcl │ │ │ │ -00019300: 7573 696f 6e2c 2049 6e63 6c75 7369 6f6e usion, Inclusion │ │ │ │ -00019310: 4578 636c 7573 696f 6e2c 2061 7070 6c69 Exclusion, appli │ │ │ │ -00019320: 6361 626c 6520 666f 7220 616c 6c20 696e cable for all in │ │ │ │ -00019330: 7075 7473 0a20 2020 2020 202a 204d 6574 puts. * Met │ │ │ │ -00019340: 686f 6420 286d 6973 7369 6e67 2064 6f63 hod (missing doc │ │ │ │ -00019350: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -00019360: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -00019370: 650a 2020 2020 2020 2020 496e 636c 7573 e. Inclus │ │ │ │ -00019380: 696f 6e45 7863 6c75 7369 6f6e 2c20 4469 ionExclusion, Di │ │ │ │ -00019390: 7265 6374 436f 6d70 6c65 7465 496e 742c rectCompleteInt, │ │ │ │ -000193a0: 2074 6869 7320 6d65 7468 6f64 206d 6179 this method may │ │ │ │ -000193b0: 2070 726f 7669 6465 2061 0a20 2020 2020 provide a. │ │ │ │ -000193c0: 2020 2070 6572 666f 726d 616e 6365 2069 performance i │ │ │ │ -000193d0: 6d70 726f 7665 6d65 6e74 2077 6865 6e20 mprovement when │ │ │ │ -000193e0: 7468 6520 696e 7075 7420 6973 2061 2063 the input is a c │ │ │ │ -000193f0: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -00019400: 7469 6f6e 2c20 6966 0a20 2020 2020 2020 tion, if. │ │ │ │ -00019410: 2074 6865 2069 6e70 7574 2069 7320 6e6f the input is no │ │ │ │ -00019420: 7420 6120 636f 6d70 6c65 7465 2069 6e74 t a complete int │ │ │ │ -00019430: 6572 7365 6374 696f 6e20 696e 636c 7573 ersection inclus │ │ │ │ -00019440: 696f 6e2f 6578 636c 7573 696f 6e20 6974 ion/exclusion it │ │ │ │ -00019450: 2077 696c 6c0a 2020 2020 2020 2020 7265 will. re │ │ │ │ -00019460: 7475 726e 2061 6e20 6572 726f 720a 2020 turn an error. │ │ │ │ -00019470: 2020 2020 2a20 496e 7075 7449 7353 6d6f * InputIsSmo │ │ │ │ -00019480: 6f74 6820 286d 6973 7369 6e67 2064 6f63 oth (missing doc │ │ │ │ -00019490: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -000194a0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -000194b0: 6520 6661 6c73 652c 2074 6869 730a 2020 e false, this. │ │ │ │ -000194c0: 2020 2020 2020 6f70 7469 6f6e 2068 6173 option has │ │ │ │ -000194d0: 2076 616c 7565 7320 7472 7565 2f66 616c values true/fal │ │ │ │ -000194e0: 7365 2061 6e64 2074 656c 6c73 2074 6865 se and tells the │ │ │ │ -000194f0: 206d 6574 686f 6420 7768 6574 6865 7220 method whether │ │ │ │ -00019500: 746f 2061 7373 756d 6520 7468 650a 2020 to assume the. │ │ │ │ -00019510: 2020 2020 2020 696e 7075 7420 6964 6561 input idea │ │ │ │ -00019520: 6c20 6465 6669 6e65 7320 6120 736d 6f6f l defines a smoo │ │ │ │ -00019530: 7468 2073 6368 656d 652c 2061 6e64 2068 th scheme, and h │ │ │ │ -00019540: 656e 6365 2074 6f20 6361 6c6c 2074 6865 ence to call the │ │ │ │ -00019550: 206d 6574 686f 6420 4368 6572 6e0a 2020 method Chern. │ │ │ │ -00019560: 2020 2020 2020 696e 7374 6561 6420 666f instead fo │ │ │ │ -00019570: 7220 7265 6475 6365 6420 7275 6e20 7469 r reduced run ti │ │ │ │ -00019580: 6d65 2c20 616c 7465 726e 6174 6976 656c me, alternativel │ │ │ │ -00019590: 7920 7468 6520 4368 6572 6e20 6675 6e63 y the Chern func │ │ │ │ -000195a0: 7469 6f6e 2063 616e 2062 650a 2020 2020 tion can be. │ │ │ │ -000195b0: 2020 2020 7573 6564 2064 6972 6563 746c used directl │ │ │ │ -000195c0: 790a 2020 2020 2020 2a20 4f75 7470 7574 y. * Output │ │ │ │ -000195d0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -000195e0: 2076 616c 7565 2043 686f 7752 696e 6745 value ChowRingE │ │ │ │ -000195f0: 6c65 6d65 6e74 2c20 7468 6520 7479 7065 lement, the type │ │ │ │ -00019600: 206f 6620 6f75 7470 7574 2074 6f0a 2020 of output to. │ │ │ │ -00019610: 2020 2020 2020 7265 7475 726e 2074 6865 return the │ │ │ │ -00019620: 2064 6566 6175 6c74 206f 7574 7075 7420 default output │ │ │ │ -00019630: 6973 2061 6e20 696e 7465 6765 720a 2020 is an integer. │ │ │ │ -00019640: 2020 2020 2a20 4f75 7470 7574 203d 3e20 * Output => │ │ │ │ -00019650: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00019660: 7565 2043 686f 7752 696e 6745 6c65 6d65 ue ChowRingEleme │ │ │ │ -00019670: 6e74 2c20 4861 7368 466f 726d 2c20 7468 nt, HashForm, th │ │ │ │ -00019680: 6520 7479 7065 206f 660a 2020 2020 2020 e type of. │ │ │ │ -00019690: 2020 6f75 7470 7574 2074 6f20 7265 7475 output to retu │ │ │ │ -000196a0: 726e 2c20 4861 7368 466f 726d 2072 6574 rn, HashForm ret │ │ │ │ -000196b0: 7572 6e73 2061 204d 7574 6162 6c65 4861 urns a MutableHa │ │ │ │ -000196c0: 7368 5461 626c 6520 636f 6e74 6169 6e69 shTable containi │ │ │ │ -000196d0: 6e67 2074 6865 0a20 2020 2020 2020 206b ng the. k │ │ │ │ -000196e0: 6579 2022 4353 4d22 2028 7468 6520 4353 ey "CSM" (the CS │ │ │ │ -000196f0: 4d20 636c 6173 7329 2c20 616e 6420 6b65 M class), and ke │ │ │ │ -00019700: 7973 206f 6620 7468 6520 666f 726d 0a20 ys of the form. │ │ │ │ -00019710: 2020 2020 2020 205c 7b30 5c7d 2c5c 7b31 \{0\},\{1 │ │ │ │ -00019720: 5c7d 2c5c 7b32 5c7d 2c2e 2e2e 2c5c 7b30 \},\{2\},...,\{0 │ │ │ │ -00019730: 2c31 5c7d 2c5c 7b30 2c32 5c7d 202e 2e2e ,1\},\{0,2\} ... │ │ │ │ -00019740: 2e5c 7b30 2c31 2c32 5c7d 2e2e 2e20 616e .\{0,1,2\}... an │ │ │ │ -00019750: 6420 736f 206f 6e20 7768 6963 680a 2020 d so on which. │ │ │ │ -00019760: 2020 2020 2020 636f 7272 6573 706f 6e64 correspond │ │ │ │ -00019770: 2074 6f20 7468 6520 696e 6469 6365 7320 to the indices │ │ │ │ -00019780: 6f66 2074 6865 2070 6f73 7369 626c 6520 of the possible │ │ │ │ -00019790: 7375 6273 6574 7320 6f66 2074 6865 2067 subsets of the g │ │ │ │ -000197a0: 656e 6572 6174 6f72 7320 6f66 0a20 2020 enerators of. │ │ │ │ -000197b0: 2020 2020 2074 6865 2069 6e70 7574 2069 the input i │ │ │ │ -000197c0: 6465 616c 2c20 666f 7220 6561 6368 2073 deal, for each s │ │ │ │ -000197d0: 6574 206f 6620 696e 6469 6365 7320 7468 et of indices th │ │ │ │ -000197e0: 6520 4353 4d20 636c 6173 7320 6f66 2074 e CSM class of t │ │ │ │ -000197f0: 6865 0a20 2020 2020 2020 2068 7970 6572 he. hyper │ │ │ │ -00019800: 7375 7266 6163 6520 6769 7665 6e20 6279 surface given by │ │ │ │ -00019810: 2074 6865 2070 726f 6475 6374 206f 6620 the product of │ │ │ │ -00019820: 616c 6c20 706f 6c79 6e6f 6d69 616c 7320 all polynomials │ │ │ │ -00019830: 696e 2074 6865 0a20 2020 2020 2020 2063 in the. c │ │ │ │ -00019840: 6f72 7265 7370 6f6e 6469 6e67 2073 6574 orresponding set │ │ │ │ -00019850: 206f 6620 6765 6e65 7261 746f 7273 2069 of generators i │ │ │ │ -00019860: 7320 7374 6f72 6564 2c20 7468 6572 6520 s stored, there │ │ │ │ -00019870: 6973 206e 6f20 6578 7472 6120 636f 7374 is no extra cost │ │ │ │ -00019880: 2074 6f0a 2020 2020 2020 2020 7573 696e to. usin │ │ │ │ -00019890: 6720 7468 6973 206f 7074 696f 6e0a 2020 g this option. │ │ │ │ -000198a0: 2020 2020 2a20 496e 6473 4f66 536d 6f6f * IndsOfSmoo │ │ │ │ -000198b0: 7468 2028 6d69 7373 696e 6720 646f 6375 th (missing docu │ │ │ │ -000198c0: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -000198d0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -000198e0: 207b 7d2c 2074 6869 730a 2020 2020 2020 {}, this. │ │ │ │ -000198f0: 2020 6f70 7469 6f6e 206d 6179 2073 7065 option may spe │ │ │ │ -00019900: 6564 2075 7020 7468 6520 7275 6e20 7469 ed up the run ti │ │ │ │ -00019910: 6d65 2077 6865 6e20 7573 696e 6720 7468 me when using th │ │ │ │ -00019920: 6520 4469 7265 6374 436f 6d70 6c65 7465 e DirectComplete │ │ │ │ -00019930: 496e 740a 2020 2020 2020 2020 4d65 7468 Int. Meth │ │ │ │ -00019940: 6f64 2069 6620 7468 6520 7573 6572 206b od if the user k │ │ │ │ -00019950: 6e6f 7773 2061 6464 6974 696f 6e61 6c20 nows additional │ │ │ │ -00019960: 696e 666f 726d 6174 696f 6e20 6162 6f75 information abou │ │ │ │ -00019970: 7420 7468 6520 696e 7075 7420 6964 6561 t the input idea │ │ │ │ -00019980: 6c2c 0a20 2020 2020 2020 2073 6565 202a l,. see * │ │ │ │ -00019990: 6e6f 7465 2049 6e64 734f 6653 6d6f 6f74 note IndsOfSmoot │ │ │ │ -000199a0: 683a 2049 6e64 734f 6653 6d6f 6f74 682c h: IndsOfSmooth, │ │ │ │ -000199b0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -000199c0: 2020 2020 2a20 6120 2a6e 6f74 6520 7269 * a *note ri │ │ │ │ -000199d0: 6e67 2065 6c65 6d65 6e74 3a20 284d 6163 ng element: (Mac │ │ │ │ -000199e0: 6175 6c61 7932 446f 6329 5269 6e67 456c aulay2Doc)RingEl │ │ │ │ -000199f0: 656d 656e 742c 2c20 7468 6520 4575 6c65 ement,, the Eule │ │ │ │ -00019a00: 720a 2020 2020 2020 2020 6368 6172 6163 r. charac │ │ │ │ -00019a10: 7465 7269 7374 6963 0a0a 4465 7363 7269 teristic..Descri │ │ │ │ -00019a20: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00019a30: 3d0a 0a46 6f72 2061 2073 7562 7363 6865 =..For a subsche │ │ │ │ -00019a40: 6d65 2056 206f 6620 616e 2061 7070 6c69 me V of an appli │ │ │ │ -00019a50: 6361 626c 6520 746f 7269 6320 7661 7269 cable toric vari │ │ │ │ -00019a60: 6574 7920 582c 2074 6869 7320 636f 6d6d ety X, this comm │ │ │ │ -00019a70: 616e 6420 636f 6d70 7574 6573 2074 6865 and computes the │ │ │ │ -00019a80: 0a45 756c 6572 2063 6861 7261 6374 6572 .Euler character │ │ │ │ -00019a90: 6973 7469 630a 0a2b 2d2d 2d2d 2d2d 2d2d istic..+-------- │ │ │ │ +00018920: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00018930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00018950: 0a41 6c6c 2074 6865 2065 7861 6d70 6c65 .All the example │ │ │ │ +00018960: 7320 7765 7265 2064 6f6e 6520 7573 696e s were done usin │ │ │ │ +00018970: 6720 7379 6d62 6f6c 6963 2063 6f6d 7075 g symbolic compu │ │ │ │ +00018980: 7461 7469 6f6e 7320 7769 7468 2047 725c tations with Gr\ │ │ │ │ +00018990: 226f 626e 6572 2062 6173 6573 2e0a 4368 "obner bases..Ch │ │ │ │ +000189a0: 616e 6769 6e67 2074 6865 206f 7074 696f anging the optio │ │ │ │ +000189b0: 6e20 2a6e 6f74 6520 436f 6d70 4d65 7468 n *note CompMeth │ │ │ │ +000189c0: 6f64 3a20 436f 6d70 4d65 7468 6f64 2c20 od: CompMethod, │ │ │ │ +000189d0: 746f 2062 6572 7469 6e69 2077 696c 6c20 to bertini will │ │ │ │ +000189e0: 646f 2074 6865 206d 6169 6e0a 636f 6d70 do the main.comp │ │ │ │ +000189f0: 7574 6174 696f 6e73 206e 756d 6572 6963 utations numeric │ │ │ │ +00018a00: 616c 6c79 2c20 7072 6f76 6964 6564 2042 ally, provided B │ │ │ │ +00018a10: 6572 7469 6e69 2069 7320 2a6e 6f74 6520 ertini is *note │ │ │ │ +00018a20: 696e 7374 616c 6c65 6420 616e 6420 636f installed and co │ │ │ │ +00018a30: 6e66 6967 7572 6564 3a0a 636f 6e66 6967 nfigured:.config │ │ │ │ +00018a40: 7572 696e 6720 4265 7274 696e 692c 2e20 uring Bertini,. │ │ │ │ +00018a50: 4e6f 7465 2074 6861 7420 7468 6520 6265 Note that the be │ │ │ │ +00018a60: 7274 696e 6920 616e 6420 506e 5265 7369 rtini and PnResi │ │ │ │ +00018a70: 6475 616c 206f 7074 696f 6e73 206d 6179 dual options may │ │ │ │ +00018a80: 206f 6e6c 7920 6265 0a75 7365 6420 666f only be.used fo │ │ │ │ +00018a90: 7220 7375 6273 6368 656d 6573 206f 6620 r subschemes of │ │ │ │ +00018aa0: 5c50 505e 6e2e 0a0a 4f62 7365 7276 6520 \PP^n...Observe │ │ │ │ +00018ab0: 7468 6174 2074 6865 2061 6c67 6f72 6974 that the algorit │ │ │ │ +00018ac0: 686d 2069 7320 6120 7072 6f62 6162 696c hm is a probabil │ │ │ │ +00018ad0: 6973 7469 6320 616c 676f 7269 7468 6d20 istic algorithm │ │ │ │ +00018ae0: 616e 6420 6d61 7920 6769 7665 2061 2077 and may give a w │ │ │ │ +00018af0: 726f 6e67 0a61 6e73 7765 7220 7769 7468 rong.answer with │ │ │ │ +00018b00: 2061 2073 6d61 6c6c 2062 7574 206e 6f6e a small but non │ │ │ │ +00018b10: 7a65 726f 2070 726f 6261 6269 6c69 7479 zero probability │ │ │ │ +00018b20: 2e20 5265 6164 206d 6f72 6520 756e 6465 . Read more unde │ │ │ │ +00018b30: 7220 2a6e 6f74 650a 7072 6f62 6162 696c r *note.probabil │ │ │ │ +00018b40: 6973 7469 6320 616c 676f 7269 7468 6d3a istic algorithm: │ │ │ │ +00018b50: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ +00018b60: 6c67 6f72 6974 686d 2c2e 0a0a 0a0a 5761 lgorithm,.....Wa │ │ │ │ +00018b70: 7973 2074 6f20 7573 6520 4353 4d3a 0a3d ys to use CSM:.= │ │ │ │ +00018b80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00018b90: 0a20 202a 2022 4353 4d28 4964 6561 6c29 . * "CSM(Ideal) │ │ │ │ +00018ba0: 220a 2020 2a20 2243 534d 2849 6465 616c ". * "CSM(Ideal │ │ │ │ +00018bb0: 2c53 796d 626f 6c29 220a 2020 2a20 2243 ,Symbol)". * "C │ │ │ │ +00018bc0: 534d 2851 756f 7469 656e 7452 696e 672c SM(QuotientRing, │ │ │ │ +00018bd0: 4964 6561 6c29 220a 2020 2a20 2243 534d Ideal)". * "CSM │ │ │ │ +00018be0: 2851 756f 7469 656e 7452 696e 672c 4964 (QuotientRing,Id │ │ │ │ +00018bf0: 6561 6c2c 4d75 7461 626c 6548 6173 6854 eal,MutableHashT │ │ │ │ +00018c00: 6162 6c65 2922 0a0a 466f 7220 7468 6520 able)"..For the │ │ │ │ +00018c10: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00018c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00018c30: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00018c40: 4353 4d3a 2043 534d 2c20 6973 2061 202a CSM: CSM, is a * │ │ │ │ +00018c50: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +00018c60: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +00018c70: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ +00018c80: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +00018c90: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ +00018ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00018cf0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00018d00: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00018d10: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00018d20: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00018d30: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00018d40: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00018d50: 6167 6573 2f0a 4368 6172 6163 7465 7269 ages/.Characteri │ │ │ │ +00018d60: 7374 6963 436c 6173 7365 732e 6d32 3a32 sticClasses.m2:2 │ │ │ │ +00018d70: 3232 313a 302e 0a1f 0a46 696c 653a 2043 221:0....File: C │ │ │ │ +00018d80: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ +00018d90: 7373 6573 2e69 6e66 6f2c 204e 6f64 653a sses.info, Node: │ │ │ │ +00018da0: 2045 756c 6572 2c20 4e65 7874 3a20 4575 Euler, Next: Eu │ │ │ │ +00018db0: 6c65 7241 6666 696e 652c 2050 7265 763a lerAffine, Prev: │ │ │ │ +00018dc0: 2043 534d 2c20 5570 3a20 546f 700a 0a45 CSM, Up: Top..E │ │ │ │ +00018dd0: 756c 6572 202d 2d20 5468 6520 4575 6c65 uler -- The Eule │ │ │ │ +00018de0: 7220 4368 6172 6163 7465 7269 7374 6963 r Characteristic │ │ │ │ +00018df0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +00018e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00018e10: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00018e20: 2020 2020 2020 2020 4575 6c65 7220 490a Euler I. │ │ │ │ +00018e30: 2020 2020 2020 2020 4575 6c65 7228 582c Euler(X, │ │ │ │ +00018e40: 4a29 0a20 2020 2020 2020 2045 756c 6572 J). Euler │ │ │ │ +00018e50: 2063 736d 0a20 202a 2049 6e70 7574 733a csm. * Inputs: │ │ │ │ +00018e60: 0a20 2020 2020 202a 2049 2c20 616e 202a . * I, an * │ │ │ │ +00018e70: 6e6f 7465 2069 6465 616c 3a20 284d 6163 note ideal: (Mac │ │ │ │ +00018e80: 6175 6c61 7932 446f 6329 4964 6561 6c2c aulay2Doc)Ideal, │ │ │ │ +00018e90: 2c20 6120 6d75 6c74 692d 686f 6d6f 6765 , a multi-homoge │ │ │ │ +00018ea0: 6e65 6f75 7320 6964 6561 6c20 696e 2061 neous ideal in a │ │ │ │ +00018eb0: 0a20 2020 2020 2020 2067 7261 6465 6420 . graded │ │ │ │ +00018ec0: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ +00018ed0: 6f76 6572 2061 2066 6965 6c64 2064 6566 over a field def │ │ │ │ +00018ee0: 696e 696e 6720 6120 636c 6f73 6564 2073 ining a closed s │ │ │ │ +00018ef0: 7562 7363 6865 6d65 2056 206f 660a 2020 ubscheme V of. │ │ │ │ +00018f00: 2020 2020 2020 5c50 505e 7b6e 5f31 7d78 \PP^{n_1}x │ │ │ │ +00018f10: 2e2e 2e78 5c50 505e 7b6e 5f6d 7d0a 2020 ...x\PP^{n_m}. │ │ │ │ +00018f20: 2020 2020 2a20 4a2c 2061 6e20 2a6e 6f74 * J, an *not │ │ │ │ +00018f30: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ +00018f40: 6179 3244 6f63 2949 6465 616c 2c2c 2061 ay2Doc)Ideal,, a │ │ │ │ +00018f50: 6e20 6964 6561 6c20 696e 2074 6865 2067 n ideal in the g │ │ │ │ +00018f60: 7261 6465 640a 2020 2020 2020 2020 706f raded. po │ │ │ │ +00018f70: 6c79 6e6f 6d69 616c 2072 696e 6720 7768 lynomial ring wh │ │ │ │ +00018f80: 6963 6820 6973 2063 6f6f 7264 696e 6174 ich is coordinat │ │ │ │ +00018f90: 6520 7269 6e67 206f 6620 7468 6520 4e6f e ring of the No │ │ │ │ +00018fa0: 726d 616c 2054 6f72 6963 2056 6172 6965 rmal Toric Varie │ │ │ │ +00018fb0: 7479 2058 0a20 2020 2020 202a 2058 2c20 ty X. * X, │ │ │ │ +00018fc0: 6120 2a6e 6f74 6520 6e6f 726d 616c 2074 a *note normal t │ │ │ │ +00018fd0: 6f72 6963 2076 6172 6965 7479 3a0a 2020 oric variety:. │ │ │ │ +00018fe0: 2020 2020 2020 284e 6f72 6d61 6c54 6f72 (NormalTor │ │ │ │ +00018ff0: 6963 5661 7269 6574 6965 7329 4e6f 726d icVarieties)Norm │ │ │ │ +00019000: 616c 546f 7269 6356 6172 6965 7479 2c2c alToricVariety,, │ │ │ │ +00019010: 2061 206e 6f72 6d61 6c20 746f 7269 6320 a normal toric │ │ │ │ +00019020: 7661 7269 6574 7920 7768 6963 680a 2020 variety which. │ │ │ │ +00019030: 2020 2020 2020 6973 2074 6865 2061 6d62 is the amb │ │ │ │ +00019040: 6965 6e74 2073 7061 6365 2074 6861 7420 ient space that │ │ │ │ +00019050: 7765 2061 7265 2077 6f72 6b69 6e67 2069 we are working i │ │ │ │ +00019060: 6e0a 2020 2020 2020 2a20 6373 6d2c 2061 n. * csm, a │ │ │ │ +00019070: 202a 6e6f 7465 2072 696e 6720 656c 656d *note ring elem │ │ │ │ +00019080: 656e 743a 2028 4d61 6361 756c 6179 3244 ent: (Macaulay2D │ │ │ │ +00019090: 6f63 2952 696e 6745 6c65 6d65 6e74 2c2c oc)RingElement,, │ │ │ │ +000190a0: 2074 6865 2043 534d 2063 6c61 7373 206f the CSM class o │ │ │ │ +000190b0: 660a 2020 2020 2020 2020 736f 6d65 2076 f. some v │ │ │ │ +000190c0: 6172 6965 7479 2056 0a20 202a 202a 6e6f ariety V. * *no │ │ │ │ +000190d0: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +000190e0: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +000190f0: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +00019100: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +00019110: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +00019120: 2043 6f6d 704d 6574 686f 6420 286d 6973 CompMethod (mis │ │ │ │ +00019130: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +00019140: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +00019150: 756c 7420 7661 6c75 650a 2020 2020 2020 ult value. │ │ │ │ +00019160: 2020 5072 6f6a 6563 7469 7665 4465 6772 ProjectiveDegr │ │ │ │ +00019170: 6565 2c20 5072 6f6a 6563 7469 7665 4465 ee, ProjectiveDe │ │ │ │ +00019180: 6772 6565 2c20 6170 706c 6963 6162 6c65 gree, applicable │ │ │ │ +00019190: 2066 6f72 2061 6c6c 2063 6173 6573 2077 for all cases w │ │ │ │ +000191a0: 6865 7265 2074 6865 0a20 2020 2020 2020 here the. │ │ │ │ +000191b0: 206d 6574 686f 6473 2069 6e20 7468 6520 methods in the │ │ │ │ +000191c0: 7061 636b 6167 6520 6d61 7920 6265 2075 package may be u │ │ │ │ +000191d0: 7365 640a 2020 2020 2020 2a20 436f 6d70 sed. * Comp │ │ │ │ +000191e0: 4d65 7468 6f64 2028 6d69 7373 696e 6720 Method (missing │ │ │ │ +000191f0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +00019200: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00019210: 616c 7565 0a20 2020 2020 2020 2050 726f alue. Pro │ │ │ │ +00019220: 6a65 6374 6976 6544 6567 7265 652c 2050 jectiveDegree, P │ │ │ │ +00019230: 6e52 6573 6964 7561 6c2c 2074 6869 7320 nResidual, this │ │ │ │ +00019240: 616c 676f 7269 7468 6d20 6d61 7920 6265 algorithm may be │ │ │ │ +00019250: 2075 7365 6420 666f 7220 7375 6273 6368 used for subsch │ │ │ │ +00019260: 656d 6573 0a20 2020 2020 2020 206f 6620 emes. of │ │ │ │ +00019270: 5c50 505e 6e20 6f6e 6c79 0a20 2020 2020 \PP^n only. │ │ │ │ +00019280: 202a 204d 6574 686f 6420 286d 6973 7369 * Method (missi │ │ │ │ +00019290: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +000192a0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +000192b0: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +000192c0: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ +000192d0: 6f6e 2c20 496e 636c 7573 696f 6e45 7863 on, InclusionExc │ │ │ │ +000192e0: 6c75 7369 6f6e 2c20 6170 706c 6963 6162 lusion, applicab │ │ │ │ +000192f0: 6c65 2066 6f72 2061 6c6c 2069 6e70 7574 le for all input │ │ │ │ +00019300: 730a 2020 2020 2020 2a20 4d65 7468 6f64 s. * Method │ │ │ │ +00019310: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00019320: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00019330: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +00019340: 2020 2020 2020 2049 6e63 6c75 7369 6f6e Inclusion │ │ │ │ +00019350: 4578 636c 7573 696f 6e2c 2044 6972 6563 Exclusion, Direc │ │ │ │ +00019360: 7443 6f6d 706c 6574 6549 6e74 2c20 7468 tCompleteInt, th │ │ │ │ +00019370: 6973 206d 6574 686f 6420 6d61 7920 7072 is method may pr │ │ │ │ +00019380: 6f76 6964 6520 610a 2020 2020 2020 2020 ovide a. │ │ │ │ +00019390: 7065 7266 6f72 6d61 6e63 6520 696d 7072 performance impr │ │ │ │ +000193a0: 6f76 656d 656e 7420 7768 656e 2074 6865 ovement when the │ │ │ │ +000193b0: 2069 6e70 7574 2069 7320 6120 636f 6d70 input is a comp │ │ │ │ +000193c0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +000193d0: 6e2c 2069 660a 2020 2020 2020 2020 7468 n, if. th │ │ │ │ +000193e0: 6520 696e 7075 7420 6973 206e 6f74 2061 e input is not a │ │ │ │ +000193f0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +00019400: 6563 7469 6f6e 2069 6e63 6c75 7369 6f6e ection inclusion │ │ │ │ +00019410: 2f65 7863 6c75 7369 6f6e 2069 7420 7769 /exclusion it wi │ │ │ │ +00019420: 6c6c 0a20 2020 2020 2020 2072 6574 7572 ll. retur │ │ │ │ +00019430: 6e20 616e 2065 7272 6f72 0a20 2020 2020 n an error. │ │ │ │ +00019440: 202a 2049 6e70 7574 4973 536d 6f6f 7468 * InputIsSmooth │ │ │ │ +00019450: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00019460: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00019470: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +00019480: 616c 7365 2c20 7468 6973 0a20 2020 2020 alse, this. │ │ │ │ +00019490: 2020 206f 7074 696f 6e20 6861 7320 7661 option has va │ │ │ │ +000194a0: 6c75 6573 2074 7275 652f 6661 6c73 6520 lues true/false │ │ │ │ +000194b0: 616e 6420 7465 6c6c 7320 7468 6520 6d65 and tells the me │ │ │ │ +000194c0: 7468 6f64 2077 6865 7468 6572 2074 6f20 thod whether to │ │ │ │ +000194d0: 6173 7375 6d65 2074 6865 0a20 2020 2020 assume the. │ │ │ │ +000194e0: 2020 2069 6e70 7574 2069 6465 616c 2064 input ideal d │ │ │ │ +000194f0: 6566 696e 6573 2061 2073 6d6f 6f74 6820 efines a smooth │ │ │ │ +00019500: 7363 6865 6d65 2c20 616e 6420 6865 6e63 scheme, and henc │ │ │ │ +00019510: 6520 746f 2063 616c 6c20 7468 6520 6d65 e to call the me │ │ │ │ +00019520: 7468 6f64 2043 6865 726e 0a20 2020 2020 thod Chern. │ │ │ │ +00019530: 2020 2069 6e73 7465 6164 2066 6f72 2072 instead for r │ │ │ │ +00019540: 6564 7563 6564 2072 756e 2074 696d 652c educed run time, │ │ │ │ +00019550: 2061 6c74 6572 6e61 7469 7665 6c79 2074 alternatively t │ │ │ │ +00019560: 6865 2043 6865 726e 2066 756e 6374 696f he Chern functio │ │ │ │ +00019570: 6e20 6361 6e20 6265 0a20 2020 2020 2020 n can be. │ │ │ │ +00019580: 2075 7365 6420 6469 7265 6374 6c79 0a20 used directly. │ │ │ │ +00019590: 2020 2020 202a 204f 7574 7075 7420 3d3e * Output => │ │ │ │ +000195a0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +000195b0: 6c75 6520 4368 6f77 5269 6e67 456c 656d lue ChowRingElem │ │ │ │ +000195c0: 656e 742c 2074 6865 2074 7970 6520 6f66 ent, the type of │ │ │ │ +000195d0: 206f 7574 7075 7420 746f 0a20 2020 2020 output to. │ │ │ │ +000195e0: 2020 2072 6574 7572 6e20 7468 6520 6465 return the de │ │ │ │ +000195f0: 6661 756c 7420 6f75 7470 7574 2069 7320 fault output is │ │ │ │ +00019600: 616e 2069 6e74 6567 6572 0a20 2020 2020 an integer. │ │ │ │ +00019610: 202a 204f 7574 7075 7420 3d3e 202e 2e2e * Output => ... │ │ │ │ +00019620: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00019630: 4368 6f77 5269 6e67 456c 656d 656e 742c ChowRingElement, │ │ │ │ +00019640: 2048 6173 6846 6f72 6d2c 2074 6865 2074 HashForm, the t │ │ │ │ +00019650: 7970 6520 6f66 0a20 2020 2020 2020 206f ype of. o │ │ │ │ +00019660: 7574 7075 7420 746f 2072 6574 7572 6e2c utput to return, │ │ │ │ +00019670: 2048 6173 6846 6f72 6d20 7265 7475 726e HashForm return │ │ │ │ +00019680: 7320 6120 4d75 7461 626c 6548 6173 6854 s a MutableHashT │ │ │ │ +00019690: 6162 6c65 2063 6f6e 7461 696e 696e 6720 able containing │ │ │ │ +000196a0: 7468 650a 2020 2020 2020 2020 6b65 7920 the. key │ │ │ │ +000196b0: 2243 534d 2220 2874 6865 2043 534d 2063 "CSM" (the CSM c │ │ │ │ +000196c0: 6c61 7373 292c 2061 6e64 206b 6579 7320 lass), and keys │ │ │ │ +000196d0: 6f66 2074 6865 2066 6f72 6d0a 2020 2020 of the form. │ │ │ │ +000196e0: 2020 2020 5c7b 305c 7d2c 5c7b 315c 7d2c \{0\},\{1\}, │ │ │ │ +000196f0: 5c7b 325c 7d2c 2e2e 2e2c 5c7b 302c 315c \{2\},...,\{0,1\ │ │ │ │ +00019700: 7d2c 5c7b 302c 325c 7d20 2e2e 2e2e 5c7b },\{0,2\} ....\{ │ │ │ │ +00019710: 302c 312c 325c 7d2e 2e2e 2061 6e64 2073 0,1,2\}... and s │ │ │ │ +00019720: 6f20 6f6e 2077 6869 6368 0a20 2020 2020 o on which. │ │ │ │ +00019730: 2020 2063 6f72 7265 7370 6f6e 6420 746f correspond to │ │ │ │ +00019740: 2074 6865 2069 6e64 6963 6573 206f 6620 the indices of │ │ │ │ +00019750: 7468 6520 706f 7373 6962 6c65 2073 7562 the possible sub │ │ │ │ +00019760: 7365 7473 206f 6620 7468 6520 6765 6e65 sets of the gene │ │ │ │ +00019770: 7261 746f 7273 206f 660a 2020 2020 2020 rators of. │ │ │ │ +00019780: 2020 7468 6520 696e 7075 7420 6964 6561 the input idea │ │ │ │ +00019790: 6c2c 2066 6f72 2065 6163 6820 7365 7420 l, for each set │ │ │ │ +000197a0: 6f66 2069 6e64 6963 6573 2074 6865 2043 of indices the C │ │ │ │ +000197b0: 534d 2063 6c61 7373 206f 6620 7468 650a SM class of the. │ │ │ │ +000197c0: 2020 2020 2020 2020 6879 7065 7273 7572 hypersur │ │ │ │ +000197d0: 6661 6365 2067 6976 656e 2062 7920 7468 face given by th │ │ │ │ +000197e0: 6520 7072 6f64 7563 7420 6f66 2061 6c6c e product of all │ │ │ │ +000197f0: 2070 6f6c 796e 6f6d 6961 6c73 2069 6e20 polynomials in │ │ │ │ +00019800: 7468 650a 2020 2020 2020 2020 636f 7272 the. corr │ │ │ │ +00019810: 6573 706f 6e64 696e 6720 7365 7420 6f66 esponding set of │ │ │ │ +00019820: 2067 656e 6572 6174 6f72 7320 6973 2073 generators is s │ │ │ │ +00019830: 746f 7265 642c 2074 6865 7265 2069 7320 tored, there is │ │ │ │ +00019840: 6e6f 2065 7874 7261 2063 6f73 7420 746f no extra cost to │ │ │ │ +00019850: 0a20 2020 2020 2020 2075 7369 6e67 2074 . using t │ │ │ │ +00019860: 6869 7320 6f70 7469 6f6e 0a20 2020 2020 his option. │ │ │ │ +00019870: 202a 2049 6e64 734f 6653 6d6f 6f74 6820 * IndsOfSmooth │ │ │ │ +00019880: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ +00019890: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ +000198a0: 6465 6661 756c 7420 7661 6c75 6520 7b7d default value {} │ │ │ │ +000198b0: 2c20 7468 6973 0a20 2020 2020 2020 206f , this. o │ │ │ │ +000198c0: 7074 696f 6e20 6d61 7920 7370 6565 6420 ption may speed │ │ │ │ +000198d0: 7570 2074 6865 2072 756e 2074 696d 6520 up the run time │ │ │ │ +000198e0: 7768 656e 2075 7369 6e67 2074 6865 2044 when using the D │ │ │ │ +000198f0: 6972 6563 7443 6f6d 706c 6574 6549 6e74 irectCompleteInt │ │ │ │ +00019900: 0a20 2020 2020 2020 204d 6574 686f 6420 . Method │ │ │ │ +00019910: 6966 2074 6865 2075 7365 7220 6b6e 6f77 if the user know │ │ │ │ +00019920: 7320 6164 6469 7469 6f6e 616c 2069 6e66 s additional inf │ │ │ │ +00019930: 6f72 6d61 7469 6f6e 2061 626f 7574 2074 ormation about t │ │ │ │ +00019940: 6865 2069 6e70 7574 2069 6465 616c 2c0a he input ideal,. │ │ │ │ +00019950: 2020 2020 2020 2020 7365 6520 2a6e 6f74 see *not │ │ │ │ +00019960: 6520 496e 6473 4f66 536d 6f6f 7468 3a20 e IndsOfSmooth: │ │ │ │ +00019970: 496e 6473 4f66 536d 6f6f 7468 2c0a 2020 IndsOfSmooth,. │ │ │ │ +00019980: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00019990: 202a 2061 202a 6e6f 7465 2072 696e 6720 * a *note ring │ │ │ │ +000199a0: 656c 656d 656e 743a 2028 4d61 6361 756c element: (Macaul │ │ │ │ +000199b0: 6179 3244 6f63 2952 696e 6745 6c65 6d65 ay2Doc)RingEleme │ │ │ │ +000199c0: 6e74 2c2c 2074 6865 2045 756c 6572 0a20 nt,, the Euler. │ │ │ │ +000199d0: 2020 2020 2020 2063 6861 7261 6374 6572 character │ │ │ │ +000199e0: 6973 7469 630a 0a44 6573 6372 6970 7469 istic..Descripti │ │ │ │ +000199f0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00019a00: 466f 7220 6120 7375 6273 6368 656d 6520 For a subscheme │ │ │ │ +00019a10: 5620 6f66 2061 6e20 6170 706c 6963 6162 V of an applicab │ │ │ │ +00019a20: 6c65 2074 6f72 6963 2076 6172 6965 7479 le toric variety │ │ │ │ +00019a30: 2058 2c20 7468 6973 2063 6f6d 6d61 6e64 X, this command │ │ │ │ +00019a40: 2063 6f6d 7075 7465 7320 7468 650a 4575 computes the.Eu │ │ │ │ +00019a50: 6c65 7220 6368 6172 6163 7465 7269 7374 ler characterist │ │ │ │ +00019a60: 6963 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ic..+----------- │ │ │ │ +00019a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ae0: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b3d -----+.|i1 : kk= │ │ │ │ -00019af0: 5a5a 2f33 3237 3439 3b20 2020 2020 2020 ZZ/32749; │ │ │ │ -00019b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00019ab0: 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a 5a2f --+.|i1 : kk=ZZ/ │ │ │ │ +00019ac0: 3332 3734 393b 2020 2020 2020 2020 2020 32749; │ │ │ │ +00019ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00019b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b80: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 3d6b -----+.|i2 : R=k │ │ │ │ -00019b90: 6b5b 785f 302e 2e78 5f34 5d20 2020 2020 k[x_0..x_4] │ │ │ │ -00019ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b50: 2d2d 2b0a 7c69 3220 3a20 523d 6b6b 5b78 --+.|i2 : R=kk[x │ │ │ │ +00019b60: 5f30 2e2e 785f 345d 2020 2020 2020 2020 _0..x_4] │ │ │ │ +00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ba0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019bf0: 2020 7c0a 7c6f 3220 3d20 5220 2020 2020 |.|o2 = R │ │ │ │ 00019c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c20: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ +00019c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c90: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ +00019ca0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 00019cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cc0: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -00019cd0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ -00019ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00019cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ce0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d60: 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 3d69 -----+.|i3 : I=i │ │ │ │ -00019d70: 6465 616c 2872 616e 646f 6d28 312c 5229 deal(random(1,R) │ │ │ │ -00019d80: 2c72 616e 646f 6d28 322c 5229 2920 2020 ,random(2,R)) │ │ │ │ +00019d30: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ +00019d40: 6c28 7261 6e64 6f6d 2831 2c52 292c 7261 l(random(1,R),ra │ │ │ │ +00019d50: 6e64 6f6d 2832 2c52 2929 2020 2020 2020 ndom(2,R)) │ │ │ │ +00019d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00019e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00019e50: 2020 2020 207c 0a7c 6f33 203d 2069 6465 |.|o3 = ide │ │ │ │ -00019e60: 616c 2028 3130 3778 2020 2b20 3433 3736 al (107x + 4376 │ │ │ │ -00019e70: 7820 202d 2036 3331 3678 2020 2b20 3331 x - 6316x + 31 │ │ │ │ -00019e80: 3837 7820 202b 2033 3738 3378 202c 202d 87x + 3783x , - │ │ │ │ -00019e90: 2036 3035 3378 2020 2b20 3835 3730 7820 6053x + 8570x │ │ │ │ -00019ea0: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -00019eb0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -00019ec0: 2031 2020 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00019ed0: 2020 2033 2020 2020 2020 2020 3420 2020 3 4 │ │ │ │ -00019ee0: 2020 2020 2020 3020 2020 2020 2020 2030 0 0 │ │ │ │ -00019ef0: 2031 2020 207c 0a7c 2020 2020 202d 2d2d 1 |.| --- │ │ │ │ +00019e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019e10: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019e20: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ +00019e30: 2831 3037 7820 202b 2034 3337 3678 2020 (107x + 4376x │ │ │ │ +00019e40: 2d20 3633 3136 7820 202b 2033 3138 3778 - 6316x + 3187x │ │ │ │ +00019e50: 2020 2b20 3337 3833 7820 2c20 2d20 3630 + 3783x , - 60 │ │ │ │ +00019e60: 3533 7820 202b 2038 3537 3078 2078 2020 53x + 8570x x │ │ │ │ +00019e70: 2b20 7c0a 7c20 2020 2020 2020 2020 2020 + |.| │ │ │ │ +00019e80: 2020 2020 2030 2020 2020 2020 2020 3120 0 1 │ │ │ │ +00019e90: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00019ea0: 3320 2020 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +00019eb0: 2020 2030 2020 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ +00019ec0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00019ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f40: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00019f50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f90: 2020 2020 207c 0a7c 2020 2020 2031 3033 |.| 103 │ │ │ │ -00019fa0: 3539 7820 202d 2031 3630 3930 7820 7820 59x - 16090x x │ │ │ │ -00019fb0: 202d 2038 3231 3078 2078 2020 2b20 3530 - 8210x x + 50 │ │ │ │ -00019fc0: 3731 7820 202b 2038 3434 3478 2078 2020 71x + 8444x x │ │ │ │ -00019fd0: 2d20 3839 3937 7820 7820 202d 2036 3934 - 8997x x - 694 │ │ │ │ -00019fe0: 3978 2078 207c 0a7c 2020 2020 2020 2020 9x x |.| │ │ │ │ -00019ff0: 2020 2031 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -0001a000: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -0001a010: 2020 2032 2020 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ -0001a020: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -0001a030: 2020 3220 337c 0a7c 2020 2020 202d 2d2d 2 3|.| --- │ │ │ │ +00019f10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00019f20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019f40: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019f60: 2020 7c0a 7c20 2020 2020 3130 3335 3978 |.| 10359x │ │ │ │ +00019f70: 2020 2d20 3136 3039 3078 2078 2020 2d20 - 16090x x - │ │ │ │ +00019f80: 3832 3130 7820 7820 202b 2035 3037 3178 8210x x + 5071x │ │ │ │ +00019f90: 2020 2b20 3834 3434 7820 7820 202d 2038 + 8444x x - 8 │ │ │ │ +00019fa0: 3939 3778 2078 2020 2d20 3639 3439 7820 997x x - 6949x │ │ │ │ +00019fb0: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +00019fc0: 3120 2020 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +00019fd0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00019fe0: 3220 2020 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +00019ff0: 2020 2020 3120 3320 2020 2020 2020 2032 1 3 2 │ │ │ │ +0001a000: 2033 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3|.| ------ │ │ │ │ +0001a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a080: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001a090: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001a0d0: 2020 2020 207c 0a7c 2020 2020 202d 2031 |.| - 1 │ │ │ │ -0001a0e0: 3432 3534 7820 202d 2031 3132 3236 7820 4254x - 11226x │ │ │ │ -0001a0f0: 7820 202b 2032 3635 3378 2078 2020 2b20 x + 2653x x + │ │ │ │ -0001a100: 3132 3336 3578 2078 2020 2d20 3130 3232 12365x x - 1022 │ │ │ │ -0001a110: 3678 2078 2020 2d20 3132 3639 3678 2029 6x x - 12696x ) │ │ │ │ -0001a120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a130: 2020 2020 2033 2020 2020 2020 2020 2030 3 0 │ │ │ │ -0001a140: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ -0001a150: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -0001a160: 2020 3320 3420 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ -0001a170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a050: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001a060: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a090: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001a0a0: 2020 7c0a 7c20 2020 2020 2d20 3134 3235 |.| - 1425 │ │ │ │ +0001a0b0: 3478 2020 2d20 3131 3232 3678 2078 2020 4x - 11226x x │ │ │ │ +0001a0c0: 2b20 3236 3533 7820 7820 202b 2031 3233 + 2653x x + 123 │ │ │ │ +0001a0d0: 3635 7820 7820 202d 2031 3032 3236 7820 65x x - 10226x │ │ │ │ +0001a0e0: 7820 202d 2031 3236 3936 7820 2920 2020 x - 12696x ) │ │ │ │ +0001a0f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a100: 2020 3320 2020 2020 2020 2020 3020 3420 3 0 4 │ │ │ │ +0001a110: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +0001a120: 2020 2032 2034 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ +0001a130: 2034 2020 2020 2020 2020 2034 2020 2020 4 4 │ │ │ │ +0001a140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a190: 2020 7c0a 7c6f 3320 3a20 4964 6561 6c20 |.|o3 : Ideal │ │ │ │ +0001a1a0: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1c0: 2020 2020 207c 0a7c 6f33 203a 2049 6465 |.|o3 : Ide │ │ │ │ -0001a1d0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a210: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a260: 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 696d -----+.|i4 : tim │ │ │ │ -0001a270: 6520 4575 6c65 7228 492c 496e 7075 7449 e Euler(I,InputI │ │ │ │ -0001a280: 7353 6d6f 6f74 683d 3e74 7275 6529 2020 sSmooth=>true) │ │ │ │ -0001a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2b0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001a2c0: 2030 2e30 3537 3639 3539 7320 2863 7075 0.0576959s (cpu │ │ │ │ -0001a2d0: 293b 2030 2e30 3335 3439 3238 7320 2874 ); 0.0354928s (t │ │ │ │ -0001a2e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001a230: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2045 --+.|i4 : time E │ │ │ │ +0001a240: 756c 6572 2849 2c49 6e70 7574 4973 536d uler(I,InputIsSm │ │ │ │ +0001a250: 6f6f 7468 3d3e 7472 7565 2920 2020 2020 ooth=>true) │ │ │ │ +0001a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a280: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +0001a290: 3036 3737 3437 3473 2028 6370 7529 3b20 0677474s (cpu); │ │ │ │ +0001a2a0: 302e 3034 3438 3739 3873 2028 7468 7265 0.0448798s (thre │ │ │ │ +0001a2b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +0001a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a2d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a320: 2020 7c0a 7c6f 3420 3d20 3420 2020 2020 |.|o4 = 4 │ │ │ │ 0001a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a350: 2020 2020 207c 0a7c 6f34 203d 2034 2020 |.|o4 = 4 │ │ │ │ +0001a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a3a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a370: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3f0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 696d -----+.|i5 : tim │ │ │ │ -0001a400: 6520 4575 6c65 7220 4920 2020 2020 2020 e Euler I │ │ │ │ -0001a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a440: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001a450: 2030 2e32 3534 3131 3473 2028 6370 7529 0.254114s (cpu) │ │ │ │ -0001a460: 3b20 302e 3134 3638 3333 7320 2874 6872 ; 0.146833s (thr │ │ │ │ -0001a470: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +0001a3c0: 2d2d 2b0a 7c69 3520 3a20 7469 6d65 2045 --+.|i5 : time E │ │ │ │ +0001a3d0: 756c 6572 2049 2020 2020 2020 2020 2020 uler I │ │ │ │ +0001a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a410: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +0001a420: 3330 3630 3232 7320 2863 7075 293b 2030 306022s (cpu); 0 │ │ │ │ +0001a430: 2e31 3834 3437 3973 2028 7468 7265 6164 .184479s (thread │ │ │ │ +0001a440: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0001a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a4b0: 2020 7c0a 7c6f 3520 3d20 3420 2020 2020 |.|o5 = 4 │ │ │ │ 0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4e0: 2020 2020 207c 0a7c 6f35 203d 2034 2020 |.|o5 = 4 │ │ │ │ +0001a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a530: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a500: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a580: 2d2d 2d2d 2d2b 0a7c 6936 203a 2045 756c -----+.|i6 : Eul │ │ │ │ -0001a590: 6572 4948 6173 683d 4575 6c65 7228 492c erIHash=Euler(I, │ │ │ │ -0001a5a0: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ -0001a5b0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -0001a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a550: 2d2d 2b0a 7c69 3620 3a20 4575 6c65 7249 --+.|i6 : EulerI │ │ │ │ +0001a560: 4861 7368 3d45 756c 6572 2849 2c4f 7574 Hash=Euler(I,Out │ │ │ │ +0001a570: 7075 743d 3e48 6173 6846 6f72 6d29 3b20 put=>HashForm); │ │ │ │ +0001a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a5a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a620: 2d2d 2d2d 2d2b 0a7c 6937 203a 2041 3d72 -----+.|i7 : A=r │ │ │ │ -0001a630: 696e 6720 4575 6c65 7249 4861 7368 2322 ing EulerIHash#" │ │ │ │ -0001a640: 4353 4d22 2020 2020 2020 2020 2020 2020 CSM" │ │ │ │ +0001a5f0: 2d2d 2b0a 7c69 3720 3a20 413d 7269 6e67 --+.|i7 : A=ring │ │ │ │ +0001a600: 2045 756c 6572 4948 6173 6823 2243 534d EulerIHash#"CSM │ │ │ │ +0001a610: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +0001a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a690: 2020 7c0a 7c6f 3720 3d20 4120 2020 2020 |.|o7 = A │ │ │ │ 0001a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6c0: 2020 2020 207c 0a7c 6f37 203d 2041 2020 |.|o7 = A │ │ │ │ +0001a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a6e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a730: 2020 7c0a 7c6f 3720 3a20 5175 6f74 6965 |.|o7 : Quotie │ │ │ │ +0001a740: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ 0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a760: 2020 2020 207c 0a7c 6f37 203a 2051 756f |.|o7 : Quo │ │ │ │ -0001a770: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ -0001a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a780: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a800: 2d2d 2d2d 2d2b 0a7c 6938 203a 2045 756c -----+.|i8 : Eul │ │ │ │ -0001a810: 6572 4948 6173 6823 7b30 2c31 7d3d 3d43 erIHash#{0,1}==C │ │ │ │ -0001a820: 534d 2841 2c69 6465 616c 2849 5f30 2a49 SM(A,ideal(I_0*I │ │ │ │ -0001a830: 5f31 2929 2020 2020 2020 2020 2020 2020 _1)) │ │ │ │ +0001a7d0: 2d2d 2b0a 7c69 3820 3a20 4575 6c65 7249 --+.|i8 : EulerI │ │ │ │ +0001a7e0: 4861 7368 237b 302c 317d 3d3d 4353 4d28 Hash#{0,1}==CSM( │ │ │ │ +0001a7f0: 412c 6964 6561 6c28 495f 302a 495f 3129 A,ideal(I_0*I_1) │ │ │ │ +0001a800: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a820: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a850: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a870: 2020 7c0a 7c6f 3820 3d20 7472 7565 2020 |.|o8 = true │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8a0: 2020 2020 207c 0a7c 6f38 203d 2074 7275 |.|o8 = tru │ │ │ │ -0001a8b0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0001a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a940: 2d2d 2d2d 2d2b 0a7c 6939 203a 204a 3d49 -----+.|i9 : J=I │ │ │ │ -0001a950: 2b69 6465 616c 2878 5f30 2a78 5f32 2d78 +ideal(x_0*x_2-x │ │ │ │ -0001a960: 5f33 2a78 5f30 2920 2020 2020 2020 2020 _3*x_0) │ │ │ │ +0001a910: 2d2d 2b0a 7c69 3920 3a20 4a3d 492b 6964 --+.|i9 : J=I+id │ │ │ │ +0001a920: 6561 6c28 785f 302a 785f 322d 785f 332a eal(x_0*x_2-x_3* │ │ │ │ +0001a930: 785f 3029 2020 2020 2020 2020 2020 2020 x_0) │ │ │ │ +0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001aa30: 2020 2020 207c 0a7c 6f39 203d 2069 6465 |.|o9 = ide │ │ │ │ -0001aa40: 616c 2028 3130 3778 2020 2b20 3433 3736 al (107x + 4376 │ │ │ │ -0001aa50: 7820 202d 2036 3331 3678 2020 2b20 3331 x - 6316x + 31 │ │ │ │ -0001aa60: 3837 7820 202b 2033 3738 3378 202c 202d 87x + 3783x , - │ │ │ │ -0001aa70: 2036 3035 3378 2020 2b20 3835 3730 7820 6053x + 8570x │ │ │ │ -0001aa80: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -0001aa90: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -0001aaa0: 2031 2020 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0001aab0: 2020 2033 2020 2020 2020 2020 3420 2020 3 4 │ │ │ │ -0001aac0: 2020 2020 2020 3020 2020 2020 2020 2030 0 0 │ │ │ │ -0001aad0: 2031 2020 207c 0a7c 2020 2020 202d 2d2d 1 |.| --- │ │ │ │ +0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9f0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001aa00: 2020 7c0a 7c6f 3920 3d20 6964 6561 6c20 |.|o9 = ideal │ │ │ │ +0001aa10: 2831 3037 7820 202b 2034 3337 3678 2020 (107x + 4376x │ │ │ │ +0001aa20: 2d20 3633 3136 7820 202b 2033 3138 3778 - 6316x + 3187x │ │ │ │ +0001aa30: 2020 2b20 3337 3833 7820 2c20 2d20 3630 + 3783x , - 60 │ │ │ │ +0001aa40: 3533 7820 202b 2038 3537 3078 2078 2020 53x + 8570x x │ │ │ │ +0001aa50: 2b20 7c0a 7c20 2020 2020 2020 2020 2020 + |.| │ │ │ │ +0001aa60: 2020 2020 2030 2020 2020 2020 2020 3120 0 1 │ │ │ │ +0001aa70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001aa80: 3320 2020 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +0001aa90: 2020 2030 2020 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ +0001aaa0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +0001aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab20: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001ab30: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab70: 2020 2020 207c 0a7c 2020 2020 2031 3033 |.| 103 │ │ │ │ -0001ab80: 3539 7820 202d 2031 3630 3930 7820 7820 59x - 16090x x │ │ │ │ -0001ab90: 202d 2038 3231 3078 2078 2020 2b20 3530 - 8210x x + 50 │ │ │ │ -0001aba0: 3731 7820 202b 2038 3434 3478 2078 2020 71x + 8444x x │ │ │ │ -0001abb0: 2d20 3839 3937 7820 7820 202d 2036 3934 - 8997x x - 694 │ │ │ │ -0001abc0: 3978 2078 207c 0a7c 2020 2020 2020 2020 9x x |.| │ │ │ │ -0001abd0: 2020 2031 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -0001abe0: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -0001abf0: 2020 2032 2020 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ -0001ac00: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -0001ac10: 2020 3220 337c 0a7c 2020 2020 202d 2d2d 2 3|.| --- │ │ │ │ +0001aaf0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001ab00: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab40: 2020 7c0a 7c20 2020 2020 3130 3335 3978 |.| 10359x │ │ │ │ +0001ab50: 2020 2d20 3136 3039 3078 2078 2020 2d20 - 16090x x - │ │ │ │ +0001ab60: 3832 3130 7820 7820 202b 2035 3037 3178 8210x x + 5071x │ │ │ │ +0001ab70: 2020 2b20 3834 3434 7820 7820 202d 2038 + 8444x x - 8 │ │ │ │ +0001ab80: 3939 3778 2078 2020 2d20 3639 3439 7820 997x x - 6949x │ │ │ │ +0001ab90: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +0001aba0: 3120 2020 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +0001abb0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0001abc0: 3220 2020 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +0001abd0: 2020 2020 3120 3320 2020 2020 2020 2032 1 3 2 │ │ │ │ +0001abe0: 2033 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3|.| ------ │ │ │ │ +0001abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ac20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac60: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001ac70: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aca0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001acb0: 2020 2020 207c 0a7c 2020 2020 202d 2031 |.| - 1 │ │ │ │ -0001acc0: 3432 3534 7820 202d 2031 3132 3236 7820 4254x - 11226x │ │ │ │ -0001acd0: 7820 202b 2032 3635 3378 2078 2020 2b20 x + 2653x x + │ │ │ │ -0001ace0: 3132 3336 3578 2078 2020 2d20 3130 3232 12365x x - 1022 │ │ │ │ -0001acf0: 3678 2078 2020 2d20 3132 3639 3678 202c 6x x - 12696x , │ │ │ │ -0001ad00: 2078 2078 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -0001ad10: 2020 2020 2033 2020 2020 2020 2020 2030 3 0 │ │ │ │ -0001ad20: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ -0001ad30: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -0001ad40: 2020 3320 3420 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ -0001ad50: 2020 3020 327c 0a7c 2020 2020 202d 2d2d 0 2|.| --- │ │ │ │ +0001ac30: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001ac40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac70: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001ac80: 2020 7c0a 7c20 2020 2020 2d20 3134 3235 |.| - 1425 │ │ │ │ +0001ac90: 3478 2020 2d20 3131 3232 3678 2078 2020 4x - 11226x x │ │ │ │ +0001aca0: 2b20 3236 3533 7820 7820 202b 2031 3233 + 2653x x + 123 │ │ │ │ +0001acb0: 3635 7820 7820 202d 2031 3032 3236 7820 65x x - 10226x │ │ │ │ +0001acc0: 7820 202d 2031 3236 3936 7820 2c20 7820 x - 12696x , x │ │ │ │ +0001acd0: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +0001ace0: 2020 3320 2020 2020 2020 2020 3020 3420 3 0 4 │ │ │ │ +0001acf0: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +0001ad00: 2020 2032 2034 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ +0001ad10: 2034 2020 2020 2020 2020 2034 2020 2030 4 4 0 │ │ │ │ +0001ad20: 2032 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2|.| ------ │ │ │ │ +0001ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ada0: 2d2d 2d2d 2d7c 0a7c 2020 2020 202d 2078 -----|.| - x │ │ │ │ -0001adb0: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad70: 2d2d 7c0a 7c20 2020 2020 2d20 7820 7820 --|.| - x x │ │ │ │ +0001ad80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adc0: 2020 7c0a 7c20 2020 2020 2020 2030 2033 |.| 0 3 │ │ │ │ 0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001adf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ae00: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae60: 2020 7c0a 7c6f 3920 3a20 4964 6561 6c20 |.|o9 : Ideal │ │ │ │ +0001ae70: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0001ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae90: 2020 2020 207c 0a7c 6f39 203a 2049 6465 |.|o9 : Ide │ │ │ │ -0001aea0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -0001aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aee0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aeb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af30: 2d2d 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 -----+..Note tha │ │ │ │ -0001af40: 7420 7468 6520 6964 6561 6c20 4a20 6162 t the ideal J ab │ │ │ │ -0001af50: 6f76 6520 6973 2061 2063 6f6d 706c 6574 ove is a complet │ │ │ │ -0001af60: 6520 696e 7465 7273 6563 7469 6f6e 2c20 e intersection, │ │ │ │ -0001af70: 7468 7573 2077 6520 6d61 7920 6368 616e thus we may chan │ │ │ │ -0001af80: 6765 2074 6865 0a6d 6574 686f 6420 6f70 ge the.method op │ │ │ │ -0001af90: 7469 6f6e 2077 6869 6368 206d 6179 2073 tion which may s │ │ │ │ -0001afa0: 7065 6564 2063 6f6d 7075 7461 7469 6f6e peed computation │ │ │ │ -0001afb0: 2069 6e20 736f 6d65 2063 6173 6573 2e20 in some cases. │ │ │ │ -0001afc0: 5765 206d 6179 2061 6c73 6f20 6e6f 7465 We may also note │ │ │ │ -0001afd0: 2074 6861 740a 7468 6520 6964 6561 6c20 that.the ideal │ │ │ │ -0001afe0: 6765 6e65 7261 7465 6420 6279 2074 6865 generated by the │ │ │ │ -0001aff0: 2066 6972 7374 2032 2067 656e 6572 6174 first 2 generat │ │ │ │ -0001b000: 6f72 7320 6f66 2049 2064 6566 696e 6573 ors of I defines │ │ │ │ -0001b010: 2061 2073 6d6f 6f74 6820 7363 6865 6d65 a smooth scheme │ │ │ │ -0001b020: 2061 6e64 0a69 6e70 7574 2074 6869 7320 and.input this │ │ │ │ -0001b030: 696e 666f 726d 6174 696f 6e20 696e 746f information into │ │ │ │ -0001b040: 2074 6865 206d 6574 686f 642e 2054 6869 the method. Thi │ │ │ │ -0001b050: 7320 6d61 7920 616c 736f 2069 6d70 726f s may also impro │ │ │ │ -0001b060: 7665 2063 6f6d 7075 7461 7469 6f6e 0a73 ve computation.s │ │ │ │ -0001b070: 7065 6564 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d peed...+-------- │ │ │ │ -0001b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ -0001b0c0: 3a20 7469 6d65 2045 756c 6572 284a 2c4d : time Euler(J,M │ │ │ │ -0001b0d0: 6574 686f 643d 3e44 6972 6563 7443 6f6d ethod=>DirectCom │ │ │ │ -0001b0e0: 706c 6574 6549 6e74 2920 2020 2020 2020 pleteInt) │ │ │ │ -0001b0f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b100: 202d 2d20 7573 6564 2030 2e31 3832 3936 -- used 0.18296 │ │ │ │ -0001b110: 3773 2028 6370 7529 3b20 302e 3036 3930 7s (cpu); 0.0690 │ │ │ │ -0001b120: 3139 3973 2028 7468 7265 6164 293b 2030 199s (thread); 0 │ │ │ │ -0001b130: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0001b140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af00: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2074 --+..Note that t │ │ │ │ +0001af10: 6865 2069 6465 616c 204a 2061 626f 7665 he ideal J above │ │ │ │ +0001af20: 2069 7320 6120 636f 6d70 6c65 7465 2069 is a complete i │ │ │ │ +0001af30: 6e74 6572 7365 6374 696f 6e2c 2074 6875 ntersection, thu │ │ │ │ +0001af40: 7320 7765 206d 6179 2063 6861 6e67 6520 s we may change │ │ │ │ +0001af50: 7468 650a 6d65 7468 6f64 206f 7074 696f the.method optio │ │ │ │ +0001af60: 6e20 7768 6963 6820 6d61 7920 7370 6565 n which may spee │ │ │ │ +0001af70: 6420 636f 6d70 7574 6174 696f 6e20 696e d computation in │ │ │ │ +0001af80: 2073 6f6d 6520 6361 7365 732e 2057 6520 some cases. We │ │ │ │ +0001af90: 6d61 7920 616c 736f 206e 6f74 6520 7468 may also note th │ │ │ │ +0001afa0: 6174 0a74 6865 2069 6465 616c 2067 656e at.the ideal gen │ │ │ │ +0001afb0: 6572 6174 6564 2062 7920 7468 6520 6669 erated by the fi │ │ │ │ +0001afc0: 7273 7420 3220 6765 6e65 7261 746f 7273 rst 2 generators │ │ │ │ +0001afd0: 206f 6620 4920 6465 6669 6e65 7320 6120 of I defines a │ │ │ │ +0001afe0: 736d 6f6f 7468 2073 6368 656d 6520 616e smooth scheme an │ │ │ │ +0001aff0: 640a 696e 7075 7420 7468 6973 2069 6e66 d.input this inf │ │ │ │ +0001b000: 6f72 6d61 7469 6f6e 2069 6e74 6f20 7468 ormation into th │ │ │ │ +0001b010: 6520 6d65 7468 6f64 2e20 5468 6973 206d e method. This m │ │ │ │ +0001b020: 6179 2061 6c73 6f20 696d 7072 6f76 6520 ay also improve │ │ │ │ +0001b030: 636f 6d70 7574 6174 696f 6e0a 7370 6565 computation.spee │ │ │ │ +0001b040: 642e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d d...+----------- │ │ │ │ +0001b050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b080: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2074 ------+.|i10 : t │ │ │ │ +0001b090: 696d 6520 4575 6c65 7228 4a2c 4d65 7468 ime Euler(J,Meth │ │ │ │ +0001b0a0: 6f64 3d3e 4469 7265 6374 436f 6d70 6c65 od=>DirectComple │ │ │ │ +0001b0b0: 7465 496e 7429 2020 2020 2020 2020 2020 teInt) │ │ │ │ +0001b0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +0001b0d0: 2075 7365 6420 302e 3134 3534 3132 7320 used 0.145412s │ │ │ │ +0001b0e0: 2863 7075 293b 2030 2e30 3935 3037 3631 (cpu); 0.0950761 │ │ │ │ +0001b0f0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0001b100: 6763 2920 2020 2020 2020 2020 2020 7c0a gc) |. │ │ │ │ +0001b110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b150: 2020 7c0a 7c6f 3130 203d 2032 2020 2020 |.|o10 = 2 │ │ │ │ 0001b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b180: 2020 2020 207c 0a7c 6f31 3020 3d20 3220 |.|o10 = 2 │ │ │ │ -0001b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001b210: 6931 3120 3a20 7469 6d65 2045 756c 6572 i11 : time Euler │ │ │ │ -0001b220: 284a 2c4d 6574 686f 643d 3e44 6972 6563 (J,Method=>Direc │ │ │ │ -0001b230: 7443 6f6d 706c 6574 6549 6e74 2c49 6e64 tCompleteInt,Ind │ │ │ │ -0001b240: 734f 6653 6d6f 6f74 683d 3e7b 302c 317d sOfSmooth=>{0,1} │ │ │ │ -0001b250: 297c 0a7c 202d 2d20 7573 6564 2030 2e31 )|.| -- used 0.1 │ │ │ │ -0001b260: 3930 3537 3573 2028 6370 7529 3b20 302e 90575s (cpu); 0. │ │ │ │ -0001b270: 3038 3435 3639 3373 2028 7468 7265 6164 0845693s (thread │ │ │ │ -0001b280: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -0001b290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b190: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ +0001b1e0: 203a 2074 696d 6520 4575 6c65 7228 4a2c : time Euler(J, │ │ │ │ +0001b1f0: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ +0001b200: 6d70 6c65 7465 496e 742c 496e 6473 4f66 mpleteInt,IndsOf │ │ │ │ +0001b210: 536d 6f6f 7468 3d3e 7b30 2c31 7d29 7c0a Smooth=>{0,1})|. │ │ │ │ +0001b220: 7c20 2d2d 2075 7365 6420 302e 3238 3632 | -- used 0.2862 │ │ │ │ +0001b230: 3436 7320 2863 7075 293b 2030 2e31 3332 46s (cpu); 0.132 │ │ │ │ +0001b240: 3138 7320 2874 6872 6561 6429 3b20 3073 18s (thread); 0s │ │ │ │ +0001b250: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0001b260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2a0: 2020 2020 2020 7c0a 7c6f 3131 203d 2032 |.|o11 = 2 │ │ │ │ 0001b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2d0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -0001b2e0: 3d20 3220 2020 2020 2020 2020 2020 2020 = 2 │ │ │ │ -0001b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b310: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0001b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b360: 2d2b 0a0a 4e6f 7720 636f 6e73 6964 6572 -+..Now consider │ │ │ │ -0001b370: 2061 6e20 6578 616d 706c 6520 696e 205c an example in \ │ │ │ │ -0001b380: 5050 5e32 205c 7469 6d65 7320 5c50 505e PP^2 \times \PP^ │ │ │ │ -0001b390: 322e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2...+----------- │ │ │ │ -0001b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b3c0: 2d2d 2d2b 0a7c 6931 3220 3a20 523d 4d75 ---+.|i12 : R=Mu │ │ │ │ -0001b3d0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -0001b3e0: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ -0001b3f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001b330: 0a4e 6f77 2063 6f6e 7369 6465 7220 616e .Now consider an │ │ │ │ +0001b340: 2065 7861 6d70 6c65 2069 6e20 5c50 505e example in \PP^ │ │ │ │ +0001b350: 3220 5c74 696d 6573 205c 5050 5e32 2e0a 2 \times \PP^2.. │ │ │ │ +0001b360: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001b370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b390: 2b0a 7c69 3132 203a 2052 3d4d 756c 7469 +.|i12 : R=Multi │ │ │ │ +0001b3a0: 5072 6f6a 436f 6f72 6452 696e 6728 7b32 ProjCoordRing({2 │ │ │ │ +0001b3b0: 2c32 7d29 2020 2020 2020 2020 2020 2020 ,2}) │ │ │ │ +0001b3c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3f0: 2020 7c0a 7c6f 3132 203d 2052 2020 2020 |.|o12 = R │ │ │ │ 0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b420: 2020 2020 207c 0a7c 6f31 3220 3d20 5220 |.|o12 = R │ │ │ │ +0001b420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b450: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b450: 2020 2020 7c0a 7c6f 3132 203a 2050 6f6c |.|o12 : Pol │ │ │ │ +0001b460: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ 0001b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b480: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ -0001b490: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -0001b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001b4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ -0001b4f0: 3a20 723d 6765 6e73 2052 2020 2020 2020 : r=gens R │ │ │ │ +0001b480: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001b490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b4b0: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2072 ------+.|i13 : r │ │ │ │ +0001b4c0: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +0001b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b4e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b510: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b540: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001b550: 3320 3d20 7b78 202c 2078 202c 2078 202c 3 = {x , x , x , │ │ │ │ -0001b560: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ -0001b570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b580: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ -0001b590: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ -0001b5a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b510: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ +0001b520: 207b 7820 2c20 7820 2c20 7820 2c20 7820 {x , x , x , x │ │ │ │ +0001b530: 2c20 7820 2c20 7820 7d20 2020 2020 2020 , x , x } │ │ │ │ +0001b540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001b550: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ +0001b560: 3320 2020 3420 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ +0001b570: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001b5b0: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ 0001b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b5e0: 7c6f 3133 203a 204c 6973 7420 2020 2020 |o13 : List │ │ │ │ -0001b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001b610: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001b620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b640: 2b0a 7c69 3134 203a 204b 3d69 6465 616c +.|i14 : K=ideal │ │ │ │ -0001b650: 2872 5f30 5e32 2a72 5f33 2d72 5f34 2a72 (r_0^2*r_3-r_4*r │ │ │ │ -0001b660: 5f31 2a72 5f32 2c72 5f32 5e32 2a72 5f35 _1*r_2,r_2^2*r_5 │ │ │ │ -0001b670: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ -0001b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001b5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001b610: 6931 3420 3a20 4b3d 6964 6561 6c28 725f i14 : K=ideal(r_ │ │ │ │ +0001b620: 305e 322a 725f 332d 725f 342a 725f 312a 0^2*r_3-r_4*r_1* │ │ │ │ +0001b630: 725f 322c 725f 325e 322a 725f 3529 7c0a r_2,r_2^2*r_5)|. │ │ │ │ +0001b640: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001b680: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ 0001b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b6a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b6b0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001b6c0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001b6d0: 2020 207c 0a7c 6f31 3420 3d20 6964 6561 |.|o14 = idea │ │ │ │ -0001b6e0: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ -0001b6f0: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ -0001b700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001b710: 2020 2020 2030 2033 2020 2020 3120 3220 0 3 1 2 │ │ │ │ -0001b720: 3420 2020 3220 3520 2020 2020 2020 2020 4 2 5 │ │ │ │ -0001b730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b6a0: 7c0a 7c6f 3134 203d 2069 6465 616c 2028 |.|o14 = ideal ( │ │ │ │ +0001b6b0: 7820 7820 202d 2078 2078 2078 202c 2078 x x - x x x , x │ │ │ │ +0001b6c0: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0001b6d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b6e0: 2020 3020 3320 2020 2031 2032 2034 2020 0 3 1 2 4 │ │ │ │ +0001b6f0: 2032 2035 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0001b700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b730: 2020 207c 0a7c 6f31 3420 3a20 4964 6561 |.|o14 : Idea │ │ │ │ +0001b740: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ 0001b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b760: 2020 2020 2020 7c0a 7c6f 3134 203a 2049 |.|o14 : I │ │ │ │ -0001b770: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ -0001b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b790: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b7c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a --------+.|i15 : │ │ │ │ -0001b7d0: 2045 756c 6572 4b3d 4575 6c65 7228 4b29 EulerK=Euler(K) │ │ │ │ +0001b760: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b790: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 4575 -----+.|i15 : Eu │ │ │ │ +0001b7a0: 6c65 724b 3d45 756c 6572 284b 2920 2020 lerK=Euler(K) │ │ │ │ +0001b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b7c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b7f0: 2020 2020 2020 207c 0a7c 6f31 3520 3d20 |.|o15 = │ │ │ │ +0001b800: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 0001b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b820: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -0001b830: 203d 2037 2020 2020 2020 2020 2020 2020 = 7 │ │ │ │ -0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b850: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -0001b860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001b890: 3136 203a 2063 736d 4b3d 2043 534d 284b 16 : csmK= CSM(K │ │ │ │ -0001b8a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001b8b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b8f0: 7c20 2020 2020 2020 2032 2032 2020 2020 | 2 2 │ │ │ │ -0001b900: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0001b910: 3220 2020 2020 2020 2020 2020 2032 207c 2 2 | │ │ │ │ -0001b920: 0a7c 6f31 3620 3d20 3768 2068 2020 2b20 .|o16 = 7h h + │ │ │ │ -0001b930: 3568 2068 2020 2b20 3468 2068 2020 2b20 5h h + 4h h + │ │ │ │ -0001b940: 6820 202b 2033 6820 6820 202b 2068 2020 h + 3h h + h │ │ │ │ -0001b950: 7c0a 7c20 2020 2020 2020 2031 2032 2020 |.| 1 2 │ │ │ │ -0001b960: 2020 2031 2032 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ -0001b970: 2020 3120 2020 2020 3120 3220 2020 2032 1 1 2 2 │ │ │ │ -0001b980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b820: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b850: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ +0001b860: 3a20 6373 6d4b 3d20 4353 4d28 4b29 2020 : csmK= CSM(K) │ │ │ │ +0001b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001b8c0: 2020 2020 2020 3220 3220 2020 2020 3220 2 2 2 │ │ │ │ +0001b8d0: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +0001b8e0: 2020 2020 2020 2020 2020 3220 7c0a 7c6f 2 |.|o │ │ │ │ +0001b8f0: 3136 203d 2037 6820 6820 202b 2035 6820 16 = 7h h + 5h │ │ │ │ +0001b900: 6820 202b 2034 6820 6820 202b 2068 2020 h + 4h h + h │ │ │ │ +0001b910: 2b20 3368 2068 2020 2b20 6820 207c 0a7c + 3h h + h |.| │ │ │ │ +0001b920: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +0001b930: 3120 3220 2020 2020 3120 3220 2020 2031 1 2 1 2 1 │ │ │ │ +0001b940: 2020 2020 2031 2032 2020 2020 3220 7c0a 1 2 2 |. │ │ │ │ +0001b950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b980: 0a7c 2020 2020 2020 5a5a 5b68 202e 2e68 .| ZZ[h ..h │ │ │ │ +0001b990: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9b0: 2020 7c0a 7c20 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ -0001b9c0: 2e2e 6820 5d20 2020 2020 2020 2020 2020 ..h ] │ │ │ │ +0001b9b0: 7c0a 7c20 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001b9c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b9f0: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0001b9e0: 207c 0a7c 6f31 3620 3a20 2d2d 2d2d 2d2d |.|o16 : ------ │ │ │ │ +0001b9f0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 0001ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba10: 2020 2020 7c0a 7c6f 3136 203a 202d 2d2d |.|o16 : --- │ │ │ │ -0001ba20: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +0001ba10: 2020 7c0a 7c20 2020 2020 2020 2020 3320 |.| 3 │ │ │ │ +0001ba20: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0001ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ba50: 2033 2020 2033 2020 2020 2020 2020 2020 3 3 │ │ │ │ +0001ba40: 2020 207c 0a7c 2020 2020 2020 2028 6820 |.| (h │ │ │ │ +0001ba50: 2c20 6820 2920 2020 2020 2020 2020 2020 , h ) │ │ │ │ 0001ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001ba80: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ +0001ba70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ba80: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ 0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001baa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001bab0: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ -0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bad0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001bae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001baf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ -0001bb10: 3a20 4575 6c65 724b 3d3d 4575 6c65 7228 : EulerK==Euler( │ │ │ │ -0001bb20: 6373 6d4b 2920 2020 2020 2020 2020 2020 csmK) │ │ │ │ -0001bb30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001baa0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bad0: 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a 2045 ------+.|i17 : E │ │ │ │ +0001bae0: 756c 6572 4b3d 3d45 756c 6572 2863 736d ulerK==Euler(csm │ │ │ │ +0001baf0: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +0001bb00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb30: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ +0001bb40: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 0001bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb60: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001bb70: 3720 3d20 7472 7565 2020 2020 2020 2020 7 = true │ │ │ │ -0001bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -0001bbd0: 496e 2074 6865 2063 6173 6520 7768 6572 In the case wher │ │ │ │ -0001bbe0: 6520 7468 6520 616d 6269 656e 7420 7370 e the ambient sp │ │ │ │ -0001bbf0: 6163 6520 6973 2061 2074 6f72 6963 2076 ace is a toric v │ │ │ │ -0001bc00: 6172 6965 7479 2077 6869 6368 2069 7320 ariety which is │ │ │ │ -0001bc10: 6e6f 7420 6120 7072 6f64 7563 740a 6f66 not a product.of │ │ │ │ -0001bc20: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -0001bc30: 6573 2077 6520 6d75 7374 206c 6f61 6420 es we must load │ │ │ │ -0001bc40: 7468 6520 4e6f 726d 616c 546f 7269 6356 the NormalToricV │ │ │ │ -0001bc50: 6172 6965 7469 6573 2070 6163 6b61 6765 arieties package │ │ │ │ -0001bc60: 2061 6e64 206d 7573 740a 616c 736f 2069 and must.also i │ │ │ │ -0001bc70: 6e70 7574 2074 6865 2074 6f72 6963 2076 nput the toric v │ │ │ │ -0001bc80: 6172 6965 7479 2e20 4966 2074 6865 2074 ariety. If the t │ │ │ │ -0001bc90: 6f72 6963 2076 6172 6965 7479 2069 7320 oric variety is │ │ │ │ -0001bca0: 6120 7072 6f64 7563 7420 6f66 2070 726f a product of pro │ │ │ │ -0001bcb0: 6a65 6374 6976 650a 7370 6163 6520 6974 jective.space it │ │ │ │ -0001bcc0: 2069 7320 7265 636f 6d6d 656e 6465 6420 is recommended │ │ │ │ -0001bcd0: 746f 2075 7365 2074 6865 2066 6f72 6d20 to use the form │ │ │ │ -0001bce0: 6162 6f76 6520 7261 7468 6572 2074 6861 above rather tha │ │ │ │ -0001bcf0: 6e20 696e 7075 7474 696e 6720 7468 6520 n inputting the │ │ │ │ -0001bd00: 746f 7269 630a 7661 7269 6574 7920 666f toric.variety fo │ │ │ │ -0001bd10: 7220 6566 6669 6369 656e 6379 2072 6561 r efficiency rea │ │ │ │ -0001bd20: 736f 6e73 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d sons...+-------- │ │ │ │ -0001bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd70: 2b0a 7c69 3138 203a 206e 6565 6473 5061 +.|i18 : needsPa │ │ │ │ -0001bd80: 636b 6167 6520 224e 6f72 6d61 6c54 6f72 ckage "NormalTor │ │ │ │ -0001bd90: 6963 5661 7269 6574 6965 7322 2020 2020 icVarieties" │ │ │ │ +0001bb60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 ----------+..In │ │ │ │ +0001bba0: 7468 6520 6361 7365 2077 6865 7265 2074 the case where t │ │ │ │ +0001bbb0: 6865 2061 6d62 6965 6e74 2073 7061 6365 he ambient space │ │ │ │ +0001bbc0: 2069 7320 6120 746f 7269 6320 7661 7269 is a toric vari │ │ │ │ +0001bbd0: 6574 7920 7768 6963 6820 6973 206e 6f74 ety which is not │ │ │ │ +0001bbe0: 2061 2070 726f 6475 6374 0a6f 6620 7072 a product.of pr │ │ │ │ +0001bbf0: 6f6a 6563 7469 7665 2073 7061 6365 7320 ojective spaces │ │ │ │ +0001bc00: 7765 206d 7573 7420 6c6f 6164 2074 6865 we must load the │ │ │ │ +0001bc10: 204e 6f72 6d61 6c54 6f72 6963 5661 7269 NormalToricVari │ │ │ │ +0001bc20: 6574 6965 7320 7061 636b 6167 6520 616e eties package an │ │ │ │ +0001bc30: 6420 6d75 7374 0a61 6c73 6f20 696e 7075 d must.also inpu │ │ │ │ +0001bc40: 7420 7468 6520 746f 7269 6320 7661 7269 t the toric vari │ │ │ │ +0001bc50: 6574 792e 2049 6620 7468 6520 746f 7269 ety. If the tori │ │ │ │ +0001bc60: 6320 7661 7269 6574 7920 6973 2061 2070 c variety is a p │ │ │ │ +0001bc70: 726f 6475 6374 206f 6620 7072 6f6a 6563 roduct of projec │ │ │ │ +0001bc80: 7469 7665 0a73 7061 6365 2069 7420 6973 tive.space it is │ │ │ │ +0001bc90: 2072 6563 6f6d 6d65 6e64 6564 2074 6f20 recommended to │ │ │ │ +0001bca0: 7573 6520 7468 6520 666f 726d 2061 626f use the form abo │ │ │ │ +0001bcb0: 7665 2072 6174 6865 7220 7468 616e 2069 ve rather than i │ │ │ │ +0001bcc0: 6e70 7574 7469 6e67 2074 6865 2074 6f72 nputting the tor │ │ │ │ +0001bcd0: 6963 0a76 6172 6965 7479 2066 6f72 2065 ic.variety for e │ │ │ │ +0001bce0: 6666 6963 6965 6e63 7920 7265 6173 6f6e fficiency reason │ │ │ │ +0001bcf0: 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s...+----------- │ │ │ │ +0001bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001bd40: 6931 3820 3a20 6e65 6564 7350 6163 6b61 i18 : needsPacka │ │ │ │ +0001bd50: 6765 2022 4e6f 726d 616c 546f 7269 6356 ge "NormalToricV │ │ │ │ +0001bd60: 6172 6965 7469 6573 2220 2020 2020 2020 arieties" │ │ │ │ +0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bdd0: 2020 207c 0a7c 6f31 3820 3d20 4e6f 726d |.|o18 = Norm │ │ │ │ +0001bde0: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ 0001bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be00: 2020 2020 2020 7c0a 7c6f 3138 203d 204e |.|o18 = N │ │ │ │ -0001be10: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -0001be20: 6965 7320 2020 2020 2020 2020 2020 2020 ies │ │ │ │ +0001be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001be20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be60: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +0001be70: 3a20 5061 636b 6167 6520 2020 2020 2020 : Package │ │ │ │ 0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001bea0: 3138 203a 2050 6163 6b61 6765 2020 2020 18 : Package │ │ │ │ -0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bee0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf30: 2d2d 2b0a 7c69 3139 203a 2052 686f 203d --+.|i19 : Rho = │ │ │ │ -0001bf40: 207b 7b31 2c30 2c30 7d2c 7b30 2c31 2c30 {{1,0,0},{0,1,0 │ │ │ │ -0001bf50: 7d2c 7b30 2c30 2c31 7d2c 7b2d 312c 2d31 },{0,0,1},{-1,-1 │ │ │ │ -0001bf60: 2c30 7d2c 7b30 2c30 2c2d 317d 7d20 2020 ,0},{0,0,-1}} │ │ │ │ -0001bf70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001beb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001bf00: 0a7c 6931 3920 3a20 5268 6f20 3d20 7b7b .|i19 : Rho = {{ │ │ │ │ +0001bf10: 312c 302c 307d 2c7b 302c 312c 307d 2c7b 1,0,0},{0,1,0},{ │ │ │ │ +0001bf20: 302c 302c 317d 2c7b 2d31 2c2d 312c 307d 0,0,1},{-1,-1,0} │ │ │ │ +0001bf30: 2c7b 302c 302c 2d31 7d7d 2020 2020 2020 ,{0,0,-1}} │ │ │ │ +0001bf40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfc0: 2020 2020 2020 2020 7c0a 7c6f 3139 203d |.|o19 = │ │ │ │ -0001bfd0: 207b 7b31 2c20 302c 2030 7d2c 207b 302c {{1, 0, 0}, {0, │ │ │ │ -0001bfe0: 2031 2c20 307d 2c20 7b30 2c20 302c 2031 1, 0}, {0, 0, 1 │ │ │ │ -0001bff0: 7d2c 207b 2d31 2c20 2d31 2c20 307d 2c20 }, {-1, -1, 0}, │ │ │ │ -0001c000: 7b30 2c20 302c 202d 317d 7d20 2020 2020 {0, 0, -1}} │ │ │ │ -0001c010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf90: 2020 2020 207c 0a7c 6f31 3920 3d20 7b7b |.|o19 = {{ │ │ │ │ +0001bfa0: 312c 2030 2c20 307d 2c20 7b30 2c20 312c 1, 0, 0}, {0, 1, │ │ │ │ +0001bfb0: 2030 7d2c 207b 302c 2030 2c20 317d 2c20 0}, {0, 0, 1}, │ │ │ │ +0001bfc0: 7b2d 312c 202d 312c 2030 7d2c 207b 302c {-1, -1, 0}, {0, │ │ │ │ +0001bfd0: 2030 2c20 2d31 7d7d 2020 2020 2020 2020 0, -1}} │ │ │ │ +0001bfe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c020: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001c030: 3920 3a20 4c69 7374 2020 2020 2020 2020 9 : List │ │ │ │ 0001c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001c060: 7c6f 3139 203a 204c 6973 7420 2020 2020 |o19 : List │ │ │ │ -0001c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c070: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0f0: 2d2d 2d2d 2b0a 7c69 3230 203a 2053 6967 ----+.|i20 : Sig │ │ │ │ -0001c100: 6d61 203d 207b 7b30 2c31 2c32 7d2c 7b31 ma = {{0,1,2},{1 │ │ │ │ -0001c110: 2c32 2c33 7d2c 7b30 2c32 2c33 7d2c 7b30 ,2,3},{0,2,3},{0 │ │ │ │ -0001c120: 2c31 2c34 7d2c 7b31 2c33 2c34 7d2c 7b30 ,1,4},{1,3,4},{0 │ │ │ │ -0001c130: 2c33 2c34 7d7d 2020 2020 2020 2020 207c ,3,4}} | │ │ │ │ -0001c140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c180: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ -0001c190: 203d 207b 7b30 2c20 312c 2032 7d2c 207b = {{0, 1, 2}, { │ │ │ │ -0001c1a0: 312c 2032 2c20 337d 2c20 7b30 2c20 322c 1, 2, 3}, {0, 2, │ │ │ │ -0001c1b0: 2033 7d2c 207b 302c 2031 2c20 347d 2c20 3}, {0, 1, 4}, │ │ │ │ -0001c1c0: 7b31 2c20 332c 2034 7d2c 207b 302c 2033 {1, 3, 4}, {0, 3 │ │ │ │ -0001c1d0: 2c20 347d 7d7c 0a7c 2020 2020 2020 2020 , 4}}|.| │ │ │ │ -0001c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c0c0: 2d2b 0a7c 6932 3020 3a20 5369 676d 6120 -+.|i20 : Sigma │ │ │ │ +0001c0d0: 3d20 7b7b 302c 312c 327d 2c7b 312c 322c = {{0,1,2},{1,2, │ │ │ │ +0001c0e0: 337d 2c7b 302c 322c 337d 2c7b 302c 312c 3},{0,2,3},{0,1, │ │ │ │ +0001c0f0: 347d 2c7b 312c 332c 347d 2c7b 302c 332c 4},{1,3,4},{0,3, │ │ │ │ +0001c100: 347d 7d20 2020 2020 2020 2020 7c0a 7c20 4}} |.| │ │ │ │ +0001c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c150: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ +0001c160: 7b7b 302c 2031 2c20 327d 2c20 7b31 2c20 {{0, 1, 2}, {1, │ │ │ │ +0001c170: 322c 2033 7d2c 207b 302c 2032 2c20 337d 2, 3}, {0, 2, 3} │ │ │ │ +0001c180: 2c20 7b30 2c20 312c 2034 7d2c 207b 312c , {0, 1, 4}, {1, │ │ │ │ +0001c190: 2033 2c20 347d 2c20 7b30 2c20 332c 2034 3, 4}, {0, 3, 4 │ │ │ │ +0001c1a0: 7d7d 7c0a 7c20 2020 2020 2020 2020 2020 }}|.| │ │ │ │ +0001c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c1f0: 6f32 3020 3a20 4c69 7374 2020 2020 2020 o20 : List │ │ │ │ 0001c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c220: 7c0a 7c6f 3230 203a 204c 6973 7420 2020 |.|o20 : List │ │ │ │ -0001c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c260: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c230: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2b0: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 2058 ------+.|i21 : X │ │ │ │ -0001c2c0: 203d 206e 6f72 6d61 6c54 6f72 6963 5661 = normalToricVa │ │ │ │ -0001c2d0: 7269 6574 7928 5268 6f2c 5369 676d 612c riety(Rho,Sigma, │ │ │ │ -0001c2e0: 436f 6566 6669 6369 656e 7452 696e 6720 CoefficientRing │ │ │ │ -0001c2f0: 3d3e 5a5a 2f33 3237 3439 2920 2020 2020 =>ZZ/32749) │ │ │ │ -0001c300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c280: 2d2d 2d2b 0a7c 6932 3120 3a20 5820 3d20 ---+.|i21 : X = │ │ │ │ +0001c290: 6e6f 726d 616c 546f 7269 6356 6172 6965 normalToricVarie │ │ │ │ +0001c2a0: 7479 2852 686f 2c53 6967 6d61 2c43 6f65 ty(Rho,Sigma,Coe │ │ │ │ +0001c2b0: 6666 6963 6965 6e74 5269 6e67 203d 3e5a fficientRing =>Z │ │ │ │ +0001c2c0: 5a2f 3332 3734 3929 2020 2020 2020 7c0a Z/32749) |. │ │ │ │ +0001c2d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c310: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +0001c320: 3d20 5820 2020 2020 2020 2020 2020 2020 = X │ │ │ │ 0001c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c340: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001c350: 3231 203d 2058 2020 2020 2020 2020 2020 21 = X │ │ │ │ -0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c3b0: 0a7c 6f32 3120 3a20 4e6f 726d 616c 546f .|o21 : NormalTo │ │ │ │ +0001c3c0: 7269 6356 6172 6965 7479 2020 2020 2020 ricVariety │ │ │ │ 0001c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3e0: 2020 7c0a 7c6f 3231 203a 204e 6f72 6d61 |.|o21 : Norma │ │ │ │ -0001c3f0: 6c54 6f72 6963 5661 7269 6574 7920 2020 lToricVariety │ │ │ │ -0001c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c420: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c470: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a --------+.|i22 : │ │ │ │ -0001c480: 2043 6865 636b 546f 7269 6356 6172 6965 CheckToricVarie │ │ │ │ -0001c490: 7479 5661 6c69 6428 5829 2020 2020 2020 tyValid(X) │ │ │ │ +0001c440: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 4368 -----+.|i22 : Ch │ │ │ │ +0001c450: 6563 6b54 6f72 6963 5661 7269 6574 7956 eckToricVarietyV │ │ │ │ +0001c460: 616c 6964 2858 2920 2020 2020 2020 2020 alid(X) │ │ │ │ +0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4d0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001c4e0: 3220 3d20 7472 7565 2020 2020 2020 2020 2 = true │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c500: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001c510: 7c6f 3232 203d 2074 7275 6520 2020 2020 |o22 = true │ │ │ │ -0001c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c550: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c520: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c5a0: 2d2d 2d2d 2b0a 7c69 3233 203a 2052 3d72 ----+.|i23 : R=r │ │ │ │ -0001c5b0: 696e 6728 5829 2020 2020 2020 2020 2020 ing(X) │ │ │ │ +0001c570: 2d2b 0a7c 6932 3320 3a20 523d 7269 6e67 -+.|i23 : R=ring │ │ │ │ +0001c580: 2858 2920 2020 2020 2020 2020 2020 2020 (X) │ │ │ │ +0001c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001c5f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c600: 2020 2020 2020 207c 0a7c 6f32 3320 3d20 |.|o23 = │ │ │ │ +0001c610: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c630: 2020 2020 2020 2020 2020 7c0a 7c6f 3233 |.|o23 │ │ │ │ -0001c640: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ -0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c6a0: 6f32 3320 3a20 506f 6c79 6e6f 6d69 616c o23 : Polynomial │ │ │ │ +0001c6b0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0001c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6d0: 7c0a 7c6f 3233 203a 2050 6f6c 796e 6f6d |.|o23 : Polynom │ │ │ │ -0001c6e0: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -0001c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c710: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c760: 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a 2049 ------+.|i24 : I │ │ │ │ -0001c770: 3d69 6465 616c 2852 5f30 5e34 2a52 5f31 =ideal(R_0^4*R_1 │ │ │ │ -0001c780: 2c52 5f30 2a52 5f33 2a52 5f34 2a52 5f32 ,R_0*R_3*R_4*R_2 │ │ │ │ -0001c790: 2d52 5f32 5e32 2a52 5f30 5e32 2920 2020 -R_2^2*R_0^2) │ │ │ │ +0001c730: 2d2d 2d2b 0a7c 6932 3420 3a20 493d 6964 ---+.|i24 : I=id │ │ │ │ +0001c740: 6561 6c28 525f 305e 342a 525f 312c 525f eal(R_0^4*R_1,R_ │ │ │ │ +0001c750: 302a 525f 332a 525f 342a 525f 322d 525f 0*R_3*R_4*R_2-R_ │ │ │ │ +0001c760: 325e 322a 525f 305e 3229 2020 2020 2020 2^2*R_0^2) │ │ │ │ +0001c770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001c780: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001c800: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -0001c810: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c840: 2020 2020 2020 207c 0a7c 6f32 3420 3d20 |.|o24 = │ │ │ │ -0001c850: 6964 6561 6c20 2878 2078 202c 202d 2078 ideal (x x , - x │ │ │ │ -0001c860: 2078 2020 2b20 7820 7820 7820 7820 2920 x + x x x x ) │ │ │ │ -0001c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c8a0: 2020 2030 2031 2020 2020 2030 2032 2020 0 1 0 2 │ │ │ │ -0001c8b0: 2020 3020 3220 3320 3420 2020 2020 2020 0 2 3 4 │ │ │ │ +0001c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c7c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001c7d0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +0001c7e0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0001c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c810: 2020 2020 7c0a 7c6f 3234 203d 2069 6465 |.|o24 = ide │ │ │ │ +0001c820: 616c 2028 7820 7820 2c20 2d20 7820 7820 al (x x , - x x │ │ │ │ +0001c830: 202b 2078 2078 2078 2078 2029 2020 2020 + x x x x ) │ │ │ │ +0001c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001c870: 3020 3120 2020 2020 3020 3220 2020 2030 0 1 0 2 0 │ │ │ │ +0001c880: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8f0: 2020 2020 207c 0a7c 6f32 3420 3a20 4964 |.|o24 : Id │ │ │ │ +0001c900: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ 0001c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c920: 2020 2020 2020 2020 7c0a 7c6f 3234 203a |.|o24 : │ │ │ │ -0001c930: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ -0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c970: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001c9c0: 7c69 3235 203a 2063 736d 493d 4353 4d28 |i25 : csmI=CSM( │ │ │ │ -0001c9d0: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +0001c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c940: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001c990: 3520 3a20 6373 6d49 3d43 534d 2858 2c49 5 : csmI=CSM(X,I │ │ │ │ +0001c9a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c9d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca20: 207c 0a7c 2020 2020 2020 2020 3220 2020 |.| 2 │ │ │ │ +0001ca30: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca50: 2020 2020 7c0a 7c20 2020 2020 2020 2032 |.| 2 │ │ │ │ -0001ca60: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0001ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001caa0: 0a7c 6f32 3520 3d20 3578 2078 2020 2b20 .|o25 = 5x x + │ │ │ │ -0001cab0: 3378 2020 2b20 3478 2078 2020 2b20 7820 3x + 4x x + x │ │ │ │ -0001cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001caf0: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0001cb00: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0001ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001ca70: 3235 203d 2035 7820 7820 202b 2033 7820 25 = 5x x + 3x │ │ │ │ +0001ca80: 202b 2034 7820 7820 202b 2078 2020 2020 + 4x x + x │ │ │ │ +0001ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001cac0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0001cad0: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb60: 2020 2020 2020 5a5a 5b78 202e 2e78 205d ZZ[x ..x ] │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001cb90: 2020 2020 2020 2020 205a 5a5b 7820 2e2e ZZ[x .. │ │ │ │ -0001cba0: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ -0001cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cbb0: 2020 2020 2030 2020 2034 2020 2020 2020 0 4 │ │ │ │ +0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbe0: 2020 2020 2020 2020 3020 2020 3420 2020 0 4 │ │ │ │ -0001cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc10: 2020 2020 2020 7c0a 7c6f 3235 203a 202d |.|o25 : - │ │ │ │ -0001cc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cc40: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ -0001cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc60: 207c 0a7c 2020 2020 2020 2878 2078 202c |.| (x x , │ │ │ │ -0001cc70: 2078 2078 2078 202c 2078 2020 2d20 7820 x x x , x - x │ │ │ │ -0001cc80: 2c20 7820 202d 2078 202c 2078 2020 2d20 , x - x , x - │ │ │ │ -0001cc90: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0001cca0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ccb0: 2020 2020 2020 2032 2034 2020 2030 2031 2 4 0 1 │ │ │ │ -0001ccc0: 2033 2020 2030 2020 2020 3320 2020 3120 3 0 3 1 │ │ │ │ -0001ccd0: 2020 2033 2020 2032 2020 2020 3420 2020 3 2 4 │ │ │ │ -0001cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccf0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd40: 2d2d 2b0a 7c69 3236 203a 2045 756c 6572 --+.|i26 : Euler │ │ │ │ -0001cd50: 493d 4575 6c65 7228 582c 4929 2020 2020 I=Euler(X,I) │ │ │ │ +0001cbe0: 2020 207c 0a7c 6f32 3520 3a20 2d2d 2d2d |.|o25 : ---- │ │ │ │ +0001cbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cc10: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ +0001cc20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001cc30: 7c20 2020 2020 2028 7820 7820 2c20 7820 | (x x , x │ │ │ │ +0001cc40: 7820 7820 2c20 7820 202d 2078 202c 2078 x x , x - x , x │ │ │ │ +0001cc50: 2020 2d20 7820 2c20 7820 202d 2078 2029 - x , x - x ) │ │ │ │ +0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cc70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001cc80: 2020 2020 3220 3420 2020 3020 3120 3320 2 4 0 1 3 │ │ │ │ +0001cc90: 2020 3020 2020 2033 2020 2031 2020 2020 0 3 1 │ │ │ │ +0001cca0: 3320 2020 3220 2020 2034 2020 2020 2020 3 2 4 │ │ │ │ +0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ccc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001cd10: 0a7c 6932 3620 3a20 4575 6c65 7249 3d45 .|i26 : EulerI=E │ │ │ │ +0001cd20: 756c 6572 2858 2c49 2920 2020 2020 2020 uler(X,I) │ │ │ │ +0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cda0: 2020 2020 207c 0a7c 6f32 3620 3d20 3520 |.|o26 = 5 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdd0: 2020 2020 2020 2020 7c0a 7c6f 3236 203d |.|o26 = │ │ │ │ -0001cde0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001ce70: 7c69 3237 203a 2045 756c 6572 2863 736d |i27 : Euler(csm │ │ │ │ -0001ce80: 4929 3d3d 4575 6c65 7249 2020 2020 2020 I)==EulerI │ │ │ │ +0001cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cdf0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001ce40: 3720 3a20 4575 6c65 7228 6373 6d49 293d 7 : Euler(csmI)= │ │ │ │ +0001ce50: 3d45 756c 6572 4920 2020 2020 2020 2020 =EulerI │ │ │ │ +0001ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ceb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ced0: 207c 0a7c 6f32 3720 3d20 7472 7565 2020 |.|o27 = true │ │ │ │ 0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf00: 2020 2020 7c0a 7c6f 3237 203d 2074 7275 |.|o27 = tru │ │ │ │ -0001cf10: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001cf50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001cf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 6c6c ----------+..All │ │ │ │ -0001cfa0: 2074 6865 2065 7861 6d70 6c65 7320 7765 the examples we │ │ │ │ -0001cfb0: 7265 2064 6f6e 6520 7573 696e 6720 7379 re done using sy │ │ │ │ -0001cfc0: 6d62 6f6c 6963 2063 6f6d 7075 7461 7469 mbolic computati │ │ │ │ -0001cfd0: 6f6e 7320 7769 7468 2047 725c 226f 626e ons with Gr\"obn │ │ │ │ -0001cfe0: 6572 2062 6173 6573 2e0a 4368 616e 6769 er bases..Changi │ │ │ │ -0001cff0: 6e67 2074 6865 206f 7074 696f 6e20 2a6e ng the option *n │ │ │ │ -0001d000: 6f74 6520 436f 6d70 4d65 7468 6f64 3a20 ote CompMethod: │ │ │ │ -0001d010: 436f 6d70 4d65 7468 6f64 2c20 746f 2062 CompMethod, to b │ │ │ │ -0001d020: 6572 7469 6e69 2077 696c 6c20 646f 2074 ertini will do t │ │ │ │ -0001d030: 6865 206d 6169 6e0a 636f 6d70 7574 6174 he main.computat │ │ │ │ -0001d040: 696f 6e73 206e 756d 6572 6963 616c 6c79 ions numerically │ │ │ │ -0001d050: 2c20 7072 6f76 6964 6564 2042 6572 7469 , provided Berti │ │ │ │ -0001d060: 6e69 2069 7320 2a6e 6f74 6520 696e 7374 ni is *note inst │ │ │ │ -0001d070: 616c 6c65 6420 616e 6420 636f 6e66 6967 alled and config │ │ │ │ -0001d080: 7572 6564 3a0a 636f 6e66 6967 7572 696e ured:.configurin │ │ │ │ -0001d090: 6720 4265 7274 696e 692c 2e20 4e6f 7465 g Bertini,. Note │ │ │ │ -0001d0a0: 2074 6861 7420 7468 6520 6265 7274 696e that the bertin │ │ │ │ -0001d0b0: 6920 616e 6420 506e 5265 7369 6475 616c i and PnResidual │ │ │ │ -0001d0c0: 206f 7074 696f 6e73 206d 6179 206f 6e6c options may onl │ │ │ │ -0001d0d0: 7920 6265 0a75 7365 6420 666f 7220 7375 y be.used for su │ │ │ │ -0001d0e0: 6273 6368 656d 6573 206f 6620 5c50 505e bschemes of \PP^ │ │ │ │ -0001d0f0: 6e2e 0a0a 4f62 7365 7276 6520 7468 6174 n...Observe that │ │ │ │ -0001d100: 2074 6865 2061 6c67 6f72 6974 686d 2069 the algorithm i │ │ │ │ -0001d110: 7320 6120 7072 6f62 6162 696c 6973 7469 s a probabilisti │ │ │ │ -0001d120: 6320 616c 676f 7269 7468 6d20 616e 6420 c algorithm and │ │ │ │ -0001d130: 6d61 7920 6769 7665 2061 2077 726f 6e67 may give a wrong │ │ │ │ -0001d140: 0a61 6e73 7765 7220 7769 7468 2061 2073 .answer with a s │ │ │ │ -0001d150: 6d61 6c6c 2062 7574 206e 6f6e 7a65 726f mall but nonzero │ │ │ │ -0001d160: 2070 726f 6261 6269 6c69 7479 2e20 5265 probability. Re │ │ │ │ -0001d170: 6164 206d 6f72 6520 756e 6465 7220 2a6e ad more under *n │ │ │ │ -0001d180: 6f74 650a 7072 6f62 6162 696c 6973 7469 ote.probabilisti │ │ │ │ -0001d190: 6320 616c 676f 7269 7468 6d3a 2070 726f c algorithm: pro │ │ │ │ -0001d1a0: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ -0001d1b0: 6974 686d 2c2e 0a0a 5761 7973 2074 6f20 ithm,...Ways to │ │ │ │ -0001d1c0: 7573 6520 4575 6c65 723a 0a3d 3d3d 3d3d use Euler:.===== │ │ │ │ -0001d1d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0001d1e0: 202a 2022 4575 6c65 7228 4964 6561 6c29 * "Euler(Ideal) │ │ │ │ -0001d1f0: 220a 2020 2a20 2245 756c 6572 2852 696e ". * "Euler(Rin │ │ │ │ -0001d200: 6745 6c65 6d65 6e74 2922 0a0a 466f 7220 gElement)"..For │ │ │ │ -0001d210: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0001d220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d230: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0001d240: 6f74 6520 4575 6c65 723a 2045 756c 6572 ote Euler: Euler │ │ │ │ -0001d250: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0001d260: 686f 6420 6675 6e63 7469 6f6e 2077 6974 hod function wit │ │ │ │ -0001d270: 6820 6f70 7469 6f6e 733a 0a28 4d61 6361 h options:.(Maca │ │ │ │ -0001d280: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0001d290: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ -0001d2a0: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ +0001cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cf10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001cf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf60: 2d2d 2d2d 2d2d 2d2b 0a0a 416c 6c20 7468 -------+..All th │ │ │ │ +0001cf70: 6520 6578 616d 706c 6573 2077 6572 6520 e examples were │ │ │ │ +0001cf80: 646f 6e65 2075 7369 6e67 2073 796d 626f done using symbo │ │ │ │ +0001cf90: 6c69 6320 636f 6d70 7574 6174 696f 6e73 lic computations │ │ │ │ +0001cfa0: 2077 6974 6820 4772 5c22 6f62 6e65 7220 with Gr\"obner │ │ │ │ +0001cfb0: 6261 7365 732e 0a43 6861 6e67 696e 6720 bases..Changing │ │ │ │ +0001cfc0: 7468 6520 6f70 7469 6f6e 202a 6e6f 7465 the option *note │ │ │ │ +0001cfd0: 2043 6f6d 704d 6574 686f 643a 2043 6f6d CompMethod: Com │ │ │ │ +0001cfe0: 704d 6574 686f 642c 2074 6f20 6265 7274 pMethod, to bert │ │ │ │ +0001cff0: 696e 6920 7769 6c6c 2064 6f20 7468 6520 ini will do the │ │ │ │ +0001d000: 6d61 696e 0a63 6f6d 7075 7461 7469 6f6e main.computation │ │ │ │ +0001d010: 7320 6e75 6d65 7269 6361 6c6c 792c 2070 s numerically, p │ │ │ │ +0001d020: 726f 7669 6465 6420 4265 7274 696e 6920 rovided Bertini │ │ │ │ +0001d030: 6973 202a 6e6f 7465 2069 6e73 7461 6c6c is *note install │ │ │ │ +0001d040: 6564 2061 6e64 2063 6f6e 6669 6775 7265 ed and configure │ │ │ │ +0001d050: 643a 0a63 6f6e 6669 6775 7269 6e67 2042 d:.configuring B │ │ │ │ +0001d060: 6572 7469 6e69 2c2e 204e 6f74 6520 7468 ertini,. Note th │ │ │ │ +0001d070: 6174 2074 6865 2062 6572 7469 6e69 2061 at the bertini a │ │ │ │ +0001d080: 6e64 2050 6e52 6573 6964 7561 6c20 6f70 nd PnResidual op │ │ │ │ +0001d090: 7469 6f6e 7320 6d61 7920 6f6e 6c79 2062 tions may only b │ │ │ │ +0001d0a0: 650a 7573 6564 2066 6f72 2073 7562 7363 e.used for subsc │ │ │ │ +0001d0b0: 6865 6d65 7320 6f66 205c 5050 5e6e 2e0a hemes of \PP^n.. │ │ │ │ +0001d0c0: 0a4f 6273 6572 7665 2074 6861 7420 7468 .Observe that th │ │ │ │ +0001d0d0: 6520 616c 676f 7269 7468 6d20 6973 2061 e algorithm is a │ │ │ │ +0001d0e0: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ +0001d0f0: 6c67 6f72 6974 686d 2061 6e64 206d 6179 lgorithm and may │ │ │ │ +0001d100: 2067 6976 6520 6120 7772 6f6e 670a 616e give a wrong.an │ │ │ │ +0001d110: 7377 6572 2077 6974 6820 6120 736d 616c swer with a smal │ │ │ │ +0001d120: 6c20 6275 7420 6e6f 6e7a 6572 6f20 7072 l but nonzero pr │ │ │ │ +0001d130: 6f62 6162 696c 6974 792e 2052 6561 6420 obability. Read │ │ │ │ +0001d140: 6d6f 7265 2075 6e64 6572 202a 6e6f 7465 more under *note │ │ │ │ +0001d150: 0a70 726f 6261 6269 6c69 7374 6963 2061 .probabilistic a │ │ │ │ +0001d160: 6c67 6f72 6974 686d 3a20 7072 6f62 6162 lgorithm: probab │ │ │ │ +0001d170: 696c 6973 7469 6320 616c 676f 7269 7468 ilistic algorith │ │ │ │ +0001d180: 6d2c 2e0a 0a57 6179 7320 746f 2075 7365 m,...Ways to use │ │ │ │ +0001d190: 2045 756c 6572 3a0a 3d3d 3d3d 3d3d 3d3d Euler:.======== │ │ │ │ +0001d1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0001d1b0: 2245 756c 6572 2849 6465 616c 2922 0a20 "Euler(Ideal)". │ │ │ │ +0001d1c0: 202a 2022 4575 6c65 7228 5269 6e67 456c * "Euler(RingEl │ │ │ │ +0001d1d0: 656d 656e 7429 220a 0a46 6f72 2074 6865 ement)"..For the │ │ │ │ +0001d1e0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0001d1f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0001d200: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0001d210: 2045 756c 6572 3a20 4575 6c65 722c 2069 Euler: Euler, i │ │ │ │ +0001d220: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +0001d230: 2066 756e 6374 696f 6e20 7769 7468 206f function with o │ │ │ │ +0001d240: 7074 696f 6e73 3a0a 284d 6163 6175 6c61 ptions:.(Macaula │ │ │ │ +0001d250: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0001d260: 7469 6f6e 5769 7468 4f70 7469 6f6e 732c tionWithOptions, │ │ │ │ +0001d270: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2f0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0001d300: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0001d310: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0001d320: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0001d330: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0001d340: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0001d350: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -0001d360: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -0001d370: 7365 732e 6d32 3a32 3331 323a 302e 0a1f ses.m2:2312:0... │ │ │ │ -0001d380: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -0001d390: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -0001d3a0: 6f2c 204e 6f64 653a 2045 756c 6572 4166 o, Node: EulerAf │ │ │ │ -0001d3b0: 6669 6e65 2c20 4e65 7874 3a20 496e 6473 fine, Next: Inds │ │ │ │ -0001d3c0: 4f66 536d 6f6f 7468 2c20 5072 6576 3a20 OfSmooth, Prev: │ │ │ │ -0001d3d0: 4575 6c65 722c 2055 703a 2054 6f70 0a0a Euler, Up: Top.. │ │ │ │ -0001d3e0: 4575 6c65 7241 6666 696e 6520 2d2d 2054 EulerAffine -- T │ │ │ │ -0001d3f0: 6865 2045 756c 6572 2043 6861 7261 6374 he Euler Charact │ │ │ │ -0001d400: 6572 6973 7469 6320 6f66 2061 6e20 6166 eristic of an af │ │ │ │ -0001d410: 6669 6e65 2076 6172 6965 7479 2e0a 2a2a fine variety..** │ │ │ │ -0001d420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0001d460: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0001d470: 2045 756c 6572 4166 6669 6e65 2049 0a20 EulerAffine I. │ │ │ │ -0001d480: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0001d490: 202a 2049 2c20 616e 202a 6e6f 7465 2069 * I, an *note i │ │ │ │ -0001d4a0: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -0001d4b0: 446f 6329 4964 6561 6c2c 2c20 616e 2069 Doc)Ideal,, an i │ │ │ │ -0001d4c0: 6465 616c 2069 6e20 6120 706f 6c79 6e6f deal in a polyno │ │ │ │ -0001d4d0: 6d69 616c 2072 696e 670a 2020 2020 2020 mial ring. │ │ │ │ -0001d4e0: 2020 6f76 6572 2061 2066 6965 6c64 2064 over a field d │ │ │ │ -0001d4f0: 6566 696e 696e 6720 616e 2061 6666 696e efining an affin │ │ │ │ -0001d500: 6520 7661 7269 6574 792e 0a20 202a 204f e variety.. * O │ │ │ │ -0001d510: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0001d520: 6120 2a6e 6f74 6520 7269 6e67 2065 6c65 a *note ring ele │ │ │ │ -0001d530: 6d65 6e74 3a20 284d 6163 6175 6c61 7932 ment: (Macaulay2 │ │ │ │ -0001d540: 446f 6329 5269 6e67 456c 656d 656e 742c Doc)RingElement, │ │ │ │ -0001d550: 2c20 7468 6520 4575 6c65 720a 2020 2020 , the Euler. │ │ │ │ -0001d560: 2020 2020 6368 6172 6163 7465 7269 7374 characterist │ │ │ │ -0001d570: 6963 0a0a 4465 7363 7269 7074 696f 6e0a ic..Description. │ │ │ │ -0001d580: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -0001d590: 7320 636f 6d6d 616e 6420 636f 6d70 7574 s command comput │ │ │ │ -0001d5a0: 6573 2074 6865 2045 756c 6572 2063 6861 es the Euler cha │ │ │ │ -0001d5b0: 7261 6374 6572 6973 7469 6320 6f66 2061 racteristic of a │ │ │ │ -0001d5c0: 2063 6f6d 706c 6578 2061 6666 696e 6520 complex affine │ │ │ │ -0001d5d0: 7661 7269 6574 792e 0a0a 2b2d 2d2d 2d2d variety...+----- │ │ │ │ -0001d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d610: 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a 5a2f --+.|i1 : kk=ZZ/ │ │ │ │ -0001d620: 3332 3734 393b 2020 2020 2020 2020 2020 32749; │ │ │ │ -0001d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d640: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001d650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d680: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 523d ------+.|i2 : R= │ │ │ │ -0001d690: 6b6b 5b78 5f31 2e2e 785f 335d 2020 2020 kk[x_1..x_3] │ │ │ │ +0001d2c0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0001d2d0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0001d2e0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0001d2f0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0001d300: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0001d310: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0001d320: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +0001d330: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001d340: 2e6d 323a 3233 3132 3a30 2e0a 1f0a 4669 .m2:2312:0....Fi │ │ │ │ +0001d350: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +0001d360: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +0001d370: 4e6f 6465 3a20 4575 6c65 7241 6666 696e Node: EulerAffin │ │ │ │ +0001d380: 652c 204e 6578 743a 2049 6e64 734f 6653 e, Next: IndsOfS │ │ │ │ +0001d390: 6d6f 6f74 682c 2050 7265 763a 2045 756c mooth, Prev: Eul │ │ │ │ +0001d3a0: 6572 2c20 5570 3a20 546f 700a 0a45 756c er, Up: Top..Eul │ │ │ │ +0001d3b0: 6572 4166 6669 6e65 202d 2d20 5468 6520 erAffine -- The │ │ │ │ +0001d3c0: 4575 6c65 7220 4368 6172 6163 7465 7269 Euler Characteri │ │ │ │ +0001d3d0: 7374 6963 206f 6620 616e 2061 6666 696e stic of an affin │ │ │ │ +0001d3e0: 6520 7661 7269 6574 792e 0a2a 2a2a 2a2a e variety..***** │ │ │ │ +0001d3f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d420: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +0001d430: 6167 653a 200a 2020 2020 2020 2020 4575 age: . Eu │ │ │ │ +0001d440: 6c65 7241 6666 696e 6520 490a 2020 2a20 lerAffine I. * │ │ │ │ +0001d450: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0001d460: 492c 2061 6e20 2a6e 6f74 6520 6964 6561 I, an *note idea │ │ │ │ +0001d470: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0001d480: 2949 6465 616c 2c2c 2061 6e20 6964 6561 )Ideal,, an idea │ │ │ │ +0001d490: 6c20 696e 2061 2070 6f6c 796e 6f6d 6961 l in a polynomia │ │ │ │ +0001d4a0: 6c20 7269 6e67 0a20 2020 2020 2020 206f l ring. o │ │ │ │ +0001d4b0: 7665 7220 6120 6669 656c 6420 6465 6669 ver a field defi │ │ │ │ +0001d4c0: 6e69 6e67 2061 6e20 6166 6669 6e65 2076 ning an affine v │ │ │ │ +0001d4d0: 6172 6965 7479 2e0a 2020 2a20 4f75 7470 ariety.. * Outp │ │ │ │ +0001d4e0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0001d4f0: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ +0001d500: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +0001d510: 2952 696e 6745 6c65 6d65 6e74 2c2c 2074 )RingElement,, t │ │ │ │ +0001d520: 6865 2045 756c 6572 0a20 2020 2020 2020 he Euler. │ │ │ │ +0001d530: 2063 6861 7261 6374 6572 6973 7469 630a characteristic. │ │ │ │ +0001d540: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0001d550: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2063 ========..This c │ │ │ │ +0001d560: 6f6d 6d61 6e64 2063 6f6d 7075 7465 7320 ommand computes │ │ │ │ +0001d570: 7468 6520 4575 6c65 7220 6368 6172 6163 the Euler charac │ │ │ │ +0001d580: 7465 7269 7374 6963 206f 6620 6120 636f teristic of a co │ │ │ │ +0001d590: 6d70 6c65 7820 6166 6669 6e65 2076 6172 mplex affine var │ │ │ │ +0001d5a0: 6965 7479 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d iety...+-------- │ │ │ │ +0001d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d5e0: 0a7c 6931 203a 206b 6b3d 5a5a 2f33 3237 .|i1 : kk=ZZ/327 │ │ │ │ +0001d5f0: 3439 3b20 2020 2020 2020 2020 2020 2020 49; │ │ │ │ +0001d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d610: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d650: 2d2d 2d2b 0a7c 6932 203a 2052 3d6b 6b5b ---+.|i2 : R=kk[ │ │ │ │ +0001d660: 785f 312e 2e78 5f33 5d20 2020 2020 2020 x_1..x_3] │ │ │ │ +0001d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d6c0: 2020 2020 2020 207c 0a7c 6f32 203d 2052 |.|o2 = R │ │ │ │ 0001d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001d700: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +0001d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d730: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001d770: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -0001d780: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -0001d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d7a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7e0: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ -0001d7f0: 6c28 785f 315e 322b 785f 325e 322b 785f l(x_1^2+x_2^2+x_ │ │ │ │ -0001d800: 335e 322d 3129 2020 2020 2020 2020 2020 3^2-1) │ │ │ │ -0001d810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d730: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001d740: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +0001d750: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d770: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d7b0: 0a7c 6933 203a 2049 3d69 6465 616c 2878 .|i3 : I=ideal(x │ │ │ │ +0001d7c0: 5f31 5e32 2b78 5f32 5e32 2b78 5f33 5e32 _1^2+x_2^2+x_3^2 │ │ │ │ +0001d7d0: 2d31 2920 2020 2020 2020 2020 2020 2020 -1) │ │ │ │ +0001d7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d830: 2020 3220 2020 2032 2020 2020 3220 2020 2 2 2 │ │ │ │ 0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d850: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001d860: 2020 2020 2032 2020 2020 3220 2020 2032 2 2 2 │ │ │ │ -0001d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d860: 6f33 203d 2069 6465 616c 2878 2020 2b20 o3 = ideal(x + │ │ │ │ +0001d870: 7820 202b 2078 2020 2d20 3129 2020 2020 x + x - 1) │ │ │ │ 0001d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d890: 7c0a 7c6f 3320 3d20 6964 6561 6c28 7820 |.|o3 = ideal(x │ │ │ │ -0001d8a0: 202b 2078 2020 2b20 7820 202d 2031 2920 + x + x - 1) │ │ │ │ -0001d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001d8d0: 2020 2020 2020 2020 2031 2020 2020 3220 1 2 │ │ │ │ -0001d8e0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001d890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001d8a0: 2020 2020 2020 3120 2020 2032 2020 2020 1 2 │ │ │ │ +0001d8b0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d900: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0001d910: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001d940: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ -0001d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d970: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d9b0: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2045 --+.|i4 : time E │ │ │ │ -0001d9c0: 756c 6572 4166 6669 6e65 2049 2020 2020 ulerAffine I │ │ │ │ -0001d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001d9f0: 2d2d 2075 7365 6420 302e 3038 3734 3133 -- used 0.087413 │ │ │ │ -0001da00: 3173 2028 6370 7529 3b20 302e 3034 3932 1s (cpu); 0.0492 │ │ │ │ -0001da10: 3135 3973 2028 7468 7265 6164 293b 2030 159s (thread); 0 │ │ │ │ -0001da20: 7320 2867 6329 7c0a 7c20 2020 2020 2020 s (gc)|.| │ │ │ │ -0001da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d940: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d980: 0a7c 6934 203a 2074 696d 6520 4575 6c65 .|i4 : time Eule │ │ │ │ +0001d990: 7241 6666 696e 6520 4920 2020 2020 2020 rAffine I │ │ │ │ +0001d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d9b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +0001d9c0: 7573 6564 2030 2e30 3735 3738 3535 7320 used 0.0757855s │ │ │ │ +0001d9d0: 2863 7075 293b 2030 2e30 3631 3833 3635 (cpu); 0.0618365 │ │ │ │ +0001d9e0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0001d9f0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +0001da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001da20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001da30: 6f34 203d 2032 2020 2020 2020 2020 2020 o4 = 2 │ │ │ │ 0001da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da60: 7c0a 7c6f 3420 3d20 3220 2020 2020 2020 |.|o4 = 2 │ │ │ │ -0001da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0001daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dad0: 2d2d 2d2d 2b0a 0a4f 6273 6572 7665 2074 ----+..Observe t │ │ │ │ -0001dae0: 6861 7420 7468 6520 616c 676f 7269 7468 hat the algorith │ │ │ │ -0001daf0: 6d20 6973 2061 2070 726f 6261 6269 6c69 m is a probabili │ │ │ │ -0001db00: 7374 6963 2061 6c67 6f72 6974 686d 2061 stic algorithm a │ │ │ │ -0001db10: 6e64 206d 6179 2067 6976 6520 6120 7772 nd may give a wr │ │ │ │ -0001db20: 6f6e 670a 616e 7377 6572 2077 6974 6820 ong.answer with │ │ │ │ -0001db30: 6120 736d 616c 6c20 6275 7420 6e6f 6e7a a small but nonz │ │ │ │ -0001db40: 6572 6f20 7072 6f62 6162 696c 6974 792e ero probability. │ │ │ │ -0001db50: 2052 6561 6420 6d6f 7265 2075 6e64 6572 Read more under │ │ │ │ -0001db60: 202a 6e6f 7465 0a70 726f 6261 6269 6c69 *note.probabili │ │ │ │ -0001db70: 7374 6963 2061 6c67 6f72 6974 686d 3a20 stic algorithm: │ │ │ │ -0001db80: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ -0001db90: 676f 7269 7468 6d2c 2e0a 0a57 6179 7320 gorithm,...Ways │ │ │ │ -0001dba0: 746f 2075 7365 2045 756c 6572 4166 6669 to use EulerAffi │ │ │ │ -0001dbb0: 6e65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ne:.============ │ │ │ │ -0001dbc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -0001dbd0: 2a20 2245 756c 6572 4166 6669 6e65 2849 * "EulerAffine(I │ │ │ │ -0001dbe0: 6465 616c 2922 0a0a 466f 7220 7468 6520 deal)"..For the │ │ │ │ -0001dbf0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0001dc00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0001dc10: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0001dc20: 4575 6c65 7241 6666 696e 653a 2045 756c EulerAffine: Eul │ │ │ │ -0001dc30: 6572 4166 6669 6e65 2c20 6973 2061 202a erAffine, is a * │ │ │ │ -0001dc40: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0001dc50: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -0001dc60: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -0001dc70: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +0001da60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001daa0: 2d2b 0a0a 4f62 7365 7276 6520 7468 6174 -+..Observe that │ │ │ │ +0001dab0: 2074 6865 2061 6c67 6f72 6974 686d 2069 the algorithm i │ │ │ │ +0001dac0: 7320 6120 7072 6f62 6162 696c 6973 7469 s a probabilisti │ │ │ │ +0001dad0: 6320 616c 676f 7269 7468 6d20 616e 6420 c algorithm and │ │ │ │ +0001dae0: 6d61 7920 6769 7665 2061 2077 726f 6e67 may give a wrong │ │ │ │ +0001daf0: 0a61 6e73 7765 7220 7769 7468 2061 2073 .answer with a s │ │ │ │ +0001db00: 6d61 6c6c 2062 7574 206e 6f6e 7a65 726f mall but nonzero │ │ │ │ +0001db10: 2070 726f 6261 6269 6c69 7479 2e20 5265 probability. Re │ │ │ │ +0001db20: 6164 206d 6f72 6520 756e 6465 7220 2a6e ad more under *n │ │ │ │ +0001db30: 6f74 650a 7072 6f62 6162 696c 6973 7469 ote.probabilisti │ │ │ │ +0001db40: 6320 616c 676f 7269 7468 6d3a 2070 726f c algorithm: pro │ │ │ │ +0001db50: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ +0001db60: 6974 686d 2c2e 0a0a 5761 7973 2074 6f20 ithm,...Ways to │ │ │ │ +0001db70: 7573 6520 4575 6c65 7241 6666 696e 653a use EulerAffine: │ │ │ │ +0001db80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001db90: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +0001dba0: 4575 6c65 7241 6666 696e 6528 4964 6561 EulerAffine(Idea │ │ │ │ +0001dbb0: 6c29 220a 0a46 6f72 2074 6865 2070 726f l)"..For the pro │ │ │ │ +0001dbc0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0001dbd0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0001dbe0: 6f62 6a65 6374 202a 6e6f 7465 2045 756c object *note Eul │ │ │ │ +0001dbf0: 6572 4166 6669 6e65 3a20 4575 6c65 7241 erAffine: EulerA │ │ │ │ +0001dc00: 6666 696e 652c 2069 7320 6120 2a6e 6f74 ffine, is a *not │ │ │ │ +0001dc10: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +0001dc20: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +0001dc30: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0001dc40: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dcc0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0001dcd0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0001dce0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0001dcf0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0001dd00: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0001dd10: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0001dd20: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -0001dd30: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -0001dd40: 7365 732e 6d32 3a32 3534 313a 302e 0a1f ses.m2:2541:0... │ │ │ │ -0001dd50: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -0001dd60: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -0001dd70: 6f2c 204e 6f64 653a 2049 6e64 734f 6653 o, Node: IndsOfS │ │ │ │ -0001dd80: 6d6f 6f74 682c 204e 6578 743a 2049 6e70 mooth, Next: Inp │ │ │ │ -0001dd90: 7574 4973 536d 6f6f 7468 2c20 5072 6576 utIsSmooth, Prev │ │ │ │ -0001dda0: 3a20 4575 6c65 7241 6666 696e 652c 2055 : EulerAffine, U │ │ │ │ -0001ddb0: 703a 2054 6f70 0a0a 496e 6473 4f66 536d p: Top..IndsOfSm │ │ │ │ -0001ddc0: 6f6f 7468 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ooth.*********** │ │ │ │ -0001ddd0: 2a0a 0a44 6573 6372 6970 7469 6f6e 0a3d *..Description.= │ │ │ │ -0001dde0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0001ddf0: 6f70 7469 6f6e 2049 6e64 734f 6653 6d6f option IndsOfSmo │ │ │ │ -0001de00: 6f74 6820 6973 206f 6e6c 7920 7573 6564 oth is only used │ │ │ │ -0001de10: 2062 7920 7468 6520 636f 6d6d 616e 6473 by the commands │ │ │ │ -0001de20: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ -0001de30: 2c20 616e 6420 2a6e 6f74 650a 4575 6c65 , and *note.Eule │ │ │ │ -0001de40: 723a 2045 756c 6572 2c20 696e 2063 6f6d r: Euler, in com │ │ │ │ -0001de50: 6269 6e61 7469 6f6e 2077 6974 6820 7468 bination with th │ │ │ │ -0001de60: 6520 6f70 7469 6f6e 204d 6574 686f 643d e option Method= │ │ │ │ -0001de70: 3e44 6972 6563 7443 6f6d 706c 6574 496e >DirectCompletIn │ │ │ │ -0001de80: 742e 2057 6865 6e0a 7573 6564 2074 6869 t. When.used thi │ │ │ │ -0001de90: 7320 6f70 7469 6f6e 206d 6179 2061 6c6c s option may all │ │ │ │ -0001dea0: 6f77 2074 6865 2075 7365 7220 746f 2073 ow the user to s │ │ │ │ -0001deb0: 7065 6564 2075 7020 7468 6520 636f 6d70 peed up the comp │ │ │ │ -0001dec0: 7574 6174 696f 6e20 6279 2074 656c 6c69 utation by telli │ │ │ │ -0001ded0: 6e67 0a67 6976 696e 6720 7468 6520 6d65 ng.giving the me │ │ │ │ -0001dee0: 7468 6f64 2061 206c 6973 7420 6f66 2069 thod a list of i │ │ │ │ -0001def0: 6e64 6963 6573 2066 6f72 2074 6865 2067 ndices for the g │ │ │ │ -0001df00: 656e 6572 6174 6f72 7320 6f66 2074 6865 enerators of the │ │ │ │ -0001df10: 2069 6e70 7574 2069 6465 616c 2074 6861 input ideal tha │ │ │ │ -0001df20: 742c 0a77 6865 6e20 7461 6b65 6e20 746f t,.when taken to │ │ │ │ -0001df30: 6765 7468 6572 2c20 6465 6669 6e65 2061 gether, define a │ │ │ │ -0001df40: 2073 6d6f 6f74 6820 7375 6273 6368 656d smooth subschem │ │ │ │ -0001df50: 6520 6f66 2074 6865 2061 6d62 6965 6e74 e of the ambient │ │ │ │ -0001df60: 2073 7061 6365 2e20 5468 6973 0a6f 7074 space. This.opt │ │ │ │ -0001df70: 696f 6e20 7769 6c6c 2062 6520 6967 6e6f ion will be igno │ │ │ │ -0001df80: 7265 6420 6f74 6865 7277 6973 652e 0a0a red otherwise... │ │ │ │ -0001df90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0001dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfd0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001dfe0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ -0001dff0: 696e 6728 7b32 2c32 7d29 2020 2020 2020 ing({2,2}) │ │ │ │ +0001dc90: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0001dca0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0001dcb0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0001dcc0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0001dcd0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0001dce0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0001dcf0: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +0001dd00: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001dd10: 2e6d 323a 3235 3431 3a30 2e0a 1f0a 4669 .m2:2541:0....Fi │ │ │ │ +0001dd20: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +0001dd30: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +0001dd40: 4e6f 6465 3a20 496e 6473 4f66 536d 6f6f Node: IndsOfSmoo │ │ │ │ +0001dd50: 7468 2c20 4e65 7874 3a20 496e 7075 7449 th, Next: InputI │ │ │ │ +0001dd60: 7353 6d6f 6f74 682c 2050 7265 763a 2045 sSmooth, Prev: E │ │ │ │ +0001dd70: 756c 6572 4166 6669 6e65 2c20 5570 3a20 ulerAffine, Up: │ │ │ │ +0001dd80: 546f 700a 0a49 6e64 734f 6653 6d6f 6f74 Top..IndsOfSmoot │ │ │ │ +0001dd90: 680a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a h.************.. │ │ │ │ +0001dda0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001ddb0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 7074 =======..The opt │ │ │ │ +0001ddc0: 696f 6e20 496e 6473 4f66 536d 6f6f 7468 ion IndsOfSmooth │ │ │ │ +0001ddd0: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ +0001dde0: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ +0001ddf0: 6f74 6520 4353 4d3a 2043 534d 2c2c 2061 ote CSM: CSM,, a │ │ │ │ +0001de00: 6e64 202a 6e6f 7465 0a45 756c 6572 3a20 nd *note.Euler: │ │ │ │ +0001de10: 4575 6c65 722c 2069 6e20 636f 6d62 696e Euler, in combin │ │ │ │ +0001de20: 6174 696f 6e20 7769 7468 2074 6865 206f ation with the o │ │ │ │ +0001de30: 7074 696f 6e20 4d65 7468 6f64 3d3e 4469 ption Method=>Di │ │ │ │ +0001de40: 7265 6374 436f 6d70 6c65 7449 6e74 2e20 rectCompletInt. │ │ │ │ +0001de50: 5768 656e 0a75 7365 6420 7468 6973 206f When.used this o │ │ │ │ +0001de60: 7074 696f 6e20 6d61 7920 616c 6c6f 7720 ption may allow │ │ │ │ +0001de70: 7468 6520 7573 6572 2074 6f20 7370 6565 the user to spee │ │ │ │ +0001de80: 6420 7570 2074 6865 2063 6f6d 7075 7461 d up the computa │ │ │ │ +0001de90: 7469 6f6e 2062 7920 7465 6c6c 696e 670a tion by telling. │ │ │ │ +0001dea0: 6769 7669 6e67 2074 6865 206d 6574 686f giving the metho │ │ │ │ +0001deb0: 6420 6120 6c69 7374 206f 6620 696e 6469 d a list of indi │ │ │ │ +0001dec0: 6365 7320 666f 7220 7468 6520 6765 6e65 ces for the gene │ │ │ │ +0001ded0: 7261 746f 7273 206f 6620 7468 6520 696e rators of the in │ │ │ │ +0001dee0: 7075 7420 6964 6561 6c20 7468 6174 2c0a put ideal that,. │ │ │ │ +0001def0: 7768 656e 2074 616b 656e 2074 6f67 6574 when taken toget │ │ │ │ +0001df00: 6865 722c 2064 6566 696e 6520 6120 736d her, define a sm │ │ │ │ +0001df10: 6f6f 7468 2073 7562 7363 6865 6d65 206f ooth subscheme o │ │ │ │ +0001df20: 6620 7468 6520 616d 6269 656e 7420 7370 f the ambient sp │ │ │ │ +0001df30: 6163 652e 2054 6869 730a 6f70 7469 6f6e ace. This.option │ │ │ │ +0001df40: 2077 696c 6c20 6265 2069 676e 6f72 6564 will be ignored │ │ │ │ +0001df50: 206f 7468 6572 7769 7365 2e0a 0a2b 2d2d otherwise...+-- │ │ │ │ +0001df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dfa0: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 4d75 --+.|i1 : R = Mu │ │ │ │ +0001dfb0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ +0001dfc0: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ +0001dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e010: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e030: 7c0a 7c6f 3120 3d20 5220 2020 2020 2020 |.|o1 = R │ │ │ │ 0001e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e060: 2020 207c 0a7c 6f31 203d 2052 2020 2020 |.|o1 = R │ │ │ │ -0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e070: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0001e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e0c0: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +0001e0d0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0f0: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ -0001e100: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -0001e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e130: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001e180: 0a7c 6932 203a 2049 3d69 6465 616c 2852 .|i2 : I=ideal(R │ │ │ │ -0001e190: 5f30 2a52 5f31 2a52 5f33 2d52 5f30 5e32 _0*R_1*R_3-R_0^2 │ │ │ │ -0001e1a0: 2a52 5f33 2c72 616e 646f 6d28 7b30 2c31 *R_3,random({0,1 │ │ │ │ -0001e1b0: 7d2c 5229 2c72 616e 646f 6d28 7b31 2c32 },R),random({1,2 │ │ │ │ -0001e1c0: 7d2c 5229 293b 7c0a 7c20 2020 2020 2020 },R));|.| │ │ │ │ -0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e100: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e150: 3220 3a20 493d 6964 6561 6c28 525f 302a 2 : I=ideal(R_0* │ │ │ │ +0001e160: 525f 312a 525f 332d 525f 305e 322a 525f R_1*R_3-R_0^2*R_ │ │ │ │ +0001e170: 332c 7261 6e64 6f6d 287b 302c 317d 2c52 3,random({0,1},R │ │ │ │ +0001e180: 292c 7261 6e64 6f6d 287b 312c 327d 2c52 ),random({1,2},R │ │ │ │ +0001e190: 2929 3b7c 0a7c 2020 2020 2020 2020 2020 ));|.| │ │ │ │ +0001e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0001e1e0: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e210: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ -0001e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e250: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -0001e2a0: 203a 2074 696d 6520 4353 4d28 492c 4d65 : time CSM(I,Me │ │ │ │ -0001e2b0: 7468 6f64 3d3e 4469 7265 6374 436f 6d70 thod=>DirectComp │ │ │ │ -0001e2c0: 6c65 7449 6e74 2920 2020 2020 2020 2020 letInt) │ │ │ │ -0001e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2e0: 2020 7c0a 7c20 2d2d 2075 7365 6420 322e |.| -- used 2. │ │ │ │ -0001e2f0: 3538 3339 3773 2028 6370 7529 3b20 312e 58397s (cpu); 1. │ │ │ │ -0001e300: 3132 3030 3373 2028 7468 7265 6164 293b 12003s (thread); │ │ │ │ -0001e310: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -0001e320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e220: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e260: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0001e270: 7469 6d65 2043 534d 2849 2c4d 6574 686f time CSM(I,Metho │ │ │ │ +0001e280: 643d 3e44 6972 6563 7443 6f6d 706c 6574 d=>DirectComplet │ │ │ │ +0001e290: 496e 7429 2020 2020 2020 2020 2020 2020 Int) │ │ │ │ +0001e2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e2b0: 0a7c 202d 2d20 7573 6564 2036 2e32 3531 .| -- used 6.251 │ │ │ │ +0001e2c0: 3839 7320 2863 7075 293b 2031 2e34 3036 89s (cpu); 1.406 │ │ │ │ +0001e2d0: 3233 7320 2874 6872 6561 6429 3b20 3073 23s (thread); 0s │ │ │ │ +0001e2e0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0001e2f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e340: 2020 2020 2020 2032 2032 2020 2020 2032 2 2 2 │ │ │ │ +0001e350: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0001e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e370: 7c0a 7c20 2020 2020 2020 3220 3220 2020 |.| 2 2 │ │ │ │ -0001e380: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0001e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e380: 2020 2020 7c0a 7c6f 3320 3d20 3268 2068 |.|o3 = 2h h │ │ │ │ +0001e390: 2020 2b20 3268 2068 2020 2b20 3568 2068 + 2h h + 5h h │ │ │ │ 0001e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3b0: 2020 2020 2020 207c 0a7c 6f33 203d 2032 |.|o3 = 2 │ │ │ │ -0001e3c0: 6820 6820 202b 2032 6820 6820 202b 2035 h h + 2h h + 5 │ │ │ │ -0001e3d0: 6820 6820 2020 2020 2020 2020 2020 2020 h h │ │ │ │ -0001e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e400: 7c20 2020 2020 2020 3120 3220 2020 2020 | 1 2 │ │ │ │ -0001e410: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ +0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e3d0: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +0001e3e0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0001e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001e460: 205a 5a5b 6820 2e2e 6820 5d20 2020 2020 ZZ[h ..h ] │ │ │ │ 0001e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001e490: 2020 2020 5a5a 5b68 202e 2e68 205d 2020 ZZ[h ..h ] │ │ │ │ -0001e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4a0: 7c0a 7c20 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +0001e4b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4d0: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ -0001e4e0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4e0: 2020 2020 2020 207c 0a7c 6f33 203a 202d |.|o3 : - │ │ │ │ +0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ 0001e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e510: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0001e520: 3a20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 : ---------- │ │ │ │ -0001e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e530: 7c20 2020 2020 2020 2033 2020 2033 2020 | 3 3 │ │ │ │ 0001e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e560: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ -0001e570: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e570: 2020 2020 207c 0a7c 2020 2020 2020 2868 |.| (h │ │ │ │ +0001e580: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ 0001e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001e5b0: 2028 6820 2c20 6820 2920 2020 2020 2020 (h , h ) │ │ │ │ -0001e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e5c0: 2020 2020 2020 2031 2020 2032 2020 2020 1 2 │ │ │ │ 0001e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e5f0: 0a7c 2020 2020 2020 2020 3120 2020 3220 .| 1 2 │ │ │ │ -0001e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e630: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001e680: 6934 203a 2074 696d 6520 4353 4d28 492c i4 : time CSM(I, │ │ │ │ -0001e690: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ -0001e6a0: 6d70 6c65 7449 6e74 2c49 6e64 734f 6653 mpletInt,IndsOfS │ │ │ │ -0001e6b0: 6d6f 6f74 683d 3e7b 312c 327d 2920 2020 mooth=>{1,2}) │ │ │ │ -0001e6c0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -0001e6d0: 322e 3733 3530 3573 2028 6370 7529 3b20 2.73505s (cpu); │ │ │ │ -0001e6e0: 312e 3234 3237 7320 2874 6872 6561 6429 1.2427s (thread) │ │ │ │ -0001e6f0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -0001e700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e600: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +0001e650: 3a20 7469 6d65 2043 534d 2849 2c4d 6574 : time CSM(I,Met │ │ │ │ +0001e660: 686f 643d 3e44 6972 6563 7443 6f6d 706c hod=>DirectCompl │ │ │ │ +0001e670: 6574 496e 742c 496e 6473 4f66 536d 6f6f etInt,IndsOfSmoo │ │ │ │ +0001e680: 7468 3d3e 7b31 2c32 7d29 2020 2020 2020 th=>{1,2}) │ │ │ │ +0001e690: 207c 0a7c 202d 2d20 7573 6564 2036 2e31 |.| -- used 6.1 │ │ │ │ +0001e6a0: 3137 3533 7320 2863 7075 293b 2031 2e34 1753s (cpu); 1.4 │ │ │ │ +0001e6b0: 3139 3434 7320 2874 6872 6561 6429 3b20 1944s (thread); │ │ │ │ +0001e6c0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +0001e6d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e720: 0a7c 2020 2020 2020 2032 2032 2020 2020 .| 2 2 │ │ │ │ +0001e730: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e750: 2020 7c0a 7c20 2020 2020 2020 3220 3220 |.| 2 2 │ │ │ │ -0001e760: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ -0001e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e790: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0001e7a0: 2032 6820 6820 202b 2032 6820 6820 202b 2h h + 2h h + │ │ │ │ -0001e7b0: 2035 6820 6820 2020 2020 2020 2020 2020 5h h │ │ │ │ -0001e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e760: 2020 2020 2020 7c0a 7c6f 3420 3d20 3268 |.|o4 = 2h │ │ │ │ +0001e770: 2068 2020 2b20 3268 2068 2020 2b20 3568 h + 2h h + 5h │ │ │ │ +0001e780: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e7b0: 2020 2020 2020 2031 2032 2020 2020 2031 1 2 1 │ │ │ │ +0001e7c0: 2032 2020 2020 2031 2032 2020 2020 2020 2 1 2 │ │ │ │ 0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7e0: 7c0a 7c20 2020 2020 2020 3120 3220 2020 |.| 1 2 │ │ │ │ -0001e7f0: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +0001e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e840: 2020 205a 5a5b 6820 2e2e 6820 5d20 2020 ZZ[h ..h ] │ │ │ │ 0001e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e870: 7c20 2020 2020 5a5a 5b68 202e 2e68 205d | ZZ[h ..h ] │ │ │ │ -0001e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e880: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0001e890: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001e8c0: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ -0001e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8c0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +0001e8d0: 202d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ---------- │ │ │ │ 0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001e900: 3420 3a20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 4 : ---------- │ │ │ │ -0001e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e910: 7c0a 7c20 2020 2020 2020 2033 2020 2033 |.| 3 3 │ │ │ │ 0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e940: 2020 207c 0a7c 2020 2020 2020 2020 3320 |.| 3 │ │ │ │ -0001e950: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e960: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ 0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001e990: 2020 2028 6820 2c20 6820 2920 2020 2020 (h , h ) │ │ │ │ -0001e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e9a0: 7c20 2020 2020 2020 2031 2020 2032 2020 | 1 2 │ │ │ │ 0001e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9d0: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -0001e9e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea10: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001ea60: 0a0a 4675 6e63 7469 6f6e 7320 7769 7468 ..Functions with │ │ │ │ -0001ea70: 206f 7074 696f 6e61 6c20 6172 6775 6d65 optional argume │ │ │ │ -0001ea80: 6e74 206e 616d 6564 2049 6e64 734f 6653 nt named IndsOfS │ │ │ │ -0001ea90: 6d6f 6f74 683a 0a3d 3d3d 3d3d 3d3d 3d3d mooth:.========= │ │ │ │ -0001eaa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001eab0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001eac0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001ead0: 2022 4353 4d28 2e2e 2e2c 496e 6473 4f66 "CSM(...,IndsOf │ │ │ │ -0001eae0: 536d 6f6f 7468 3d3e 2e2e 2e29 2220 2d2d Smooth=>...)" -- │ │ │ │ -0001eaf0: 2073 6565 202a 6e6f 7465 2043 534d 3a20 see *note CSM: │ │ │ │ -0001eb00: 4353 4d2c 202d 2d20 5468 650a 2020 2020 CSM, -- The. │ │ │ │ -0001eb10: 4368 6572 6e2d 5363 6877 6172 747a 2d4d Chern-Schwartz-M │ │ │ │ -0001eb20: 6163 5068 6572 736f 6e20 636c 6173 730a acPherson class. │ │ │ │ -0001eb30: 2020 2a20 4575 6c65 7228 2e2e 2e2c 496e * Euler(...,In │ │ │ │ -0001eb40: 6473 4f66 536d 6f6f 7468 3d3e 2e2e 2e29 dsOfSmooth=>...) │ │ │ │ -0001eb50: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001eb60: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ -0001eb70: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001eb80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001eb90: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001eba0: 6520 496e 6473 4f66 536d 6f6f 7468 3a20 e IndsOfSmooth: │ │ │ │ -0001ebb0: 496e 6473 4f66 536d 6f6f 7468 2c20 6973 IndsOfSmooth, is │ │ │ │ -0001ebc0: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ -0001ebd0: 0a28 4d61 6361 756c 6179 3244 6f63 2953 .(Macaulay2Doc)S │ │ │ │ -0001ebe0: 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d ymbol,...------- │ │ │ │ +0001e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e9e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ +0001ea30: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +0001ea40: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ +0001ea50: 6e61 6d65 6420 496e 6473 4f66 536d 6f6f named IndsOfSmoo │ │ │ │ +0001ea60: 7468 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d th:.============ │ │ │ │ +0001ea70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ea80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ea90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 ========.. * "C │ │ │ │ +0001eaa0: 534d 282e 2e2e 2c49 6e64 734f 6653 6d6f SM(...,IndsOfSmo │ │ │ │ +0001eab0: 6f74 683d 3e2e 2e2e 2922 202d 2d20 7365 oth=>...)" -- se │ │ │ │ +0001eac0: 6520 2a6e 6f74 6520 4353 4d3a 2043 534d e *note CSM: CSM │ │ │ │ +0001ead0: 2c20 2d2d 2054 6865 0a20 2020 2043 6865 , -- The. Che │ │ │ │ +0001eae0: 726e 2d53 6368 7761 7274 7a2d 4d61 6350 rn-Schwartz-MacP │ │ │ │ +0001eaf0: 6865 7273 6f6e 2063 6c61 7373 0a20 202a herson class. * │ │ │ │ +0001eb00: 2045 756c 6572 282e 2e2e 2c49 6e64 734f Euler(...,IndsO │ │ │ │ +0001eb10: 6653 6d6f 6f74 683d 3e2e 2e2e 2920 286d fSmooth=>...) (m │ │ │ │ +0001eb20: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +0001eb30: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ +0001eb40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0001eb50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0001eb60: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ +0001eb70: 6e64 734f 6653 6d6f 6f74 683a 2049 6e64 ndsOfSmooth: Ind │ │ │ │ +0001eb80: 734f 6653 6d6f 6f74 682c 2069 7320 6120 sOfSmooth, is a │ │ │ │ +0001eb90: 2a6e 6f74 6520 7379 6d62 6f6c 3a0a 284d *note symbol:.(M │ │ │ │ +0001eba0: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ +0001ebb0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ +0001ebc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ebd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec30: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0001ec40: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0001ec50: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0001ec60: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0001ec70: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0001ec80: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0001ec90: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0001eca0: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ -0001ecb0: 6c61 7373 6573 2e6d 323a 3234 3832 3a30 lasses.m2:2482:0 │ │ │ │ -0001ecc0: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ -0001ecd0: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -0001ece0: 696e 666f 2c20 4e6f 6465 3a20 496e 7075 info, Node: Inpu │ │ │ │ -0001ecf0: 7449 7353 6d6f 6f74 682c 204e 6578 743a tIsSmooth, Next: │ │ │ │ -0001ed00: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -0001ed10: 6f75 732c 2050 7265 763a 2049 6e64 734f ous, Prev: IndsO │ │ │ │ -0001ed20: 6653 6d6f 6f74 682c 2055 703a 2054 6f70 fSmooth, Up: Top │ │ │ │ -0001ed30: 0a0a 496e 7075 7449 7353 6d6f 6f74 680a ..InputIsSmooth. │ │ │ │ -0001ed40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 *************..D │ │ │ │ -0001ed50: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0001ed60: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f70 7469 ======..The opti │ │ │ │ -0001ed70: 6f6e 2049 6e70 7574 4973 536d 6f6f 7468 on InputIsSmooth │ │ │ │ -0001ed80: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ -0001ed90: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ -0001eda0: 6f74 6520 4353 4d3a 2043 534d 2c2c 2061 ote CSM: CSM,, a │ │ │ │ -0001edb0: 6e64 0a2a 6e6f 7465 2045 756c 6572 3a20 nd.*note Euler: │ │ │ │ -0001edc0: 4575 6c65 722c 2e20 4966 2074 6865 2069 Euler,. If the i │ │ │ │ -0001edd0: 6e70 7574 2069 6465 616c 2069 7320 6b6e nput ideal is kn │ │ │ │ -0001ede0: 6f77 6e20 746f 2064 6566 696e 6520 6120 own to define a │ │ │ │ -0001edf0: 736d 6f6f 7468 2073 7562 7363 6865 6d65 smooth subscheme │ │ │ │ -0001ee00: 0a73 6574 7469 6e67 2074 6869 7320 6f70 .setting this op │ │ │ │ -0001ee10: 7469 6f6e 2074 6f20 7472 7565 2077 696c tion to true wil │ │ │ │ -0001ee20: 6c20 7370 6565 6420 7570 2063 6f6d 7075 l speed up compu │ │ │ │ -0001ee30: 7461 7469 6f6e 7320 2869 7420 6973 2073 tations (it is s │ │ │ │ -0001ee40: 6574 2074 6f20 6661 6c73 6520 6279 0a64 et to false by.d │ │ │ │ -0001ee50: 6566 6175 6c74 292e 0a0a 2b2d 2d2d 2d2d efault)...+----- │ │ │ │ -0001ee60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee90: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 5a5a --+.|i1 : R = ZZ │ │ │ │ -0001eea0: 2f33 3237 3439 5b78 5f30 2e2e 785f 345d /32749[x_0..x_4] │ │ │ │ -0001eeb0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0001eec0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ef00: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 493d ------+.|i2 : I= │ │ │ │ -0001ef10: 6964 6561 6c28 7261 6e64 6f6d 2832 2c52 ideal(random(2,R │ │ │ │ -0001ef20: 292c 7261 6e64 6f6d 2832 2c52 292c 7261 ),random(2,R),ra │ │ │ │ -0001ef30: 6e64 6f6d 2831 2c52 2929 3b20 2020 2020 ndom(1,R)); │ │ │ │ -0001ef40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ec00: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +0001ec10: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +0001ec20: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +0001ec30: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +0001ec40: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +0001ec50: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +0001ec60: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ +0001ec70: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ +0001ec80: 7365 732e 6d32 3a32 3438 323a 302e 0a1f ses.m2:2482:0... │ │ │ │ +0001ec90: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ +0001eca0: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ +0001ecb0: 6f2c 204e 6f64 653a 2049 6e70 7574 4973 o, Node: InputIs │ │ │ │ +0001ecc0: 536d 6f6f 7468 2c20 4e65 7874 3a20 6973 Smooth, Next: is │ │ │ │ +0001ecd0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ +0001ece0: 2c20 5072 6576 3a20 496e 6473 4f66 536d , Prev: IndsOfSm │ │ │ │ +0001ecf0: 6f6f 7468 2c20 5570 3a20 546f 700a 0a49 ooth, Up: Top..I │ │ │ │ +0001ed00: 6e70 7574 4973 536d 6f6f 7468 0a2a 2a2a nputIsSmooth.*** │ │ │ │ +0001ed10: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +0001ed20: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0001ed30: 3d3d 3d0a 0a54 6865 206f 7074 696f 6e20 ===..The option │ │ │ │ +0001ed40: 496e 7075 7449 7353 6d6f 6f74 6820 6973 InputIsSmooth is │ │ │ │ +0001ed50: 206f 6e6c 7920 7573 6564 2062 7920 7468 only used by th │ │ │ │ +0001ed60: 6520 636f 6d6d 616e 6473 202a 6e6f 7465 e commands *note │ │ │ │ +0001ed70: 2043 534d 3a20 4353 4d2c 2c20 616e 640a CSM: CSM,, and. │ │ │ │ +0001ed80: 2a6e 6f74 6520 4575 6c65 723a 2045 756c *note Euler: Eul │ │ │ │ +0001ed90: 6572 2c2e 2049 6620 7468 6520 696e 7075 er,. If the inpu │ │ │ │ +0001eda0: 7420 6964 6561 6c20 6973 206b 6e6f 776e t ideal is known │ │ │ │ +0001edb0: 2074 6f20 6465 6669 6e65 2061 2073 6d6f to define a smo │ │ │ │ +0001edc0: 6f74 6820 7375 6273 6368 656d 650a 7365 oth subscheme.se │ │ │ │ +0001edd0: 7474 696e 6720 7468 6973 206f 7074 696f tting this optio │ │ │ │ +0001ede0: 6e20 746f 2074 7275 6520 7769 6c6c 2073 n to true will s │ │ │ │ +0001edf0: 7065 6564 2075 7020 636f 6d70 7574 6174 peed up computat │ │ │ │ +0001ee00: 696f 6e73 2028 6974 2069 7320 7365 7420 ions (it is set │ │ │ │ +0001ee10: 746f 2066 616c 7365 2062 790a 6465 6661 to false by.defa │ │ │ │ +0001ee20: 756c 7429 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ult)...+-------- │ │ │ │ +0001ee30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ee40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ee50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001ee60: 7c69 3120 3a20 5220 3d20 5a5a 2f33 3237 |i1 : R = ZZ/327 │ │ │ │ +0001ee70: 3439 5b78 5f30 2e2e 785f 345d 3b20 2020 49[x_0..x_4]; │ │ │ │ +0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ee90: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eed0: 2b0a 7c69 3220 3a20 493d 6964 6561 6c28 +.|i2 : I=ideal( │ │ │ │ +0001eee0: 7261 6e64 6f6d 2832 2c52 292c 7261 6e64 random(2,R),rand │ │ │ │ +0001eef0: 6f6d 2832 2c52 292c 7261 6e64 6f6d 2831 om(2,R),random(1 │ │ │ │ +0001ef00: 2c52 2929 3b20 2020 207c 0a7c 2020 2020 ,R)); |.| │ │ │ │ +0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef40: 2020 7c0a 7c6f 3220 3a20 4964 6561 6c20 |.|o2 : Ideal │ │ │ │ +0001ef50: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef70: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001ef80: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ -0001ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001efc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001eff0: 7c69 3320 3a20 7469 6d65 2043 534d 2049 |i3 : time CSM I │ │ │ │ -0001f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f020: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -0001f030: 7365 6420 302e 3835 3232 3433 7320 2863 sed 0.852243s (c │ │ │ │ -0001f040: 7075 293b 2030 2e34 3338 3333 3273 2028 pu); 0.438332s ( │ │ │ │ -0001f050: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -0001f060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001ef70: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001ef80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001efa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001efb0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7469 6d65 ----+.|i3 : time │ │ │ │ +0001efc0: 2043 534d 2049 2020 2020 2020 2020 2020 CSM I │ │ │ │ +0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001eff0: 202d 2d20 7573 6564 2031 2e30 3234 3235 -- used 1.02425 │ │ │ │ +0001f000: 7320 2863 7075 293b 2030 2e35 3036 3734 s (cpu); 0.50674 │ │ │ │ +0001f010: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0001f020: 6763 2920 2020 7c0a 7c20 2020 2020 2020 gc) |.| │ │ │ │ +0001f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f060: 0a7c 2020 2020 2020 2033 2020 2020 2020 .| 3 │ │ │ │ 0001f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f0a0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0001f090: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0001f0a0: 3468 2020 2020 2020 2020 2020 2020 2020 4h │ │ │ │ 0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0d0: 2020 2020 2020 7c0a 7c6f 3320 3d20 3468 |.|o3 = 4h │ │ │ │ +0001f0d0: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ 0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f110: 7c0a 7c20 2020 2020 2020 3120 2020 2020 |.| 1 │ │ │ │ +0001f100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f140: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f140: 2020 207c 0a7c 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ +0001f150: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0001f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f180: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b68 |.| ZZ[h │ │ │ │ -0001f190: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0001f170: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f180: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0001f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f1c0: 7c20 2020 2020 2020 2020 3120 2020 2020 | 1 │ │ │ │ +0001f1b0: 2020 2020 207c 0a7c 6f33 203a 202d 2d2d |.|o3 : --- │ │ │ │ +0001f1c0: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ 0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -0001f200: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ +0001f1e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f1f0: 7c20 2020 2020 2020 2035 2020 2020 2020 | 5 │ │ │ │ +0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f230: 2020 7c0a 7c20 2020 2020 2020 2035 2020 |.| 5 │ │ │ │ +0001f220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f230: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ 0001f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f270: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ +0001f260: 7c0a 7c20 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f2b0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f310: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0001f320: 3a20 7469 6d65 2043 534d 2849 2c49 6e70 : time CSM(I,Inp │ │ │ │ -0001f330: 7574 4973 536d 6f6f 7468 3d3e 7472 7565 utIsSmooth=>true │ │ │ │ -0001f340: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001f350: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -0001f360: 302e 3039 3131 3232 3873 2028 6370 7529 0.0911228s (cpu) │ │ │ │ -0001f370: 3b20 302e 3033 3136 3439 3573 2028 7468 ; 0.0316495s (th │ │ │ │ -0001f380: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ -0001f390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001f290: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2d0: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2043 --+.|i4 : time C │ │ │ │ +0001f2e0: 534d 2849 2c49 6e70 7574 4973 536d 6f6f SM(I,InputIsSmoo │ │ │ │ +0001f2f0: 7468 3d3e 7472 7565 2920 2020 2020 2020 th=>true) │ │ │ │ +0001f300: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +0001f310: 2d20 7573 6564 2030 2e30 3737 3539 3532 - used 0.0775952 │ │ │ │ +0001f320: 7320 2863 7075 293b 2030 2e30 3431 3132 s (cpu); 0.04112 │ │ │ │ +0001f330: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +0001f340: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ +0001f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f370: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f380: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +0001f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f3d0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f400: 2020 7c0a 7c6f 3420 3d20 3468 2020 2020 |.|o4 = 4h │ │ │ │ +0001f3b0: 2020 2020 2020 7c0a 7c6f 3420 3d20 3468 |.|o4 = 4h │ │ │ │ +0001f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f3f0: 0a7c 2020 2020 2020 2031 2020 2020 2020 .| 1 │ │ │ │ +0001f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f440: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +0001f420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f470: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001f460: 207c 0a7c 2020 2020 205a 5a5b 6820 5d20 |.| ZZ[h ] │ │ │ │ +0001f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4b0: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ +0001f490: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f4a0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +0001f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f4f0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ -0001f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 7c0a 7c6f 3420 3a20 2d2d 2d2d |.|o4 : ---- │ │ │ │ -0001f530: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ -0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f560: 7c20 2020 2020 2020 2035 2020 2020 2020 | 5 │ │ │ │ -0001f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f5a0: 2020 6820 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0001f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5d0: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -0001f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f600: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f640: 2d2d 2d2d 2d2d 2b0a 0a4e 6f74 6520 7468 ------+..Note th │ │ │ │ -0001f650: 6174 206f 6e65 2063 6f75 6c64 2c20 6571 at one could, eq │ │ │ │ -0001f660: 7569 7661 6c65 6e74 6c79 2c20 7573 6520 uivalently, use │ │ │ │ -0001f670: 7468 6520 636f 6d6d 616e 6420 2a6e 6f74 the command *not │ │ │ │ -0001f680: 6520 4368 6572 6e3a 2043 6865 726e 2c20 e Chern: Chern, │ │ │ │ -0001f690: 696e 7374 6561 640a 696e 2074 6869 7320 instead.in this │ │ │ │ -0001f6a0: 6361 7365 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d case...+-------- │ │ │ │ -0001f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001f6e0: 0a7c 6935 203a 2074 696d 6520 4368 6572 .|i5 : time Cher │ │ │ │ -0001f6f0: 6e20 4920 2020 2020 2020 2020 2020 2020 n I │ │ │ │ +0001f4d0: 2020 207c 0a7c 6f34 203a 202d 2d2d 2d2d |.|o4 : ----- │ │ │ │ +0001f4e0: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0001f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f510: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +0001f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f540: 2020 2020 207c 0a7c 2020 2020 2020 2068 |.| h │ │ │ │ +0001f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f580: 7c20 2020 2020 2020 2031 2020 2020 2020 | 1 │ │ │ │ +0001f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f5b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001f5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f5f0: 2b0a 0a4e 6f74 6520 7468 6174 206f 6e65 +..Note that one │ │ │ │ +0001f600: 2063 6f75 6c64 2c20 6571 7569 7661 6c65 could, equivale │ │ │ │ +0001f610: 6e74 6c79 2c20 7573 6520 7468 6520 636f ntly, use the co │ │ │ │ +0001f620: 6d6d 616e 6420 2a6e 6f74 6520 4368 6572 mmand *note Cher │ │ │ │ +0001f630: 6e3a 2043 6865 726e 2c20 696e 7374 6561 n: Chern, instea │ │ │ │ +0001f640: 640a 696e 2074 6869 7320 6361 7365 2e0a d.in this case.. │ │ │ │ +0001f650: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001f660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f680: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +0001f690: 2074 696d 6520 4368 6572 6e20 4920 2020 time Chern I │ │ │ │ +0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f6c0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ +0001f6d0: 2e30 3635 3638 3936 7320 2863 7075 293b .0656896s (cpu); │ │ │ │ +0001f6e0: 2030 2e30 3430 3631 3237 7320 2874 6872 0.0406127s (thr │ │ │ │ +0001f6f0: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ 0001f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f710: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0001f720: 7573 6564 2030 2e30 3735 3131 3431 7320 used 0.0751141s │ │ │ │ -0001f730: 2863 7075 293b 2030 2e30 3330 3936 3934 (cpu); 0.0309694 │ │ │ │ -0001f740: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -0001f750: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +0001f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f740: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f790: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -0001f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7c0: 2020 2020 2020 207c 0a7c 6f35 203d 2034 |.|o5 = 4 │ │ │ │ -0001f7d0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0001f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f770: 207c 0a7c 6f35 203d 2034 6820 2020 2020 |.|o5 = 4h │ │ │ │ +0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f7b0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f7e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f800: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ -0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f820: 0a7c 2020 2020 205a 5a5b 6820 5d20 2020 .| ZZ[h ] │ │ │ │ +0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f870: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -0001f880: 6820 5d20 2020 2020 2020 2020 2020 2020 h ] │ │ │ │ -0001f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f8b0: 0a7c 2020 2020 2020 2020 2031 2020 2020 .| 1 │ │ │ │ -0001f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8e0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0001f8f0: 202d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------ │ │ │ │ -0001f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f920: 2020 207c 0a7c 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ +0001f850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f860: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0001f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f890: 2020 207c 0a7c 6f35 203a 202d 2d2d 2d2d |.|o5 : ----- │ │ │ │ +0001f8a0: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0001f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f8d0: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +0001f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f900: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f910: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f960: 2020 2020 2020 2068 2020 2020 2020 2020 h │ │ │ │ -0001f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001f9a0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4675 -----------+..Fu │ │ │ │ -0001fa10: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0001fa20: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ -0001fa30: 616d 6564 2049 6e70 7574 4973 536d 6f6f amed InputIsSmoo │ │ │ │ -0001fa40: 7468 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d th:.============ │ │ │ │ -0001fa50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa70: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0001fa80: 4353 4d28 2e2e 2e2c 496e 7075 7449 7353 CSM(...,InputIsS │ │ │ │ -0001fa90: 6d6f 6f74 683d 3e2e 2e2e 2922 202d 2d20 mooth=>...)" -- │ │ │ │ -0001faa0: 7365 6520 2a6e 6f74 6520 4353 4d3a 2043 see *note CSM: C │ │ │ │ -0001fab0: 534d 2c20 2d2d 2054 6865 0a20 2020 2043 SM, -- The. C │ │ │ │ -0001fac0: 6865 726e 2d53 6368 7761 7274 7a2d 4d61 hern-Schwartz-Ma │ │ │ │ -0001fad0: 6350 6865 7273 6f6e 2063 6c61 7373 0a20 cPherson class. │ │ │ │ -0001fae0: 202a 2045 756c 6572 282e 2e2e 2c49 6e70 * Euler(...,Inp │ │ │ │ -0001faf0: 7574 4973 536d 6f6f 7468 3d3e 2e2e 2e29 utIsSmooth=>...) │ │ │ │ -0001fb00: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001fb10: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ -0001fb20: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001fb30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001fb40: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001fb50: 6520 496e 7075 7449 7353 6d6f 6f74 683a e InputIsSmooth: │ │ │ │ -0001fb60: 2049 6e70 7574 4973 536d 6f6f 7468 2c20 InputIsSmooth, │ │ │ │ -0001fb70: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001fb80: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ -0001fb90: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ -0001fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001fbf0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001fc00: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001fc10: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001fc20: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001fc30: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001fc40: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001fc50: 732f 0a43 6861 7261 6374 6572 6973 7469 s/.Characteristi │ │ │ │ -0001fc60: 6343 6c61 7373 6573 2e6d 323a 3235 3030 cClasses.m2:2500 │ │ │ │ -0001fc70: 3a30 2e0a 1f0a 4669 6c65 3a20 4368 6172 :0....File: Char │ │ │ │ -0001fc80: 6163 7465 7269 7374 6963 436c 6173 7365 acteristicClasse │ │ │ │ -0001fc90: 732e 696e 666f 2c20 4e6f 6465 3a20 6973 s.info, Node: is │ │ │ │ -0001fca0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -0001fcb0: 2c20 4e65 7874 3a20 4d65 7468 6f64 2c20 , Next: Method, │ │ │ │ -0001fcc0: 5072 6576 3a20 496e 7075 7449 7353 6d6f Prev: InputIsSmo │ │ │ │ -0001fcd0: 6f74 682c 2055 703a 2054 6f70 0a0a 6973 oth, Up: Top..is │ │ │ │ -0001fce0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -0001fcf0: 202d 2d20 4368 6563 6b73 2069 6620 616e -- Checks if an │ │ │ │ -0001fd00: 2069 6465 616c 2069 7320 686f 6d6f 6765 ideal is homoge │ │ │ │ -0001fd10: 6e65 6f75 7320 7769 7468 2072 6573 7065 neous with respe │ │ │ │ -0001fd20: 6374 2074 6f20 7468 6520 6772 6164 696e ct to the gradin │ │ │ │ -0001fd30: 6720 6f6e 2069 7473 2072 696e 6720 2869 g on its ring (i │ │ │ │ -0001fd40: 2e65 2e20 6d75 6c74 692d 686f 6d6f 6765 .e. multi-homoge │ │ │ │ -0001fd50: 6e65 6f75 7320 696e 2074 6865 206d 756c neous in the mul │ │ │ │ -0001fd60: 7469 2d67 7261 6465 6420 6361 7365 290a ti-graded case). │ │ │ │ +0001f940: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +0001f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f970: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9b0: 2d2d 2d2d 2d2b 0a0a 4675 6e63 7469 6f6e -----+..Function │ │ │ │ +0001f9c0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0001f9d0: 6172 6775 6d65 6e74 206e 616d 6564 2049 argument named I │ │ │ │ +0001f9e0: 6e70 7574 4973 536d 6f6f 7468 3a0a 3d3d nputIsSmooth:.== │ │ │ │ +0001f9f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa20: 3d3d 3d0a 0a20 202a 2022 4353 4d28 2e2e ===.. * "CSM(.. │ │ │ │ +0001fa30: 2e2c 496e 7075 7449 7353 6d6f 6f74 683d .,InputIsSmooth= │ │ │ │ +0001fa40: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +0001fa50: 6f74 6520 4353 4d3a 2043 534d 2c20 2d2d ote CSM: CSM, -- │ │ │ │ +0001fa60: 2054 6865 0a20 2020 2043 6865 726e 2d53 The. Chern-S │ │ │ │ +0001fa70: 6368 7761 7274 7a2d 4d61 6350 6865 7273 chwartz-MacPhers │ │ │ │ +0001fa80: 6f6e 2063 6c61 7373 0a20 202a 2045 756c on class. * Eul │ │ │ │ +0001fa90: 6572 282e 2e2e 2c49 6e70 7574 4973 536d er(...,InputIsSm │ │ │ │ +0001faa0: 6f6f 7468 3d3e 2e2e 2e29 2028 6d69 7373 ooth=>...) (miss │ │ │ │ +0001fab0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ +0001fac0: 6e29 0a0a 466f 7220 7468 6520 7072 6f67 n)..For the prog │ │ │ │ +0001fad0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +0001fae0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +0001faf0: 626a 6563 7420 2a6e 6f74 6520 496e 7075 bject *note Inpu │ │ │ │ +0001fb00: 7449 7353 6d6f 6f74 683a 2049 6e70 7574 tIsSmooth: Input │ │ │ │ +0001fb10: 4973 536d 6f6f 7468 2c20 6973 2061 202a IsSmooth, is a * │ │ │ │ +0001fb20: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ +0001fb30: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ +0001fb40: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ +0001fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb90: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0001fba0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0001fbb0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0001fbc0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0001fbd0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0001fbe0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0001fbf0: 7932 2f70 6163 6b61 6765 732f 0a43 6861 y2/packages/.Cha │ │ │ │ +0001fc00: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +0001fc10: 6573 2e6d 323a 3235 3030 3a30 2e0a 1f0a es.m2:2500:0.... │ │ │ │ +0001fc20: 4669 6c65 3a20 4368 6172 6163 7465 7269 File: Characteri │ │ │ │ +0001fc30: 7374 6963 436c 6173 7365 732e 696e 666f sticClasses.info │ │ │ │ +0001fc40: 2c20 4e6f 6465 3a20 6973 4d75 6c74 6948 , Node: isMultiH │ │ │ │ +0001fc50: 6f6d 6f67 656e 656f 7573 2c20 4e65 7874 omogeneous, Next │ │ │ │ +0001fc60: 3a20 4d65 7468 6f64 2c20 5072 6576 3a20 : Method, Prev: │ │ │ │ +0001fc70: 496e 7075 7449 7353 6d6f 6f74 682c 2055 InputIsSmooth, U │ │ │ │ +0001fc80: 703a 2054 6f70 0a0a 6973 4d75 6c74 6948 p: Top..isMultiH │ │ │ │ +0001fc90: 6f6d 6f67 656e 656f 7573 202d 2d20 4368 omogeneous -- Ch │ │ │ │ +0001fca0: 6563 6b73 2069 6620 616e 2069 6465 616c ecks if an ideal │ │ │ │ +0001fcb0: 2069 7320 686f 6d6f 6765 6e65 6f75 7320 is homogeneous │ │ │ │ +0001fcc0: 7769 7468 2072 6573 7065 6374 2074 6f20 with respect to │ │ │ │ +0001fcd0: 7468 6520 6772 6164 696e 6720 6f6e 2069 the grading on i │ │ │ │ +0001fce0: 7473 2072 696e 6720 2869 2e65 2e20 6d75 ts ring (i.e. mu │ │ │ │ +0001fcf0: 6c74 692d 686f 6d6f 6765 6e65 6f75 7320 lti-homogeneous │ │ │ │ +0001fd00: 696e 2074 6865 206d 756c 7469 2d67 7261 in the multi-gra │ │ │ │ +0001fd10: 6465 6420 6361 7365 290a 2a2a 2a2a 2a2a ded case).****** │ │ │ │ +0001fd20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fde0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fe00: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ -0001fe10: 2020 2020 2020 2069 734d 756c 7469 486f isMultiHo │ │ │ │ -0001fe20: 6d6f 6765 6e65 6f75 7320 490a 2020 2020 mogeneous I. │ │ │ │ -0001fe30: 2020 2020 6973 4d75 6c74 6948 6f6d 6f67 isMultiHomog │ │ │ │ -0001fe40: 656e 656f 7573 2066 0a20 202a 2049 6e70 eneous f. * Inp │ │ │ │ -0001fe50: 7574 733a 0a20 2020 2020 202a 2049 2c20 uts:. * I, │ │ │ │ -0001fe60: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ -0001fe70: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ -0001fe80: 6561 6c2c 2c20 616e 2069 6465 616c 2069 eal,, an ideal i │ │ │ │ -0001fe90: 6e20 6120 6772 6164 6564 206f 720a 2020 n a graded or. │ │ │ │ -0001fea0: 2020 2020 2020 6d75 6c74 692d 6772 6164 multi-grad │ │ │ │ -0001feb0: 6564 2072 696e 670a 2020 2020 2020 2a20 ed ring. * │ │ │ │ -0001fec0: 662c 2061 202a 6e6f 7465 2072 696e 6720 f, a *note ring │ │ │ │ -0001fed0: 656c 656d 656e 743a 2028 4d61 6361 756c element: (Macaul │ │ │ │ -0001fee0: 6179 3244 6f63 2952 696e 6745 6c65 6d65 ay2Doc)RingEleme │ │ │ │ -0001fef0: 6e74 2c2c 2061 2065 6c65 6d65 6e74 2069 nt,, a element i │ │ │ │ -0001ff00: 6e20 610a 2020 2020 2020 2020 6772 6164 n a. grad │ │ │ │ -0001ff10: 6564 206f 7220 6d75 6c74 692d 6772 6164 ed or multi-grad │ │ │ │ -0001ff20: 6564 2072 696e 670a 2020 2a20 4f75 7470 ed ring. * Outp │ │ │ │ -0001ff30: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -0001ff40: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -0001ff50: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ -0001ff60: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ -0001ff70: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0001ff80: 3d3d 3d3d 3d0a 0a54 6573 7473 2069 6620 =====..Tests if │ │ │ │ -0001ff90: 7468 6520 696e 7075 7420 4964 6561 6c20 the input Ideal │ │ │ │ -0001ffa0: 6f72 2052 696e 6745 6c65 6d65 6e74 2069 or RingElement i │ │ │ │ -0001ffb0: 7320 486f 6d6f 6765 6e65 6f75 7320 7769 s Homogeneous wi │ │ │ │ -0001ffc0: 7468 2072 6573 7065 6374 2074 6f20 7468 th respect to th │ │ │ │ -0001ffd0: 650a 6772 6164 696e 6720 6f6e 2074 6865 e.grading on the │ │ │ │ -0001ffe0: 2072 696e 672e 2048 6f6d 6f67 656e 656f ring. Homogeneo │ │ │ │ -0001fff0: 7573 2069 6e70 7574 2069 7320 7265 7175 us input is requ │ │ │ │ -00020000: 6972 6564 2066 6f72 2061 6c6c 206d 6574 ired for all met │ │ │ │ -00020010: 686f 6473 2074 6f20 636f 6d70 7574 650a hods to compute. │ │ │ │ -00020020: 6368 6172 6163 7465 7269 7374 6963 2063 characteristic c │ │ │ │ -00020030: 6c61 7373 6573 2e0a 0a54 6869 7320 6d65 lasses...This me │ │ │ │ -00020040: 7468 6f64 2077 6f72 6b73 2066 6f72 2069 thod works for i │ │ │ │ -00020050: 6465 616c 7320 696e 2074 6865 2067 7261 deals in the gra │ │ │ │ -00020060: 6465 6420 636f 6f72 6469 6e61 7465 2072 ded coordinate r │ │ │ │ -00020070: 696e 6773 206f 6620 746f 7269 6320 7661 ings of toric va │ │ │ │ -00020080: 7269 6574 6965 732c 0a61 6e64 2068 656e rieties,.and hen │ │ │ │ -00020090: 6365 2066 6f72 2070 726f 6475 6374 7320 ce for products │ │ │ │ -000200a0: 6f66 2070 726f 6a65 6374 6976 6520 7370 of projective sp │ │ │ │ -000200b0: 6163 6573 2e20 5468 6573 6520 6361 6e20 aces. These can │ │ │ │ -000200c0: 6265 2063 7265 6174 6564 2064 6972 6563 be created direc │ │ │ │ -000200d0: 746c 792c 206f 720a 7573 696e 6720 6d65 tly, or.using me │ │ │ │ -000200e0: 7468 6f64 7320 7468 6520 2a6e 6f74 6520 thods the *note │ │ │ │ -000200f0: 4d75 6c74 6950 726f 6a43 6f6f 7264 5269 MultiProjCoordRi │ │ │ │ -00020100: 6e67 3a20 4d75 6c74 6950 726f 6a43 6f6f ng: MultiProjCoo │ │ │ │ -00020110: 7264 5269 6e67 2c20 6d65 7468 6f64 206f rdRing, method o │ │ │ │ -00020120: 6620 7468 6973 0a70 6163 6b61 6765 2c20 f this.package, │ │ │ │ -00020130: 6f72 2077 6974 6820 6d65 7468 6f64 7320 or with methods │ │ │ │ -00020140: 6672 6f6d 2074 6865 204e 6f72 6d61 6c54 from the NormalT │ │ │ │ -00020150: 6f72 6963 5661 7269 6574 6965 7320 5061 oricVarieties Pa │ │ │ │ -00020160: 636b 6167 652e 0a0a 2b2d 2d2d 2d2d 2d2d ckage...+------- │ │ │ │ -00020170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000201a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -000201b0: 523d 4d75 6c74 6950 726f 6a43 6f6f 7264 R=MultiProjCoord │ │ │ │ -000201c0: 5269 6e67 287b 312c 322c 317d 2920 2020 Ring({1,2,1}) │ │ │ │ -000201d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0001fdb0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0001fdc0: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ +0001fdd0: 6f75 7320 490a 2020 2020 2020 2020 6973 ous I. is │ │ │ │ +0001fde0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ +0001fdf0: 2066 0a20 202a 2049 6e70 7574 733a 0a20 f. * Inputs:. │ │ │ │ +0001fe00: 2020 2020 202a 2049 2c20 616e 202a 6e6f * I, an *no │ │ │ │ +0001fe10: 7465 2069 6465 616c 3a20 284d 6163 6175 te ideal: (Macau │ │ │ │ +0001fe20: 6c61 7932 446f 6329 4964 6561 6c2c 2c20 lay2Doc)Ideal,, │ │ │ │ +0001fe30: 616e 2069 6465 616c 2069 6e20 6120 6772 an ideal in a gr │ │ │ │ +0001fe40: 6164 6564 206f 720a 2020 2020 2020 2020 aded or. │ │ │ │ +0001fe50: 6d75 6c74 692d 6772 6164 6564 2072 696e multi-graded rin │ │ │ │ +0001fe60: 670a 2020 2020 2020 2a20 662c 2061 202a g. * f, a * │ │ │ │ +0001fe70: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ +0001fe80: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +0001fe90: 2952 696e 6745 6c65 6d65 6e74 2c2c 2061 )RingElement,, a │ │ │ │ +0001fea0: 2065 6c65 6d65 6e74 2069 6e20 610a 2020 element in a. │ │ │ │ +0001feb0: 2020 2020 2020 6772 6164 6564 206f 7220 graded or │ │ │ │ +0001fec0: 6d75 6c74 692d 6772 6164 6564 2072 696e multi-graded rin │ │ │ │ +0001fed0: 670a 2020 2a20 4f75 7470 7574 733a 0a20 g. * Outputs:. │ │ │ │ +0001fee0: 2020 2020 202a 2061 202a 6e6f 7465 2042 * a *note B │ │ │ │ +0001fef0: 6f6f 6c65 616e 2076 616c 7565 3a20 284d oolean value: (M │ │ │ │ +0001ff00: 6163 6175 6c61 7932 446f 6329 426f 6f6c acaulay2Doc)Bool │ │ │ │ +0001ff10: 6561 6e2c 2c20 0a0a 4465 7363 7269 7074 ean,, ..Descript │ │ │ │ +0001ff20: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +0001ff30: 0a54 6573 7473 2069 6620 7468 6520 696e .Tests if the in │ │ │ │ +0001ff40: 7075 7420 4964 6561 6c20 6f72 2052 696e put Ideal or Rin │ │ │ │ +0001ff50: 6745 6c65 6d65 6e74 2069 7320 486f 6d6f gElement is Homo │ │ │ │ +0001ff60: 6765 6e65 6f75 7320 7769 7468 2072 6573 geneous with res │ │ │ │ +0001ff70: 7065 6374 2074 6f20 7468 650a 6772 6164 pect to the.grad │ │ │ │ +0001ff80: 696e 6720 6f6e 2074 6865 2072 696e 672e ing on the ring. │ │ │ │ +0001ff90: 2048 6f6d 6f67 656e 656f 7573 2069 6e70 Homogeneous inp │ │ │ │ +0001ffa0: 7574 2069 7320 7265 7175 6972 6564 2066 ut is required f │ │ │ │ +0001ffb0: 6f72 2061 6c6c 206d 6574 686f 6473 2074 or all methods t │ │ │ │ +0001ffc0: 6f20 636f 6d70 7574 650a 6368 6172 6163 o compute.charac │ │ │ │ +0001ffd0: 7465 7269 7374 6963 2063 6c61 7373 6573 teristic classes │ │ │ │ +0001ffe0: 2e0a 0a54 6869 7320 6d65 7468 6f64 2077 ...This method w │ │ │ │ +0001fff0: 6f72 6b73 2066 6f72 2069 6465 616c 7320 orks for ideals │ │ │ │ +00020000: 696e 2074 6865 2067 7261 6465 6420 636f in the graded co │ │ │ │ +00020010: 6f72 6469 6e61 7465 2072 696e 6773 206f ordinate rings o │ │ │ │ +00020020: 6620 746f 7269 6320 7661 7269 6574 6965 f toric varietie │ │ │ │ +00020030: 732c 0a61 6e64 2068 656e 6365 2066 6f72 s,.and hence for │ │ │ │ +00020040: 2070 726f 6475 6374 7320 6f66 2070 726f products of pro │ │ │ │ +00020050: 6a65 6374 6976 6520 7370 6163 6573 2e20 jective spaces. │ │ │ │ +00020060: 5468 6573 6520 6361 6e20 6265 2063 7265 These can be cre │ │ │ │ +00020070: 6174 6564 2064 6972 6563 746c 792c 206f ated directly, o │ │ │ │ +00020080: 720a 7573 696e 6720 6d65 7468 6f64 7320 r.using methods │ │ │ │ +00020090: 7468 6520 2a6e 6f74 6520 4d75 6c74 6950 the *note MultiP │ │ │ │ +000200a0: 726f 6a43 6f6f 7264 5269 6e67 3a20 4d75 rojCoordRing: Mu │ │ │ │ +000200b0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ +000200c0: 2c20 6d65 7468 6f64 206f 6620 7468 6973 , method of this │ │ │ │ +000200d0: 0a70 6163 6b61 6765 2c20 6f72 2077 6974 .package, or wit │ │ │ │ +000200e0: 6820 6d65 7468 6f64 7320 6672 6f6d 2074 h methods from t │ │ │ │ +000200f0: 6865 204e 6f72 6d61 6c54 6f72 6963 5661 he NormalToricVa │ │ │ │ +00020100: 7269 6574 6965 7320 5061 636b 6167 652e rieties Package. │ │ │ │ +00020110: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00020120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020150: 2d2d 2b0a 7c69 3120 3a20 523d 4d75 6c74 --+.|i1 : R=Mult │ │ │ │ +00020160: 6950 726f 6a43 6f6f 7264 5269 6e67 287b iProjCoordRing({ │ │ │ │ +00020170: 312c 322c 317d 2920 2020 2020 2020 2020 1,2,1}) │ │ │ │ +00020180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020190: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000201a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201d0: 2020 2020 2020 7c0a 7c6f 3120 3d20 5220 |.|o1 = R │ │ │ │ +000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020220: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00020230: 3120 3d20 5220 2020 2020 2020 2020 2020 1 = R │ │ │ │ +00020210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020270: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00020250: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00020260: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00020270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202b0: 7c0a 7c6f 3120 3a20 506f 6c79 6e6f 6d69 |.|o1 : Polynomi │ │ │ │ -000202c0: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ -000202d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00020300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020330: 2d2d 2d2d 2b0a 7c69 3220 3a20 783d 6765 ----+.|i2 : x=ge │ │ │ │ -00020340: 6e73 2852 2920 2020 2020 2020 2020 2020 ns(R) │ │ │ │ +00020290: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000202a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000202e0: 7c69 3220 3a20 783d 6765 6e73 2852 2920 |i2 : x=gens(R) │ │ │ │ +000202f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020320: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020360: 2020 7c0a 7c6f 3220 3d20 7b78 202c 2078 |.|o2 = {x , x │ │ │ │ +00020370: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ +00020380: 202c 2078 207d 2020 2020 2020 2020 2020 , x } │ │ │ │ 00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -000203c0: 7b78 202c 2078 202c 2078 202c 2078 202c {x , x , x , x , │ │ │ │ -000203d0: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ -000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020400: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ -00020410: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ -00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000203a0: 2020 2020 7c0a 7c20 2020 2020 2020 3020 |.| 0 │ │ │ │ +000203b0: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +000203c0: 2020 3520 2020 3620 2020 2020 2020 2020 5 6 │ │ │ │ +000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000203e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020420: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +00020430: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ 00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020480: 7c6f 3220 3a20 4c69 7374 2020 2020 2020 |o2 : List │ │ │ │ -00020490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020500: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ -00020510: 6c28 785f 305e 322a 785f 332d 785f 312a l(x_0^2*x_3-x_1* │ │ │ │ -00020520: 785f 302a 785f 342c 785f 365e 3329 2020 x_0*x_4,x_6^3) │ │ │ │ -00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00020460: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00020470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000204a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000204b0: 3320 3a20 493d 6964 6561 6c28 785f 305e 3 : I=ideal(x_0^ │ │ │ │ +000204c0: 322a 785f 332d 785f 312a 785f 302a 785f 2*x_3-x_1*x_0*x_ │ │ │ │ +000204d0: 342c 785f 365e 3329 2020 2020 2020 2020 4,x_6^3) │ │ │ │ +000204e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000204f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00020500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020530: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020540: 3220 2020 2020 2020 2020 2020 2020 2033 2 3 │ │ │ │ 00020550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020580: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00020590: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000205a0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -000205b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205c0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -000205d0: 6964 6561 6c20 2878 2078 2020 2d20 7820 ideal (x x - x │ │ │ │ -000205e0: 7820 7820 2c20 7820 2920 2020 2020 2020 x x , x ) │ │ │ │ -000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020610: 2020 2020 2020 2020 2020 3020 3320 2020 0 3 │ │ │ │ -00020620: 2030 2031 2034 2020 2036 2020 2020 2020 0 1 4 6 │ │ │ │ -00020630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00020570: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ +00020580: 2878 2078 2020 2d20 7820 7820 7820 2c20 (x x - x x x , │ │ │ │ +00020590: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +000205a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000205c0: 2020 2020 3020 3320 2020 2030 2031 2034 0 3 0 1 4 │ │ │ │ +000205d0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000205e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020630: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +00020640: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020690: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ -000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000206e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020710: 2d2d 2b0a 7c69 3420 3a20 6973 4d75 6c74 --+.|i4 : isMult │ │ │ │ -00020720: 6948 6f6d 6f67 656e 656f 7573 2049 2020 iHomogeneous I │ │ │ │ +00020670: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00020680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000206c0: 3420 3a20 6973 4d75 6c74 6948 6f6d 6f67 4 : isMultiHomog │ │ │ │ +000206d0: 656e 656f 7573 2049 2020 2020 2020 2020 eneous I │ │ │ │ +000206e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020700: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00020710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00020740: 7c0a 7c6f 3420 3d20 7472 7565 2020 2020 |.|o4 = true │ │ │ │ +00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020790: 2020 2020 2020 7c0a 7c6f 3420 3d20 7472 |.|o4 = tr │ │ │ │ -000207a0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -000207b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -000207e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020810: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00020820: 3a20 6973 4d75 6c74 6948 6f6d 6f67 656e : isMultiHomogen │ │ │ │ -00020830: 656f 7573 2069 6465 616c 2878 5f30 2a78 eous ideal(x_0*x │ │ │ │ -00020840: 5f33 2d78 5f31 2a78 5f30 2a78 5f34 2c78 _3-x_1*x_0*x_4,x │ │ │ │ -00020850: 5f36 5e33 2920 2020 2020 2020 7c0a 7c49 _6^3) |.|I │ │ │ │ -00020860: 6e70 7574 2074 6572 6d20 6265 6c6f 7720 nput term below │ │ │ │ -00020870: 6973 206e 6f74 2068 6f6d 6f67 656e 656f is not homogeneo │ │ │ │ -00020880: 7573 2077 6974 6820 7265 7370 6563 7420 us with respect │ │ │ │ -00020890: 746f 2074 6865 2067 7261 6469 6e67 7c0a to the grading|. │ │ │ │ -000208a0: 7c2d 2078 2078 2078 2020 2b20 7820 7820 |- x x x + x x │ │ │ │ +00020780: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00020790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207c0: 2d2d 2d2d 2b0a 7c69 3520 3a20 6973 4d75 ----+.|i5 : isMu │ │ │ │ +000207d0: 6c74 6948 6f6d 6f67 656e 656f 7573 2069 ltiHomogeneous i │ │ │ │ +000207e0: 6465 616c 2878 5f30 2a78 5f33 2d78 5f31 deal(x_0*x_3-x_1 │ │ │ │ +000207f0: 2a78 5f30 2a78 5f34 2c78 5f36 5e33 2920 *x_0*x_4,x_6^3) │ │ │ │ +00020800: 2020 2020 2020 7c0a 7c49 6e70 7574 2074 |.|Input t │ │ │ │ +00020810: 6572 6d20 6265 6c6f 7720 6973 206e 6f74 erm below is not │ │ │ │ +00020820: 2068 6f6d 6f67 656e 656f 7573 2077 6974 homogeneous wit │ │ │ │ +00020830: 6820 7265 7370 6563 7420 746f 2074 6865 h respect to the │ │ │ │ +00020840: 2067 7261 6469 6e67 7c0a 7c2d 2078 2078 grading|.|- x x │ │ │ │ +00020850: 2078 2020 2b20 7820 7820 2020 2020 2020 x + x x │ │ │ │ +00020860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00020890: 3020 3120 3420 2020 2030 2033 2020 2020 0 1 4 0 3 │ │ │ │ +000208a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000208b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000208d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208e0: 7c0a 7c20 2020 3020 3120 3420 2020 2030 |.| 0 1 4 0 │ │ │ │ -000208f0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00020900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000208e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020900: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00020910: 7c6f 3520 3d20 6661 6c73 6520 2020 2020 |o5 = false │ │ │ │ +00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020960: 2020 2020 7c0a 7c6f 3520 3d20 6661 6c73 |.|o5 = fals │ │ │ │ -00020970: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000209b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209e0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a4e 6f74 6520 --------+..Note │ │ │ │ -000209f0: 7468 6174 2066 6f72 2061 6e20 6964 6561 that for an idea │ │ │ │ -00020a00: 6c20 746f 2062 6520 6d75 6c74 692d 686f l to be multi-ho │ │ │ │ -00020a10: 6d6f 6765 6e65 6f75 7320 7468 6520 6465 mogeneous the de │ │ │ │ -00020a20: 6772 6565 2076 6563 746f 7220 6f66 2061 gree vector of a │ │ │ │ -00020a30: 6c6c 0a6d 6f6e 6f6d 6961 6c73 2069 6e20 ll.monomials in │ │ │ │ -00020a40: 6120 6769 7665 6e20 6765 6e65 7261 746f a given generato │ │ │ │ -00020a50: 7220 6d75 7374 2062 6520 7468 6520 7361 r must be the sa │ │ │ │ -00020a60: 6d65 2e0a 0a57 6179 7320 746f 2075 7365 me...Ways to use │ │ │ │ -00020a70: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -00020a80: 6f75 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ous:.=========== │ │ │ │ -00020a90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00020aa0: 3d3d 3d3d 0a0a 2020 2a20 2269 734d 756c ====.. * "isMul │ │ │ │ -00020ab0: 7469 486f 6d6f 6765 6e65 6f75 7328 4964 tiHomogeneous(Id │ │ │ │ -00020ac0: 6561 6c29 220a 2020 2a20 2269 734d 756c eal)". * "isMul │ │ │ │ -00020ad0: 7469 486f 6d6f 6765 6e65 6f75 7328 5269 tiHomogeneous(Ri │ │ │ │ -00020ae0: 6e67 456c 656d 656e 7429 220a 0a46 6f72 ngElement)"..For │ │ │ │ -00020af0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00020b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00020b10: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00020b20: 6e6f 7465 2069 734d 756c 7469 486f 6d6f note isMultiHomo │ │ │ │ -00020b30: 6765 6e65 6f75 733a 2069 734d 756c 7469 geneous: isMulti │ │ │ │ -00020b40: 486f 6d6f 6765 6e65 6f75 732c 2069 7320 Homogeneous, is │ │ │ │ -00020b50: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ -00020b60: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ -00020b70: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -00020b80: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ -00020b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bd0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00020be0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00020bf0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00020c00: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00020c10: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00020c20: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00020c30: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00020c40: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ -00020c50: 6c61 7373 6573 2e6d 323a 3230 3132 3a30 lasses.m2:2012:0 │ │ │ │ -00020c60: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ -00020c70: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -00020c80: 696e 666f 2c20 4e6f 6465 3a20 4d65 7468 info, Node: Meth │ │ │ │ -00020c90: 6f64 2c20 4e65 7874 3a20 4d75 6c74 6950 od, Next: MultiP │ │ │ │ -00020ca0: 726f 6a43 6f6f 7264 5269 6e67 2c20 5072 rojCoordRing, Pr │ │ │ │ -00020cb0: 6576 3a20 6973 4d75 6c74 6948 6f6d 6f67 ev: isMultiHomog │ │ │ │ -00020cc0: 656e 656f 7573 2c20 5570 3a20 546f 700a eneous, Up: Top. │ │ │ │ -00020cd0: 0a4d 6574 686f 640a 2a2a 2a2a 2a2a 0a0a .Method.******.. │ │ │ │ -00020ce0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00020cf0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 7074 =======..The opt │ │ │ │ -00020d00: 696f 6e20 4d65 7468 6f64 2069 7320 6f6e ion Method is on │ │ │ │ -00020d10: 6c79 2075 7365 6420 6279 2074 6865 2063 ly used by the c │ │ │ │ -00020d20: 6f6d 6d61 6e64 7320 2a6e 6f74 6520 4353 ommands *note CS │ │ │ │ -00020d30: 4d3a 2043 534d 2c20 616e 6420 2a6e 6f74 M: CSM, and *not │ │ │ │ -00020d40: 6520 4575 6c65 723a 0a45 756c 6572 2c20 e Euler:.Euler, │ │ │ │ -00020d50: 616e 6420 6f6e 6c79 2069 6e20 636f 6d62 and only in comb │ │ │ │ -00020d60: 696e 6174 696f 6e20 7769 7468 202a 6e6f ination with *no │ │ │ │ -00020d70: 7465 2043 6f6d 704d 6574 686f 643a 0a43 te CompMethod:.C │ │ │ │ -00020d80: 6f6d 704d 6574 686f 642c 3d3e 5072 6f6a ompMethod,=>Proj │ │ │ │ -00020d90: 6563 7469 7665 4465 6772 6565 2e20 5468 ectiveDegree. Th │ │ │ │ -00020da0: 6520 4d65 7468 6f64 2049 6e63 6c75 7369 e Method Inclusi │ │ │ │ -00020db0: 6f6e 4578 636c 7573 696f 6e20 7769 6c6c onExclusion will │ │ │ │ -00020dc0: 2061 6c77 6179 7320 6265 0a75 7365 6420 always be.used │ │ │ │ -00020dd0: 7769 7468 202a 6e6f 7465 2043 6f6d 704d with *note CompM │ │ │ │ -00020de0: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ -00020df0: 642c 2050 6e52 6573 6964 7561 6c20 6f72 d, PnResidual or │ │ │ │ -00020e00: 2062 6572 7469 6e69 2e20 5768 656e 2074 bertini. When t │ │ │ │ -00020e10: 6865 2069 6e70 7574 0a69 6465 616c 2069 he input.ideal i │ │ │ │ -00020e20: 7320 6120 636f 6d70 6c65 7465 2069 6e74 s a complete int │ │ │ │ -00020e30: 6572 7365 6374 696f 6e20 6f6e 6520 6d61 ersection one ma │ │ │ │ -00020e40: 792c 2070 6f74 656e 7469 616c 6c79 2c20 y, potentially, │ │ │ │ -00020e50: 7370 6565 6420 7570 2074 6865 2063 6f6d speed up the com │ │ │ │ -00020e60: 7075 7461 7469 6f6e 0a62 7920 7365 7474 putation.by sett │ │ │ │ -00020e70: 696e 6720 4d65 7468 6f64 3d3e 2044 6972 ing Method=> Dir │ │ │ │ -00020e80: 6563 7443 6f6d 706c 6574 6549 6e74 2e20 ectCompleteInt. │ │ │ │ -00020e90: 5468 6520 6f70 7469 6f6e 204d 6574 686f The option Metho │ │ │ │ -00020ea0: 6420 6973 206f 6e6c 7920 7573 6564 2062 d is only used b │ │ │ │ -00020eb0: 7920 7468 650a 636f 6d6d 616e 6473 202a y the.commands * │ │ │ │ -00020ec0: 6e6f 7465 2043 534d 3a20 4353 4d2c 2061 note CSM: CSM, a │ │ │ │ -00020ed0: 6e64 202a 6e6f 7465 2045 756c 6572 3a20 nd *note Euler: │ │ │ │ -00020ee0: 4575 6c65 722c 2061 6e64 206f 6e6c 7920 Euler, and only │ │ │ │ -00020ef0: 696e 2063 6f6d 6269 6e61 7469 6f6e 2077 in combination w │ │ │ │ -00020f00: 6974 680a 2a6e 6f74 6520 436f 6d70 4d65 ith.*note CompMe │ │ │ │ -00020f10: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ -00020f20: 2c3d 3e50 726f 6a65 6374 6976 6544 6567 ,=>ProjectiveDeg │ │ │ │ -00020f30: 7265 652e 2054 6865 204d 6574 686f 6420 ree. The Method │ │ │ │ -00020f40: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ -00020f50: 6f6e 0a77 696c 6c20 616c 7761 7973 2062 on.will always b │ │ │ │ -00020f60: 6520 7573 6564 2077 6974 6820 2a6e 6f74 e used with *not │ │ │ │ -00020f70: 6520 436f 6d70 4d65 7468 6f64 3a20 436f e CompMethod: Co │ │ │ │ -00020f80: 6d70 4d65 7468 6f64 2c20 506e 5265 7369 mpMethod, PnResi │ │ │ │ -00020f90: 6475 616c 206f 7220 6265 7274 696e 692e dual or bertini. │ │ │ │ -00020fa0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -00020fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00020fe0: 203a 2052 203d 205a 5a2f 3332 3734 395b : R = ZZ/32749[ │ │ │ │ -00020ff0: 785f 302e 2e78 5f36 5d20 2020 2020 2020 x_0..x_6] │ │ │ │ -00021000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021010: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00020950: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00020960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020990: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2066 --+..Note that f │ │ │ │ +000209a0: 6f72 2061 6e20 6964 6561 6c20 746f 2062 or an ideal to b │ │ │ │ +000209b0: 6520 6d75 6c74 692d 686f 6d6f 6765 6e65 e multi-homogene │ │ │ │ +000209c0: 6f75 7320 7468 6520 6465 6772 6565 2076 ous the degree v │ │ │ │ +000209d0: 6563 746f 7220 6f66 2061 6c6c 0a6d 6f6e ector of all.mon │ │ │ │ +000209e0: 6f6d 6961 6c73 2069 6e20 6120 6769 7665 omials in a give │ │ │ │ +000209f0: 6e20 6765 6e65 7261 746f 7220 6d75 7374 n generator must │ │ │ │ +00020a00: 2062 6520 7468 6520 7361 6d65 2e0a 0a57 be the same...W │ │ │ │ +00020a10: 6179 7320 746f 2075 7365 2069 734d 756c ays to use isMul │ │ │ │ +00020a20: 7469 486f 6d6f 6765 6e65 6f75 733a 0a3d tiHomogeneous:.= │ │ │ │ +00020a30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00020a40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00020a50: 2020 2a20 2269 734d 756c 7469 486f 6d6f * "isMultiHomo │ │ │ │ +00020a60: 6765 6e65 6f75 7328 4964 6561 6c29 220a geneous(Ideal)". │ │ │ │ +00020a70: 2020 2a20 2269 734d 756c 7469 486f 6d6f * "isMultiHomo │ │ │ │ +00020a80: 6765 6e65 6f75 7328 5269 6e67 456c 656d geneous(RingElem │ │ │ │ +00020a90: 656e 7429 220a 0a46 6f72 2074 6865 2070 ent)"..For the p │ │ │ │ +00020aa0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00020ab0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00020ac0: 6520 6f62 6a65 6374 202a 6e6f 7465 2069 e object *note i │ │ │ │ +00020ad0: 734d 756c 7469 486f 6d6f 6765 6e65 6f75 sMultiHomogeneou │ │ │ │ +00020ae0: 733a 2069 734d 756c 7469 486f 6d6f 6765 s: isMultiHomoge │ │ │ │ +00020af0: 6e65 6f75 732c 2069 7320 6120 2a6e 6f74 neous, is a *not │ │ │ │ +00020b00: 6520 6d65 7468 6f64 0a66 756e 6374 696f e method.functio │ │ │ │ +00020b10: 6e3a 2028 4d61 6361 756c 6179 3244 6f63 n: (Macaulay2Doc │ │ │ │ +00020b20: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +00020b30: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +00020b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b80: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00020b90: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00020ba0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00020bb0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00020bc0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00020bd0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00020be0: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +00020bf0: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +00020c00: 2e6d 323a 3230 3132 3a30 2e0a 1f0a 4669 .m2:2012:0....Fi │ │ │ │ +00020c10: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +00020c20: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +00020c30: 4e6f 6465 3a20 4d65 7468 6f64 2c20 4e65 Node: Method, Ne │ │ │ │ +00020c40: 7874 3a20 4d75 6c74 6950 726f 6a43 6f6f xt: MultiProjCoo │ │ │ │ +00020c50: 7264 5269 6e67 2c20 5072 6576 3a20 6973 rdRing, Prev: is │ │ │ │ +00020c60: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ +00020c70: 2c20 5570 3a20 546f 700a 0a4d 6574 686f , Up: Top..Metho │ │ │ │ +00020c80: 640a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 d.******..Descri │ │ │ │ +00020c90: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00020ca0: 3d0a 0a54 6865 206f 7074 696f 6e20 4d65 =..The option Me │ │ │ │ +00020cb0: 7468 6f64 2069 7320 6f6e 6c79 2075 7365 thod is only use │ │ │ │ +00020cc0: 6420 6279 2074 6865 2063 6f6d 6d61 6e64 d by the command │ │ │ │ +00020cd0: 7320 2a6e 6f74 6520 4353 4d3a 2043 534d s *note CSM: CSM │ │ │ │ +00020ce0: 2c20 616e 6420 2a6e 6f74 6520 4575 6c65 , and *note Eule │ │ │ │ +00020cf0: 723a 0a45 756c 6572 2c20 616e 6420 6f6e r:.Euler, and on │ │ │ │ +00020d00: 6c79 2069 6e20 636f 6d62 696e 6174 696f ly in combinatio │ │ │ │ +00020d10: 6e20 7769 7468 202a 6e6f 7465 2043 6f6d n with *note Com │ │ │ │ +00020d20: 704d 6574 686f 643a 0a43 6f6d 704d 6574 pMethod:.CompMet │ │ │ │ +00020d30: 686f 642c 3d3e 5072 6f6a 6563 7469 7665 hod,=>Projective │ │ │ │ +00020d40: 4465 6772 6565 2e20 5468 6520 4d65 7468 Degree. The Meth │ │ │ │ +00020d50: 6f64 2049 6e63 6c75 7369 6f6e 4578 636c od InclusionExcl │ │ │ │ +00020d60: 7573 696f 6e20 7769 6c6c 2061 6c77 6179 usion will alway │ │ │ │ +00020d70: 7320 6265 0a75 7365 6420 7769 7468 202a s be.used with * │ │ │ │ +00020d80: 6e6f 7465 2043 6f6d 704d 6574 686f 643a note CompMethod: │ │ │ │ +00020d90: 2043 6f6d 704d 6574 686f 642c 2050 6e52 CompMethod, PnR │ │ │ │ +00020da0: 6573 6964 7561 6c20 6f72 2062 6572 7469 esidual or berti │ │ │ │ +00020db0: 6e69 2e20 5768 656e 2074 6865 2069 6e70 ni. When the inp │ │ │ │ +00020dc0: 7574 0a69 6465 616c 2069 7320 6120 636f ut.ideal is a co │ │ │ │ +00020dd0: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ +00020de0: 696f 6e20 6f6e 6520 6d61 792c 2070 6f74 ion one may, pot │ │ │ │ +00020df0: 656e 7469 616c 6c79 2c20 7370 6565 6420 entially, speed │ │ │ │ +00020e00: 7570 2074 6865 2063 6f6d 7075 7461 7469 up the computati │ │ │ │ +00020e10: 6f6e 0a62 7920 7365 7474 696e 6720 4d65 on.by setting Me │ │ │ │ +00020e20: 7468 6f64 3d3e 2044 6972 6563 7443 6f6d thod=> DirectCom │ │ │ │ +00020e30: 706c 6574 6549 6e74 2e20 5468 6520 6f70 pleteInt. The op │ │ │ │ +00020e40: 7469 6f6e 204d 6574 686f 6420 6973 206f tion Method is o │ │ │ │ +00020e50: 6e6c 7920 7573 6564 2062 7920 7468 650a nly used by the. │ │ │ │ +00020e60: 636f 6d6d 616e 6473 202a 6e6f 7465 2043 commands *note C │ │ │ │ +00020e70: 534d 3a20 4353 4d2c 2061 6e64 202a 6e6f SM: CSM, and *no │ │ │ │ +00020e80: 7465 2045 756c 6572 3a20 4575 6c65 722c te Euler: Euler, │ │ │ │ +00020e90: 2061 6e64 206f 6e6c 7920 696e 2063 6f6d and only in com │ │ │ │ +00020ea0: 6269 6e61 7469 6f6e 2077 6974 680a 2a6e bination with.*n │ │ │ │ +00020eb0: 6f74 6520 436f 6d70 4d65 7468 6f64 3a20 ote CompMethod: │ │ │ │ +00020ec0: 436f 6d70 4d65 7468 6f64 2c3d 3e50 726f CompMethod,=>Pro │ │ │ │ +00020ed0: 6a65 6374 6976 6544 6567 7265 652e 2054 jectiveDegree. T │ │ │ │ +00020ee0: 6865 204d 6574 686f 6420 496e 636c 7573 he Method Inclus │ │ │ │ +00020ef0: 696f 6e45 7863 6c75 7369 6f6e 0a77 696c ionExclusion.wil │ │ │ │ +00020f00: 6c20 616c 7761 7973 2062 6520 7573 6564 l always be used │ │ │ │ +00020f10: 2077 6974 6820 2a6e 6f74 6520 436f 6d70 with *note Comp │ │ │ │ +00020f20: 4d65 7468 6f64 3a20 436f 6d70 4d65 7468 Method: CompMeth │ │ │ │ +00020f30: 6f64 2c20 506e 5265 7369 6475 616c 206f od, PnResidual o │ │ │ │ +00020f40: 7220 6265 7274 696e 692e 0a0a 2b2d 2d2d r bertini...+--- │ │ │ │ +00020f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f80: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +00020f90: 205a 5a2f 3332 3734 395b 785f 302e 2e78 ZZ/32749[x_0..x │ │ │ │ +00020fa0: 5f36 5d20 2020 2020 2020 2020 2020 2020 _6] │ │ │ │ +00020fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020fc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020ff0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00021000: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +00021010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021030: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00021040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021050: 207c 0a7c 6f31 203d 2052 2020 2020 2020 |.|o1 = R │ │ │ │ +00021050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021080: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021070: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ +00021080: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ 00021090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -000210d0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ -000210e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021100: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00021110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00021140: 6932 203a 2049 3d69 6465 616c 2872 616e i2 : I=ideal(ran │ │ │ │ -00021150: 646f 6d28 322c 5229 2c72 616e 646f 6d28 dom(2,R),random( │ │ │ │ -00021160: 312c 5229 2c52 5f30 2a52 5f31 2a52 5f36 1,R),R_0*R_1*R_6 │ │ │ │ -00021170: 2d52 5f30 5e33 293b 7c0a 7c20 2020 2020 -R_0^3);|.| │ │ │ │ +000210a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000210b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2049 -------+.|i2 : I │ │ │ │ +000210f0: 3d69 6465 616c 2872 616e 646f 6d28 322c =ideal(random(2, │ │ │ │ +00021100: 5229 2c72 616e 646f 6d28 312c 5229 2c52 R),random(1,R),R │ │ │ │ +00021110: 5f30 2a52 5f31 2a52 5f36 2d52 5f30 5e33 _0*R_1*R_6-R_0^3 │ │ │ │ +00021120: 293b 7c0a 7c20 2020 2020 2020 2020 2020 );|.| │ │ │ │ +00021130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021160: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ +00021170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 207c 0a7c 6f32 203a 2049 6465 616c |.|o2 : Ideal │ │ │ │ -000211c0: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -000211d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000211f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021220: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -00021230: 2074 696d 6520 4353 4d20 4920 2020 2020 time CSM I │ │ │ │ -00021240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021190: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000211a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211d0: 2d2d 2d2b 0a7c 6933 203a 2074 696d 6520 ---+.|i3 : time │ │ │ │ +000211e0: 4353 4d20 4920 2020 2020 2020 2020 2020 CSM I │ │ │ │ +000211f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021210: 7c20 2d2d 2075 7365 6420 322e 3734 3834 | -- used 2.7484 │ │ │ │ +00021220: 3673 2028 6370 7529 3b20 312e 3037 3232 6s (cpu); 1.0722 │ │ │ │ +00021230: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ +00021240: 2867 6329 2020 2020 207c 0a7c 2020 2020 (gc) |.| │ │ │ │ 00021250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021260: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021270: 312e 3731 3030 3273 2028 6370 7529 3b20 1.71002s (cpu); │ │ │ │ -00021280: 302e 3938 3437 3132 7320 2874 6872 6561 0.984712s (threa │ │ │ │ -00021290: 6429 3b20 3073 2028 6763 2920 2020 207c d); 0s (gc) | │ │ │ │ -000212a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000212b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000212e0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -000212f0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00021300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021310: 2020 2020 207c 0a7c 6f33 203d 2031 3268 |.|o3 = 12h │ │ │ │ -00021320: 2020 2b20 3130 6820 202b 2036 6820 2020 + 10h + 6h │ │ │ │ -00021330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021280: 2020 2020 7c0a 7c20 2020 2020 2020 2035 |.| 5 │ │ │ │ +00021290: 2020 2020 2020 3420 2020 2020 3320 2020 4 3 │ │ │ │ +000212a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000212c0: 0a7c 6f33 203d 2031 3268 2020 2b20 3130 .|o3 = 12h + 10 │ │ │ │ +000212d0: 6820 202b 2036 6820 2020 2020 2020 2020 h + 6h │ │ │ │ +000212e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00021300: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00021310: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00021320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00021340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021350: 7c0a 7c20 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ -00021360: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00021370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021370: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ +00021380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213c0: 2020 2020 2020 7c0a 7c20 2020 2020 5a5a |.| ZZ │ │ │ │ -000213d0: 5b68 205d 2020 2020 2020 2020 2020 2020 [h ] │ │ │ │ -000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021400: 207c 0a7c 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +000213a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000213b0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +000213c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000213d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000213e0: 2020 2020 2020 7c0a 7c6f 3320 3a20 2d2d |.|o3 : -- │ │ │ │ +000213f0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ +00021400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021430: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021440: 3320 3a20 2d2d 2d2d 2d2d 2020 2020 2020 3 : ------ │ │ │ │ -00021450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00021480: 2020 3720 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -00021490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214b0: 2020 7c0a 7c20 2020 2020 2020 6820 2020 |.| h │ │ │ │ +00021420: 207c 0a7c 2020 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ +00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021450: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00021460: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ +00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000214a0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000214f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021520: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00021530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021560: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ -00021570: 4353 4d28 492c 4d65 7468 6f64 3d3e 4469 CSM(I,Method=>Di │ │ │ │ -00021580: 7265 6374 436f 6d70 6c65 7465 496e 7429 rectCompleteInt) │ │ │ │ -00021590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000215a0: 7c20 2d2d 2075 7365 6420 302e 3433 3836 | -- used 0.4386 │ │ │ │ -000215b0: 3032 7320 2863 7075 293b 2030 2e32 3039 02s (cpu); 0.209 │ │ │ │ -000215c0: 3233 3273 2028 7468 7265 6164 293b 2030 232s (thread); 0 │ │ │ │ -000215d0: 7320 2867 6329 2020 207c 0a7c 2020 2020 s (gc) |.| │ │ │ │ +000214d0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000214e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000214f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00021510: 6934 203a 2074 696d 6520 4353 4d28 492c i4 : time CSM(I, │ │ │ │ +00021520: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ +00021530: 6d70 6c65 7465 496e 7429 2020 2020 2020 mpleteInt) │ │ │ │ +00021540: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +00021550: 7365 6420 302e 3637 3231 7320 2863 7075 sed 0.6721s (cpu │ │ │ │ +00021560: 293b 2030 2e32 3631 3932 3873 2028 7468 ); 0.261928s (th │ │ │ │ +00021570: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00021580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00021590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000215c0: 7c20 2020 2020 2020 2035 2020 2020 2020 | 5 │ │ │ │ +000215d0: 3420 2020 2020 3320 2020 2020 2020 2020 4 3 │ │ │ │ 000215e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021610: 2020 2020 7c0a 7c20 2020 2020 2020 2035 |.| 5 │ │ │ │ -00021620: 2020 2020 2020 3420 2020 2020 3320 2020 4 3 │ │ │ │ -00021630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021650: 0a7c 6f34 203d 2031 3268 2020 2b20 3130 .|o4 = 12h + 10 │ │ │ │ -00021660: 6820 202b 2036 6820 2020 2020 2020 2020 h + 6h │ │ │ │ -00021670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021680: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00021690: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -000216a0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000215f0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +00021600: 2031 3268 2020 2b20 3130 6820 202b 2036 12h + 10h + 6 │ │ │ │ +00021610: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +00021620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021630: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ +00021640: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ +00021650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000216b0: 2020 5a5a 5b68 205d 2020 2020 2020 2020 ZZ[h ] │ │ │ │ +000216c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021700: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ +000216e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000216f0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00021740: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -00021750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021770: 2020 2020 2020 7c0a 7c6f 3420 3a20 2d2d |.|o4 : -- │ │ │ │ -00021780: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ -00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 207c 0a7c 2020 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ +00021720: 7c0a 7c6f 3420 3a20 2d2d 2d2d 2d2d 2020 |.|o4 : ------ │ │ │ │ +00021730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021750: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00021760: 2020 2020 2020 3720 2020 2020 2020 2020 7 │ │ │ │ +00021770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021790: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000217a0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +000217b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000217f0: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ -00021800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00021830: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00021840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021860: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -000218a0: 5768 656e 2075 7369 6e67 2074 6865 2044 When using the D │ │ │ │ -000218b0: 6972 6563 7443 6f6d 706c 6574 6549 6e74 irectCompleteInt │ │ │ │ -000218c0: 206d 6574 686f 6420 6f6e 6520 6d61 7920 method one may │ │ │ │ -000218d0: 706f 7465 6e74 6961 6c6c 7920 6675 7274 potentially furt │ │ │ │ -000218e0: 6865 7220 7370 6565 6420 7570 0a63 6f6d her speed up.com │ │ │ │ -000218f0: 7075 7461 7469 6f6e 2074 696d 6520 6279 putation time by │ │ │ │ -00021900: 2073 7065 6369 6679 696e 6720 7768 6174 specifying what │ │ │ │ -00021910: 2073 7562 7365 7420 6f66 2074 6865 2067 subset of the g │ │ │ │ -00021920: 656e 6572 6174 6f72 7320 6f66 2074 6865 enerators of the │ │ │ │ -00021930: 2069 6e70 7574 2069 6465 616c 0a64 6566 input ideal.def │ │ │ │ -00021940: 696e 6520 6120 736d 6f6f 7468 2073 7562 ine a smooth sub │ │ │ │ -00021950: 7363 6865 6d65 2028 6966 2074 6869 7320 scheme (if this │ │ │ │ -00021960: 6973 206b 6e6f 776e 292c 2073 6565 202a is known), see * │ │ │ │ -00021970: 6e6f 7465 2049 6e64 734f 6653 6d6f 6f74 note IndsOfSmoot │ │ │ │ -00021980: 683a 0a49 6e64 734f 6653 6d6f 6f74 682c h:.IndsOfSmooth, │ │ │ │ -00021990: 2e0a 0a46 756e 6374 696f 6e73 2077 6974 ...Functions wit │ │ │ │ -000219a0: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ -000219b0: 656e 7420 6e61 6d65 6420 4d65 7468 6f64 ent named Method │ │ │ │ -000219c0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000219d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219f0: 0a0a 2020 2a20 2243 534d 282e 2e2e 2c4d .. * "CSM(...,M │ │ │ │ -00021a00: 6574 686f 643d 3e2e 2e2e 2922 202d 2d20 ethod=>...)" -- │ │ │ │ -00021a10: 7365 6520 2a6e 6f74 6520 4353 4d3a 2043 see *note CSM: C │ │ │ │ -00021a20: 534d 2c20 2d2d 2054 6865 0a20 2020 2043 SM, -- The. C │ │ │ │ -00021a30: 6865 726e 2d53 6368 7761 7274 7a2d 4d61 hern-Schwartz-Ma │ │ │ │ -00021a40: 6350 6865 7273 6f6e 2063 6c61 7373 0a20 cPherson class. │ │ │ │ -00021a50: 202a 2045 756c 6572 282e 2e2e 2c4d 6574 * Euler(...,Met │ │ │ │ -00021a60: 686f 643d 3e2e 2e2e 2920 286d 6973 7369 hod=>...) (missi │ │ │ │ -00021a70: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00021a80: 290a 0a46 6f72 2074 6865 2070 726f 6772 )..For the progr │ │ │ │ -00021a90: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00021aa0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00021ab0: 6a65 6374 202a 6e6f 7465 204d 6574 686f ject *note Metho │ │ │ │ -00021ac0: 643a 204d 6574 686f 642c 2069 7320 6120 d: Method, is a │ │ │ │ -00021ad0: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 284d *note symbol: (M │ │ │ │ -00021ae0: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ -00021af0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ -00021b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b40: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00021b50: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00021b60: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00021b70: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00021b80: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00021b90: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00021ba0: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -00021bb0: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -00021bc0: 7365 732e 6d32 3a32 3433 323a 302e 0a1f ses.m2:2432:0... │ │ │ │ -00021bd0: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -00021be0: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -00021bf0: 6f2c 204e 6f64 653a 204d 756c 7469 5072 o, Node: MultiPr │ │ │ │ -00021c00: 6f6a 436f 6f72 6452 696e 672c 204e 6578 ojCoordRing, Nex │ │ │ │ -00021c10: 743a 204f 7574 7075 742c 2050 7265 763a t: Output, Prev: │ │ │ │ -00021c20: 204d 6574 686f 642c 2055 703a 2054 6f70 Method, Up: Top │ │ │ │ -00021c30: 0a0a 4d75 6c74 6950 726f 6a43 6f6f 7264 ..MultiProjCoord │ │ │ │ -00021c40: 5269 6e67 202d 2d20 4120 7175 6963 6b20 Ring -- A quick │ │ │ │ -00021c50: 7761 7920 746f 2062 7569 6c64 2074 6865 way to build the │ │ │ │ -00021c60: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ -00021c70: 206f 6620 6120 7072 6f64 7563 7420 6f66 of a product of │ │ │ │ -00021c80: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -00021c90: 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a es.************* │ │ │ │ -00021ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cf0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00021d00: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -00021d10: 6f6a 436f 6f72 6452 696e 6720 4469 6d73 ojCoordRing Dims │ │ │ │ -00021d20: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -00021d30: 6f6a 436f 6f72 6452 696e 6720 2843 6f65 ojCoordRing (Coe │ │ │ │ -00021d40: 6666 5269 6e67 2c44 696d 7329 0a20 2020 ffRing,Dims). │ │ │ │ -00021d50: 2020 2020 204d 756c 7469 5072 6f6a 436f MultiProjCo │ │ │ │ -00021d60: 6f72 6452 696e 6720 2876 6172 2c44 696d ordRing (var,Dim │ │ │ │ -00021d70: 7329 0a20 2020 2020 2020 204d 756c 7469 s). Multi │ │ │ │ -00021d80: 5072 6f6a 436f 6f72 6452 696e 6720 2843 ProjCoordRing (C │ │ │ │ -00021d90: 6f65 6666 5269 6e67 2c76 6172 2c44 696d oeffRing,var,Dim │ │ │ │ -00021da0: 7329 0a20 202a 2049 6e70 7574 733a 0a20 s). * Inputs:. │ │ │ │ -00021db0: 2020 2020 202a 2044 696d 732c 2061 202a * Dims, a * │ │ │ │ -00021dc0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00021dd0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00021de0: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ -00021df0: 2064 696d 656e 7369 6f6e 7320 6f66 0a20 dimensions of. │ │ │ │ -00021e00: 2020 2020 2020 2074 6865 2070 726f 6a65 the proje │ │ │ │ -00021e10: 6374 6976 6520 7370 6163 6573 2c20 692e ctive spaces, i. │ │ │ │ -00021e20: 652e 207b 6e5f 312c 2e2e 2e2c 6e5f 6d7d e. {n_1,...,n_m} │ │ │ │ -00021e30: 2063 6f72 7265 7370 6f6e 6473 2074 6f20 corresponds to │ │ │ │ -00021e40: 5c50 505e 7b6e 5f31 7d0a 2020 2020 2020 \PP^{n_1}. │ │ │ │ -00021e50: 2020 782e 2e2e 2e20 7820 5c50 505e 7b6e x.... x \PP^{n │ │ │ │ -00021e60: 5f6d 7d0a 2020 2020 2020 2a20 436f 6566 _m}. * Coef │ │ │ │ -00021e70: 6652 696e 672c 2061 202a 6e6f 7465 2072 fRing, a *note r │ │ │ │ -00021e80: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ -00021e90: 6f63 2952 696e 672c 2c20 7468 6520 636f oc)Ring,, the co │ │ │ │ -00021ea0: 6566 6669 6369 656e 7420 7269 6e67 206f efficient ring o │ │ │ │ -00021eb0: 660a 2020 2020 2020 2020 7468 6520 6772 f. the gr │ │ │ │ -00021ec0: 6164 6564 2070 6f6c 796e 6f6d 6961 6c20 aded polynomial │ │ │ │ -00021ed0: 7269 6e67 2074 6f20 6265 2062 7569 6c74 ring to be built │ │ │ │ -00021ee0: 2062 7920 7468 6520 6d65 7468 6f64 2c20 by the method, │ │ │ │ -00021ef0: 6279 2064 6566 6175 6c74 2074 6869 730a by default this. │ │ │ │ -00021f00: 2020 2020 2020 2020 6973 205c 5a5a 2f33 is \ZZ/3 │ │ │ │ -00021f10: 3237 3439 0a20 2020 2020 202a 2076 6172 2749. * var │ │ │ │ -00021f20: 2c20 6120 2a6e 6f74 6520 7379 6d62 6f6c , a *note symbol │ │ │ │ -00021f30: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00021f40: 5379 6d62 6f6c 2c2c 2074 6f20 6265 2075 Symbol,, to be u │ │ │ │ -00021f50: 7365 6420 666f 7220 7468 650a 2020 2020 sed for the. │ │ │ │ -00021f60: 2020 2020 696e 7465 726d 6564 6961 7465 intermediate │ │ │ │ -00021f70: 7320 6f66 2074 6865 2067 7261 6465 6420 s of the graded │ │ │ │ -00021f80: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ -00021f90: 746f 2062 6520 6275 696c 7420 6279 2074 to be built by t │ │ │ │ -00021fa0: 6865 206d 6574 686f 640a 2020 2a20 4f75 he method. * Ou │ │ │ │ -00021fb0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ -00021fc0: 202a 6e6f 7465 2072 696e 673a 2028 4d61 *note ring: (Ma │ │ │ │ -00021fd0: 6361 756c 6179 3244 6f63 2952 696e 672c caulay2Doc)Ring, │ │ │ │ -00021fe0: 2c20 7468 6520 6772 6164 6564 2063 6f6f , the graded coo │ │ │ │ -00021ff0: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ -00022000: 7468 650a 2020 2020 2020 2020 5c50 505e the. \PP^ │ │ │ │ -00022010: 7b6e 5f31 7d20 782e 2e2e 2e20 7820 5c50 {n_1} x.... x \P │ │ │ │ -00022020: 505e 7b6e 5f6d 7d20 7768 6572 6520 7b6e P^{n_m} where {n │ │ │ │ -00022030: 5f31 2c2e 2e2e 2c6e 5f6d 7d20 6973 2074 _1,...,n_m} is t │ │ │ │ -00022040: 6865 2069 6e70 7574 206c 6973 7420 6f66 he input list of │ │ │ │ -00022050: 0a20 2020 2020 2020 2064 696d 656e 7369 . dimensi │ │ │ │ -00022060: 6f6e 730a 0a44 6573 6372 6970 7469 6f6e ons..Description │ │ │ │ -00022070: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 436f .===========..Co │ │ │ │ -00022080: 6d70 7574 6573 2074 6865 2067 7261 6465 mputes the grade │ │ │ │ -00022090: 6420 636f 6f72 6469 6e61 7465 2072 696e d coordinate rin │ │ │ │ -000220a0: 6720 6f66 2074 6865 205c 5050 5e7b 6e5f g of the \PP^{n_ │ │ │ │ -000220b0: 317d 2078 2e2e 2e2e 2078 205c 5050 5e7b 1} x.... x \PP^{ │ │ │ │ -000220c0: 6e5f 6d7d 2077 6865 7265 0a7b 6e5f 312c n_m} where.{n_1, │ │ │ │ -000220d0: 2e2e 2e2c 6e5f 6d7d 2069 7320 7468 6520 ...,n_m} is the │ │ │ │ -000220e0: 696e 7075 7420 6c69 7374 206f 6620 6469 input list of di │ │ │ │ -000220f0: 6d65 6e73 696f 6e73 2e20 5468 6973 206d mensions. This m │ │ │ │ -00022100: 6574 686f 6420 6973 2075 7365 6420 746f ethod is used to │ │ │ │ -00022110: 2071 7569 636b 6c79 0a62 7569 6c64 2074 quickly.build t │ │ │ │ -00022120: 6865 2063 6f6f 7264 696e 6174 6520 7269 he coordinate ri │ │ │ │ -00022130: 6e67 206f 6620 6120 7072 6f64 7563 7420 ng of a product │ │ │ │ -00022140: 6f66 2070 726f 6a65 6374 6976 6520 7370 of projective sp │ │ │ │ -00022150: 6163 6573 2066 6f72 2075 7365 2069 6e0a aces for use in. │ │ │ │ -00022160: 636f 6d70 7574 6174 696f 6e73 2e0a 0a2b computations...+ │ │ │ │ -00022170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000221c0: 6931 203a 2053 3d4d 756c 7469 5072 6f6a i1 : S=MultiProj │ │ │ │ -000221d0: 436f 6f72 6452 696e 6728 5151 2c73 796d CoordRing(QQ,sym │ │ │ │ -000221e0: 626f 6c20 7a2c 7b31 2c33 2c33 7d29 2020 bol z,{1,3,3}) │ │ │ │ +000217d0: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021800: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00021810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021840: 2d2d 2d2d 2d2d 2d2b 0a0a 5768 656e 2075 -------+..When u │ │ │ │ +00021850: 7369 6e67 2074 6865 2044 6972 6563 7443 sing the DirectC │ │ │ │ +00021860: 6f6d 706c 6574 6549 6e74 206d 6574 686f ompleteInt metho │ │ │ │ +00021870: 6420 6f6e 6520 6d61 7920 706f 7465 6e74 d one may potent │ │ │ │ +00021880: 6961 6c6c 7920 6675 7274 6865 7220 7370 ially further sp │ │ │ │ +00021890: 6565 6420 7570 0a63 6f6d 7075 7461 7469 eed up.computati │ │ │ │ +000218a0: 6f6e 2074 696d 6520 6279 2073 7065 6369 on time by speci │ │ │ │ +000218b0: 6679 696e 6720 7768 6174 2073 7562 7365 fying what subse │ │ │ │ +000218c0: 7420 6f66 2074 6865 2067 656e 6572 6174 t of the generat │ │ │ │ +000218d0: 6f72 7320 6f66 2074 6865 2069 6e70 7574 ors of the input │ │ │ │ +000218e0: 2069 6465 616c 0a64 6566 696e 6520 6120 ideal.define a │ │ │ │ +000218f0: 736d 6f6f 7468 2073 7562 7363 6865 6d65 smooth subscheme │ │ │ │ +00021900: 2028 6966 2074 6869 7320 6973 206b 6e6f (if this is kno │ │ │ │ +00021910: 776e 292c 2073 6565 202a 6e6f 7465 2049 wn), see *note I │ │ │ │ +00021920: 6e64 734f 6653 6d6f 6f74 683a 0a49 6e64 ndsOfSmooth:.Ind │ │ │ │ +00021930: 734f 6653 6d6f 6f74 682c 2e0a 0a46 756e sOfSmooth,...Fun │ │ │ │ +00021940: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +00021950: 6f6e 616c 2061 7267 756d 656e 7420 6e61 onal argument na │ │ │ │ +00021960: 6d65 6420 4d65 7468 6f64 3a0a 3d3d 3d3d med Method:.==== │ │ │ │ +00021970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021990: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +000219a0: 2243 534d 282e 2e2e 2c4d 6574 686f 643d "CSM(...,Method= │ │ │ │ +000219b0: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +000219c0: 6f74 6520 4353 4d3a 2043 534d 2c20 2d2d ote CSM: CSM, -- │ │ │ │ +000219d0: 2054 6865 0a20 2020 2043 6865 726e 2d53 The. Chern-S │ │ │ │ +000219e0: 6368 7761 7274 7a2d 4d61 6350 6865 7273 chwartz-MacPhers │ │ │ │ +000219f0: 6f6e 2063 6c61 7373 0a20 202a 2045 756c on class. * Eul │ │ │ │ +00021a00: 6572 282e 2e2e 2c4d 6574 686f 643d 3e2e er(...,Method=>. │ │ │ │ +00021a10: 2e2e 2920 286d 6973 7369 6e67 2064 6f63 ..) (missing doc │ │ │ │ +00021a20: 756d 656e 7461 7469 6f6e 290a 0a46 6f72 umentation)..For │ │ │ │ +00021a30: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00021a40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00021a50: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00021a60: 6e6f 7465 204d 6574 686f 643a 204d 6574 note Method: Met │ │ │ │ +00021a70: 686f 642c 2069 7320 6120 2a6e 6f74 6520 hod, is a *note │ │ │ │ +00021a80: 7379 6d62 6f6c 3a20 284d 6163 6175 6c61 symbol: (Macaula │ │ │ │ +00021a90: 7932 446f 6329 5379 6d62 6f6c 2c2e 0a0a y2Doc)Symbol,... │ │ │ │ +00021aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00021af0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00021b00: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00021b10: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00021b20: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00021b30: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00021b40: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00021b50: 636b 6167 6573 2f0a 4368 6172 6163 7465 ckages/.Characte │ │ │ │ +00021b60: 7269 7374 6963 436c 6173 7365 732e 6d32 risticClasses.m2 │ │ │ │ +00021b70: 3a32 3433 323a 302e 0a1f 0a46 696c 653a :2432:0....File: │ │ │ │ +00021b80: 2043 6861 7261 6374 6572 6973 7469 6343 CharacteristicC │ │ │ │ +00021b90: 6c61 7373 6573 2e69 6e66 6f2c 204e 6f64 lasses.info, Nod │ │ │ │ +00021ba0: 653a 204d 756c 7469 5072 6f6a 436f 6f72 e: MultiProjCoor │ │ │ │ +00021bb0: 6452 696e 672c 204e 6578 743a 204f 7574 dRing, Next: Out │ │ │ │ +00021bc0: 7075 742c 2050 7265 763a 204d 6574 686f put, Prev: Metho │ │ │ │ +00021bd0: 642c 2055 703a 2054 6f70 0a0a 4d75 6c74 d, Up: Top..Mult │ │ │ │ +00021be0: 6950 726f 6a43 6f6f 7264 5269 6e67 202d iProjCoordRing - │ │ │ │ +00021bf0: 2d20 4120 7175 6963 6b20 7761 7920 746f - A quick way to │ │ │ │ +00021c00: 2062 7569 6c64 2074 6865 2063 6f6f 7264 build the coord │ │ │ │ +00021c10: 696e 6174 6520 7269 6e67 206f 6620 6120 inate ring of a │ │ │ │ +00021c20: 7072 6f64 7563 7420 6f66 2070 726f 6a65 product of proje │ │ │ │ +00021c30: 6374 6976 6520 7370 6163 6573 0a2a 2a2a ctive spaces.*** │ │ │ │ +00021c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +00021ca0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00021cb0: 2020 204d 756c 7469 5072 6f6a 436f 6f72 MultiProjCoor │ │ │ │ +00021cc0: 6452 696e 6720 4469 6d73 0a20 2020 2020 dRing Dims. │ │ │ │ +00021cd0: 2020 204d 756c 7469 5072 6f6a 436f 6f72 MultiProjCoor │ │ │ │ +00021ce0: 6452 696e 6720 2843 6f65 6666 5269 6e67 dRing (CoeffRing │ │ │ │ +00021cf0: 2c44 696d 7329 0a20 2020 2020 2020 204d ,Dims). M │ │ │ │ +00021d00: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00021d10: 6720 2876 6172 2c44 696d 7329 0a20 2020 g (var,Dims). │ │ │ │ +00021d20: 2020 2020 204d 756c 7469 5072 6f6a 436f MultiProjCo │ │ │ │ +00021d30: 6f72 6452 696e 6720 2843 6f65 6666 5269 ordRing (CoeffRi │ │ │ │ +00021d40: 6e67 2c76 6172 2c44 696d 7329 0a20 202a ng,var,Dims). * │ │ │ │ +00021d50: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00021d60: 2044 696d 732c 2061 202a 6e6f 7465 206c Dims, a *note l │ │ │ │ +00021d70: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00021d80: 6f63 294c 6973 742c 2c20 7265 7072 6573 oc)List,, repres │ │ │ │ +00021d90: 656e 7469 6e67 2074 6865 2064 696d 656e enting the dimen │ │ │ │ +00021da0: 7369 6f6e 7320 6f66 0a20 2020 2020 2020 sions of. │ │ │ │ +00021db0: 2074 6865 2070 726f 6a65 6374 6976 6520 the projective │ │ │ │ +00021dc0: 7370 6163 6573 2c20 692e 652e 207b 6e5f spaces, i.e. {n_ │ │ │ │ +00021dd0: 312c 2e2e 2e2c 6e5f 6d7d 2063 6f72 7265 1,...,n_m} corre │ │ │ │ +00021de0: 7370 6f6e 6473 2074 6f20 5c50 505e 7b6e sponds to \PP^{n │ │ │ │ +00021df0: 5f31 7d0a 2020 2020 2020 2020 782e 2e2e _1}. x... │ │ │ │ +00021e00: 2e20 7820 5c50 505e 7b6e 5f6d 7d0a 2020 . x \PP^{n_m}. │ │ │ │ +00021e10: 2020 2020 2a20 436f 6566 6652 696e 672c * CoeffRing, │ │ │ │ +00021e20: 2061 202a 6e6f 7465 2072 696e 673a 2028 a *note ring: ( │ │ │ │ +00021e30: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ +00021e40: 672c 2c20 7468 6520 636f 6566 6669 6369 g,, the coeffici │ │ │ │ +00021e50: 656e 7420 7269 6e67 206f 660a 2020 2020 ent ring of. │ │ │ │ +00021e60: 2020 2020 7468 6520 6772 6164 6564 2070 the graded p │ │ │ │ +00021e70: 6f6c 796e 6f6d 6961 6c20 7269 6e67 2074 olynomial ring t │ │ │ │ +00021e80: 6f20 6265 2062 7569 6c74 2062 7920 7468 o be built by th │ │ │ │ +00021e90: 6520 6d65 7468 6f64 2c20 6279 2064 6566 e method, by def │ │ │ │ +00021ea0: 6175 6c74 2074 6869 730a 2020 2020 2020 ault this. │ │ │ │ +00021eb0: 2020 6973 205c 5a5a 2f33 3237 3439 0a20 is \ZZ/32749. │ │ │ │ +00021ec0: 2020 2020 202a 2076 6172 2c20 6120 2a6e * var, a *n │ │ │ │ +00021ed0: 6f74 6520 7379 6d62 6f6c 3a20 284d 6163 ote symbol: (Mac │ │ │ │ +00021ee0: 6175 6c61 7932 446f 6329 5379 6d62 6f6c aulay2Doc)Symbol │ │ │ │ +00021ef0: 2c2c 2074 6f20 6265 2075 7365 6420 666f ,, to be used fo │ │ │ │ +00021f00: 7220 7468 650a 2020 2020 2020 2020 696e r the. in │ │ │ │ +00021f10: 7465 726d 6564 6961 7465 7320 6f66 2074 termediates of t │ │ │ │ +00021f20: 6865 2067 7261 6465 6420 706f 6c79 6e6f he graded polyno │ │ │ │ +00021f30: 6d69 616c 2072 696e 6720 746f 2062 6520 mial ring to be │ │ │ │ +00021f40: 6275 696c 7420 6279 2074 6865 206d 6574 built by the met │ │ │ │ +00021f50: 686f 640a 2020 2a20 4f75 7470 7574 733a hod. * Outputs: │ │ │ │ +00021f60: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ +00021f70: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ +00021f80: 3244 6f63 2952 696e 672c 2c20 7468 6520 2Doc)Ring,, the │ │ │ │ +00021f90: 6772 6164 6564 2063 6f6f 7264 696e 6174 graded coordinat │ │ │ │ +00021fa0: 6520 7269 6e67 206f 6620 7468 650a 2020 e ring of the. │ │ │ │ +00021fb0: 2020 2020 2020 5c50 505e 7b6e 5f31 7d20 \PP^{n_1} │ │ │ │ +00021fc0: 782e 2e2e 2e20 7820 5c50 505e 7b6e 5f6d x.... x \PP^{n_m │ │ │ │ +00021fd0: 7d20 7768 6572 6520 7b6e 5f31 2c2e 2e2e } where {n_1,... │ │ │ │ +00021fe0: 2c6e 5f6d 7d20 6973 2074 6865 2069 6e70 ,n_m} is the inp │ │ │ │ +00021ff0: 7574 206c 6973 7420 6f66 0a20 2020 2020 ut list of. │ │ │ │ +00022000: 2020 2064 696d 656e 7369 6f6e 730a 0a44 dimensions..D │ │ │ │ +00022010: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00022020: 3d3d 3d3d 3d3d 0a0a 436f 6d70 7574 6573 ======..Computes │ │ │ │ +00022030: 2074 6865 2067 7261 6465 6420 636f 6f72 the graded coor │ │ │ │ +00022040: 6469 6e61 7465 2072 696e 6720 6f66 2074 dinate ring of t │ │ │ │ +00022050: 6865 205c 5050 5e7b 6e5f 317d 2078 2e2e he \PP^{n_1} x.. │ │ │ │ +00022060: 2e2e 2078 205c 5050 5e7b 6e5f 6d7d 2077 .. x \PP^{n_m} w │ │ │ │ +00022070: 6865 7265 0a7b 6e5f 312c 2e2e 2e2c 6e5f here.{n_1,...,n_ │ │ │ │ +00022080: 6d7d 2069 7320 7468 6520 696e 7075 7420 m} is the input │ │ │ │ +00022090: 6c69 7374 206f 6620 6469 6d65 6e73 696f list of dimensio │ │ │ │ +000220a0: 6e73 2e20 5468 6973 206d 6574 686f 6420 ns. This method │ │ │ │ +000220b0: 6973 2075 7365 6420 746f 2071 7569 636b is used to quick │ │ │ │ +000220c0: 6c79 0a62 7569 6c64 2074 6865 2063 6f6f ly.build the coo │ │ │ │ +000220d0: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ +000220e0: 6120 7072 6f64 7563 7420 6f66 2070 726f a product of pro │ │ │ │ +000220f0: 6a65 6374 6976 6520 7370 6163 6573 2066 jective spaces f │ │ │ │ +00022100: 6f72 2075 7365 2069 6e0a 636f 6d70 7574 or use in.comput │ │ │ │ +00022110: 6174 696f 6e73 2e0a 0a2b 2d2d 2d2d 2d2d ations...+------ │ │ │ │ +00022120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022160: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ +00022170: 3d4d 756c 7469 5072 6f6a 436f 6f72 6452 =MultiProjCoordR │ │ │ │ +00022180: 696e 6728 5151 2c73 796d 626f 6c20 7a2c ing(QQ,symbol z, │ │ │ │ +00022190: 7b31 2c33 2c33 7d29 2020 2020 2020 2020 {1,3,3}) │ │ │ │ +000221a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000221b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000221c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000221d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000221e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022200: 2020 2020 2020 207c 0a7c 6f31 203d 2053 |.|o1 = S │ │ │ │ 00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022260: 6f31 203d 2053 2020 2020 2020 2020 2020 o1 = S │ │ │ │ +00022250: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000222b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222a0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ +000222b0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ 000222c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022300: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ -00022310: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00022320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022340: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00022350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000223a0: 6932 203a 2064 6567 7265 6573 2053 2020 i2 : degrees S │ │ │ │ +000222f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022340: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2064 -------+.|i2 : d │ │ │ │ +00022350: 6567 7265 6573 2053 2020 2020 2020 2020 egrees S │ │ │ │ +00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000223a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000223f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022440: 6f32 203d 207b 7b31 2c20 302c 2030 7d2c o2 = {{1, 0, 0}, │ │ │ │ -00022450: 207b 312c 2030 2c20 307d 2c20 7b30 2c20 {1, 0, 0}, {0, │ │ │ │ -00022460: 312c 2030 7d2c 207b 302c 2031 2c20 307d 1, 0}, {0, 1, 0} │ │ │ │ -00022470: 2c20 7b30 2c20 312c 2030 7d2c 207b 302c , {0, 1, 0}, {0, │ │ │ │ -00022480: 2031 2c20 307d 2c20 7b30 2c20 207c 0a7c 1, 0}, {0, |.| │ │ │ │ -00022490: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ -000224a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -000224e0: 2020 2020 2030 2c20 317d 2c20 7b30 2c20 0, 1}, {0, │ │ │ │ -000224f0: 302c 2031 7d2c 207b 302c 2030 2c20 317d 0, 1}, {0, 0, 1} │ │ │ │ -00022500: 2c20 7b30 2c20 302c 2031 7d7d 2020 2020 , {0, 0, 1}} │ │ │ │ +000223e0: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ +000223f0: 7b31 2c20 302c 2030 7d2c 207b 312c 2030 {1, 0, 0}, {1, 0 │ │ │ │ +00022400: 2c20 307d 2c20 7b30 2c20 312c 2030 7d2c , 0}, {0, 1, 0}, │ │ │ │ +00022410: 207b 302c 2031 2c20 307d 2c20 7b30 2c20 {0, 1, 0}, {0, │ │ │ │ +00022420: 312c 2030 7d2c 207b 302c 2031 2c20 307d 1, 0}, {0, 1, 0} │ │ │ │ +00022430: 2c20 7b30 2c20 207c 0a7c 2020 2020 202d , {0, |.| - │ │ │ │ +00022440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022480: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2030 -------|.| 0 │ │ │ │ +00022490: 2c20 317d 2c20 7b30 2c20 302c 2031 7d2c , 1}, {0, 0, 1}, │ │ │ │ +000224a0: 207b 302c 2030 2c20 317d 2c20 7b30 2c20 {0, 0, 1}, {0, │ │ │ │ +000224b0: 302c 2031 7d7d 2020 2020 2020 2020 2020 0, 1}} │ │ │ │ +000224c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000224e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022520: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ +00022530: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 00022540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022580: 6f32 203a 204c 6973 7420 2020 2020 2020 o2 : List │ │ │ │ -00022590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000225d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022620: 6933 203a 2052 3d4d 756c 7469 5072 6f6a i3 : R=MultiProj │ │ │ │ -00022630: 436f 6f72 6452 696e 6720 7b32 2c33 7d20 CoordRing {2,3} │ │ │ │ +00022570: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000225a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000225b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000225c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2052 -------+.|i3 : R │ │ │ │ +000225d0: 3d4d 756c 7469 5072 6f6a 436f 6f72 6452 =MultiProjCoordR │ │ │ │ +000225e0: 696e 6720 7b32 2c33 7d20 2020 2020 2020 ing {2,3} │ │ │ │ +000225f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022610: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022660: 2020 2020 2020 207c 0a7c 6f33 203d 2052 |.|o3 = R │ │ │ │ 00022670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000226c0: 6f33 203d 2052 2020 2020 2020 2020 2020 o3 = R │ │ │ │ +000226b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000226c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022700: 2020 2020 2020 207c 0a7c 6f33 203a 2050 |.|o3 : P │ │ │ │ +00022710: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ 00022720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022760: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -00022770: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00022780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000227b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022800: 6934 203a 2063 6f65 6666 6963 6965 6e74 i4 : coefficient │ │ │ │ -00022810: 5269 6e67 2052 2020 2020 2020 2020 2020 Ring R │ │ │ │ +00022750: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000227a0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2063 -------+.|i4 : c │ │ │ │ +000227b0: 6f65 6666 6963 6965 6e74 5269 6e67 2052 oefficientRing R │ │ │ │ +000227c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022840: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022850: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000228a0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00022890: 2020 2020 2020 207c 0a7c 6f34 203d 202d |.|o4 = - │ │ │ │ +000228a0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 000228b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000228f0: 6f34 203d 202d 2d2d 2d2d 2020 2020 2020 o4 = ----- │ │ │ │ +000228e0: 2020 2020 2020 207c 0a7c 2020 2020 2033 |.| 3 │ │ │ │ +000228f0: 3237 3439 2020 2020 2020 2020 2020 2020 2749 │ │ │ │ 00022900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022940: 2020 2020 2033 3237 3439 2020 2020 2020 32749 │ │ │ │ +00022930: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022980: 2020 2020 2020 207c 0a7c 6f34 203a 2051 |.|o4 : Q │ │ │ │ +00022990: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ 000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000229e0: 6f34 203a 2051 756f 7469 656e 7452 696e o4 : QuotientRin │ │ │ │ -000229f0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a20: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00022a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022a80: 6935 203a 2064 6573 6372 6962 6520 5220 i5 : describe R │ │ │ │ +000229d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000229e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000229f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022a20: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2064 -------+.|i5 : d │ │ │ │ +00022a30: 6573 6372 6962 6520 5220 2020 2020 2020 escribe R │ │ │ │ +00022a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ac0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022ad0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022b20: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ -00022b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022b70: 6f35 203d 202d 2d2d 2d2d 5b78 202e 2e78 o5 = -----[x ..x │ │ │ │ -00022b80: 202c 2044 6567 7265 6573 203d 3e20 7b33 , Degrees => {3 │ │ │ │ -00022b90: 3a7b 317d 2c20 343a 7b30 7d7d 2c20 4865 :{1}, 4:{0}}, He │ │ │ │ -00022ba0: 6674 203d 3e20 7b32 3a31 7d5d 2020 2020 ft => {2:1}] │ │ │ │ -00022bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022bc0: 2020 2020 2033 3237 3439 2020 3020 2020 32749 0 │ │ │ │ -00022bd0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00022be0: 207b 307d 2020 2020 7b31 7d20 2020 2020 {0} {1} │ │ │ │ -00022bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c00: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00022c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022c60: 6936 203a 2041 3d43 686f 7752 696e 6720 i6 : A=ChowRing │ │ │ │ -00022c70: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00022b10: 2020 2020 2020 207c 0a7c 6f35 203d 202d |.|o5 = - │ │ │ │ +00022b20: 2d2d 2d2d 5b78 202e 2e78 202c 2044 6567 ----[x ..x , Deg │ │ │ │ +00022b30: 7265 6573 203d 3e20 7b33 3a7b 317d 2c20 rees => {3:{1}, │ │ │ │ +00022b40: 343a 7b30 7d7d 2c20 4865 6674 203d 3e20 4:{0}}, Heft => │ │ │ │ +00022b50: 7b32 3a31 7d5d 2020 2020 2020 2020 2020 {2:1}] │ │ │ │ +00022b60: 2020 2020 2020 207c 0a7c 2020 2020 2033 |.| 3 │ │ │ │ +00022b70: 3237 3439 2020 3020 2020 3620 2020 2020 2749 0 6 │ │ │ │ +00022b80: 2020 2020 2020 2020 2020 207b 307d 2020 {0} │ │ │ │ +00022b90: 2020 7b31 7d20 2020 2020 2020 2020 2020 {1} │ │ │ │ +00022ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022bb0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022c00: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2041 -------+.|i6 : A │ │ │ │ +00022c10: 3d43 686f 7752 696e 6720 5220 2020 2020 =ChowRing R │ │ │ │ +00022c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022ca0: 2020 2020 2020 207c 0a7c 6f36 203d 2041 |.|o6 = A │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022d00: 6f36 203d 2041 2020 2020 2020 2020 2020 o6 = A │ │ │ │ +00022cf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d40: 2020 2020 2020 207c 0a7c 6f36 203a 2051 |.|o6 : Q │ │ │ │ +00022d50: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ 00022d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022da0: 6f36 203a 2051 756f 7469 656e 7452 696e o6 : QuotientRin │ │ │ │ -00022db0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00022dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022de0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00022df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022e40: 6937 203a 2064 6573 6372 6962 6520 4120 i7 : describe A │ │ │ │ +00022d90: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00022da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022de0: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 -------+.|i7 : d │ │ │ │ +00022df0: 6573 6372 6962 6520 4120 2020 2020 2020 escribe A │ │ │ │ +00022e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e80: 2020 2020 2020 207c 0a7c 2020 2020 205a |.| Z │ │ │ │ +00022e90: 5a5b 6820 2e2e 6820 5d20 2020 2020 2020 Z[h ..h ] │ │ │ │ 00022ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022ee0: 2020 2020 205a 5a5b 6820 2e2e 6820 5d20 ZZ[h ..h ] │ │ │ │ +00022ed0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022ee0: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ 00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022f30: 2020 2020 2020 2020 2031 2020 2032 2020 1 2 │ │ │ │ +00022f20: 2020 2020 2020 207c 0a7c 6f37 203d 202d |.|o7 = - │ │ │ │ +00022f30: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ 00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022f80: 6f37 203d 202d 2d2d 2d2d 2d2d 2d2d 2d20 o7 = ---------- │ │ │ │ +00022f70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022f80: 2020 3320 2020 3420 2020 2020 2020 2020 3 4 │ │ │ │ 00022f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022fd0: 2020 2020 2020 2020 3320 2020 3420 2020 3 4 │ │ │ │ +00022fc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00022fd0: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ 00022fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023020: 2020 2020 2020 2868 202c 2068 2029 2020 (h , h ) │ │ │ │ +00023010: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00023020: 2020 3120 2020 3220 2020 2020 2020 2020 1 2 │ │ │ │ 00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023070: 2020 2020 2020 2020 3120 2020 3220 2020 1 2 │ │ │ │ -00023080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000230c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00023110: 6938 203a 2053 6567 7265 2841 2c69 6465 i8 : Segre(A,ide │ │ │ │ -00023120: 616c 2072 616e 646f 6d28 7b31 2c31 7d2c al random({1,1}, │ │ │ │ -00023130: 5229 2920 2020 2020 2020 2020 2020 2020 R)) │ │ │ │ +00023060: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00023070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000230a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000230b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2053 -------+.|i8 : S │ │ │ │ +000230c0: 6567 7265 2841 2c69 6465 616c 2072 616e egre(A,ideal ran │ │ │ │ +000230d0: 646f 6d28 7b31 2c31 7d2c 5229 2920 2020 dom({1,1},R)) │ │ │ │ +000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023100: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00023110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000231a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000231b0: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ -000231c0: 3220 3220 2020 2020 2020 3320 2020 2020 2 2 3 │ │ │ │ -000231d0: 3220 2020 2020 2020 2020 3220 2020 2033 2 2 3 │ │ │ │ -000231e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000231f0: 2032 2020 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ -00023200: 6f38 203d 2031 3068 2068 2020 2d20 3668 o8 = 10h h - 6h │ │ │ │ -00023210: 2068 2020 2d20 3468 2068 2020 2b20 3368 h - 4h h + 3h │ │ │ │ -00023220: 2068 2020 2b20 3368 2068 2020 2b20 6820 h + 3h h + h │ │ │ │ -00023230: 202d 2068 2020 2d20 3268 2068 2020 2d20 - h - 2h h - │ │ │ │ -00023240: 6820 202b 2068 2020 2b20 6820 207c 0a7c h + h + h |.| │ │ │ │ -00023250: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00023260: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ -00023270: 3120 3220 2020 2020 3120 3220 2020 2032 1 2 1 2 2 │ │ │ │ -00023280: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00023290: 2032 2020 2020 3120 2020 2032 207c 0a7c 2 1 2 |.| │ │ │ │ +00023150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00023160: 2020 3220 3320 2020 2020 3220 3220 2020 2 3 2 2 │ │ │ │ +00023170: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00023180: 2020 2020 3220 2020 2033 2020 2020 3220 2 3 2 │ │ │ │ +00023190: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000231a0: 2020 2020 2020 207c 0a7c 6f38 203d 2031 |.|o8 = 1 │ │ │ │ +000231b0: 3068 2068 2020 2d20 3668 2068 2020 2d20 0h h - 6h h - │ │ │ │ +000231c0: 3468 2068 2020 2b20 3368 2068 2020 2b20 4h h + 3h h + │ │ │ │ +000231d0: 3368 2068 2020 2b20 6820 202d 2068 2020 3h h + h - h │ │ │ │ +000231e0: 2d20 3268 2068 2020 2d20 6820 202b 2068 - 2h h - h + h │ │ │ │ +000231f0: 2020 2b20 6820 207c 0a7c 2020 2020 2020 + h |.| │ │ │ │ +00023200: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +00023210: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +00023220: 2020 3120 3220 2020 2032 2020 2020 3120 1 2 2 1 │ │ │ │ +00023230: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +00023240: 3120 2020 2032 207c 0a7c 2020 2020 2020 1 2 |.| │ │ │ │ +00023250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023290: 2020 2020 2020 207c 0a7c 6f38 203a 2041 |.|o8 : A │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000232f0: 6f38 203a 2041 2020 2020 2020 2020 2020 o8 : A │ │ │ │ -00023300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023330: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00023340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00023390: 5761 7973 2074 6f20 7573 6520 4d75 6c74 Ways to use Mult │ │ │ │ -000233a0: 6950 726f 6a43 6f6f 7264 5269 6e67 3a0a iProjCoordRing:. │ │ │ │ -000233b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000233c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000233d0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ -000233e0: 6f6f 7264 5269 6e67 284c 6973 7429 220a oordRing(List)". │ │ │ │ -000233f0: 2020 2a20 224d 756c 7469 5072 6f6a 436f * "MultiProjCo │ │ │ │ -00023400: 6f72 6452 696e 6728 5269 6e67 2c4c 6973 ordRing(Ring,Lis │ │ │ │ -00023410: 7429 220a 2020 2a20 224d 756c 7469 5072 t)". * "MultiPr │ │ │ │ -00023420: 6f6a 436f 6f72 6452 696e 6728 5269 6e67 ojCoordRing(Ring │ │ │ │ -00023430: 2c53 796d 626f 6c2c 4c69 7374 2922 0a20 ,Symbol,List)". │ │ │ │ -00023440: 202a 2022 4d75 6c74 6950 726f 6a43 6f6f * "MultiProjCoo │ │ │ │ -00023450: 7264 5269 6e67 2853 796d 626f 6c2c 4c69 rdRing(Symbol,Li │ │ │ │ -00023460: 7374 2922 0a0a 466f 7220 7468 6520 7072 st)"..For the pr │ │ │ │ -00023470: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00023480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -00023490: 206f 626a 6563 7420 2a6e 6f74 6520 4d75 object *note Mu │ │ │ │ -000234a0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -000234b0: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ -000234c0: 5269 6e67 2c20 6973 2061 202a 6e6f 7465 Ring, is a *note │ │ │ │ -000234d0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ -000234e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000234f0: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00023500: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00023510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023550: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00023560: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00023570: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00023580: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00023590: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -000235a0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -000235b0: 7061 636b 6167 6573 2f0a 4368 6172 6163 packages/.Charac │ │ │ │ -000235c0: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -000235d0: 6d32 3a32 3035 303a 302e 0a1f 0a46 696c m2:2050:0....Fil │ │ │ │ -000235e0: 653a 2043 6861 7261 6374 6572 6973 7469 e: Characteristi │ │ │ │ -000235f0: 6343 6c61 7373 6573 2e69 6e66 6f2c 204e cClasses.info, N │ │ │ │ -00023600: 6f64 653a 204f 7574 7075 742c 204e 6578 ode: Output, Nex │ │ │ │ -00023610: 743a 2070 726f 6261 6269 6c69 7374 6963 t: probabilistic │ │ │ │ -00023620: 2061 6c67 6f72 6974 686d 2c20 5072 6576 algorithm, Prev │ │ │ │ -00023630: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ -00023640: 5269 6e67 2c20 5570 3a20 546f 700a 0a4f Ring, Up: Top..O │ │ │ │ -00023650: 7574 7075 740a 2a2a 2a2a 2a2a 0a0a 4465 utput.******..De │ │ │ │ -00023660: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00023670: 3d3d 3d3d 3d0a 0a54 6865 206f 7074 696f =====..The optio │ │ │ │ -00023680: 6e20 4f75 7470 7574 2069 7320 6f6e 6c79 n Output is only │ │ │ │ -00023690: 2075 7365 6420 6279 2074 6865 2063 6f6d used by the com │ │ │ │ -000236a0: 6d61 6e64 7320 2a6e 6f74 6520 4353 4d3a mands *note CSM: │ │ │ │ -000236b0: 2043 534d 2c2c 202a 6e6f 7465 2053 6567 CSM,, *note Seg │ │ │ │ -000236c0: 7265 3a0a 5365 6772 652c 2c20 2a6e 6f74 re:.Segre,, *not │ │ │ │ -000236d0: 6520 4368 6572 6e3a 2043 6865 726e 2c20 e Chern: Chern, │ │ │ │ -000236e0: 616e 6420 2a6e 6f74 6520 4575 6c65 723a and *note Euler: │ │ │ │ -000236f0: 2045 756c 6572 2c20 746f 2073 7065 6369 Euler, to speci │ │ │ │ -00023700: 6679 2074 6865 2074 7970 6520 6f66 0a6f fy the type of.o │ │ │ │ -00023710: 7574 7075 7420 746f 2062 6520 7265 7475 utput to be retu │ │ │ │ -00023720: 726e 6564 2074 6f20 7468 6520 7573 6564 rned to the used │ │ │ │ -00023730: 2e20 5468 6973 206f 7074 696f 6e20 7769 . This option wi │ │ │ │ -00023740: 6c6c 2062 6520 6967 6e6f 7265 6420 7768 ll be ignored wh │ │ │ │ -00023750: 656e 2075 7365 6420 7769 7468 0a2a 6e6f en used with.*no │ │ │ │ -00023760: 7465 2043 6f6d 704d 6574 686f 643a 2043 te CompMethod: C │ │ │ │ -00023770: 6f6d 704d 6574 686f 642c 2050 6e52 6573 ompMethod, PnRes │ │ │ │ -00023780: 6964 7561 6c20 6f72 2062 6572 7469 6e69 idual or bertini │ │ │ │ -00023790: 2e20 5468 6520 6f70 7469 6f6e 2077 696c . The option wil │ │ │ │ -000237a0: 6c20 616c 736f 2062 650a 6967 6e6f 7265 l also be.ignore │ │ │ │ -000237b0: 2077 6865 6e20 2a6e 6f74 6520 4d65 7468 when *note Meth │ │ │ │ -000237c0: 6f64 3a20 4d65 7468 6f64 2c3d 3e44 6972 od: Method,=>Dir │ │ │ │ -000237d0: 6563 7443 6f6d 706c 6574 6549 6e74 2069 ectCompleteInt i │ │ │ │ -000237e0: 7320 7573 6564 2e20 5468 6520 6465 6661 s used. The defa │ │ │ │ -000237f0: 756c 740a 6f75 7470 7574 2066 6f72 2061 ult.output for a │ │ │ │ -00023800: 6c6c 2074 6865 7365 206d 6574 686f 6473 ll these methods │ │ │ │ -00023810: 2069 7320 4368 6f77 5269 6e67 456c 656c is ChowRingElel │ │ │ │ -00023820: 6d65 6e74 2077 6869 6368 2077 696c 6c20 ment which will │ │ │ │ -00023830: 7265 7475 726e 2061 6e20 656c 656d 656e return an elemen │ │ │ │ -00023840: 740a 6f66 2074 6865 2061 7070 726f 7072 t.of the appropr │ │ │ │ -00023850: 6961 7465 2043 686f 7720 7269 6e67 2e20 iate Chow ring. │ │ │ │ -00023860: 416c 6c20 6d65 7468 6f64 7320 616c 736f All methods also │ │ │ │ -00023870: 2068 6176 6520 616e 206f 7074 696f 6e20 have an option │ │ │ │ -00023880: 4861 7368 466f 726d 2077 6869 6368 0a72 HashForm which.r │ │ │ │ -00023890: 6574 7572 6e73 2061 6464 6974 696f 6e61 eturns additiona │ │ │ │ -000238a0: 6c20 696e 666f 726d 6174 696f 6e20 636f l information co │ │ │ │ -000238b0: 6d70 7574 6564 2062 7920 7468 6520 6d65 mputed by the me │ │ │ │ -000238c0: 7468 6f64 7320 6475 7269 6e67 2074 6865 thods during the │ │ │ │ -000238d0: 6972 2073 7461 6e64 6172 640a 6f70 6572 ir standard.oper │ │ │ │ -000238e0: 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ation...+------- │ │ │ │ -000238f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023930: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5220 ------+.|i1 : R │ │ │ │ -00023940: 3d20 5a5a 2f33 3237 3439 5b78 5f30 2e2e = ZZ/32749[x_0.. │ │ │ │ -00023950: 785f 365d 2020 2020 2020 2020 2020 2020 x_6] │ │ │ │ +000232e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000232f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023330: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ +00023340: 6f20 7573 6520 4d75 6c74 6950 726f 6a43 o use MultiProjC │ │ │ │ +00023350: 6f6f 7264 5269 6e67 3a0a 3d3d 3d3d 3d3d oordRing:.====== │ │ │ │ +00023360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00023370: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +00023380: 4d75 6c74 6950 726f 6a43 6f6f 7264 5269 MultiProjCoordRi │ │ │ │ +00023390: 6e67 284c 6973 7429 220a 2020 2a20 224d ng(List)". * "M │ │ │ │ +000233a0: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +000233b0: 6728 5269 6e67 2c4c 6973 7429 220a 2020 g(Ring,List)". │ │ │ │ +000233c0: 2a20 224d 756c 7469 5072 6f6a 436f 6f72 * "MultiProjCoor │ │ │ │ +000233d0: 6452 696e 6728 5269 6e67 2c53 796d 626f dRing(Ring,Symbo │ │ │ │ +000233e0: 6c2c 4c69 7374 2922 0a20 202a 2022 4d75 l,List)". * "Mu │ │ │ │ +000233f0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ +00023400: 2853 796d 626f 6c2c 4c69 7374 2922 0a0a (Symbol,List)".. │ │ │ │ +00023410: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00023420: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00023430: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00023440: 7420 2a6e 6f74 6520 4d75 6c74 6950 726f t *note MultiPro │ │ │ │ +00023450: 6a43 6f6f 7264 5269 6e67 3a20 4d75 6c74 jCoordRing: Mult │ │ │ │ +00023460: 6950 726f 6a43 6f6f 7264 5269 6e67 2c20 iProjCoordRing, │ │ │ │ +00023470: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +00023480: 640a 6675 6e63 7469 6f6e 3a20 284d 6163 d.function: (Mac │ │ │ │ +00023490: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +000234a0: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +000234b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00023500: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00023510: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00023520: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00023530: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00023540: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00023550: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00023560: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ +00023570: 6963 436c 6173 7365 732e 6d32 3a32 3035 icClasses.m2:205 │ │ │ │ +00023580: 303a 302e 0a1f 0a46 696c 653a 2043 6861 0:0....File: Cha │ │ │ │ +00023590: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +000235a0: 6573 2e69 6e66 6f2c 204e 6f64 653a 204f es.info, Node: O │ │ │ │ +000235b0: 7574 7075 742c 204e 6578 743a 2070 726f utput, Next: pro │ │ │ │ +000235c0: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ +000235d0: 6974 686d 2c20 5072 6576 3a20 4d75 6c74 ithm, Prev: Mult │ │ │ │ +000235e0: 6950 726f 6a43 6f6f 7264 5269 6e67 2c20 iProjCoordRing, │ │ │ │ +000235f0: 5570 3a20 546f 700a 0a4f 7574 7075 740a Up: Top..Output. │ │ │ │ +00023600: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00023610: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00023620: 0a54 6865 206f 7074 696f 6e20 4f75 7470 .The option Outp │ │ │ │ +00023630: 7574 2069 7320 6f6e 6c79 2075 7365 6420 ut is only used │ │ │ │ +00023640: 6279 2074 6865 2063 6f6d 6d61 6e64 7320 by the commands │ │ │ │ +00023650: 2a6e 6f74 6520 4353 4d3a 2043 534d 2c2c *note CSM: CSM,, │ │ │ │ +00023660: 202a 6e6f 7465 2053 6567 7265 3a0a 5365 *note Segre:.Se │ │ │ │ +00023670: 6772 652c 2c20 2a6e 6f74 6520 4368 6572 gre,, *note Cher │ │ │ │ +00023680: 6e3a 2043 6865 726e 2c20 616e 6420 2a6e n: Chern, and *n │ │ │ │ +00023690: 6f74 6520 4575 6c65 723a 2045 756c 6572 ote Euler: Euler │ │ │ │ +000236a0: 2c20 746f 2073 7065 6369 6679 2074 6865 , to specify the │ │ │ │ +000236b0: 2074 7970 6520 6f66 0a6f 7574 7075 7420 type of.output │ │ │ │ +000236c0: 746f 2062 6520 7265 7475 726e 6564 2074 to be returned t │ │ │ │ +000236d0: 6f20 7468 6520 7573 6564 2e20 5468 6973 o the used. This │ │ │ │ +000236e0: 206f 7074 696f 6e20 7769 6c6c 2062 6520 option will be │ │ │ │ +000236f0: 6967 6e6f 7265 6420 7768 656e 2075 7365 ignored when use │ │ │ │ +00023700: 6420 7769 7468 0a2a 6e6f 7465 2043 6f6d d with.*note Com │ │ │ │ +00023710: 704d 6574 686f 643a 2043 6f6d 704d 6574 pMethod: CompMet │ │ │ │ +00023720: 686f 642c 2050 6e52 6573 6964 7561 6c20 hod, PnResidual │ │ │ │ +00023730: 6f72 2062 6572 7469 6e69 2e20 5468 6520 or bertini. The │ │ │ │ +00023740: 6f70 7469 6f6e 2077 696c 6c20 616c 736f option will also │ │ │ │ +00023750: 2062 650a 6967 6e6f 7265 2077 6865 6e20 be.ignore when │ │ │ │ +00023760: 2a6e 6f74 6520 4d65 7468 6f64 3a20 4d65 *note Method: Me │ │ │ │ +00023770: 7468 6f64 2c3d 3e44 6972 6563 7443 6f6d thod,=>DirectCom │ │ │ │ +00023780: 706c 6574 6549 6e74 2069 7320 7573 6564 pleteInt is used │ │ │ │ +00023790: 2e20 5468 6520 6465 6661 756c 740a 6f75 . The default.ou │ │ │ │ +000237a0: 7470 7574 2066 6f72 2061 6c6c 2074 6865 tput for all the │ │ │ │ +000237b0: 7365 206d 6574 686f 6473 2069 7320 4368 se methods is Ch │ │ │ │ +000237c0: 6f77 5269 6e67 456c 656c 6d65 6e74 2077 owRingElelment w │ │ │ │ +000237d0: 6869 6368 2077 696c 6c20 7265 7475 726e hich will return │ │ │ │ +000237e0: 2061 6e20 656c 656d 656e 740a 6f66 2074 an element.of t │ │ │ │ +000237f0: 6865 2061 7070 726f 7072 6961 7465 2043 he appropriate C │ │ │ │ +00023800: 686f 7720 7269 6e67 2e20 416c 6c20 6d65 how ring. All me │ │ │ │ +00023810: 7468 6f64 7320 616c 736f 2068 6176 6520 thods also have │ │ │ │ +00023820: 616e 206f 7074 696f 6e20 4861 7368 466f an option HashFo │ │ │ │ +00023830: 726d 2077 6869 6368 0a72 6574 7572 6e73 rm which.returns │ │ │ │ +00023840: 2061 6464 6974 696f 6e61 6c20 696e 666f additional info │ │ │ │ +00023850: 726d 6174 696f 6e20 636f 6d70 7574 6564 rmation computed │ │ │ │ +00023860: 2062 7920 7468 6520 6d65 7468 6f64 7320 by the methods │ │ │ │ +00023870: 6475 7269 6e67 2074 6865 6972 2073 7461 during their sta │ │ │ │ +00023880: 6e64 6172 640a 6f70 6572 6174 696f 6e2e ndard.operation. │ │ │ │ +00023890: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +000238a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238e0: 2b0a 7c69 3120 3a20 5220 3d20 5a5a 2f33 +.|i1 : R = ZZ/3 │ │ │ │ +000238f0: 3237 3439 5b78 5f30 2e2e 785f 365d 2020 2749[x_0..x_6] │ │ │ │ +00023900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023930: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023980: 7c0a 7c6f 3120 3d20 5220 2020 2020 2020 |.|o1 = R │ │ │ │ 00023990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 7c0a 7c6f 3120 3d20 5220 |.|o1 = R │ │ │ │ +000239d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000239e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a20: 7c0a 7c6f 3120 3a20 506f 6c79 6e6f 6d69 |.|o1 : Polynomi │ │ │ │ +00023a30: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ 00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a70: 2020 2020 2020 7c0a 7c6f 3120 3a20 506f |.|o1 : Po │ │ │ │ -00023a80: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ -00023a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ac0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00023ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b10: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 413d ------+.|i2 : A= │ │ │ │ -00023b20: 4368 6f77 5269 6e67 2852 2920 2020 2020 ChowRing(R) │ │ │ │ +00023a70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00023a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ac0: 2b0a 7c69 3220 3a20 413d 4368 6f77 5269 +.|i2 : A=ChowRi │ │ │ │ +00023ad0: 6e67 2852 2920 2020 2020 2020 2020 2020 ng(R) │ │ │ │ +00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023b60: 7c0a 7c6f 3220 3d20 4120 2020 2020 2020 |.|o2 = A │ │ │ │ 00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bb0: 2020 2020 2020 7c0a 7c6f 3220 3d20 4120 |.|o2 = A │ │ │ │ +00023bb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c00: 7c0a 7c6f 3220 3a20 5175 6f74 6965 6e74 |.|o2 : Quotient │ │ │ │ +00023c10: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c50: 2020 2020 2020 7c0a 7c6f 3220 3a20 5175 |.|o2 : Qu │ │ │ │ -00023c60: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ -00023c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ca0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cf0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 493d ------+.|i3 : I= │ │ │ │ -00023d00: 6964 6561 6c28 7261 6e64 6f6d 2832 2c52 ideal(random(2,R │ │ │ │ -00023d10: 292c 525f 302a 525f 312a 525f 362d 525f ),R_0*R_1*R_6-R_ │ │ │ │ -00023d20: 305e 3329 3b20 2020 2020 2020 2020 2020 0^3); │ │ │ │ +00023c50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00023c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ca0: 2b0a 7c69 3320 3a20 493d 6964 6561 6c28 +.|i3 : I=ideal( │ │ │ │ +00023cb0: 7261 6e64 6f6d 2832 2c52 292c 525f 302a random(2,R),R_0* │ │ │ │ +00023cc0: 525f 312a 525f 362d 525f 305e 3329 3b20 R_1*R_6-R_0^3); │ │ │ │ +00023cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023cf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d40: 7c0a 7c6f 3320 3a20 4964 6561 6c20 6f66 |.|o3 : Ideal of │ │ │ │ +00023d50: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d90: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ -00023da0: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ -00023db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023de0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00023df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e30: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6373 ------+.|i4 : cs │ │ │ │ -00023e40: 6d3d 4353 4d28 412c 492c 4f75 7470 7574 m=CSM(A,I,Output │ │ │ │ -00023e50: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ +00023d90: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00023da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023de0: 2b0a 7c69 3420 3a20 6373 6d3d 4353 4d28 +.|i4 : csm=CSM( │ │ │ │ +00023df0: 412c 492c 4f75 7470 7574 3d3e 4861 7368 A,I,Output=>Hash │ │ │ │ +00023e00: 466f 726d 2920 2020 2020 2020 2020 2020 Form) │ │ │ │ +00023e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e80: 7c0a 7c6f 3420 3d20 4d75 7461 626c 6548 |.|o4 = MutableH │ │ │ │ +00023e90: 6173 6854 6162 6c65 7b2e 2e2e 342e 2e2e ashTable{...4... │ │ │ │ +00023ea0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00023eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ed0: 2020 2020 2020 7c0a 7c6f 3420 3d20 4d75 |.|o4 = Mu │ │ │ │ -00023ee0: 7461 626c 6548 6173 6854 6162 6c65 7b2e tableHashTable{. │ │ │ │ -00023ef0: 2e2e 342e 2e2e 7d20 2020 2020 2020 2020 ..4...} │ │ │ │ +00023ed0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00023f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f20: 7c0a 7c6f 3420 3a20 4d75 7461 626c 6548 |.|o4 : MutableH │ │ │ │ +00023f30: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ 00023f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f70: 2020 2020 2020 7c0a 7c6f 3420 3a20 4d75 |.|o4 : Mu │ │ │ │ -00023f80: 7461 626c 6548 6173 6854 6162 6c65 2020 tableHashTable │ │ │ │ -00023f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00023fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024010: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7065 ------+.|i5 : pe │ │ │ │ -00024020: 656b 2063 736d 2020 2020 2020 2020 2020 ek csm │ │ │ │ +00023f70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00023f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023fc0: 2b0a 7c69 3520 3a20 7065 656b 2063 736d +.|i5 : peek csm │ │ │ │ +00023fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024010: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024060: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000240c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240d0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -000240e0: 2020 3520 2020 2020 2034 2020 2020 2020 5 4 │ │ │ │ -000240f0: 3320 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ -00024100: 2020 2020 2020 7c0a 7c6f 3520 3d20 4d75 |.|o5 = Mu │ │ │ │ -00024110: 7461 626c 6548 6173 6854 6162 6c65 7b7b tableHashTable{{ │ │ │ │ -00024120: 302c 2031 7d20 3d3e 2032 6820 202b 2032 0, 1} => 2h + 2 │ │ │ │ -00024130: 3368 2020 2b20 3332 6820 202b 2033 3368 3h + 32h + 33h │ │ │ │ -00024140: 2020 2b20 3138 6820 202b 2035 6820 7d20 + 18h + 5h } │ │ │ │ -00024150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024080: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00024090: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +000240a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000240b0: 7c0a 7c6f 3520 3d20 4d75 7461 626c 6548 |.|o5 = MutableH │ │ │ │ +000240c0: 6173 6854 6162 6c65 7b7b 302c 2031 7d20 ashTable{{0, 1} │ │ │ │ +000240d0: 3d3e 2032 6820 202b 2032 3368 2020 2b20 => 2h + 23h + │ │ │ │ +000240e0: 3332 6820 202b 2033 3368 2020 2b20 3138 32h + 33h + 18 │ │ │ │ +000240f0: 6820 202b 2035 6820 7d20 2020 2020 2020 h + 5h } │ │ │ │ +00024100: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024120: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024130: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024140: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00024150: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024170: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00024180: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024190: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ -000241a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000241b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000241c0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -000241d0: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -000241e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000241f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024200: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024210: 534d 203d 3e20 3130 6820 202b 2031 3268 SM => 10h + 12h │ │ │ │ -00024220: 2020 2b20 3232 6820 202b 2031 3668 2020 + 22h + 16h │ │ │ │ -00024230: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00024240: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024170: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00024180: 2034 2020 2020 2020 3320 2020 2020 3220 4 3 2 │ │ │ │ +00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000241a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000241b0: 2020 2020 2020 2020 2043 534d 203d 3e20 CSM => │ │ │ │ +000241c0: 3130 6820 202b 2031 3268 2020 2b20 3232 10h + 12h + 22 │ │ │ │ +000241d0: 6820 202b 2031 3668 2020 2b20 3668 2020 h + 16h + 6h │ │ │ │ +000241e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000241f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024210: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024220: 2031 2020 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ +00024230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024240: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024260: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00024270: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00024280: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00024290: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000242a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000242b0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -000242c0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -000242d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000242e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000242f0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00024300: 307d 203d 3e20 3668 2020 2b20 3138 6820 0} => 6h + 18h │ │ │ │ -00024310: 202b 2032 3668 2020 2b20 3232 6820 202b + 26h + 22h + │ │ │ │ -00024320: 2031 3068 2020 2b20 3268 2020 2020 2020 10h + 2h │ │ │ │ -00024330: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024260: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00024270: 3420 2020 2020 2033 2020 2020 2020 3220 4 3 2 │ │ │ │ +00024280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024290: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000242a0: 2020 2020 2020 2020 207b 307d 203d 3e20 {0} => │ │ │ │ +000242b0: 3668 2020 2b20 3138 6820 202b 2032 3668 6h + 18h + 26h │ │ │ │ +000242c0: 2020 2b20 3232 6820 202b 2031 3068 2020 + 22h + 10h │ │ │ │ +000242d0: 2b20 3268 2020 2020 2020 2020 2020 2020 + 2h │ │ │ │ +000242e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000242f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024300: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00024310: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00024320: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00024330: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024350: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024360: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024370: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024380: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000243a0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -000243b0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -000243c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000243d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000243e0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000243f0: 317d 203d 3e20 3668 2020 2b20 3137 6820 1} => 6h + 17h │ │ │ │ -00024400: 202b 2032 3868 2020 2b20 3237 6820 202b + 28h + 27h + │ │ │ │ -00024410: 2031 3468 2020 2b20 3368 2020 2020 2020 14h + 3h │ │ │ │ -00024420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024440: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024450: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024460: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024470: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00024480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244c0: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 4353 ------+.|i6 : CS │ │ │ │ -000244d0: 4d28 412c 6964 6561 6c20 495f 3029 3d3d M(A,ideal I_0)== │ │ │ │ -000244e0: 6373 6d23 7b30 7d20 2020 2020 2020 2020 csm#{0} │ │ │ │ +00024350: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00024360: 3420 2020 2020 2033 2020 2020 2020 3220 4 3 2 │ │ │ │ +00024370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024380: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024390: 2020 2020 2020 2020 207b 317d 203d 3e20 {1} => │ │ │ │ +000243a0: 3668 2020 2b20 3137 6820 202b 2032 3868 6h + 17h + 28h │ │ │ │ +000243b0: 2020 2b20 3237 6820 202b 2031 3468 2020 + 27h + 14h │ │ │ │ +000243c0: 2b20 3368 2020 2020 2020 2020 2020 2020 + 3h │ │ │ │ +000243d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000243e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000243f0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00024400: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00024410: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00024420: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00024430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024470: 2b0a 7c69 3620 3a20 4353 4d28 412c 6964 +.|i6 : CSM(A,id │ │ │ │ +00024480: 6561 6c20 495f 3029 3d3d 6373 6d23 7b30 eal I_0)==csm#{0 │ │ │ │ +00024490: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000244a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000244d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024510: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024510: 7c0a 7c6f 3620 3d20 7472 7565 2020 2020 |.|o6 = true │ │ │ │ 00024520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024560: 2020 2020 2020 7c0a 7c6f 3620 3d20 7472 |.|o6 = tr │ │ │ │ -00024570: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -00024580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000245c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024600: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 4353 ------+.|i7 : CS │ │ │ │ -00024610: 4d28 412c 6964 6561 6c28 495f 302a 495f M(A,ideal(I_0*I_ │ │ │ │ -00024620: 3129 293d 3d63 736d 237b 302c 317d 2020 1))==csm#{0,1} │ │ │ │ +00024560: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00024570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245b0: 2b0a 7c69 3720 3a20 4353 4d28 412c 6964 +.|i7 : CSM(A,id │ │ │ │ +000245c0: 6561 6c28 495f 302a 495f 3129 293d 3d63 eal(I_0*I_1))==c │ │ │ │ +000245d0: 736d 237b 302c 317d 2020 2020 2020 2020 sm#{0,1} │ │ │ │ +000245e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024600: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024650: 7c0a 7c6f 3720 3d20 7472 7565 2020 2020 |.|o7 = true │ │ │ │ 00024660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246a0: 2020 2020 2020 7c0a 7c6f 3720 3d20 7472 |.|o7 = tr │ │ │ │ -000246b0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -000246c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00024700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024740: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 633d ------+.|i8 : c= │ │ │ │ -00024750: 4368 6572 6e28 2049 2c20 4f75 7470 7574 Chern( I, Output │ │ │ │ -00024760: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ +000246a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000246b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246f0: 2b0a 7c69 3820 3a20 633d 4368 6572 6e28 +.|i8 : c=Chern( │ │ │ │ +00024700: 2049 2c20 4f75 7470 7574 3d3e 4861 7368 I, Output=>Hash │ │ │ │ +00024710: 466f 726d 2920 2020 2020 2020 2020 2020 Form) │ │ │ │ +00024720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024740: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024790: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024790: 7c0a 7c6f 3820 3d20 4d75 7461 626c 6548 |.|o8 = MutableH │ │ │ │ +000247a0: 6173 6854 6162 6c65 7b2e 2e2e 362e 2e2e ashTable{...6... │ │ │ │ +000247b0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000247c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247e0: 2020 2020 2020 7c0a 7c6f 3820 3d20 4d75 |.|o8 = Mu │ │ │ │ -000247f0: 7461 626c 6548 6173 6854 6162 6c65 7b2e tableHashTable{. │ │ │ │ -00024800: 2e2e 362e 2e2e 7d20 2020 2020 2020 2020 ..6...} │ │ │ │ +000247e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024830: 7c0a 7c6f 3820 3a20 4d75 7461 626c 6548 |.|o8 : MutableH │ │ │ │ +00024840: 6173 6854 6162 6c65 2020 2020 2020 2020 ashTable │ │ │ │ 00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024880: 2020 2020 2020 7c0a 7c6f 3820 3a20 4d75 |.|o8 : Mu │ │ │ │ -00024890: 7461 626c 6548 6173 6854 6162 6c65 2020 tableHashTable │ │ │ │ -000248a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000248e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024920: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 7065 ------+.|i9 : pe │ │ │ │ -00024930: 656b 2063 2020 2020 2020 2020 2020 2020 ek c │ │ │ │ +00024880: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00024890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248d0: 2b0a 7c69 3920 3a20 7065 656b 2063 2020 +.|i9 : peek c │ │ │ │ +000248e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024920: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024970: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000249d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249f0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -00024a00: 2020 2034 2020 2020 2020 2035 2020 2020 4 5 │ │ │ │ -00024a10: 2020 2036 2020 7c0a 7c6f 3920 3d20 4d75 6 |.|o9 = Mu │ │ │ │ -00024a20: 7461 626c 6548 6173 6854 6162 6c65 7b53 tableHashTable{S │ │ │ │ -00024a30: 6567 7265 4c69 7374 203d 3e20 7b30 2c20 egreList => {0, │ │ │ │ -00024a40: 302c 2036 6820 2c20 2d33 3068 202c 2031 0, 6h , -30h , 1 │ │ │ │ -00024a50: 3134 6820 2c20 2d33 3930 6820 2c20 3132 14h , -390h , 12 │ │ │ │ -00024a60: 3636 6820 7d7d 7c0a 7c20 2020 2020 2020 66h }}|.| │ │ │ │ +00024990: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000249a0: 2020 2020 2020 3320 2020 2020 2034 2020 3 4 │ │ │ │ +000249b0: 2020 2020 2035 2020 2020 2020 2036 2020 5 6 │ │ │ │ +000249c0: 7c0a 7c6f 3920 3d20 4d75 7461 626c 6548 |.|o9 = MutableH │ │ │ │ +000249d0: 6173 6854 6162 6c65 7b53 6567 7265 4c69 ashTable{SegreLi │ │ │ │ +000249e0: 7374 203d 3e20 7b30 2c20 302c 2036 6820 st => {0, 0, 6h │ │ │ │ +000249f0: 2c20 2d33 3068 202c 2031 3134 6820 2c20 , -30h , 114h , │ │ │ │ +00024a00: 2d33 3930 6820 2c20 3132 3636 6820 7d7d -390h , 1266h }} │ │ │ │ +00024a10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a30: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00024a40: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024a50: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ +00024a60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a90: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024aa0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024ab0: 2020 2031 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ -00024ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ae0: 2020 2032 2020 2020 3320 2020 2034 2020 2 3 4 │ │ │ │ -00024af0: 2020 3520 2020 2036 2020 2020 2020 2020 5 6 │ │ │ │ -00024b00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024b10: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ -00024b20: 6c69 7374 203d 3e20 7b31 2c20 3368 202c list => {1, 3h , │ │ │ │ -00024b30: 2033 6820 2c20 3368 202c 2033 6820 2c20 3h , 3h , 3h , │ │ │ │ -00024b40: 3368 202c 2033 6820 7d20 2020 2020 2020 3h , 3h } │ │ │ │ -00024b50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024a80: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00024a90: 2020 3320 2020 2034 2020 2020 3520 2020 3 4 5 │ │ │ │ +00024aa0: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00024ab0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ac0: 2020 2020 2020 2020 2047 6c69 7374 203d Glist = │ │ │ │ +00024ad0: 3e20 7b31 2c20 3368 202c 2033 6820 2c20 > {1, 3h , 3h , │ │ │ │ +00024ae0: 3368 202c 2033 6820 2c20 3368 202c 2033 3h , 3h , 3h , 3 │ │ │ │ +00024af0: 6820 7d20 2020 2020 2020 2020 2020 2020 h } │ │ │ │ +00024b00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b20: 2020 2020 2020 2020 3120 2020 2031 2020 1 1 │ │ │ │ +00024b30: 2020 3120 2020 2031 2020 2020 3120 2020 1 1 1 │ │ │ │ +00024b40: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024b50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b70: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00024b80: 2020 2031 2020 2020 3120 2020 2031 2020 1 1 1 │ │ │ │ -00024b90: 2020 3120 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ -00024ba0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bc0: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ -00024bd0: 2020 2020 2035 2020 2020 2020 2034 2020 5 4 │ │ │ │ -00024be0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00024bf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024c00: 2020 2020 2020 2020 2020 2020 2020 2053 S │ │ │ │ -00024c10: 6567 7265 203d 3e20 3132 3636 6820 202d egre => 1266h - │ │ │ │ -00024c20: 2033 3930 6820 202b 2031 3134 6820 202d 390h + 114h - │ │ │ │ -00024c30: 2033 3068 2020 2b20 3668 2020 2020 2020 30h + 6h │ │ │ │ -00024c40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024b70: 2020 2020 2020 2036 2020 2020 2020 2035 6 5 │ │ │ │ +00024b80: 2020 2020 2020 2034 2020 2020 2020 3320 4 3 │ │ │ │ +00024b90: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00024ba0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024bb0: 2020 2020 2020 2020 2053 6567 7265 203d Segre = │ │ │ │ +00024bc0: 3e20 3132 3636 6820 202d 2033 3930 6820 > 1266h - 390h │ │ │ │ +00024bd0: 202b 2031 3134 6820 202d 2033 3068 2020 + 114h - 30h │ │ │ │ +00024be0: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ +00024bf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c10: 2020 2020 2020 2031 2020 2020 2020 2031 1 1 │ │ │ │ +00024c20: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +00024c30: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00024c40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c60: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00024c70: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ -00024c80: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024c90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024cb0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -00024cc0: 2020 3520 2020 2020 2034 2020 2020 2020 5 4 │ │ │ │ -00024cd0: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ -00024ce0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024cf0: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024d00: 6865 726e 203d 3e20 3930 6820 202d 2031 hern => 90h - 1 │ │ │ │ -00024d10: 3268 2020 2b20 3330 6820 202b 2031 3268 2h + 30h + 12h │ │ │ │ -00024d20: 2020 2b20 3668 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00024d30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024c60: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00024c70: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +00024c80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00024c90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ca0: 2020 2020 2020 2020 2043 6865 726e 203d Chern = │ │ │ │ +00024cb0: 3e20 3930 6820 202d 2031 3268 2020 2b20 > 90h - 12h + │ │ │ │ +00024cc0: 3330 6820 202b 2031 3268 2020 2b20 3668 30h + 12h + 6h │ │ │ │ +00024cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ce0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d00: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024d10: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024d20: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024d30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d50: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00024d60: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024d70: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ -00024d80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024da0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -00024db0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -00024dc0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00024dd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024de0: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024df0: 4620 3d3e 2039 3068 2020 2d20 3132 6820 F => 90h - 12h │ │ │ │ -00024e00: 202b 2033 3068 2020 2b20 3132 6820 202b + 30h + 12h + │ │ │ │ -00024e10: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00024e20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024d50: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00024d60: 3420 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ +00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024d90: 2020 2020 2020 2020 2043 4620 3d3e 2039 CF => 9 │ │ │ │ +00024da0: 3068 2020 2d20 3132 6820 202b 2033 3068 0h - 12h + 30h │ │ │ │ +00024db0: 2020 2b20 3132 6820 202b 2036 6820 2020 + 12h + 6h │ │ │ │ +00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024dd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024df0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00024e00: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e40: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024e50: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024e60: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024e70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e90: 2020 2020 2020 3620 2020 2020 3520 2020 6 5 │ │ │ │ -00024ea0: 2020 3420 2020 2020 3320 2020 2020 3220 4 3 2 │ │ │ │ -00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024ed0: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ -00024ee0: 203d 3e20 3368 2020 2b20 3368 2020 2b20 => 3h + 3h + │ │ │ │ -00024ef0: 3368 2020 2b20 3368 2020 2b20 3368 2020 3h + 3h + 3h │ │ │ │ -00024f00: 2b20 3368 2020 2b20 3120 2020 2020 2020 + 3h + 1 │ │ │ │ -00024f10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f30: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ -00024f40: 2020 3120 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ -00024f50: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00024f60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00024f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fb0: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2073 ------+.|i10 : s │ │ │ │ -00024fc0: 6567 3d53 6567 7265 2820 492c 204f 7574 eg=Segre( I, Out │ │ │ │ -00024fd0: 7075 743d 3e48 6173 6846 6f72 6d29 2020 put=>HashForm) │ │ │ │ +00024e40: 3620 2020 2020 3520 2020 2020 3420 2020 6 5 4 │ │ │ │ +00024e50: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024e80: 2020 2020 2020 2020 2047 203d 3e20 3368 G => 3h │ │ │ │ +00024e90: 2020 2b20 3368 2020 2b20 3368 2020 2b20 + 3h + 3h + │ │ │ │ +00024ea0: 3368 2020 2b20 3368 2020 2b20 3368 2020 3h + 3h + 3h │ │ │ │ +00024eb0: 2b20 3120 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00024ec0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ee0: 3120 2020 2020 3120 2020 2020 3120 2020 1 1 1 │ │ │ │ +00024ef0: 2020 3120 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ +00024f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024f10: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00024f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f60: 2b0a 7c69 3130 203a 2073 6567 3d53 6567 +.|i10 : seg=Seg │ │ │ │ +00024f70: 7265 2820 492c 204f 7574 7075 743d 3e48 re( I, Output=>H │ │ │ │ +00024f80: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ +00024f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025000: 7c0a 7c6f 3130 203d 204d 7574 6162 6c65 |.|o10 = Mutable │ │ │ │ +00025010: 4861 7368 5461 626c 657b 2e2e 2e34 2e2e HashTable{...4.. │ │ │ │ +00025020: 2e7d 2020 2020 2020 2020 2020 2020 2020 .} │ │ │ │ 00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025050: 2020 2020 2020 7c0a 7c6f 3130 203d 204d |.|o10 = M │ │ │ │ -00025060: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025070: 2e2e 2e34 2e2e 2e7d 2020 2020 2020 2020 ...4...} │ │ │ │ +00025050: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250a0: 7c0a 7c6f 3130 203a 204d 7574 6162 6c65 |.|o10 : Mutable │ │ │ │ +000250b0: 4861 7368 5461 626c 6520 2020 2020 2020 HashTable │ │ │ │ 000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250f0: 2020 2020 2020 7c0a 7c6f 3130 203a 204d |.|o10 : M │ │ │ │ -00025100: 7574 6162 6c65 4861 7368 5461 626c 6520 utableHashTable │ │ │ │ -00025110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025140: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00025150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025190: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2070 ------+.|i11 : p │ │ │ │ -000251a0: 6565 6b20 7365 6720 2020 2020 2020 2020 eek seg │ │ │ │ +000250f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00025100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025140: 2b0a 7c69 3131 203a 2070 6565 6b20 7365 +.|i11 : peek se │ │ │ │ +00025150: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00025160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025190: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000251e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025260: 2020 2020 2020 3220 2020 2020 2033 2020 2 3 │ │ │ │ -00025270: 2020 2020 3420 2020 2020 2020 3520 2020 4 5 │ │ │ │ -00025280: 2020 2020 2020 7c0a 7c6f 3131 203d 204d |.|o11 = M │ │ │ │ -00025290: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -000252a0: 5365 6772 654c 6973 7420 3d3e 207b 302c SegreList => {0, │ │ │ │ -000252b0: 2030 2c20 3668 202c 202d 3330 6820 2c20 0, 6h , -30h , │ │ │ │ -000252c0: 3131 3468 202c 202d 3339 3068 202c 2020 114h , -390h , │ │ │ │ -000252d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025210: 3220 2020 2020 2033 2020 2020 2020 3420 2 3 4 │ │ │ │ +00025220: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +00025230: 7c0a 7c6f 3131 203d 204d 7574 6162 6c65 |.|o11 = Mutable │ │ │ │ +00025240: 4861 7368 5461 626c 657b 5365 6772 654c HashTable{SegreL │ │ │ │ +00025250: 6973 7420 3d3e 207b 302c 2030 2c20 3668 ist => {0, 0, 6h │ │ │ │ +00025260: 202c 202d 3330 6820 2c20 3131 3468 202c , -30h , 114h , │ │ │ │ +00025270: 202d 3339 3068 202c 2020 2020 2020 2020 -390h , │ │ │ │ +00025280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252b0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +000252c0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +000252d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000252e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025300: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00025310: 2020 2020 3120 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00025320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025350: 2020 2020 3220 2020 2033 2020 2020 3420 2 3 4 │ │ │ │ -00025360: 2020 2035 2020 2020 3620 2020 2020 2020 5 6 │ │ │ │ -00025370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000252f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00025300: 2020 2033 2020 2020 3420 2020 2035 2020 3 4 5 │ │ │ │ +00025310: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00025320: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025330: 2020 2020 2020 2020 2020 476c 6973 7420 Glist │ │ │ │ +00025340: 3d3e 207b 312c 2033 6820 2c20 3368 202c => {1, 3h , 3h , │ │ │ │ +00025350: 2033 6820 2c20 3368 202c 2033 6820 2c20 3h , 3h , 3h , │ │ │ │ +00025360: 3368 207d 2020 2020 2020 2020 2020 2020 3h } │ │ │ │ +00025370: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025390: 476c 6973 7420 3d3e 207b 312c 2033 6820 Glist => {1, 3h │ │ │ │ -000253a0: 2c20 3368 202c 2033 6820 2c20 3368 202c , 3h , 3h , 3h , │ │ │ │ -000253b0: 2033 6820 2c20 3368 207d 2020 2020 2020 3h , 3h } │ │ │ │ -000253c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025390: 2020 2020 2020 2020 2031 2020 2020 3120 1 1 │ │ │ │ +000253a0: 2020 2031 2020 2020 3120 2020 2031 2020 1 1 1 │ │ │ │ +000253b0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000253c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253e0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000253f0: 2020 2020 3120 2020 2031 2020 2020 3120 1 1 1 │ │ │ │ -00025400: 2020 2031 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00025410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025430: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -00025440: 2020 2020 2020 3520 2020 2020 2020 3420 5 4 │ │ │ │ -00025450: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00025460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000253e0: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ +000253f0: 3520 2020 2020 2020 3420 2020 2020 2033 5 4 3 │ │ │ │ +00025400: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00025410: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025420: 2020 2020 2020 2020 2020 5365 6772 6520 Segre │ │ │ │ +00025430: 3d3e 2031 3236 3668 2020 2d20 3339 3068 => 1266h - 390h │ │ │ │ +00025440: 2020 2b20 3131 3468 2020 2d20 3330 6820 + 114h - 30h │ │ │ │ +00025450: 202b 2036 6820 2020 2020 2020 2020 2020 + 6h │ │ │ │ +00025460: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025480: 5365 6772 6520 3d3e 2031 3236 3668 2020 Segre => 1266h │ │ │ │ -00025490: 2d20 3339 3068 2020 2b20 3131 3468 2020 - 390h + 114h │ │ │ │ -000254a0: 2d20 3330 6820 202b 2036 6820 2020 2020 - 30h + 6h │ │ │ │ -000254b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025480: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00025490: 3120 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +000254a0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +000254b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254d0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -000254e0: 2020 2020 2020 3120 2020 2020 2020 3120 1 1 │ │ │ │ -000254f0: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025500: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025520: 2020 2020 2020 2036 2020 2020 2035 2020 6 5 │ │ │ │ -00025530: 2020 2034 2020 2020 2033 2020 2020 2032 4 3 2 │ │ │ │ -00025540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000254d0: 2036 2020 2020 2035 2020 2020 2034 2020 6 5 4 │ │ │ │ +000254e0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ +000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025500: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025510: 2020 2020 2020 2020 2020 4720 3d3e 2033 G => 3 │ │ │ │ +00025520: 6820 202b 2033 6820 202b 2033 6820 202b h + 3h + 3h + │ │ │ │ +00025530: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ +00025540: 202b 2031 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00025550: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025570: 4720 3d3e 2033 6820 202b 2033 6820 202b G => 3h + 3h + │ │ │ │ -00025580: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ -00025590: 202b 2033 6820 202b 2031 2020 2020 2020 + 3h + 1 │ │ │ │ -000255a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000255b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255c0: 2020 2020 2020 2031 2020 2020 2031 2020 1 1 │ │ │ │ -000255d0: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -000255e0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -000255f0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ -00025600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025640: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3620 ------|.| 6 │ │ │ │ +00025570: 2031 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00025580: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +00025590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000255a0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000255b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255f0: 7c0a 7c20 2020 2020 3620 2020 2020 2020 |.| 6 │ │ │ │ +00025600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025640: 7c0a 7c31 3236 3668 207d 7d20 2020 2020 |.|1266h }} │ │ │ │ 00025650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025690: 2020 2020 2020 7c0a 7c31 3236 3668 207d |.|1266h } │ │ │ │ -000256a0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00025690: 7c0a 7c20 2020 2020 3120 2020 2020 2020 |.| 1 │ │ │ │ +000256a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256e0: 2020 2020 2020 7c0a 7c20 2020 2020 3120 |.| 1 │ │ │ │ -000256f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025730: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00025740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025780: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2065 ------+.|i12 : e │ │ │ │ -00025790: 753d 4575 6c65 7228 2049 2c20 4f75 7470 u=Euler( I, Outp │ │ │ │ -000257a0: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +000256e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000256f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025730: 2b0a 7c69 3132 203a 2065 753d 4575 6c65 +.|i12 : eu=Eule │ │ │ │ +00025740: 7228 2049 2c20 4f75 7470 7574 3d3e 4861 r( I, Output=>Ha │ │ │ │ +00025750: 7368 466f 726d 2920 2020 2020 2020 2020 shForm) │ │ │ │ +00025760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025780: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000257a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000257e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000257d0: 7c0a 7c6f 3132 203d 204d 7574 6162 6c65 |.|o12 = Mutable │ │ │ │ +000257e0: 4861 7368 5461 626c 657b 2e2e 2e35 2e2e HashTable{...5.. │ │ │ │ +000257f0: 2e7d 2020 2020 2020 2020 2020 2020 2020 .} │ │ │ │ 00025800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025820: 2020 2020 2020 7c0a 7c6f 3132 203d 204d |.|o12 = M │ │ │ │ -00025830: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025840: 2e2e 2e35 2e2e 2e7d 2020 2020 2020 2020 ...5...} │ │ │ │ +00025820: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025870: 7c0a 7c6f 3132 203a 204d 7574 6162 6c65 |.|o12 : Mutable │ │ │ │ +00025880: 4861 7368 5461 626c 6520 2020 2020 2020 HashTable │ │ │ │ 00025890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258c0: 2020 2020 2020 7c0a 7c6f 3132 203a 204d |.|o12 : M │ │ │ │ -000258d0: 7574 6162 6c65 4861 7368 5461 626c 6520 utableHashTable │ │ │ │ -000258e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025910: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00025920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025960: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2070 ------+.|i13 : p │ │ │ │ -00025970: 6565 6b20 6575 2020 2020 2020 2020 2020 eek eu │ │ │ │ +000258c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000258d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000258e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000258f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025910: 2b0a 7c69 3133 203a 2070 6565 6b20 6575 +.|i13 : peek eu │ │ │ │ +00025920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025960: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000259c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259b0: 7c0a 7c6f 3133 203d 204d 7574 6162 6c65 |.|o13 = Mutable │ │ │ │ +000259c0: 4861 7368 5461 626c 657b 4575 6c65 7220 HashTable{Euler │ │ │ │ +000259d0: 3d3e 2031 3020 2020 2020 2020 2020 2020 => 10 │ │ │ │ 000259e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a00: 2020 2020 2020 7c0a 7c6f 3133 203d 204d |.|o13 = M │ │ │ │ -00025a10: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025a20: 4575 6c65 7220 3d3e 2031 3020 2020 2020 Euler => 10 │ │ │ │ -00025a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a40: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ -00025a50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a70: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ -00025a80: 2020 2035 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ -00025a90: 2033 2020 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -00025aa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000259f0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +00025a00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025a20: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ +00025a30: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ +00025a40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025a50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025a60: 2020 2020 2020 2020 2020 7b30 2c20 317d {0, 1} │ │ │ │ +00025a70: 203d 3e20 3268 2020 2b20 3233 6820 202b => 2h + 23h + │ │ │ │ +00025a80: 2033 3268 2020 2b20 3333 6820 202b 2031 32h + 33h + 1 │ │ │ │ +00025a90: 3868 2020 2b20 3568 2020 2020 2020 2020 8h + 5h │ │ │ │ +00025aa0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ac0: 7b30 2c20 317d 203d 3e20 3268 2020 2b20 {0, 1} => 2h + │ │ │ │ -00025ad0: 3233 6820 202b 2033 3268 2020 2b20 3333 23h + 32h + 33 │ │ │ │ -00025ae0: 6820 202b 2031 3868 2020 2b20 3568 2020 h + 18h + 5h │ │ │ │ -00025af0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025ac0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00025ad0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025ae0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00025af0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b10: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00025b20: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00025b30: 2031 2020 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ -00025b40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b60: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -00025b70: 2035 2020 2020 2020 3420 2020 2020 2033 5 4 3 │ │ │ │ -00025b80: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025b10: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00025b20: 2020 3420 2020 2020 2033 2020 2020 2032 4 3 2 │ │ │ │ +00025b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025b50: 2020 2020 2020 2020 2020 4353 4d20 3d3e CSM => │ │ │ │ +00025b60: 2031 3068 2020 2b20 3132 6820 202b 2032 10h + 12h + 2 │ │ │ │ +00025b70: 3268 2020 2b20 3136 6820 202b 2036 6820 2h + 16h + 6h │ │ │ │ +00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025bb0: 4353 4d20 3d3e 2031 3068 2020 2b20 3132 CSM => 10h + 12 │ │ │ │ -00025bc0: 6820 202b 2032 3268 2020 2b20 3136 6820 h + 22h + 16h │ │ │ │ -00025bd0: 202b 2036 6820 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00025be0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025bb0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025bc0: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025be0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c00: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00025c10: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -00025c20: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -00025c30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c50: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -00025c60: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -00025c70: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025c80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025c00: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00025c10: 2034 2020 2020 2020 3320 2020 2020 2032 4 3 2 │ │ │ │ +00025c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025c30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025c40: 2020 2020 2020 2020 2020 7b30 7d20 3d3e {0} => │ │ │ │ +00025c50: 2036 6820 202b 2031 3868 2020 2b20 3236 6h + 18h + 26 │ │ │ │ +00025c60: 6820 202b 2032 3268 2020 2b20 3130 6820 h + 22h + 10h │ │ │ │ +00025c70: 202b 2032 6820 2020 2020 2020 2020 2020 + 2h │ │ │ │ +00025c80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ca0: 7b30 7d20 3d3e 2036 6820 202b 2031 3868 {0} => 6h + 18h │ │ │ │ -00025cb0: 2020 2b20 3236 6820 202b 2032 3268 2020 + 26h + 22h │ │ │ │ -00025cc0: 2b20 3130 6820 202b 2032 6820 2020 2020 + 10h + 2h │ │ │ │ -00025cd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025ca0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00025cb0: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00025cc0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00025cd0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cf0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00025d00: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00025d10: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025d20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d40: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -00025d50: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -00025d60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025d70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025cf0: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00025d00: 2034 2020 2020 2020 3320 2020 2020 2032 4 3 2 │ │ │ │ +00025d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025d30: 2020 2020 2020 2020 2020 7b31 7d20 3d3e {1} => │ │ │ │ +00025d40: 2036 6820 202b 2031 3768 2020 2b20 3238 6h + 17h + 28 │ │ │ │ +00025d50: 6820 202b 2032 3768 2020 2b20 3134 6820 h + 27h + 14h │ │ │ │ +00025d60: 202b 2033 6820 2020 2020 2020 2020 2020 + 3h │ │ │ │ +00025d70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d90: 7b31 7d20 3d3e 2036 6820 202b 2031 3768 {1} => 6h + 17h │ │ │ │ -00025da0: 2020 2b20 3238 6820 202b 2032 3768 2020 + 28h + 27h │ │ │ │ -00025db0: 2b20 3134 6820 202b 2033 6820 2020 2020 + 14h + 3h │ │ │ │ -00025dc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025de0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00025df0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00025e00: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025e10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00025e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e60: 2d2d 2d2d 2d2d 2b0a 0a54 6865 204d 7574 ------+..The Mut │ │ │ │ -00025e70: 6162 6c65 4861 7368 5461 626c 6520 7265 ableHashTable re │ │ │ │ -00025e80: 7475 726e 6564 2077 6974 6820 7468 6520 turned with the │ │ │ │ -00025e90: 6f70 7469 6f6e 204f 7574 7075 743d 3e48 option Output=>H │ │ │ │ -00025ea0: 6173 6846 6f72 6d20 636f 6e74 6169 6e73 ashForm contains │ │ │ │ -00025eb0: 0a64 6966 6665 7265 6e74 2069 6e66 6f72 .different infor │ │ │ │ -00025ec0: 6d61 7469 6f6e 2064 6570 656e 6469 6e67 mation depending │ │ │ │ -00025ed0: 206f 6e20 7468 6520 6d65 7468 6f64 2077 on the method w │ │ │ │ -00025ee0: 6974 6820 7768 6963 6820 6974 2069 7320 ith which it is │ │ │ │ -00025ef0: 7573 6564 2e0a 4164 6469 7469 6f6e 616c used..Additional │ │ │ │ -00025f00: 6c79 2069 6620 7468 6520 6f70 7469 6f6e ly if the option │ │ │ │ -00025f10: 202a 6e6f 7465 2049 6e70 7574 4973 536d *note InputIsSm │ │ │ │ -00025f20: 6f6f 7468 3a20 496e 7075 7449 7353 6d6f ooth: InputIsSmo │ │ │ │ -00025f30: 6f74 682c 2069 7320 7573 6564 2074 6865 oth, is used the │ │ │ │ -00025f40: 6e20 7468 650a 6861 7368 2074 6162 6c65 n the.hash table │ │ │ │ -00025f50: 2072 6574 7572 6e65 6420 6279 2074 6865 returned by the │ │ │ │ -00025f60: 206d 6574 686f 6473 2045 756c 6572 2061 methods Euler a │ │ │ │ -00025f70: 6e64 2043 534d 2077 696c 6c20 6265 2074 nd CSM will be t │ │ │ │ -00025f80: 6865 2073 616d 6520 6173 2074 6861 740a he same as that. │ │ │ │ -00025f90: 7265 7475 726e 6564 2062 7920 4368 6572 returned by Cher │ │ │ │ -00025fa0: 6e2e 2057 6865 6e20 7573 696e 6720 7468 n. When using th │ │ │ │ -00025fb0: 6520 2a6e 6f74 6520 4353 4d3a 2043 534d e *note CSM: CSM │ │ │ │ -00025fc0: 2c20 2063 6f6d 6d61 6e64 2069 6e20 7468 , command in th │ │ │ │ -00025fd0: 6520 6465 6661 756c 740a 636f 6e66 6967 e default.config │ │ │ │ -00025fe0: 7572 6174 696f 6e73 2028 7468 6174 2069 urations (that i │ │ │ │ -00025ff0: 7320 2a6e 6f74 6520 4d65 7468 6f64 3a20 s *note Method: │ │ │ │ -00026000: 4d65 7468 6f64 2c3d 3e49 6e63 6c75 7369 Method,=>Inclusi │ │ │ │ -00026010: 6f6e 4578 636c 7573 696f 6e2c 202a 6e6f onExclusion, *no │ │ │ │ -00026020: 7465 0a43 6f6d 704d 6574 686f 643a 2043 te.CompMethod: C │ │ │ │ -00026030: 6f6d 704d 6574 686f 642c 3d3e 5072 6f6a ompMethod,=>Proj │ │ │ │ -00026040: 6563 7469 7665 4465 6772 6565 2920 7468 ectiveDegree) th │ │ │ │ -00026050: 6572 6520 6973 2074 6865 2061 6464 6974 ere is the addit │ │ │ │ -00026060: 696f 6e61 6c20 6f70 7469 6f6e 2074 6f0a ional option to. │ │ │ │ -00026070: 7365 7420 4f75 7470 7574 3d3e 4861 7368 set Output=>Hash │ │ │ │ -00026080: 466f 726d 584c 2e20 5468 6973 2072 6574 FormXL. This ret │ │ │ │ -00026090: 7572 6e73 2061 6c6c 2074 6865 2075 7375 urns all the usu │ │ │ │ -000260a0: 616c 2069 6e66 6f72 6d61 7469 6f6e 2074 al information t │ │ │ │ -000260b0: 6861 740a 4f75 7470 7574 3d3e 4861 7368 hat.Output=>Hash │ │ │ │ -000260c0: 466f 726d 2077 6f75 6c64 2066 6f72 2074 Form would for t │ │ │ │ -000260d0: 6869 7320 636f 6e66 6967 7572 6174 696f his configuratio │ │ │ │ -000260e0: 6e20 7769 7468 2074 6865 2061 6464 6974 n with the addit │ │ │ │ -000260f0: 696f 6e20 6f66 2074 6865 0a70 726f 6a65 ion of the.proje │ │ │ │ -00026100: 6374 6976 6520 6465 6772 6565 7320 616e ctive degrees an │ │ │ │ -00026110: 6420 5365 6772 6520 636c 6173 7365 7320 d Segre classes │ │ │ │ -00026120: 6f66 2073 696e 6775 6c61 7269 7479 2073 of singularity s │ │ │ │ -00026130: 7562 7363 6865 6d65 7320 6765 6e65 7261 ubschemes genera │ │ │ │ -00026140: 7465 6420 6279 2074 6865 0a68 7970 6572 ted by the.hyper │ │ │ │ -00026150: 7375 7266 6163 6573 2063 6f6e 7369 6465 surfaces conside │ │ │ │ -00026160: 7265 6420 696e 2074 6865 2069 6e63 6c75 red in the inclu │ │ │ │ -00026170: 7369 6f6e 2f65 7863 6c75 7369 6f6e 2070 sion/exclusion p │ │ │ │ -00026180: 726f 6365 6475 7265 2c20 7468 6174 2069 rocedure, that i │ │ │ │ -00026190: 7320 696e 0a66 696e 6469 6e67 2074 6865 s in.finding the │ │ │ │ -000261a0: 2043 534d 2063 6c61 7373 206f 6620 616c CSM class of al │ │ │ │ -000261b0: 6c20 6879 7065 7273 7572 6661 6365 7320 l hypersurfaces │ │ │ │ -000261c0: 6765 6e65 7261 7465 6420 6279 2074 616b generated by tak │ │ │ │ -000261d0: 696e 6720 6120 7072 6f64 7563 7420 6f66 ing a product of │ │ │ │ -000261e0: 0a73 6f6d 6520 7375 6273 6574 7320 6f66 .some subsets of │ │ │ │ -000261f0: 2067 656e 6572 6174 6f72 7320 6f66 2074 generators of t │ │ │ │ -00026200: 6865 2069 6e70 7574 2069 6465 616c 2e20 he input ideal. │ │ │ │ -00026210: 4e6f 7465 2074 6861 742c 2073 696e 6365 Note that, since │ │ │ │ -00026220: 2074 6865 2043 534d 2063 6c61 7373 0a6f the CSM class.o │ │ │ │ -00026230: 6620 6120 7375 6273 6368 656d 6520 6571 f a subscheme eq │ │ │ │ -00026240: 7561 6c73 2074 6865 2043 534d 2063 6c61 uals the CSM cla │ │ │ │ -00026250: 7373 206f 6620 6974 7320 7265 6475 6365 ss of its reduce │ │ │ │ -00026260: 6420 7363 6865 6d65 2c20 6f72 2065 7175 d scheme, or equ │ │ │ │ -00026270: 6976 616c 656e 746c 7920 666f 720a 7573 ivalently for.us │ │ │ │ -00026280: 2074 6865 2043 534d 2063 6c61 7373 2063 the CSM class c │ │ │ │ -00026290: 6f72 7265 7370 6f6e 6469 6e67 2074 6f20 orresponding to │ │ │ │ -000262a0: 616e 2069 6465 616c 2049 2065 7175 616c an ideal I equal │ │ │ │ -000262b0: 7320 7468 6520 4353 4d20 636c 6173 7320 s the CSM class │ │ │ │ -000262c0: 6f66 2074 6865 0a72 6164 6963 616c 206f of the.radical o │ │ │ │ -000262d0: 6620 492c 2074 6865 6e20 696e 7465 726e f I, then intern │ │ │ │ -000262e0: 616c 6c79 2077 6520 616c 7761 7973 2077 ally we always w │ │ │ │ -000262f0: 6f72 6b20 7769 7468 2072 6164 6963 616c ork with radical │ │ │ │ -00026300: 2069 6465 616c 7320 2866 6f72 0a65 6666 ideals (for.eff │ │ │ │ -00026310: 6963 6965 6e63 7920 7265 6173 6f6e 7329 iciency reasons) │ │ │ │ -00026320: 2e20 4865 6e63 6520 7468 6520 7072 6f6a . Hence the proj │ │ │ │ -00026330: 6563 7469 7665 2064 6567 7265 6573 2061 ective degrees a │ │ │ │ -00026340: 6e64 2053 6567 7265 2063 6c61 7373 6573 nd Segre classes │ │ │ │ -00026350: 2063 6f6d 7075 7465 640a 696e 7465 726e computed.intern │ │ │ │ -00026360: 616c 6c79 2077 696c 6c20 6265 2074 686f ally will be tho │ │ │ │ -00026370: 7365 206f 6620 7468 6520 7261 6469 6361 se of the radica │ │ │ │ -00026380: 6c20 6f66 2061 6e20 6964 6561 6c20 6465 l of an ideal de │ │ │ │ -00026390: 6669 6e65 6420 6279 2061 2070 6f6c 796e fined by a polyn │ │ │ │ -000263a0: 6f6d 6961 6c0a 7768 6963 6820 6973 2061 omial.which is a │ │ │ │ -000263b0: 2070 726f 6475 6374 206f 6620 736f 6d65 product of some │ │ │ │ -000263c0: 2073 7562 7365 7420 6f66 2074 6865 2067 subset of the g │ │ │ │ -000263d0: 656e 6572 6174 6f72 732e 2057 6520 696c enerators. We il │ │ │ │ -000263e0: 6c75 7374 7261 7465 2074 6869 7320 7769 lustrate this wi │ │ │ │ -000263f0: 7468 2061 6e0a 6578 616d 706c 6520 6265 th an.example be │ │ │ │ -00026400: 6c6f 772e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d low...+--------- │ │ │ │ -00026410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026450: 2d2d 2d2d 2b0a 7c69 3134 203a 2063 736d ----+.|i14 : csm │ │ │ │ -00026460: 584c 6861 7368 3d43 534d 2841 2c49 2c4f XLhash=CSM(A,I,O │ │ │ │ -00026470: 7574 7075 743d 3e48 6173 6846 6f72 6d58 utput=>HashFormX │ │ │ │ -00026480: 4c29 2020 2020 2020 2020 2020 2020 2020 L) │ │ │ │ -00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000264b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d90: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00025da0: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00025db0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00025dc0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00025dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025e10: 2b0a 0a54 6865 204d 7574 6162 6c65 4861 +..The MutableHa │ │ │ │ +00025e20: 7368 5461 626c 6520 7265 7475 726e 6564 shTable returned │ │ │ │ +00025e30: 2077 6974 6820 7468 6520 6f70 7469 6f6e with the option │ │ │ │ +00025e40: 204f 7574 7075 743d 3e48 6173 6846 6f72 Output=>HashFor │ │ │ │ +00025e50: 6d20 636f 6e74 6169 6e73 0a64 6966 6665 m contains.diffe │ │ │ │ +00025e60: 7265 6e74 2069 6e66 6f72 6d61 7469 6f6e rent information │ │ │ │ +00025e70: 2064 6570 656e 6469 6e67 206f 6e20 7468 depending on th │ │ │ │ +00025e80: 6520 6d65 7468 6f64 2077 6974 6820 7768 e method with wh │ │ │ │ +00025e90: 6963 6820 6974 2069 7320 7573 6564 2e0a ich it is used.. │ │ │ │ +00025ea0: 4164 6469 7469 6f6e 616c 6c79 2069 6620 Additionally if │ │ │ │ +00025eb0: 7468 6520 6f70 7469 6f6e 202a 6e6f 7465 the option *note │ │ │ │ +00025ec0: 2049 6e70 7574 4973 536d 6f6f 7468 3a20 InputIsSmooth: │ │ │ │ +00025ed0: 496e 7075 7449 7353 6d6f 6f74 682c 2069 InputIsSmooth, i │ │ │ │ +00025ee0: 7320 7573 6564 2074 6865 6e20 7468 650a s used then the. │ │ │ │ +00025ef0: 6861 7368 2074 6162 6c65 2072 6574 7572 hash table retur │ │ │ │ +00025f00: 6e65 6420 6279 2074 6865 206d 6574 686f ned by the metho │ │ │ │ +00025f10: 6473 2045 756c 6572 2061 6e64 2043 534d ds Euler and CSM │ │ │ │ +00025f20: 2077 696c 6c20 6265 2074 6865 2073 616d will be the sam │ │ │ │ +00025f30: 6520 6173 2074 6861 740a 7265 7475 726e e as that.return │ │ │ │ +00025f40: 6564 2062 7920 4368 6572 6e2e 2057 6865 ed by Chern. Whe │ │ │ │ +00025f50: 6e20 7573 696e 6720 7468 6520 2a6e 6f74 n using the *not │ │ │ │ +00025f60: 6520 4353 4d3a 2043 534d 2c20 2063 6f6d e CSM: CSM, com │ │ │ │ +00025f70: 6d61 6e64 2069 6e20 7468 6520 6465 6661 mand in the defa │ │ │ │ +00025f80: 756c 740a 636f 6e66 6967 7572 6174 696f ult.configuratio │ │ │ │ +00025f90: 6e73 2028 7468 6174 2069 7320 2a6e 6f74 ns (that is *not │ │ │ │ +00025fa0: 6520 4d65 7468 6f64 3a20 4d65 7468 6f64 e Method: Method │ │ │ │ +00025fb0: 2c3d 3e49 6e63 6c75 7369 6f6e 4578 636c ,=>InclusionExcl │ │ │ │ +00025fc0: 7573 696f 6e2c 202a 6e6f 7465 0a43 6f6d usion, *note.Com │ │ │ │ +00025fd0: 704d 6574 686f 643a 2043 6f6d 704d 6574 pMethod: CompMet │ │ │ │ +00025fe0: 686f 642c 3d3e 5072 6f6a 6563 7469 7665 hod,=>Projective │ │ │ │ +00025ff0: 4465 6772 6565 2920 7468 6572 6520 6973 Degree) there is │ │ │ │ +00026000: 2074 6865 2061 6464 6974 696f 6e61 6c20 the additional │ │ │ │ +00026010: 6f70 7469 6f6e 2074 6f0a 7365 7420 4f75 option to.set Ou │ │ │ │ +00026020: 7470 7574 3d3e 4861 7368 466f 726d 584c tput=>HashFormXL │ │ │ │ +00026030: 2e20 5468 6973 2072 6574 7572 6e73 2061 . This returns a │ │ │ │ +00026040: 6c6c 2074 6865 2075 7375 616c 2069 6e66 ll the usual inf │ │ │ │ +00026050: 6f72 6d61 7469 6f6e 2074 6861 740a 4f75 ormation that.Ou │ │ │ │ +00026060: 7470 7574 3d3e 4861 7368 466f 726d 2077 tput=>HashForm w │ │ │ │ +00026070: 6f75 6c64 2066 6f72 2074 6869 7320 636f ould for this co │ │ │ │ +00026080: 6e66 6967 7572 6174 696f 6e20 7769 7468 nfiguration with │ │ │ │ +00026090: 2074 6865 2061 6464 6974 696f 6e20 6f66 the addition of │ │ │ │ +000260a0: 2074 6865 0a70 726f 6a65 6374 6976 6520 the.projective │ │ │ │ +000260b0: 6465 6772 6565 7320 616e 6420 5365 6772 degrees and Segr │ │ │ │ +000260c0: 6520 636c 6173 7365 7320 6f66 2073 696e e classes of sin │ │ │ │ +000260d0: 6775 6c61 7269 7479 2073 7562 7363 6865 gularity subsche │ │ │ │ +000260e0: 6d65 7320 6765 6e65 7261 7465 6420 6279 mes generated by │ │ │ │ +000260f0: 2074 6865 0a68 7970 6572 7375 7266 6163 the.hypersurfac │ │ │ │ +00026100: 6573 2063 6f6e 7369 6465 7265 6420 696e es considered in │ │ │ │ +00026110: 2074 6865 2069 6e63 6c75 7369 6f6e 2f65 the inclusion/e │ │ │ │ +00026120: 7863 6c75 7369 6f6e 2070 726f 6365 6475 xclusion procedu │ │ │ │ +00026130: 7265 2c20 7468 6174 2069 7320 696e 0a66 re, that is in.f │ │ │ │ +00026140: 696e 6469 6e67 2074 6865 2043 534d 2063 inding the CSM c │ │ │ │ +00026150: 6c61 7373 206f 6620 616c 6c20 6879 7065 lass of all hype │ │ │ │ +00026160: 7273 7572 6661 6365 7320 6765 6e65 7261 rsurfaces genera │ │ │ │ +00026170: 7465 6420 6279 2074 616b 696e 6720 6120 ted by taking a │ │ │ │ +00026180: 7072 6f64 7563 7420 6f66 0a73 6f6d 6520 product of.some │ │ │ │ +00026190: 7375 6273 6574 7320 6f66 2067 656e 6572 subsets of gener │ │ │ │ +000261a0: 6174 6f72 7320 6f66 2074 6865 2069 6e70 ators of the inp │ │ │ │ +000261b0: 7574 2069 6465 616c 2e20 4e6f 7465 2074 ut ideal. Note t │ │ │ │ +000261c0: 6861 742c 2073 696e 6365 2074 6865 2043 hat, since the C │ │ │ │ +000261d0: 534d 2063 6c61 7373 0a6f 6620 6120 7375 SM class.of a su │ │ │ │ +000261e0: 6273 6368 656d 6520 6571 7561 6c73 2074 bscheme equals t │ │ │ │ +000261f0: 6865 2043 534d 2063 6c61 7373 206f 6620 he CSM class of │ │ │ │ +00026200: 6974 7320 7265 6475 6365 6420 7363 6865 its reduced sche │ │ │ │ +00026210: 6d65 2c20 6f72 2065 7175 6976 616c 656e me, or equivalen │ │ │ │ +00026220: 746c 7920 666f 720a 7573 2074 6865 2043 tly for.us the C │ │ │ │ +00026230: 534d 2063 6c61 7373 2063 6f72 7265 7370 SM class corresp │ │ │ │ +00026240: 6f6e 6469 6e67 2074 6f20 616e 2069 6465 onding to an ide │ │ │ │ +00026250: 616c 2049 2065 7175 616c 7320 7468 6520 al I equals the │ │ │ │ +00026260: 4353 4d20 636c 6173 7320 6f66 2074 6865 CSM class of the │ │ │ │ +00026270: 0a72 6164 6963 616c 206f 6620 492c 2074 .radical of I, t │ │ │ │ +00026280: 6865 6e20 696e 7465 726e 616c 6c79 2077 hen internally w │ │ │ │ +00026290: 6520 616c 7761 7973 2077 6f72 6b20 7769 e always work wi │ │ │ │ +000262a0: 7468 2072 6164 6963 616c 2069 6465 616c th radical ideal │ │ │ │ +000262b0: 7320 2866 6f72 0a65 6666 6963 6965 6e63 s (for.efficienc │ │ │ │ +000262c0: 7920 7265 6173 6f6e 7329 2e20 4865 6e63 y reasons). Henc │ │ │ │ +000262d0: 6520 7468 6520 7072 6f6a 6563 7469 7665 e the projective │ │ │ │ +000262e0: 2064 6567 7265 6573 2061 6e64 2053 6567 degrees and Seg │ │ │ │ +000262f0: 7265 2063 6c61 7373 6573 2063 6f6d 7075 re classes compu │ │ │ │ +00026300: 7465 640a 696e 7465 726e 616c 6c79 2077 ted.internally w │ │ │ │ +00026310: 696c 6c20 6265 2074 686f 7365 206f 6620 ill be those of │ │ │ │ +00026320: 7468 6520 7261 6469 6361 6c20 6f66 2061 the radical of a │ │ │ │ +00026330: 6e20 6964 6561 6c20 6465 6669 6e65 6420 n ideal defined │ │ │ │ +00026340: 6279 2061 2070 6f6c 796e 6f6d 6961 6c0a by a polynomial. │ │ │ │ +00026350: 7768 6963 6820 6973 2061 2070 726f 6475 which is a produ │ │ │ │ +00026360: 6374 206f 6620 736f 6d65 2073 7562 7365 ct of some subse │ │ │ │ +00026370: 7420 6f66 2074 6865 2067 656e 6572 6174 t of the generat │ │ │ │ +00026380: 6f72 732e 2057 6520 696c 6c75 7374 7261 ors. We illustra │ │ │ │ +00026390: 7465 2074 6869 7320 7769 7468 2061 6e0a te this with an. │ │ │ │ +000263a0: 6578 616d 706c 6520 6265 6c6f 772e 0a0a example below... │ │ │ │ +000263b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000263c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00026400: 7c69 3134 203a 2063 736d 584c 6861 7368 |i14 : csmXLhash │ │ │ │ +00026410: 3d43 534d 2841 2c49 2c4f 7574 7075 743d =CSM(A,I,Output= │ │ │ │ +00026420: 3e48 6173 6846 6f72 6d58 4c29 2020 2020 >HashFormXL) │ │ │ │ +00026430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026450: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000264a0: 7c6f 3134 203d 204d 7574 6162 6c65 4861 |o14 = MutableHa │ │ │ │ +000264b0: 7368 5461 626c 657b 2e2e 2e31 302e 2e2e shTable{...10... │ │ │ │ +000264c0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000264d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264f0: 2020 2020 7c0a 7c6f 3134 203d 204d 7574 |.|o14 = Mut │ │ │ │ -00026500: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -00026510: 2e31 302e 2e2e 7d20 2020 2020 2020 2020 .10...} │ │ │ │ +000264e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000264f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026540: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026540: 7c6f 3134 203a 204d 7574 6162 6c65 4861 |o14 : MutableHa │ │ │ │ +00026550: 7368 5461 626c 6520 2020 2020 2020 2020 shTable │ │ │ │ 00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026590: 2020 2020 7c0a 7c6f 3134 203a 204d 7574 |.|o14 : Mut │ │ │ │ -000265a0: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -000265b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000265f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026630: 2d2d 2d2d 2b0a 7c69 3135 203a 2070 6565 ----+.|i15 : pee │ │ │ │ -00026640: 6b20 6373 6d58 4c68 6173 6820 2020 2020 k csmXLhash │ │ │ │ +00026580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026590: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000265a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000265e0: 7c69 3135 203a 2070 6565 6b20 6373 6d58 |i15 : peek csmX │ │ │ │ +000265f0: 4c68 6173 6820 2020 2020 2020 2020 2020 Lhash │ │ │ │ +00026600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026620: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026630: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026680: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026680: 7c6f 3135 203d 204d 7574 6162 6c65 4861 |o15 = MutableHa │ │ │ │ +00026690: 7368 5461 626c 657b 4728 4a61 636f 6269 shTable{G(Jacobi │ │ │ │ +000266a0: 616e 297b 307d 203d 3e20 3020 2020 2020 an){0} => 0 │ │ │ │ 000266b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266d0: 2020 2020 7c0a 7c6f 3135 203d 204d 7574 |.|o15 = Mut │ │ │ │ -000266e0: 6162 6c65 4861 7368 5461 626c 657b 4728 ableHashTable{G( │ │ │ │ -000266f0: 4a61 636f 6269 616e 297b 307d 203d 3e20 Jacobian){0} => │ │ │ │ -00026700: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00026710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026730: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -00026740: 6772 6528 4a61 636f 6269 616e 297b 307d gre(Jacobian){0} │ │ │ │ -00026750: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ -00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026770: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267a0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -000267b0: 2020 2035 2020 2020 2020 2034 2020 2020 5 4 │ │ │ │ -000267c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000267d0: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -000267e0: 6772 6528 4a61 636f 6269 616e 297b 302c gre(Jacobian){0, │ │ │ │ -000267f0: 2031 7d20 3d3e 2033 3930 6820 202d 2033 1} => 390h - 3 │ │ │ │ -00026800: 3836 6820 202b 2031 3530 6820 202d 2020 86h + 150h - │ │ │ │ -00026810: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000266c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000266d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000266e0: 2020 2020 2020 2020 5365 6772 6528 4a61 Segre(Ja │ │ │ │ +000266f0: 636f 6269 616e 297b 307d 203d 3e20 3020 cobian){0} => 0 │ │ │ │ +00026700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026750: 2020 2020 2036 2020 2020 2020 2035 2020 6 5 │ │ │ │ +00026760: 2020 2020 2034 2020 2020 2020 2020 7c0a 4 |. │ │ │ │ +00026770: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026780: 2020 2020 2020 2020 5365 6772 6528 4a61 Segre(Ja │ │ │ │ +00026790: 636f 6269 616e 297b 302c 2031 7d20 3d3e cobian){0, 1} => │ │ │ │ +000267a0: 2033 3930 6820 202d 2033 3836 6820 202b 390h - 386h + │ │ │ │ +000267b0: 2031 3530 6820 202d 2020 2020 2020 7c0a 150h - |. │ │ │ │ +000267c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000267d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267f0: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ +00026800: 2020 2020 2031 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00026810: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026840: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00026850: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026860: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026890: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -000268a0: 2035 2020 2020 2033 2020 2020 2032 2020 5 3 2 │ │ │ │ -000268b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000268c0: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -000268d0: 6772 6528 4a61 636f 6269 616e 297b 317d gre(Jacobian){1} │ │ │ │ -000268e0: 203d 3e20 2d20 3136 3068 2020 2b20 3332 => - 160h + 32 │ │ │ │ -000268f0: 6820 202d 2034 6820 202b 2032 6820 2020 h - 4h + 2h │ │ │ │ -00026900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026840: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00026850: 2033 2020 2020 2032 2020 2020 2020 7c0a 3 2 |. │ │ │ │ +00026860: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026870: 2020 2020 2020 2020 5365 6772 6528 4a61 Segre(Ja │ │ │ │ +00026880: 636f 6269 616e 297b 317d 203d 3e20 2d20 cobian){1} => - │ │ │ │ +00026890: 3136 3068 2020 2b20 3332 6820 202d 2034 160h + 32h - 4 │ │ │ │ +000268a0: 6820 202b 2032 6820 2020 2020 2020 7c0a h + 2h |. │ │ │ │ +000268b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000268c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268e0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +000268f0: 2031 2020 2020 2031 2020 2020 2020 7c0a 1 1 |. │ │ │ │ +00026900: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026930: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00026940: 2031 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ -00026950: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026980: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ -00026990: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -000269a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000269b0: 2020 2020 2020 2020 2020 2020 2020 4728 G( │ │ │ │ -000269c0: 4a61 636f 6269 616e 297b 302c 2031 7d20 Jacobian){0, 1} │ │ │ │ -000269d0: 3d3e 2031 3068 2020 2b20 3130 6820 202b => 10h + 10h + │ │ │ │ -000269e0: 2031 3068 2020 2b20 3130 6820 202b 2020 10h + 10h + │ │ │ │ -000269f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026930: 3620 2020 2020 2035 2020 2020 2020 3420 6 5 4 │ │ │ │ +00026940: 2020 2020 2033 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ +00026950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026960: 2020 2020 2020 2020 4728 4a61 636f 6269 G(Jacobi │ │ │ │ +00026970: 616e 297b 302c 2031 7d20 3d3e 2031 3068 an){0, 1} => 10h │ │ │ │ +00026980: 2020 2b20 3130 6820 202b 2031 3068 2020 + 10h + 10h │ │ │ │ +00026990: 2b20 3130 6820 202b 2020 2020 2020 7c0a + 10h + |. │ │ │ │ +000269a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000269b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269d0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +000269e0: 2020 2020 2031 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +000269f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a20: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00026a30: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026a40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a70: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026aa0: 2020 2020 2020 2020 2020 2020 2020 4728 G( │ │ │ │ -00026ab0: 4a61 636f 6269 616e 297b 317d 203d 3e20 Jacobian){1} => │ │ │ │ -00026ac0: 3268 2020 2b20 3268 2020 2b20 3120 2020 2h + 2h + 1 │ │ │ │ -00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026a10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00026a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026a50: 2020 2020 2020 2020 4728 4a61 636f 6269 G(Jacobi │ │ │ │ +00026a60: 616e 297b 317d 203d 3e20 3268 2020 2b20 an){1} => 2h + │ │ │ │ +00026a70: 3268 2020 2b20 3120 2020 2020 2020 2020 2h + 1 │ │ │ │ +00026a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026a90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ab0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00026ac0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00026ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026ae0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b10: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b50: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -00026b60: 2035 2020 2020 2020 3420 2020 2020 2033 5 4 3 │ │ │ │ -00026b70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00026b80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026b90: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ -00026ba0: 2c20 317d 203d 3e20 3268 2020 2b20 3233 , 1} => 2h + 23 │ │ │ │ -00026bb0: 6820 202b 2033 3268 2020 2b20 3333 6820 h + 32h + 33h │ │ │ │ -00026bc0: 202b 2031 3868 2020 2b20 3568 2020 2020 + 18h + 5h │ │ │ │ -00026bd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026b00: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00026b10: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ +00026b20: 3220 2020 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ +00026b30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026b40: 2020 2020 2020 2020 7b30 2c20 317d 203d {0, 1} = │ │ │ │ +00026b50: 3e20 3268 2020 2b20 3233 6820 202b 2033 > 2h + 23h + 3 │ │ │ │ +00026b60: 3268 2020 2b20 3333 6820 202b 2031 3868 2h + 33h + 18h │ │ │ │ +00026b70: 2020 2b20 3568 2020 2020 2020 2020 7c0a + 5h |. │ │ │ │ +00026b80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ba0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026bb0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026bc0: 3120 2020 2020 3120 2020 2020 2020 7c0a 1 1 |. │ │ │ │ +00026bd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bf0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00026c00: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -00026c10: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ -00026c20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c40: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -00026c50: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -00026c60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026c70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026c80: 2020 2020 2020 2020 2020 2020 2020 4353 CS │ │ │ │ -00026c90: 4d20 3d3e 2031 3068 2020 2b20 3132 6820 M => 10h + 12h │ │ │ │ -00026ca0: 202b 2032 3268 2020 2b20 3136 6820 202b + 22h + 16h + │ │ │ │ -00026cb0: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00026cc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026bf0: 2020 3620 2020 2020 2035 2020 2020 2020 6 5 │ │ │ │ +00026c00: 3420 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ +00026c10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026c20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026c30: 2020 2020 2020 2020 4353 4d20 3d3e 2031 CSM => 1 │ │ │ │ +00026c40: 3068 2020 2b20 3132 6820 202b 2032 3268 0h + 12h + 22h │ │ │ │ +00026c50: 2020 2b20 3136 6820 202b 2036 6820 2020 + 16h + 6h │ │ │ │ +00026c60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026c70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c90: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026ca0: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ +00026cb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026cc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ce0: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00026cf0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00026d00: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00026d10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d30: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026d40: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00026d50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026d70: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ -00026d80: 7d20 3d3e 2036 6820 202b 2031 3868 2020 } => 6h + 18h │ │ │ │ -00026d90: 2b20 3236 6820 202b 2032 3268 2020 2b20 + 26h + 22h + │ │ │ │ -00026da0: 3130 6820 202b 2032 6820 2020 2020 2020 10h + 2h │ │ │ │ -00026db0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026ce0: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00026cf0: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +00026d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026d10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026d20: 2020 2020 2020 2020 7b30 7d20 3d3e 2036 {0} => 6 │ │ │ │ +00026d30: 6820 202b 2031 3868 2020 2b20 3236 6820 h + 18h + 26h │ │ │ │ +00026d40: 202b 2032 3268 2020 2b20 3130 6820 202b + 22h + 10h + │ │ │ │ +00026d50: 2032 6820 2020 2020 2020 2020 2020 7c0a 2h |. │ │ │ │ +00026d60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d80: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00026d90: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00026da0: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00026db0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026dd0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026de0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026df0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026e00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e20: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026e30: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00026e40: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026e60: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -00026e70: 7d20 3d3e 2036 6820 202b 2031 3768 2020 } => 6h + 17h │ │ │ │ -00026e80: 2b20 3238 6820 202b 2032 3768 2020 2b20 + 28h + 27h + │ │ │ │ -00026e90: 3134 6820 202b 2033 6820 2020 2020 2020 14h + 3h │ │ │ │ -00026ea0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ec0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026ed0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026ee0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026ef0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ -00026f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f40: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -00026f50: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00026dd0: 2036 2020 2020 2020 3520 2020 2020 2034 6 5 4 │ │ │ │ +00026de0: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +00026df0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026e00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026e10: 2020 2020 2020 2020 7b31 7d20 3d3e 2036 {1} => 6 │ │ │ │ +00026e20: 6820 202b 2031 3768 2020 2b20 3238 6820 h + 17h + 28h │ │ │ │ +00026e30: 202b 2032 3768 2020 2b20 3134 6820 202b + 27h + 14h + │ │ │ │ +00026e40: 2033 6820 2020 2020 2020 2020 2020 7c0a 3h |. │ │ │ │ +00026e50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e70: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ +00026e80: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00026e90: 2020 2031 2020 2020 2020 2020 2020 7c0a 1 |. │ │ │ │ +00026ea0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00026ef0: 7c20 2020 2020 2020 2020 2020 2020 7d20 | } │ │ │ │ +00026f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026f40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00026f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026f80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026f90: 7c20 2020 3320 2020 2020 3220 2020 2020 | 3 2 │ │ │ │ 00026fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fe0: 2020 2020 7c0a 7c20 2020 3320 2020 2020 |.| 3 │ │ │ │ -00026ff0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026fd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00026fe0: 7c34 3268 2020 2b20 3868 2020 2020 2020 |42h + 8h │ │ │ │ +00026ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027030: 2020 2020 7c0a 7c34 3268 2020 2b20 3868 |.|42h + 8h │ │ │ │ +00027020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027030: 7c20 2020 3120 2020 2020 3120 2020 2020 | 1 1 │ │ │ │ 00027040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027080: 2020 2020 7c0a 7c20 2020 3120 2020 2020 |.| 1 │ │ │ │ -00027090: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00027070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000270c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000270d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000270e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00027130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027170: 7c20 2032 2020 2020 2020 2020 2020 2020 | 2 │ │ │ │ 00027180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271c0: 2020 2020 7c0a 7c20 2032 2020 2020 2020 |.| 2 │ │ │ │ +000271b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000271c0: 7c38 6820 202b 2034 6820 202b 2031 2020 |8h + 4h + 1 │ │ │ │ 000271d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027210: 2020 2020 7c0a 7c38 6820 202b 2034 6820 |.|8h + 4h │ │ │ │ -00027220: 202b 2031 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ +00027200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027210: 7c20 2031 2020 2020 2031 2020 2020 2020 | 1 1 │ │ │ │ +00027220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027260: 2020 2020 7c0a 7c20 2031 2020 2020 2031 |.| 1 1 │ │ │ │ -00027270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000272a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000272b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000272c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027300: 2d2d 2d2d 2b0a 7c69 3136 203a 204b 3d69 ----+.|i16 : K=i │ │ │ │ -00027310: 6465 616c 2049 5f30 2a49 5f31 3b20 2020 deal I_0*I_1; │ │ │ │ +00027250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027260: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00027270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000272a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000272b0: 7c69 3136 203a 204b 3d69 6465 616c 2049 |i16 : K=ideal I │ │ │ │ +000272c0: 5f30 2a49 5f31 3b20 2020 2020 2020 2020 _0*I_1; │ │ │ │ +000272d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027350: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00027360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027350: 7c6f 3136 203a 2049 6465 616c 206f 6620 |o16 : Ideal of │ │ │ │ +00027360: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00027370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273a0: 2020 2020 7c0a 7c6f 3136 203a 2049 6465 |.|o16 : Ide │ │ │ │ -000273b0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -000273c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00027400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027440: 2d2d 2d2d 2b0a 7c69 3137 203a 2043 534d ----+.|i17 : CSM │ │ │ │ -00027450: 2841 2c72 6164 6963 616c 204b 293d 3d43 (A,radical K)==C │ │ │ │ -00027460: 534d 2841 2c4b 2920 2020 2020 2020 2020 SM(A,K) │ │ │ │ +00027390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000273a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000273b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000273f0: 7c69 3137 203a 2043 534d 2841 2c72 6164 |i17 : CSM(A,rad │ │ │ │ +00027400: 6963 616c 204b 293d 3d43 534d 2841 2c4b ical K)==CSM(A,K │ │ │ │ +00027410: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00027420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027490: 7c6f 3137 203d 2074 7275 6520 2020 2020 |o17 = true │ │ │ │ 000274a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274e0: 2020 2020 7c0a 7c6f 3137 203d 2074 7275 |.|o17 = tru │ │ │ │ -000274f0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027530: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00027540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027580: 2d2d 2d2d 2b0a 7c69 3138 203a 204a 3d69 ----+.|i18 : J=i │ │ │ │ -00027590: 6465 616c 206a 6163 6f62 6961 6e20 7261 deal jacobian ra │ │ │ │ -000275a0: 6469 6361 6c20 4b3b 2020 2020 2020 2020 dical K; │ │ │ │ +000274d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000274e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000274f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00027530: 7c69 3138 203a 204a 3d69 6465 616c 206a |i18 : J=ideal j │ │ │ │ +00027540: 6163 6f62 6961 6e20 7261 6469 6361 6c20 acobian radical │ │ │ │ +00027550: 4b3b 2020 2020 2020 2020 2020 2020 2020 K; │ │ │ │ +00027560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027580: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000275a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000275e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000275c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000275d0: 7c6f 3138 203a 2049 6465 616c 206f 6620 |o18 : Ideal of │ │ │ │ +000275e0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 000275f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027620: 2020 2020 7c0a 7c6f 3138 203a 2049 6465 |.|o18 : Ide │ │ │ │ -00027630: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -00027640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027670: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00027680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276c0: 2d2d 2d2d 2b0a 7c69 3139 203a 2073 6567 ----+.|i19 : seg │ │ │ │ -000276d0: 4a3d 5365 6772 6528 412c 4a2c 4f75 7470 J=Segre(A,J,Outp │ │ │ │ -000276e0: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +00027610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027620: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00027630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00027670: 7c69 3139 203a 2073 6567 4a3d 5365 6772 |i19 : segJ=Segr │ │ │ │ +00027680: 6528 412c 4a2c 4f75 7470 7574 3d3e 4861 e(A,J,Output=>Ha │ │ │ │ +00027690: 7368 466f 726d 2920 2020 2020 2020 2020 shForm) │ │ │ │ +000276a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000276c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000276d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000276f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00027720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027710: 7c6f 3139 203d 204d 7574 6162 6c65 4861 |o19 = MutableHa │ │ │ │ +00027720: 7368 5461 626c 657b 2e2e 2e34 2e2e 2e7d shTable{...4...} │ │ │ │ 00027730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027760: 2020 2020 7c0a 7c6f 3139 203d 204d 7574 |.|o19 = Mut │ │ │ │ -00027770: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -00027780: 2e34 2e2e 2e7d 2020 2020 2020 2020 2020 .4...} │ │ │ │ +00027750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00027770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000277c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000277b0: 7c6f 3139 203a 204d 7574 6162 6c65 4861 |o19 : MutableHa │ │ │ │ +000277c0: 7368 5461 626c 6520 2020 2020 2020 2020 shTable │ │ │ │ 000277d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027800: 2020 2020 7c0a 7c6f 3139 203a 204d 7574 |.|o19 : Mut │ │ │ │ -00027810: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -00027820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027850: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00027860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000278a0: 2d2d 2d2d 2b0a 7c69 3230 203a 2063 736d ----+.|i20 : csm │ │ │ │ -000278b0: 584c 6861 7368 2328 2247 284a 6163 6f62 XLhash#("G(Jacob │ │ │ │ -000278c0: 6961 6e29 227c 746f 5374 7269 6e67 287b ian)"|toString({ │ │ │ │ -000278d0: 302c 317d 2929 3d3d 7365 674a 2322 4722 0,1}))==segJ#"G" │ │ │ │ -000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000277f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027800: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00027810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00027850: 7c69 3230 203a 2063 736d 584c 6861 7368 |i20 : csmXLhash │ │ │ │ +00027860: 2328 2247 284a 6163 6f62 6961 6e29 227c #("G(Jacobian)"| │ │ │ │ +00027870: 746f 5374 7269 6e67 287b 302c 317d 2929 toString({0,1})) │ │ │ │ +00027880: 3d3d 7365 674a 2322 4722 2020 2020 2020 ==segJ#"G" │ │ │ │ +00027890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000278a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000278b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000278f0: 7c6f 3230 203d 2074 7275 6520 2020 2020 |o20 = true │ │ │ │ 00027900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027940: 2020 2020 7c0a 7c6f 3230 203d 2074 7275 |.|o20 = tru │ │ │ │ -00027950: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027990: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000279a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279e0: 2d2d 2d2d 2b0a 7c69 3231 203a 2063 736d ----+.|i21 : csm │ │ │ │ -000279f0: 584c 6861 7368 2328 2253 6567 7265 284a XLhash#("Segre(J │ │ │ │ -00027a00: 6163 6f62 6961 6e29 227c 746f 5374 7269 acobian)"|toStri │ │ │ │ -00027a10: 6e67 287b 302c 317d 2929 3d3d 7365 674a ng({0,1}))==segJ │ │ │ │ -00027a20: 2322 5365 6772 6522 2020 2020 2020 2020 #"Segre" │ │ │ │ -00027a30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027940: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00027950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00027990: 7c69 3231 203a 2063 736d 584c 6861 7368 |i21 : csmXLhash │ │ │ │ +000279a0: 2328 2253 6567 7265 284a 6163 6f62 6961 #("Segre(Jacobia │ │ │ │ +000279b0: 6e29 227c 746f 5374 7269 6e67 287b 302c n)"|toString({0, │ │ │ │ +000279c0: 317d 2929 3d3d 7365 674a 2322 5365 6772 1}))==segJ#"Segr │ │ │ │ +000279d0: 6522 2020 2020 2020 2020 2020 2020 7c0a e" |. │ │ │ │ +000279e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000279f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027a30: 7c6f 3231 203d 2074 7275 6520 2020 2020 |o21 = true │ │ │ │ 00027a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a80: 2020 2020 7c0a 7c6f 3231 203d 2074 7275 |.|o21 = tru │ │ │ │ -00027a90: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ad0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00027ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b20: 2d2d 2d2d 2b0a 0a46 756e 6374 696f 6e73 ----+..Functions │ │ │ │ -00027b30: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ -00027b40: 7267 756d 656e 7420 6e61 6d65 6420 4f75 rgument named Ou │ │ │ │ -00027b50: 7470 7574 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d tput:.========== │ │ │ │ -00027b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b80: 3d3d 3d3d 0a0a 2020 2a20 2243 6865 726e ====.. * "Chern │ │ │ │ -00027b90: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ -00027ba0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00027bb0: 4368 6572 6e3a 2043 6865 726e 2c20 2d2d Chern: Chern, -- │ │ │ │ -00027bc0: 2054 6865 2043 6865 726e 2063 6c61 7373 The Chern class │ │ │ │ -00027bd0: 0a20 202a 2022 4353 4d28 2e2e 2e2c 4f75 . * "CSM(...,Ou │ │ │ │ -00027be0: 7470 7574 3d3e 2e2e 2e29 2220 2d2d 2073 tput=>...)" -- s │ │ │ │ -00027bf0: 6565 202a 6e6f 7465 2043 534d 3a20 4353 ee *note CSM: CS │ │ │ │ -00027c00: 4d2c 202d 2d20 5468 650a 2020 2020 4368 M, -- The. Ch │ │ │ │ -00027c10: 6572 6e2d 5363 6877 6172 747a 2d4d 6163 ern-Schwartz-Mac │ │ │ │ -00027c20: 5068 6572 736f 6e20 636c 6173 730a 2020 Pherson class. │ │ │ │ -00027c30: 2a20 2245 756c 6572 282e 2e2e 2c4f 7574 * "Euler(...,Out │ │ │ │ -00027c40: 7075 743d 3e2e 2e2e 2922 202d 2d20 7365 put=>...)" -- se │ │ │ │ -00027c50: 6520 2a6e 6f74 6520 4575 6c65 723a 2045 e *note Euler: E │ │ │ │ -00027c60: 756c 6572 2c20 2d2d 2054 6865 2045 756c uler, -- The Eul │ │ │ │ -00027c70: 6572 0a20 2020 2043 6861 7261 6374 6572 er. Character │ │ │ │ -00027c80: 6973 7469 630a 2020 2a20 2253 6567 7265 istic. * "Segre │ │ │ │ -00027c90: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ -00027ca0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00027cb0: 5365 6772 653a 2053 6567 7265 2c20 2d2d Segre: Segre, -- │ │ │ │ -00027cc0: 2054 6865 2053 6567 7265 2063 6c61 7373 The Segre class │ │ │ │ -00027cd0: 206f 6620 610a 2020 2020 7375 6273 6368 of a. subsch │ │ │ │ -00027ce0: 656d 650a 0a46 6f72 2074 6865 2070 726f eme..For the pro │ │ │ │ -00027cf0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00027d00: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00027d10: 6f62 6a65 6374 202a 6e6f 7465 204f 7574 object *note Out │ │ │ │ -00027d20: 7075 743a 204f 7574 7075 742c 2069 7320 put: Output, is │ │ │ │ -00027d30: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -00027d40: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ -00027d50: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ -00027d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027da0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00027db0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00027dc0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00027dd0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00027de0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00027df0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00027e00: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00027e10: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -00027e20: 6173 7365 732e 6d32 3a32 3436 393a 302e asses.m2:2469:0. │ │ │ │ -00027e30: 0a1f 0a46 696c 653a 2043 6861 7261 6374 ...File: Charact │ │ │ │ -00027e40: 6572 6973 7469 6343 6c61 7373 6573 2e69 eristicClasses.i │ │ │ │ -00027e50: 6e66 6f2c 204e 6f64 653a 2070 726f 6261 nfo, Node: proba │ │ │ │ -00027e60: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00027e70: 686d 2c20 4e65 7874 3a20 5365 6772 652c hm, Next: Segre, │ │ │ │ -00027e80: 2050 7265 763a 204f 7574 7075 742c 2055 Prev: Output, U │ │ │ │ -00027e90: 703a 2054 6f70 0a0a 7072 6f62 6162 696c p: Top..probabil │ │ │ │ -00027ea0: 6973 7469 6320 616c 676f 7269 7468 6d0a istic algorithm. │ │ │ │ -00027eb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027ec0: 2a2a 2a2a 2a2a 2a0a 0a54 6865 2061 6c67 *******..The alg │ │ │ │ -00027ed0: 6f72 6974 686d 7320 7573 6564 2066 6f72 orithms used for │ │ │ │ -00027ee0: 2074 6865 2063 6f6d 7075 7461 7469 6f6e the computation │ │ │ │ -00027ef0: 206f 6620 6368 6172 6163 7465 7269 7374 of characterist │ │ │ │ -00027f00: 6963 2063 6c61 7373 6573 2061 7265 0a70 ic classes are.p │ │ │ │ -00027f10: 726f 6261 6269 6c69 7374 6963 2e20 5468 robabilistic. Th │ │ │ │ -00027f20: 656f 7265 7469 6361 6c6c 792c 2074 6865 eoretically, the │ │ │ │ -00027f30: 7920 6361 6c63 756c 6174 6520 7468 6520 y calculate the │ │ │ │ -00027f40: 636c 6173 7365 7320 636f 7272 6563 746c classes correctl │ │ │ │ -00027f50: 7920 666f 7220 610a 6765 6e65 7261 6c20 y for a.general │ │ │ │ -00027f60: 6368 6f69 6365 206f 6620 6365 7274 6169 choice of certai │ │ │ │ -00027f70: 6e20 706f 6c79 6e6f 6d69 616c 732e 2054 n polynomials. T │ │ │ │ -00027f80: 6861 7420 6973 2c20 7468 6572 6520 6973 hat is, there is │ │ │ │ -00027f90: 2061 6e20 6f70 656e 2064 656e 7365 205a an open dense Z │ │ │ │ -00027fa0: 6172 6973 6b69 0a73 6574 2066 6f72 2077 ariski.set for w │ │ │ │ -00027fb0: 6869 6368 2074 6865 2061 6c67 6f72 6974 hich the algorit │ │ │ │ -00027fc0: 686d 2079 6965 6c64 7320 7468 6520 636f hm yields the co │ │ │ │ -00027fd0: 7272 6563 7420 636c 6173 732c 2069 2e65 rrect class, i.e │ │ │ │ -00027fe0: 2e2c 2074 6865 2063 6f72 7265 6374 2063 ., the correct c │ │ │ │ -00027ff0: 6c61 7373 0a69 7320 6361 6c63 756c 6174 lass.is calculat │ │ │ │ -00028000: 6564 2077 6974 6820 7072 6f62 6162 696c ed with probabil │ │ │ │ -00028010: 6974 7920 312e 2048 6f77 6576 6572 2c20 ity 1. However, │ │ │ │ -00028020: 7369 6e63 6520 7468 6520 696d 706c 656d since the implem │ │ │ │ -00028030: 656e 7461 7469 6f6e 2077 6f72 6b73 206f entation works o │ │ │ │ -00028040: 7665 720a 6120 6469 7363 7265 7465 2070 ver.a discrete p │ │ │ │ -00028050: 726f 6261 6269 6c69 7479 2073 7061 6365 robability space │ │ │ │ -00028060: 2074 6865 7265 2069 7320 6120 7665 7279 there is a very │ │ │ │ -00028070: 2073 6d61 6c6c 2c20 6275 7420 6e6f 6e2d small, but non- │ │ │ │ -00028080: 7a65 726f 2c20 7072 6f62 6162 696c 6974 zero, probabilit │ │ │ │ -00028090: 790a 6f66 206e 6f74 2063 6f6d 7075 7469 y.of not computi │ │ │ │ -000280a0: 6e67 2074 6865 2063 6f72 7265 6374 2063 ng the correct c │ │ │ │ -000280b0: 6c61 7373 2e20 536b 6570 7469 6361 6c20 lass. Skeptical │ │ │ │ -000280c0: 7573 6572 7320 7368 6f75 6c64 2072 6570 users should rep │ │ │ │ -000280d0: 6561 7420 6361 6c63 756c 6174 696f 6e73 eat calculations │ │ │ │ -000280e0: 0a73 6576 6572 616c 2074 696d 6573 2074 .several times t │ │ │ │ -000280f0: 6f20 696e 6372 6561 7365 2074 6865 2070 o increase the p │ │ │ │ -00028100: 726f 6261 6269 6c69 7479 206f 6620 636f robability of co │ │ │ │ -00028110: 6d70 7574 696e 6720 7468 6520 636f 7272 mputing the corr │ │ │ │ -00028120: 6563 7420 636c 6173 732e 0a0a 496e 2074 ect class...In t │ │ │ │ -00028130: 6865 2063 6173 6520 6f66 2074 6865 2073 he case of the s │ │ │ │ -00028140: 796d 626f 6c69 6320 696d 706c 656d 656e ymbolic implemen │ │ │ │ -00028150: 7461 7469 6f6e 206f 6620 7468 6520 5072 tation of the Pr │ │ │ │ -00028160: 6f6a 6563 7469 7665 4465 6772 6565 206d ojectiveDegree m │ │ │ │ -00028170: 6574 686f 640a 7072 6163 7469 6361 6c20 ethod.practical │ │ │ │ -00028180: 6578 7065 7269 656e 6365 2061 6e64 2061 experience and a │ │ │ │ -00028190: 6c67 6f72 6974 686d 2074 6573 7469 6e67 lgorithm testing │ │ │ │ -000281a0: 2069 6e64 6963 6174 6520 7468 6174 2061 indicate that a │ │ │ │ -000281b0: 2066 696e 6974 6520 6669 656c 6420 7769 finite field wi │ │ │ │ -000281c0: 7468 0a6f 7665 7220 3235 3030 3020 656c th.over 25000 el │ │ │ │ -000281d0: 656d 656e 7473 2069 7320 6d6f 7265 2074 ements is more t │ │ │ │ -000281e0: 6861 6e20 7375 6666 6963 6965 6e74 2074 han sufficient t │ │ │ │ -000281f0: 6f20 6578 7065 6374 2061 2063 6f72 7265 o expect a corre │ │ │ │ -00028200: 6374 2072 6573 756c 7420 7769 7468 0a68 ct result with.h │ │ │ │ -00028210: 6967 6820 7072 6f62 6162 696c 6974 792c igh probability, │ │ │ │ -00028220: 2069 2e65 2e20 7573 696e 6720 7468 6520 i.e. using the │ │ │ │ -00028230: 6669 6e69 7465 2066 6965 6c64 206b 6b3d finite field kk= │ │ │ │ -00028240: 5a5a 2f32 3530 3733 2074 6865 2065 7870 ZZ/25073 the exp │ │ │ │ -00028250: 6572 696d 656e 7461 6c0a 6368 616e 6365 erimental.chance │ │ │ │ -00028260: 206f 6620 6661 696c 7572 6520 7769 7468 of failure with │ │ │ │ -00028270: 2074 6865 2050 726f 6a65 6374 6976 6544 the ProjectiveD │ │ │ │ -00028280: 6567 7265 6520 616c 676f 7269 7468 6d20 egree algorithm │ │ │ │ -00028290: 6f6e 2061 2076 6172 6965 7479 206f 6620 on a variety of │ │ │ │ -000282a0: 6578 616d 706c 6573 0a77 6173 206c 6573 examples.was les │ │ │ │ -000282b0: 7320 7468 616e 2031 2f32 3030 302e 2055 s than 1/2000. U │ │ │ │ -000282c0: 7369 6e67 2074 6865 2066 696e 6974 6520 sing the finite │ │ │ │ -000282d0: 6669 656c 6420 6b6b 3d5a 5a2f 3332 3734 field kk=ZZ/3274 │ │ │ │ -000282e0: 3920 7265 7375 6c74 6564 2069 6e20 6e6f 9 resulted in no │ │ │ │ -000282f0: 0a66 6169 6c75 7265 7320 696e 206f 7665 .failures in ove │ │ │ │ -00028300: 7220 3130 3030 3020 6174 7465 6d70 7473 r 10000 attempts │ │ │ │ -00028310: 206f 6620 7365 7665 7261 6c20 6469 6666 of several diff │ │ │ │ -00028320: 6572 656e 7420 6578 616d 706c 6573 2e0a erent examples.. │ │ │ │ -00028330: 0a57 6520 696c 6c75 7374 7261 7465 2074 .We illustrate t │ │ │ │ -00028340: 6865 2070 726f 6261 6269 6c69 7374 6963 he probabilistic │ │ │ │ -00028350: 2062 6568 6176 696f 7572 2077 6974 6820 behaviour with │ │ │ │ -00028360: 616e 2065 7861 6d70 6c65 2077 6865 7265 an example where │ │ │ │ -00028370: 2074 6865 2063 686f 7365 6e0a 7261 6e64 the chosen.rand │ │ │ │ -00028380: 6f6d 2073 6565 6420 6c65 6164 7320 746f om seed leads to │ │ │ │ -00028390: 2061 2077 726f 6e67 2072 6573 756c 7420 a wrong result │ │ │ │ -000283a0: 696e 2074 6865 2066 6972 7374 2063 616c in the first cal │ │ │ │ -000283b0: 6375 6c61 7469 6f6e 2e0a 0a2b 2d2d 2d2d culation...+---- │ │ │ │ -000283c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000283f0: 3120 3a20 7365 7452 616e 646f 6d53 6565 1 : setRandomSee │ │ │ │ -00028400: 6420 3132 313b 2020 2020 2020 2020 2020 d 121; │ │ │ │ -00028410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028420: 0a7c 202d 2d20 7365 7474 696e 6720 7261 .| -- setting ra │ │ │ │ -00028430: 6e64 6f6d 2073 6565 6420 746f 2031 3231 ndom seed to 121 │ │ │ │ -00028440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028450: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028480: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 203d -----+.|i2 : R = │ │ │ │ -00028490: 2051 515b 782c 792c 7a2c 775d 2020 2020 QQ[x,y,z,w] │ │ │ │ +00027a70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00027a80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00027a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00027ad0: 0a46 756e 6374 696f 6e73 2077 6974 6820 .Functions with │ │ │ │ +00027ae0: 6f70 7469 6f6e 616c 2061 7267 756d 656e optional argumen │ │ │ │ +00027af0: 7420 6e61 6d65 6420 4f75 7470 7574 3a0a t named Output:. │ │ │ │ +00027b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00027b30: 2020 2a20 2243 6865 726e 282e 2e2e 2c4f * "Chern(...,O │ │ │ │ +00027b40: 7574 7075 743d 3e2e 2e2e 2922 202d 2d20 utput=>...)" -- │ │ │ │ +00027b50: 7365 6520 2a6e 6f74 6520 4368 6572 6e3a see *note Chern: │ │ │ │ +00027b60: 2043 6865 726e 2c20 2d2d 2054 6865 2043 Chern, -- The C │ │ │ │ +00027b70: 6865 726e 2063 6c61 7373 0a20 202a 2022 hern class. * " │ │ │ │ +00027b80: 4353 4d28 2e2e 2e2c 4f75 7470 7574 3d3e CSM(...,Output=> │ │ │ │ +00027b90: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +00027ba0: 7465 2043 534d 3a20 4353 4d2c 202d 2d20 te CSM: CSM, -- │ │ │ │ +00027bb0: 5468 650a 2020 2020 4368 6572 6e2d 5363 The. Chern-Sc │ │ │ │ +00027bc0: 6877 6172 747a 2d4d 6163 5068 6572 736f hwartz-MacPherso │ │ │ │ +00027bd0: 6e20 636c 6173 730a 2020 2a20 2245 756c n class. * "Eul │ │ │ │ +00027be0: 6572 282e 2e2e 2c4f 7574 7075 743d 3e2e er(...,Output=>. │ │ │ │ +00027bf0: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ +00027c00: 6520 4575 6c65 723a 2045 756c 6572 2c20 e Euler: Euler, │ │ │ │ +00027c10: 2d2d 2054 6865 2045 756c 6572 0a20 2020 -- The Euler. │ │ │ │ +00027c20: 2043 6861 7261 6374 6572 6973 7469 630a Characteristic. │ │ │ │ +00027c30: 2020 2a20 2253 6567 7265 282e 2e2e 2c4f * "Segre(...,O │ │ │ │ +00027c40: 7574 7075 743d 3e2e 2e2e 2922 202d 2d20 utput=>...)" -- │ │ │ │ +00027c50: 7365 6520 2a6e 6f74 6520 5365 6772 653a see *note Segre: │ │ │ │ +00027c60: 2053 6567 7265 2c20 2d2d 2054 6865 2053 Segre, -- The S │ │ │ │ +00027c70: 6567 7265 2063 6c61 7373 206f 6620 610a egre class of a. │ │ │ │ +00027c80: 2020 2020 7375 6273 6368 656d 650a 0a46 subscheme..F │ │ │ │ +00027c90: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00027ca0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00027cb0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00027cc0: 202a 6e6f 7465 204f 7574 7075 743a 204f *note Output: O │ │ │ │ +00027cd0: 7574 7075 742c 2069 7320 6120 2a6e 6f74 utput, is a *not │ │ │ │ +00027ce0: 6520 7379 6d62 6f6c 3a20 284d 6163 6175 e symbol: (Macau │ │ │ │ +00027cf0: 6c61 7932 446f 6329 5379 6d62 6f6c 2c2e lay2Doc)Symbol,. │ │ │ │ +00027d00: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +00027d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d50: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00027d60: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00027d70: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00027d80: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00027d90: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00027da0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +00027db0: 7061 636b 6167 6573 2f0a 4368 6172 6163 packages/.Charac │ │ │ │ +00027dc0: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ +00027dd0: 6d32 3a32 3436 393a 302e 0a1f 0a46 696c m2:2469:0....Fil │ │ │ │ +00027de0: 653a 2043 6861 7261 6374 6572 6973 7469 e: Characteristi │ │ │ │ +00027df0: 6343 6c61 7373 6573 2e69 6e66 6f2c 204e cClasses.info, N │ │ │ │ +00027e00: 6f64 653a 2070 726f 6261 6269 6c69 7374 ode: probabilist │ │ │ │ +00027e10: 6963 2061 6c67 6f72 6974 686d 2c20 4e65 ic algorithm, Ne │ │ │ │ +00027e20: 7874 3a20 5365 6772 652c 2050 7265 763a xt: Segre, Prev: │ │ │ │ +00027e30: 204f 7574 7075 742c 2055 703a 2054 6f70 Output, Up: Top │ │ │ │ +00027e40: 0a0a 7072 6f62 6162 696c 6973 7469 6320 ..probabilistic │ │ │ │ +00027e50: 616c 676f 7269 7468 6d0a 2a2a 2a2a 2a2a algorithm.****** │ │ │ │ +00027e60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00027e70: 2a0a 0a54 6865 2061 6c67 6f72 6974 686d *..The algorithm │ │ │ │ +00027e80: 7320 7573 6564 2066 6f72 2074 6865 2063 s used for the c │ │ │ │ +00027e90: 6f6d 7075 7461 7469 6f6e 206f 6620 6368 omputation of ch │ │ │ │ +00027ea0: 6172 6163 7465 7269 7374 6963 2063 6c61 aracteristic cla │ │ │ │ +00027eb0: 7373 6573 2061 7265 0a70 726f 6261 6269 sses are.probabi │ │ │ │ +00027ec0: 6c69 7374 6963 2e20 5468 656f 7265 7469 listic. Theoreti │ │ │ │ +00027ed0: 6361 6c6c 792c 2074 6865 7920 6361 6c63 cally, they calc │ │ │ │ +00027ee0: 756c 6174 6520 7468 6520 636c 6173 7365 ulate the classe │ │ │ │ +00027ef0: 7320 636f 7272 6563 746c 7920 666f 7220 s correctly for │ │ │ │ +00027f00: 610a 6765 6e65 7261 6c20 6368 6f69 6365 a.general choice │ │ │ │ +00027f10: 206f 6620 6365 7274 6169 6e20 706f 6c79 of certain poly │ │ │ │ +00027f20: 6e6f 6d69 616c 732e 2054 6861 7420 6973 nomials. That is │ │ │ │ +00027f30: 2c20 7468 6572 6520 6973 2061 6e20 6f70 , there is an op │ │ │ │ +00027f40: 656e 2064 656e 7365 205a 6172 6973 6b69 en dense Zariski │ │ │ │ +00027f50: 0a73 6574 2066 6f72 2077 6869 6368 2074 .set for which t │ │ │ │ +00027f60: 6865 2061 6c67 6f72 6974 686d 2079 6965 he algorithm yie │ │ │ │ +00027f70: 6c64 7320 7468 6520 636f 7272 6563 7420 lds the correct │ │ │ │ +00027f80: 636c 6173 732c 2069 2e65 2e2c 2074 6865 class, i.e., the │ │ │ │ +00027f90: 2063 6f72 7265 6374 2063 6c61 7373 0a69 correct class.i │ │ │ │ +00027fa0: 7320 6361 6c63 756c 6174 6564 2077 6974 s calculated wit │ │ │ │ +00027fb0: 6820 7072 6f62 6162 696c 6974 7920 312e h probability 1. │ │ │ │ +00027fc0: 2048 6f77 6576 6572 2c20 7369 6e63 6520 However, since │ │ │ │ +00027fd0: 7468 6520 696d 706c 656d 656e 7461 7469 the implementati │ │ │ │ +00027fe0: 6f6e 2077 6f72 6b73 206f 7665 720a 6120 on works over.a │ │ │ │ +00027ff0: 6469 7363 7265 7465 2070 726f 6261 6269 discrete probabi │ │ │ │ +00028000: 6c69 7479 2073 7061 6365 2074 6865 7265 lity space there │ │ │ │ +00028010: 2069 7320 6120 7665 7279 2073 6d61 6c6c is a very small │ │ │ │ +00028020: 2c20 6275 7420 6e6f 6e2d 7a65 726f 2c20 , but non-zero, │ │ │ │ +00028030: 7072 6f62 6162 696c 6974 790a 6f66 206e probability.of n │ │ │ │ +00028040: 6f74 2063 6f6d 7075 7469 6e67 2074 6865 ot computing the │ │ │ │ +00028050: 2063 6f72 7265 6374 2063 6c61 7373 2e20 correct class. │ │ │ │ +00028060: 536b 6570 7469 6361 6c20 7573 6572 7320 Skeptical users │ │ │ │ +00028070: 7368 6f75 6c64 2072 6570 6561 7420 6361 should repeat ca │ │ │ │ +00028080: 6c63 756c 6174 696f 6e73 0a73 6576 6572 lculations.sever │ │ │ │ +00028090: 616c 2074 696d 6573 2074 6f20 696e 6372 al times to incr │ │ │ │ +000280a0: 6561 7365 2074 6865 2070 726f 6261 6269 ease the probabi │ │ │ │ +000280b0: 6c69 7479 206f 6620 636f 6d70 7574 696e lity of computin │ │ │ │ +000280c0: 6720 7468 6520 636f 7272 6563 7420 636c g the correct cl │ │ │ │ +000280d0: 6173 732e 0a0a 496e 2074 6865 2063 6173 ass...In the cas │ │ │ │ +000280e0: 6520 6f66 2074 6865 2073 796d 626f 6c69 e of the symboli │ │ │ │ +000280f0: 6320 696d 706c 656d 656e 7461 7469 6f6e c implementation │ │ │ │ +00028100: 206f 6620 7468 6520 5072 6f6a 6563 7469 of the Projecti │ │ │ │ +00028110: 7665 4465 6772 6565 206d 6574 686f 640a veDegree method. │ │ │ │ +00028120: 7072 6163 7469 6361 6c20 6578 7065 7269 practical experi │ │ │ │ +00028130: 656e 6365 2061 6e64 2061 6c67 6f72 6974 ence and algorit │ │ │ │ +00028140: 686d 2074 6573 7469 6e67 2069 6e64 6963 hm testing indic │ │ │ │ +00028150: 6174 6520 7468 6174 2061 2066 696e 6974 ate that a finit │ │ │ │ +00028160: 6520 6669 656c 6420 7769 7468 0a6f 7665 e field with.ove │ │ │ │ +00028170: 7220 3235 3030 3020 656c 656d 656e 7473 r 25000 elements │ │ │ │ +00028180: 2069 7320 6d6f 7265 2074 6861 6e20 7375 is more than su │ │ │ │ +00028190: 6666 6963 6965 6e74 2074 6f20 6578 7065 fficient to expe │ │ │ │ +000281a0: 6374 2061 2063 6f72 7265 6374 2072 6573 ct a correct res │ │ │ │ +000281b0: 756c 7420 7769 7468 0a68 6967 6820 7072 ult with.high pr │ │ │ │ +000281c0: 6f62 6162 696c 6974 792c 2069 2e65 2e20 obability, i.e. │ │ │ │ +000281d0: 7573 696e 6720 7468 6520 6669 6e69 7465 using the finite │ │ │ │ +000281e0: 2066 6965 6c64 206b 6b3d 5a5a 2f32 3530 field kk=ZZ/250 │ │ │ │ +000281f0: 3733 2074 6865 2065 7870 6572 696d 656e 73 the experimen │ │ │ │ +00028200: 7461 6c0a 6368 616e 6365 206f 6620 6661 tal.chance of fa │ │ │ │ +00028210: 696c 7572 6520 7769 7468 2074 6865 2050 ilure with the P │ │ │ │ +00028220: 726f 6a65 6374 6976 6544 6567 7265 6520 rojectiveDegree │ │ │ │ +00028230: 616c 676f 7269 7468 6d20 6f6e 2061 2076 algorithm on a v │ │ │ │ +00028240: 6172 6965 7479 206f 6620 6578 616d 706c ariety of exampl │ │ │ │ +00028250: 6573 0a77 6173 206c 6573 7320 7468 616e es.was less than │ │ │ │ +00028260: 2031 2f32 3030 302e 2055 7369 6e67 2074 1/2000. Using t │ │ │ │ +00028270: 6865 2066 696e 6974 6520 6669 656c 6420 he finite field │ │ │ │ +00028280: 6b6b 3d5a 5a2f 3332 3734 3920 7265 7375 kk=ZZ/32749 resu │ │ │ │ +00028290: 6c74 6564 2069 6e20 6e6f 0a66 6169 6c75 lted in no.failu │ │ │ │ +000282a0: 7265 7320 696e 206f 7665 7220 3130 3030 res in over 1000 │ │ │ │ +000282b0: 3020 6174 7465 6d70 7473 206f 6620 7365 0 attempts of se │ │ │ │ +000282c0: 7665 7261 6c20 6469 6666 6572 656e 7420 veral different │ │ │ │ +000282d0: 6578 616d 706c 6573 2e0a 0a57 6520 696c examples...We il │ │ │ │ +000282e0: 6c75 7374 7261 7465 2074 6865 2070 726f lustrate the pro │ │ │ │ +000282f0: 6261 6269 6c69 7374 6963 2062 6568 6176 babilistic behav │ │ │ │ +00028300: 696f 7572 2077 6974 6820 616e 2065 7861 iour with an exa │ │ │ │ +00028310: 6d70 6c65 2077 6865 7265 2074 6865 2063 mple where the c │ │ │ │ +00028320: 686f 7365 6e0a 7261 6e64 6f6d 2073 6565 hosen.random see │ │ │ │ +00028330: 6420 6c65 6164 7320 746f 2061 2077 726f d leads to a wro │ │ │ │ +00028340: 6e67 2072 6573 756c 7420 696e 2074 6865 ng result in the │ │ │ │ +00028350: 2066 6972 7374 2063 616c 6375 6c61 7469 first calculati │ │ │ │ +00028360: 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d on...+---------- │ │ │ │ +00028370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028390: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7365 ------+.|i1 : se │ │ │ │ +000283a0: 7452 616e 646f 6d53 6565 6420 3132 313b tRandomSeed 121; │ │ │ │ +000283b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000283c0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +000283d0: 7365 7474 696e 6720 7261 6e64 6f6d 2073 setting random s │ │ │ │ +000283e0: 6565 6420 746f 2031 3231 2020 2020 2020 eed to 121 │ │ │ │ +000283f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00028430: 0a7c 6932 203a 2052 203d 2051 515b 782c .|i2 : R = QQ[x, │ │ │ │ +00028440: 792c 7a2c 775d 2020 2020 2020 2020 2020 y,z,w] │ │ │ │ +00028450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028490: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ 000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000284c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000284f0: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ -00028500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028520: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00028530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028550: 207c 0a7c 6f32 203a 2050 6f6c 796e 6f6d |.|o2 : Polynom │ │ │ │ -00028560: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -00028570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028580: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00028590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 -------+.|i3 : I │ │ │ │ -000285c0: 203d 206d 696e 6f72 7328 322c 6d61 7472 = minors(2,matr │ │ │ │ -000285d0: 6978 7b7b 782c 792c 7a7d 2c7b 792c 7a2c ix{{x,y,z},{y,z, │ │ │ │ -000285e0: 777d 7d29 2020 2020 2020 7c0a 7c20 2020 w}}) |.| │ │ │ │ -000285f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028620: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000284e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284f0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00028500: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +00028510: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +00028520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028530: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00028540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028560: 2d2b 0a7c 6933 203a 2049 203d 206d 696e -+.|i3 : I = min │ │ │ │ +00028570: 6f72 7328 322c 6d61 7472 6978 7b7b 782c ors(2,matrix{{x, │ │ │ │ +00028580: 792c 7a7d 2c7b 792c 7a2c 777d 7d29 2020 y,z},{y,z,w}}) │ │ │ │ +00028590: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000285a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000285d0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000285e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285f0: 2020 3220 2020 2020 2020 7c0a 7c6f 3320 2 |.|o3 │ │ │ │ +00028600: 3d20 6964 6561 6c20 282d 2079 2020 2b20 = ideal (- y + │ │ │ │ +00028610: 782a 7a2c 202d 2079 2a7a 202b 2078 2a77 x*z, - y*z + x*w │ │ │ │ +00028620: 2c20 2d20 7a20 202b 2079 2a77 297c 0a7c , - z + y*w)|.| │ │ │ │ 00028630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028640: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00028650: 7c0a 7c6f 3320 3d20 6964 6561 6c20 282d |.|o3 = ideal (- │ │ │ │ -00028660: 2079 2020 2b20 782a 7a2c 202d 2079 2a7a y + x*z, - y*z │ │ │ │ -00028670: 202b 2078 2a77 2c20 2d20 7a20 202b 2079 + x*w, - z + y │ │ │ │ -00028680: 2a77 297c 0a7c 2020 2020 2020 2020 2020 *w)|.| │ │ │ │ -00028690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286b0: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ -000286c0: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ -000286d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000286f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00028720: 3420 3a20 4368 6572 6e20 2849 2c43 6f6d 4 : Chern (I,Com │ │ │ │ -00028730: 704d 6574 686f 643d 3e50 6e52 6573 6964 pMethod=>PnResid │ │ │ │ -00028740: 7561 6c29 2020 2020 2020 2020 2020 207c ual) | │ │ │ │ -00028750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00028760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028660: 7c0a 7c6f 3320 3a20 4964 6561 6c20 6f66 |.|o3 : Ideal of │ │ │ │ +00028670: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00028680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028690: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000286a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286c0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 4368 ------+.|i4 : Ch │ │ │ │ +000286d0: 6572 6e20 2849 2c43 6f6d 704d 6574 686f ern (I,CompMetho │ │ │ │ +000286e0: 643d 3e50 6e52 6573 6964 7561 6c29 2020 d=>PnResidual) │ │ │ │ +000286f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028730: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ +00028740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028760: 0a7c 6f34 203d 2032 4820 202b 2033 4820 .|o4 = 2H + 3H │ │ │ │ 00028770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028780: 2020 7c0a 7c20 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ -00028790: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00028780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000287a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287b0: 2020 2020 207c 0a7c 6f34 203d 2032 4820 |.|o4 = 2H │ │ │ │ -000287c0: 202b 2033 4820 2020 2020 2020 2020 2020 + 3H │ │ │ │ -000287d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000287f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028820: 2020 205a 5a5b 485d 2020 2020 2020 2020 ZZ[H] │ │ │ │ -00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028850: 7c6f 3420 3a20 2d2d 2d2d 2d20 2020 2020 |o4 : ----- │ │ │ │ -00028860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287c0: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +000287d0: 485d 2020 2020 2020 2020 2020 2020 2020 H] │ │ │ │ +000287e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287f0: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00028800: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ +00028810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00028830: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +00028840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028860: 7c20 2020 2020 2020 4820 2020 2020 2020 | H │ │ │ │ 00028870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028880: 207c 0a7c 2020 2020 2020 2020 3420 2020 |.| 4 │ │ │ │ -00028890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288b0: 2020 2020 7c0a 7c20 2020 2020 2020 4820 |.| H │ │ │ │ -000288c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000288f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028910: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00028920: 3a20 4368 6572 6e20 2849 2c43 6f6d 704d : Chern (I,CompM │ │ │ │ -00028930: 6574 686f 643d 3e50 6e52 6573 6964 7561 ethod=>PnResidua │ │ │ │ -00028940: 6c29 2020 2020 2020 2020 2020 207c 0a7c l) |.| │ │ │ │ -00028950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028890: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000288a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288c0: 2d2d 2d2d 2b0a 7c69 3520 3a20 4368 6572 ----+.|i5 : Cher │ │ │ │ +000288d0: 6e20 2849 2c43 6f6d 704d 6574 686f 643d n (I,CompMethod= │ │ │ │ +000288e0: 3e50 6e52 6573 6964 7561 6c29 2020 2020 >PnResidual) │ │ │ │ +000288f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028930: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00028940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028960: 6f35 203d 2032 4820 202b 2033 4820 2020 o5 = 2H + 3H │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028980: 7c0a 7c20 2020 2020 2020 3320 2020 2020 |.| 3 │ │ │ │ -00028990: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00028980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028990: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289b0: 2020 207c 0a7c 6f35 203d 2032 4820 202b |.|o5 = 2H + │ │ │ │ -000289c0: 2033 4820 2020 2020 2020 2020 2020 2020 3H │ │ │ │ +000289b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289c0: 2020 207c 0a7c 2020 2020 205a 5a5b 485d |.| ZZ[H] │ │ │ │ 000289d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000289f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00028a20: 205a 5a5b 485d 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ -00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a40: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00028a50: 3520 3a20 2d2d 2d2d 2d20 2020 2020 2020 5 : ----- │ │ │ │ -00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028a80: 0a7c 2020 2020 2020 2020 3420 2020 2020 .| 4 │ │ │ │ -00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ab0: 2020 7c0a 7c20 2020 2020 2020 4820 2020 |.| H │ │ │ │ -00028ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ae0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00028af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00028b20: 4368 6572 6e20 2849 2c43 6f6d 704d 6574 Chern (I,CompMet │ │ │ │ -00028b30: 686f 643d 3e50 6e52 6573 6964 7561 6c29 hod=>PnResidual) │ │ │ │ -00028b40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028b80: 7c20 2020 2020 2020 3320 2020 2020 3220 | 3 2 │ │ │ │ -00028b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289f0: 2020 2020 2020 7c0a 7c6f 3520 3a20 2d2d |.|o5 : -- │ │ │ │ +00028a00: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +00028a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028a30: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028a60: 2020 2020 2020 4820 2020 2020 2020 2020 H │ │ │ │ +00028a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028a90: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00028aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ac0: 2d2d 2b0a 7c69 3620 3a20 4368 6572 6e20 --+.|i6 : Chern │ │ │ │ +00028ad0: 2849 2c43 6f6d 704d 6574 686f 643d 3e50 (I,CompMethod=>P │ │ │ │ +00028ae0: 6e52 6573 6964 7561 6c29 2020 2020 2020 nResidual) │ │ │ │ +00028af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028b30: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00028b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b50: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00028b60: 203d 2032 4820 202b 2033 4820 2020 2020 = 2H + 3H │ │ │ │ +00028b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028b90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bb0: 207c 0a7c 6f36 203d 2032 4820 202b 2033 |.|o6 = 2H + 3 │ │ │ │ -00028bc0: 4820 2020 2020 2020 2020 2020 2020 2020 H │ │ │ │ +00028bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028bc0: 207c 0a7c 2020 2020 205a 5a5b 485d 2020 |.| ZZ[H] │ │ │ │ 00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028be0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 2020 2020 2020 207c 0a7c 2020 2020 205a |.| Z │ │ │ │ -00028c20: 5a5b 485d 2020 2020 2020 2020 2020 2020 Z[H] │ │ │ │ -00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c40: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00028c50: 3a20 2d2d 2d2d 2d20 2020 2020 2020 2020 : ----- │ │ │ │ -00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028c80: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cb0: 7c0a 7c20 2020 2020 2020 4820 2020 2020 |.| H │ │ │ │ -00028cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ce0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00028cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028d10: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 4368 ------+.|i7 : Ch │ │ │ │ -00028d20: 6572 6e28 492c 436f 6d70 4d65 7468 6f64 ern(I,CompMethod │ │ │ │ -00028d30: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ -00028d40: 6565 2920 2020 2020 207c 0a7c 2020 2020 ee) |.| │ │ │ │ -00028d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00028d80: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ -00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028db0: 0a7c 6f37 203d 2032 6820 202b 2033 6820 .|o7 = 2h + 3h │ │ │ │ -00028dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028bf0: 2020 2020 7c0a 7c6f 3620 3a20 2d2d 2d2d |.|o6 : ---- │ │ │ │ +00028c00: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00028c30: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028c60: 2020 2020 4820 2020 2020 2020 2020 2020 H │ │ │ │ +00028c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c80: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00028c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028cc0: 2b0a 7c69 3720 3a20 4368 6572 6e28 492c +.|i7 : Chern(I, │ │ │ │ +00028cd0: 436f 6d70 4d65 7468 6f64 3d3e 5072 6f6a CompMethod=>Proj │ │ │ │ +00028ce0: 6563 7469 7665 4465 6772 6565 2920 2020 ectiveDegree) │ │ │ │ +00028cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00028d30: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ +00028d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d50: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +00028d60: 2032 6820 202b 2033 6820 2020 2020 2020 2h + 3h │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028d90: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ +00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028dc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028de0: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -00028df0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028df0: 2020 7c0a 7c20 2020 2020 5a5a 5b68 205d |.| ZZ[h ] │ │ │ │ 00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00028e50: 5a5a 5b68 205d 2020 2020 2020 2020 2020 ZZ[h ] │ │ │ │ -00028e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028e80: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028eb0: 7c6f 3720 3a20 2d2d 2d2d 2d2d 2020 2020 |o7 : ------ │ │ │ │ -00028ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028e30: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e50: 2020 2020 2020 2020 7c0a 7c6f 3720 3a20 |.|o7 : │ │ │ │ +00028e60: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ +00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00028e90: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +00028ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028eb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00028ec0: 7c20 2020 2020 2020 6820 2020 2020 2020 | h │ │ │ │ 00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ee0: 207c 0a7c 2020 2020 2020 2020 3420 2020 |.| 4 │ │ │ │ -00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ef0: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ 00028f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f10: 2020 2020 7c0a 7c20 2020 2020 2020 6820 |.| h │ │ │ │ -00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028f50: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028f20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00028f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f50: 2d2d 2d2d 2d2d 2d2b 0a2d 2d2d 2d2d 2d2d -------+.------- │ │ │ │ +00028f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2d -------------+.- │ │ │ │ -00028fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00029000: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00029010: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00029020: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00029030: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00029040: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00029050: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00029060: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -00029070: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -00029080: 3233 3738 3a30 2e0a 1f0a 4669 6c65 3a20 2378:0....File: │ │ │ │ -00029090: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -000290a0: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ -000290b0: 3a20 5365 6772 652c 204e 6578 743a 2054 : Segre, Next: T │ │ │ │ -000290c0: 6f72 6963 4368 6f77 5269 6e67 2c20 5072 oricChowRing, Pr │ │ │ │ -000290d0: 6576 3a20 7072 6f62 6162 696c 6973 7469 ev: probabilisti │ │ │ │ -000290e0: 6320 616c 676f 7269 7468 6d2c 2055 703a c algorithm, Up: │ │ │ │ -000290f0: 2054 6f70 0a0a 5365 6772 6520 2d2d 2054 Top..Segre -- T │ │ │ │ -00029100: 6865 2053 6567 7265 2063 6c61 7373 206f he Segre class o │ │ │ │ -00029110: 6620 6120 7375 6273 6368 656d 650a 2a2a f a subscheme.** │ │ │ │ -00029120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029140: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00029150: 3a20 0a20 2020 2020 2020 2053 6567 7265 : . Segre │ │ │ │ -00029160: 2049 0a20 2020 2020 2020 2053 6567 7265 I. Segre │ │ │ │ -00029170: 2841 2c49 290a 2020 2020 2020 2020 5365 (A,I). Se │ │ │ │ -00029180: 6772 6528 582c 4a29 0a20 2020 2020 2020 gre(X,J). │ │ │ │ -00029190: 2053 6567 7265 2843 682c 582c 4a29 0a20 Segre(Ch,X,J). │ │ │ │ -000291a0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -000291b0: 202a 2049 2c20 616e 202a 6e6f 7465 2069 * I, an *note i │ │ │ │ -000291c0: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -000291d0: 446f 6329 4964 6561 6c2c 2c20 6120 6d75 Doc)Ideal,, a mu │ │ │ │ -000291e0: 6c74 692d 686f 6d6f 6765 6e65 6f75 7320 lti-homogeneous │ │ │ │ -000291f0: 6964 6561 6c20 696e 2061 0a20 2020 2020 ideal in a. │ │ │ │ -00029200: 2020 2067 7261 6465 6420 706f 6c79 6e6f graded polyno │ │ │ │ -00029210: 6d69 616c 2072 696e 6720 6f76 6572 2061 mial ring over a │ │ │ │ -00029220: 2066 6965 6c64 2064 6566 696e 696e 6720 field defining │ │ │ │ -00029230: 6120 636c 6f73 6564 2073 7562 7363 6865 a closed subsche │ │ │ │ -00029240: 6d65 2056 206f 660a 2020 2020 2020 2020 me V of. │ │ │ │ -00029250: 5c50 505e 7b6e 5f31 7d78 2e2e 2e78 5c50 \PP^{n_1}x...x\P │ │ │ │ -00029260: 505e 7b6e 5f6d 7d0a 2020 2020 2020 2a20 P^{n_m}. * │ │ │ │ -00029270: 412c 2061 202a 6e6f 7465 2071 756f 7469 A, a *note quoti │ │ │ │ -00029280: 656e 7420 7269 6e67 3a20 284d 6163 6175 ent ring: (Macau │ │ │ │ -00029290: 6c61 7932 446f 6329 5175 6f74 6965 6e74 lay2Doc)Quotient │ │ │ │ -000292a0: 5269 6e67 2c2c 0a20 2020 2020 2020 2041 Ring,,. A │ │ │ │ -000292b0: 3d5c 5a5a 5b68 5f31 2c2e 2e2e 2c68 5f6d =\ZZ[h_1,...,h_m │ │ │ │ -000292c0: 5d2f 2868 5f31 5e7b 6e5f 312b 317d 2c2e ]/(h_1^{n_1+1},. │ │ │ │ -000292d0: 2e2e 2c68 5f6d 5e7b 6e5f 6d2b 317d 2920 ..,h_m^{n_m+1}) │ │ │ │ -000292e0: 7175 6f74 6965 6e74 2072 696e 670a 2020 quotient ring. │ │ │ │ -000292f0: 2020 2020 2020 7265 7072 6573 656e 7469 representi │ │ │ │ -00029300: 6e67 2074 6865 2043 686f 7720 7269 6e67 ng the Chow ring │ │ │ │ -00029310: 206f 6620 5c50 505e 7b6e 5f31 7d78 2e2e of \PP^{n_1}x.. │ │ │ │ -00029320: 2e78 5c50 505e 7b6e 5f6d 7d2c 2074 6869 .x\PP^{n_m}, thi │ │ │ │ -00029330: 7320 7269 6e67 2073 686f 756c 640a 2020 s ring should. │ │ │ │ -00029340: 2020 2020 2020 6265 2062 7569 6c74 2075 be built u │ │ │ │ -00029350: 7369 6e67 2074 6865 202a 6e6f 7465 2043 sing the *note C │ │ │ │ -00029360: 686f 7752 696e 673a 2043 686f 7752 696e howRing: ChowRin │ │ │ │ -00029370: 672c 2063 6f6d 6d61 6e64 0a20 2020 2020 g, command. │ │ │ │ -00029380: 202a 204a 2c20 616e 202a 6e6f 7465 2069 * J, an *note i │ │ │ │ -00029390: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -000293a0: 446f 6329 4964 6561 6c2c 2c20 696e 2074 Doc)Ideal,, in t │ │ │ │ -000293b0: 6865 2067 7261 6465 6420 706f 6c79 6e6f he graded polyno │ │ │ │ -000293c0: 6d69 616c 2072 696e 670a 2020 2020 2020 mial ring. │ │ │ │ -000293d0: 2020 7768 6963 6820 6973 2063 6f6f 7264 which is coord │ │ │ │ -000293e0: 696e 6174 6520 7269 6e67 206f 6620 7468 inate ring of th │ │ │ │ -000293f0: 6520 4e6f 726d 616c 2054 6f72 6963 2056 e Normal Toric V │ │ │ │ -00029400: 6172 6965 7479 2058 0a20 2020 2020 202a ariety X. * │ │ │ │ -00029410: 2058 2c20 6120 2a6e 6f74 6520 6e6f 726d X, a *note norm │ │ │ │ -00029420: 616c 2074 6f72 6963 2076 6172 6965 7479 al toric variety │ │ │ │ -00029430: 3a0a 2020 2020 2020 2020 284e 6f72 6d61 :. (Norma │ │ │ │ -00029440: 6c54 6f72 6963 5661 7269 6574 6965 7329 lToricVarieties) │ │ │ │ -00029450: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ -00029460: 7479 2c2c 2077 6869 6368 2069 7320 7468 ty,, which is th │ │ │ │ -00029470: 6520 616d 6269 656e 7420 7370 6163 650a e ambient space. │ │ │ │ -00029480: 2020 2020 2020 2020 7768 6963 6820 636f which co │ │ │ │ -00029490: 6e74 6169 6e73 2056 284a 290a 2020 2020 ntains V(J). │ │ │ │ -000294a0: 2020 2a20 4368 2c20 6120 2a6e 6f74 6520 * Ch, a *note │ │ │ │ -000294b0: 7175 6f74 6965 6e74 2072 696e 673a 2028 quotient ring: ( │ │ │ │ -000294c0: 4d61 6361 756c 6179 3244 6f63 2951 756f Macaulay2Doc)Quo │ │ │ │ -000294d0: 7469 656e 7452 696e 672c 2c20 7468 6520 tientRing,, the │ │ │ │ -000294e0: 4368 6f77 2072 696e 670a 2020 2020 2020 Chow ring. │ │ │ │ -000294f0: 2020 6f66 2074 6865 2074 6f72 6963 2076 of the toric v │ │ │ │ -00029500: 6172 6965 7479 2058 2c20 4368 3d28 7269 ariety X, Ch=(ri │ │ │ │ -00029510: 6e67 204a 292f 2853 522b 4c52 2920 7768 ng J)/(SR+LR) wh │ │ │ │ -00029520: 6572 6520 5352 2069 7320 7468 650a 2020 ere SR is the. │ │ │ │ -00029530: 2020 2020 2020 5374 616e 6c65 792d 5265 Stanley-Re │ │ │ │ -00029540: 6973 6e65 7220 6964 6561 6c20 6f66 2074 isner ideal of t │ │ │ │ -00029550: 6865 2066 616e 2064 6566 696e 696e 6720 he fan defining │ │ │ │ -00029560: 5820 616e 6420 4c52 2069 7320 7468 6520 X and LR is the │ │ │ │ -00029570: 6c69 6e65 6172 0a20 2020 2020 2020 2072 linear. r │ │ │ │ -00029580: 656c 6174 696f 6e73 2069 6465 616c 2c20 elations ideal, │ │ │ │ -00029590: 7468 6973 2072 696e 6720 7368 6f75 6c64 this ring should │ │ │ │ -000295a0: 2062 6520 6275 696c 7420 7573 696e 6720 be built using │ │ │ │ -000295b0: 7468 6520 2a6e 6f74 650a 2020 2020 2020 the *note. │ │ │ │ -000295c0: 2020 546f 7269 6343 686f 7752 696e 673a ToricChowRing: │ │ │ │ -000295d0: 2054 6f72 6963 4368 6f77 5269 6e67 2c20 ToricChowRing, │ │ │ │ -000295e0: 636f 6d6d 616e 640a 2020 2a20 2a6e 6f74 command. * *not │ │ │ │ -000295f0: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -00029600: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -00029610: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -00029620: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -00029630: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -00029640: 436f 6d70 4d65 7468 6f64 2028 6d69 7373 CompMethod (miss │ │ │ │ -00029650: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -00029660: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -00029670: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ -00029680: 2050 726f 6a65 6374 6976 6544 6567 7265 ProjectiveDegre │ │ │ │ -00029690: 652c 2050 726f 6a65 6374 6976 6544 6567 e, ProjectiveDeg │ │ │ │ -000296a0: 7265 652c 2074 6869 7320 616c 676f 7269 ree, this algori │ │ │ │ -000296b0: 7468 6d20 6d61 7920 6265 2075 7365 6420 thm may be used │ │ │ │ -000296c0: 666f 720a 2020 2020 2020 2020 7375 6273 for. subs │ │ │ │ -000296d0: 6368 656d 6573 206f 6620 616e 7920 6170 chemes of any ap │ │ │ │ -000296e0: 706c 6963 6162 6c65 2074 6f72 6963 2076 plicable toric v │ │ │ │ -000296f0: 6172 6965 7479 2028 7468 6973 206d 6179 ariety (this may │ │ │ │ -00029700: 2062 6520 6368 6563 6b65 6420 7573 696e be checked usin │ │ │ │ -00029710: 670a 2020 2020 2020 2020 7468 6520 2a6e g. the *n │ │ │ │ -00029720: 6f74 6520 4368 6563 6b54 6f72 6963 5661 ote CheckToricVa │ │ │ │ -00029730: 7269 6574 7956 616c 6964 3a20 4368 6563 rietyValid: Chec │ │ │ │ -00029740: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ -00029750: 6964 2c20 636f 6d6d 616e 6429 0a20 2020 id, command). │ │ │ │ -00029760: 2020 202a 2043 6f6d 704d 6574 686f 6420 * CompMethod │ │ │ │ -00029770: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ -00029780: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ -00029790: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ -000297a0: 2020 2020 2020 5072 6f6a 6563 7469 7665 Projective │ │ │ │ -000297b0: 4465 6772 6565 2c20 506e 5265 7369 6475 Degree, PnResidu │ │ │ │ -000297c0: 616c 2c20 7468 6973 2061 6c67 6f72 6974 al, this algorit │ │ │ │ -000297d0: 686d 206d 6179 2062 6520 7573 6564 2066 hm may be used f │ │ │ │ -000297e0: 6f72 2073 7562 7363 6865 6d65 730a 2020 or subschemes. │ │ │ │ -000297f0: 2020 2020 2020 6f66 205c 5050 5e6e 206f of \PP^n o │ │ │ │ -00029800: 6e6c 790a 2020 2020 2020 2a20 4f75 7470 nly. * Outp │ │ │ │ -00029810: 7574 203d 3e20 2e2e 2e2c 2064 6566 6175 ut => ..., defau │ │ │ │ -00029820: 6c74 2076 616c 7565 2043 686f 7752 696e lt value ChowRin │ │ │ │ -00029830: 6745 6c65 6d65 6e74 2c20 4368 6f77 5269 gElement, ChowRi │ │ │ │ -00029840: 6e67 456c 656d 656e 742c 2072 6574 7572 ngElement, retur │ │ │ │ -00029850: 6e73 0a20 2020 2020 2020 2061 2052 696e ns. a Rin │ │ │ │ -00029860: 6745 6c65 6d65 6e74 2069 6e20 7468 6520 gElement in the │ │ │ │ -00029870: 4368 6f77 2072 696e 6720 6f66 2074 6865 Chow ring of the │ │ │ │ -00029880: 2061 7070 726f 7072 6961 7465 2061 6d62 appropriate amb │ │ │ │ -00029890: 6965 6e74 2073 7061 6365 0a20 2020 2020 ient space. │ │ │ │ -000298a0: 202a 204f 7574 7075 7420 3d3e 202e 2e2e * Output => ... │ │ │ │ -000298b0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -000298c0: 4368 6f77 5269 6e67 456c 656d 656e 742c ChowRingElement, │ │ │ │ -000298d0: 2048 6173 6846 6f72 6d2c 2048 6173 6846 HashForm, HashF │ │ │ │ -000298e0: 6f72 6d0a 2020 2020 2020 2020 7265 7475 orm. retu │ │ │ │ -000298f0: 726e 7320 6120 4d75 7461 626c 6548 6173 rns a MutableHas │ │ │ │ -00029900: 6854 6162 6c65 2063 6f6e 7461 696e 696e hTable containin │ │ │ │ -00029910: 6720 7468 6520 666f 6c6c 6f77 696e 6720 g the following │ │ │ │ -00029920: 6b65 7973 3a20 2247 2220 2874 6865 0a20 keys: "G" (the. │ │ │ │ -00029930: 2020 2020 2020 2070 6f6c 796e 6f6d 6961 polynomia │ │ │ │ -00029940: 6c20 7769 7468 2063 6f65 6666 6963 6965 l with coefficie │ │ │ │ -00029950: 6e74 7320 6f66 2074 6865 2068 7970 6572 nts of the hyper │ │ │ │ -00029960: 706c 616e 6520 636c 6173 7365 7320 7265 plane classes re │ │ │ │ -00029970: 7072 6573 656e 7469 6e67 2074 6865 0a20 presenting the. │ │ │ │ -00029980: 2020 2020 2020 2070 726f 6a65 6374 6976 projectiv │ │ │ │ -00029990: 6520 6465 6772 6565 7329 2c20 2247 6c69 e degrees), "Gli │ │ │ │ -000299a0: 7374 2220 2874 6865 206c 6973 7420 666f st" (the list fo │ │ │ │ -000299b0: 726d 206f 6620 2247 2229 202c 2022 5365 rm of "G") , "Se │ │ │ │ -000299c0: 6772 6522 2028 7468 650a 2020 2020 2020 gre" (the. │ │ │ │ -000299d0: 2020 746f 7461 6c20 5365 6772 6520 636c total Segre cl │ │ │ │ -000299e0: 6173 7320 6f66 2074 6865 2069 6e70 7574 ass of the input │ │ │ │ -000299f0: 292c 2253 6567 7265 4c69 7374 2220 2874 ),"SegreList" (t │ │ │ │ -00029a00: 6865 206c 6973 7420 666f 726d 206f 6620 he list form of │ │ │ │ -00029a10: 2253 6567 7265 2229 0a20 202a 204f 7574 "Segre"). * Out │ │ │ │ -00029a20: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -00029a30: 2a6e 6f74 6520 7269 6e67 2065 6c65 6d65 *note ring eleme │ │ │ │ -00029a40: 6e74 3a20 284d 6163 6175 6c61 7932 446f nt: (Macaulay2Do │ │ │ │ -00029a50: 6329 5269 6e67 456c 656d 656e 742c 2c20 c)RingElement,, │ │ │ │ -00029a60: 7468 6520 7075 7368 666f 7277 6172 6420 the pushforward │ │ │ │ -00029a70: 6f66 0a20 2020 2020 2020 2074 6865 2074 of. the t │ │ │ │ -00029a80: 6f74 616c 2053 6567 7265 2063 6c61 7373 otal Segre class │ │ │ │ -00029a90: 206f 6620 7468 6520 7363 6865 6d65 2056 of the scheme V │ │ │ │ -00029aa0: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ -00029ab0: 696e 7075 7420 6964 6561 6c20 746f 2074 input ideal to t │ │ │ │ -00029ac0: 6865 0a20 2020 2020 2020 2061 7070 726f he. appro │ │ │ │ -00029ad0: 7072 6961 7465 2043 686f 7720 7269 6e67 priate Chow ring │ │ │ │ -00029ae0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00029af0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a46 6f72 2061 =========..For a │ │ │ │ -00029b00: 2073 7562 7363 6865 6d65 2056 206f 6620 subscheme V of │ │ │ │ -00029b10: 616e 2061 7070 6c69 6361 626c 6520 746f an applicable to │ │ │ │ -00029b20: 7269 6320 7661 7269 6574 7920 5820 7468 ric variety X th │ │ │ │ -00029b30: 6973 2063 6f6d 6d61 6e64 2063 6f6d 7075 is command compu │ │ │ │ -00029b40: 7465 7320 7468 650a 7075 7368 2d66 6f72 tes the.push-for │ │ │ │ -00029b50: 7761 7264 206f 6620 7468 6520 746f 7461 ward of the tota │ │ │ │ -00029b60: 6c20 5365 6772 6520 636c 6173 7320 7328 l Segre class s( │ │ │ │ -00029b70: 562c 5829 206f 6620 5620 696e 2058 2074 V,X) of V in X t │ │ │ │ -00029b80: 6f20 7468 6520 4368 6f77 2072 696e 6720 o the Chow ring │ │ │ │ -00029b90: 6f66 2058 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d of X...+-------- │ │ │ │ -00029ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bc0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 6574 -----+.|i1 : set │ │ │ │ -00029bd0: 5261 6e64 6f6d 5365 6564 2037 323b 2020 RandomSeed 72; │ │ │ │ -00029be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029bf0: 2020 2020 207c 0a7c 202d 2d20 7365 7474 |.| -- sett │ │ │ │ -00029c00: 696e 6720 7261 6e64 6f6d 2073 6565 6420 ing random seed │ │ │ │ -00029c10: 746f 2037 3220 2020 2020 2020 2020 2020 to 72 │ │ │ │ -00029c20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c50: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 203d -----+.|i2 : R = │ │ │ │ -00029c60: 205a 5a2f 3332 3734 395b 772c 792c 7a5d ZZ/32749[w,y,z] │ │ │ │ +00028fa0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00028fb0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00028fc0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00028fd0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00028fe0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00028ff0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00029000: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00029010: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ +00029020: 6c61 7373 6573 2e6d 323a 3233 3738 3a30 lasses.m2:2378:0 │ │ │ │ +00029030: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ +00029040: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ +00029050: 696e 666f 2c20 4e6f 6465 3a20 5365 6772 info, Node: Segr │ │ │ │ +00029060: 652c 204e 6578 743a 2054 6f72 6963 4368 e, Next: ToricCh │ │ │ │ +00029070: 6f77 5269 6e67 2c20 5072 6576 3a20 7072 owRing, Prev: pr │ │ │ │ +00029080: 6f62 6162 696c 6973 7469 6320 616c 676f obabilistic algo │ │ │ │ +00029090: 7269 7468 6d2c 2055 703a 2054 6f70 0a0a rithm, Up: Top.. │ │ │ │ +000290a0: 5365 6772 6520 2d2d 2054 6865 2053 6567 Segre -- The Seg │ │ │ │ +000290b0: 7265 2063 6c61 7373 206f 6620 6120 7375 re class of a su │ │ │ │ +000290c0: 6273 6368 656d 650a 2a2a 2a2a 2a2a 2a2a bscheme.******** │ │ │ │ +000290d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000290e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000290f0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00029100: 2020 2020 2053 6567 7265 2049 0a20 2020 Segre I. │ │ │ │ +00029110: 2020 2020 2053 6567 7265 2841 2c49 290a Segre(A,I). │ │ │ │ +00029120: 2020 2020 2020 2020 5365 6772 6528 582c Segre(X, │ │ │ │ +00029130: 4a29 0a20 2020 2020 2020 2053 6567 7265 J). Segre │ │ │ │ +00029140: 2843 682c 582c 4a29 0a20 202a 2049 6e70 (Ch,X,J). * Inp │ │ │ │ +00029150: 7574 733a 0a20 2020 2020 202a 2049 2c20 uts:. * I, │ │ │ │ +00029160: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ +00029170: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ +00029180: 6561 6c2c 2c20 6120 6d75 6c74 692d 686f eal,, a multi-ho │ │ │ │ +00029190: 6d6f 6765 6e65 6f75 7320 6964 6561 6c20 mogeneous ideal │ │ │ │ +000291a0: 696e 2061 0a20 2020 2020 2020 2067 7261 in a. gra │ │ │ │ +000291b0: 6465 6420 706f 6c79 6e6f 6d69 616c 2072 ded polynomial r │ │ │ │ +000291c0: 696e 6720 6f76 6572 2061 2066 6965 6c64 ing over a field │ │ │ │ +000291d0: 2064 6566 696e 696e 6720 6120 636c 6f73 defining a clos │ │ │ │ +000291e0: 6564 2073 7562 7363 6865 6d65 2056 206f ed subscheme V o │ │ │ │ +000291f0: 660a 2020 2020 2020 2020 5c50 505e 7b6e f. \PP^{n │ │ │ │ +00029200: 5f31 7d78 2e2e 2e78 5c50 505e 7b6e 5f6d _1}x...x\PP^{n_m │ │ │ │ +00029210: 7d0a 2020 2020 2020 2a20 412c 2061 202a }. * A, a * │ │ │ │ +00029220: 6e6f 7465 2071 756f 7469 656e 7420 7269 note quotient ri │ │ │ │ +00029230: 6e67 3a20 284d 6163 6175 6c61 7932 446f ng: (Macaulay2Do │ │ │ │ +00029240: 6329 5175 6f74 6965 6e74 5269 6e67 2c2c c)QuotientRing,, │ │ │ │ +00029250: 0a20 2020 2020 2020 2041 3d5c 5a5a 5b68 . A=\ZZ[h │ │ │ │ +00029260: 5f31 2c2e 2e2e 2c68 5f6d 5d2f 2868 5f31 _1,...,h_m]/(h_1 │ │ │ │ +00029270: 5e7b 6e5f 312b 317d 2c2e 2e2e 2c68 5f6d ^{n_1+1},...,h_m │ │ │ │ +00029280: 5e7b 6e5f 6d2b 317d 2920 7175 6f74 6965 ^{n_m+1}) quotie │ │ │ │ +00029290: 6e74 2072 696e 670a 2020 2020 2020 2020 nt ring. │ │ │ │ +000292a0: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ +000292b0: 2043 686f 7720 7269 6e67 206f 6620 5c50 Chow ring of \P │ │ │ │ +000292c0: 505e 7b6e 5f31 7d78 2e2e 2e78 5c50 505e P^{n_1}x...x\PP^ │ │ │ │ +000292d0: 7b6e 5f6d 7d2c 2074 6869 7320 7269 6e67 {n_m}, this ring │ │ │ │ +000292e0: 2073 686f 756c 640a 2020 2020 2020 2020 should. │ │ │ │ +000292f0: 6265 2062 7569 6c74 2075 7369 6e67 2074 be built using t │ │ │ │ +00029300: 6865 202a 6e6f 7465 2043 686f 7752 696e he *note ChowRin │ │ │ │ +00029310: 673a 2043 686f 7752 696e 672c 2063 6f6d g: ChowRing, com │ │ │ │ +00029320: 6d61 6e64 0a20 2020 2020 202a 204a 2c20 mand. * J, │ │ │ │ +00029330: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ +00029340: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ +00029350: 6561 6c2c 2c20 696e 2074 6865 2067 7261 eal,, in the gra │ │ │ │ +00029360: 6465 6420 706f 6c79 6e6f 6d69 616c 2072 ded polynomial r │ │ │ │ +00029370: 696e 670a 2020 2020 2020 2020 7768 6963 ing. whic │ │ │ │ +00029380: 6820 6973 2063 6f6f 7264 696e 6174 6520 h is coordinate │ │ │ │ +00029390: 7269 6e67 206f 6620 7468 6520 4e6f 726d ring of the Norm │ │ │ │ +000293a0: 616c 2054 6f72 6963 2056 6172 6965 7479 al Toric Variety │ │ │ │ +000293b0: 2058 0a20 2020 2020 202a 2058 2c20 6120 X. * X, a │ │ │ │ +000293c0: 2a6e 6f74 6520 6e6f 726d 616c 2074 6f72 *note normal tor │ │ │ │ +000293d0: 6963 2076 6172 6965 7479 3a0a 2020 2020 ic variety:. │ │ │ │ +000293e0: 2020 2020 284e 6f72 6d61 6c54 6f72 6963 (NormalToric │ │ │ │ +000293f0: 5661 7269 6574 6965 7329 4e6f 726d 616c Varieties)Normal │ │ │ │ +00029400: 546f 7269 6356 6172 6965 7479 2c2c 2077 ToricVariety,, w │ │ │ │ +00029410: 6869 6368 2069 7320 7468 6520 616d 6269 hich is the ambi │ │ │ │ +00029420: 656e 7420 7370 6163 650a 2020 2020 2020 ent space. │ │ │ │ +00029430: 2020 7768 6963 6820 636f 6e74 6169 6e73 which contains │ │ │ │ +00029440: 2056 284a 290a 2020 2020 2020 2a20 4368 V(J). * Ch │ │ │ │ +00029450: 2c20 6120 2a6e 6f74 6520 7175 6f74 6965 , a *note quotie │ │ │ │ +00029460: 6e74 2072 696e 673a 2028 4d61 6361 756c nt ring: (Macaul │ │ │ │ +00029470: 6179 3244 6f63 2951 756f 7469 656e 7452 ay2Doc)QuotientR │ │ │ │ +00029480: 696e 672c 2c20 7468 6520 4368 6f77 2072 ing,, the Chow r │ │ │ │ +00029490: 696e 670a 2020 2020 2020 2020 6f66 2074 ing. of t │ │ │ │ +000294a0: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ +000294b0: 2058 2c20 4368 3d28 7269 6e67 204a 292f X, Ch=(ring J)/ │ │ │ │ +000294c0: 2853 522b 4c52 2920 7768 6572 6520 5352 (SR+LR) where SR │ │ │ │ +000294d0: 2069 7320 7468 650a 2020 2020 2020 2020 is the. │ │ │ │ +000294e0: 5374 616e 6c65 792d 5265 6973 6e65 7220 Stanley-Reisner │ │ │ │ +000294f0: 6964 6561 6c20 6f66 2074 6865 2066 616e ideal of the fan │ │ │ │ +00029500: 2064 6566 696e 696e 6720 5820 616e 6420 defining X and │ │ │ │ +00029510: 4c52 2069 7320 7468 6520 6c69 6e65 6172 LR is the linear │ │ │ │ +00029520: 0a20 2020 2020 2020 2072 656c 6174 696f . relatio │ │ │ │ +00029530: 6e73 2069 6465 616c 2c20 7468 6973 2072 ns ideal, this r │ │ │ │ +00029540: 696e 6720 7368 6f75 6c64 2062 6520 6275 ing should be bu │ │ │ │ +00029550: 696c 7420 7573 696e 6720 7468 6520 2a6e ilt using the *n │ │ │ │ +00029560: 6f74 650a 2020 2020 2020 2020 546f 7269 ote. Tori │ │ │ │ +00029570: 6343 686f 7752 696e 673a 2054 6f72 6963 cChowRing: Toric │ │ │ │ +00029580: 4368 6f77 5269 6e67 2c20 636f 6d6d 616e ChowRing, comman │ │ │ │ +00029590: 640a 2020 2a20 2a6e 6f74 6520 4f70 7469 d. * *note Opti │ │ │ │ +000295a0: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ +000295b0: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ +000295c0: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ +000295d0: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ +000295e0: 3a0a 2020 2020 2020 2a20 436f 6d70 4d65 :. * CompMe │ │ │ │ +000295f0: 7468 6f64 2028 6d69 7373 696e 6720 646f thod (missing do │ │ │ │ +00029600: 6375 6d65 6e74 6174 696f 6e29 203d 3e20 cumentation) => │ │ │ │ +00029610: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00029620: 7565 0a20 2020 2020 2020 2050 726f 6a65 ue. Proje │ │ │ │ +00029630: 6374 6976 6544 6567 7265 652c 2050 726f ctiveDegree, Pro │ │ │ │ +00029640: 6a65 6374 6976 6544 6567 7265 652c 2074 jectiveDegree, t │ │ │ │ +00029650: 6869 7320 616c 676f 7269 7468 6d20 6d61 his algorithm ma │ │ │ │ +00029660: 7920 6265 2075 7365 6420 666f 720a 2020 y be used for. │ │ │ │ +00029670: 2020 2020 2020 7375 6273 6368 656d 6573 subschemes │ │ │ │ +00029680: 206f 6620 616e 7920 6170 706c 6963 6162 of any applicab │ │ │ │ +00029690: 6c65 2074 6f72 6963 2076 6172 6965 7479 le toric variety │ │ │ │ +000296a0: 2028 7468 6973 206d 6179 2062 6520 6368 (this may be ch │ │ │ │ +000296b0: 6563 6b65 6420 7573 696e 670a 2020 2020 ecked using. │ │ │ │ +000296c0: 2020 2020 7468 6520 2a6e 6f74 6520 4368 the *note Ch │ │ │ │ +000296d0: 6563 6b54 6f72 6963 5661 7269 6574 7956 eckToricVarietyV │ │ │ │ +000296e0: 616c 6964 3a20 4368 6563 6b54 6f72 6963 alid: CheckToric │ │ │ │ +000296f0: 5661 7269 6574 7956 616c 6964 2c20 636f VarietyValid, co │ │ │ │ +00029700: 6d6d 616e 6429 0a20 2020 2020 202a 2043 mmand). * C │ │ │ │ +00029710: 6f6d 704d 6574 686f 6420 286d 6973 7369 ompMethod (missi │ │ │ │ +00029720: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +00029730: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +00029740: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +00029750: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ +00029760: 2c20 506e 5265 7369 6475 616c 2c20 7468 , PnResidual, th │ │ │ │ +00029770: 6973 2061 6c67 6f72 6974 686d 206d 6179 is algorithm may │ │ │ │ +00029780: 2062 6520 7573 6564 2066 6f72 2073 7562 be used for sub │ │ │ │ +00029790: 7363 6865 6d65 730a 2020 2020 2020 2020 schemes. │ │ │ │ +000297a0: 6f66 205c 5050 5e6e 206f 6e6c 790a 2020 of \PP^n only. │ │ │ │ +000297b0: 2020 2020 2a20 4f75 7470 7574 203d 3e20 * Output => │ │ │ │ +000297c0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +000297d0: 7565 2043 686f 7752 696e 6745 6c65 6d65 ue ChowRingEleme │ │ │ │ +000297e0: 6e74 2c20 4368 6f77 5269 6e67 456c 656d nt, ChowRingElem │ │ │ │ +000297f0: 656e 742c 2072 6574 7572 6e73 0a20 2020 ent, returns. │ │ │ │ +00029800: 2020 2020 2061 2052 696e 6745 6c65 6d65 a RingEleme │ │ │ │ +00029810: 6e74 2069 6e20 7468 6520 4368 6f77 2072 nt in the Chow r │ │ │ │ +00029820: 696e 6720 6f66 2074 6865 2061 7070 726f ing of the appro │ │ │ │ +00029830: 7072 6961 7465 2061 6d62 6965 6e74 2073 priate ambient s │ │ │ │ +00029840: 7061 6365 0a20 2020 2020 202a 204f 7574 pace. * Out │ │ │ │ +00029850: 7075 7420 3d3e 202e 2e2e 2c20 6465 6661 put => ..., defa │ │ │ │ +00029860: 756c 7420 7661 6c75 6520 4368 6f77 5269 ult value ChowRi │ │ │ │ +00029870: 6e67 456c 656d 656e 742c 2048 6173 6846 ngElement, HashF │ │ │ │ +00029880: 6f72 6d2c 2048 6173 6846 6f72 6d0a 2020 orm, HashForm. │ │ │ │ +00029890: 2020 2020 2020 7265 7475 726e 7320 6120 returns a │ │ │ │ +000298a0: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ +000298b0: 2063 6f6e 7461 696e 696e 6720 7468 6520 containing the │ │ │ │ +000298c0: 666f 6c6c 6f77 696e 6720 6b65 7973 3a20 following keys: │ │ │ │ +000298d0: 2247 2220 2874 6865 0a20 2020 2020 2020 "G" (the. │ │ │ │ +000298e0: 2070 6f6c 796e 6f6d 6961 6c20 7769 7468 polynomial with │ │ │ │ +000298f0: 2063 6f65 6666 6963 6965 6e74 7320 6f66 coefficients of │ │ │ │ +00029900: 2074 6865 2068 7970 6572 706c 616e 6520 the hyperplane │ │ │ │ +00029910: 636c 6173 7365 7320 7265 7072 6573 656e classes represen │ │ │ │ +00029920: 7469 6e67 2074 6865 0a20 2020 2020 2020 ting the. │ │ │ │ +00029930: 2070 726f 6a65 6374 6976 6520 6465 6772 projective degr │ │ │ │ +00029940: 6565 7329 2c20 2247 6c69 7374 2220 2874 ees), "Glist" (t │ │ │ │ +00029950: 6865 206c 6973 7420 666f 726d 206f 6620 he list form of │ │ │ │ +00029960: 2247 2229 202c 2022 5365 6772 6522 2028 "G") , "Segre" ( │ │ │ │ +00029970: 7468 650a 2020 2020 2020 2020 746f 7461 the. tota │ │ │ │ +00029980: 6c20 5365 6772 6520 636c 6173 7320 6f66 l Segre class of │ │ │ │ +00029990: 2074 6865 2069 6e70 7574 292c 2253 6567 the input),"Seg │ │ │ │ +000299a0: 7265 4c69 7374 2220 2874 6865 206c 6973 reList" (the lis │ │ │ │ +000299b0: 7420 666f 726d 206f 6620 2253 6567 7265 t form of "Segre │ │ │ │ +000299c0: 2229 0a20 202a 204f 7574 7075 7473 3a0a "). * Outputs:. │ │ │ │ +000299d0: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +000299e0: 7269 6e67 2065 6c65 6d65 6e74 3a20 284d ring element: (M │ │ │ │ +000299f0: 6163 6175 6c61 7932 446f 6329 5269 6e67 acaulay2Doc)Ring │ │ │ │ +00029a00: 456c 656d 656e 742c 2c20 7468 6520 7075 Element,, the pu │ │ │ │ +00029a10: 7368 666f 7277 6172 6420 6f66 0a20 2020 shforward of. │ │ │ │ +00029a20: 2020 2020 2074 6865 2074 6f74 616c 2053 the total S │ │ │ │ +00029a30: 6567 7265 2063 6c61 7373 206f 6620 7468 egre class of th │ │ │ │ +00029a40: 6520 7363 6865 6d65 2056 2064 6566 696e e scheme V defin │ │ │ │ +00029a50: 6564 2062 7920 7468 6520 696e 7075 7420 ed by the input │ │ │ │ +00029a60: 6964 6561 6c20 746f 2074 6865 0a20 2020 ideal to the. │ │ │ │ +00029a70: 2020 2020 2061 7070 726f 7072 6961 7465 appropriate │ │ │ │ +00029a80: 2043 686f 7720 7269 6e67 0a0a 4465 7363 Chow ring..Desc │ │ │ │ +00029a90: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00029aa0: 3d3d 3d0a 0a46 6f72 2061 2073 7562 7363 ===..For a subsc │ │ │ │ +00029ab0: 6865 6d65 2056 206f 6620 616e 2061 7070 heme V of an app │ │ │ │ +00029ac0: 6c69 6361 626c 6520 746f 7269 6320 7661 licable toric va │ │ │ │ +00029ad0: 7269 6574 7920 5820 7468 6973 2063 6f6d riety X this com │ │ │ │ +00029ae0: 6d61 6e64 2063 6f6d 7075 7465 7320 7468 mand computes th │ │ │ │ +00029af0: 650a 7075 7368 2d66 6f72 7761 7264 206f e.push-forward o │ │ │ │ +00029b00: 6620 7468 6520 746f 7461 6c20 5365 6772 f the total Segr │ │ │ │ +00029b10: 6520 636c 6173 7320 7328 562c 5829 206f e class s(V,X) o │ │ │ │ +00029b20: 6620 5620 696e 2058 2074 6f20 7468 6520 f V in X to the │ │ │ │ +00029b30: 4368 6f77 2072 696e 6720 6f66 2058 2e0a Chow ring of X.. │ │ │ │ +00029b40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029b70: 0a7c 6931 203a 2073 6574 5261 6e64 6f6d .|i1 : setRandom │ │ │ │ +00029b80: 5365 6564 2037 323b 2020 2020 2020 2020 Seed 72; │ │ │ │ +00029b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ba0: 0a7c 202d 2d20 7365 7474 696e 6720 7261 .| -- setting ra │ │ │ │ +00029bb0: 6e64 6f6d 2073 6565 6420 746f 2037 3220 ndom seed to 72 │ │ │ │ +00029bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029bd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029c00: 0a7c 6932 203a 2052 203d 205a 5a2f 3332 .|i2 : R = ZZ/32 │ │ │ │ +00029c10: 3734 395b 772c 792c 7a5d 2020 2020 2020 749[w,y,z] │ │ │ │ +00029c20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029c60: 0a7c 6f32 203d 2052 2020 2020 2020 2020 .|o2 = R │ │ │ │ 00029c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029c90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ -00029cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ce0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d10: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -00029d20: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ -00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d40: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d70: 2d2d 2d2d 2d2b 0a7c 6933 203a 2053 6567 -----+.|i3 : Seg │ │ │ │ -00029d80: 7265 2869 6465 616c 2877 2a79 292c 436f re(ideal(w*y),Co │ │ │ │ -00029d90: 6d70 4d65 7468 6f64 3d3e 506e 5265 7369 mpMethod=>PnResi │ │ │ │ -00029da0: 6475 616c 297c 0a7c 2020 2020 2020 2020 dual)|.| │ │ │ │ -00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029de0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00029cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029cc0: 0a7c 6f32 203a 2050 6f6c 796e 6f6d 6961 .|o2 : Polynomia │ │ │ │ +00029cd0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ +00029ce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029cf0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029d20: 0a7c 6933 203a 2053 6567 7265 2869 6465 .|i3 : Segre(ide │ │ │ │ +00029d30: 616c 2877 2a79 292c 436f 6d70 4d65 7468 al(w*y),CompMeth │ │ │ │ +00029d40: 6f64 3d3e 506e 5265 7369 6475 616c 297c od=>PnResidual)| │ │ │ │ +00029d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029d80: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029db0: 0a7c 6f33 203d 202d 2034 4820 202b 2032 .|o3 = - 4H + 2 │ │ │ │ +00029dc0: 4820 2020 2020 2020 2020 2020 2020 2020 H │ │ │ │ +00029dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029de0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 2020 2020 207c 0a7c 6f33 203d 202d 2034 |.|o3 = - 4 │ │ │ │ -00029e10: 4820 202b 2032 4820 2020 2020 2020 2020 H + 2H │ │ │ │ +00029e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029e10: 0a7c 2020 2020 205a 5a5b 485d 2020 2020 .| ZZ[H] │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029e40: 0a7c 6f33 203a 202d 2d2d 2d2d 2020 2020 .|o3 : ----- │ │ │ │ 00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e60: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -00029e70: 485d 2020 2020 2020 2020 2020 2020 2020 H] │ │ │ │ +00029e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029e70: 0a7c 2020 2020 2020 2020 3320 2020 2020 .| 3 │ │ │ │ 00029e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e90: 2020 2020 207c 0a7c 6f33 203a 202d 2d2d |.|o3 : --- │ │ │ │ -00029ea0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00029e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ea0: 0a7c 2020 2020 2020 2048 2020 2020 2020 .| H │ │ │ │ 00029eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029ed0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00029ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ef0: 2020 2020 207c 0a7c 2020 2020 2020 2048 |.| H │ │ │ │ -00029f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f50: 2d2d 2d2d 2d2b 0a7c 6934 203a 2041 3d43 -----+.|i4 : A=C │ │ │ │ -00029f60: 686f 7752 696e 6728 5229 2020 2020 2020 howRing(R) │ │ │ │ +00029ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ed0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029f00: 0a7c 6934 203a 2041 3d43 686f 7752 696e .|i4 : A=ChowRin │ │ │ │ +00029f10: 6728 5229 2020 2020 2020 2020 2020 2020 g(R) │ │ │ │ +00029f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029f60: 0a7c 6f34 203d 2041 2020 2020 2020 2020 .|o4 = A │ │ │ │ 00029f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029f90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fb0: 2020 2020 207c 0a7c 6f34 203d 2041 2020 |.|o4 = A │ │ │ │ -00029fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a010: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ -0002a020: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ -0002a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a040: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a070: 2d2d 2d2d 2d2b 0a7c 6935 203a 2053 6567 -----+.|i5 : Seg │ │ │ │ -0002a080: 7265 2841 2c69 6465 616c 2877 5e32 2a79 re(A,ideal(w^2*y │ │ │ │ -0002a090: 2c77 2a79 5e32 2929 2020 2020 2020 2020 ,w*y^2)) │ │ │ │ -0002a0a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a0e0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a100: 2020 2020 207c 0a7c 6f35 203d 202d 2033 |.|o5 = - 3 │ │ │ │ -0002a110: 6820 202b 2032 6820 2020 2020 2020 2020 h + 2h │ │ │ │ +00029fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029fc0: 0a7c 6f34 203a 2051 756f 7469 656e 7452 .|o4 : QuotientR │ │ │ │ +00029fd0: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00029fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ff0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002a000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002a020: 0a7c 6935 203a 2053 6567 7265 2841 2c69 .|i5 : Segre(A,i │ │ │ │ +0002a030: 6465 616c 2877 5e32 2a79 2c77 2a79 5e32 deal(w^2*y,w*y^2 │ │ │ │ +0002a040: 2929 2020 2020 2020 2020 2020 2020 207c )) | │ │ │ │ +0002a050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a080: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a0b0: 0a7c 6f35 203d 202d 2033 6820 202b 2032 .|o5 = - 3h + 2 │ │ │ │ +0002a0c0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002a0d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a0e0: 0a7c 2020 2020 2020 2020 2031 2020 2020 .| 1 │ │ │ │ +0002a0f0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0002a100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a140: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +0002a130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a140: 0a7c 6f35 203a 2041 2020 2020 2020 2020 .|o5 : A │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a190: 2020 2020 207c 0a7c 6f35 203a 2041 2020 |.|o5 : A │ │ │ │ -0002a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1f0: 2d2d 2d2d 2d2b 0a0a 4e6f 7720 636f 6e73 -----+..Now cons │ │ │ │ -0002a200: 6964 6572 2061 6e20 6578 616d 706c 6520 ider an example │ │ │ │ -0002a210: 696e 205c 5050 5e32 205c 7469 6d65 7320 in \PP^2 \times │ │ │ │ -0002a220: 5c50 505e 322c 2069 6620 7765 2069 6e70 \PP^2, if we inp │ │ │ │ -0002a230: 7574 2074 6865 2043 686f 7720 7269 6e67 ut the Chow ring │ │ │ │ -0002a240: 2041 2074 6865 0a6f 7574 7075 7420 7769 A the.output wi │ │ │ │ -0002a250: 6c6c 2062 6520 7265 7475 726e 6564 2069 ll be returned i │ │ │ │ -0002a260: 6e20 7468 6520 7361 6d65 2072 696e 672e n the same ring. │ │ │ │ -0002a270: 2054 6f20 656e 7375 7265 2070 726f 7065 To ensure prope │ │ │ │ -0002a280: 7220 6675 6e63 7469 6f6e 206f 6620 7468 r function of th │ │ │ │ -0002a290: 650a 6d65 7468 6f64 7320 7765 2062 7569 e.methods we bui │ │ │ │ -0002a2a0: 6c64 2074 6865 2043 686f 7720 7269 6e67 ld the Chow ring │ │ │ │ -0002a2b0: 2075 7369 6e67 2074 6865 202a 6e6f 7465 using the *note │ │ │ │ -0002a2c0: 2043 686f 7752 696e 673a 2043 686f 7752 ChowRing: ChowR │ │ │ │ -0002a2d0: 696e 672c 2063 6f6d 6d61 6e64 2e20 5765 ing, command. We │ │ │ │ -0002a2e0: 0a6d 6179 2061 6c73 6f20 7265 7475 726e .may also return │ │ │ │ -0002a2f0: 2061 204d 7574 6162 6c65 4861 7368 5461 a MutableHashTa │ │ │ │ -0002a300: 626c 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ble...+--------- │ │ │ │ -0002a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a350: 2d2d 2d2d 2b0a 7c69 3620 3a20 523d 4d75 ----+.|i6 : R=Mu │ │ │ │ -0002a360: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -0002a370: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ +0002a160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a170: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002a1a0: 0a0a 4e6f 7720 636f 6e73 6964 6572 2061 ..Now consider a │ │ │ │ +0002a1b0: 6e20 6578 616d 706c 6520 696e 205c 5050 n example in \PP │ │ │ │ +0002a1c0: 5e32 205c 7469 6d65 7320 5c50 505e 322c ^2 \times \PP^2, │ │ │ │ +0002a1d0: 2069 6620 7765 2069 6e70 7574 2074 6865 if we input the │ │ │ │ +0002a1e0: 2043 686f 7720 7269 6e67 2041 2074 6865 Chow ring A the │ │ │ │ +0002a1f0: 0a6f 7574 7075 7420 7769 6c6c 2062 6520 .output will be │ │ │ │ +0002a200: 7265 7475 726e 6564 2069 6e20 7468 6520 returned in the │ │ │ │ +0002a210: 7361 6d65 2072 696e 672e 2054 6f20 656e same ring. To en │ │ │ │ +0002a220: 7375 7265 2070 726f 7065 7220 6675 6e63 sure proper func │ │ │ │ +0002a230: 7469 6f6e 206f 6620 7468 650a 6d65 7468 tion of the.meth │ │ │ │ +0002a240: 6f64 7320 7765 2062 7569 6c64 2074 6865 ods we build the │ │ │ │ +0002a250: 2043 686f 7720 7269 6e67 2075 7369 6e67 Chow ring using │ │ │ │ +0002a260: 2074 6865 202a 6e6f 7465 2043 686f 7752 the *note ChowR │ │ │ │ +0002a270: 696e 673a 2043 686f 7752 696e 672c 2063 ing: ChowRing, c │ │ │ │ +0002a280: 6f6d 6d61 6e64 2e20 5765 0a6d 6179 2061 ommand. We.may a │ │ │ │ +0002a290: 6c73 6f20 7265 7475 726e 2061 204d 7574 lso return a Mut │ │ │ │ +0002a2a0: 6162 6c65 4861 7368 5461 626c 652e 0a0a ableHashTable... │ │ │ │ +0002a2b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002a300: 7c69 3620 3a20 523d 4d75 6c74 6950 726f |i6 : R=MultiPro │ │ │ │ +0002a310: 6a43 6f6f 7264 5269 6e67 287b 322c 327d jCoordRing({2,2} │ │ │ │ +0002a320: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a350: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a3a0: 7c6f 3620 3d20 5220 2020 2020 2020 2020 |o6 = R │ │ │ │ 0002a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3f0: 2020 2020 7c0a 7c6f 3620 3d20 5220 2020 |.|o6 = R │ │ │ │ +0002a3e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a3f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a440: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a440: 7c6f 3620 3a20 506f 6c79 6e6f 6d69 616c |o6 : Polynomial │ │ │ │ +0002a450: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0002a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a490: 2020 2020 7c0a 7c6f 3620 3a20 506f 6c79 |.|o6 : Poly │ │ │ │ -0002a4a0: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ -0002a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a530: 2d2d 2d2d 2b0a 7c69 3720 3a20 723d 6765 ----+.|i7 : r=ge │ │ │ │ -0002a540: 6e73 2052 2020 2020 2020 2020 2020 2020 ns R │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a490: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002a4e0: 7c69 3720 3a20 723d 6765 6e73 2052 2020 |i7 : r=gens R │ │ │ │ +0002a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a530: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a580: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a580: 7c6f 3720 3d20 7b78 202c 2078 202c 2078 |o7 = {x , x , x │ │ │ │ +0002a590: 202c 2078 202c 2078 202c 2078 207d 2020 , x , x , x } │ │ │ │ 0002a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5d0: 2020 2020 7c0a 7c6f 3720 3d20 7b78 202c |.|o7 = {x , │ │ │ │ -0002a5e0: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -0002a5f0: 2078 207d 2020 2020 2020 2020 2020 2020 x } │ │ │ │ +0002a5c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a5d0: 7c20 2020 2020 2020 3020 2020 3120 2020 | 0 1 │ │ │ │ +0002a5e0: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +0002a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a620: 2020 2020 7c0a 7c20 2020 2020 2020 3020 |.| 0 │ │ │ │ -0002a630: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -0002a640: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0002a610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a670: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a660: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a670: 7c6f 3720 3a20 4c69 7374 2020 2020 2020 |o7 : List │ │ │ │ 0002a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6c0: 2020 2020 7c0a 7c6f 3720 3a20 4c69 7374 |.|o7 : List │ │ │ │ -0002a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a710: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a760: 2d2d 2d2d 2b0a 7c69 3820 3a20 413d 4368 ----+.|i8 : A=Ch │ │ │ │ -0002a770: 6f77 5269 6e67 2852 2920 2020 2020 2020 owRing(R) │ │ │ │ +0002a6b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a6c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002a710: 7c69 3820 3a20 413d 4368 6f77 5269 6e67 |i8 : A=ChowRing │ │ │ │ +0002a720: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ +0002a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a7a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a7b0: 7c6f 3820 3d20 4120 2020 2020 2020 2020 |o8 = A │ │ │ │ 0002a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a800: 2020 2020 7c0a 7c6f 3820 3d20 4120 2020 |.|o8 = A │ │ │ │ +0002a7f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a800: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a850: 7c6f 3820 3a20 5175 6f74 6965 6e74 5269 |o8 : QuotientRi │ │ │ │ +0002a860: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 0002a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8a0: 2020 2020 7c0a 7c6f 3820 3a20 5175 6f74 |.|o8 : Quot │ │ │ │ -0002a8b0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ -0002a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a940: 2d2d 2d2d 2b0a 7c69 3920 3a20 493d 6964 ----+.|i9 : I=id │ │ │ │ -0002a950: 6561 6c28 725f 305e 322a 725f 332d 725f eal(r_0^2*r_3-r_ │ │ │ │ -0002a960: 342a 725f 312a 725f 322c 725f 325e 322a 4*r_1*r_2,r_2^2* │ │ │ │ -0002a970: 725f 3529 2020 2020 2020 2020 2020 2020 r_5) │ │ │ │ -0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a8a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002a8f0: 7c69 3920 3a20 493d 6964 6561 6c28 725f |i9 : I=ideal(r_ │ │ │ │ +0002a900: 305e 322a 725f 332d 725f 342a 725f 312a 0^2*r_3-r_4*r_1* │ │ │ │ +0002a910: 725f 322c 725f 325e 322a 725f 3529 2020 r_2,r_2^2*r_5) │ │ │ │ +0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a940: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a990: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +0002a9a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 0002a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a9f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002aa00: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a9d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002a9e0: 7c6f 3920 3d20 6964 6561 6c20 2878 2078 |o9 = ideal (x x │ │ │ │ +0002a9f0: 2020 2d20 7820 7820 7820 2c20 7820 7820 - x x x , x x │ │ │ │ +0002aa00: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0002aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa30: 2020 2020 7c0a 7c6f 3920 3d20 6964 6561 |.|o9 = idea │ │ │ │ -0002aa40: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ -0002aa50: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ +0002aa20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002aa30: 7c20 2020 2020 2020 2020 2020 2020 3020 | 0 │ │ │ │ +0002aa40: 3320 2020 2031 2032 2034 2020 2032 2035 3 1 2 4 2 5 │ │ │ │ +0002aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002aa90: 2020 2020 3020 3320 2020 2031 2032 2034 0 3 1 2 4 │ │ │ │ -0002aaa0: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0002aa70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002aa80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002aac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002aad0: 7c6f 3920 3a20 4964 6561 6c20 6f66 2052 |o9 : Ideal of R │ │ │ │ 0002aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab20: 2020 2020 7c0a 7c6f 3920 3a20 4964 6561 |.|o9 : Idea │ │ │ │ -0002ab30: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ -0002ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002abc0: 2d2d 2d2d 2b0a 7c69 3130 203a 2053 6567 ----+.|i10 : Seg │ │ │ │ -0002abd0: 7265 2049 2020 2020 2020 2020 2020 2020 re I │ │ │ │ +0002ab10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ab20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002ab70: 7c69 3130 203a 2053 6567 7265 2049 2020 |i10 : Segre I │ │ │ │ +0002ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002abc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ac70: 3220 3220 2020 2020 2032 2020 2020 2020 2 2 2 │ │ │ │ -0002ac80: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0002ac90: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002acb0: 2020 2020 7c0a 7c6f 3130 203d 2037 3268 |.|o10 = 72h │ │ │ │ -0002acc0: 2068 2020 2d20 3234 6820 6820 202d 2031 h - 24h h - 1 │ │ │ │ -0002acd0: 3268 2068 2020 2b20 3468 2020 2b20 3468 2h h + 4h + 4h │ │ │ │ -0002ace0: 2068 2020 2b20 6820 2020 2020 2020 2020 h + h │ │ │ │ -0002acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ad10: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ -0002ad20: 2020 3120 3220 2020 2020 3120 2020 2020 1 2 1 │ │ │ │ -0002ad30: 3120 3220 2020 2032 2020 2020 2020 2020 1 2 2 │ │ │ │ -0002ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ac00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ac10: 7c20 2020 2020 2020 2020 3220 3220 2020 | 2 2 │ │ │ │ +0002ac20: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +0002ac30: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ac40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ac50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ac60: 7c6f 3130 203d 2037 3268 2068 2020 2d20 |o10 = 72h h - │ │ │ │ +0002ac70: 3234 6820 6820 202d 2031 3268 2068 2020 24h h - 12h h │ │ │ │ +0002ac80: 2b20 3468 2020 2b20 3468 2068 2020 2b20 + 4h + 4h h + │ │ │ │ +0002ac90: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002aca0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002acb0: 7c20 2020 2020 2020 2020 3120 3220 2020 | 1 2 │ │ │ │ +0002acc0: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +0002acd0: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ +0002ace0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002acf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ad00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ad50: 7c20 2020 2020 205a 5a5b 6820 2e2e 6820 | ZZ[h ..h │ │ │ │ +0002ad60: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0002ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ada0: 2020 2020 7c0a 7c20 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -0002adb0: 6820 2e2e 6820 5d20 2020 2020 2020 2020 h ..h ] │ │ │ │ +0002ad90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ada0: 7c20 2020 2020 2020 2020 2031 2020 2032 | 1 2 │ │ │ │ +0002adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ae00: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0002ade0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002adf0: 7c6f 3130 203a 202d 2d2d 2d2d 2d2d 2d2d |o10 : --------- │ │ │ │ +0002ae00: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ 0002ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae40: 2020 2020 7c0a 7c6f 3130 203a 202d 2d2d |.|o10 : --- │ │ │ │ -0002ae50: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +0002ae30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ae40: 7c20 2020 2020 2020 2020 3320 2020 3320 | 3 3 │ │ │ │ +0002ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002aea0: 3320 2020 3320 2020 2020 2020 2020 2020 3 3 │ │ │ │ +0002ae80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ae90: 7c20 2020 2020 2020 2868 202c 2068 2029 | (h , h ) │ │ │ │ +0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aee0: 2020 2020 7c0a 7c20 2020 2020 2020 2868 |.| (h │ │ │ │ -0002aef0: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ +0002aed0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002aee0: 7c20 2020 2020 2020 2020 3120 2020 3220 | 1 2 │ │ │ │ +0002aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002af40: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ -0002af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afd0: 2d2d 2d2d 2b0a 7c69 3131 203a 2073 313d ----+.|i11 : s1= │ │ │ │ -0002afe0: 5365 6772 6528 412c 4929 2020 2020 2020 Segre(A,I) │ │ │ │ +0002af20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002af30: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002af80: 7c69 3131 203a 2073 313d 5365 6772 6528 |i11 : s1=Segre( │ │ │ │ +0002af90: 412c 4929 2020 2020 2020 2020 2020 2020 A,I) │ │ │ │ +0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002afd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b020: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b070: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b080: 3220 3220 2020 2020 2032 2020 2020 2020 2 2 2 │ │ │ │ -0002b090: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0002b0a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0c0: 2020 2020 7c0a 7c6f 3131 203d 2037 3268 |.|o11 = 72h │ │ │ │ -0002b0d0: 2068 2020 2d20 3234 6820 6820 202d 2031 h - 24h h - 1 │ │ │ │ -0002b0e0: 3268 2068 2020 2b20 3468 2020 2b20 3468 2h h + 4h + 4h │ │ │ │ -0002b0f0: 2068 2020 2b20 6820 2020 2020 2020 2020 h + h │ │ │ │ -0002b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b110: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b120: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ -0002b130: 2020 3120 3220 2020 2020 3120 2020 2020 1 2 1 │ │ │ │ -0002b140: 3120 3220 2020 2032 2020 2020 2020 2020 1 2 2 │ │ │ │ -0002b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b020: 7c20 2020 2020 2020 2020 3220 3220 2020 | 2 2 │ │ │ │ +0002b030: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +0002b040: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b050: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b060: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b070: 7c6f 3131 203d 2037 3268 2068 2020 2d20 |o11 = 72h h - │ │ │ │ +0002b080: 3234 6820 6820 202d 2031 3268 2068 2020 24h h - 12h h │ │ │ │ +0002b090: 2b20 3468 2020 2b20 3468 2068 2020 2b20 + 4h + 4h h + │ │ │ │ +0002b0a0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002b0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b0c0: 7c20 2020 2020 2020 2020 3120 3220 2020 | 1 2 │ │ │ │ +0002b0d0: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +0002b0e0: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ +0002b0f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b150: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b160: 7c6f 3131 203a 2041 2020 2020 2020 2020 |o11 : A │ │ │ │ 0002b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1b0: 2020 2020 7c0a 7c6f 3131 203a 2041 2020 |.|o11 : A │ │ │ │ -0002b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b200: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b250: 2d2d 2d2d 2b0a 7c69 3132 203a 2053 6567 ----+.|i12 : Seg │ │ │ │ -0002b260: 4861 7368 3d53 6567 7265 2841 2c49 2c4f Hash=Segre(A,I,O │ │ │ │ -0002b270: 7574 7075 743d 3e48 6173 6846 6f72 6d29 utput=>HashForm) │ │ │ │ +0002b1a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b1b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002b200: 7c69 3132 203a 2053 6567 4861 7368 3d53 |i12 : SegHash=S │ │ │ │ +0002b210: 6567 7265 2841 2c49 2c4f 7574 7075 743d egre(A,I,Output= │ │ │ │ +0002b220: 3e48 6173 6846 6f72 6d29 2020 2020 2020 >HashForm) │ │ │ │ +0002b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b2a0: 7c6f 3132 203d 204d 7574 6162 6c65 4861 |o12 = MutableHa │ │ │ │ +0002b2b0: 7368 5461 626c 657b 2e2e 2e34 2e2e 2e7d shTable{...4...} │ │ │ │ 0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2f0: 2020 2020 7c0a 7c6f 3132 203d 204d 7574 |.|o12 = Mut │ │ │ │ -0002b300: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -0002b310: 2e34 2e2e 2e7d 2020 2020 2020 2020 2020 .4...} │ │ │ │ +0002b2e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b2f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b330: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b340: 7c6f 3132 203a 204d 7574 6162 6c65 4861 |o12 : MutableHa │ │ │ │ +0002b350: 7368 5461 626c 6520 2020 2020 2020 2020 shTable │ │ │ │ 0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 7c0a 7c6f 3132 203a 204d 7574 |.|o12 : Mut │ │ │ │ -0002b3a0: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -0002b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b430: 2d2d 2d2d 2b0a 7c69 3133 203a 2070 6565 ----+.|i13 : pee │ │ │ │ -0002b440: 6b20 5365 6748 6173 6820 2020 2020 2020 k SegHash │ │ │ │ +0002b380: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b390: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002b3e0: 7c69 3133 203a 2070 6565 6b20 5365 6748 |i13 : peek SegH │ │ │ │ +0002b3f0: 6173 6820 2020 2020 2020 2020 2020 2020 ash │ │ │ │ +0002b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b480: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b480: 7c6f 3133 203d 204d 7574 6162 6c65 4861 |o13 = MutableHa │ │ │ │ +0002b490: 7368 5461 626c 657b 4720 3d3e 2032 6820 shTable{G => 2h │ │ │ │ +0002b4a0: 202b 2068 2020 2b20 3120 2020 2020 2020 + h + 1 │ │ │ │ 0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4d0: 2020 2020 7c0a 7c6f 3133 203d 204d 7574 |.|o13 = Mut │ │ │ │ -0002b4e0: 6162 6c65 4861 7368 5461 626c 657b 4720 ableHashTable{G │ │ │ │ -0002b4f0: 3d3e 2032 6820 202b 2068 2020 2b20 3120 => 2h + h + 1 │ │ │ │ +0002b4c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b4d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b4e0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0002b4f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b520: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b540: 2020 2020 2031 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b580: 2020 2020 2020 2020 2020 2020 2020 476c Gl │ │ │ │ -0002b590: 6973 7420 3d3e 207b 312c 2032 6820 202b ist => {1, 2h + │ │ │ │ -0002b5a0: 2068 202c 2030 2c20 302c 2030 7d20 2020 h , 0, 0, 0} │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b520: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b530: 2020 2020 2020 2020 476c 6973 7420 3d3e Glist => │ │ │ │ +0002b540: 207b 312c 2032 6820 202b 2068 202c 2030 {1, 2h + h , 0 │ │ │ │ +0002b550: 2c20 302c 2030 7d20 2020 2020 2020 2020 , 0, 0} │ │ │ │ +0002b560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b590: 2020 2020 2020 2031 2020 2020 3220 2020 1 2 │ │ │ │ +0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b5b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b5c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0002b5f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b640: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b650: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b670: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -0002b680: 6772 654c 6973 7420 3d3e 207b 302c 2030 greList => {0, 0 │ │ │ │ -0002b690: 2c20 3468 2020 2b20 3468 2068 2020 2b20 , 4h + 4h h + │ │ │ │ -0002b6a0: 6820 2c20 2d20 2020 2020 2020 2020 2020 h , - │ │ │ │ -0002b6b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b5e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002b600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b610: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b620: 2020 2020 2020 2020 5365 6772 654c 6973 SegreLis │ │ │ │ +0002b630: 7420 3d3e 207b 302c 2030 2c20 3468 2020 t => {0, 0, 4h │ │ │ │ +0002b640: 2b20 3468 2068 2020 2b20 6820 2c20 2d20 + 4h h + h , - │ │ │ │ +0002b650: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b660: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b680: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0002b690: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +0002b6a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b6b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6e0: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -0002b6f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b720: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ -0002b730: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -0002b740: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b760: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -0002b770: 6772 6520 3d3e 2037 3268 2068 2020 2d20 gre => 72h h - │ │ │ │ -0002b780: 3234 6820 6820 202d 2031 3268 2068 2020 24h h - 12h h │ │ │ │ -0002b790: 2b20 3468 2020 2020 2020 2020 2020 2020 + 4h │ │ │ │ -0002b7a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7c0: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ -0002b7d0: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -0002b7e0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -0002b7f0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ -0002b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b840: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -0002b850: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +0002b6d0: 2020 2020 3220 3220 2020 2020 2032 2020 2 2 2 │ │ │ │ +0002b6e0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ +0002b6f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b700: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b710: 2020 2020 2020 2020 5365 6772 6520 3d3e Segre => │ │ │ │ +0002b720: 2037 3268 2068 2020 2d20 3234 6820 6820 72h h - 24h h │ │ │ │ +0002b730: 202d 2031 3268 2068 2020 2b20 3468 2020 - 12h h + 4h │ │ │ │ +0002b740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b750: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b770: 2020 2020 3120 3220 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +0002b780: 2020 2020 2020 3120 3220 2020 2020 3120 1 2 1 │ │ │ │ +0002b790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b7a0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0002b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +0002b7f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b800: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +0002b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b890: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b8d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b8e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b930: 7c20 2020 3220 2020 2020 2020 2020 2032 | 2 2 │ │ │ │ +0002b940: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ 0002b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b980: 2020 2020 7c0a 7c20 2020 3220 2020 2020 |.| 2 │ │ │ │ -0002b990: 2020 2020 2032 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ +0002b970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b980: 7c32 3468 2068 2020 2d20 3132 6820 6820 |24h h - 12h h │ │ │ │ +0002b990: 2c20 3732 6820 6820 7d20 2020 2020 2020 , 72h h } │ │ │ │ 0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9d0: 2020 2020 7c0a 7c32 3468 2068 2020 2d20 |.|24h h - │ │ │ │ -0002b9e0: 3132 6820 6820 2c20 3732 6820 6820 7d20 12h h , 72h h } │ │ │ │ +0002b9c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002b9d0: 7c20 2020 3120 3220 2020 2020 2031 2032 | 1 2 1 2 │ │ │ │ +0002b9e0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ 0002b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba20: 2020 2020 7c0a 7c20 2020 3120 3220 2020 |.| 1 2 │ │ │ │ -0002ba30: 2020 2031 2032 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ +0002ba10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ba20: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ +0002ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ba80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ba60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ba70: 7c2b 2034 6820 6820 202b 2068 2020 2020 |+ 4h h + h │ │ │ │ +0002ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bac0: 2020 2020 7c0a 7c2b 2034 6820 6820 202b |.|+ 4h h + │ │ │ │ -0002bad0: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002bab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bac0: 7c20 2020 2031 2032 2020 2020 3220 2020 | 1 2 2 │ │ │ │ +0002bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb10: 2020 2020 7c0a 7c20 2020 2031 2032 2020 |.| 1 2 │ │ │ │ -0002bb20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bbb0: 2d2d 2d2d 2b0a 7c69 3134 203a 2073 313d ----+.|i14 : s1= │ │ │ │ -0002bbc0: 3d53 6567 4861 7368 2322 5365 6772 6522 =SegHash#"Segre" │ │ │ │ +0002bb00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bb10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002bb60: 7c69 3134 203a 2073 313d 3d53 6567 4861 |i14 : s1==SegHa │ │ │ │ +0002bb70: 7368 2322 5365 6772 6522 2020 2020 2020 sh#"Segre" │ │ │ │ +0002bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bbb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002bbf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bc00: 7c6f 3134 203d 2074 7275 6520 2020 2020 |o14 = true │ │ │ │ 0002bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc50: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ -0002bc60: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0002bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bca0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcf0: 2d2d 2d2d 2b0a 0a49 6e20 7468 6520 6361 ----+..In the ca │ │ │ │ -0002bd00: 7365 2077 6865 7265 2074 6865 2061 6d62 se where the amb │ │ │ │ -0002bd10: 6965 6e74 2073 7061 6365 2069 7320 6120 ient space is a │ │ │ │ -0002bd20: 746f 7269 6320 7661 7269 6574 7920 7768 toric variety wh │ │ │ │ -0002bd30: 6963 6820 6973 206e 6f74 2061 2070 726f ich is not a pro │ │ │ │ -0002bd40: 6475 6374 0a6f 6620 7072 6f6a 6563 7469 duct.of projecti │ │ │ │ -0002bd50: 7665 2073 7061 6365 7320 7765 206d 7573 ve spaces we mus │ │ │ │ -0002bd60: 7420 6c6f 6164 2074 6865 204e 6f72 6d61 t load the Norma │ │ │ │ -0002bd70: 6c54 6f72 6963 5661 7269 6574 6965 7320 lToricVarieties │ │ │ │ -0002bd80: 7061 636b 6167 6520 616e 6420 6d75 7374 package and must │ │ │ │ -0002bd90: 0a61 6c73 6f20 696e 7075 7420 7468 6520 .also input the │ │ │ │ -0002bda0: 746f 7269 6320 7661 7269 6574 792e 2049 toric variety. I │ │ │ │ -0002bdb0: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ -0002bdc0: 6574 7920 6973 2061 2070 726f 6475 6374 ety is a product │ │ │ │ -0002bdd0: 206f 6620 7072 6f6a 6563 7469 7665 0a73 of projective.s │ │ │ │ -0002bde0: 7061 6365 2069 7420 6973 2072 6563 6f6d pace it is recom │ │ │ │ -0002bdf0: 6d65 6e64 6564 2074 6f20 7573 6520 7468 mended to use th │ │ │ │ -0002be00: 6520 666f 726d 2061 626f 7665 2072 6174 e form above rat │ │ │ │ -0002be10: 6865 7220 7468 616e 2069 6e70 7574 7469 her than inputti │ │ │ │ -0002be20: 6e67 2074 6865 2074 6f72 6963 0a76 6172 ng the toric.var │ │ │ │ -0002be30: 6965 7479 2066 6f72 2065 6666 6963 6965 iety for efficie │ │ │ │ -0002be40: 6e63 7920 7265 6173 6f6e 732e 0a0a 2b2d ncy reasons...+- │ │ │ │ -0002be50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be90: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ -0002bea0: 6e65 6564 7350 6163 6b61 6765 2022 4e6f needsPackage "No │ │ │ │ -0002beb0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -0002bec0: 6573 2220 2020 2020 2020 2020 2020 2020 es" │ │ │ │ -0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002bc50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002bc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002bca0: 0a49 6e20 7468 6520 6361 7365 2077 6865 .In the case whe │ │ │ │ +0002bcb0: 7265 2074 6865 2061 6d62 6965 6e74 2073 re the ambient s │ │ │ │ +0002bcc0: 7061 6365 2069 7320 6120 746f 7269 6320 pace is a toric │ │ │ │ +0002bcd0: 7661 7269 6574 7920 7768 6963 6820 6973 variety which is │ │ │ │ +0002bce0: 206e 6f74 2061 2070 726f 6475 6374 0a6f not a product.o │ │ │ │ +0002bcf0: 6620 7072 6f6a 6563 7469 7665 2073 7061 f projective spa │ │ │ │ +0002bd00: 6365 7320 7765 206d 7573 7420 6c6f 6164 ces we must load │ │ │ │ +0002bd10: 2074 6865 204e 6f72 6d61 6c54 6f72 6963 the NormalToric │ │ │ │ +0002bd20: 5661 7269 6574 6965 7320 7061 636b 6167 Varieties packag │ │ │ │ +0002bd30: 6520 616e 6420 6d75 7374 0a61 6c73 6f20 e and must.also │ │ │ │ +0002bd40: 696e 7075 7420 7468 6520 746f 7269 6320 input the toric │ │ │ │ +0002bd50: 7661 7269 6574 792e 2049 6620 7468 6520 variety. If the │ │ │ │ +0002bd60: 746f 7269 6320 7661 7269 6574 7920 6973 toric variety is │ │ │ │ +0002bd70: 2061 2070 726f 6475 6374 206f 6620 7072 a product of pr │ │ │ │ +0002bd80: 6f6a 6563 7469 7665 0a73 7061 6365 2069 ojective.space i │ │ │ │ +0002bd90: 7420 6973 2072 6563 6f6d 6d65 6e64 6564 t is recommended │ │ │ │ +0002bda0: 2074 6f20 7573 6520 7468 6520 666f 726d to use the form │ │ │ │ +0002bdb0: 2061 626f 7665 2072 6174 6865 7220 7468 above rather th │ │ │ │ +0002bdc0: 616e 2069 6e70 7574 7469 6e67 2074 6865 an inputting the │ │ │ │ +0002bdd0: 2074 6f72 6963 0a76 6172 6965 7479 2066 toric.variety f │ │ │ │ +0002bde0: 6f72 2065 6666 6963 6965 6e63 7920 7265 or efficiency re │ │ │ │ +0002bdf0: 6173 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d asons...+------- │ │ │ │ +0002be00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be40: 2d2b 0a7c 6931 3520 3a20 6e65 6564 7350 -+.|i15 : needsP │ │ │ │ +0002be50: 6163 6b61 6765 2022 4e6f 726d 616c 546f ackage "NormalTo │ │ │ │ +0002be60: 7269 6356 6172 6965 7469 6573 2220 2020 ricVarieties" │ │ │ │ +0002be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bed0: 2020 2020 2020 207c 0a7c 6f31 3520 3d20 |.|o15 = │ │ │ │ +0002bee0: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ +0002bef0: 7469 6573 2020 2020 2020 2020 2020 2020 ties │ │ │ │ 0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002bf30: 6f31 3520 3d20 4e6f 726d 616c 546f 7269 o15 = NormalTori │ │ │ │ -0002bf40: 6356 6172 6965 7469 6573 2020 2020 2020 cVarieties │ │ │ │ +0002bf20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002bf60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002bf70: 6f31 3520 3a20 5061 636b 6167 6520 2020 o15 : Package │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfc0: 2020 207c 0a7c 6f31 3520 3a20 5061 636b |.|o15 : Pack │ │ │ │ -0002bfd0: 6167 6520 2020 2020 2020 2020 2020 2020 age │ │ │ │ -0002bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c010: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002c020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c050: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ -0002c060: 3a20 5268 6f20 3d20 7b7b 312c 302c 307d : Rho = {{1,0,0} │ │ │ │ -0002c070: 2c7b 302c 312c 307d 2c7b 302c 302c 317d ,{0,1,0},{0,0,1} │ │ │ │ -0002c080: 2c7b 2d31 2c2d 312c 307d 2c7b 302c 302c ,{-1,-1,0},{0,0, │ │ │ │ -0002c090: 2d31 7d7d 2020 2020 2020 2020 2020 2020 -1}} │ │ │ │ -0002c0a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c0f0: 0a7c 6f31 3620 3d20 7b7b 312c 2030 2c20 .|o16 = {{1, 0, │ │ │ │ -0002c100: 307d 2c20 7b30 2c20 312c 2030 7d2c 207b 0}, {0, 1, 0}, { │ │ │ │ -0002c110: 302c 2030 2c20 317d 2c20 7b2d 312c 202d 0, 0, 1}, {-1, - │ │ │ │ -0002c120: 312c 2030 7d2c 207b 302c 2030 2c20 2d31 1, 0}, {0, 0, -1 │ │ │ │ -0002c130: 7d7d 2020 2020 2020 2020 7c0a 7c20 2020 }} |.| │ │ │ │ +0002bfb0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002bfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c000: 2d2d 2d2b 0a7c 6931 3620 3a20 5268 6f20 ---+.|i16 : Rho │ │ │ │ +0002c010: 3d20 7b7b 312c 302c 307d 2c7b 302c 312c = {{1,0,0},{0,1, │ │ │ │ +0002c020: 307d 2c7b 302c 302c 317d 2c7b 2d31 2c2d 0},{0,0,1},{-1,- │ │ │ │ +0002c030: 312c 307d 2c7b 302c 302c 2d31 7d7d 2020 1,0},{0,0,-1}} │ │ │ │ +0002c040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c090: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ +0002c0a0: 3d20 7b7b 312c 2030 2c20 307d 2c20 7b30 = {{1, 0, 0}, {0 │ │ │ │ +0002c0b0: 2c20 312c 2030 7d2c 207b 302c 2030 2c20 , 1, 0}, {0, 0, │ │ │ │ +0002c0c0: 317d 2c20 7b2d 312c 202d 312c 2030 7d2c 1}, {-1, -1, 0}, │ │ │ │ +0002c0d0: 207b 302c 2030 2c20 2d31 7d7d 2020 2020 {0, 0, -1}} │ │ │ │ +0002c0e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c130: 0a7c 6f31 3620 3a20 4c69 7374 2020 2020 .|o16 : List │ │ │ │ 0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c180: 2020 2020 207c 0a7c 6f31 3620 3a20 4c69 |.|o16 : Li │ │ │ │ -0002c190: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ -0002c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0002c220: 3720 3a20 5369 676d 6120 3d20 7b7b 302c 7 : Sigma = {{0, │ │ │ │ -0002c230: 312c 327d 2c7b 312c 322c 337d 2c7b 302c 1,2},{1,2,3},{0, │ │ │ │ -0002c240: 322c 337d 2c7b 302c 312c 347d 2c7b 312c 2,3},{0,1,4},{1, │ │ │ │ -0002c250: 332c 347d 2c7b 302c 332c 347d 7d20 2020 3,4},{0,3,4}} │ │ │ │ -0002c260: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2b0: 207c 0a7c 6f31 3720 3d20 7b7b 302c 2031 |.|o17 = {{0, 1 │ │ │ │ -0002c2c0: 2c20 327d 2c20 7b31 2c20 322c 2033 7d2c , 2}, {1, 2, 3}, │ │ │ │ -0002c2d0: 207b 302c 2032 2c20 337d 2c20 7b30 2c20 {0, 2, 3}, {0, │ │ │ │ -0002c2e0: 312c 2034 7d2c 207b 312c 2033 2c20 347d 1, 4}, {1, 3, 4} │ │ │ │ -0002c2f0: 2c20 7b30 2c20 332c 2034 7d7d 7c0a 7c20 , {0, 3, 4}}|.| │ │ │ │ +0002c170: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1c0: 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 5369 -----+.|i17 : Si │ │ │ │ +0002c1d0: 676d 6120 3d20 7b7b 302c 312c 327d 2c7b gma = {{0,1,2},{ │ │ │ │ +0002c1e0: 312c 322c 337d 2c7b 302c 322c 337d 2c7b 1,2,3},{0,2,3},{ │ │ │ │ +0002c1f0: 302c 312c 347d 2c7b 312c 332c 347d 2c7b 0,1,4},{1,3,4},{ │ │ │ │ +0002c200: 302c 332c 347d 7d20 2020 2020 2020 2020 0,3,4}} │ │ │ │ +0002c210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c250: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0002c260: 3720 3d20 7b7b 302c 2031 2c20 327d 2c20 7 = {{0, 1, 2}, │ │ │ │ +0002c270: 7b31 2c20 322c 2033 7d2c 207b 302c 2032 {1, 2, 3}, {0, 2 │ │ │ │ +0002c280: 2c20 337d 2c20 7b30 2c20 312c 2034 7d2c , 3}, {0, 1, 4}, │ │ │ │ +0002c290: 207b 312c 2033 2c20 347d 2c20 7b30 2c20 {1, 3, 4}, {0, │ │ │ │ +0002c2a0: 332c 2034 7d7d 7c0a 7c20 2020 2020 2020 3, 4}}|.| │ │ │ │ +0002c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2f0: 207c 0a7c 6f31 3720 3a20 4c69 7374 2020 |.|o17 : List │ │ │ │ 0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c340: 2020 2020 2020 207c 0a7c 6f31 3720 3a20 |.|o17 : │ │ │ │ -0002c350: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ -0002c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002c3e0: 6931 3820 3a20 5820 3d20 6e6f 726d 616c i18 : X = normal │ │ │ │ -0002c3f0: 546f 7269 6356 6172 6965 7479 2852 686f ToricVariety(Rho │ │ │ │ -0002c400: 2c53 6967 6d61 2c43 6f65 6666 6963 6965 ,Sigma,Coefficie │ │ │ │ -0002c410: 6e74 5269 6e67 203d 3e5a 5a2f 3332 3734 ntRing =>ZZ/3274 │ │ │ │ -0002c420: 3929 2020 2020 2020 7c0a 7c20 2020 2020 9) |.| │ │ │ │ +0002c330: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c380: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 -------+.|i18 : │ │ │ │ +0002c390: 5820 3d20 6e6f 726d 616c 546f 7269 6356 X = normalToricV │ │ │ │ +0002c3a0: 6172 6965 7479 2852 686f 2c53 6967 6d61 ariety(Rho,Sigma │ │ │ │ +0002c3b0: 2c43 6f65 6666 6963 6965 6e74 5269 6e67 ,CoefficientRing │ │ │ │ +0002c3c0: 203d 3e5a 5a2f 3332 3734 3929 2020 2020 =>ZZ/32749) │ │ │ │ +0002c3d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c420: 6f31 3820 3d20 5820 2020 2020 2020 2020 o18 = X │ │ │ │ 0002c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c470: 2020 207c 0a7c 6f31 3820 3d20 5820 2020 |.|o18 = X │ │ │ │ +0002c460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c4c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002c4b0: 2020 207c 0a7c 6f31 3820 3a20 4e6f 726d |.|o18 : Norm │ │ │ │ +0002c4c0: 616c 546f 7269 6356 6172 6965 7479 2020 alToricVariety │ │ │ │ 0002c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c500: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ -0002c510: 3a20 4e6f 726d 616c 546f 7269 6356 6172 : NormalToricVar │ │ │ │ -0002c520: 6965 7479 2020 2020 2020 2020 2020 2020 iety │ │ │ │ -0002c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c550: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c5a0: 0a7c 6931 3920 3a20 4368 6563 6b54 6f72 .|i19 : CheckTor │ │ │ │ -0002c5b0: 6963 5661 7269 6574 7956 616c 6964 2858 icVarietyValid(X │ │ │ │ -0002c5c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002c4f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c500: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002c510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c540: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3920 ---------+.|i19 │ │ │ │ +0002c550: 3a20 4368 6563 6b54 6f72 6963 5661 7269 : CheckToricVari │ │ │ │ +0002c560: 6574 7956 616c 6964 2858 2920 2020 2020 etyValid(X) │ │ │ │ +0002c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c590: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c5e0: 0a7c 6f31 3920 3d20 7472 7565 2020 2020 .|o19 = true │ │ │ │ 0002c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c630: 2020 2020 207c 0a7c 6f31 3920 3d20 7472 |.|o19 = tr │ │ │ │ -0002c640: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -0002c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c680: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002c690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0002c6d0: 3020 3a20 523d 7269 6e67 2858 2920 2020 0 : R=ring(X) │ │ │ │ +0002c620: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c670: 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 523d -----+.|i20 : R= │ │ │ │ +0002c680: 7269 6e67 2858 2920 2020 2020 2020 2020 ring(X) │ │ │ │ +0002c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c700: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0002c710: 3020 3d20 5220 2020 2020 2020 2020 2020 0 = R │ │ │ │ 0002c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c760: 207c 0a7c 6f32 3020 3d20 5220 2020 2020 |.|o20 = R │ │ │ │ +0002c750: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c7a0: 207c 0a7c 6f32 3020 3a20 506f 6c79 6e6f |.|o20 : Polyno │ │ │ │ +0002c7b0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 0002c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7f0: 2020 2020 2020 207c 0a7c 6f32 3020 3a20 |.|o20 : │ │ │ │ -0002c800: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -0002c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c840: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002c890: 6932 3120 3a20 493d 6964 6561 6c28 525f i21 : I=ideal(R_ │ │ │ │ -0002c8a0: 305e 342a 525f 312c 525f 302a 525f 332a 0^4*R_1,R_0*R_3* │ │ │ │ -0002c8b0: 525f 342a 525f 322d 525f 325e 322a 525f R_4*R_2-R_2^2*R_ │ │ │ │ -0002c8c0: 305e 3229 2020 2020 2020 2020 2020 2020 0^2) │ │ │ │ -0002c8d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c7e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c830: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ +0002c840: 493d 6964 6561 6c28 525f 305e 342a 525f I=ideal(R_0^4*R_ │ │ │ │ +0002c850: 312c 525f 302a 525f 332a 525f 342a 525f 1,R_0*R_3*R_4*R_ │ │ │ │ +0002c860: 322d 525f 325e 322a 525f 305e 3229 2020 2-R_2^2*R_0^2) │ │ │ │ +0002c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002c8d0: 2020 2020 2020 2020 2020 2020 2020 3420 4 │ │ │ │ +0002c8e0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ 0002c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002c930: 2020 2020 3420 2020 2020 2020 3220 3220 4 2 2 │ │ │ │ +0002c910: 2020 2020 2020 2020 7c0a 7c6f 3231 203d |.|o21 = │ │ │ │ +0002c920: 2069 6465 616c 2028 7820 7820 2c20 2d20 ideal (x x , - │ │ │ │ +0002c930: 7820 7820 202b 2078 2078 2078 2078 2029 x x + x x x x ) │ │ │ │ 0002c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c970: 7c6f 3231 203d 2069 6465 616c 2028 7820 |o21 = ideal (x │ │ │ │ -0002c980: 7820 2c20 2d20 7820 7820 202b 2078 2078 x , - x x + x x │ │ │ │ -0002c990: 2078 2078 2029 2020 2020 2020 2020 2020 x x ) │ │ │ │ -0002c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002c9c0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -0002c9d0: 2020 3020 3220 2020 2030 2032 2033 2034 0 2 0 2 3 4 │ │ │ │ +0002c960: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c970: 2020 2020 3020 3120 2020 2020 3020 3220 0 1 0 2 │ │ │ │ +0002c980: 2020 2030 2032 2033 2034 2020 2020 2020 0 2 3 4 │ │ │ │ +0002c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c9a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c9b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002c9f0: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +0002ca00: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ 0002ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ca50: 0a7c 6f32 3120 3a20 4964 6561 6c20 6f66 .|o21 : Ideal of │ │ │ │ -0002ca60: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -0002ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cae0: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 5365 -----+.|i22 : Se │ │ │ │ -0002caf0: 6772 6528 582c 4929 2020 2020 2020 2020 gre(X,I) │ │ │ │ +0002ca40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ca50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002ca90: 0a7c 6932 3220 3a20 5365 6772 6528 582c .|i22 : Segre(X, │ │ │ │ +0002caa0: 4929 2020 2020 2020 2020 2020 2020 2020 I) │ │ │ │ +0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cad0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002cb20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cb30: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ 0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002cb80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0002cb90: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002cb70: 7c0a 7c6f 3232 203d 202d 2037 3278 2078 |.|o22 = - 72x x │ │ │ │ +0002cb80: 2020 2b20 3378 2020 2b20 3878 2078 2020 + 3x + 8x x │ │ │ │ +0002cb90: 2b20 7820 2020 2020 2020 2020 2020 2020 + x │ │ │ │ 0002cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbc0: 2020 2020 2020 7c0a 7c6f 3232 203d 202d |.|o22 = - │ │ │ │ -0002cbd0: 2037 3278 2078 2020 2b20 3378 2020 2b20 72x x + 3x + │ │ │ │ -0002cbe0: 3878 2078 2020 2b20 7820 2020 2020 2020 8x x + x │ │ │ │ +0002cbb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002cbc0: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +0002cbd0: 2033 2020 2020 2033 2034 2020 2020 3320 3 3 4 3 │ │ │ │ +0002cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc10: 207c 0a7c 2020 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ -0002cc20: 2034 2020 2020 2033 2020 2020 2033 2034 4 3 3 4 │ │ │ │ -0002cc30: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +0002cc00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002cc60: 2020 2020 2020 2020 2020 5a5a 5b78 202e ZZ[x . │ │ │ │ +0002cc70: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ 0002cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cca0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccc0: 5a5a 5b78 202e 2e78 205d 2020 2020 2020 ZZ[x ..x ] │ │ │ │ +0002cc90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ccb0: 2020 2020 2020 2020 2030 2020 2034 2020 0 4 │ │ │ │ +0002ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002cd00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -0002cd10: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002cce0: 2020 2020 2020 207c 0a7c 6f32 3220 3a20 |.|o22 : │ │ │ │ +0002ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd10: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ 0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002cd40: 6f32 3220 3a20 2d2d 2d2d 2d2d 2d2d 2d2d o22 : ---------- │ │ │ │ -0002cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 --------------- │ │ │ │ -0002cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002cd90: 2028 7820 7820 2c20 7820 7820 7820 2c20 (x x , x x x , │ │ │ │ -0002cda0: 7820 202d 2078 202c 2078 2020 2d20 7820 x - x , x - x │ │ │ │ -0002cdb0: 2c20 7820 202d 2078 2029 2020 2020 2020 , x - x ) │ │ │ │ -0002cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdd0: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -0002cde0: 3420 2020 3020 3120 3320 2020 3020 2020 4 0 1 3 0 │ │ │ │ -0002cdf0: 2033 2020 2031 2020 2020 3320 2020 3220 3 1 3 2 │ │ │ │ -0002ce00: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002ce10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ce20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3320 ---------+.|i23 │ │ │ │ -0002ce70: 3a20 4368 3d54 6f72 6963 4368 6f77 5269 : Ch=ToricChowRi │ │ │ │ -0002ce80: 6e67 2858 2920 2020 2020 2020 2020 2020 ng(X) │ │ │ │ +0002cd30: 2020 7c0a 7c20 2020 2020 2028 7820 7820 |.| (x x │ │ │ │ +0002cd40: 2c20 7820 7820 7820 2c20 7820 202d 2078 , x x x , x - x │ │ │ │ +0002cd50: 202c 2078 2020 2d20 7820 2c20 7820 202d , x - x , x - │ │ │ │ +0002cd60: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0002cd70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0002cd80: 2020 2020 2020 2020 3220 3420 2020 3020 2 4 0 │ │ │ │ +0002cd90: 3120 3320 2020 3020 2020 2033 2020 2031 1 3 0 3 1 │ │ │ │ +0002cda0: 2020 2020 3320 2020 3220 2020 2034 2020 3 2 4 │ │ │ │ +0002cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cdc0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce10: 2d2d 2d2b 0a7c 6932 3320 3a20 4368 3d54 ---+.|i23 : Ch=T │ │ │ │ +0002ce20: 6f72 6963 4368 6f77 5269 6e67 2858 2920 oricChowRing(X) │ │ │ │ +0002ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ce60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ceb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002cea0: 2020 2020 2020 2020 207c 0a7c 6f32 3320 |.|o23 │ │ │ │ +0002ceb0: 3d20 4368 2020 2020 2020 2020 2020 2020 = Ch │ │ │ │ 0002cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002cf00: 0a7c 6f32 3320 3d20 4368 2020 2020 2020 .|o23 = Ch │ │ │ │ +0002cef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cf40: 0a7c 6f32 3320 3a20 5175 6f74 6965 6e74 .|o23 : Quotient │ │ │ │ +0002cf50: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0002cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf90: 2020 2020 207c 0a7c 6f32 3320 3a20 5175 |.|o23 : Qu │ │ │ │ -0002cfa0: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ -0002cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfe0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0002d030: 3420 3a20 7333 3d53 6567 7265 2843 682c 4 : s3=Segre(Ch, │ │ │ │ -0002d040: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +0002cf80: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002cf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfd0: 2d2d 2d2d 2d2b 0a7c 6932 3420 3a20 7333 -----+.|i24 : s3 │ │ │ │ +0002cfe0: 3d53 6567 7265 2843 682c 582c 4929 2020 =Segre(Ch,X,I) │ │ │ │ +0002cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d020: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d070: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d060: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002d070: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0002d080: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0c0: 207c 0a7c 2020 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -0002d0d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0002d0b0: 2020 2020 2020 7c0a 7c6f 3234 203d 202d |.|o24 = - │ │ │ │ +0002d0c0: 2037 3278 2078 2020 2b20 3378 2020 2b20 72x x + 3x + │ │ │ │ +0002d0d0: 3878 2078 2020 2b20 7820 2020 2020 2020 8x x + x │ │ │ │ 0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d100: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002d110: 3234 203d 202d 2037 3278 2078 2020 2b20 24 = - 72x x + │ │ │ │ -0002d120: 3378 2020 2b20 3878 2078 2020 2b20 7820 3x + 8x x + x │ │ │ │ +0002d100: 207c 0a7c 2020 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ +0002d110: 2034 2020 2020 2033 2020 2020 2033 2034 4 3 3 4 │ │ │ │ +0002d120: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002d160: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0002d170: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002d140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002d190: 2020 2020 2020 207c 0a7c 6f32 3420 3a20 |.|o24 : │ │ │ │ +0002d1a0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002d1f0: 6f32 3420 3a20 4368 2020 2020 2020 2020 o24 : Ch │ │ │ │ -0002d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d230: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0002d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d280: 2d2d 2d2b 0a0a 416c 6c20 7468 6520 6578 ---+..All the ex │ │ │ │ -0002d290: 616d 706c 6573 2077 6572 6520 646f 6e65 amples were done │ │ │ │ -0002d2a0: 2075 7369 6e67 2073 796d 626f 6c69 6320 using symbolic │ │ │ │ -0002d2b0: 636f 6d70 7574 6174 696f 6e73 2077 6974 computations wit │ │ │ │ -0002d2c0: 6820 4772 5c22 6f62 6e65 7220 6261 7365 h Gr\"obner base │ │ │ │ -0002d2d0: 732e 0a43 6861 6e67 696e 6720 7468 6520 s..Changing the │ │ │ │ -0002d2e0: 6f70 7469 6f6e 202a 6e6f 7465 2043 6f6d option *note Com │ │ │ │ -0002d2f0: 704d 6574 686f 643a 2043 6f6d 704d 6574 pMethod: CompMet │ │ │ │ -0002d300: 686f 642c 2074 6f20 6265 7274 696e 6920 hod, to bertini │ │ │ │ -0002d310: 7769 6c6c 2064 6f20 7468 6520 6d61 696e will do the main │ │ │ │ -0002d320: 0a63 6f6d 7075 7461 7469 6f6e 7320 6e75 .computations nu │ │ │ │ -0002d330: 6d65 7269 6361 6c6c 792c 2070 726f 7669 merically, provi │ │ │ │ -0002d340: 6465 6420 4265 7274 696e 6920 6973 2020 ded Bertini is │ │ │ │ -0002d350: 2a6e 6f74 6520 696e 7374 616c 6c65 6420 *note installed │ │ │ │ -0002d360: 616e 6420 636f 6e66 6967 7572 6564 3a0a and configured:. │ │ │ │ -0002d370: 636f 6e66 6967 7572 696e 6720 4265 7274 configuring Bert │ │ │ │ -0002d380: 696e 692c 2e20 4e6f 7465 2074 6861 7420 ini,. Note that │ │ │ │ -0002d390: 7468 6520 6265 7274 696e 6920 6f70 7469 the bertini opti │ │ │ │ -0002d3a0: 6f6e 2069 7320 6f6e 6c79 2061 7661 696c on is only avail │ │ │ │ -0002d3b0: 6162 6c65 2066 6f72 0a73 7562 7363 6865 able for.subsche │ │ │ │ -0002d3c0: 6d65 7320 6f66 205c 5050 5e6e 2e0a 0a4f mes of \PP^n...O │ │ │ │ -0002d3d0: 6273 6572 7665 2074 6861 7420 7468 6520 bserve that the │ │ │ │ -0002d3e0: 616c 676f 7269 7468 6d20 6973 2061 2070 algorithm is a p │ │ │ │ -0002d3f0: 726f 6261 6269 6c69 7374 6963 2061 6c67 robabilistic alg │ │ │ │ -0002d400: 6f72 6974 686d 2061 6e64 206d 6179 2067 orithm and may g │ │ │ │ -0002d410: 6976 6520 6120 7772 6f6e 670a 616e 7377 ive a wrong.answ │ │ │ │ -0002d420: 6572 2077 6974 6820 6120 736d 616c 6c20 er with a small │ │ │ │ -0002d430: 6275 7420 6e6f 6e7a 6572 6f20 7072 6f62 but nonzero prob │ │ │ │ -0002d440: 6162 696c 6974 792e 2052 6561 6420 6d6f ability. Read mo │ │ │ │ -0002d450: 7265 2075 6e64 6572 202a 6e6f 7465 0a70 re under *note.p │ │ │ │ -0002d460: 726f 6261 6269 6c69 7374 6963 2061 6c67 robabilistic alg │ │ │ │ -0002d470: 6f72 6974 686d 3a20 7072 6f62 6162 696c orithm: probabil │ │ │ │ -0002d480: 6973 7469 6320 616c 676f 7269 7468 6d2c istic algorithm, │ │ │ │ -0002d490: 2e0a 0a57 6179 7320 746f 2075 7365 2053 ...Ways to use S │ │ │ │ -0002d4a0: 6567 7265 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d egre:.========== │ │ │ │ -0002d4b0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2253 ========.. * "S │ │ │ │ -0002d4c0: 6567 7265 2849 6465 616c 2922 0a20 202a egre(Ideal)". * │ │ │ │ -0002d4d0: 2022 5365 6772 6528 4964 6561 6c2c 5379 "Segre(Ideal,Sy │ │ │ │ -0002d4e0: 6d62 6f6c 2922 0a20 202a 2022 5365 6772 mbol)". * "Segr │ │ │ │ -0002d4f0: 6528 5175 6f74 6965 6e74 5269 6e67 2c49 e(QuotientRing,I │ │ │ │ -0002d500: 6465 616c 2922 0a0a 466f 7220 7468 6520 deal)"..For the │ │ │ │ -0002d510: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0002d520: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0002d530: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0002d540: 5365 6772 653a 2053 6567 7265 2c20 6973 Segre: Segre, is │ │ │ │ -0002d550: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0002d560: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ -0002d570: 7469 6f6e 733a 0a28 4d61 6361 756c 6179 tions:.(Macaulay │ │ │ │ -0002d580: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -0002d590: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -0002d5a0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -0002d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5f0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0002d600: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0002d610: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0002d620: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0002d630: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0002d640: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0002d650: 7061 636b 6167 6573 2f0a 4368 6172 6163 packages/.Charac │ │ │ │ -0002d660: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -0002d670: 6d32 3a31 3736 333a 302e 0a1f 0a46 696c m2:1763:0....Fil │ │ │ │ -0002d680: 653a 2043 6861 7261 6374 6572 6973 7469 e: Characteristi │ │ │ │ -0002d690: 6343 6c61 7373 6573 2e69 6e66 6f2c 204e cClasses.info, N │ │ │ │ -0002d6a0: 6f64 653a 2054 6f72 6963 4368 6f77 5269 ode: ToricChowRi │ │ │ │ -0002d6b0: 6e67 2c20 5072 6576 3a20 5365 6772 652c ng, Prev: Segre, │ │ │ │ -0002d6c0: 2055 703a 2054 6f70 0a0a 546f 7269 6343 Up: Top..ToricC │ │ │ │ -0002d6d0: 686f 7752 696e 6720 2d2d 2043 6f6d 7075 howRing -- Compu │ │ │ │ -0002d6e0: 7465 7320 7468 6520 4368 6f77 2072 696e tes the Chow rin │ │ │ │ -0002d6f0: 6720 6f66 2061 206e 6f72 6d61 6c20 746f g of a normal to │ │ │ │ -0002d700: 7269 6320 7661 7269 6574 790a 2a2a 2a2a ric variety.**** │ │ │ │ -0002d710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -0002d750: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0002d760: 2020 2054 6f72 6963 4368 6f77 5269 6e67 ToricChowRing │ │ │ │ -0002d770: 2058 0a20 202a 2049 6e70 7574 733a 0a20 X. * Inputs:. │ │ │ │ -0002d780: 2020 2020 202a 2052 2c20 6120 2a6e 6f74 * R, a *not │ │ │ │ -0002d790: 6520 6e6f 726d 616c 2074 6f72 6963 2076 e normal toric v │ │ │ │ -0002d7a0: 6172 6965 7479 3a0a 2020 2020 2020 2020 ariety:. │ │ │ │ -0002d7b0: 284e 6f72 6d61 6c54 6f72 6963 5661 7269 (NormalToricVari │ │ │ │ -0002d7c0: 6574 6965 7329 4e6f 726d 616c 546f 7269 eties)NormalTori │ │ │ │ -0002d7d0: 6356 6172 6965 7479 2c2c 2041 206e 6f72 cVariety,, A nor │ │ │ │ -0002d7e0: 6d61 6c20 746f 7269 6320 7661 7269 6574 mal toric variet │ │ │ │ -0002d7f0: 790a 2020 2a20 4f75 7470 7574 733a 0a20 y. * Outputs:. │ │ │ │ -0002d800: 2020 2020 202a 2061 202a 6e6f 7465 2071 * a *note q │ │ │ │ -0002d810: 756f 7469 656e 7420 7269 6e67 3a20 284d uotient ring: (M │ │ │ │ -0002d820: 6163 6175 6c61 7932 446f 6329 5175 6f74 acaulay2Doc)Quot │ │ │ │ -0002d830: 6965 6e74 5269 6e67 2c2c 200a 0a44 6573 ientRing,, ..Des │ │ │ │ -0002d840: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0002d850: 3d3d 3d3d 0a0a 4c65 7420 5820 6265 2061 ====..Let X be a │ │ │ │ -0002d860: 2074 6f72 6963 2076 6172 6965 7479 2077 toric variety w │ │ │ │ -0002d870: 6974 6820 746f 7461 6c20 636f 6f72 6469 ith total coordi │ │ │ │ -0002d880: 6e61 7465 2072 696e 6720 2843 6f78 2072 nate ring (Cox r │ │ │ │ -0002d890: 696e 6729 2052 2e20 5468 6973 206d 6574 ing) R. This met │ │ │ │ -0002d8a0: 686f 640a 636f 6d70 7574 6573 2074 6865 hod.computes the │ │ │ │ -0002d8b0: 2043 686f 7720 7269 6e67 2020 4368 6f77 Chow ring Chow │ │ │ │ -0002d8c0: 2072 696e 6720 4368 3d52 2f28 5352 2b4c ring Ch=R/(SR+L │ │ │ │ -0002d8d0: 5229 206f 6620 583b 2068 6572 6520 5352 R) of X; here SR │ │ │ │ -0002d8e0: 2069 7320 7468 650a 5374 616e 6c65 792d is the.Stanley- │ │ │ │ -0002d8f0: 5265 6973 6e65 7220 6964 6561 6c20 6f66 Reisner ideal of │ │ │ │ -0002d900: 2074 6865 2063 6f72 7265 7370 6f6e 6469 the correspondi │ │ │ │ -0002d910: 6e67 2066 616e 2061 6e64 204c 5220 6973 ng fan and LR is │ │ │ │ -0002d920: 2074 6865 2069 6465 616c 206f 6620 6c69 the ideal of li │ │ │ │ -0002d930: 6e65 6172 0a72 656c 6174 696f 6e73 2061 near.relations a │ │ │ │ -0002d940: 6d6f 756e 7420 7468 6520 7261 7973 2e20 mount the rays. │ │ │ │ -0002d950: 4974 2069 7320 6e65 6564 6564 2066 6f72 It is needed for │ │ │ │ -0002d960: 2069 6e70 7574 2069 6e74 6f20 7468 6520 input into the │ │ │ │ -0002d970: 6d65 7468 6f64 7320 2a6e 6f74 6520 5365 methods *note Se │ │ │ │ -0002d980: 6772 653a 0a53 6567 7265 2c2c 202a 6e6f gre:.Segre,, *no │ │ │ │ -0002d990: 7465 2043 6865 726e 3a20 4368 6572 6e2c te Chern: Chern, │ │ │ │ -0002d9a0: 2061 6e64 202a 6e6f 7465 2043 534d 3a20 and *note CSM: │ │ │ │ -0002d9b0: 4353 4d2c 2069 6e20 7468 6520 6361 7365 CSM, in the case │ │ │ │ -0002d9c0: 7320 7768 6572 6520 6120 746f 7269 630a s where a toric. │ │ │ │ -0002d9d0: 7661 7269 6574 7920 6973 2061 6c73 6f20 variety is also │ │ │ │ -0002d9e0: 696e 7075 7420 746f 2065 6e73 7572 6520 input to ensure │ │ │ │ -0002d9f0: 7468 6174 2074 6865 7365 206d 6574 686f that these metho │ │ │ │ -0002da00: 6473 2072 6574 7572 6e20 7265 7375 6c74 ds return result │ │ │ │ -0002da10: 7320 696e 2074 6865 2073 616d 650a 7269 s in the same.ri │ │ │ │ -0002da20: 6e67 2e20 5765 2067 6976 6520 616e 2065 ng. We give an e │ │ │ │ -0002da30: 7861 6d70 6c65 206f 6620 7468 6520 7573 xample of the us │ │ │ │ -0002da40: 6520 6f66 2074 6869 7320 6d65 7468 6f64 e of this method │ │ │ │ -0002da50: 2074 6f20 776f 726b 2077 6974 6820 656c to work with el │ │ │ │ -0002da60: 656d 656e 7473 206f 6620 7468 650a 4368 ements of the.Ch │ │ │ │ -0002da70: 6f77 2072 696e 6720 6f66 2061 2074 6f72 ow ring of a tor │ │ │ │ -0002da80: 6963 2076 6172 6965 7479 0a0a 2b2d 2d2d ic variety..+--- │ │ │ │ -0002da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -0002dae0: 3a20 6e65 6564 7350 6163 6b61 6765 2022 : needsPackage " │ │ │ │ -0002daf0: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ -0002db00: 7469 6573 2220 2020 2020 2020 2020 2020 ties" │ │ │ │ +0002d1e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0002d230: 416c 6c20 7468 6520 6578 616d 706c 6573 All the examples │ │ │ │ +0002d240: 2077 6572 6520 646f 6e65 2075 7369 6e67 were done using │ │ │ │ +0002d250: 2073 796d 626f 6c69 6320 636f 6d70 7574 symbolic comput │ │ │ │ +0002d260: 6174 696f 6e73 2077 6974 6820 4772 5c22 ations with Gr\" │ │ │ │ +0002d270: 6f62 6e65 7220 6261 7365 732e 0a43 6861 obner bases..Cha │ │ │ │ +0002d280: 6e67 696e 6720 7468 6520 6f70 7469 6f6e nging the option │ │ │ │ +0002d290: 202a 6e6f 7465 2043 6f6d 704d 6574 686f *note CompMetho │ │ │ │ +0002d2a0: 643a 2043 6f6d 704d 6574 686f 642c 2074 d: CompMethod, t │ │ │ │ +0002d2b0: 6f20 6265 7274 696e 6920 7769 6c6c 2064 o bertini will d │ │ │ │ +0002d2c0: 6f20 7468 6520 6d61 696e 0a63 6f6d 7075 o the main.compu │ │ │ │ +0002d2d0: 7461 7469 6f6e 7320 6e75 6d65 7269 6361 tations numerica │ │ │ │ +0002d2e0: 6c6c 792c 2070 726f 7669 6465 6420 4265 lly, provided Be │ │ │ │ +0002d2f0: 7274 696e 6920 6973 2020 2a6e 6f74 6520 rtini is *note │ │ │ │ +0002d300: 696e 7374 616c 6c65 6420 616e 6420 636f installed and co │ │ │ │ +0002d310: 6e66 6967 7572 6564 3a0a 636f 6e66 6967 nfigured:.config │ │ │ │ +0002d320: 7572 696e 6720 4265 7274 696e 692c 2e20 uring Bertini,. │ │ │ │ +0002d330: 4e6f 7465 2074 6861 7420 7468 6520 6265 Note that the be │ │ │ │ +0002d340: 7274 696e 6920 6f70 7469 6f6e 2069 7320 rtini option is │ │ │ │ +0002d350: 6f6e 6c79 2061 7661 696c 6162 6c65 2066 only available f │ │ │ │ +0002d360: 6f72 0a73 7562 7363 6865 6d65 7320 6f66 or.subschemes of │ │ │ │ +0002d370: 205c 5050 5e6e 2e0a 0a4f 6273 6572 7665 \PP^n...Observe │ │ │ │ +0002d380: 2074 6861 7420 7468 6520 616c 676f 7269 that the algori │ │ │ │ +0002d390: 7468 6d20 6973 2061 2070 726f 6261 6269 thm is a probabi │ │ │ │ +0002d3a0: 6c69 7374 6963 2061 6c67 6f72 6974 686d listic algorithm │ │ │ │ +0002d3b0: 2061 6e64 206d 6179 2067 6976 6520 6120 and may give a │ │ │ │ +0002d3c0: 7772 6f6e 670a 616e 7377 6572 2077 6974 wrong.answer wit │ │ │ │ +0002d3d0: 6820 6120 736d 616c 6c20 6275 7420 6e6f h a small but no │ │ │ │ +0002d3e0: 6e7a 6572 6f20 7072 6f62 6162 696c 6974 nzero probabilit │ │ │ │ +0002d3f0: 792e 2052 6561 6420 6d6f 7265 2075 6e64 y. Read more und │ │ │ │ +0002d400: 6572 202a 6e6f 7465 0a70 726f 6261 6269 er *note.probabi │ │ │ │ +0002d410: 6c69 7374 6963 2061 6c67 6f72 6974 686d listic algorithm │ │ │ │ +0002d420: 3a20 7072 6f62 6162 696c 6973 7469 6320 : probabilistic │ │ │ │ +0002d430: 616c 676f 7269 7468 6d2c 2e0a 0a57 6179 algorithm,...Way │ │ │ │ +0002d440: 7320 746f 2075 7365 2053 6567 7265 3a0a s to use Segre:. │ │ │ │ +0002d450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0002d460: 3d3d 0a0a 2020 2a20 2253 6567 7265 2849 ==.. * "Segre(I │ │ │ │ +0002d470: 6465 616c 2922 0a20 202a 2022 5365 6772 deal)". * "Segr │ │ │ │ +0002d480: 6528 4964 6561 6c2c 5379 6d62 6f6c 2922 e(Ideal,Symbol)" │ │ │ │ +0002d490: 0a20 202a 2022 5365 6772 6528 5175 6f74 . * "Segre(Quot │ │ │ │ +0002d4a0: 6965 6e74 5269 6e67 2c49 6465 616c 2922 ientRing,Ideal)" │ │ │ │ +0002d4b0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0002d4c0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0002d4d0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0002d4e0: 6563 7420 2a6e 6f74 6520 5365 6772 653a ect *note Segre: │ │ │ │ +0002d4f0: 2053 6567 7265 2c20 6973 2061 202a 6e6f Segre, is a *no │ │ │ │ +0002d500: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +0002d510: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +0002d520: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +0002d530: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +0002d540: 684f 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d hOptions,...---- │ │ │ │ +0002d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0002d5a0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0002d5b0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0002d5c0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0002d5d0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0002d5e0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0002d5f0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0002d600: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ +0002d610: 6963 436c 6173 7365 732e 6d32 3a31 3736 icClasses.m2:176 │ │ │ │ +0002d620: 333a 302e 0a1f 0a46 696c 653a 2043 6861 3:0....File: Cha │ │ │ │ +0002d630: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +0002d640: 6573 2e69 6e66 6f2c 204e 6f64 653a 2054 es.info, Node: T │ │ │ │ +0002d650: 6f72 6963 4368 6f77 5269 6e67 2c20 5072 oricChowRing, Pr │ │ │ │ +0002d660: 6576 3a20 5365 6772 652c 2055 703a 2054 ev: Segre, Up: T │ │ │ │ +0002d670: 6f70 0a0a 546f 7269 6343 686f 7752 696e op..ToricChowRin │ │ │ │ +0002d680: 6720 2d2d 2043 6f6d 7075 7465 7320 7468 g -- Computes th │ │ │ │ +0002d690: 6520 4368 6f77 2072 696e 6720 6f66 2061 e Chow ring of a │ │ │ │ +0002d6a0: 206e 6f72 6d61 6c20 746f 7269 6320 7661 normal toric va │ │ │ │ +0002d6b0: 7269 6574 790a 2a2a 2a2a 2a2a 2a2a 2a2a riety.********** │ │ │ │ +0002d6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d6f0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +0002d700: 6765 3a20 0a20 2020 2020 2020 2054 6f72 ge: . Tor │ │ │ │ +0002d710: 6963 4368 6f77 5269 6e67 2058 0a20 202a icChowRing X. * │ │ │ │ +0002d720: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0002d730: 2052 2c20 6120 2a6e 6f74 6520 6e6f 726d R, a *note norm │ │ │ │ +0002d740: 616c 2074 6f72 6963 2076 6172 6965 7479 al toric variety │ │ │ │ +0002d750: 3a0a 2020 2020 2020 2020 284e 6f72 6d61 :. (Norma │ │ │ │ +0002d760: 6c54 6f72 6963 5661 7269 6574 6965 7329 lToricVarieties) │ │ │ │ +0002d770: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ +0002d780: 7479 2c2c 2041 206e 6f72 6d61 6c20 746f ty,, A normal to │ │ │ │ +0002d790: 7269 6320 7661 7269 6574 790a 2020 2a20 ric variety. * │ │ │ │ +0002d7a0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +0002d7b0: 2061 202a 6e6f 7465 2071 756f 7469 656e a *note quotien │ │ │ │ +0002d7c0: 7420 7269 6e67 3a20 284d 6163 6175 6c61 t ring: (Macaula │ │ │ │ +0002d7d0: 7932 446f 6329 5175 6f74 6965 6e74 5269 y2Doc)QuotientRi │ │ │ │ +0002d7e0: 6e67 2c2c 200a 0a44 6573 6372 6970 7469 ng,, ..Descripti │ │ │ │ +0002d7f0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0002d800: 4c65 7420 5820 6265 2061 2074 6f72 6963 Let X be a toric │ │ │ │ +0002d810: 2076 6172 6965 7479 2077 6974 6820 746f variety with to │ │ │ │ +0002d820: 7461 6c20 636f 6f72 6469 6e61 7465 2072 tal coordinate r │ │ │ │ +0002d830: 696e 6720 2843 6f78 2072 696e 6729 2052 ing (Cox ring) R │ │ │ │ +0002d840: 2e20 5468 6973 206d 6574 686f 640a 636f . This method.co │ │ │ │ +0002d850: 6d70 7574 6573 2074 6865 2043 686f 7720 mputes the Chow │ │ │ │ +0002d860: 7269 6e67 2020 4368 6f77 2072 696e 6720 ring Chow ring │ │ │ │ +0002d870: 4368 3d52 2f28 5352 2b4c 5229 206f 6620 Ch=R/(SR+LR) of │ │ │ │ +0002d880: 583b 2068 6572 6520 5352 2069 7320 7468 X; here SR is th │ │ │ │ +0002d890: 650a 5374 616e 6c65 792d 5265 6973 6e65 e.Stanley-Reisne │ │ │ │ +0002d8a0: 7220 6964 6561 6c20 6f66 2074 6865 2063 r ideal of the c │ │ │ │ +0002d8b0: 6f72 7265 7370 6f6e 6469 6e67 2066 616e orresponding fan │ │ │ │ +0002d8c0: 2061 6e64 204c 5220 6973 2074 6865 2069 and LR is the i │ │ │ │ +0002d8d0: 6465 616c 206f 6620 6c69 6e65 6172 0a72 deal of linear.r │ │ │ │ +0002d8e0: 656c 6174 696f 6e73 2061 6d6f 756e 7420 elations amount │ │ │ │ +0002d8f0: 7468 6520 7261 7973 2e20 4974 2069 7320 the rays. It is │ │ │ │ +0002d900: 6e65 6564 6564 2066 6f72 2069 6e70 7574 needed for input │ │ │ │ +0002d910: 2069 6e74 6f20 7468 6520 6d65 7468 6f64 into the method │ │ │ │ +0002d920: 7320 2a6e 6f74 6520 5365 6772 653a 0a53 s *note Segre:.S │ │ │ │ +0002d930: 6567 7265 2c2c 202a 6e6f 7465 2043 6865 egre,, *note Che │ │ │ │ +0002d940: 726e 3a20 4368 6572 6e2c 2061 6e64 202a rn: Chern, and * │ │ │ │ +0002d950: 6e6f 7465 2043 534d 3a20 4353 4d2c 2069 note CSM: CSM, i │ │ │ │ +0002d960: 6e20 7468 6520 6361 7365 7320 7768 6572 n the cases wher │ │ │ │ +0002d970: 6520 6120 746f 7269 630a 7661 7269 6574 e a toric.variet │ │ │ │ +0002d980: 7920 6973 2061 6c73 6f20 696e 7075 7420 y is also input │ │ │ │ +0002d990: 746f 2065 6e73 7572 6520 7468 6174 2074 to ensure that t │ │ │ │ +0002d9a0: 6865 7365 206d 6574 686f 6473 2072 6574 hese methods ret │ │ │ │ +0002d9b0: 7572 6e20 7265 7375 6c74 7320 696e 2074 urn results in t │ │ │ │ +0002d9c0: 6865 2073 616d 650a 7269 6e67 2e20 5765 he same.ring. We │ │ │ │ +0002d9d0: 2067 6976 6520 616e 2065 7861 6d70 6c65 give an example │ │ │ │ +0002d9e0: 206f 6620 7468 6520 7573 6520 6f66 2074 of the use of t │ │ │ │ +0002d9f0: 6869 7320 6d65 7468 6f64 2074 6f20 776f his method to wo │ │ │ │ +0002da00: 726b 2077 6974 6820 656c 656d 656e 7473 rk with elements │ │ │ │ +0002da10: 206f 6620 7468 650a 4368 6f77 2072 696e of the.Chow rin │ │ │ │ +0002da20: 6720 6f66 2061 2074 6f72 6963 2076 6172 g of a toric var │ │ │ │ +0002da30: 6965 7479 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d iety..+--------- │ │ │ │ +0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da80: 2d2d 2d2d 2b0a 7c69 3120 3a20 6e65 6564 ----+.|i1 : need │ │ │ │ +0002da90: 7350 6163 6b61 6765 2022 4e6f 726d 616c sPackage "Normal │ │ │ │ +0002daa0: 546f 7269 6356 6172 6965 7469 6573 2220 ToricVarieties" │ │ │ │ +0002dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db20: 2020 2020 7c0a 7c6f 3120 3d20 4e6f 726d |.|o1 = Norm │ │ │ │ +0002db30: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ 0002db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db70: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0002db80: 3d20 4e6f 726d 616c 546f 7269 6356 6172 = NormalToricVar │ │ │ │ -0002db90: 6965 7469 6573 2020 2020 2020 2020 2020 ieties │ │ │ │ +0002db70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dbc0: 2020 2020 7c0a 7c6f 3120 3a20 5061 636b |.|o1 : Pack │ │ │ │ +0002dbd0: 6167 6520 2020 2020 2020 2020 2020 2020 age │ │ │ │ 0002dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc10: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0002dc20: 3a20 5061 636b 6167 6520 2020 2020 2020 : Package │ │ │ │ -0002dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc60: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -0002dcc0: 3a20 5268 6f20 3d20 7b7b 312c 302c 307d : Rho = {{1,0,0} │ │ │ │ -0002dcd0: 2c7b 302c 312c 307d 2c7b 302c 302c 317d ,{0,1,0},{0,0,1} │ │ │ │ -0002dce0: 2c7b 2d31 2c2d 312c 307d 2c7b 302c 302c ,{-1,-1,0},{0,0, │ │ │ │ -0002dcf0: 2d31 7d7d 2020 2020 2020 2020 2020 2020 -1}} │ │ │ │ -0002dd00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd50: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0002dd60: 3d20 7b7b 312c 2030 2c20 307d 2c20 7b30 = {{1, 0, 0}, {0 │ │ │ │ -0002dd70: 2c20 312c 2030 7d2c 207b 302c 2030 2c20 , 1, 0}, {0, 0, │ │ │ │ -0002dd80: 317d 2c20 7b2d 312c 202d 312c 2030 7d2c 1}, {-1, -1, 0}, │ │ │ │ -0002dd90: 207b 302c 2030 2c20 2d31 7d7d 2020 2020 {0, 0, -1}} │ │ │ │ -0002dda0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002dc10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002dc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc60: 2d2d 2d2d 2b0a 7c69 3220 3a20 5268 6f20 ----+.|i2 : Rho │ │ │ │ +0002dc70: 3d20 7b7b 312c 302c 307d 2c7b 302c 312c = {{1,0,0},{0,1, │ │ │ │ +0002dc80: 307d 2c7b 302c 302c 317d 2c7b 2d31 2c2d 0},{0,0,1},{-1,- │ │ │ │ +0002dc90: 312c 307d 2c7b 302c 302c 2d31 7d7d 2020 1,0},{0,0,-1}} │ │ │ │ +0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd00: 2020 2020 7c0a 7c6f 3220 3d20 7b7b 312c |.|o2 = {{1, │ │ │ │ +0002dd10: 2030 2c20 307d 2c20 7b30 2c20 312c 2030 0, 0}, {0, 1, 0 │ │ │ │ +0002dd20: 7d2c 207b 302c 2030 2c20 317d 2c20 7b2d }, {0, 0, 1}, {- │ │ │ │ +0002dd30: 312c 202d 312c 2030 7d2c 207b 302c 2030 1, -1, 0}, {0, 0 │ │ │ │ +0002dd40: 2c20 2d31 7d7d 2020 2020 2020 2020 2020 , -1}} │ │ │ │ +0002dd50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dda0: 2020 2020 7c0a 7c6f 3220 3a20 4c69 7374 |.|o2 : List │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddf0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0002de00: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -0002dea0: 3a20 5369 676d 6120 3d20 7b7b 302c 312c : Sigma = {{0,1, │ │ │ │ -0002deb0: 327d 2c7b 312c 322c 337d 2c7b 302c 322c 2},{1,2,3},{0,2, │ │ │ │ -0002dec0: 337d 2c7b 302c 312c 347d 2c7b 312c 332c 3},{0,1,4},{1,3, │ │ │ │ -0002ded0: 347d 2c7b 302c 332c 347d 7d20 2020 2020 4},{0,3,4}} │ │ │ │ -0002dee0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df30: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0002df40: 3d20 7b7b 302c 2031 2c20 327d 2c20 7b31 = {{0, 1, 2}, {1 │ │ │ │ -0002df50: 2c20 322c 2033 7d2c 207b 302c 2032 2c20 , 2, 3}, {0, 2, │ │ │ │ -0002df60: 337d 2c20 7b30 2c20 312c 2034 7d2c 207b 3}, {0, 1, 4}, { │ │ │ │ -0002df70: 312c 2033 2c20 347d 2c20 7b30 2c20 332c 1, 3, 4}, {0, 3, │ │ │ │ -0002df80: 2034 7d7d 2020 2020 2020 7c0a 7c20 2020 4}} |.| │ │ │ │ +0002ddf0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002de00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de40: 2d2d 2d2d 2b0a 7c69 3320 3a20 5369 676d ----+.|i3 : Sigm │ │ │ │ +0002de50: 6120 3d20 7b7b 302c 312c 327d 2c7b 312c a = {{0,1,2},{1, │ │ │ │ +0002de60: 322c 337d 2c7b 302c 322c 337d 2c7b 302c 2,3},{0,2,3},{0, │ │ │ │ +0002de70: 312c 347d 2c7b 312c 332c 347d 2c7b 302c 1,4},{1,3,4},{0, │ │ │ │ +0002de80: 332c 347d 7d20 2020 2020 2020 2020 2020 3,4}} │ │ │ │ +0002de90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dee0: 2020 2020 7c0a 7c6f 3320 3d20 7b7b 302c |.|o3 = {{0, │ │ │ │ +0002def0: 2031 2c20 327d 2c20 7b31 2c20 322c 2033 1, 2}, {1, 2, 3 │ │ │ │ +0002df00: 7d2c 207b 302c 2032 2c20 337d 2c20 7b30 }, {0, 2, 3}, {0 │ │ │ │ +0002df10: 2c20 312c 2034 7d2c 207b 312c 2033 2c20 , 1, 4}, {1, 3, │ │ │ │ +0002df20: 347d 2c20 7b30 2c20 332c 2034 7d7d 2020 4}, {0, 3, 4}} │ │ │ │ +0002df30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df80: 2020 2020 7c0a 7c6f 3320 3a20 4c69 7374 |.|o3 : List │ │ │ │ 0002df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfd0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0002dfe0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e020: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0002e080: 3a20 5820 3d20 6e6f 726d 616c 546f 7269 : X = normalTori │ │ │ │ -0002e090: 6356 6172 6965 7479 2852 686f 2c53 6967 cVariety(Rho,Sig │ │ │ │ -0002e0a0: 6d61 2c43 6f65 6666 6963 6965 6e74 5269 ma,CoefficientRi │ │ │ │ -0002e0b0: 6e67 203d 3e5a 5a2f 3332 3734 3929 2020 ng =>ZZ/32749) │ │ │ │ -0002e0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002dfd0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e020: 2d2d 2d2d 2b0a 7c69 3420 3a20 5820 3d20 ----+.|i4 : X = │ │ │ │ +0002e030: 6e6f 726d 616c 546f 7269 6356 6172 6965 normalToricVarie │ │ │ │ +0002e040: 7479 2852 686f 2c53 6967 6d61 2c43 6f65 ty(Rho,Sigma,Coe │ │ │ │ +0002e050: 6666 6963 6965 6e74 5269 6e67 203d 3e5a fficientRing =>Z │ │ │ │ +0002e060: 5a2f 3332 3734 3929 2020 2020 2020 2020 Z/32749) │ │ │ │ +0002e070: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0c0: 2020 2020 7c0a 7c6f 3420 3d20 5820 2020 |.|o4 = X │ │ │ │ 0002e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e110: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0002e120: 3d20 5820 2020 2020 2020 2020 2020 2020 = X │ │ │ │ +0002e110: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e160: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e160: 2020 2020 7c0a 7c6f 3420 3a20 4e6f 726d |.|o4 : Norm │ │ │ │ +0002e170: 616c 546f 7269 6356 6172 6965 7479 2020 alToricVariety │ │ │ │ 0002e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0002e1c0: 3a20 4e6f 726d 616c 546f 7269 6356 6172 : NormalToricVar │ │ │ │ -0002e1d0: 6965 7479 2020 2020 2020 2020 2020 2020 iety │ │ │ │ -0002e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e200: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002e210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0002e260: 3a20 523d 7269 6e67 2058 2020 2020 2020 : R=ring X │ │ │ │ +0002e1b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e200: 2d2d 2d2d 2b0a 7c69 3520 3a20 523d 7269 ----+.|i5 : R=ri │ │ │ │ +0002e210: 6e67 2058 2020 2020 2020 2020 2020 2020 ng X │ │ │ │ +0002e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e2a0: 2020 2020 7c0a 7c6f 3520 3d20 5220 2020 |.|o5 = R │ │ │ │ 0002e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0002e300: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +0002e2f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e340: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e340: 2020 2020 7c0a 7c6f 3520 3a20 506f 6c79 |.|o5 : Poly │ │ │ │ +0002e350: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ 0002e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e390: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0002e3a0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ -0002e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0002e440: 3a20 4368 3d54 6f72 6963 4368 6f77 5269 : Ch=ToricChowRi │ │ │ │ -0002e450: 6e67 2858 2920 2020 2020 2020 2020 2020 ng(X) │ │ │ │ +0002e390: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3e0: 2d2d 2d2d 2b0a 7c69 3620 3a20 4368 3d54 ----+.|i6 : Ch=T │ │ │ │ +0002e3f0: 6f72 6963 4368 6f77 5269 6e67 2858 2920 oricChowRing(X) │ │ │ │ +0002e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e430: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e480: 2020 2020 7c0a 7c6f 3620 3d20 4368 2020 |.|o6 = Ch │ │ │ │ 0002e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -0002e4e0: 3d20 4368 2020 2020 2020 2020 2020 2020 = Ch │ │ │ │ +0002e4d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e520: 2020 2020 7c0a 7c6f 3620 3a20 5175 6f74 |.|o6 : Quot │ │ │ │ +0002e530: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ 0002e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e570: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -0002e580: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ -0002e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -0002e620: 3a20 6465 7363 7269 6265 2043 6820 2020 : describe Ch │ │ │ │ +0002e570: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e5c0: 2d2d 2d2d 2b0a 7c69 3720 3a20 6465 7363 ----+.|i7 : desc │ │ │ │ +0002e5d0: 7269 6265 2043 6820 2020 2020 2020 2020 ribe Ch │ │ │ │ +0002e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e660: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e670: 2020 2020 2020 2020 2020 2020 5a5a 5b78 ZZ[x │ │ │ │ +0002e680: 202e 2e78 205d 2020 2020 2020 2020 2020 ..x ] │ │ │ │ 0002e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e6b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0002e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6d0: 2020 5a5a 5b78 202e 2e78 205d 2020 2020 ZZ[x ..x ] │ │ │ │ +0002e6d0: 3020 2020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ 0002e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e700: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e720: 2020 2020 2020 3020 2020 3420 2020 2020 0 4 │ │ │ │ -0002e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e700: 2020 2020 7c0a 7c6f 3720 3d20 2d2d 2d2d |.|o7 = ---- │ │ │ │ +0002e710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e730: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ 0002e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e750: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0002e760: 3d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d = -------------- │ │ │ │ -0002e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ----------- │ │ │ │ +0002e750: 2020 2020 7c0a 7c20 2020 2020 2878 2078 |.| (x x │ │ │ │ +0002e760: 202c 2078 2078 2078 202c 2078 2020 2d20 , x x x , x - │ │ │ │ +0002e770: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ +0002e780: 2d20 7820 2920 2020 2020 2020 2020 2020 - x ) │ │ │ │ 0002e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e7b0: 2020 2878 2078 202c 2078 2078 2078 202c (x x , x x x , │ │ │ │ -0002e7c0: 2078 2020 2d20 7820 2c20 7820 202d 2078 x - x , x - x │ │ │ │ -0002e7d0: 202c 2078 2020 2d20 7820 2920 2020 2020 , x - x ) │ │ │ │ +0002e7a0: 2020 2020 7c0a 7c20 2020 2020 2020 3220 |.| 2 │ │ │ │ +0002e7b0: 3420 2020 3020 3120 3320 2020 3020 2020 4 0 1 3 0 │ │ │ │ +0002e7c0: 2033 2020 2031 2020 2020 3320 2020 3220 3 1 3 2 │ │ │ │ +0002e7d0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0002e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e800: 2020 2020 3220 3420 2020 3020 3120 3320 2 4 0 1 3 │ │ │ │ -0002e810: 2020 3020 2020 2033 2020 2031 2020 2020 0 3 1 │ │ │ │ -0002e820: 3320 2020 3220 2020 2034 2020 2020 2020 3 2 4 │ │ │ │ -0002e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e840: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e890: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -0002e8a0: 3a20 723d 6765 6e73 2052 2020 2020 2020 : r=gens R │ │ │ │ +0002e7f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002e800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e840: 2d2d 2d2d 2b0a 7c69 3820 3a20 723d 6765 ----+.|i8 : r=ge │ │ │ │ +0002e850: 6e73 2052 2020 2020 2020 2020 2020 2020 ns R │ │ │ │ +0002e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e890: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e8e0: 2020 2020 7c0a 7c6f 3820 3d20 7b78 202c |.|o8 = {x , │ │ │ │ +0002e8f0: 2078 202c 2078 202c 2078 202c 2078 207d x , x , x , x } │ │ │ │ 0002e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e930: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -0002e940: 3d20 7b78 202c 2078 202c 2078 202c 2078 = {x , x , x , x │ │ │ │ -0002e950: 202c 2078 207d 2020 2020 2020 2020 2020 , x } │ │ │ │ +0002e930: 2020 2020 7c0a 7c20 2020 2020 2020 3020 |.| 0 │ │ │ │ +0002e940: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +0002e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e990: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ -0002e9a0: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0002e980: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e9d0: 2020 2020 7c0a 7c6f 3820 3a20 4c69 7374 |.|o8 : List │ │ │ │ 0002e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea20: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -0002ea30: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ -0002ead0: 3a20 493d 6964 6561 6c28 7261 6e64 6f6d : I=ideal(random │ │ │ │ -0002eae0: 287b 312c 307d 2c52 2929 2020 2020 2020 ({1,0},R)) │ │ │ │ +0002ea20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea70: 2d2d 2d2d 2b0a 7c69 3920 3a20 493d 6964 ----+.|i9 : I=id │ │ │ │ +0002ea80: 6561 6c28 7261 6e64 6f6d 287b 312c 307d eal(random({1,0} │ │ │ │ +0002ea90: 2c52 2929 2020 2020 2020 2020 2020 2020 ,R)) │ │ │ │ +0002eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eac0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb10: 2020 2020 7c0a 7c6f 3920 3d20 6964 6561 |.|o9 = idea │ │ │ │ +0002eb20: 6c28 3130 3778 2020 2b20 3433 3736 7820 l(107x + 4376x │ │ │ │ +0002eb30: 202d 2036 3331 3678 2029 2020 2020 2020 - 6316x ) │ │ │ │ 0002eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb60: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0002eb70: 3d20 6964 6561 6c28 3130 3778 2020 2b20 = ideal(107x + │ │ │ │ -0002eb80: 3433 3736 7820 202d 2036 3331 3678 2029 4376x - 6316x ) │ │ │ │ +0002eb60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002eb70: 2020 2020 2020 3020 2020 2020 2020 2031 0 1 │ │ │ │ +0002eb80: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ 0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002ebc0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -0002ebd0: 2020 2020 2031 2020 2020 2020 2020 3320 1 3 │ │ │ │ +0002ebb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec00: 2020 2020 7c0a 7c6f 3920 3a20 4964 6561 |.|o9 : Idea │ │ │ │ +0002ec10: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ 0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec50: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0002ec60: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ -0002ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eca0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ece0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -0002ed00: 203a 204b 3d69 6465 616c 2872 616e 646f : K=ideal(rando │ │ │ │ -0002ed10: 6d28 7b31 2c31 7d2c 5229 2920 2020 2020 m({1,1},R)) │ │ │ │ +0002ec50: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eca0: 2d2d 2d2d 2b0a 7c69 3130 203a 204b 3d69 ----+.|i10 : K=i │ │ │ │ +0002ecb0: 6465 616c 2872 616e 646f 6d28 7b31 2c31 deal(random({1,1 │ │ │ │ +0002ecc0: 7d2c 5229 2920 2020 2020 2020 2020 2020 },R)) │ │ │ │ +0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ecf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed90: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -0002eda0: 203d 2069 6465 616c 2833 3138 3778 2078 = ideal(3187x x │ │ │ │ -0002edb0: 2020 2d20 3630 3533 7820 7820 202d 2031 - 6053x x - 1 │ │ │ │ -0002edc0: 3630 3930 7820 7820 202b 2033 3738 3378 6090x x + 3783x │ │ │ │ -0002edd0: 2078 2020 2b20 3835 3730 7820 7820 202b x + 8570x x + │ │ │ │ -0002ede0: 2038 3434 3478 2078 2029 7c0a 7c20 2020 8444x x )|.| │ │ │ │ -0002edf0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0002ee00: 3220 2020 2020 2020 2031 2032 2020 2020 2 1 2 │ │ │ │ -0002ee10: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ -0002ee20: 3020 3420 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ -0002ee30: 2020 2020 2020 3320 3420 7c0a 7c20 2020 3 4 |.| │ │ │ │ -0002ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ed40: 2020 2020 7c0a 7c6f 3130 203d 2069 6465 |.|o10 = ide │ │ │ │ +0002ed50: 616c 2833 3138 3778 2078 2020 2d20 3630 al(3187x x - 60 │ │ │ │ +0002ed60: 3533 7820 7820 202d 2031 3630 3930 7820 53x x - 16090x │ │ │ │ +0002ed70: 7820 202b 2033 3738 3378 2078 2020 2b20 x + 3783x x + │ │ │ │ +0002ed80: 3835 3730 7820 7820 202b 2038 3434 3478 8570x x + 8444x │ │ │ │ +0002ed90: 2078 2029 7c0a 7c20 2020 2020 2020 2020 x )|.| │ │ │ │ +0002eda0: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ +0002edb0: 2020 2031 2032 2020 2020 2020 2020 2032 1 2 2 │ │ │ │ +0002edc0: 2033 2020 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ +0002edd0: 2020 2020 2031 2034 2020 2020 2020 2020 1 4 │ │ │ │ +0002ede0: 3320 3420 7c0a 7c20 2020 2020 2020 2020 3 4 |.| │ │ │ │ +0002edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee30: 2020 2020 7c0a 7c6f 3130 203a 2049 6465 |.|o10 : Ide │ │ │ │ +0002ee40: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ 0002ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee80: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -0002ee90: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ -0002eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eed0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -0002ef30: 203a 2063 3d43 6865 726e 2843 682c 582c : c=Chern(Ch,X, │ │ │ │ -0002ef40: 4929 2020 2020 2020 2020 2020 2020 2020 I) │ │ │ │ +0002ee80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eed0: 2d2d 2d2d 2b0a 7c69 3131 203a 2063 3d43 ----+.|i11 : c=C │ │ │ │ +0002eee0: 6865 726e 2843 682c 582c 4929 2020 2020 hern(Ch,X,I) │ │ │ │ +0002eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef70: 2020 2020 7c0a 7c20 2020 2020 2020 2032 |.| 2 │ │ │ │ +0002ef80: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 0002ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002efd0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -0002efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efc0: 2020 2020 7c0a 7c6f 3131 203d 2034 7820 |.|o11 = 4x │ │ │ │ +0002efd0: 7820 202b 2032 7820 202b 2032 7820 7820 x + 2x + 2x x │ │ │ │ +0002efe0: 202b 2078 2020 2020 2020 2020 2020 2020 + x │ │ │ │ 0002eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f010: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0002f020: 203d 2034 7820 7820 202b 2032 7820 202b = 4x x + 2x + │ │ │ │ -0002f030: 2032 7820 7820 202b 2078 2020 2020 2020 2x x + x │ │ │ │ +0002f010: 2020 2020 7c0a 7c20 2020 2020 2020 2033 |.| 3 │ │ │ │ +0002f020: 2034 2020 2020 2033 2020 2020 2033 2034 4 3 3 4 │ │ │ │ +0002f030: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 0002f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f070: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0002f080: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002f060: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f0b0: 2020 2020 7c0a 7c6f 3131 203a 2043 6820 |.|o11 : Ch │ │ │ │ 0002f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f100: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0002f110: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f150: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -0002f1b0: 203a 2073 3d53 6567 7265 2843 682c 582c : s=Segre(Ch,X, │ │ │ │ -0002f1c0: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +0002f100: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f150: 2d2d 2d2d 2b0a 7c69 3132 203a 2073 3d53 ----+.|i12 : s=S │ │ │ │ +0002f160: 6567 7265 2843 682c 582c 4b29 2020 2020 egre(Ch,X,K) │ │ │ │ +0002f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f1f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1f0: 2020 2020 7c0a 7c20 2020 2020 2020 2032 |.| 2 │ │ │ │ +0002f200: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0002f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f240: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f250: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0002f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f240: 2020 2020 7c0a 7c6f 3132 203d 2033 7820 |.|o12 = 3x │ │ │ │ +0002f250: 7820 202d 2078 2020 2d20 3278 2078 2020 x - x - 2x x │ │ │ │ +0002f260: 2b20 7820 202b 2078 2020 2020 2020 2020 + x + x │ │ │ │ 0002f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f290: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -0002f2a0: 203d 2033 7820 7820 202d 2078 2020 2d20 = 3x x - x - │ │ │ │ -0002f2b0: 3278 2078 2020 2b20 7820 202b 2078 2020 2x x + x + x │ │ │ │ +0002f290: 2020 2020 7c0a 7c20 2020 2020 2020 2033 |.| 3 │ │ │ │ +0002f2a0: 2034 2020 2020 3320 2020 2020 3320 3420 4 3 3 4 │ │ │ │ +0002f2b0: 2020 2033 2020 2020 3420 2020 2020 2020 3 4 │ │ │ │ 0002f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f2f0: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ -0002f300: 2020 3320 3420 2020 2033 2020 2020 3420 3 4 3 4 │ │ │ │ +0002f2e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f330: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f330: 2020 2020 7c0a 7c6f 3132 203a 2043 6820 |.|o12 : Ch │ │ │ │ 0002f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f380: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -0002f390: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -0002f430: 203a 2073 2d63 2020 2020 2020 2020 2020 : s-c │ │ │ │ +0002f380: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3d0: 2d2d 2d2d 2b0a 7c69 3133 203a 2073 2d63 ----+.|i13 : s-c │ │ │ │ +0002f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f420: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f470: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f470: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f480: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ 0002f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f4d0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -0002f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f4c0: 2020 2020 7c0a 7c6f 3133 203d 202d 2078 |.|o13 = - x │ │ │ │ +0002f4d0: 2078 2020 2d20 3378 2020 2d20 3478 2078 x - 3x - 4x x │ │ │ │ +0002f4e0: 2020 2b20 7820 2020 2020 2020 2020 2020 + x │ │ │ │ 0002f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f510: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -0002f520: 203d 202d 2078 2078 2020 2d20 3378 2020 = - x x - 3x │ │ │ │ -0002f530: 2d20 3478 2078 2020 2b20 7820 2020 2020 - 4x x + x │ │ │ │ +0002f510: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f520: 3320 3420 2020 2020 3320 2020 2020 3320 3 4 3 3 │ │ │ │ +0002f530: 3420 2020 2034 2020 2020 2020 2020 2020 4 4 │ │ │ │ 0002f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f560: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f570: 2020 2020 2020 3320 3420 2020 2020 3320 3 4 3 │ │ │ │ -0002f580: 2020 2020 3320 3420 2020 2034 2020 2020 3 4 4 │ │ │ │ +0002f560: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f5b0: 2020 2020 7c0a 7c6f 3133 203a 2043 6820 |.|o13 : Ch │ │ │ │ 0002f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f600: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -0002f610: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f650: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002f660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 ----------+.|i14 │ │ │ │ -0002f6b0: 203a 2073 2a63 2020 2020 2020 2020 2020 : s*c │ │ │ │ +0002f600: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f650: 2d2d 2d2d 2b0a 7c69 3134 203a 2073 2a63 ----+.|i14 : s*c │ │ │ │ +0002f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6f0: 2020 2020 7c0a 7c20 2020 2020 2020 2032 |.| 2 │ │ │ │ +0002f700: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0002f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f750: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0002f740: 2020 2020 7c0a 7c6f 3134 203d 2032 7820 |.|o14 = 2x │ │ │ │ +0002f750: 7820 202b 2078 2020 2b20 7820 7820 2020 x + x + x x │ │ │ │ 0002f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f790: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -0002f7a0: 203d 2032 7820 7820 202b 2078 2020 2b20 = 2x x + x + │ │ │ │ -0002f7b0: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ +0002f790: 2020 2020 7c0a 7c20 2020 2020 2020 2033 |.| 3 │ │ │ │ +0002f7a0: 2034 2020 2020 3320 2020 2033 2034 2020 4 3 3 4 │ │ │ │ +0002f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f7f0: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ -0002f800: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0002f7e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f830: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f830: 2020 2020 7c0a 7c6f 3134 203a 2043 6820 |.|o14 : Ch │ │ │ │ 0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f880: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -0002f890: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0002f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 6f72 ----------+..For │ │ │ │ -0002f930: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0002f940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002f950: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0002f960: 6e6f 7465 2054 6f72 6963 4368 6f77 5269 note ToricChowRi │ │ │ │ -0002f970: 6e67 3a20 546f 7269 6343 686f 7752 696e ng: ToricChowRin │ │ │ │ -0002f980: 672c 2069 7320 6120 2a6e 6f74 6520 6d65 g, is a *note me │ │ │ │ -0002f990: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -0002f9a0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -0002f9b0: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ -0002f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0002fa10: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0002fa20: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0002fa30: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0002fa40: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0002fa50: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0002fa60: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0002fa70: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -0002fa80: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -0002fa90: 3139 3531 3a30 2e0a 1f0a 5461 6720 5461 1951:0....Tag Ta │ │ │ │ -0002faa0: 626c 653a 0a4e 6f64 653a 2054 6f70 7f32 ble:.Node: Top.2 │ │ │ │ -0002fab0: 3931 0a4e 6f64 653a 2062 6572 7469 6e69 91.Node: bertini │ │ │ │ -0002fac0: 4368 6563 6b7f 3136 3730 350a 4e6f 6465 Check.16705.Node │ │ │ │ -0002fad0: 3a20 4368 6563 6b53 6d6f 6f74 687f 3137 : CheckSmooth.17 │ │ │ │ -0002fae0: 3932 320a 4e6f 6465 3a20 4368 6563 6b54 922.Node: CheckT │ │ │ │ -0002faf0: 6f72 6963 5661 7269 6574 7956 616c 6964 oricVarietyValid │ │ │ │ -0002fb00: 7f32 3237 3138 0a4e 6f64 653a 2043 6865 .22718.Node: Che │ │ │ │ -0002fb10: 726e 7f33 3337 3039 0a4e 6f64 653a 2043 rn.33709.Node: C │ │ │ │ -0002fb20: 686f 7752 696e 677f 3531 3231 370a 4e6f howRing.51217.No │ │ │ │ -0002fb30: 6465 3a20 436c 6173 7349 6e43 686f 7752 de: ClassInChowR │ │ │ │ -0002fb40: 696e 677f 3538 3934 380a 4e6f 6465 3a20 ing.58948.Node: │ │ │ │ -0002fb50: 436c 6173 7349 6e54 6f72 6963 4368 6f77 ClassInToricChow │ │ │ │ -0002fb60: 5269 6e67 7f36 3133 3038 0a4e 6f64 653a Ring.61308.Node: │ │ │ │ -0002fb70: 2043 6f6d 704d 6574 686f 647f 3636 3535 CompMethod.6655 │ │ │ │ -0002fb80: 310a 4e6f 6465 3a20 636f 6e66 6967 7572 1.Node: configur │ │ │ │ -0002fb90: 696e 6720 4265 7274 696e 697f 3736 3437 ing Bertini.7647 │ │ │ │ -0002fba0: 380a 4e6f 6465 3a20 4353 4d7f 3738 3131 8.Node: CSM.7811 │ │ │ │ -0002fbb0: 330a 4e6f 6465 3a20 4575 6c65 727f 3130 3.Node: Euler.10 │ │ │ │ -0002fbc0: 3138 3032 0a4e 6f64 653a 2045 756c 6572 1802.Node: Euler │ │ │ │ -0002fbd0: 4166 6669 6e65 7f31 3139 3637 390a 4e6f Affine.119679.No │ │ │ │ -0002fbe0: 6465 3a20 496e 6473 4f66 536d 6f6f 7468 de: IndsOfSmooth │ │ │ │ -0002fbf0: 7f31 3232 3139 310a 4e6f 6465 3a20 496e .122191.Node: In │ │ │ │ -0002fc00: 7075 7449 7353 6d6f 6f74 687f 3132 3631 putIsSmooth.1261 │ │ │ │ -0002fc10: 3436 0a4e 6f64 653a 2069 734d 756c 7469 46.Node: isMulti │ │ │ │ -0002fc20: 486f 6d6f 6765 6e65 6f75 737f 3133 3031 Homogeneous.1301 │ │ │ │ -0002fc30: 3634 0a4e 6f64 653a 204d 6574 686f 647f 64.Node: Method. │ │ │ │ -0002fc40: 3133 3432 3432 0a4e 6f64 653a 204d 756c 134242.Node: Mul │ │ │ │ -0002fc50: 7469 5072 6f6a 436f 6f72 6452 696e 677f tiProjCoordRing. │ │ │ │ -0002fc60: 3133 3831 3931 0a4e 6f64 653a 204f 7574 138191.Node: Out │ │ │ │ -0002fc70: 7075 747f 3134 3438 3539 0a4e 6f64 653a put.144859.Node: │ │ │ │ -0002fc80: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ -0002fc90: 6c67 6f72 6974 686d 7f31 3633 3337 370a lgorithm.163377. │ │ │ │ -0002fca0: 4e6f 6465 3a20 5365 6772 657f 3136 3830 Node: Segre.1680 │ │ │ │ -0002fcb0: 3732 0a4e 6f64 653a 2054 6f72 6963 4368 72.Node: ToricCh │ │ │ │ -0002fcc0: 6f77 5269 6e67 7f31 3835 3937 390a 1f0a owRing.185979... │ │ │ │ -0002fcd0: 456e 6420 5461 6720 5461 626c 650a End Tag Table. │ │ │ │ +0002f880: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002f890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8d0: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ +0002f8e0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0002f8f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0002f900: 6520 6f62 6a65 6374 202a 6e6f 7465 2054 e object *note T │ │ │ │ +0002f910: 6f72 6963 4368 6f77 5269 6e67 3a20 546f oricChowRing: To │ │ │ │ +0002f920: 7269 6343 686f 7752 696e 672c 2069 7320 ricChowRing, is │ │ │ │ +0002f930: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0002f940: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +0002f950: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0002f960: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +0002f970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9b0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0002f9c0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0002f9d0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0002f9e0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0002f9f0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0002fa00: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0002fa10: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0002fa20: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ +0002fa30: 6c61 7373 6573 2e6d 323a 3139 3531 3a30 lasses.m2:1951:0 │ │ │ │ +0002fa40: 2e0a 1f0a 5461 6720 5461 626c 653a 0a4e ....Tag Table:.N │ │ │ │ +0002fa50: 6f64 653a 2054 6f70 7f32 3931 0a4e 6f64 ode: Top.291.Nod │ │ │ │ +0002fa60: 653a 2062 6572 7469 6e69 4368 6563 6b7f e: bertiniCheck. │ │ │ │ +0002fa70: 3136 3730 350a 4e6f 6465 3a20 4368 6563 16705.Node: Chec │ │ │ │ +0002fa80: 6b53 6d6f 6f74 687f 3137 3932 320a 4e6f kSmooth.17922.No │ │ │ │ +0002fa90: 6465 3a20 4368 6563 6b54 6f72 6963 5661 de: CheckToricVa │ │ │ │ +0002faa0: 7269 6574 7956 616c 6964 7f32 3237 3138 rietyValid.22718 │ │ │ │ +0002fab0: 0a4e 6f64 653a 2043 6865 726e 7f33 3337 .Node: Chern.337 │ │ │ │ +0002fac0: 3039 0a4e 6f64 653a 2043 686f 7752 696e 09.Node: ChowRin │ │ │ │ +0002fad0: 677f 3531 3231 370a 4e6f 6465 3a20 436c g.51217.Node: Cl │ │ │ │ +0002fae0: 6173 7349 6e43 686f 7752 696e 677f 3538 assInChowRing.58 │ │ │ │ +0002faf0: 3934 380a 4e6f 6465 3a20 436c 6173 7349 948.Node: ClassI │ │ │ │ +0002fb00: 6e54 6f72 6963 4368 6f77 5269 6e67 7f36 nToricChowRing.6 │ │ │ │ +0002fb10: 3133 3038 0a4e 6f64 653a 2043 6f6d 704d 1308.Node: CompM │ │ │ │ +0002fb20: 6574 686f 647f 3636 3535 310a 4e6f 6465 ethod.66551.Node │ │ │ │ +0002fb30: 3a20 636f 6e66 6967 7572 696e 6720 4265 : configuring Be │ │ │ │ +0002fb40: 7274 696e 697f 3736 3437 380a 4e6f 6465 rtini.76478.Node │ │ │ │ +0002fb50: 3a20 4353 4d7f 3738 3131 330a 4e6f 6465 : CSM.78113.Node │ │ │ │ +0002fb60: 3a20 4575 6c65 727f 3130 3137 3531 0a4e : Euler.101751.N │ │ │ │ +0002fb70: 6f64 653a 2045 756c 6572 4166 6669 6e65 ode: EulerAffine │ │ │ │ +0002fb80: 7f31 3139 3632 380a 4e6f 6465 3a20 496e .119628.Node: In │ │ │ │ +0002fb90: 6473 4f66 536d 6f6f 7468 7f31 3232 3134 dsOfSmooth.12214 │ │ │ │ +0002fba0: 300a 4e6f 6465 3a20 496e 7075 7449 7353 0.Node: InputIsS │ │ │ │ +0002fbb0: 6d6f 6f74 687f 3132 3630 3935 0a4e 6f64 mooth.126095.Nod │ │ │ │ +0002fbc0: 653a 2069 734d 756c 7469 486f 6d6f 6765 e: isMultiHomoge │ │ │ │ +0002fbd0: 6e65 6f75 737f 3133 3030 3738 0a4e 6f64 neous.130078.Nod │ │ │ │ +0002fbe0: 653a 204d 6574 686f 647f 3133 3431 3536 e: Method.134156 │ │ │ │ +0002fbf0: 0a4e 6f64 653a 204d 756c 7469 5072 6f6a .Node: MultiProj │ │ │ │ +0002fc00: 436f 6f72 6452 696e 677f 3133 3831 3035 CoordRing.138105 │ │ │ │ +0002fc10: 0a4e 6f64 653a 204f 7574 7075 747f 3134 .Node: Output.14 │ │ │ │ +0002fc20: 3437 3733 0a4e 6f64 653a 2070 726f 6261 4773.Node: proba │ │ │ │ +0002fc30: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ +0002fc40: 686d 7f31 3633 3239 310a 4e6f 6465 3a20 hm.163291.Node: │ │ │ │ +0002fc50: 5365 6772 657f 3136 3739 3836 0a4e 6f64 Segre.167986.Nod │ │ │ │ +0002fc60: 653a 2054 6f72 6963 4368 6f77 5269 6e67 e: ToricChowRing │ │ │ │ +0002fc70: 7f31 3835 3839 330a 1f0a 456e 6420 5461 .185893...End Ta │ │ │ │ +0002fc80: 6720 5461 626c 650a g Table. │ │ ├── ./usr/share/info/Chordal.info.gz │ │ │ ├── Chordal.info │ │ │ │ @@ -3949,30 +3949,30 @@ │ │ │ │ 0000f6c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f710: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ 0000f720: 203d 2045 6c69 6d54 7265 657b 6120 3d3e = ElimTree{a => │ │ │ │ -0000f730: 2062 2020 207d 2020 2020 2020 2020 2020 b } │ │ │ │ +0000f730: 2063 7d20 2020 2020 2020 2020 2020 2020 c} │ │ │ │ 0000f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f770: 2020 2020 2020 2020 2020 2020 6220 3d3e b => │ │ │ │ 0000f780: 2063 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ 0000f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f7c0: 2020 2020 2020 2020 2020 2020 6320 3d3e c => │ │ │ │ 0000f7d0: 2064 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f800: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f810: 2020 2020 2020 2020 2020 2020 6420 3d3e d => │ │ │ │ -0000f820: 206e 756c 6c20 2020 2020 2020 2020 2020 null │ │ │ │ +0000f820: 2062 2020 2020 2020 2020 2020 2020 2020 b │ │ │ │ 0000f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4033,31 +4033,31 @@ │ │ │ │ 0000fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc60: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2064 = ChordalNet{ d │ │ │ │ -0000fc80: 203d 3e20 7b20 2c20 647d 2020 2020 7d20 => { , d} } │ │ │ │ +0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2061 = ChordalNet{ a │ │ │ │ +0000fc80: 203d 3e20 7b61 2c20 207d 2020 2020 7d20 => {a, } } │ │ │ │ 0000fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ -0000fcd0: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ +0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +0000fcd0: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ 0000fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd10: 2020 2020 2020 2020 2020 2020 2020 2061 a │ │ │ │ -0000fd20: 203d 3e20 7b61 2c20 207d 2020 2020 2020 => {a, } │ │ │ │ +0000fd10: 2020 2020 2020 2020 2020 2020 2020 2064 d │ │ │ │ +0000fd20: 203d 3e20 7b20 2c20 647d 2020 2020 2020 => { , d} │ │ │ │ 0000fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd60: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ -0000fd70: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ +0000fd60: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +0000fd70: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ 0000fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fda0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CohomCalg.info.gz │ │ │ ├── CohomCalg.info │ │ │ │ @@ -1042,15 +1042,15 @@ │ │ │ │ 00004110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00004130: 7c69 3230 203a 2065 6c61 7073 6564 5469 |i20 : elapsedTi │ │ │ │ 00004140: 6d65 2068 7665 6373 203d 2063 6f68 6f6d me hvecs = cohom │ │ │ │ 00004150: 4361 6c67 2858 2c20 4432 2920 2020 2020 Calg(X, D2) │ │ │ │ 00004160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00004180: 7c20 2d2d 2032 2e36 3734 3038 7320 656c | -- 2.67408s el │ │ │ │ +00004180: 7c20 2d2d 2033 2e31 3131 3834 7320 656c | -- 3.11184s el │ │ │ │ 00004190: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000041a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000041d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000041e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1677,15 +1677,15 @@ │ │ │ │ 000068c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000068d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000068e0: 7c69 3233 203a 2065 6c61 7073 6564 5469 |i23 : elapsedTi │ │ │ │ 000068f0: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00006900: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00006910: 5f37 202b 2058 5f38 2920 2020 2020 2020 _7 + X_8) │ │ │ │ 00006920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00006930: 7c20 2d2d 202e 3330 3239 3135 7320 656c | -- .302915s el │ │ │ │ +00006930: 7c20 2d2d 202e 3531 3436 3638 7320 656c | -- .514668s el │ │ │ │ 00006940: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000069a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ 00006af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00006b10: 7c69 3234 203a 2065 6c61 7073 6564 5469 |i24 : elapsedTi │ │ │ │ 00006b20: 6d65 2063 6f68 6f6d 7665 6332 203d 2066 me cohomvec2 = f │ │ │ │ 00006b30: 6f72 206a 2066 726f 6d20 3020 746f 2064 or j from 0 to d │ │ │ │ 00006b40: 696d 2058 206c 6973 7420 7261 6e6b 2048 im X list rank H │ │ │ │ 00006b50: 485e 6a28 582c 2020 2020 2020 2020 7c0a H^j(X, |. │ │ │ │ -00006b60: 7c20 2d2d 2031 302e 3937 3932 7320 656c | -- 10.9792s el │ │ │ │ +00006b60: 7c20 2d2d 2039 2e32 3134 3233 7320 656c | -- 9.21423s el │ │ │ │ 00006b70: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1797,15 +1797,15 @@ │ │ │ │ 00007040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007060: 7c69 3237 203a 2065 6c61 7073 6564 5469 |i27 : elapsedTi │ │ │ │ 00007070: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00007080: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00007090: 5f37 202d 2058 5f38 2920 2020 2020 2020 _7 - X_8) │ │ │ │ 000070a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000070b0: 7c20 2d2d 202e 3334 3231 3236 7320 656c | -- .342126s el │ │ │ │ +000070b0: 7c20 2d2d 202e 3533 3034 3434 7320 656c | -- .530444s el │ │ │ │ 000070c0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000070d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1832,20 +1832,20 @@ │ │ │ │ 00007270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007290: 7c69 3238 203a 2065 6c61 7073 6564 5469 |i28 : elapsedTi │ │ │ │ 000072a0: 6d65 2063 6f68 6f6d 7665 6332 203d 2065 me cohomvec2 = e │ │ │ │ 000072b0: 6c61 7073 6564 5469 6d65 2066 6f72 206a lapsedTime for j │ │ │ │ 000072c0: 2066 726f 6d20 3020 746f 2064 696d 2058 from 0 to dim X │ │ │ │ 000072d0: 206c 6973 7420 7261 6e6b 2020 2020 7c0a list rank |. │ │ │ │ -000072e0: 7c20 2d2d 202e 3531 3733 3436 7320 656c | -- .517346s el │ │ │ │ +000072e0: 7c20 2d2d 202e 3439 3235 3437 7320 656c | -- .492547s el │ │ │ │ 000072f0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00007330: 7c20 2d2d 202e 3531 3733 3733 7320 656c | -- .517373s el │ │ │ │ +00007330: 7c20 2d2d 202e 3439 3235 3734 7320 656c | -- .492574s el │ │ │ │ 00007340: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000073a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ ├── CompleteIntersectionResolutions.info │ │ │ │ @@ -4343,18 +4343,18 @@ │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f80: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ 00010f90: 4720 3d20 4569 7365 6e62 7564 5368 616d G = EisenbudSham │ │ │ │ 00010fa0: 6173 6828 6666 2c46 2c6c 656e 2920 2020 ash(ff,F,len) │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2036 |.| -- used 6 │ │ │ │ -00010fe0: 2e36 3632 3932 7320 2863 7075 293b 2034 .66292s (cpu); 4 │ │ │ │ -00010ff0: 2e38 3937 3937 7320 2874 6872 6561 6429 .89797s (thread) │ │ │ │ -00011000: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2037 |.| -- used 7 │ │ │ │ +00010fe0: 2e36 3437 3273 2028 6370 7529 3b20 352e .6472s (cpu); 5. │ │ │ │ +00010ff0: 3737 3834 3473 2028 7468 7265 6164 293b 77844s (thread); │ │ │ │ +00011000: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011070: 2020 207c 0a7c 2020 2020 202f 2020 2020 |.| / │ │ │ │ @@ -4884,17 +4884,17 @@ │ │ │ │ 00013130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013150: 2d2b 0a7c 6932 3020 3a20 4646 203d 2074 -+.|i20 : FF = t │ │ │ │ 00013160: 696d 6520 5368 616d 6173 6828 5231 2c46 ime Shamash(R1,F │ │ │ │ 00013170: 2c34 2920 2020 2020 2020 2020 2020 2020 ,4) │ │ │ │ 00013180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013190: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -000131a0: 2e31 3639 3335 3673 2028 6370 7529 3b20 .169356s (cpu); │ │ │ │ -000131b0: 302e 3039 3630 3434 3573 2028 7468 7265 0.0960445s (thre │ │ │ │ -000131c0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000131a0: 2e32 3035 3334 3873 2028 6370 7529 3b20 .205348s (cpu); │ │ │ │ +000131b0: 302e 3131 3530 3534 7320 2874 6872 6561 0.115054s (threa │ │ │ │ +000131c0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000131d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00013220: 2020 3120 2020 2020 2020 3620 2020 2020 1 6 │ │ │ │ 00013230: 2020 3138 2020 2020 2020 2033 3820 2020 18 38 │ │ │ │ @@ -4925,17 +4925,17 @@ │ │ │ │ 000133c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133e0: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 4747 -----+.|i21 : GG │ │ │ │ 000133f0: 203d 2074 696d 6520 4569 7365 6e62 7564 = time Eisenbud │ │ │ │ 00013400: 5368 616d 6173 6828 6666 2c46 2c34 2920 Shamash(ff,F,4) │ │ │ │ 00013410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013420: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00013430: 6564 2030 2e39 3337 3435 3973 2028 6370 ed 0.937459s (cp │ │ │ │ -00013440: 7529 3b20 302e 3732 3039 3132 7320 2874 u); 0.720912s (t │ │ │ │ -00013450: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00013430: 6564 2031 2e32 3038 3334 7320 2863 7075 ed 1.20834s (cpu │ │ │ │ +00013440: 293b 2030 2e39 3531 3438 3673 2028 7468 ); 0.951486s (th │ │ │ │ +00013450: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00013460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00013470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000134b0: 2020 2020 2f20 525c 3120 2020 2020 2f20 / R\1 / │ │ │ │ 000134c0: 525c 3620 2020 2020 2f20 525c 3138 2020 R\6 / R\18 │ │ │ │ @@ -4982,16 +4982,16 @@ │ │ │ │ 00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00013780: 0a7c 6932 3220 3a20 4747 203d 2074 696d .|i22 : GG = tim │ │ │ │ 00013790: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ 000137a0: 6828 5231 2c46 5b32 5d2c 3429 2020 2020 h(R1,F[2],4) │ │ │ │ 000137b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000137c0: 6420 302e 3933 3032 3673 2028 6370 7529 d 0.93026s (cpu) │ │ │ │ -000137d0: 3b20 302e 3730 3231 3332 7320 2874 6872 ; 0.702132s (thr │ │ │ │ +000137c0: 6420 312e 3038 3334 3573 2028 6370 7529 d 1.08345s (cpu) │ │ │ │ +000137d0: 3b20 302e 3834 3238 3634 7320 2874 6872 ; 0.842864s (thr │ │ │ │ 000137e0: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ 000137f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013820: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ 00013830: 2020 2020 2020 2036 2020 2020 2020 2031 6 1 │ │ │ │ 00013840: 3820 2020 2020 2020 3338 2020 2020 2020 8 38 │ │ │ │ @@ -28230,45 +28230,45 @@ │ │ │ │ 0006e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0006e480: 6932 203a 2073 756d 5477 6f4d 6f6e 6f6d i2 : sumTwoMonom │ │ │ │ 0006e490: 6961 6c73 2832 2c33 2920 2020 2020 2020 ials(2,3) │ │ │ │ 0006e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e4b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0006e4c0: 6564 2030 2e33 3730 3233 3973 2028 6370 ed 0.370239s (cp │ │ │ │ -0006e4d0: 7529 3b20 302e 3331 3937 3339 7320 2874 u); 0.319739s (t │ │ │ │ -0006e4e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0006e4c0: 6564 2030 2e35 3833 3473 2028 6370 7529 ed 0.5834s (cpu) │ │ │ │ +0006e4d0: 3b20 302e 3431 3131 3135 7320 2874 6872 ; 0.411115s (thr │ │ │ │ +0006e4e0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 0006e4f0: 207c 0a7c 3220 2020 2020 2020 2020 2020 |.|2 │ │ │ │ 0006e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e520: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 0006e530: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ 0006e540: 2032 7d7d 203d 3e20 337d 2020 2020 2020 2}} => 3} │ │ │ │ 0006e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0006e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006e5a0: 0a7c 202d 2d20 7573 6564 2030 2e32 3130 .| -- used 0.210 │ │ │ │ -0006e5b0: 3130 3473 2028 6370 7529 3b20 302e 3133 104s (cpu); 0.13 │ │ │ │ -0006e5c0: 3831 3539 7320 2874 6872 6561 6429 3b20 8159s (thread); │ │ │ │ +0006e5a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3235 .| -- used 0.325 │ │ │ │ +0006e5b0: 3639 3873 2028 6370 7529 3b20 302e 3138 698s (cpu); 0.18 │ │ │ │ +0006e5c0: 3930 3531 7320 2874 6872 6561 6429 3b20 9051s (thread); │ │ │ │ 0006e5d0: 3073 2028 6763 2920 207c 0a7c 3320 2020 0s (gc) |.|3 │ │ │ │ 0006e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e610: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ 0006e620: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ 0006e630: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ 0006e640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0006e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e680: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0006e690: 6564 2033 2e36 3937 652d 3036 7320 2863 ed 3.697e-06s (c │ │ │ │ -0006e6a0: 7075 293b 2033 2e33 3236 652d 3036 7320 pu); 3.326e-06s │ │ │ │ +0006e690: 6564 2033 2e34 3137 652d 3036 7320 2863 ed 3.417e-06s (c │ │ │ │ +0006e6a0: 7075 293b 2033 2e32 3132 652d 3036 7320 pu); 3.212e-06s │ │ │ │ 0006e6b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0006e6c0: 297c 0a7c 3420 2020 2020 2020 2020 2020 )|.|4 │ │ │ │ 0006e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e6f0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 0006e700: 6c6c 797b 7d20 2020 2020 2020 2020 2020 lly{} │ │ │ │ 0006e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -28812,34 +28812,34 @@ │ │ │ │ 000708b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 000708c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000708d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000708e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 000708f0: 203a 2074 776f 4d6f 6e6f 6d69 616c 7328 : twoMonomials( │ │ │ │ 00070900: 322c 3329 2020 2020 2020 2020 2020 2020 2,3) │ │ │ │ 00070910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070920: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00070930: 2e38 3032 3531 3773 2028 6370 7529 3b20 .802517s (cpu); │ │ │ │ -00070940: 302e 3538 3533 3538 7320 2874 6872 6561 0.585358s (threa │ │ │ │ -00070950: 6429 3b20 3073 2028 6763 297c 0a7c 3220 d); 0s (gc)|.|2 │ │ │ │ +00070920: 2020 207c 0a7c 202d 2d20 7573 6564 2031 |.| -- used 1 │ │ │ │ +00070930: 2e32 3139 3637 7320 2863 7075 293b 2030 .21967s (cpu); 0 │ │ │ │ +00070940: 2e37 3339 3334 3173 2028 7468 7265 6164 .739341s (thread │ │ │ │ +00070950: 293b 2030 7320 2867 6329 207c 0a7c 3220 ); 0s (gc) |.|2 │ │ │ │ 00070960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070990: 2020 207c 0a7c 5461 6c6c 797b 7b7b 312c |.|Tally{{{1, │ │ │ │ 000709a0: 2031 7d7d 203d 3e20 3220 2020 2020 2020 1}} => 2 │ │ │ │ 000709b0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000709c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000709d0: 2020 2020 7b7b 322c 2032 7d2c 207b 312c {{2, 2}, {1, │ │ │ │ 000709e0: 2032 7d7d 203d 3e20 3420 2020 2020 2020 2}} => 4 │ │ │ │ 000709f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00070a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a30: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00070a40: 2d20 7573 6564 2030 2e34 3031 3330 3373 - used 0.401303s │ │ │ │ -00070a50: 2028 6370 7529 3b20 302e 3333 3530 3535 (cpu); 0.335055 │ │ │ │ +00070a40: 2d20 7573 6564 2030 2e35 3837 3931 3873 - used 0.587918s │ │ │ │ +00070a50: 2028 6370 7529 3b20 302e 3432 3731 3938 (cpu); 0.427198 │ │ │ │ 00070a60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00070a70: 6763 297c 0a7c 3320 2020 2020 2020 2020 gc)|.|3 │ │ │ │ 00070a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070aa0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 00070ab0: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ 00070ac0: 2032 7d7d 203d 3e20 327d 2020 2020 2020 2}} => 2} │ │ │ │ @@ -28848,17 +28848,17 @@ │ │ │ │ 00070af0: 2033 7d2c 207b 322c 2033 7d7d 203d 3e20 3}, {2, 3}} => │ │ │ │ 00070b00: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00070b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00070b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b50: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00070b60: 2e32 3032 3232 3173 2028 6370 7529 3b20 .202221s (cpu); │ │ │ │ -00070b70: 302e 3133 3830 3435 7320 2874 6872 6561 0.138045s (threa │ │ │ │ -00070b80: 6429 3b20 3073 2028 6763 297c 0a7c 3420 d); 0s (gc)|.|4 │ │ │ │ +00070b60: 2e32 3139 3234 7320 2863 7075 293b 2030 .21924s (cpu); 0 │ │ │ │ +00070b70: 2e31 3337 3738 3773 2028 7468 7265 6164 .137787s (thread │ │ │ │ +00070b80: 293b 2030 7320 2867 6329 207c 0a7c 3420 ); 0s (gc) |.|4 │ │ │ │ 00070b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070bc0: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ 00070bd0: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ 00070be0: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ 00070bf0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ ├── ./usr/share/info/ConnectionMatrices.info.gz │ │ │ ├── ConnectionMatrices.info │ │ │ │ @@ -2415,30 +2415,30 @@ │ │ │ │ 000096e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000096f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00009700: 7c69 3920 3a20 656c 6170 7365 6454 696d |i9 : elapsedTim │ │ │ │ 00009710: 6520 4120 3d20 636f 6e6e 6563 7469 6f6e e A = connection │ │ │ │ 00009720: 4d61 7472 6963 6573 2049 3b20 2020 2020 Matrices I; │ │ │ │ 00009730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009750: 7c20 2d2d 2032 2e38 3130 3738 7320 656c | -- 2.81078s el │ │ │ │ +00009750: 7c20 2d2d 2032 2e33 3632 3435 7320 656c | -- 2.36245s el │ │ │ │ 00009760: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00009770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000097a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000097b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000097f0: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00009800: 6d65 2061 7373 6572 7420 6973 496e 7465 me assert isInte │ │ │ │ 00009810: 6772 6162 6c65 2041 2020 2020 2020 2020 grable A │ │ │ │ 00009820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009840: 7c20 2d2d 2035 2e39 3430 3133 7320 656c | -- 5.94013s el │ │ │ │ +00009840: 7c20 2d2d 2033 2e39 3533 3334 7320 656c | -- 3.95334s el │ │ │ │ 00009850: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00009860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00009890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000098a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000098b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4559,16 +4559,16 @@ │ │ │ │ 00011ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011d00: 2b0a 7c69 3134 203a 2065 6c61 7073 6564 +.|i14 : elapsed │ │ │ │ 00011d10: 5469 6d65 2067 203d 2067 6175 6765 4d61 Time g = gaugeMa │ │ │ │ 00011d20: 7472 6978 2849 2c20 4229 3b20 2020 2020 trix(I, B); │ │ │ │ 00011d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d50: 7c0a 7c20 2d2d 202e 3733 3532 3373 2065 |.| -- .73523s e │ │ │ │ -00011d60: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ +00011d50: 7c0a 7c20 2d2d 202e 3439 3132 3131 7320 |.| -- .491211s │ │ │ │ +00011d60: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011da0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4589,30 +4589,30 @@ │ │ │ │ 00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ee0: 2b0a 7c69 3135 203a 2065 6c61 7073 6564 +.|i15 : elapsed │ │ │ │ 00011ef0: 5469 6d65 2041 3120 3d20 6761 7567 6554 Time A1 = gaugeT │ │ │ │ 00011f00: 7261 6e73 666f 726d 2867 2c20 4129 3b20 ransform(g, A); │ │ │ │ 00011f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f30: 7c0a 7c20 2d2d 2031 2e35 3730 3432 7320 |.| -- 1.57042s │ │ │ │ +00011f30: 7c0a 7c20 2d2d 2031 2e30 3734 3131 7320 |.| -- 1.07411s │ │ │ │ 00011f40: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00011f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fd0: 2b0a 7c69 3136 203a 2065 6c61 7073 6564 +.|i16 : elapsed │ │ │ │ 00011fe0: 5469 6d65 2061 7373 6572 7420 6973 496e Time assert isIn │ │ │ │ 00011ff0: 7465 6772 6162 6c65 2041 3120 2020 2020 tegrable A1 │ │ │ │ 00012000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012020: 7c0a 7c20 2d2d 202e 3830 3836 3135 7320 |.| -- .808615s │ │ │ │ +00012020: 7c0a 7c20 2d2d 202e 3738 3732 3332 7320 |.| -- .787232s │ │ │ │ 00012030: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012070: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00012080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5030,31 +5030,31 @@ │ │ │ │ 00013a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a70: 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 656c -----+.|i19 : el │ │ │ │ 00013a80: 6170 7365 6454 696d 6520 4132 203d 2067 apsedTime A2 = g │ │ │ │ 00013a90: 6175 6765 5472 616e 7366 6f72 6d28 6368 augeTransform(ch │ │ │ │ 00013aa0: 616e 6765 4570 732c 2041 3129 3b20 2020 angeEps, A1); │ │ │ │ 00013ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e34 3936 |.| -- .496 │ │ │ │ -00013ad0: 3137 3373 2065 6c61 7073 6564 2020 2020 173s elapsed │ │ │ │ +00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e33 3137 |.| -- .317 │ │ │ │ +00013ad0: 3633 7320 656c 6170 7365 6420 2020 2020 63s elapsed │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b60: 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 656c -----+.|i20 : el │ │ │ │ 00013b70: 6170 7365 6454 696d 6520 6173 7365 7274 apsedTime assert │ │ │ │ 00013b80: 2069 7349 6e74 6567 7261 626c 6520 4132 isIntegrable A2 │ │ │ │ 00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e38 3330 |.| -- .830 │ │ │ │ -00013bc0: 3437 3973 2065 6c61 7073 6564 2020 2020 479s elapsed │ │ │ │ +00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e36 3039 |.| -- .609 │ │ │ │ +00013bc0: 3234 3373 2065 6c61 7073 6564 2020 2020 243s elapsed │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5440,31 +5440,31 @@ │ │ │ │ 000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015410: 6937 203a 2065 6c61 7073 6564 5469 6d65 i7 : elapsedTime │ │ │ │ 00015420: 2041 203d 2063 6f6e 6e65 6374 696f 6e4d A = connectionM │ │ │ │ 00015430: 6174 7269 6365 7320 493b 2020 2020 2020 atrices I; │ │ │ │ 00015440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015460: 202d 2d20 2e32 3637 3232 3673 2065 6c61 -- .267226s ela │ │ │ │ +00015460: 202d 2d20 2e32 3033 3937 3273 2065 6c61 -- .203972s ela │ │ │ │ 00015470: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000154b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015500: 6938 203a 2065 6c61 7073 6564 5469 6d65 i8 : elapsedTime │ │ │ │ 00015510: 2061 7373 6572 7420 6973 496e 7465 6772 assert isIntegr │ │ │ │ 00015520: 6162 6c65 2041 2020 2020 2020 2020 2020 able A │ │ │ │ 00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015550: 202d 2d20 2e32 3033 3838 3373 2065 6c61 -- .203883s ela │ │ │ │ -00015560: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ +00015550: 202d 2d20 2e31 3638 3936 7320 656c 6170 -- .16896s elap │ │ │ │ +00015560: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 00015570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/Cremona.info.gz │ │ │ ├── Cremona.info │ │ │ │ @@ -147,16 +147,16 @@ │ │ │ │ 00000920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000930: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ 00000940: 696d 6520 7068 6920 3d20 746f 4d61 7020 ime phi = toMap │ │ │ │ 00000950: 6d69 6e6f 7273 2833 2c6d 6174 7269 787b minors(3,matrix{ │ │ │ │ 00000960: 7b74 5f30 2e2e 745f 347d 2c7b 745f 312e {t_0..t_4},{t_1. │ │ │ │ 00000970: 2e74 5f35 7d2c 7b74 5f32 2e2e 745f 367d .t_5},{t_2..t_6} │ │ │ │ 00000980: 7d29 2020 2020 207c 0a7c 202d 2d20 7573 }) |.| -- us │ │ │ │ -00000990: 6564 2030 2e30 3034 3330 3231 3573 2028 ed 0.00430215s ( │ │ │ │ -000009a0: 6370 7529 3b20 302e 3030 3432 3938 3432 cpu); 0.00429842 │ │ │ │ +00000990: 6564 2030 2e30 3035 3234 3131 3273 2028 ed 0.00524112s ( │ │ │ │ +000009a0: 6370 7529 3b20 302e 3030 3532 3339 3736 cpu); 0.00523976 │ │ │ │ 000009b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000009c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000009d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000009e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000009f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -322,16 +322,16 @@ │ │ │ │ 00001410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001420: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 00001430: 696d 6520 4a20 3d20 6b65 726e 656c 2870 ime J = kernel(p │ │ │ │ 00001440: 6869 2c32 2920 2020 2020 2020 2020 2020 hi,2) │ │ │ │ 00001450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001470: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001480: 6564 2030 2e31 3337 3233 3173 2028 6370 ed 0.137231s (cp │ │ │ │ -00001490: 7529 3b20 302e 3036 3939 3637 3973 2028 u); 0.0699679s ( │ │ │ │ +00001480: 6564 2030 2e31 3439 3339 3973 2028 6370 ed 0.149399s (cp │ │ │ │ +00001490: 7529 3b20 302e 3037 3330 3335 3573 2028 u); 0.0730355s ( │ │ │ │ 000014a0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 000014b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000014d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -387,18 +387,18 @@ │ │ │ │ 00001820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001830: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ 00001840: 696d 6520 6465 6772 6565 4d61 7020 7068 ime degreeMap ph │ │ │ │ 00001850: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ 00001860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001880: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001890: 6564 2030 2e30 3239 3434 7320 2863 7075 ed 0.02944s (cpu │ │ │ │ -000018a0: 293b 2030 2e30 3239 3434 3435 7320 2874 ); 0.0294445s (t │ │ │ │ -000018b0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -000018c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00001890: 6564 2030 2e30 3333 3431 3736 7320 2863 ed 0.0334176s (c │ │ │ │ +000018a0: 7075 293b 2030 2e30 3333 3432 3234 7320 pu); 0.0334224s │ │ │ │ +000018b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +000018c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000018d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000018e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000018f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001920: 2020 2020 2020 207c 0a7c 6f34 203d 2031 |.|o4 = 1 │ │ │ │ 00001930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -412,17 +412,17 @@ │ │ │ │ 000019b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000019c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ 000019d0: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 000019e0: 6772 6565 7320 7068 6920 2020 2020 2020 grees phi │ │ │ │ 000019f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a10: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001a20: 6564 2030 2e36 3837 3536 7320 2863 7075 ed 0.68756s (cpu │ │ │ │ -00001a30: 293b 2030 2e34 3837 3538 3673 2028 7468 ); 0.487586s (th │ │ │ │ -00001a40: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00001a20: 6564 2030 2e37 3136 3439 3673 2028 6370 ed 0.716496s (cp │ │ │ │ +00001a30: 7529 3b20 302e 3534 3939 3936 7320 2874 u); 0.549996s (t │ │ │ │ +00001a40: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00001a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ab0: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ @@ -447,16 +447,16 @@ │ │ │ │ 00001be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001bf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 -------+.|i6 : t │ │ │ │ 00001c00: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 00001c10: 6772 6565 7328 7068 692c 4e75 6d44 6567 grees(phi,NumDeg │ │ │ │ 00001c20: 7265 6573 3d3e 3029 2020 2020 2020 2020 rees=>0) │ │ │ │ 00001c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001c40: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001c50: 6564 2030 2e30 3632 3332 3037 7320 2863 ed 0.0623207s (c │ │ │ │ -00001c60: 7075 293b 2030 2e30 3632 3236 3533 7320 pu); 0.0622653s │ │ │ │ +00001c50: 6564 2030 2e30 3730 3435 3835 7320 2863 ed 0.0704585s (c │ │ │ │ +00001c60: 7075 293b 2030 2e30 3730 3436 3731 7320 pu); 0.0704671s │ │ │ │ 00001c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 00001c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00001c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -482,15 +482,15 @@ │ │ │ │ 00001e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e20: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 -------+.|i7 : t │ │ │ │ 00001e30: 696d 6520 7068 6920 3d20 746f 4d61 7028 ime phi = toMap( │ │ │ │ 00001e40: 7068 692c 2020 2020 2020 2020 2020 2020 phi, │ │ │ │ 00001e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e70: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001e80: 6564 2030 2e30 3032 3134 3836 7320 2863 ed 0.0021486s (c │ │ │ │ +00001e80: 6564 2030 2e30 3032 3535 3439 7320 2863 ed 0.0025549s (c │ │ │ │ 00001e90: 7075 293b 2020 2020 2020 2020 2020 2020 pu); │ │ │ │ 00001ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -567,15 +567,15 @@ │ │ │ │ 00002360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 446f 6d69 6e61 -------|.|Domina │ │ │ │ 00002380: 6e74 3d3e 4a29 2020 2020 2020 2020 2020 nt=>J) │ │ │ │ 00002390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023c0: 2020 2020 2020 207c 0a7c 2030 2e30 3032 |.| 0.002 │ │ │ │ -000023d0: 3134 3933 3973 2028 7468 7265 6164 293b 14939s (thread); │ │ │ │ +000023d0: 3535 3839 3873 2028 7468 7265 6164 293b 55898s (thread); │ │ │ │ 000023e0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 000023f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -832,16 +832,16 @@ │ │ │ │ 000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003400: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 -------+.|i8 : t │ │ │ │ 00003410: 696d 6520 7073 6920 3d20 696e 7665 7273 ime psi = invers │ │ │ │ 00003420: 654d 6170 2070 6869 2020 2020 2020 2020 eMap phi │ │ │ │ 00003430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003450: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00003460: 6564 2030 2e34 3734 3235 3273 2028 6370 ed 0.474252s (cp │ │ │ │ -00003470: 7529 3b20 302e 3339 3435 3334 7320 2874 u); 0.394534s (t │ │ │ │ +00003460: 6564 2030 2e34 3232 3932 3573 2028 6370 ed 0.422925s (cp │ │ │ │ +00003470: 7529 3b20 302e 3432 3239 3331 7320 2874 u); 0.422931s (t │ │ │ │ 00003480: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00003490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000034b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1117,18 +1117,18 @@ │ │ │ │ 000045c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000045d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2074 -------+.|i9 : t │ │ │ │ 000045e0: 696d 6520 6973 496e 7665 7273 654d 6170 ime isInverseMap │ │ │ │ 000045f0: 2870 6869 2c70 7369 2920 2020 2020 2020 (phi,psi) │ │ │ │ 00004600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004620: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004630: 6564 2030 2e30 3039 3331 3630 3373 2028 ed 0.00931603s ( │ │ │ │ -00004640: 6370 7529 3b20 302e 3030 3933 3138 3535 cpu); 0.00931855 │ │ │ │ -00004650: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00004660: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00004630: 6564 2030 2e30 3130 3936 3437 7320 2863 ed 0.0109647s (c │ │ │ │ +00004640: 7075 293b 2030 2e30 3130 3936 3631 7320 pu); 0.0109661s │ │ │ │ +00004650: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00004660: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004670: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046c0: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ 000046d0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ @@ -1142,16 +1142,16 @@ │ │ │ │ 00004750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004760: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ 00004770: 7469 6d65 2064 6567 7265 654d 6170 2070 time degreeMap p │ │ │ │ 00004780: 7369 2020 2020 2020 2020 2020 2020 2020 si │ │ │ │ 00004790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -000047c0: 6564 2030 2e34 3538 3439 3373 2028 6370 ed 0.458493s (cp │ │ │ │ -000047d0: 7529 3b20 302e 3239 3432 3539 7320 2874 u); 0.294259s (t │ │ │ │ +000047c0: 6564 2030 2e34 3836 3733 3173 2028 6370 ed 0.486731s (cp │ │ │ │ +000047d0: 7529 3b20 302e 3236 3234 3339 7320 2874 u); 0.262439s (t │ │ │ │ 000047e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000047f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1167,16 +1167,16 @@ │ │ │ │ 000048e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000048f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ 00004900: 7469 6d65 2070 726f 6a65 6374 6976 6544 time projectiveD │ │ │ │ 00004910: 6567 7265 6573 2070 7369 2020 2020 2020 egrees psi │ │ │ │ 00004920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004940: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004950: 6564 2035 2e32 3930 3034 7320 2863 7075 ed 5.29004s (cpu │ │ │ │ -00004960: 293b 2034 2e36 3339 3638 7320 2874 6872 ); 4.63968s (thr │ │ │ │ +00004950: 6564 2035 2e34 3433 3731 7320 2863 7075 ed 5.44371s (cpu │ │ │ │ +00004960: 293b 2035 2e30 3234 3932 7320 2874 6872 ); 5.02492s (thr │ │ │ │ 00004970: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00004980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000049a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1214,17 +1214,17 @@ │ │ │ │ 00004bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00004be0: 0a7c 6931 3220 3a20 7469 6d65 2070 6869 .|i12 : time phi │ │ │ │ 00004bf0: 203d 2072 6174 696f 6e61 6c4d 6170 206d = rationalMap m │ │ │ │ 00004c00: 696e 6f72 7328 332c 6d61 7472 6978 7b7b inors(3,matrix{{ │ │ │ │ 00004c10: 745f 302e 2e74 5f34 7d2c 7b74 5f31 2e2e t_0..t_4},{t_1.. │ │ │ │ 00004c20: 745f 357d 2c7b 745f 322e 2e74 5f36 207c t_5},{t_2..t_6 | │ │ │ │ 00004c30: 0a7c 202d 2d20 7573 6564 2030 2e30 3032 .| -- used 0.002 │ │ │ │ -00004c40: 3230 3233 3873 2028 6370 7529 3b20 302e 20238s (cpu); 0. │ │ │ │ -00004c50: 3030 3232 3033 3133 7320 2874 6872 6561 00220313s (threa │ │ │ │ -00004c60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00004c40: 3631 3173 2028 6370 7529 3b20 302e 3030 611s (cpu); 0.00 │ │ │ │ +00004c50: 3236 3135 3431 7320 2874 6872 6561 6429 261541s (thread) │ │ │ │ +00004c60: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00004c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004cd0: 0a7c 6f31 3220 3d20 2d2d 2072 6174 696f .|o12 = -- ratio │ │ │ │ @@ -1493,18 +1493,18 @@ │ │ │ │ 00005d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00005d60: 0a7c 6931 3320 3a20 7469 6d65 2070 6869 .|i13 : time phi │ │ │ │ 00005d70: 203d 2072 6174 696f 6e61 6c4d 6170 2870 = rationalMap(p │ │ │ │ 00005d80: 6869 2c44 6f6d 696e 616e 743d 3e32 2920 hi,Dominant=>2) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3537 .| -- used 0.157 │ │ │ │ -00005dc0: 3331 7320 2863 7075 293b 2030 2e30 3834 31s (cpu); 0.084 │ │ │ │ -00005dd0: 3938 3639 7320 2874 6872 6561 6429 3b20 9869s (thread); │ │ │ │ -00005de0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3734 .| -- used 0.174 │ │ │ │ +00005dc0: 3732 7320 2863 7075 293b 2030 2e30 3930 72s (cpu); 0.090 │ │ │ │ +00005dd0: 3830 3273 2028 7468 7265 6164 293b 2030 802s (thread); 0 │ │ │ │ +00005de0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00005df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00005e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00005e50: 0a7c 6f31 3320 3d20 2d2d 2072 6174 696f .|o13 = -- ratio │ │ │ │ @@ -2153,17 +2153,17 @@ │ │ │ │ 00008680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 000086a0: 0a7c 6931 3420 3a20 7469 6d65 2070 6869 .|i14 : time phi │ │ │ │ 000086b0: 5e28 2d31 2920 2020 2020 2020 2020 2020 ^(-1) │ │ │ │ 000086c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000086f0: 0a7c 202d 2d20 7573 6564 2030 2e35 3132 .| -- used 0.512 │ │ │ │ -00008700: 3035 3973 2028 6370 7529 3b20 302e 3432 059s (cpu); 0.42 │ │ │ │ -00008710: 3638 3638 7320 2874 6872 6561 6429 3b20 6868s (thread); │ │ │ │ +000086f0: 0a7c 202d 2d20 7573 6564 2030 2e34 3430 .| -- used 0.440 │ │ │ │ +00008700: 3031 3873 2028 6370 7529 3b20 302e 3434 018s (cpu); 0.44 │ │ │ │ +00008710: 3030 3231 7320 2874 6872 6561 6429 3b20 0021s (thread); │ │ │ │ 00008720: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00008730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00008740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2708,17 +2708,17 @@ │ │ │ │ 0000a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a950: 0a7c 6931 3520 3a20 7469 6d65 2064 6567 .|i15 : time deg │ │ │ │ 0000a960: 7265 6573 2070 6869 5e28 2d31 2920 2020 rees phi^(-1) │ │ │ │ 0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3437 .| -- used 0.347 │ │ │ │ -0000a9b0: 3734 3973 2028 6370 7529 3b20 302e 3237 749s (cpu); 0.27 │ │ │ │ -0000a9c0: 3431 3431 7320 2874 6872 6561 6429 3b20 4141s (thread); │ │ │ │ +0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3735 .| -- used 0.475 │ │ │ │ +0000a9b0: 3337 3373 2028 6370 7529 3b20 302e 3334 373s (cpu); 0.34 │ │ │ │ +0000a9c0: 3031 3532 7320 2874 6872 6561 6429 3b20 0152s (thread); │ │ │ │ 0000a9d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000a9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000a9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2743,17 +2743,17 @@ │ │ │ │ 0000ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000ab80: 0a7c 6931 3620 3a20 7469 6d65 2064 6567 .|i16 : time deg │ │ │ │ 0000ab90: 7265 6573 2070 6869 2020 2020 2020 2020 rees phi │ │ │ │ 0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3138 .| -- used 0.018 │ │ │ │ -0000abe0: 3031 3133 7320 2863 7075 293b 2030 2e30 0113s (cpu); 0.0 │ │ │ │ -0000abf0: 3137 3639 3933 7320 2874 6872 6561 6429 176993s (thread) │ │ │ │ +0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3739 .| -- used 0.079 │ │ │ │ +0000abe0: 3339 3532 7320 2863 7075 293b 2030 2e30 3952s (cpu); 0.0 │ │ │ │ +0000abf0: 3236 3739 3431 7320 2874 6872 6561 6429 267941s (thread) │ │ │ │ 0000ac00: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000ac10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2779,16 +2779,16 @@ │ │ │ │ 0000ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000adb0: 0a7c 6931 3720 3a20 7469 6d65 2064 6573 .|i17 : time des │ │ │ │ 0000adc0: 6372 6962 6520 7068 6920 2020 2020 2020 cribe phi │ │ │ │ 0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3033 .| -- used 0.003 │ │ │ │ -0000ae10: 3230 3731 3873 2028 6370 7529 3b20 302e 20718s (cpu); 0. │ │ │ │ -0000ae20: 3030 3332 3037 3434 7320 2874 6872 6561 00320744s (threa │ │ │ │ +0000ae10: 3732 3633 3473 2028 6370 7529 3b20 302e 72634s (cpu); 0. │ │ │ │ +0000ae20: 3030 3337 3331 3737 7320 2874 6872 6561 00373177s (threa │ │ │ │ 0000ae30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000ae40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ae50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2843,18 +2843,18 @@ │ │ │ │ 0000b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b1c0: 0a7c 6931 3820 3a20 7469 6d65 2064 6573 .|i18 : time des │ │ │ │ 0000b1d0: 6372 6962 6520 7068 695e 282d 3129 2020 cribe phi^(-1) │ │ │ │ 0000b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b220: 3937 3939 3773 2028 6370 7529 3b20 302e 97997s (cpu); 0. │ │ │ │ -0000b230: 3030 3939 3830 3773 2028 7468 7265 6164 0099807s (thread │ │ │ │ -0000b240: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3130 .| -- used 0.010 │ │ │ │ +0000b220: 3932 3032 7320 2863 7075 293b 2030 2e30 9202s (cpu); 0.0 │ │ │ │ +0000b230: 3130 3932 3633 7320 2874 6872 6561 6429 109263s (thread) │ │ │ │ +0000b240: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b2b0: 0a7c 6f31 3820 3d20 7261 7469 6f6e 616c .|o18 = rational │ │ │ │ @@ -2923,18 +2923,18 @@ │ │ │ │ 0000b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b6c0: 0a7c 6931 3920 3a20 7469 6d65 2028 662c .|i19 : time (f, │ │ │ │ 0000b6d0: 6729 203d 2067 7261 7068 2070 6869 5e2d g) = graph phi^- │ │ │ │ 0000b6e0: 313b 2066 3b20 2020 2020 2020 2020 2020 1; f; │ │ │ │ 0000b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b720: 3530 3537 3173 2028 6370 7529 3b20 302e 50571s (cpu); 0. │ │ │ │ -0000b730: 3030 3935 3036 3539 7320 2874 6872 6561 00950659s (threa │ │ │ │ -0000b740: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3131 .| -- used 0.011 │ │ │ │ +0000b720: 3533 3133 7320 2863 7075 293b 2030 2e30 5313s (cpu); 0.0 │ │ │ │ +0000b730: 3131 3533 3639 7320 2874 6872 6561 6429 115369s (thread) │ │ │ │ +0000b740: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000b750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b7b0: 0a7c 6f32 3020 3a20 4d75 6c74 6968 6f6d .|o20 : Multihom │ │ │ │ @@ -2958,18 +2958,18 @@ │ │ │ │ 0000b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b8f0: 0a7c 6932 3120 3a20 7469 6d65 2064 6567 .|i21 : time deg │ │ │ │ 0000b900: 7265 6573 2066 2020 2020 2020 2020 2020 rees f │ │ │ │ 0000b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b940: 0a7c 202d 2d20 7573 6564 2031 2e33 3333 .| -- used 1.333 │ │ │ │ -0000b950: 3237 7320 2863 7075 293b 2030 2e39 3535 27s (cpu); 0.955 │ │ │ │ -0000b960: 3132 7320 2874 6872 6561 6429 3b20 3073 12s (thread); 0s │ │ │ │ -0000b970: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0000b940: 0a7c 202d 2d20 7573 6564 2031 2e32 3037 .| -- used 1.207 │ │ │ │ +0000b950: 3331 7320 2863 7075 293b 2030 2e39 3837 31s (cpu); 0.987 │ │ │ │ +0000b960: 3330 3573 2028 7468 7265 6164 293b 2030 305s (thread); 0 │ │ │ │ +0000b970: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0000b980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b9e0: 0a7c 6f32 3120 3d20 7b39 3034 2c20 3530 .|o21 = {904, 50 │ │ │ │ @@ -2993,18 +2993,18 @@ │ │ │ │ 0000bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bb20: 0a7c 6932 3220 3a20 7469 6d65 2064 6567 .|i22 : time deg │ │ │ │ 0000bb30: 7265 6520 6620 2020 2020 2020 2020 2020 ree f │ │ │ │ 0000bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000bb70: 0a7c 202d 2d20 7573 6564 2031 2e36 3235 .| -- used 1.625 │ │ │ │ -0000bb80: 652d 3035 7320 2863 7075 293b 2031 2e35 e-05s (cpu); 1.5 │ │ │ │ -0000bb90: 3933 652d 3035 7320 2874 6872 6561 6429 93e-05s (thread) │ │ │ │ -0000bba0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +0000bb70: 0a7c 202d 2d20 7573 6564 2032 2e31 3037 .| -- used 2.107 │ │ │ │ +0000bb80: 3465 2d30 3573 2028 6370 7529 3b20 312e 4e-05s (cpu); 1. │ │ │ │ +0000bb90: 3935 3537 652d 3035 7320 2874 6872 6561 9557e-05s (threa │ │ │ │ +0000bba0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bc10: 0a7c 6f32 3220 3d20 3120 2020 2020 2020 .|o22 = 1 │ │ │ │ @@ -3019,16 +3019,16 @@ │ │ │ │ 0000bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bcb0: 0a7c 6932 3320 3a20 7469 6d65 2064 6573 .|i23 : time des │ │ │ │ 0000bcc0: 6372 6962 6520 6620 2020 2020 2020 2020 cribe f │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd00: 0a7c 202d 2d20 7573 6564 2030 2e30 3031 .| -- used 0.001 │ │ │ │ -0000bd10: 3631 3436 3573 2028 6370 7529 3b20 302e 61465s (cpu); 0. │ │ │ │ -0000bd20: 3030 3136 3135 3535 7320 2874 6872 6561 00161555s (threa │ │ │ │ +0000bd10: 3635 3139 3973 2028 6370 7529 3b20 302e 65199s (cpu); 0. │ │ │ │ +0000bd20: 3030 3136 3537 3438 7320 2874 6872 6561 00165748s (threa │ │ │ │ 0000bd30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4676,16 +4676,16 @@ │ │ │ │ 00012430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012440: 2b0a 7c69 3420 3a20 7469 6d65 2070 7369 +.|i4 : time psi │ │ │ │ 00012450: 203d 2061 6273 7472 6163 7452 6174 696f = abstractRatio │ │ │ │ 00012460: 6e61 6c4d 6170 2850 342c 5035 2c66 2920 nalMap(P4,P5,f) │ │ │ │ 00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012490: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -000124a0: 3034 3130 3031 3973 2028 6370 7529 3b20 0410019s (cpu); │ │ │ │ -000124b0: 302e 3030 3034 3036 3239 3273 2028 7468 0.000406292s (th │ │ │ │ +000124a0: 3034 3634 3131 3973 2028 6370 7529 3b20 0464119s (cpu); │ │ │ │ +000124b0: 302e 3030 3034 3538 3336 3973 2028 7468 0.000458369s (th │ │ │ │ 000124c0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000124d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000124e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4746,18 +4746,18 @@ │ │ │ │ 00012890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000128c0: 6935 203a 2074 696d 6520 7072 6f6a 6563 i5 : time projec │ │ │ │ 000128d0: 7469 7665 4465 6772 6565 7328 7073 692c tiveDegrees(psi, │ │ │ │ 000128e0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 000128f0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00012900: 2d20 7573 6564 2030 2e32 3938 3835 3373 - used 0.298853s │ │ │ │ -00012910: 2028 6370 7529 3b20 302e 3138 3532 3773 (cpu); 0.18527s │ │ │ │ -00012920: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00012930: 6329 2020 2020 2020 207c 0a7c 2020 2020 c) |.| │ │ │ │ +00012900: 2d20 7573 6564 2030 2e33 3538 3632 3673 - used 0.358626s │ │ │ │ +00012910: 2028 6370 7529 3b20 302e 3230 3136 3134 (cpu); 0.201614 │ │ │ │ +00012920: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00012930: 6763 2920 2020 2020 207c 0a7c 2020 2020 gc) |.| │ │ │ │ 00012940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012970: 2020 2020 2020 207c 0a7c 6f35 203d 2032 |.|o5 = 2 │ │ │ │ 00012980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4765,17 +4765,17 @@ │ │ │ │ 000129c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129f0: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00012a00: 7261 7469 6f6e 616c 4d61 7020 7073 6920 rationalMap psi │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e35 |.| -- used 0.5 │ │ │ │ -00012a40: 3034 3032 3673 2028 6370 7529 3b20 302e 04026s (cpu); 0. │ │ │ │ -00012a50: 3336 3634 3939 7320 2874 6872 6561 6429 366499s (thread) │ │ │ │ +00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e34 |.| -- used 0.4 │ │ │ │ +00012a40: 3638 3135 3273 2028 6370 7529 3b20 302e 68152s (cpu); 0. │ │ │ │ +00012a50: 3338 3436 3339 7320 2874 6872 6561 6429 384639s (thread) │ │ │ │ 00012a60: 3b20 3073 2028 6763 2920 2020 2020 207c ; 0s (gc) | │ │ │ │ 00012a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00012ab0: 6f36 203d 202d 2d20 7261 7469 6f6e 616c o6 = -- rational │ │ │ │ 00012ac0: 206d 6170 202d 2d20 2020 2020 2020 2020 map -- │ │ │ │ @@ -5189,16 +5189,16 @@ │ │ │ │ 00014440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014450: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ 00014460: 2074 696d 6520 5420 3d20 6162 7374 7261 time T = abstra │ │ │ │ 00014470: 6374 5261 7469 6f6e 616c 4d61 7028 492c ctRationalMap(I, │ │ │ │ 00014480: 224f 4144 5022 2920 2020 2020 2020 2020 "OADP") │ │ │ │ 00014490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144a0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000144b0: 6420 302e 3134 3931 3835 7320 2863 7075 d 0.149185s (cpu │ │ │ │ -000144c0: 293b 2030 2e30 3736 3932 3939 7320 2874 ); 0.0769299s (t │ │ │ │ +000144b0: 6420 302e 3136 3338 3439 7320 2863 7075 d 0.163849s (cpu │ │ │ │ +000144c0: 293b 2030 2e30 3735 3230 3831 7320 2874 ); 0.0752081s (t │ │ │ │ 000144d0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000144e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5265,16 +5265,16 @@ │ │ │ │ 00014900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014930: 2d2d 2b0a 7c69 3135 203a 2074 696d 6520 --+.|i15 : time │ │ │ │ 00014940: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 00014950: 7328 542c 3229 2020 2020 2020 2020 2020 s(T,2) │ │ │ │ 00014960: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014970: 7365 6420 342e 3037 3736 3473 2028 6370 sed 4.07764s (cp │ │ │ │ -00014980: 7529 3b20 322e 3132 3032 3273 2028 7468 u); 2.12022s (th │ │ │ │ +00014970: 7365 6420 342e 3433 3234 3773 2028 6370 sed 4.43247s (cp │ │ │ │ +00014980: 7529 3b20 322e 3234 3339 3173 2028 7468 u); 2.24391s (th │ │ │ │ 00014990: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ 000149a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000149b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149d0: 2020 2020 7c0a 7c6f 3135 203d 2033 2020 |.|o15 = 3 │ │ │ │ 000149e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5291,16 +5291,16 @@ │ │ │ │ 00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00014ad0: 3620 3a20 7469 6d65 2054 3220 3d20 5420 6 : time T2 = T │ │ │ │ 00014ae0: 2a20 5420 2020 2020 2020 2020 2020 2020 * T │ │ │ │ 00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b00: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014b10: 7365 6420 322e 3835 3634 652d 3035 7320 sed 2.8564e-05s │ │ │ │ -00014b20: 2863 7075 293b 2032 2e38 3237 3365 2d30 (cpu); 2.8273e-0 │ │ │ │ +00014b10: 7365 6420 322e 3634 3032 652d 3035 7320 sed 2.6402e-05s │ │ │ │ +00014b20: 2863 7075 293b 2032 2e35 3239 3365 2d30 (cpu); 2.5293e-0 │ │ │ │ 00014b30: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 00014b40: 2867 6329 207c 0a7c 2020 2020 2020 2020 (gc) |.| │ │ │ │ 00014b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b80: 2020 7c0a 7c6f 3136 203d 202d 2d20 7261 |.|o16 = -- ra │ │ │ │ 00014b90: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ @@ -5344,17 +5344,17 @@ │ │ │ │ 00014df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e20: 2d2b 0a7c 6931 3720 3a20 7469 6d65 2070 -+.|i17 : time p │ │ │ │ 00014e30: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ 00014e40: 2854 322c 3229 2020 2020 2020 2020 2020 (T2,2) │ │ │ │ 00014e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014e60: 7c20 2d2d 2075 7365 6420 362e 3635 3930 | -- used 6.6590 │ │ │ │ -00014e70: 3173 2028 6370 7529 3b20 332e 3435 3639 1s (cpu); 3.4569 │ │ │ │ -00014e80: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00014e60: 7c20 2d2d 2075 7365 6420 372e 3031 3135 | -- used 7.0115 │ │ │ │ +00014e70: 3973 2028 6370 7529 3b20 332e 3534 3834 9s (cpu); 3.5484 │ │ │ │ +00014e80: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ 00014e90: 2867 6329 2020 2020 2020 207c 0a7c 2020 (gc) |.| │ │ │ │ 00014ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ed0: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ 00014ee0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00014ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5430,18 +5430,18 @@ │ │ │ │ 00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 00015380: 3120 3a20 7469 6d65 2066 203d 2072 6174 1 : time f = rat │ │ │ │ 00015390: 696f 6e61 6c4d 6170 2054 2020 2020 2020 ionalMap T │ │ │ │ 000153a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000153b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000153c0: 0a7c 202d 2d20 7573 6564 2035 2e33 3833 .| -- used 5.383 │ │ │ │ -000153d0: 3637 7320 2863 7075 293b 2032 2e39 3231 67s (cpu); 2.921 │ │ │ │ -000153e0: 3139 7320 2874 6872 6561 6429 3b20 3073 19s (thread); 0s │ │ │ │ -000153f0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000153c0: 0a7c 202d 2d20 7573 6564 2035 2e38 3233 .| -- used 5.823 │ │ │ │ +000153d0: 3136 7320 2863 7075 293b 2032 2e39 3131 16s (cpu); 2.911 │ │ │ │ +000153e0: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ +000153f0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00015400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015440: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ 00015450: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ 00015460: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ @@ -6678,17 +6678,17 @@ │ │ │ │ 0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a160: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ 0001a170: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ 0001a180: 6572 7365 4d61 703a 2073 7465 7020 3130 erseMap: step 10 │ │ │ │ 0001a190: 206f 6620 3130 2020 2020 2020 2020 2020 of 10 │ │ │ │ 0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a1c0: 2d2d 2075 7365 6420 302e 3237 3230 3137 -- used 0.272017 │ │ │ │ -0001a1d0: 7320 2863 7075 293b 2030 2e32 3036 3936 s (cpu); 0.20696 │ │ │ │ -0001a1e0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +0001a1c0: 2d2d 2075 7365 6420 302e 3238 3735 3833 -- used 0.287583 │ │ │ │ +0001a1d0: 7320 2863 7075 293b 2030 2e32 3236 3137 s (cpu); 0.22617 │ │ │ │ +0001a1e0: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ 0001a1f0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0001a200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a250: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ @@ -8043,16 +8043,16 @@ │ │ │ │ 0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ 0001f6c0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ 0001f6d0: 6572 7365 4d61 703a 2073 7465 7020 3320 erseMap: step 3 │ │ │ │ 0001f6e0: 6f66 2033 2020 2020 2020 2020 2020 2020 of 3 │ │ │ │ 0001f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f710: 2d2d 2075 7365 6420 302e 3232 3739 3335 -- used 0.227935 │ │ │ │ -0001f720: 7320 2863 7075 293b 2030 2e31 3632 3333 s (cpu); 0.16233 │ │ │ │ +0001f710: 2d2d 2075 7365 6420 302e 3233 3630 3673 -- used 0.23606s │ │ │ │ +0001f720: 2028 6370 7529 3b20 302e 3137 3836 3332 (cpu); 0.178632 │ │ │ │ 0001f730: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 0001f740: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 0001f750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10405,17 +10405,17 @@ │ │ │ │ 00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a50: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ 00028a60: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ 00028a70: 3a20 7374 6570 2033 206f 6620 3320 2020 : step 3 of 3 │ │ │ │ 00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028aa0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00028ab0: 2032 2e33 3134 3637 7320 2863 7075 293b 2.31467s (cpu); │ │ │ │ -00028ac0: 2031 2e37 3837 3336 7320 2874 6872 6561 1.78736s (threa │ │ │ │ -00028ad0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00028ab0: 2032 2e31 3036 3734 7320 2863 7075 293b 2.10674s (cpu); │ │ │ │ +00028ac0: 2031 2e37 3938 3473 2028 7468 7265 6164 1.7984s (thread │ │ │ │ +00028ad0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b40: 2020 2020 207c 0a7c 6f38 203d 202d 2d20 |.|o8 = -- │ │ │ │ @@ -11710,17 +11710,17 @@ │ │ │ │ 0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbe0: 2020 2020 207c 0a7c 4365 7274 6966 793a |.|Certify: │ │ │ │ 0002dbf0: 206f 7574 7075 7420 6365 7274 6966 6965 output certifie │ │ │ │ 0002dc00: 6421 2020 2020 2020 2020 2020 2020 2020 d! │ │ │ │ 0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc30: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0002dc40: 2033 2e38 3833 3333 7320 2863 7075 293b 3.88333s (cpu); │ │ │ │ -0002dc50: 2033 2e31 3136 3538 7320 2874 6872 6561 3.11658s (threa │ │ │ │ -0002dc60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0002dc40: 2032 2e39 3031 3534 7320 2863 7075 293b 2.90154s (cpu); │ │ │ │ +0002dc50: 2032 2e35 3373 2028 7468 7265 6164 293b 2.53s (thread); │ │ │ │ +0002dc60: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 0002dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0002dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcd0: 2020 2020 207c 0a7c 6f31 3020 3d20 2d2d |.|o10 = -- │ │ │ │ @@ -13366,16 +13366,16 @@ │ │ │ │ 00034350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034380: 2b0a 7c69 3320 3a20 7469 6d65 2043 6865 +.|i3 : time Che │ │ │ │ 00034390: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ 000343a0: 7273 6f6e 2043 2020 2020 2020 2020 2020 rson C │ │ │ │ 000343b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000343c0: 7573 6564 2032 2e32 3538 3632 7320 2863 used 2.25862s (c │ │ │ │ -000343d0: 7075 293b 2031 2e31 3833 3232 7320 2874 pu); 1.18322s (t │ │ │ │ +000343c0: 7573 6564 2032 2e33 3639 3734 7320 2863 used 2.36974s (c │ │ │ │ +000343d0: 7075 293b 2031 2e32 3535 3032 7320 2874 pu); 1.25502s (t │ │ │ │ 000343e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000343f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00034400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00034430: 2020 2020 2034 2020 2020 2033 2020 2020 4 3 │ │ │ │ 00034440: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -13409,17 +13409,17 @@ │ │ │ │ 00034600: 4368 6572 6e53 6368 7761 7274 7a4d 6163 ChernSchwartzMac │ │ │ │ 00034610: 5068 6572 736f 6e28 432c 4365 7274 6966 Pherson(C,Certif │ │ │ │ 00034620: 793d 3e74 7275 6529 2020 2020 7c0a 7c43 y=>true) |.|C │ │ │ │ 00034630: 6572 7469 6679 3a20 6f75 7470 7574 2063 ertify: output c │ │ │ │ 00034640: 6572 7469 6669 6564 2120 2020 2020 2020 ertified! │ │ │ │ 00034650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034660: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00034670: 2031 2e36 3137 3834 7320 2863 7075 293b 1.61784s (cpu); │ │ │ │ -00034680: 2031 2e31 3430 3331 7320 2874 6872 6561 1.14031s (threa │ │ │ │ -00034690: 6429 3b20 3073 2028 6763 2920 2020 7c0a d); 0s (gc) |. │ │ │ │ +00034670: 2031 2e34 3333 3039 7320 2863 7075 293b 1.43309s (cpu); │ │ │ │ +00034680: 2030 2e39 3836 3034 3973 2028 7468 7265 0.986049s (thre │ │ │ │ +00034690: 6164 293b 2030 7320 2867 6329 2020 7c0a ad); 0s (gc) |. │ │ │ │ 000346a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000346b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000346e0: 2034 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ 000346f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -13619,16 +13619,16 @@ │ │ │ │ 00035320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ 00035340: 203a 2074 696d 6520 4368 6572 6e43 6c61 : time ChernCla │ │ │ │ 00035350: 7373 2047 2020 2020 2020 2020 2020 2020 ss G │ │ │ │ 00035360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035380: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035390: 2d20 7573 6564 2030 2e34 3339 3935 3273 - used 0.439952s │ │ │ │ -000353a0: 2028 6370 7529 3b20 302e 3235 3839 3332 (cpu); 0.258932 │ │ │ │ +00035390: 2d20 7573 6564 2030 2e33 3530 3834 3673 - used 0.350846s │ │ │ │ +000353a0: 2028 6370 7529 3b20 302e 3139 3437 3931 (cpu); 0.194791 │ │ │ │ 000353b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000353c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000353d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000353e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000353f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -13679,17 +13679,17 @@ │ │ │ │ 000356e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000356f0: 2020 2020 2020 2020 2020 207c 0a7c 4365 |.|Ce │ │ │ │ 00035700: 7274 6966 793a 206f 7574 7075 7420 6365 rtify: output ce │ │ │ │ 00035710: 7274 6966 6965 6421 2020 2020 2020 2020 rtified! │ │ │ │ 00035720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035740: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035750: 2d20 7573 6564 2030 2e31 3332 3334 3773 - used 0.132347s │ │ │ │ -00035760: 2028 6370 7529 3b20 302e 3034 3439 3738 (cpu); 0.044978 │ │ │ │ -00035770: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +00035750: 2d20 7573 6564 2030 2e31 3332 3433 3173 - used 0.132431s │ │ │ │ +00035760: 2028 6370 7529 3b20 302e 3033 3837 3935 (cpu); 0.038795 │ │ │ │ +00035770: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ 00035780: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00035790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000357a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ @@ -16336,16 +16336,16 @@ │ │ │ │ 0003fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fd00: 2d2b 0a7c 6935 203a 2074 696d 6520 6465 -+.|i5 : time de │ │ │ │ 0003fd10: 6772 6565 4d61 7020 7068 6920 2020 2020 greeMap phi │ │ │ │ 0003fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd50: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -0003fd60: 3435 3336 3936 7320 2863 7075 293b 2030 453696s (cpu); 0 │ │ │ │ -0003fd70: 2e30 3435 3337 3037 7320 2874 6872 6561 .0453707s (threa │ │ │ │ +0003fd60: 3535 3335 3337 7320 2863 7075 293b 2030 553537s (cpu); 0 │ │ │ │ +0003fd70: 2e30 3535 3038 3836 7320 2874 6872 6561 .0550886s (threa │ │ │ │ 0003fd80: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0003fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fda0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17511,16 +17511,16 @@ │ │ │ │ 00044660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044670: 2d2b 0a7c 6937 203a 2074 696d 6520 6465 -+.|i7 : time de │ │ │ │ 00044680: 6772 6565 4d61 7020 7068 6927 2020 2020 greeMap phi' │ │ │ │ 00044690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e32 |.| -- used 1.2 │ │ │ │ -000446d0: 3438 3839 7320 2863 7075 293b 2030 2e37 4889s (cpu); 0.7 │ │ │ │ -000446e0: 3036 3430 3173 2028 7468 7265 6164 293b 06401s (thread); │ │ │ │ +000446d0: 3236 3139 7320 2863 7075 293b 2030 2e37 2619s (cpu); 0.7 │ │ │ │ +000446e0: 3136 3037 3873 2028 7468 7265 6164 293b 16078s (thread); │ │ │ │ 000446f0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00044700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00044720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -18325,17 +18325,17 @@ │ │ │ │ 00047940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047950: 2d2d 2b0a 7c69 3220 3a20 7469 6d65 2045 --+.|i2 : time E │ │ │ │ 00047960: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ 00047970: 6963 2049 2020 2020 2020 2020 2020 2020 ic I │ │ │ │ 00047980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479a0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -000479b0: 3236 3537 3436 7320 2863 7075 293b 2030 265746s (cpu); 0 │ │ │ │ -000479c0: 2e31 3532 3938 7320 2874 6872 6561 6429 .15298s (thread) │ │ │ │ -000479d0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +000479b0: 3331 3336 3438 7320 2863 7075 293b 2030 313648s (cpu); 0 │ │ │ │ +000479c0: 2e31 3731 3939 3173 2028 7468 7265 6164 .171991s (thread │ │ │ │ +000479d0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 000479e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000479f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a40: 2020 7c0a 7c6f 3220 3d20 3130 2020 2020 |.|o2 = 10 │ │ │ │ @@ -18355,16 +18355,16 @@ │ │ │ │ 00047b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b30: 2020 7c0a 7c43 6572 7469 6679 3a20 6f75 |.|Certify: ou │ │ │ │ 00047b40: 7470 7574 2063 6572 7469 6669 6564 2120 tput certified! │ │ │ │ 00047b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b80: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00047b90: 3031 3135 3135 3873 2028 6370 7529 3b20 0115158s (cpu); │ │ │ │ -00047ba0: 302e 3031 3039 3731 3573 2028 7468 7265 0.0109715s (thre │ │ │ │ +00047b90: 3037 3436 3230 3373 2028 6370 7529 3b20 0746203s (cpu); │ │ │ │ +00047ba0: 302e 3032 3036 3339 3173 2028 7468 7265 0.0206391s (thre │ │ │ │ 00047bb0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00047bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00047be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -19033,17 +19033,17 @@ │ │ │ │ 0004a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0004a5a0: 3420 3a20 7469 6d65 2066 6f72 6365 496d 4 : time forceIm │ │ │ │ 0004a5b0: 6167 6528 5068 692c 6964 6561 6c20 305f age(Phi,ideal 0_ │ │ │ │ 0004a5c0: 2874 6172 6765 7420 5068 6929 2920 2020 (target Phi)) │ │ │ │ 0004a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0004a5f0: 2d2d 2075 7365 6420 302e 3030 3036 3037 -- used 0.000607 │ │ │ │ -0004a600: 3231 3973 2028 6370 7529 3b20 302e 3030 219s (cpu); 0.00 │ │ │ │ -0004a610: 3036 3031 3933 3973 2028 7468 7265 6164 0601939s (thread │ │ │ │ +0004a5f0: 2d2d 2075 7365 6420 302e 3030 3038 3539 -- used 0.000859 │ │ │ │ +0004a600: 3734 3173 2028 6370 7529 3b20 302e 3030 741s (cpu); 0.00 │ │ │ │ +0004a610: 3038 3532 3931 3673 2028 7468 7265 6164 0852916s (thread │ │ │ │ 0004a620: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0004a630: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0004a640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ @@ -19645,18 +19645,18 @@ │ │ │ │ 0004cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cbd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 0004cbe0: 696d 6520 2870 312c 7032 2920 3d20 6772 ime (p1,p2) = gr │ │ │ │ 0004cbf0: 6170 6820 7068 693b 2020 2020 2020 2020 aph phi; │ │ │ │ 0004cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0004cc30: 6564 2030 2e30 3138 3831 3738 7320 2863 ed 0.0188178s (c │ │ │ │ -0004cc40: 7075 293b 2030 2e30 3138 3433 3534 7320 pu); 0.0184354s │ │ │ │ -0004cc50: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -0004cc60: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0004cc30: 6564 2030 2e30 3831 3238 3873 2028 6370 ed 0.081288s (cp │ │ │ │ +0004cc40: 7529 3b20 302e 3033 3033 3631 3473 2028 u); 0.0303614s ( │ │ │ │ +0004cc50: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +0004cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0004cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004ccc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2070 -------+.|i4 : p │ │ │ │ 0004ccd0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ @@ -20942,17 +20942,17 @@ │ │ │ │ 00051cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051ce0: 2d2d 2d2d 2b0a 7c69 3920 3a20 7469 6d65 ----+.|i9 : time │ │ │ │ 00051cf0: 2067 203d 2067 7261 7068 2070 323b 2020 g = graph p2; │ │ │ │ 00051d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d30: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00051d40: 302e 3033 3137 3136 3573 2028 6370 7529 0.0317165s (cpu) │ │ │ │ -00051d50: 3b20 302e 3033 3132 3632 3473 2028 7468 ; 0.0312624s (th │ │ │ │ -00051d60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00051d40: 302e 3035 3336 3837 3773 2028 6370 7529 0.0536877s (cpu) │ │ │ │ +00051d50: 3b20 302e 3033 3738 3034 7320 2874 6872 ; 0.037804s (thr │ │ │ │ +00051d60: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00051d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00051d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051dd0: 2d2d 2d2d 2b0a 7c69 3130 203a 2067 5f30 ----+.|i10 : g_0 │ │ │ │ @@ -21662,18 +21662,18 @@ │ │ │ │ 000549d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 000549f0: 7469 6d65 2069 6465 616c 2070 6869 2020 time ideal phi │ │ │ │ 00054a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a30: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00054a40: 7365 6420 302e 3030 3335 3539 3973 2028 sed 0.0035599s ( │ │ │ │ -00054a50: 6370 7529 3b20 302e 3030 3335 3535 3232 cpu); 0.00355522 │ │ │ │ -00054a60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00054a70: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00054a40: 7365 6420 302e 3030 3338 3532 3333 7320 sed 0.00385233s │ │ │ │ +00054a50: 2863 7075 293b 2030 2e30 3033 3834 3931 (cpu); 0.0038491 │ │ │ │ +00054a60: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ +00054a70: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00054a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00054a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00054ae0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ @@ -22297,18 +22297,18 @@ │ │ │ │ 00057180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 000571a0: 7469 6d65 2069 6465 616c 2070 6869 2720 time ideal phi' │ │ │ │ 000571b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571e0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000571f0: 7365 6420 302e 3039 3330 3639 3173 2028 sed 0.0930691s ( │ │ │ │ -00057200: 6370 7529 3b20 302e 3039 3330 3438 3873 cpu); 0.0930488s │ │ │ │ -00057210: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00057220: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +000571f0: 7365 6420 302e 3130 3338 3737 7320 2863 sed 0.103877s (c │ │ │ │ +00057200: 7075 293b 2030 2e31 3033 3837 3973 2028 pu); 0.103879s ( │ │ │ │ +00057210: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00057220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00057240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057280: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ 00057290: 6964 6561 6c20 3120 2020 2020 2020 2020 ideal 1 │ │ │ │ @@ -24856,16 +24856,16 @@ │ │ │ │ 00061170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061180: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 696d -----+.|i3 : tim │ │ │ │ 00061190: 6520 696e 7665 7273 6520 7068 6920 2020 e inverse phi │ │ │ │ 000611a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000611e0: 2030 2e30 3536 3936 3973 2028 6370 7529 0.056969s (cpu) │ │ │ │ -000611f0: 3b20 302e 3035 3639 3638 3773 2028 7468 ; 0.0569687s (th │ │ │ │ +000611e0: 2030 2e30 3634 3234 3273 2028 6370 7529 0.064242s (cpu) │ │ │ │ +000611f0: 3b20 302e 3036 3431 3239 3173 2028 7468 ; 0.0641291s (th │ │ │ │ 00061200: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00061210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00061230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -27855,16 +27855,16 @@ │ │ │ │ 0006cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ccf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ 0006cd00: 2074 696d 6520 7073 6920 3d20 696e 7665 time psi = inve │ │ │ │ 0006cd10: 7273 654d 6170 2070 6869 2020 2020 2020 rseMap phi │ │ │ │ 0006cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0006cd50: 7573 6564 2030 2e31 3834 3233 3273 2028 used 0.184232s ( │ │ │ │ -0006cd60: 6370 7529 3b20 302e 3132 3131 3573 2028 cpu); 0.12115s ( │ │ │ │ +0006cd50: 7573 6564 2030 2e31 3937 3834 7320 2863 used 0.19784s (c │ │ │ │ +0006cd60: 7075 293b 2030 2e31 3133 3237 3673 2028 pu); 0.113276s ( │ │ │ │ 0006cd70: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 0006cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0006cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -28540,16 +28540,16 @@ │ │ │ │ 0006f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f7c0: 2d2b 0a7c 6935 203a 2074 696d 6520 7073 -+.|i5 : time ps │ │ │ │ 0006f7d0: 6920 3d20 696e 7665 7273 654d 6170 2070 i = inverseMap p │ │ │ │ 0006f7e0: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ 0006f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f810: 207c 0a7c 202d 2d20 7573 6564 2030 2e33 |.| -- used 0.3 │ │ │ │ -0006f820: 3731 3432 3873 2028 6370 7529 3b20 302e 71428s (cpu); 0. │ │ │ │ -0006f830: 3232 3436 3339 7320 2874 6872 6561 6429 224639s (thread) │ │ │ │ +0006f820: 3530 3038 3873 2028 6370 7529 3b20 302e 50088s (cpu); 0. │ │ │ │ +0006f830: 3230 3834 3139 7320 2874 6872 6561 6429 208419s (thread) │ │ │ │ 0006f840: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0006f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -29536,16 +29536,16 @@ │ │ │ │ 000735f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073600: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 00073610: 7469 6d65 2069 7342 6972 6174 696f 6e61 time isBirationa │ │ │ │ 00073620: 6c20 7068 6920 2020 2020 2020 2020 2020 l phi │ │ │ │ 00073630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073650: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073660: 7365 6420 302e 3031 3933 3230 3173 2028 sed 0.0193201s ( │ │ │ │ -00073670: 6370 7529 3b20 302e 3031 3933 3230 3673 cpu); 0.0193206s │ │ │ │ +00073660: 7365 6420 302e 3032 3232 3836 3173 2028 sed 0.0222861s ( │ │ │ │ +00073670: 6370 7529 3b20 302e 3032 3232 3835 3873 cpu); 0.0222858s │ │ │ │ 00073680: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 00073690: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 000736a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000736b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -29566,16 +29566,16 @@ │ │ │ │ 000737d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000737e0: 2020 2020 2020 2020 7c0a 7c43 6572 7469 |.|Certi │ │ │ │ 000737f0: 6679 3a20 6f75 7470 7574 2063 6572 7469 fy: output certi │ │ │ │ 00073800: 6669 6564 2120 2020 2020 2020 2020 2020 fied! │ │ │ │ 00073810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073830: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073840: 7365 6420 302e 3031 3336 3932 3573 2028 sed 0.0136925s ( │ │ │ │ -00073850: 6370 7529 3b20 302e 3031 3332 3931 3573 cpu); 0.0132915s │ │ │ │ +00073840: 7365 6420 302e 3032 3635 3334 3973 2028 sed 0.0265349s ( │ │ │ │ +00073850: 6370 7529 3b20 302e 3031 3437 3431 3273 cpu); 0.0147412s │ │ │ │ 00073860: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 00073870: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 00073880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00073890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -29739,17 +29739,17 @@ │ │ │ │ 000742a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000742b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000742c0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ 000742d0: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ 000742e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000742f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074310: 0a7c 202d 2d20 7573 6564 2032 2e35 3833 .| -- used 2.583 │ │ │ │ -00074320: 3435 7320 2863 7075 293b 2032 2e30 3131 45s (cpu); 2.011 │ │ │ │ -00074330: 3334 7320 2874 6872 6561 6429 3b20 3073 34s (thread); 0s │ │ │ │ +00074310: 0a7c 202d 2d20 7573 6564 2032 2e35 3633 .| -- used 2.563 │ │ │ │ +00074320: 3636 7320 2863 7075 293b 2032 2e32 3339 66s (cpu); 2.239 │ │ │ │ +00074330: 3538 7320 2874 6872 6561 6429 3b20 3073 58s (thread); 0s │ │ │ │ 00074340: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00074350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00074360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00074370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000743a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -30174,17 +30174,17 @@ │ │ │ │ 00075dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00075df0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ 00075e00: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ 00075e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075e40: 0a7c 202d 2d20 7573 6564 2033 2e38 3838 .| -- used 3.888 │ │ │ │ -00075e50: 3434 7320 2863 7075 293b 2032 2e35 3438 44s (cpu); 2.548 │ │ │ │ -00075e60: 3832 7320 2874 6872 6561 6429 3b20 3073 82s (thread); 0s │ │ │ │ +00075e40: 0a7c 202d 2d20 7573 6564 2033 2e38 3131 .| -- used 3.811 │ │ │ │ +00075e50: 3531 7320 2863 7075 293b 2032 2e37 3431 51s (cpu); 2.741 │ │ │ │ +00075e60: 3433 7320 2874 6872 6561 6429 3b20 3073 43s (thread); 0s │ │ │ │ 00075e70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00075e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00075e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00075ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -31483,18 +31483,18 @@ │ │ │ │ 0007afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007afc0: 7c69 3220 3a20 7469 6d65 206b 6572 6e65 |i2 : time kerne │ │ │ │ 0007afd0: 6c28 7068 692c 3129 2020 2020 2020 2020 l(phi,1) │ │ │ │ 0007afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b010: 7c20 2d2d 2075 7365 6420 302e 3031 3734 | -- used 0.0174 │ │ │ │ -0007b020: 3434 3673 2028 6370 7529 3b20 302e 3031 446s (cpu); 0.01 │ │ │ │ -0007b030: 3734 3431 3173 2028 7468 7265 6164 293b 74411s (thread); │ │ │ │ -0007b040: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +0007b010: 7c20 2d2d 2075 7365 6420 302e 3032 3132 | -- used 0.0212 │ │ │ │ +0007b020: 3934 7320 2863 7075 293b 2030 2e30 3231 94s (cpu); 0.021 │ │ │ │ +0007b030: 3239 3339 7320 2874 6872 6561 6429 3b20 2939s (thread); │ │ │ │ +0007b040: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0007b050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b060: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b0a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b0b0: 7c6f 3220 3d20 6964 6561 6c20 2829 2020 |o2 = ideal () │ │ │ │ @@ -31523,18 +31523,18 @@ │ │ │ │ 0007b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007b240: 7c69 3320 3a20 7469 6d65 206b 6572 6e65 |i3 : time kerne │ │ │ │ 0007b250: 6c28 7068 692c 3229 2020 2020 2020 2020 l(phi,2) │ │ │ │ 0007b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b280: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b290: 7c20 2d2d 2075 7365 6420 302e 3931 3136 | -- used 0.9116 │ │ │ │ -0007b2a0: 3835 7320 2863 7075 293b 2030 2e34 3439 85s (cpu); 0.449 │ │ │ │ -0007b2b0: 3333 3573 2028 7468 7265 6164 293b 2030 335s (thread); 0 │ │ │ │ -0007b2c0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0007b290: 7c20 2d2d 2075 7365 6420 312e 3034 3139 | -- used 1.0419 │ │ │ │ +0007b2a0: 3473 2028 6370 7529 3b20 302e 3437 3631 4s (cpu); 0.4761 │ │ │ │ +0007b2b0: 3835 7320 2874 6872 6561 6429 3b20 3073 85s (thread); 0s │ │ │ │ +0007b2c0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0007b2d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b2e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007b330: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ @@ -32424,18 +32424,18 @@ │ │ │ │ 0007ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0007ea90: 7c69 3320 3a20 7469 6d65 2070 6172 616d |i3 : time param │ │ │ │ 0007eaa0: 6574 7269 7a65 204c 2020 2020 2020 2020 etrize L │ │ │ │ 0007eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ead0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eae0: 7c20 2d2d 2075 7365 6420 302e 3030 3530 | -- used 0.0050 │ │ │ │ -0007eaf0: 3036 3138 7320 2863 7075 293b 2030 2e30 0618s (cpu); 0.0 │ │ │ │ -0007eb00: 3035 3030 3136 3873 2028 7468 7265 6164 0500168s (thread │ │ │ │ -0007eb10: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0007eae0: 7c20 2d2d 2075 7365 6420 302e 3030 3537 | -- used 0.0057 │ │ │ │ +0007eaf0: 3739 3934 7320 2863 7075 293b 2030 2e30 7994s (cpu); 0.0 │ │ │ │ +0007eb00: 3035 3737 3635 7320 2874 6872 6561 6429 057765s (thread) │ │ │ │ +0007eb10: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0007eb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007eb30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0007eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0007eb80: 7c6f 3320 3d20 2d2d 2072 6174 696f 6e61 |o3 = -- rationa │ │ │ │ @@ -32934,18 +32934,18 @@ │ │ │ │ 00080a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00080a70: 7c69 3520 3a20 7469 6d65 2070 6172 616d |i5 : time param │ │ │ │ 00080a80: 6574 7269 7a65 2051 2020 2020 2020 2020 etrize Q │ │ │ │ 00080a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080ac0: 7c20 2d2d 2075 7365 6420 302e 3534 3636 | -- used 0.5466 │ │ │ │ -00080ad0: 7320 2863 7075 293b 2030 2e33 3934 3339 s (cpu); 0.39439 │ │ │ │ -00080ae0: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ -00080af0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00080ac0: 7c20 2d2d 2075 7365 6420 302e 3533 3038 | -- used 0.5308 │ │ │ │ +00080ad0: 3936 7320 2863 7075 293b 2030 2e34 3237 96s (cpu); 0.427 │ │ │ │ +00080ae0: 3037 3673 2028 7468 7265 6164 293b 2030 076s (thread); 0 │ │ │ │ +00080af0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00080b00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00080b10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00080b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00080b60: 7c6f 3520 3d20 2d2d 2072 6174 696f 6e61 |o5 = -- rationa │ │ │ │ @@ -34395,17 +34395,17 @@ │ │ │ │ 000865a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000865b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000865c0: 6932 203a 2074 696d 6520 7020 3d20 706f i2 : time p = po │ │ │ │ 000865d0: 696e 7420 736f 7572 6365 2066 2020 2020 int source f │ │ │ │ 000865e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000865f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086610: 202d 2d20 7573 6564 2030 2e34 3633 3036 -- used 0.46306 │ │ │ │ -00086620: 3873 2028 6370 7529 3b20 302e 3230 3831 8s (cpu); 0.2081 │ │ │ │ -00086630: 3934 7320 2874 6872 6561 6429 3b20 3073 94s (thread); 0s │ │ │ │ +00086610: 202d 2d20 7573 6564 2030 2e34 3730 3335 -- used 0.47035 │ │ │ │ +00086620: 3273 2028 6370 7529 3b20 302e 3232 3535 2s (cpu); 0.2255 │ │ │ │ +00086630: 3432 7320 2874 6872 6561 6429 3b20 3073 42s (thread); 0s │ │ │ │ 00086640: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00086650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00086660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000866a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -34510,17 +34510,17 @@ │ │ │ │ 00086cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00086cf0: 6933 203a 2074 696d 6520 7020 3d3d 2066 i3 : time p == f │ │ │ │ 00086d00: 5e2a 2066 2070 2020 2020 2020 2020 2020 ^* f p │ │ │ │ 00086d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086d40: 202d 2d20 7573 6564 2030 2e32 3132 3436 -- used 0.21246 │ │ │ │ -00086d50: 3873 2028 6370 7529 3b20 302e 3133 3538 8s (cpu); 0.1358 │ │ │ │ -00086d60: 3132 7320 2874 6872 6561 6429 3b20 3073 12s (thread); 0s │ │ │ │ +00086d40: 202d 2d20 7573 6564 2030 2e32 3139 3538 -- used 0.21958 │ │ │ │ +00086d50: 3173 2028 6370 7529 3b20 302e 3133 3634 1s (cpu); 0.1364 │ │ │ │ +00086d60: 3031 7320 2874 6872 6561 6429 3b20 3073 01s (thread); 0s │ │ │ │ 00086d70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00086d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00086d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -34842,16 +34842,16 @@ │ │ │ │ 00088190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881a0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ 000881b0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ 000881c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881f0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088200: 2e30 3135 3133 3736 7320 2863 7075 293b .0151376s (cpu); │ │ │ │ -00088210: 2030 2e30 3134 3830 3639 7320 2874 6872 0.0148069s (thr │ │ │ │ +00088200: 2e30 3634 3132 3933 7320 2863 7075 293b .0641293s (cpu); │ │ │ │ +00088210: 2030 2e30 3233 3133 3839 7320 2874 6872 0.0231389s (thr │ │ │ │ 00088220: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00088230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00088250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -34972,16 +34972,16 @@ │ │ │ │ 000889b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000889c0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ 000889d0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ 000889e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000889f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a10: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088a20: 2e30 3131 3634 3839 7320 2863 7075 293b .0116489s (cpu); │ │ │ │ -00088a30: 2030 2e30 3131 3336 3437 7320 2874 6872 0.0113647s (thr │ │ │ │ +00088a20: 2e30 3739 3634 3537 7320 2863 7075 293b .0796457s (cpu); │ │ │ │ +00088a30: 2030 2e30 3230 3938 3735 7320 2874 6872 0.0209875s (thr │ │ │ │ 00088a40: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00088a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00088a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -35296,18 +35296,18 @@ │ │ │ │ 00089df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089e10: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ 00089e20: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 00089e30: 7320 7068 6920 2020 2020 2020 2020 2020 s phi │ │ │ │ 00089e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089e60: 2020 207c 0a7c 202d 2d20 7573 6564 2035 |.| -- used 5 │ │ │ │ -00089e70: 2e38 3539 652d 3035 7320 2863 7075 293b .859e-05s (cpu); │ │ │ │ -00089e80: 2035 2e33 3631 652d 3035 7320 2874 6872 5.361e-05s (thr │ │ │ │ -00089e90: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00089e60: 2020 207c 0a7c 202d 2d20 7573 6564 2036 |.| -- used 6 │ │ │ │ +00089e70: 2e31 3839 3565 2d30 3573 2028 6370 7529 .1895e-05s (cpu) │ │ │ │ +00089e80: 3b20 352e 3435 3733 652d 3035 7320 2874 ; 5.4573e-05s (t │ │ │ │ +00089e90: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00089ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089eb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00089ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f00: 2020 207c 0a7c 6f37 203d 207b 312c 2032 |.|o7 = {1, 2 │ │ │ │ @@ -35331,18 +35331,18 @@ │ │ │ │ 0008a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a040: 2d2d 2d2b 0a7c 6938 203a 2074 696d 6520 ---+.|i8 : time │ │ │ │ 0008a050: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ 0008a060: 7328 7068 692c 4e75 6d44 6567 7265 6573 s(phi,NumDegrees │ │ │ │ 0008a070: 3d3e 3129 2020 2020 2020 2020 2020 2020 =>1) │ │ │ │ 0008a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a090: 2020 207c 0a7c 202d 2d20 7573 6564 2032 |.| -- used 2 │ │ │ │ -0008a0a0: 2e36 3130 3965 2d30 3573 2028 6370 7529 .6109e-05s (cpu) │ │ │ │ -0008a0b0: 3b20 322e 3539 3339 652d 3035 7320 2874 ; 2.5939e-05s (t │ │ │ │ -0008a0c0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0008a090: 2020 207c 0a7c 202d 2d20 7573 6564 2033 |.| -- used 3 │ │ │ │ +0008a0a0: 2e36 3837 3765 2d30 3573 2028 6370 7529 .6877e-05s (cpu) │ │ │ │ +0008a0b0: 3b20 332e 3637 3465 2d30 3573 2028 7468 ; 3.674e-05s (th │ │ │ │ +0008a0c0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 0008a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a0e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a130: 2020 207c 0a7c 6f38 203d 207b 342c 2031 |.|o8 = {4, 1 │ │ │ │ @@ -37824,17 +37824,17 @@ │ │ │ │ 00093bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093c10: 2b0a 7c69 3420 3a20 7469 6d65 2070 6869 +.|i4 : time phi │ │ │ │ 00093c20: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ 00093c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3035 |.| -- used 0.05 │ │ │ │ -00093c70: 3332 3432 3973 2028 6370 7529 3b20 302e 32429s (cpu); 0. │ │ │ │ -00093c80: 3035 3238 3939 3273 2028 7468 7265 6164 0528992s (thread │ │ │ │ +00093c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3037 |.| -- used 0.07 │ │ │ │ +00093c70: 3236 3532 3173 2028 6370 7529 3b20 302e 26521s (cpu); 0. │ │ │ │ +00093c80: 3036 3039 3835 3873 2028 7468 7265 6164 0609858s (thread │ │ │ │ 00093c90: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00093ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00093cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -37999,17 +37999,17 @@ │ │ │ │ 000946e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000946f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094700: 2b0a 7c69 3920 3a20 7469 6d65 2070 6869 +.|i9 : time phi │ │ │ │ 00094710: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ 00094720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3033 |.| -- used 0.03 │ │ │ │ -00094760: 3630 3632 3773 2028 6370 7529 3b20 302e 60627s (cpu); 0. │ │ │ │ -00094770: 3033 3537 3034 3973 2028 7468 7265 6164 0357049s (thread │ │ │ │ +00094750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3036 |.| -- used 0.06 │ │ │ │ +00094760: 3632 3437 3473 2028 6370 7529 3b20 302e 62474s (cpu); 0. │ │ │ │ +00094770: 3034 3539 3330 3473 2028 7468 7265 6164 0459304s (thread │ │ │ │ 00094780: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00094790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000947b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -40043,17 +40043,17 @@ │ │ │ │ 0009c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0009c6c0: 7c69 3620 3a20 7469 6d65 2070 6869 5e2a |i6 : time phi^* │ │ │ │ 0009c6d0: 2a20 7120 2020 2020 2020 2020 2020 2020 * q │ │ │ │ 0009c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c710: 7c20 2d2d 2075 7365 6420 302e 3135 3735 | -- used 0.1575 │ │ │ │ -0009c720: 3331 7320 2863 7075 293b 2030 2e31 3537 31s (cpu); 0.157 │ │ │ │ -0009c730: 3532 3773 2028 7468 7265 6164 293b 2030 527s (thread); 0 │ │ │ │ +0009c710: 7c20 2d2d 2075 7365 6420 302e 3136 3632 | -- used 0.1662 │ │ │ │ +0009c720: 3135 7320 2863 7075 293b 2030 2e31 3636 15s (cpu); 0.166 │ │ │ │ +0009c730: 3231 3473 2028 7468 7265 6164 293b 2030 214s (thread); 0 │ │ │ │ 0009c740: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0009c750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0009c760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0009c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c7a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -42163,18 +42163,18 @@ │ │ │ │ 000a4b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b40: 2d2b 0a7c 6933 203a 2074 696d 6520 7068 -+.|i3 : time ph │ │ │ │ 000a4b50: 6920 3d20 7261 7469 6f6e 616c 4d61 7028 i = rationalMap( │ │ │ │ 000a4b60: 562c 332c 3229 2020 2020 2020 2020 2020 V,3,2) │ │ │ │ 000a4b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4b90: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -000a4ba0: 3935 3332 3173 2028 6370 7529 3b20 302e 95321s (cpu); 0. │ │ │ │ -000a4bb0: 3039 3533 3231 3573 2028 7468 7265 6164 0953215s (thread │ │ │ │ -000a4bc0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000a4b90: 207c 0a7c 202d 2d20 7573 6564 2030 2e31 |.| -- used 0.1 │ │ │ │ +000a4ba0: 3039 3933 3473 2028 6370 7529 3b20 302e 09934s (cpu); 0. │ │ │ │ +000a4bb0: 3130 3939 3334 7320 2874 6872 6561 6429 109934s (thread) │ │ │ │ +000a4bc0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 000a4bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a4bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c30: 207c 0a7c 6f33 203d 202d 2d20 7261 7469 |.|o3 = -- rati │ │ │ │ @@ -43696,16 +43696,16 @@ │ │ │ │ 000aaaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000aab00: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 000aab10: 7469 6d65 2070 6869 203d 2072 6174 696f time phi = ratio │ │ │ │ 000aab20: 6e61 6c4d 6170 2044 2020 2020 2020 2020 nalMap D │ │ │ │ 000aab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aab50: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000aab60: 7365 6420 302e 3033 3031 3438 3173 2028 sed 0.0301481s ( │ │ │ │ -000aab70: 6370 7529 3b20 302e 3033 3031 3433 3273 cpu); 0.0301432s │ │ │ │ +000aab60: 7365 6420 302e 3033 3431 3730 3673 2028 sed 0.0341706s ( │ │ │ │ +000aab70: 6370 7529 3b20 302e 3033 3431 3535 3873 cpu); 0.0341558s │ │ │ │ 000aab80: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 000aab90: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 000aaba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000aabb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aabe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -44706,16 +44706,16 @@ │ │ │ │ 000aea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000aea20: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ 000aea30: 7469 6d65 203f 2069 6d61 6765 2870 6869 time ? image(phi │ │ │ │ 000aea40: 2c22 4634 2229 2020 2020 2020 2020 2020 ,"F4") │ │ │ │ 000aea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aea70: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000aea80: 7365 6420 312e 3234 3131 3673 2028 6370 sed 1.24116s (cp │ │ │ │ -000aea90: 7529 3b20 302e 3730 3131 3939 7320 2874 u); 0.701199s (t │ │ │ │ +000aea80: 7365 6420 312e 3432 3635 3373 2028 6370 sed 1.42653s (cp │ │ │ │ +000aea90: 7529 3b20 302e 3634 3830 3739 7320 2874 u); 0.648079s (t │ │ │ │ 000aeaa0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000aeab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000aead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000aeb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46244,17 +46244,17 @@ │ │ │ │ 000b4a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b4a40: 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 6d65 ----+.|i4 : time │ │ │ │ 000b4a50: 2053 6567 7265 436c 6173 7320 5820 2020 SegreClass X │ │ │ │ 000b4a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4a90: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b4aa0: 302e 3836 3538 3235 7320 2863 7075 293b 0.865825s (cpu); │ │ │ │ -000b4ab0: 2030 2e35 3139 3834 3273 2028 7468 7265 0.519842s (thre │ │ │ │ -000b4ac0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000b4aa0: 302e 3738 3731 3536 7320 2863 7075 293b 0.787156s (cpu); │ │ │ │ +000b4ab0: 2030 2e35 3336 3135 7320 2874 6872 6561 0.53615s (threa │ │ │ │ +000b4ac0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000b4ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b4af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4b30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ @@ -46299,16 +46299,16 @@ │ │ │ │ 000b4da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b4db0: 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 6d65 ----+.|i5 : time │ │ │ │ 000b4dc0: 2053 6567 7265 436c 6173 7320 6c69 6674 SegreClass lift │ │ │ │ 000b4dd0: 2858 2c50 3729 2020 2020 2020 2020 2020 (X,P7) │ │ │ │ 000b4de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e00: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b4e10: 302e 3536 3530 3933 7320 2863 7075 293b 0.565093s (cpu); │ │ │ │ -000b4e20: 2030 2e33 3639 3031 7320 2874 6872 6561 0.36901s (threa │ │ │ │ +000b4e10: 302e 3632 3039 3934 7320 2863 7075 293b 0.620994s (cpu); │ │ │ │ +000b4e20: 2030 2e33 3633 3431 7320 2874 6872 6561 0.36341s (threa │ │ │ │ 000b4e30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000b4e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b4e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b4e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46359,16 +46359,16 @@ │ │ │ │ 000b5160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5170: 2020 2020 7c0a 7c43 6572 7469 6679 3a20 |.|Certify: │ │ │ │ 000b5180: 6f75 7470 7574 2063 6572 7469 6669 6564 output certified │ │ │ │ 000b5190: 2120 2020 2020 2020 2020 2020 2020 2020 ! │ │ │ │ 000b51a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b51b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b51c0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b51d0: 302e 3032 3132 3930 3973 2028 6370 7529 0.0212909s (cpu) │ │ │ │ -000b51e0: 3b20 302e 3032 3038 3735 3573 2028 7468 ; 0.0208755s (th │ │ │ │ +000b51d0: 302e 3036 3734 3237 3973 2028 6370 7529 0.0674279s (cpu) │ │ │ │ +000b51e0: 3b20 302e 3033 3136 3434 3673 2028 7468 ; 0.0316446s (th │ │ │ │ 000b51f0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000b5200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5210: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b5220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46419,17 +46419,17 @@ │ │ │ │ 000b5520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5530: 2020 2020 7c0a 7c43 6572 7469 6679 3a20 |.|Certify: │ │ │ │ 000b5540: 6f75 7470 7574 2063 6572 7469 6669 6564 output certified │ │ │ │ 000b5550: 2120 2020 2020 2020 2020 2020 2020 2020 ! │ │ │ │ 000b5560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5580: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000b5590: 302e 3039 3737 3135 7320 2863 7075 293b 0.097715s (cpu); │ │ │ │ -000b55a0: 2030 2e30 3937 3336 3539 7320 2874 6872 0.0973659s (thr │ │ │ │ -000b55b0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +000b5590: 302e 3132 3736 3734 7320 2863 7075 293b 0.127674s (cpu); │ │ │ │ +000b55a0: 2030 2e31 3134 3637 3373 2028 7468 7265 0.114673s (thre │ │ │ │ +000b55b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000b55c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b55d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000b55e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b55f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ @@ -46535,26 +46535,26 @@ │ │ │ │ 000b5c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5cd0: 6f39 203d 2020 205a 5a20 2020 2020 2020 o9 = ZZ │ │ │ │ +000b5cd0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ 000b5ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5d20: 202d 2d2d 2d2d 2d5b 7820 2e2e 7820 5d20 ------[x ..x ] │ │ │ │ -000b5d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000b5d20: 6f39 203d 202d 2d2d 2d2d 2d5b 7820 2e2e o9 = ------[x .. │ │ │ │ +000b5d30: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ 000b5d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b5d70: 2031 3030 3030 3320 2030 2020 2036 2020 100003 0 6 │ │ │ │ -000b5d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000b5d70: 2020 2020 2031 3030 3030 3320 2030 2020 100003 0 │ │ │ │ +000b5d80: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 000b5d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46570,18 +46570,18 @@ │ │ │ │ 000b5e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b5ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000b5eb0: 6931 3020 3a20 7469 6d65 2070 6869 203d i10 : time phi = │ │ │ │ 000b5ec0: 2069 6e76 6572 7365 4d61 7020 746f 4d61 inverseMap toMa │ │ │ │ 000b5ed0: 7028 6d69 6e6f 7273 2832 2c6d 6174 7269 p(minors(2,matri │ │ │ │ 000b5ee0: 787b 7b78 5f30 2c78 5f31 2c78 5f33 2c78 x{{x_0,x_1,x_3,x │ │ │ │ 000b5ef0: 5f34 2c78 5f35 7d2c 7b78 5f31 2c7c 0a7c _4,x_5},{x_1,|.| │ │ │ │ -000b5f00: 202d 2d20 7573 6564 2030 2e32 3136 3330 -- used 0.21630 │ │ │ │ -000b5f10: 3373 2028 6370 7529 3b20 302e 3130 3237 3s (cpu); 0.1027 │ │ │ │ -000b5f20: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -000b5f30: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000b5f00: 202d 2d20 7573 6564 2030 2e30 3636 3232 -- used 0.06622 │ │ │ │ +000b5f10: 3931 7320 2863 7075 293b 2030 2e30 3636 91s (cpu); 0.066 │ │ │ │ +000b5f20: 3233 3236 7320 2874 6872 6561 6429 3b20 2326s (thread); │ │ │ │ +000b5f30: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 000b5f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b5f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b5fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -46775,17 +46775,17 @@ │ │ │ │ 000b6b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b6b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000b6b80: 6931 3120 3a20 7469 6d65 2053 6567 7265 i11 : time Segre │ │ │ │ 000b6b90: 436c 6173 7320 7068 6920 2020 2020 2020 Class phi │ │ │ │ 000b6ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6bc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b6bd0: 202d 2d20 7573 6564 2030 2e33 3338 3630 -- used 0.33860 │ │ │ │ -000b6be0: 3473 2028 6370 7529 3b20 302e 3232 3831 4s (cpu); 0.2281 │ │ │ │ -000b6bf0: 3634 7320 2874 6872 6561 6429 3b20 3073 64s (thread); 0s │ │ │ │ +000b6bd0: 202d 2d20 7573 6564 2030 2e33 3732 3737 -- used 0.37277 │ │ │ │ +000b6be0: 3573 2028 6370 7529 3b20 302e 3235 3332 5s (cpu); 0.2532 │ │ │ │ +000b6bf0: 3538 7320 2874 6872 6561 6429 3b20 3073 58s (thread); 0s │ │ │ │ 000b6c00: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b6c10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b6c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b6c60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -46935,18 +46935,18 @@ │ │ │ │ 000b7560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7580: 2020 2020 2020 7469 6d65 2053 6567 7265 time Segre │ │ │ │ 000b7590: 436c 6173 7320 4220 2020 2020 2020 2020 Class B │ │ │ │ 000b75a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b75b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b75c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b75d0: 202d 2d20 7573 6564 2030 2e33 3936 3436 -- used 0.39646 │ │ │ │ -000b75e0: 7320 2863 7075 293b 2030 2e32 3932 3132 s (cpu); 0.29212 │ │ │ │ -000b75f0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -000b7600: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000b75d0: 202d 2d20 7573 6564 2030 2e34 3233 3734 -- used 0.42374 │ │ │ │ +000b75e0: 3573 2028 6370 7529 3b20 302e 3239 3435 5s (cpu); 0.2945 │ │ │ │ +000b75f0: 3339 7320 2874 6872 6561 6429 3b20 3073 39s (thread); 0s │ │ │ │ +000b7600: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b7610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7670: 2020 2020 2020 2020 2039 2020 2020 2020 9 │ │ │ │ @@ -46995,17 +46995,17 @@ │ │ │ │ 000b7920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b7940: 2020 2020 2020 7469 6d65 2053 6567 7265 time Segre │ │ │ │ 000b7950: 436c 6173 7320 6c69 6674 2842 2c61 6d62 Class lift(B,amb │ │ │ │ 000b7960: 6965 6e74 2072 696e 6720 4229 2020 2020 ient ring B) │ │ │ │ 000b7970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000b7990: 202d 2d20 7573 6564 2031 2e34 3137 3937 -- used 1.41797 │ │ │ │ -000b79a0: 7320 2863 7075 293b 2030 2e39 3030 3631 s (cpu); 0.90061 │ │ │ │ -000b79b0: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ +000b7990: 202d 2d20 7573 6564 2031 2e35 3437 3832 -- used 1.54782 │ │ │ │ +000b79a0: 7320 2863 7075 293b 2030 2e39 3336 3339 s (cpu); 0.93639 │ │ │ │ +000b79b0: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ 000b79c0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b79d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000b79e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b79f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b7a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -47245,17 +47245,17 @@ │ │ │ │ 000b88c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000b88d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000b88e0: 7c69 3120 3a20 7469 6d65 2061 7070 6c79 |i1 : time apply │ │ │ │ 000b88f0: 2831 2e2e 3132 2c69 202d 3e20 6465 7363 (1..12,i -> desc │ │ │ │ 000b8900: 7269 6265 2073 7065 6369 616c 4372 656d ribe specialCrem │ │ │ │ 000b8910: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ 000b8920: 6e28 692c 5a5a 2f33 3333 3129 2920 7c0a n(i,ZZ/3331)) |. │ │ │ │ -000b8930: 7c20 2d2d 2075 7365 6420 312e 3539 3337 | -- used 1.5937 │ │ │ │ -000b8940: 3673 2028 6370 7529 3b20 312e 3136 3539 6s (cpu); 1.1659 │ │ │ │ -000b8950: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +000b8930: 7c20 2d2d 2075 7365 6420 312e 3530 3132 | -- used 1.5012 │ │ │ │ +000b8940: 3973 2028 6370 7529 3b20 312e 3136 3636 9s (cpu); 1.1666 │ │ │ │ +000b8950: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ 000b8960: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000b8970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000b8980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000b8990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000b89c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -48068,914 +48068,914 @@ │ │ │ │ 000bbc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bbc40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ 000bbc50: 2074 696d 6520 7370 6563 6961 6c43 7562 time specialCub │ │ │ │ 000bbc60: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ 000bbc70: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ 000bbc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbc90: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000bbca0: 7573 6564 2030 2e30 3935 3431 3131 7320 used 0.0954111s │ │ │ │ -000bbcb0: 2863 7075 293b 2030 2e30 3935 3431 3034 (cpu); 0.0954104 │ │ │ │ -000bbcc0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000bbca0: 7573 6564 2030 2e30 3839 3737 3637 7320 used 0.0897767s │ │ │ │ +000bbcb0: 2863 7075 293b 2030 2e30 3839 3737 3673 (cpu); 0.089776s │ │ │ │ +000bbcc0: 2028 7468 7265 6164 2020 2020 2020 2020 (thread │ │ │ │ 000bbcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd30: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ 000bbd40: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ 000bbd50: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 000bbd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbd80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbd90: 2073 6f75 7263 653a 2050 726f 6a28 5151 source: Proj(QQ │ │ │ │ 000bbda0: 5b78 202c 2078 202c 2078 202c 2078 202c [x , x , x , x , │ │ │ │ -000bbdb0: 2078 202c 2078 202c 2078 205d 2920 2020 x , x , x ]) │ │ │ │ +000bbdb0: 2078 202c 2078 202c 2020 2020 2020 2020 x , x , │ │ │ │ 000bbdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbdd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbdf0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -000bbe00: 2020 3420 2020 3520 2020 3620 2020 2020 4 5 6 │ │ │ │ +000bbe00: 2020 3420 2020 3520 2020 2020 2020 2020 4 5 │ │ │ │ 000bbe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbe20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbe30: 2074 6172 6765 743a 2073 7562 7661 7269 target: subvari │ │ │ │ 000bbe40: 6574 7920 6f66 2050 726f 6a28 5151 5b74 ety of Proj(QQ[t │ │ │ │ -000bbe50: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ +000bbe50: 202c 2074 202c 2074 2020 2020 2020 2020 , t , t │ │ │ │ 000bbe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbe70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bbea0: 3020 2020 3120 2020 3220 2020 3320 2020 0 1 2 3 │ │ │ │ +000bbea0: 3020 2020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ 000bbeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbec0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbed0: 2020 2020 2020 2020 207b 2020 2020 2020 { │ │ │ │ 000bbee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbf60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbf70: 2020 2020 2020 2020 2020 3374 2074 2020 3t t │ │ │ │ 000bbf80: 2b20 3130 7420 7420 202b 2031 3074 2074 + 10t t + 10t t │ │ │ │ -000bbf90: 2020 2d20 3374 2074 2020 2d20 3130 7420 - 3t t - 10t │ │ │ │ +000bbf90: 2020 2d20 3374 2074 2020 2020 2020 2020 - 3t t │ │ │ │ 000bbfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bbfb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bbfc0: 2020 2020 2020 2020 2020 2020 3220 3420 2 4 │ │ │ │ 000bbfd0: 2020 2020 2033 2034 2020 2020 2020 3020 3 4 0 │ │ │ │ -000bbfe0: 3520 2020 2020 3120 3520 2020 2020 2032 5 1 5 2 │ │ │ │ +000bbfe0: 3520 2020 2020 3120 2020 2020 2020 2020 5 1 │ │ │ │ 000bbff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc0a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc0b0: 2020 2020 2020 2020 2020 3374 2074 2020 3t t │ │ │ │ 000bc0c0: 2d20 3874 2074 2020 2d20 3574 2074 2020 - 8t t - 5t t │ │ │ │ -000bc0d0: 2b20 3874 2074 2020 2d20 3874 2074 2020 + 8t t - 8t t │ │ │ │ +000bc0d0: 2b20 3874 2074 2020 2020 2020 2020 2020 + 8t t │ │ │ │ 000bc0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc0f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc100: 2020 2020 2020 2020 2020 2020 3020 3220 0 2 │ │ │ │ 000bc110: 2020 2020 3320 3420 2020 2020 3020 3520 3 4 0 5 │ │ │ │ -000bc120: 2020 2020 3220 3520 2020 2020 3420 3520 2 5 4 5 │ │ │ │ +000bc120: 2020 2020 3220 3520 2020 2020 2020 2020 2 5 │ │ │ │ 000bc130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc140: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc190: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc1e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc1f0: 2020 2020 2020 2020 2020 7420 7420 202d t t - │ │ │ │ 000bc200: 2074 2074 2020 2d20 3274 2074 2020 2d20 t t - 2t t - │ │ │ │ -000bc210: 3274 2074 2020 2b20 3274 2074 2020 2d20 2t t + 2t t - │ │ │ │ +000bc210: 3274 2074 2020 2b20 2020 2020 2020 2020 2t t + │ │ │ │ 000bc220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc240: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ 000bc250: 2020 3020 3420 2020 2020 3320 3420 2020 0 4 3 4 │ │ │ │ -000bc260: 2020 3020 3520 2020 2020 3220 3520 2020 0 5 2 5 │ │ │ │ +000bc260: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 000bc270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc290: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 000bc2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc2d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc2e0: 2064 6566 696e 696e 6720 666f 726d 733a defining forms: │ │ │ │ 000bc2f0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 000bc300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc340: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000bc350: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000bc350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc370: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc390: 2020 2d20 3678 2078 2020 2d20 3278 2078 - 6x x - 2x x │ │ │ │ -000bc3a0: 2078 2020 2b20 3878 2078 2020 2b20 3578 x + 8x x + 5x │ │ │ │ +000bc3a0: 2078 2020 2b20 3878 2020 2020 2020 2020 x + 8x │ │ │ │ 000bc3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc3c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc3e0: 2020 2020 2020 3020 3220 2020 2020 3020 0 2 0 │ │ │ │ -000bc3f0: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ +000bc3f0: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ 000bc400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc410: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc480: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ -000bc490: 2020 2020 2020 3220 2020 2020 3220 2020 2 2 │ │ │ │ +000bc490: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000bc4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc4b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc4d0: 2020 2d20 3678 2020 2d20 3878 2078 2020 - 6x - 8x x │ │ │ │ -000bc4e0: 2d20 3678 2078 2020 2b20 3478 2078 2020 - 6x x + 4x x │ │ │ │ +000bc4e0: 2d20 3678 2078 2020 2020 2020 2020 2020 - 6x x │ │ │ │ 000bc4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc500: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc520: 2020 2020 2020 3020 2020 2020 3020 3120 0 0 1 │ │ │ │ -000bc530: 2020 2020 3020 3120 2020 2020 3020 3220 0 1 0 2 │ │ │ │ +000bc530: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ 000bc540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc550: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc5a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc5c0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -000bc5d0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000bc5d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000bc5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc5f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc610: 2020 3678 2020 2b20 3478 2078 2020 2d20 6x + 4x x - │ │ │ │ -000bc620: 3130 7820 7820 202d 2031 3478 2078 2020 10x x - 14x x │ │ │ │ +000bc620: 3130 7820 7820 202d 2020 2020 2020 2020 10x x - │ │ │ │ 000bc630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc640: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc660: 2020 2020 3020 2020 2020 3020 3120 2020 0 0 1 │ │ │ │ -000bc670: 2020 2030 2031 2020 2020 2020 3020 3220 0 1 0 2 │ │ │ │ +000bc670: 2020 2030 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ 000bc680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc690: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc6e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc700: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ 000bc710: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000bc720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc730: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc750: 2020 2d20 3132 7820 202d 2038 7820 7820 - 12x - 8x x │ │ │ │ -000bc760: 202b 2037 7820 7820 202b 2036 7820 7820 + 7x x + 6x x │ │ │ │ +000bc760: 202b 2037 7820 7820 2020 2020 2020 2020 + 7x x │ │ │ │ 000bc770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc780: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc7a0: 2020 2020 2020 2030 2020 2020 2030 2031 0 0 1 │ │ │ │ -000bc7b0: 2020 2020 2030 2032 2020 2020 2030 2031 0 2 0 1 │ │ │ │ +000bc7b0: 2020 2020 2030 2032 2020 2020 2020 2020 0 2 │ │ │ │ 000bc7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc7d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc820: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc840: 2020 2020 2033 2020 2020 2020 3220 2020 3 2 │ │ │ │ -000bc850: 2020 2020 2020 2032 2020 2020 2020 3320 2 3 │ │ │ │ +000bc850: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000bc860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc870: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc890: 2020 3132 7820 202d 2031 3278 2078 2020 12x - 12x x │ │ │ │ -000bc8a0: 2d20 3132 7820 7820 202b 2031 3278 2020 - 12x x + 12x │ │ │ │ +000bc8a0: 2d20 3132 7820 7820 2020 2020 2020 2020 - 12x x │ │ │ │ 000bc8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc8c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc8e0: 2020 2020 2030 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ -000bc8f0: 2020 2020 2030 2031 2020 2020 2020 3120 0 1 1 │ │ │ │ +000bc8f0: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ 000bc900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc910: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc960: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc980: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ -000bc990: 2020 2020 2020 2032 2020 2020 2020 3320 2 3 │ │ │ │ +000bc990: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000bc9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc9b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bc9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bc9d0: 2020 2d20 3678 2020 2b20 3230 7820 7820 - 6x + 20x x │ │ │ │ -000bc9e0: 202d 2032 7820 7820 202d 2031 3278 2020 - 2x x - 12x │ │ │ │ +000bc9e0: 202d 2032 7820 7820 2020 2020 2020 2020 - 2x x │ │ │ │ 000bc9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca20: 2020 2020 2020 3020 2020 2020 2030 2031 0 0 1 │ │ │ │ -000bca30: 2020 2020 2030 2031 2020 2020 2020 3120 0 1 1 │ │ │ │ +000bca30: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ 000bca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcaa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcac0: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ -000bcad0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ +000bcad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcaf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcb10: 2020 2d20 3234 7820 202b 2038 7820 7820 - 24x + 8x x │ │ │ │ -000bcb20: 202b 2031 3678 2078 2020 2d20 3478 2078 + 16x x - 4x x │ │ │ │ +000bcb20: 202b 2031 3678 2078 2020 2020 2020 2020 + 16x x │ │ │ │ 000bcb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcb40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcb60: 2020 2020 2020 2030 2020 2020 2030 2031 0 0 1 │ │ │ │ -000bcb70: 2020 2020 2020 3020 3120 2020 2020 3020 0 1 0 │ │ │ │ +000bcb70: 2020 2020 2020 3020 2020 2020 2020 2020 0 │ │ │ │ 000bcb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcb90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcbe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcc00: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bcc10: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ +000bcc10: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ 000bcc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcc30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcc50: 2020 3878 2078 2020 2d20 3478 2078 2020 8x x - 4x x │ │ │ │ -000bcc60: 2d20 3234 7820 202d 2037 7820 7820 202b - 24x - 7x x + │ │ │ │ +000bcc60: 2d20 3234 7820 202d 2020 2020 2020 2020 - 24x - │ │ │ │ 000bcc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcc80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcca0: 2020 2020 3020 3120 2020 2020 3020 3120 0 1 0 1 │ │ │ │ -000bccb0: 2020 2020 2031 2020 2020 2030 2032 2020 1 0 2 │ │ │ │ +000bccb0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ 000bccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bccd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd40: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000bcd50: 3320 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ 000bcd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcd90: 2020 2d20 3132 7820 7820 202b 2031 3278 - 12x x + 12x │ │ │ │ -000bcda0: 2020 2b20 3132 7820 7820 202d 2034 7820 + 12x x - 4x │ │ │ │ +000bcda0: 2020 2b20 3132 7820 2020 2020 2020 2020 + 12x │ │ │ │ 000bcdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcdc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcde0: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ -000bcdf0: 3120 2020 2020 2030 2032 2020 2020 2030 1 0 2 0 │ │ │ │ +000bcdf0: 3120 2020 2020 2030 2020 2020 2020 2020 1 0 │ │ │ │ 000bce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bce80: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ -000bce90: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ +000bce90: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ 000bcea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bceb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bced0: 2020 3878 2078 2020 2d20 3132 7820 7820 8x x - 12x x │ │ │ │ -000bcee0: 202b 2032 3478 2020 2d20 3131 7820 7820 + 24x - 11x x │ │ │ │ +000bcee0: 202b 2032 3478 2020 2020 2020 2020 2020 + 24x │ │ │ │ 000bcef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcf00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcf20: 2020 2020 3020 3120 2020 2020 2030 2031 0 1 0 1 │ │ │ │ -000bcf30: 2020 2020 2020 3120 2020 2020 2030 2032 1 0 2 │ │ │ │ +000bcf30: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ 000bcf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcf50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcf70: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000bcf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcfa0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bcfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bcff0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ 000bd000: 2052 6174 696f 6e61 6c4d 6170 2028 6375 RationalMap (cu │ │ │ │ 000bd010: 6269 6320 6269 7261 7469 6f6e 616c 206d bic birational m │ │ │ │ -000bd020: 6170 2066 726f 6d20 5050 5e36 2074 6f20 ap from PP^6 to │ │ │ │ +000bd020: 6170 2066 726f 6d20 2020 2020 2020 2020 ap from │ │ │ │ 000bd030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd040: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 000bd050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bd080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000bd090: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6763 2920 ---------|.|gc) │ │ │ │ -000bd0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd090: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 293b 2030 ---------|.|); 0 │ │ │ │ +000bd0a0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 000bd0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd0e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd130: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd180: 2020 2020 2020 2020 207c 0a7c 2078 205d |.| x ] │ │ │ │ +000bd190: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000bd1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd1d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd1d0: 2020 2020 2020 2020 207c 0a7c 2020 3620 |.| 6 │ │ │ │ 000bd1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd220: 2020 2020 2020 2020 207c 0a7c 202c 2074 |.| , t │ │ │ │ 000bd230: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -000bd240: 205d 2920 6465 6669 6e65 6420 6279 2020 ]) defined by │ │ │ │ -000bd250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd240: 202c 2074 202c 2074 205d 2920 6465 6669 , t , t ]) defi │ │ │ │ +000bd250: 6e65 6420 6279 2020 2020 2020 2020 2020 ned by │ │ │ │ 000bd260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd270: 2020 2020 2020 2020 207c 0a7c 3420 2020 |.|4 │ │ │ │ -000bd280: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ -000bd290: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +000bd270: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000bd280: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ +000bd290: 3720 2020 3820 2020 3920 2020 2020 2020 7 8 9 │ │ │ │ 000bd2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd310: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd330: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd330: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000bd340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd360: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ -000bd370: 2036 7420 7420 202b 2031 3374 2074 2020 6t t + 13t t │ │ │ │ -000bd380: 2b20 3133 7420 202d 2031 3074 2074 2020 + 13t - 10t t │ │ │ │ -000bd390: 2d20 3130 7420 7420 202b 2074 2074 2020 - 10t t + t t │ │ │ │ -000bd3a0: 2b20 3130 7420 7420 202d 2032 7420 7420 + 10t t - 2t t │ │ │ │ -000bd3b0: 202b 2020 2020 2020 207c 0a7c 2035 2020 + |.| 5 │ │ │ │ -000bd3c0: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ -000bd3d0: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ -000bd3e0: 2020 2020 2031 2036 2020 2020 3220 3620 1 6 2 6 │ │ │ │ -000bd3f0: 2020 2020 2034 2036 2020 2020 2035 2036 4 6 5 6 │ │ │ │ -000bd400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd360: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ +000bd370: 3130 7420 7420 202b 2036 7420 7420 202b 10t t + 6t t + │ │ │ │ +000bd380: 2031 3374 2074 2020 2b20 3133 7420 202d 13t t + 13t - │ │ │ │ +000bd390: 2031 3074 2074 2020 2d20 3130 7420 7420 10t t - 10t t │ │ │ │ +000bd3a0: 202b 2074 2074 2020 2b20 3130 7420 7420 + t t + 10t t │ │ │ │ +000bd3b0: 202d 2032 7420 7420 207c 0a7c 3520 2020 - 2t t |.|5 │ │ │ │ +000bd3c0: 2020 2032 2035 2020 2020 2033 2035 2020 2 5 3 5 │ │ │ │ +000bd3d0: 2020 2020 3420 3520 2020 2020 2035 2020 4 5 5 │ │ │ │ +000bd3e0: 2020 2020 3020 3620 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +000bd3f0: 2020 2020 3220 3620 2020 2020 2034 2036 2 6 4 6 │ │ │ │ +000bd400: 2020 2020 2035 2036 207c 0a7c 2020 2020 5 6 |.| │ │ │ │ 000bd410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd460: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd460: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000bd470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd480: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bd490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd490: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd4a0: 2020 2020 2020 2020 207c 0a7c 2d20 3874 |.|- 8t │ │ │ │ -000bd4b0: 2020 2b20 3874 2074 2020 2b20 3874 2074 + 8t t + 8t t │ │ │ │ -000bd4c0: 2020 2b20 7420 7420 202d 2038 7420 7420 + t t - 8t t │ │ │ │ -000bd4d0: 202b 2074 2074 2020 2d20 3874 2020 2d20 + t t - 8t - │ │ │ │ -000bd4e0: 3274 2074 2020 2d20 7420 7420 202d 2032 2t t - t t - 2 │ │ │ │ -000bd4f0: 7420 2020 2020 2020 207c 0a7c 2020 2020 t |.| │ │ │ │ -000bd500: 3520 2020 2020 3020 3620 2020 2020 3120 5 0 6 1 │ │ │ │ -000bd510: 3620 2020 2032 2036 2020 2020 2034 2036 6 2 6 4 6 │ │ │ │ -000bd520: 2020 2020 3520 3620 2020 2020 3620 2020 5 6 6 │ │ │ │ -000bd530: 2020 3020 3720 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ -000bd540: 2032 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bd4b0: 2074 2020 2d20 3874 2020 2b20 3874 2074 t - 8t + 8t t │ │ │ │ +000bd4c0: 2020 2b20 3874 2074 2020 2b20 7420 7420 + 8t t + t t │ │ │ │ +000bd4d0: 202d 2038 7420 7420 202b 2074 2074 2020 - 8t t + t t │ │ │ │ +000bd4e0: 2d20 3874 2020 2d20 3274 2074 2020 2d20 - 8t - 2t t - │ │ │ │ +000bd4f0: 7420 7420 202d 2032 747c 0a7c 2020 2020 t t - 2t|.| │ │ │ │ +000bd500: 3420 3520 2020 2020 3520 2020 2020 3020 4 5 5 0 │ │ │ │ +000bd510: 3620 2020 2020 3120 3620 2020 2032 2036 6 1 6 2 6 │ │ │ │ +000bd520: 2020 2020 2034 2036 2020 2020 3520 3620 4 6 5 6 │ │ │ │ +000bd530: 2020 2020 3620 2020 2020 3020 3720 2020 6 0 7 │ │ │ │ +000bd540: 2031 2037 2020 2020 207c 0a7c 2020 2020 1 7 |.| │ │ │ │ 000bd550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd5a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bd5a0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 000bd5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd5c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bd5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd5d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000bd5e0: 2020 2020 2020 2020 207c 0a7c 3274 2074 |.|2t t │ │ │ │ -000bd5f0: 2020 2d20 3274 2020 2b20 3274 2074 2020 - 2t + 2t t │ │ │ │ -000bd600: 2b20 3274 2074 2020 2b20 7420 7420 202d + 2t t + t t - │ │ │ │ -000bd610: 2033 7420 7420 202d 2033 7420 202d 2074 3t t - 3t - t │ │ │ │ -000bd620: 2074 2020 2d20 7420 7420 202b 2074 2074 t - t t + t t │ │ │ │ -000bd630: 2020 2020 2020 2020 207c 0a7c 2020 3420 |.| 4 │ │ │ │ -000bd640: 3520 2020 2020 3520 2020 2020 3020 3620 5 5 0 6 │ │ │ │ -000bd650: 2020 2020 3120 3620 2020 2033 2036 2020 1 6 3 6 │ │ │ │ -000bd660: 2020 2034 2036 2020 2020 2036 2020 2020 4 6 6 │ │ │ │ -000bd670: 3020 3720 2020 2032 2037 2020 2020 3420 0 7 2 7 4 │ │ │ │ -000bd680: 3720 2020 2020 2020 207c 0a7c 2020 2020 7 |.| │ │ │ │ +000bd5f0: 2020 2d20 3274 2074 2020 2d20 3274 2020 - 2t t - 2t │ │ │ │ +000bd600: 2b20 3274 2074 2020 2b20 3274 2074 2020 + 2t t + 2t t │ │ │ │ +000bd610: 2b20 7420 7420 202d 2033 7420 7420 202d + t t - 3t t - │ │ │ │ +000bd620: 2033 7420 202d 2074 2074 2020 2d20 7420 3t - t t - t │ │ │ │ +000bd630: 7420 202b 2074 2074 207c 0a7c 2020 3220 t + t t |.| 2 │ │ │ │ +000bd640: 3520 2020 2020 3420 3520 2020 2020 3520 5 4 5 5 │ │ │ │ +000bd650: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +000bd660: 2020 2033 2036 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ +000bd670: 2020 2036 2020 2020 3020 3720 2020 2032 6 0 7 2 │ │ │ │ +000bd680: 2037 2020 2020 3420 377c 0a7c 2020 2020 7 4 7|.| │ │ │ │ 000bd690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bd6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd720: 2020 2020 2020 2020 207c 0a7c 2020 3220 |.| 2 │ │ │ │ -000bd730: 2020 2020 2020 3220 2020 2033 2020 2020 2 3 │ │ │ │ -000bd740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd750: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000bd760: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd720: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000bd730: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ +000bd740: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000bd750: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000bd760: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000bd770: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000bd780: 2d20 3678 2078 2020 2b20 7820 202b 2032 - 6x x + x + 2 │ │ │ │ -000bd790: 7820 7820 7820 202d 2031 3678 2078 2078 x x x - 16x x x │ │ │ │ -000bd7a0: 2020 2b20 3778 2078 2020 2b20 3878 2078 + 7x x + 8x x │ │ │ │ -000bd7b0: 2020 2d20 3578 2078 2078 2020 2d20 3278 - 5x x x - 2x │ │ │ │ -000bd7c0: 2078 2020 2020 2020 207c 0a7c 3020 3220 x |.|0 2 │ │ │ │ -000bd7d0: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ -000bd7e0: 2030 2032 2033 2020 2020 2020 3120 3220 0 2 3 1 2 │ │ │ │ -000bd7f0: 3320 2020 2020 3220 3320 2020 2020 3220 3 2 3 2 │ │ │ │ -000bd800: 3320 2020 2020 3020 3220 3420 2020 2020 3 0 2 4 │ │ │ │ -000bd810: 3120 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ +000bd780: 2b20 3578 2078 2020 2d20 3678 2078 2020 + 5x x - 6x x │ │ │ │ +000bd790: 2b20 7820 202b 2032 7820 7820 7820 202d + x + 2x x x - │ │ │ │ +000bd7a0: 2031 3678 2078 2078 2020 2b20 3778 2078 16x x x + 7x x │ │ │ │ +000bd7b0: 2020 2b20 3878 2078 2020 2d20 3578 2078 + 8x x - 5x x │ │ │ │ +000bd7c0: 2078 2020 2d20 3278 207c 0a7c 3120 3220 x - 2x |.|1 2 │ │ │ │ +000bd7d0: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +000bd7e0: 2020 2032 2020 2020 2030 2032 2033 2020 2 0 2 3 │ │ │ │ +000bd7f0: 2020 2020 3120 3220 3320 2020 2020 3220 1 2 3 2 │ │ │ │ +000bd800: 3320 2020 2020 3220 3320 2020 2020 3020 3 2 3 0 │ │ │ │ +000bd810: 3220 3420 2020 2020 317c 0a7c 2020 2020 2 4 1|.| │ │ │ │ 000bd820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd860: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd870: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bd880: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000bd890: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd8a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000bd8b0: 2020 2020 2020 2020 207c 0a7c 2b20 3778 |.|+ 7x │ │ │ │ -000bd8c0: 2078 2078 2020 2b20 3678 2078 2020 2b20 x x + 6x x + │ │ │ │ -000bd8d0: 3278 2078 2020 2b20 7820 7820 202b 2031 2x x + x x + 1 │ │ │ │ -000bd8e0: 3278 2078 2020 2b20 3678 2078 2078 2020 2x x + 6x x x │ │ │ │ -000bd8f0: 2d20 3678 2078 2020 2d20 3678 2078 2078 - 6x x - 6x x x │ │ │ │ -000bd900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd910: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ -000bd920: 2020 3020 3220 2020 2031 2032 2020 2020 0 2 1 2 │ │ │ │ -000bd930: 2020 3020 3320 2020 2020 3020 3120 3320 0 3 0 1 3 │ │ │ │ -000bd940: 2020 2020 3120 3320 2020 2020 3020 3220 1 3 0 2 │ │ │ │ -000bd950: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ +000bd870: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd880: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000bd890: 2020 2032 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000bd8a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bd8b0: 2020 2020 2020 2020 207c 0a7c 2b20 3478 |.|+ 4x │ │ │ │ +000bd8c0: 2078 2020 2b20 3778 2078 2078 2020 2b20 x + 7x x x + │ │ │ │ +000bd8d0: 3678 2078 2020 2b20 3278 2078 2020 2b20 6x x + 2x x + │ │ │ │ +000bd8e0: 7820 7820 202b 2031 3278 2078 2020 2b20 x x + 12x x + │ │ │ │ +000bd8f0: 3678 2078 2078 2020 2d20 3678 2078 2020 6x x x - 6x x │ │ │ │ +000bd900: 2d20 3678 2078 2078 207c 0a7c 2020 2020 - 6x x x |.| │ │ │ │ +000bd910: 3020 3220 2020 2020 3020 3120 3220 2020 0 2 0 1 2 │ │ │ │ +000bd920: 2020 3120 3220 2020 2020 3020 3220 2020 1 2 0 2 │ │ │ │ +000bd930: 2031 2032 2020 2020 2020 3020 3320 2020 1 2 0 3 │ │ │ │ +000bd940: 2020 3020 3120 3320 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ +000bd950: 2020 2020 3020 3220 337c 0a7c 2020 2020 0 2 3|.| │ │ │ │ 000bd960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bd9a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bd9b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bd9c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd9b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bd9c0: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ 000bd9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bd9e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000bd9f0: 2020 2020 2020 2020 207c 0a7c 2d20 3132 |.|- 12 │ │ │ │ -000bda00: 7820 7820 7820 202d 2036 7820 7820 202d x x x - 6x x - │ │ │ │ -000bda10: 2031 3078 2078 2020 2b20 3678 2078 2078 10x x + 6x x x │ │ │ │ -000bda20: 2020 2b20 3138 7820 7820 7820 202b 2031 + 18x x x + 1 │ │ │ │ -000bda30: 3078 2078 2078 2020 2b20 3478 2078 2020 0x x x + 4x x │ │ │ │ -000bda40: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ -000bda50: 2030 2031 2032 2020 2020 2031 2032 2020 0 1 2 1 2 │ │ │ │ -000bda60: 2020 2020 3020 3320 2020 2020 3020 3120 0 3 0 1 │ │ │ │ -000bda70: 3320 2020 2020 2030 2032 2033 2020 2020 3 0 2 3 │ │ │ │ -000bda80: 2020 3120 3220 3320 2020 2020 3020 3320 1 2 3 0 3 │ │ │ │ -000bda90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bd9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bd9f0: 2020 2020 2020 3220 207c 0a7c 2031 3478 2 |.| 14x │ │ │ │ +000bda00: 2078 2020 2d20 3132 7820 7820 7820 202d x - 12x x x - │ │ │ │ +000bda10: 2036 7820 7820 202d 2031 3078 2078 2020 6x x - 10x x │ │ │ │ +000bda20: 2b20 3678 2078 2078 2020 2b20 3138 7820 + 6x x x + 18x │ │ │ │ +000bda30: 7820 7820 202b 2031 3078 2078 2078 2020 x x + 10x x x │ │ │ │ +000bda40: 2b20 3478 2078 2020 2d7c 0a7c 2020 2020 + 4x x -|.| │ │ │ │ +000bda50: 3020 3220 2020 2020 2030 2031 2032 2020 0 2 0 1 2 │ │ │ │ +000bda60: 2020 2031 2032 2020 2020 2020 3020 3320 1 2 0 3 │ │ │ │ +000bda70: 2020 2020 3020 3120 3320 2020 2020 2030 0 1 3 0 │ │ │ │ +000bda80: 2032 2033 2020 2020 2020 3120 3220 3320 2 3 1 2 3 │ │ │ │ +000bda90: 2020 2020 3020 3320 207c 0a7c 2020 2020 0 3 |.| │ │ │ │ 000bdaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdaf0: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bdb00: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000bdb10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bdaf0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000bdb00: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000bdb10: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ 000bdb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdb30: 2020 2020 2020 2020 207c 0a7c 7820 202b |.|x + │ │ │ │ -000bdb40: 2038 7820 7820 202b 2033 7820 7820 202d 8x x + 3x x - │ │ │ │ -000bdb50: 2036 7820 7820 202b 2032 7820 202b 2038 6x x + 2x + 8 │ │ │ │ -000bdb60: 7820 7820 202d 2038 7820 7820 7820 202b x x - 8x x x + │ │ │ │ -000bdb70: 2035 7820 7820 7820 202d 2031 3678 2078 5x x x - 16x x │ │ │ │ -000bdb80: 2078 2020 2020 2020 207c 0a7c 2032 2020 x |.| 2 │ │ │ │ -000bdb90: 2020 2031 2032 2020 2020 2030 2032 2020 1 2 0 2 │ │ │ │ -000bdba0: 2020 2031 2032 2020 2020 2032 2020 2020 1 2 2 │ │ │ │ -000bdbb0: 2030 2033 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ -000bdbc0: 2020 2030 2032 2033 2020 2020 2020 3120 0 2 3 1 │ │ │ │ -000bdbd0: 3220 2020 2020 2020 207c 0a7c 2020 2020 2 |.| │ │ │ │ +000bdb30: 2020 2020 2020 2020 207c 0a7c 202b 2036 |.| + 6 │ │ │ │ +000bdb40: 7820 7820 7820 202b 2038 7820 7820 202b x x x + 8x x + │ │ │ │ +000bdb50: 2033 7820 7820 202d 2036 7820 7820 202b 3x x - 6x x + │ │ │ │ +000bdb60: 2032 7820 202b 2038 7820 7820 202d 2038 2x + 8x x - 8 │ │ │ │ +000bdb70: 7820 7820 7820 202b 2035 7820 7820 7820 x x x + 5x x x │ │ │ │ +000bdb80: 202d 2031 3678 2078 207c 0a7c 2020 2020 - 16x x |.| │ │ │ │ +000bdb90: 2030 2031 2032 2020 2020 2031 2032 2020 0 1 2 1 2 │ │ │ │ +000bdba0: 2020 2030 2032 2020 2020 2031 2032 2020 0 2 1 2 │ │ │ │ +000bdbb0: 2020 2032 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +000bdbc0: 2030 2031 2033 2020 2020 2030 2032 2033 0 1 3 0 2 3 │ │ │ │ +000bdbd0: 2020 2020 2020 3120 327c 0a7c 2020 2020 1 2|.| │ │ │ │ 000bdbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdc30: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bdc40: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000bdc50: 2033 2020 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -000bdc60: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bdc70: 2020 2020 2020 2020 207c 0a7c 2b20 3678 |.|+ 6x │ │ │ │ -000bdc80: 2078 2078 2020 2d20 3678 2078 2020 2d20 x x - 6x x - │ │ │ │ -000bdc90: 3378 2078 2020 2b20 3478 2078 2020 2d20 3x x + 4x x - │ │ │ │ -000bdca0: 7820 202b 2031 3478 2078 2020 2b20 3234 x + 14x x + 24 │ │ │ │ -000bdcb0: 7820 7820 7820 202d 2033 3878 2078 2020 x x x - 38x x │ │ │ │ -000bdcc0: 2d20 2020 2020 2020 207c 0a7c 2020 2020 - |.| │ │ │ │ -000bdcd0: 3020 3120 3220 2020 2020 3120 3220 2020 0 1 2 1 2 │ │ │ │ -000bdce0: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -000bdcf0: 2032 2020 2020 2020 3020 3320 2020 2020 2 0 3 │ │ │ │ -000bdd00: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ -000bdd10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdc30: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000bdc40: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000bdc50: 2020 2020 3220 2020 2033 2020 2020 2020 2 3 │ │ │ │ +000bdc60: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bdc70: 2020 2020 3220 2020 207c 0a7c 202b 2031 2 |.| + 1 │ │ │ │ +000bdc80: 3278 2020 2b20 3678 2078 2078 2020 2d20 2x + 6x x x - │ │ │ │ +000bdc90: 3678 2078 2020 2d20 3378 2078 2020 2b20 6x x - 3x x + │ │ │ │ +000bdca0: 3478 2078 2020 2d20 7820 202b 2031 3478 4x x - x + 14x │ │ │ │ +000bdcb0: 2078 2020 2b20 3234 7820 7820 7820 202d x + 24x x x - │ │ │ │ +000bdcc0: 2033 3878 2078 2020 2d7c 0a7c 2020 2020 38x x -|.| │ │ │ │ +000bdcd0: 2020 3120 2020 2020 3020 3120 3220 2020 1 0 1 2 │ │ │ │ +000bdce0: 2020 3120 3220 2020 2020 3020 3220 2020 1 2 0 2 │ │ │ │ +000bdcf0: 2020 3120 3220 2020 2032 2020 2020 2020 1 2 2 │ │ │ │ +000bdd00: 3020 3320 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ +000bdd10: 2020 2020 3120 3320 207c 0a7c 2020 2020 1 3 |.| │ │ │ │ 000bdd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd60: 2020 2020 2020 2020 207c 0a7c 2020 2032 |.| 2 │ │ │ │ -000bdd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdd80: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -000bdd90: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -000bdda0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bddb0: 2020 2020 2020 2020 207c 0a7c 2d20 7820 |.|- x │ │ │ │ -000bddc0: 7820 202d 2032 7820 7820 7820 202b 2038 x - 2x x x + 8 │ │ │ │ -000bddd0: 7820 7820 202d 2078 2078 2020 2d20 3478 x x - x x - 4x │ │ │ │ -000bdde0: 2078 2020 2d20 3134 7820 7820 202b 2032 x - 14x x + 2 │ │ │ │ -000bddf0: 7820 7820 7820 202b 2033 3278 2078 2020 x x x + 32x x │ │ │ │ -000bde00: 2b20 2020 2020 2020 207c 0a7c 2020 2030 + |.| 0 │ │ │ │ -000bde10: 2032 2020 2020 2030 2031 2032 2020 2020 2 0 1 2 │ │ │ │ -000bde20: 2031 2032 2020 2020 3020 3220 2020 2020 1 2 0 2 │ │ │ │ -000bde30: 3120 3220 2020 2020 2030 2033 2020 2020 1 2 0 3 │ │ │ │ -000bde40: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ -000bde50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdd60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdd70: 2020 3320 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ +000bdd80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000bdd90: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000bdda0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bddb0: 2020 2020 3220 2020 207c 0a7c 202d 2031 2 |.| - 1 │ │ │ │ +000bddc0: 3278 2020 2d20 7820 7820 202d 2032 7820 2x - x x - 2x │ │ │ │ +000bddd0: 7820 7820 202b 2038 7820 7820 202d 2078 x x + 8x x - x │ │ │ │ +000bdde0: 2078 2020 2d20 3478 2078 2020 2d20 3134 x - 4x x - 14 │ │ │ │ +000bddf0: 7820 7820 202b 2032 7820 7820 7820 202b x x + 2x x x + │ │ │ │ +000bde00: 2033 3278 2078 2020 2b7c 0a7c 2020 2020 32x x +|.| │ │ │ │ +000bde10: 2020 3120 2020 2030 2032 2020 2020 2030 1 0 2 0 │ │ │ │ +000bde20: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +000bde30: 3020 3220 2020 2020 3120 3220 2020 2020 0 2 1 2 │ │ │ │ +000bde40: 2030 2033 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ +000bde50: 2020 2020 3120 3320 207c 0a7c 2020 2020 1 3 |.| │ │ │ │ 000bde60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bde70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bde80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bde90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdeb0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000bdec0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000bded0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -000bdee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000bdea0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ +000bdeb0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bdec0: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bded0: 2020 2020 2020 3220 2020 2033 2020 2020 2 3 │ │ │ │ +000bdee0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000bdef0: 2020 2020 2020 2020 207c 0a7c 2020 2d20 |.| - │ │ │ │ -000bdf00: 3478 2078 2078 2020 2b20 3878 2078 2020 4x x x + 8x x │ │ │ │ -000bdf10: 2b20 3378 2078 2020 2d20 3478 2078 2020 + 3x x - 4x x │ │ │ │ -000bdf20: 2b20 7820 202d 2038 7820 7820 202d 2033 + x - 8x x - 3 │ │ │ │ -000bdf30: 3278 2078 2078 2020 2b20 3878 2078 2078 2x x x + 8x x x │ │ │ │ -000bdf40: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ -000bdf50: 2020 3020 3120 3220 2020 2020 3120 3220 0 1 2 1 2 │ │ │ │ -000bdf60: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ -000bdf70: 2020 2032 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ -000bdf80: 2020 3020 3120 3320 2020 2020 3020 3220 0 1 3 0 2 │ │ │ │ -000bdf90: 3320 2020 2020 2020 207c 0a7c 2020 2020 3 |.| │ │ │ │ +000bdf00: 3478 2078 2020 2d20 3478 2078 2078 2020 4x x - 4x x x │ │ │ │ +000bdf10: 2b20 3878 2078 2020 2b20 3378 2078 2020 + 8x x + 3x x │ │ │ │ +000bdf20: 2d20 3478 2078 2020 2b20 7820 202d 2038 - 4x x + x - 8 │ │ │ │ +000bdf30: 7820 7820 202d 2033 3278 2078 2078 2020 x x - 32x x x │ │ │ │ +000bdf40: 2b20 3878 2078 2078 207c 0a7c 3120 2020 + 8x x x |.|1 │ │ │ │ +000bdf50: 2020 3020 3220 2020 2020 3020 3120 3220 0 2 0 1 2 │ │ │ │ +000bdf60: 2020 2020 3120 3220 2020 2020 3020 3220 1 2 0 2 │ │ │ │ +000bdf70: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +000bdf80: 2030 2033 2020 2020 2020 3020 3120 3320 0 3 0 1 3 │ │ │ │ +000bdf90: 2020 2020 3020 3220 337c 0a7c 2020 2020 0 2 3|.| │ │ │ │ 000bdfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bdfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bdfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bdff0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000be000: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000be010: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ -000be020: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000be030: 2020 2020 2020 2020 207c 0a7c 2035 7820 |.| 5x │ │ │ │ -000be040: 7820 7820 202b 2032 3478 2078 2020 2b20 x x + 24x x + │ │ │ │ -000be050: 3478 2078 2020 2d20 3978 2078 2020 2b20 4x x - 9x x + │ │ │ │ -000be060: 3378 2020 2d20 3130 7820 7820 202b 2034 3x - 10x x + 4 │ │ │ │ -000be070: 7820 7820 7820 202b 2037 3078 2078 2020 x x x + 70x x │ │ │ │ -000be080: 2d20 2020 2020 2020 207c 0a7c 2020 2030 - |.| 0 │ │ │ │ -000be090: 2031 2032 2020 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ -000be0a0: 2020 3020 3220 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -000be0b0: 2020 3220 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ -000be0c0: 2030 2031 2033 2020 2020 2020 3120 3320 0 1 3 1 3 │ │ │ │ -000be0d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bdfe0: 2020 2020 2020 2020 207c 0a7c 2020 2032 |.| 2 │ │ │ │ +000bdff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be000: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +000be010: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000be020: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be030: 2020 2020 3220 2020 207c 0a7c 2037 7820 2 |.| 7x │ │ │ │ +000be040: 7820 202b 2035 7820 7820 7820 202b 2032 x + 5x x x + 2 │ │ │ │ +000be050: 3478 2078 2020 2b20 3478 2078 2020 2d20 4x x + 4x x - │ │ │ │ +000be060: 3978 2078 2020 2b20 3378 2020 2d20 3130 9x x + 3x - 10 │ │ │ │ +000be070: 7820 7820 202b 2034 7820 7820 7820 202b x x + 4x x x + │ │ │ │ +000be080: 2037 3078 2078 2020 2d7c 0a7c 2020 2030 70x x -|.| 0 │ │ │ │ +000be090: 2032 2020 2020 2030 2031 2032 2020 2020 2 0 1 2 │ │ │ │ +000be0a0: 2020 3120 3220 2020 2020 3020 3220 2020 1 2 0 2 │ │ │ │ +000be0b0: 2020 3120 3220 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ +000be0c0: 2030 2033 2020 2020 2030 2031 2033 2020 0 3 0 1 3 │ │ │ │ +000be0d0: 2020 2020 3120 3320 207c 0a7c 2020 2020 1 3 |.| │ │ │ │ 000be0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be130: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000be140: 3220 2020 2020 2020 3220 2020 2020 2032 2 2 2 │ │ │ │ -000be150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be160: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000be170: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000be180: 202d 2031 3478 2078 2020 2b20 3878 2078 - 14x x + 8x x │ │ │ │ -000be190: 2020 2b20 3678 2078 2020 2b20 3132 7820 + 6x x + 12x │ │ │ │ -000be1a0: 7820 202d 2034 7820 7820 7820 202d 2033 x - 4x x x - 3 │ │ │ │ -000be1b0: 3278 2078 2020 2b20 3130 7820 7820 7820 2x x + 10x x x │ │ │ │ -000be1c0: 202b 2020 2020 2020 207c 0a7c 2031 2032 + |.| 1 2 │ │ │ │ -000be1d0: 2020 2020 2020 3120 3220 2020 2020 3020 1 2 0 │ │ │ │ -000be1e0: 3220 2020 2020 3120 3220 2020 2020 2030 2 1 2 0 │ │ │ │ -000be1f0: 2033 2020 2020 2030 2031 2033 2020 2020 3 0 1 3 │ │ │ │ -000be200: 2020 3120 3320 2020 2020 2030 2032 2033 1 3 0 2 3 │ │ │ │ -000be210: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000be130: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000be140: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000be150: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +000be160: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000be170: 2020 2020 2020 2020 207c 0a7c 7820 202d |.|x - │ │ │ │ +000be180: 2034 7820 7820 7820 202d 2031 3478 2078 4x x x - 14x x │ │ │ │ +000be190: 2020 2b20 3878 2078 2020 2b20 3678 2078 + 8x x + 6x x │ │ │ │ +000be1a0: 2020 2b20 3132 7820 7820 202d 2034 7820 + 12x x - 4x │ │ │ │ +000be1b0: 7820 7820 202d 2033 3278 2078 2020 2b20 x x - 32x x + │ │ │ │ +000be1c0: 3130 7820 7820 7820 207c 0a7c 2032 2020 10x x x |.| 2 │ │ │ │ +000be1d0: 2020 2030 2031 2032 2020 2020 2020 3120 0 1 2 1 │ │ │ │ +000be1e0: 3220 2020 2020 3020 3220 2020 2020 3120 2 0 2 1 │ │ │ │ +000be1f0: 3220 2020 2020 2030 2033 2020 2020 2030 2 0 3 0 │ │ │ │ +000be200: 2031 2033 2020 2020 2020 3120 3320 2020 1 3 1 3 │ │ │ │ +000be210: 2020 2030 2032 2033 207c 0a7c 2020 2020 0 2 3 |.| │ │ │ │ 000be220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be260: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be270: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000be280: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000be290: 2032 2020 2020 2033 2020 2020 2032 2020 2 3 2 │ │ │ │ -000be2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be2b0: 2032 2020 2020 2020 207c 0a7c 202b 2031 2 |.| + 1 │ │ │ │ -000be2c0: 3778 2078 2078 2020 2d20 3234 7820 7820 7x x x - 24x x │ │ │ │ -000be2d0: 202d 2031 3078 2078 2020 2b20 3131 7820 - 10x x + 11x │ │ │ │ -000be2e0: 7820 202d 2033 7820 202d 2036 7820 7820 x - 3x - 6x x │ │ │ │ -000be2f0: 202b 2032 3878 2078 2078 2020 2d20 3730 + 28x x x - 70 │ │ │ │ -000be300: 7820 2020 2020 2020 207c 0a7c 2020 2020 x |.| │ │ │ │ -000be310: 2020 3020 3120 3220 2020 2020 2031 2032 0 1 2 1 2 │ │ │ │ -000be320: 2020 2020 2020 3020 3220 2020 2020 2031 0 2 1 │ │ │ │ -000be330: 2032 2020 2020 2032 2020 2020 2030 2033 2 2 0 3 │ │ │ │ -000be340: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ -000be350: 2031 2020 2020 2020 207c 0a7c 2020 2020 1 |.| │ │ │ │ +000be270: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be280: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000be290: 3220 2020 2020 2020 2032 2020 2020 2033 2 2 3 │ │ │ │ +000be2a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000be2b0: 2020 2020 2020 2020 207c 0a7c 2d20 3131 |.|- 11 │ │ │ │ +000be2c0: 7820 7820 202b 2031 3778 2078 2078 2020 x x + 17x x x │ │ │ │ +000be2d0: 2d20 3234 7820 7820 202d 2031 3078 2078 - 24x x - 10x x │ │ │ │ +000be2e0: 2020 2b20 3131 7820 7820 202d 2033 7820 + 11x x - 3x │ │ │ │ +000be2f0: 202d 2036 7820 7820 202b 2032 3878 2078 - 6x x + 28x x │ │ │ │ +000be300: 2078 2020 2d20 3730 787c 0a7c 2020 2020 x - 70x|.| │ │ │ │ +000be310: 2030 2032 2020 2020 2020 3020 3120 3220 0 2 0 1 2 │ │ │ │ +000be320: 2020 2020 2031 2032 2020 2020 2020 3020 1 2 0 │ │ │ │ +000be330: 3220 2020 2020 2031 2032 2020 2020 2032 2 1 2 2 │ │ │ │ +000be340: 2020 2020 2030 2033 2020 2020 2020 3020 0 3 0 │ │ │ │ +000be350: 3120 3320 2020 2020 207c 0a7c 2020 2020 1 3 |.| │ │ │ │ 000be360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be3a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000be3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be3f0: 2020 2020 2020 2020 207c 0a7c 362d 6469 |.|6-di │ │ │ │ -000be400: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ -000be410: 6965 7479 206f 6620 5050 5e39 2920 2020 iety of PP^9) │ │ │ │ -000be420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be3f0: 2020 2020 2020 2020 207c 0a7c 5050 5e36 |.|PP^6 │ │ │ │ +000be400: 2074 6f20 362d 6469 6d65 6e73 696f 6e61 to 6-dimensiona │ │ │ │ +000be410: 6c20 7375 6276 6172 6965 7479 206f 6620 l subvariety of │ │ │ │ +000be420: 5050 5e39 2920 2020 2020 2020 2020 2020 PP^9) │ │ │ │ 000be430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be440: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 000be450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000be460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000be470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000be480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000be490: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -000be4a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be4a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000be4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be4d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000be4e0: 2020 2020 2020 2020 207c 0a7c 2031 3074 |.| 10t │ │ │ │ -000be4f0: 2020 2b20 3474 2074 2020 2d20 3774 2074 + 4t t - 7t t │ │ │ │ -000be500: 2020 2b20 3474 2074 2020 2d20 3274 2074 + 4t t - 2t t │ │ │ │ -000be510: 2020 2d20 3874 2074 2020 2b20 3239 7420 - 8t t + 29t │ │ │ │ -000be520: 7420 202d 2034 7420 202b 2031 3074 2074 t - 4t + 10t t │ │ │ │ -000be530: 2020 2d20 3474 2020 207c 0a7c 2020 2020 - 4t |.| │ │ │ │ -000be540: 3620 2020 2020 3020 3720 2020 2020 3120 6 0 7 1 │ │ │ │ -000be550: 3720 2020 2020 3220 3720 2020 2020 3420 7 2 7 4 │ │ │ │ -000be560: 3720 2020 2020 3520 3720 2020 2020 2036 7 5 7 6 │ │ │ │ -000be570: 2037 2020 2020 2037 2020 2020 2020 3120 7 7 1 │ │ │ │ -000be580: 3820 2020 2020 2020 207c 0a7c 2020 2020 8 |.| │ │ │ │ +000be4d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000be4e0: 2020 2020 2020 2020 207c 0a7c 2b20 3130 |.|+ 10 │ │ │ │ +000be4f0: 7420 202b 2034 7420 7420 202d 2037 7420 t + 4t t - 7t │ │ │ │ +000be500: 7420 202b 2034 7420 7420 202d 2032 7420 t + 4t t - 2t │ │ │ │ +000be510: 7420 202d 2038 7420 7420 202b 2032 3974 t - 8t t + 29t │ │ │ │ +000be520: 2074 2020 2d20 3474 2020 2b20 3130 7420 t - 4t + 10t │ │ │ │ +000be530: 7420 202d 2034 7420 207c 0a7c 2020 2020 t - 4t |.| │ │ │ │ +000be540: 2036 2020 2020 2030 2037 2020 2020 2031 6 0 7 1 │ │ │ │ +000be550: 2037 2020 2020 2032 2037 2020 2020 2034 7 2 7 4 │ │ │ │ +000be560: 2037 2020 2020 2035 2037 2020 2020 2020 7 5 7 │ │ │ │ +000be570: 3620 3720 2020 2020 3720 2020 2020 2031 6 7 7 1 │ │ │ │ +000be580: 2038 2020 2020 2020 207c 0a7c 2020 2020 8 |.| │ │ │ │ 000be590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000be5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be600: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be600: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000be610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be620: 2020 2020 2020 2020 207c 0a7c 7420 202b |.|t + │ │ │ │ -000be630: 2033 7420 7420 202d 2032 7420 7420 202d 3t t - 2t t - │ │ │ │ -000be640: 2035 7420 7420 202d 2031 3374 2074 2020 5t t - 13t t │ │ │ │ -000be650: 2d20 7420 202d 2033 7420 7420 202d 2038 - t - 3t t - 8 │ │ │ │ -000be660: 7420 7420 202b 2032 7420 7420 202b 2038 t t + 2t t + 8 │ │ │ │ -000be670: 7420 7420 202d 2020 207c 0a7c 2037 2020 t t - |.| 7 │ │ │ │ -000be680: 2020 2033 2037 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ -000be690: 2020 2035 2037 2020 2020 2020 3620 3720 5 7 6 7 │ │ │ │ -000be6a0: 2020 2037 2020 2020 2030 2038 2020 2020 7 0 8 │ │ │ │ -000be6b0: 2031 2038 2020 2020 2033 2038 2020 2020 1 8 3 8 │ │ │ │ -000be6c0: 2034 2038 2020 2020 207c 0a7c 2020 2020 4 8 |.| │ │ │ │ +000be620: 2020 2020 2020 2020 207c 0a7c 2074 2020 |.| t │ │ │ │ +000be630: 2b20 3374 2074 2020 2d20 3274 2074 2020 + 3t t - 2t t │ │ │ │ +000be640: 2d20 3574 2074 2020 2d20 3133 7420 7420 - 5t t - 13t t │ │ │ │ +000be650: 202d 2074 2020 2d20 3374 2074 2020 2d20 - t - 3t t - │ │ │ │ +000be660: 3874 2074 2020 2b20 3274 2074 2020 2b20 8t t + 2t t + │ │ │ │ +000be670: 3874 2074 2020 2d20 207c 0a7c 3220 3720 8t t - |.|2 7 │ │ │ │ +000be680: 2020 2020 3320 3720 2020 2020 3420 3720 3 7 4 7 │ │ │ │ +000be690: 2020 2020 3520 3720 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +000be6a0: 2020 2020 3720 2020 2020 3020 3820 2020 7 0 8 │ │ │ │ +000be6b0: 2020 3120 3820 2020 2020 3320 3820 2020 1 8 3 8 │ │ │ │ +000be6c0: 2020 3420 3820 2020 207c 0a7c 2020 2020 4 8 |.| │ │ │ │ 000be6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be720: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000be720: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000be730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be760: 2020 2020 2020 2020 207c 0a7c 2d20 3474 |.|- 4t │ │ │ │ -000be770: 2074 2020 2b20 7420 202d 2032 7420 7420 t + t - 2t t │ │ │ │ -000be780: 202b 2074 2074 2020 2b20 3274 2074 2020 + t t + 2t t │ │ │ │ -000be790: 2d20 3274 2074 2020 2d20 3374 2074 2020 - 2t t - 3t t │ │ │ │ -000be7a0: 2b20 7420 7420 202d 2074 2074 2020 2d20 + t t - t t - │ │ │ │ -000be7b0: 7420 7420 202b 2020 207c 0a7c 2020 2020 t t + |.| │ │ │ │ -000be7c0: 3620 3720 2020 2037 2020 2020 2031 2038 6 7 7 1 8 │ │ │ │ -000be7d0: 2020 2020 3320 3820 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -000be7e0: 2020 2020 3520 3820 2020 2020 3620 3820 5 8 6 8 │ │ │ │ -000be7f0: 2020 2037 2038 2020 2020 3020 3920 2020 7 8 0 9 │ │ │ │ -000be800: 2032 2039 2020 2020 207c 0a7c 2020 2020 2 9 |.| │ │ │ │ +000be760: 2020 2020 2020 2020 207c 0a7c 202d 2034 |.| - 4 │ │ │ │ +000be770: 7420 7420 202b 2074 2020 2d20 3274 2074 t t + t - 2t t │ │ │ │ +000be780: 2020 2b20 7420 7420 202b 2032 7420 7420 + t t + 2t t │ │ │ │ +000be790: 202d 2032 7420 7420 202d 2033 7420 7420 - 2t t - 3t t │ │ │ │ +000be7a0: 202b 2074 2074 2020 2d20 7420 7420 202d + t t - t t - │ │ │ │ +000be7b0: 2074 2074 2020 2b20 207c 0a7c 2020 2020 t t + |.| │ │ │ │ +000be7c0: 2036 2037 2020 2020 3720 2020 2020 3120 6 7 7 1 │ │ │ │ +000be7d0: 3820 2020 2033 2038 2020 2020 2034 2038 8 3 8 4 8 │ │ │ │ +000be7e0: 2020 2020 2035 2038 2020 2020 2036 2038 5 8 6 8 │ │ │ │ +000be7f0: 2020 2020 3720 3820 2020 2030 2039 2020 7 8 0 9 │ │ │ │ +000be800: 2020 3220 3920 2020 207c 0a7c 2020 2020 2 9 |.| │ │ │ │ 000be810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000be860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be8a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be8b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000be8c0: 2020 2020 2020 2032 2020 2020 2032 2020 2 2 │ │ │ │ -000be8d0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000be8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000be8f0: 2020 2020 2020 2020 207c 0a7c 2078 2020 |.| x │ │ │ │ -000be900: 2b20 3378 2078 2020 2b20 3278 2078 2078 + 3x x + 2x x x │ │ │ │ -000be910: 2020 2d20 7820 7820 202b 2036 7820 7820 - x x + 6x x │ │ │ │ -000be920: 202d 2032 7820 7820 7820 202d 2034 7820 - 2x x x - 4x │ │ │ │ -000be930: 7820 202d 2078 2078 2078 2020 2b20 3878 x - x x x + 8x │ │ │ │ -000be940: 2078 2078 2020 2020 207c 0a7c 3220 3420 x x |.|2 4 │ │ │ │ -000be950: 2020 2020 3220 3420 2020 2020 3220 3320 2 4 2 3 │ │ │ │ -000be960: 3420 2020 2032 2034 2020 2020 2030 2035 4 2 4 0 5 │ │ │ │ -000be970: 2020 2020 2030 2031 2035 2020 2020 2031 0 1 5 1 │ │ │ │ -000be980: 2035 2020 2020 3020 3220 3520 2020 2020 5 0 2 5 │ │ │ │ -000be990: 3120 3220 3520 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ +000be8b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000be8c0: 2020 2020 2020 2020 3220 2020 2020 3220 2 2 │ │ │ │ +000be8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000be8e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000be8f0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ +000be900: 202b 2033 7820 7820 202b 2032 7820 7820 + 3x x + 2x x │ │ │ │ +000be910: 7820 202d 2078 2078 2020 2b20 3678 2078 x - x x + 6x x │ │ │ │ +000be920: 2020 2d20 3278 2078 2078 2020 2d20 3478 - 2x x x - 4x │ │ │ │ +000be930: 2078 2020 2d20 7820 7820 7820 202b 2038 x - x x x + 8 │ │ │ │ +000be940: 7820 7820 7820 2020 207c 0a7c 2032 2034 x x x |.| 2 4 │ │ │ │ +000be950: 2020 2020 2032 2034 2020 2020 2032 2033 2 4 2 3 │ │ │ │ +000be960: 2034 2020 2020 3220 3420 2020 2020 3020 4 2 4 0 │ │ │ │ +000be970: 3520 2020 2020 3020 3120 3520 2020 2020 5 0 1 5 │ │ │ │ +000be980: 3120 3520 2020 2030 2032 2035 2020 2020 1 5 0 2 5 │ │ │ │ +000be990: 2031 2032 2035 2020 207c 0a7c 2020 2020 1 2 5 |.| │ │ │ │ 000be9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000be9e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000be9f0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bea00: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bea10: 2020 2020 2032 2020 2020 2033 2020 2020 2 3 │ │ │ │ -000bea20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bea30: 2020 2020 2020 2020 207c 0a7c 2d20 3978 |.|- 9x │ │ │ │ -000bea40: 2078 2078 2020 2d20 3278 2078 2020 2d20 x x - 2x x - │ │ │ │ -000bea50: 3278 2078 2020 2b20 3130 7820 7820 202b 2x x + 10x x + │ │ │ │ -000bea60: 2032 7820 7820 202d 2034 7820 202d 2078 2x x - 4x - x │ │ │ │ -000bea70: 2078 2020 2d20 3378 2078 2078 2020 2b20 x - 3x x x + │ │ │ │ -000bea80: 7820 7820 7820 2020 207c 0a7c 2020 2020 x x x |.| │ │ │ │ -000bea90: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ -000beaa0: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -000beab0: 2020 2032 2033 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ -000beac0: 3020 3420 2020 2020 3020 3120 3420 2020 0 4 0 1 4 │ │ │ │ -000bead0: 2030 2032 2034 2020 207c 0a7c 2020 2020 0 2 4 |.| │ │ │ │ +000be9f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000bea00: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bea10: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ +000bea20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000bea30: 2020 2020 2020 2020 207c 0a7c 202d 2039 |.| - 9 │ │ │ │ +000bea40: 7820 7820 7820 202d 2032 7820 7820 202d x x x - 2x x - │ │ │ │ +000bea50: 2032 7820 7820 202b 2031 3078 2078 2020 2x x + 10x x │ │ │ │ +000bea60: 2b20 3278 2078 2020 2d20 3478 2020 2d20 + 2x x - 4x - │ │ │ │ +000bea70: 7820 7820 202d 2033 7820 7820 7820 202b x x - 3x x x + │ │ │ │ +000bea80: 2078 2078 2078 2020 207c 0a7c 2020 2020 x x x |.| │ │ │ │ +000bea90: 2031 2032 2033 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ +000beaa0: 2020 2030 2033 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +000beab0: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ +000beac0: 2030 2034 2020 2020 2030 2031 2034 2020 0 4 0 1 4 │ │ │ │ +000bead0: 2020 3020 3220 3420 207c 0a7c 2020 2020 0 2 4 |.| │ │ │ │ 000beae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beb20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000beb30: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -000beb40: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000beb30: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +000beb40: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000beb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000beb70: 2020 2020 2020 2020 207c 0a7c 3478 2078 |.|4x x │ │ │ │ -000beb80: 2020 2b20 3131 7820 7820 202b 2078 2078 + 11x x + x x │ │ │ │ -000beb90: 2078 2020 2d20 3278 2078 2020 2d20 3578 x - 2x x - 5x │ │ │ │ -000beba0: 2078 2078 2020 2d20 3578 2078 2078 2020 x x - 5x x x │ │ │ │ -000bebb0: 2d20 3678 2078 2078 2020 2d20 3278 2078 - 6x x x - 2x x │ │ │ │ -000bebc0: 2078 2020 2b20 2020 207c 0a7c 2020 3220 x + |.| 2 │ │ │ │ -000bebd0: 3320 2020 2020 2030 2034 2020 2020 3020 3 0 4 0 │ │ │ │ -000bebe0: 3120 3420 2020 2020 3120 3420 2020 2020 1 4 1 4 │ │ │ │ -000bebf0: 3020 3220 3420 2020 2020 3120 3220 3420 0 2 4 1 2 4 │ │ │ │ -000bec00: 2020 2020 3020 3320 3420 2020 2020 3120 0 3 4 1 │ │ │ │ -000bec10: 3320 3420 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ +000beb70: 2020 2020 2020 2020 207c 0a7c 2034 7820 |.| 4x │ │ │ │ +000beb80: 7820 202b 2031 3178 2078 2020 2b20 7820 x + 11x x + x │ │ │ │ +000beb90: 7820 7820 202d 2032 7820 7820 202d 2035 x x - 2x x - 5 │ │ │ │ +000beba0: 7820 7820 7820 202d 2035 7820 7820 7820 x x x - 5x x x │ │ │ │ +000bebb0: 202d 2036 7820 7820 7820 202d 2032 7820 - 6x x x - 2x │ │ │ │ +000bebc0: 7820 7820 202b 2020 207c 0a7c 2020 2032 x x + |.| 2 │ │ │ │ +000bebd0: 2033 2020 2020 2020 3020 3420 2020 2030 3 0 4 0 │ │ │ │ +000bebe0: 2031 2034 2020 2020 2031 2034 2020 2020 1 4 1 4 │ │ │ │ +000bebf0: 2030 2032 2034 2020 2020 2031 2032 2034 0 2 4 1 2 4 │ │ │ │ +000bec00: 2020 2020 2030 2033 2034 2020 2020 2031 0 3 4 1 │ │ │ │ +000bec10: 2033 2034 2020 2020 207c 0a7c 2020 2020 3 4 |.| │ │ │ │ 000bec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bec60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bec70: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000bec80: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000bec70: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +000bec80: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ 000bec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000becb0: 2032 2020 2020 2020 207c 0a7c 2020 2b20 2 |.| + │ │ │ │ -000becc0: 3878 2078 2020 2b20 3878 2078 2020 2b20 8x x + 8x x + │ │ │ │ -000becd0: 3878 2078 2020 2d20 3130 7820 7820 202d 8x x - 10x x - │ │ │ │ -000bece0: 2034 7820 7820 7820 202b 2036 7820 7820 4x x x + 6x x │ │ │ │ -000becf0: 7820 202b 2032 7820 7820 7820 202b 2032 x + 2x x x + 2 │ │ │ │ -000bed00: 7820 7820 202b 2020 207c 0a7c 3320 2020 x x + |.|3 │ │ │ │ -000bed10: 2020 3220 3320 2020 2020 3020 3320 2020 2 3 0 3 │ │ │ │ -000bed20: 2020 3220 3320 2020 2020 2030 2034 2020 2 3 0 4 │ │ │ │ -000bed30: 2020 2030 2031 2034 2020 2020 2030 2032 0 1 4 0 2 │ │ │ │ -000bed40: 2034 2020 2020 2031 2032 2034 2020 2020 4 1 2 4 │ │ │ │ -000bed50: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000becb0: 2020 3220 2020 2020 207c 0a7c 7820 202b 2 |.|x + │ │ │ │ +000becc0: 2038 7820 7820 202b 2038 7820 7820 202b 8x x + 8x x + │ │ │ │ +000becd0: 2038 7820 7820 202d 2031 3078 2078 2020 8x x - 10x x │ │ │ │ +000bece0: 2d20 3478 2078 2078 2020 2b20 3678 2078 - 4x x x + 6x x │ │ │ │ +000becf0: 2078 2020 2b20 3278 2078 2078 2020 2b20 x + 2x x x + │ │ │ │ +000bed00: 3278 2078 2020 2b20 207c 0a7c 2033 2020 2x x + |.| 3 │ │ │ │ +000bed10: 2020 2032 2033 2020 2020 2030 2033 2020 2 3 0 3 │ │ │ │ +000bed20: 2020 2032 2033 2020 2020 2020 3020 3420 2 3 0 4 │ │ │ │ +000bed30: 2020 2020 3020 3120 3420 2020 2020 3020 0 1 4 0 │ │ │ │ +000bed40: 3220 3420 2020 2020 3120 3220 3420 2020 2 4 1 2 4 │ │ │ │ +000bed50: 2020 3220 3420 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ 000bed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bedb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bedc0: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bedd0: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ -000bede0: 2020 2020 2020 3320 2020 2020 2032 2020 3 2 │ │ │ │ -000bedf0: 2020 2020 2020 2020 207c 0a7c 3778 2078 |.|7x x │ │ │ │ -000bee00: 2078 2020 2b20 3134 7820 7820 7820 202d x + 14x x x - │ │ │ │ -000bee10: 2035 7820 7820 202d 2031 3078 2078 2020 5x x - 10x x │ │ │ │ -000bee20: 2b20 3338 7820 7820 202d 2038 7820 7820 + 38x x - 8x x │ │ │ │ -000bee30: 202d 2031 3278 2020 2b20 3234 7820 7820 - 12x + 24x x │ │ │ │ -000bee40: 202d 2031 3678 2020 207c 0a7c 2020 3020 - 16x |.| 0 │ │ │ │ -000bee50: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ -000bee60: 2020 2032 2033 2020 2020 2020 3020 3320 2 3 0 3 │ │ │ │ -000bee70: 2020 2020 2031 2033 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -000bee80: 2020 2020 2020 3320 2020 2020 2030 2034 3 0 4 │ │ │ │ -000bee90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bedc0: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ +000bedd0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000bede0: 3220 2020 2020 2033 2020 2020 2020 3220 2 3 2 │ │ │ │ +000bedf0: 2020 2020 2020 2020 207c 0a7c 2037 7820 |.| 7x │ │ │ │ +000bee00: 7820 7820 202b 2031 3478 2078 2078 2020 x x + 14x x x │ │ │ │ +000bee10: 2d20 3578 2078 2020 2d20 3130 7820 7820 - 5x x - 10x x │ │ │ │ +000bee20: 202b 2033 3878 2078 2020 2d20 3878 2078 + 38x x - 8x x │ │ │ │ +000bee30: 2020 2d20 3132 7820 202b 2032 3478 2078 - 12x + 24x x │ │ │ │ +000bee40: 2020 2d20 3136 7820 207c 0a7c 2020 2030 - 16x |.| 0 │ │ │ │ +000bee50: 2032 2033 2020 2020 2020 3120 3220 3320 2 3 1 2 3 │ │ │ │ +000bee60: 2020 2020 3220 3320 2020 2020 2030 2033 2 3 0 3 │ │ │ │ +000bee70: 2020 2020 2020 3120 3320 2020 2020 3220 1 3 2 │ │ │ │ +000bee80: 3320 2020 2020 2033 2020 2020 2020 3020 3 3 0 │ │ │ │ +000bee90: 3420 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ 000beea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000beef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bef00: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bef10: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ -000bef20: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000bef30: 2020 2020 2020 2020 207c 0a7c 3278 2078 |.|2x x │ │ │ │ -000bef40: 2078 2020 2d20 3136 7820 7820 7820 202b x - 16x x x + │ │ │ │ -000bef50: 2034 7820 7820 202d 2032 3878 2078 2020 4x x - 28x x │ │ │ │ -000bef60: 2b20 3878 2078 2020 2b20 3878 2020 2d20 + 8x x + 8x - │ │ │ │ -000bef70: 3131 7820 7820 202b 2031 3778 2078 2078 11x x + 17x x x │ │ │ │ -000bef80: 2020 2b20 3478 2020 207c 0a7c 2020 3020 + 4x |.| 0 │ │ │ │ -000bef90: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ -000befa0: 2020 2032 2033 2020 2020 2020 3120 3320 2 3 1 3 │ │ │ │ -000befb0: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ -000befc0: 2020 2030 2034 2020 2020 2020 3020 3120 0 4 0 1 │ │ │ │ -000befd0: 3420 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ +000bef00: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ +000bef10: 2020 2020 2020 2032 2020 2020 2033 2020 2 3 │ │ │ │ +000bef20: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000bef30: 2020 2020 2020 2020 207c 0a7c 2032 7820 |.| 2x │ │ │ │ +000bef40: 7820 7820 202d 2031 3678 2078 2078 2020 x x - 16x x x │ │ │ │ +000bef50: 2b20 3478 2078 2020 2d20 3238 7820 7820 + 4x x - 28x x │ │ │ │ +000bef60: 202b 2038 7820 7820 202b 2038 7820 202d + 8x x + 8x - │ │ │ │ +000bef70: 2031 3178 2078 2020 2b20 3137 7820 7820 11x x + 17x x │ │ │ │ +000bef80: 7820 202b 2034 7820 207c 0a7c 2020 2030 x + 4x |.| 0 │ │ │ │ +000bef90: 2032 2033 2020 2020 2020 3120 3220 3320 2 3 1 2 3 │ │ │ │ +000befa0: 2020 2020 3220 3320 2020 2020 2031 2033 2 3 1 3 │ │ │ │ +000befb0: 2020 2020 2032 2033 2020 2020 2033 2020 2 3 3 │ │ │ │ +000befc0: 2020 2020 3020 3420 2020 2020 2030 2031 0 4 0 1 │ │ │ │ +000befd0: 2034 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ 000befe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000beff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf030: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000bf040: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -000bf050: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000bf060: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000bf070: 2020 2020 2020 2020 207c 0a7c 2d20 3136 |.|- 16 │ │ │ │ -000bf080: 7820 7820 7820 202b 2035 7820 7820 202b x x x + 5x x + │ │ │ │ -000bf090: 2031 3678 2078 2020 2b20 3878 2078 2020 16x x + 8x x │ │ │ │ -000bf0a0: 2d20 3332 7820 7820 202b 2034 7820 7820 - 32x x + 4x x │ │ │ │ -000bf0b0: 7820 202b 2038 7820 7820 202d 2032 7820 x + 8x x - 2x │ │ │ │ -000bf0c0: 7820 7820 202d 2020 207c 0a7c 2020 2020 x x - |.| │ │ │ │ -000bf0d0: 2031 2032 2033 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ -000bf0e0: 2020 2020 3020 3320 2020 2020 3220 3320 0 3 2 3 │ │ │ │ -000bf0f0: 2020 2020 2030 2034 2020 2020 2030 2031 0 4 0 1 │ │ │ │ -000bf100: 2034 2020 2020 2031 2034 2020 2020 2030 4 1 4 0 │ │ │ │ -000bf110: 2032 2034 2020 2020 207c 0a7c 2020 2020 2 4 |.| │ │ │ │ +000bf030: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000bf040: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ +000bf050: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000bf060: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000bf070: 2020 2020 2020 2020 207c 0a7c 202d 2031 |.| - 1 │ │ │ │ +000bf080: 3678 2078 2078 2020 2b20 3578 2078 2020 6x x x + 5x x │ │ │ │ +000bf090: 2b20 3136 7820 7820 202b 2038 7820 7820 + 16x x + 8x x │ │ │ │ +000bf0a0: 202d 2033 3278 2078 2020 2b20 3478 2078 - 32x x + 4x x │ │ │ │ +000bf0b0: 2078 2020 2b20 3878 2078 2020 2d20 3278 x + 8x x - 2x │ │ │ │ +000bf0c0: 2078 2078 2020 2d20 207c 0a7c 2020 2020 x x - |.| │ │ │ │ +000bf0d0: 2020 3120 3220 3320 2020 2020 3220 3320 1 2 3 2 3 │ │ │ │ +000bf0e0: 2020 2020 2030 2033 2020 2020 2032 2033 0 3 2 3 │ │ │ │ +000bf0f0: 2020 2020 2020 3020 3420 2020 2020 3020 0 4 0 │ │ │ │ +000bf100: 3120 3420 2020 2020 3120 3420 2020 2020 1 4 1 4 │ │ │ │ +000bf110: 3020 3220 3420 2020 207c 0a7c 2020 2020 0 2 4 |.| │ │ │ │ 000bf120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000bf170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf180: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bf190: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000bf1a0: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ -000bf1b0: 2020 2020 2020 2020 207c 0a7c 7820 7820 |.|x x │ │ │ │ -000bf1c0: 7820 202d 2034 3778 2078 2078 2020 2b20 x - 47x x x + │ │ │ │ -000bf1d0: 3131 7820 7820 202d 2032 7820 7820 202d 11x x - 2x x - │ │ │ │ -000bf1e0: 2036 3678 2078 2020 2b20 3232 7820 7820 66x x + 22x x │ │ │ │ -000bf1f0: 202b 2032 3078 2020 2d20 3278 2078 2020 + 20x - 2x x │ │ │ │ -000bf200: 2b20 3138 7820 2020 207c 0a7c 2030 2032 + 18x |.| 0 2 │ │ │ │ -000bf210: 2033 2020 2020 2020 3120 3220 3320 2020 3 1 2 3 │ │ │ │ -000bf220: 2020 2032 2033 2020 2020 2030 2033 2020 2 3 0 3 │ │ │ │ -000bf230: 2020 2020 3120 3320 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -000bf240: 2020 2020 2020 3320 2020 2020 3020 3420 3 0 4 │ │ │ │ -000bf250: 2020 2020 2030 2020 207c 0a7c 2020 2020 0 |.| │ │ │ │ +000bf180: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bf190: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000bf1a0: 3220 2020 2020 2033 2020 2020 2032 2020 2 3 2 │ │ │ │ +000bf1b0: 2020 2020 2020 2020 207c 0a7c 2078 2078 |.| x x │ │ │ │ +000bf1c0: 2078 2020 2d20 3437 7820 7820 7820 202b x - 47x x x + │ │ │ │ +000bf1d0: 2031 3178 2078 2020 2d20 3278 2078 2020 11x x - 2x x │ │ │ │ +000bf1e0: 2d20 3636 7820 7820 202b 2032 3278 2078 - 66x x + 22x x │ │ │ │ +000bf1f0: 2020 2b20 3230 7820 202d 2032 7820 7820 + 20x - 2x x │ │ │ │ +000bf200: 202b 2031 3878 2020 207c 0a7c 2020 3020 + 18x |.| 0 │ │ │ │ +000bf210: 3220 3320 2020 2020 2031 2032 2033 2020 2 3 1 2 3 │ │ │ │ +000bf220: 2020 2020 3220 3320 2020 2020 3020 3320 2 3 0 3 │ │ │ │ +000bf230: 2020 2020 2031 2033 2020 2020 2020 3220 1 3 2 │ │ │ │ +000bf240: 3320 2020 2020 2033 2020 2020 2030 2034 3 3 0 4 │ │ │ │ +000bf250: 2020 2020 2020 3020 207c 0a7c 2020 2020 0 |.| │ │ │ │ 000bf260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf2a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000bf2b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bf2c0: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -000bf2d0: 2020 2020 2020 3220 2020 2020 3320 2020 2 3 │ │ │ │ -000bf2e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000bf2f0: 2020 2020 2020 2020 207c 0a7c 2032 3678 |.| 26x │ │ │ │ -000bf300: 2078 2078 2020 2d20 3678 2078 2020 2b20 x x - 6x x + │ │ │ │ -000bf310: 3478 2078 2020 2b20 3238 7820 7820 202d 4x x + 28x x - │ │ │ │ -000bf320: 2031 3278 2078 2020 2d20 3878 2020 2d20 12x x - 8x - │ │ │ │ -000bf330: 3130 7820 7820 7820 202d 2032 7820 7820 10x x x - 2x x │ │ │ │ -000bf340: 202b 2031 3078 2020 207c 0a7c 2020 2020 + 10x |.| │ │ │ │ -000bf350: 3120 3220 3320 2020 2020 3220 3320 2020 1 2 3 2 3 │ │ │ │ -000bf360: 2020 3020 3320 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -000bf370: 2020 2020 3220 3320 2020 2020 3320 2020 2 3 3 │ │ │ │ -000bf380: 2020 2030 2031 2034 2020 2020 2031 2034 0 1 4 1 4 │ │ │ │ -000bf390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf2b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000bf2c0: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000bf2d0: 2020 2020 2020 2032 2020 2020 2033 2020 2 3 │ │ │ │ +000bf2e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000bf2f0: 2020 2020 2020 2020 207c 0a7c 2b20 3236 |.|+ 26 │ │ │ │ +000bf300: 7820 7820 7820 202d 2036 7820 7820 202b x x x - 6x x + │ │ │ │ +000bf310: 2034 7820 7820 202b 2032 3878 2078 2020 4x x + 28x x │ │ │ │ +000bf320: 2d20 3132 7820 7820 202d 2038 7820 202d - 12x x - 8x - │ │ │ │ +000bf330: 2031 3078 2078 2078 2020 2d20 3278 2078 10x x x - 2x x │ │ │ │ +000bf340: 2020 2b20 3130 7820 207c 0a7c 2020 2020 + 10x |.| │ │ │ │ +000bf350: 2031 2032 2033 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ +000bf360: 2020 2030 2033 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +000bf370: 2020 2020 2032 2033 2020 2020 2033 2020 2 3 3 │ │ │ │ +000bf380: 2020 2020 3020 3120 3420 2020 2020 3120 0 1 4 1 │ │ │ │ +000bf390: 3420 2020 2020 2020 207c 0a7c 2020 2020 4 |.| │ │ │ │ 000bf3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000bf3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf3e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000bf3e0: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ 000bf3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000bf400: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000bf410: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000bf420: 2020 2020 2020 2032 2020 2020 2020 3320 2 3 │ │ │ │ -000bf430: 2020 2020 3220 2020 207c 0a7c 7820 202d 2 |.|x - │ │ │ │ -000bf440: 2032 3178 2078 2078 2020 2b20 3437 7820 21x x x + 47x │ │ │ │ -000bf450: 7820 7820 202d 2031 3378 2078 2020 2d20 x x - 13x x - │ │ │ │ -000bf460: 3134 7820 7820 202b 2036 3678 2078 2020 14x x + 66x x │ │ │ │ -000bf470: 2d20 3232 7820 7820 202d 2032 3078 2020 - 22x x - 20x │ │ │ │ -000bf480: 2b20 3278 2078 2020 207c 0a7c 2033 2020 + 2x x |.| 3 │ │ │ │ -000bf490: 2020 2020 3020 3220 3320 2020 2020 2031 0 2 3 1 │ │ │ │ -000bf4a0: 2032 2033 2020 2020 2020 3220 3320 2020 2 3 2 3 │ │ │ │ -000bf4b0: 2020 2030 2033 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ -000bf4c0: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ -000bf4d0: 2020 2020 3020 2020 207c 0a7c 2d2d 2d2d 0 |.|---- │ │ │ │ +000bf400: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000bf410: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +000bf420: 2020 2020 2020 2020 3220 2020 2020 2033 2 3 │ │ │ │ +000bf430: 2020 2020 2032 2020 207c 0a7c 2078 2020 2 |.| x │ │ │ │ +000bf440: 2d20 3231 7820 7820 7820 202b 2034 3778 - 21x x x + 47x │ │ │ │ +000bf450: 2078 2078 2020 2d20 3133 7820 7820 202d x x - 13x x - │ │ │ │ +000bf460: 2031 3478 2078 2020 2b20 3636 7820 7820 14x x + 66x x │ │ │ │ +000bf470: 202d 2032 3278 2078 2020 2d20 3230 7820 - 22x x - 20x │ │ │ │ +000bf480: 202b 2032 7820 7820 207c 0a7c 3120 3320 + 2x x |.|1 3 │ │ │ │ +000bf490: 2020 2020 2030 2032 2033 2020 2020 2020 0 2 3 │ │ │ │ +000bf4a0: 3120 3220 3320 2020 2020 2032 2033 2020 1 2 3 2 3 │ │ │ │ +000bf4b0: 2020 2020 3020 3320 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +000bf4c0: 2020 2020 2020 3220 3320 2020 2020 2033 2 3 3 │ │ │ │ +000bf4d0: 2020 2020 2030 2020 207c 0a7c 2d2d 2d2d 0 |.|---- │ │ │ │ 000bf4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bf4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bf500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bf510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000bf520: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2074 2020 ---------|.| t │ │ │ │ 000bf530: 2d20 3133 7420 7420 202b 2031 3374 2074 - 13t t + 13t t │ │ │ │ 000bf540: 2020 2b20 3138 7420 7420 202d 2034 7420 + 18t t - 4t │ │ │ │ @@ -50518,16 +50518,16 @@ │ │ │ │ 000c5550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000c5560: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ 000c5570: 2074 696d 6520 6465 7363 7269 6265 206f time describe o │ │ │ │ 000c5580: 6f20 2020 2020 2020 2020 2020 2020 2020 o │ │ │ │ 000c5590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c55a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c55b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000c55c0: 7573 6564 2030 2e30 3138 3239 3834 7320 used 0.0182984s │ │ │ │ -000c55d0: 2863 7075 293b 2030 2e30 3138 3238 3537 (cpu); 0.0182857 │ │ │ │ +000c55c0: 7573 6564 2030 2e30 3138 3536 3733 7320 used 0.0185673s │ │ │ │ +000c55d0: 2863 7075 293b 2030 2e30 3138 3536 3932 (cpu); 0.0185692 │ │ │ │ 000c55e0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000c55f0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000c5600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000c5610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c5640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -50732,17 +50732,17 @@ │ │ │ │ 000c62b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000c62c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 000c62d0: 203a 2074 696d 6520 7370 6563 6961 6c51 : time specialQ │ │ │ │ 000c62e0: 7561 6472 6174 6963 5472 616e 7366 6f72 uadraticTransfor │ │ │ │ 000c62f0: 6d61 7469 6f6e 2034 2020 2020 2020 2020 mation 4 │ │ │ │ 000c6300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6310: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000c6320: 2d20 7573 6564 2030 2e30 3733 3339 3237 - used 0.0733927 │ │ │ │ -000c6330: 7320 2863 7075 293b 2030 2e30 3733 3339 s (cpu); 0.07339 │ │ │ │ -000c6340: 3231 7320 2874 6872 6561 6429 3b20 3073 21s (thread); 0s │ │ │ │ +000c6320: 2d20 7573 6564 2030 2e30 3735 3533 3232 - used 0.0755322 │ │ │ │ +000c6330: 7320 2863 7075 293b 2030 2e30 3735 3533 s (cpu); 0.07553 │ │ │ │ +000c6340: 3139 7320 2874 6872 6561 6429 3b20 3073 19s (thread); 0s │ │ │ │ 000c6350: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000c6360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c6370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c6390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c63a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c63b0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ @@ -51287,18 +51287,18 @@ │ │ │ │ 000c8560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000c8570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 000c8580: 203a 2074 696d 6520 6465 7363 7269 6265 : time describe │ │ │ │ 000c8590: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ 000c85a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c85b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c85c0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000c85d0: 2d20 7573 6564 2030 2e31 3130 3233 3273 - used 0.110232s │ │ │ │ -000c85e0: 2028 6370 7529 3b20 302e 3033 3037 3435 (cpu); 0.030745 │ │ │ │ -000c85f0: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ -000c8600: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000c85d0: 2d20 7573 6564 2030 2e31 3132 3631 7320 - used 0.11261s │ │ │ │ +000c85e0: 2863 7075 293b 2030 2e30 3331 3131 3773 (cpu); 0.031117s │ │ │ │ +000c85f0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +000c8600: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 000c8610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000c8620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000c8660: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ 000c8670: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ @@ -52398,16 +52398,16 @@ │ │ │ │ 000ccad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ccae0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 000ccaf0: 7469 6d65 2070 6869 2720 3d20 7661 6c75 time phi' = valu │ │ │ │ 000ccb00: 6520 7374 723b 2020 2020 2020 2020 2020 e str; │ │ │ │ 000ccb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccb30: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000ccb40: 302e 3032 3334 3139 3773 2028 6370 7529 0.0234197s (cpu) │ │ │ │ -000ccb50: 3b20 302e 3032 3334 3138 3973 2028 7468 ; 0.0234189s (th │ │ │ │ +000ccb40: 302e 3032 3532 3533 3173 2028 6370 7529 0.0252531s (cpu) │ │ │ │ +000ccb50: 3b20 302e 3032 3532 3533 3773 2028 7468 ; 0.0252537s (th │ │ │ │ 000ccb60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000ccb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000ccb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccbc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ @@ -52422,17 +52422,17 @@ │ │ │ │ 000ccc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000ccc60: 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 6d65 ----+.|i5 : time │ │ │ │ 000ccc70: 2064 6573 6372 6962 6520 7068 6927 2020 describe phi' │ │ │ │ 000ccc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cccb0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -000cccc0: 3534 3030 3339 7320 2863 7075 293b 2030 540039s (cpu); 0 │ │ │ │ -000cccd0: 2e30 3035 3430 3037 3873 2028 7468 7265 .00540078s (thre │ │ │ │ -000ccce0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000cccc0: 3539 3430 3273 2028 6370 7529 3b20 302e 59402s (cpu); 0. │ │ │ │ +000cccd0: 3030 3539 3436 3032 7320 2874 6872 6561 00594602s (threa │ │ │ │ +000ccce0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000cccf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000ccd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000ccd40: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ 000ccd50: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ @@ -52488,18 +52488,18 @@ │ │ │ │ 000cd070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000cd080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 000cd090: 3620 3a20 7469 6d65 2064 6573 6372 6962 6 : time describ │ │ │ │ 000cd0a0: 6520 696e 7665 7273 6520 7068 6927 2020 e inverse phi' │ │ │ │ 000cd0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd0d0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000cd0e0: 7365 6420 302e 3030 3434 3130 3473 2028 sed 0.0044104s ( │ │ │ │ -000cd0f0: 6370 7529 3b20 302e 3030 3434 3131 3137 cpu); 0.00441117 │ │ │ │ -000cd100: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000cd110: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000cd0e0: 7365 6420 302e 3030 3530 3637 3036 7320 sed 0.00506706s │ │ │ │ +000cd0f0: 2863 7075 293b 2030 2e30 3035 3037 3232 (cpu); 0.0050722 │ │ │ │ +000cd100: 3773 2028 7468 7265 6164 293b 2030 7320 7s (thread); 0s │ │ │ │ +000cd110: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000cd120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000cd130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000cd170: 7c0a 7c6f 3620 3d20 7261 7469 6f6e 616c |.|o6 = rational │ │ │ │ 000cd180: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ ├── ./usr/share/info/DGAlgebras.info.gz │ │ │ ├── DGAlgebras.info │ │ │ │ @@ -1231,17 +1231,17 @@ │ │ │ │ 00004ce0: 3a20 4842 203d 2048 4820 4220 2020 2020 : HB = HH B │ │ │ │ 00004cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d20: 2020 2020 2020 2020 2020 7c0a 7c46 696e |.|Fin │ │ │ │ 00004d30: 6469 6e67 2065 6173 7920 7265 6c61 7469 ding easy relati │ │ │ │ 00004d40: 6f6e 7320 2020 2020 2020 2020 2020 3a20 ons : │ │ │ │ -00004d50: 202d 2d20 7573 6564 2030 2e30 3136 3937 -- used 0.01697 │ │ │ │ -00004d60: 3373 2028 6370 7529 3b20 302e 3031 3630 3s (cpu); 0.0160 │ │ │ │ -00004d70: 3832 3873 2020 2020 2020 7c0a 7c20 2020 828s |.| │ │ │ │ +00004d50: 202d 2d20 7573 6564 2030 2e30 3432 3437 -- used 0.04247 │ │ │ │ +00004d60: 3136 7320 2863 7075 293b 2030 2e30 3234 16s (cpu); 0.024 │ │ │ │ +00004d70: 3232 3132 7320 2020 2020 7c0a 7c20 2020 2212s |.| │ │ │ │ 00004d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004dc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ 00004dd0: 3d20 4842 2020 2020 2020 2020 2020 2020 = HB │ │ │ │ 00004de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1495,16 +1495,16 @@ │ │ │ │ 00005d60: 6779 416c 6765 6272 6128 432c 4765 6e44 gyAlgebra(C,GenD │ │ │ │ 00005d70: 6567 7265 654c 696d 6974 3d3e 342c 5265 egreeLimit=>4,Re │ │ │ │ 00005d80: 6c44 6567 7265 654c 696d 6974 3d3e 3429 lDegreeLimit=>4) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 207c 0a7c 4669 6e64 696e 6720 6561 7379 |.|Finding easy │ │ │ │ 00005db0: 2072 656c 6174 696f 6e73 2020 2020 2020 relations │ │ │ │ 00005dc0: 2020 2020 203a 2020 2d2d 2075 7365 6420 : -- used │ │ │ │ -00005dd0: 302e 3031 3838 3930 3173 2028 6370 7529 0.0188901s (cpu) │ │ │ │ -00005de0: 3b20 302e 3031 3733 3434 3373 2020 2020 ; 0.0173443s │ │ │ │ +00005dd0: 302e 3235 3436 3239 7320 2863 7075 293b 0.254629s (cpu); │ │ │ │ +00005de0: 2030 2e30 3533 3839 3238 7320 2020 2020 0.0538928s │ │ │ │ 00005df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00005e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 207c 0a7c 2020 2020 2020 205a 5a20 2020 |.| ZZ │ │ │ │ 00005e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2723,17 +2723,17 @@ │ │ │ │ 0000aa20: 3720 3a20 484b 5220 3d20 4848 204b 5220 7 : HKR = HH KR │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa60: 2020 2020 2020 2020 2020 2020 7c0a 7c46 |.|F │ │ │ │ 0000aa70: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 0000aa80: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -0000aa90: 3a20 202d 2d20 7573 6564 2030 2e31 3236 : -- used 0.126 │ │ │ │ -0000aaa0: 3936 3273 2028 6370 7529 3b20 302e 3035 962s (cpu); 0.05 │ │ │ │ -0000aab0: 3234 3534 3473 2020 2020 2020 7c0a 7c20 24544s |.| │ │ │ │ +0000aa90: 3a20 202d 2d20 7573 6564 2030 2e32 3636 : -- used 0.266 │ │ │ │ +0000aaa0: 3437 3173 2028 6370 7529 3b20 302e 3036 471s (cpu); 0.06 │ │ │ │ +0000aab0: 3834 3132 3373 2020 2020 2020 7c0a 7c20 84123s |.| │ │ │ │ 0000aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0000ab10: 3720 3d20 484b 5220 2020 2020 2020 2020 7 = HKR │ │ │ │ 0000ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2838,17 +2838,17 @@ │ │ │ │ 0000b150: 3130 203a 2048 4b52 2720 3d20 4848 206b 10 : HKR' = HH k │ │ │ │ 0000b160: 6f73 7a75 6c43 6f6d 706c 6578 4447 4120 oszulComplexDGA │ │ │ │ 0000b170: 5227 2020 2020 2020 2020 2020 2020 2020 R' │ │ │ │ 0000b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b190: 2020 2020 2020 2020 2020 2020 7c0a 7c46 |.|F │ │ │ │ 0000b1a0: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 0000b1b0: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -0000b1c0: 3a20 202d 2d20 7573 6564 2030 2e35 3437 : -- used 0.547 │ │ │ │ -0000b1d0: 3137 7320 2863 7075 293b 2030 2e34 3732 17s (cpu); 0.472 │ │ │ │ -0000b1e0: 3632 3373 2020 2020 2020 2020 7c0a 7c20 623s |.| │ │ │ │ +0000b1c0: 3a20 202d 2d20 7573 6564 2030 2e36 3435 : -- used 0.645 │ │ │ │ +0000b1d0: 3535 3673 2028 6370 7529 3b20 302e 3630 556s (cpu); 0.60 │ │ │ │ +0000b1e0: 3936 3234 7320 2020 2020 2020 7c0a 7c20 9624s |.| │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b230: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0000b240: 3130 203d 2048 4b52 2720 2020 2020 2020 10 = HKR' │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4569,16 +4569,16 @@ │ │ │ │ 00011d80: 2048 4820 6720 2020 2020 2020 2020 2020 HH g │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 7c0a 7c46 696e 6469 6e67 2065 6173 |.|Finding eas │ │ │ │ 00011dd0: 7920 7265 6c61 7469 6f6e 7320 2020 2020 y relations │ │ │ │ 00011de0: 2020 2020 2020 3a20 202d 2d20 7573 6564 : -- used │ │ │ │ -00011df0: 2030 2e30 3133 3831 3239 7320 2863 7075 0.0138129s (cpu │ │ │ │ -00011e00: 293b 2030 2e30 3133 3039 3538 7320 2020 ); 0.0130958s │ │ │ │ +00011df0: 2030 2e30 3333 3231 3234 7320 2863 7075 0.0332124s (cpu │ │ │ │ +00011e00: 293b 2030 2e30 3230 3532 3636 7320 2020 ); 0.0205266s │ │ │ │ 00011e10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011e70: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ @@ -6296,16 +6296,16 @@ │ │ │ │ 00018970: 6c6f 6779 416c 6765 6272 6128 4129 2020 logyAlgebra(A) │ │ │ │ 00018980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000189a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000189b0: 0a7c 4669 6e64 696e 6720 6561 7379 2072 .|Finding easy r │ │ │ │ 000189c0: 656c 6174 696f 6e73 2020 2020 2020 2020 elations │ │ │ │ 000189d0: 2020 203a 2020 2d2d 2075 7365 6420 302e : -- used 0. │ │ │ │ -000189e0: 3031 3938 3837 7320 2863 7075 293b 2030 019887s (cpu); 0 │ │ │ │ -000189f0: 2e30 3137 3134 3636 7320 2020 2020 207c .0171466s | │ │ │ │ +000189e0: 3133 3531 3234 7320 2863 7075 293b 2030 135124s (cpu); 0 │ │ │ │ +000189f0: 2e30 3333 3636 3235 7320 2020 2020 207c .0336625s | │ │ │ │ 00018a00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00018a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00018a50: 0a7c 6f34 203d 2048 4120 2020 2020 2020 .|o4 = HA │ │ │ │ 00018a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15306,17 +15306,17 @@ │ │ │ │ 0003bc90: 6937 203a 2048 4867 203d 2048 4820 6720 i7 : HHg = HH g │ │ │ │ 0003bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bcd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003bce0: 4669 6e64 696e 6720 6561 7379 2072 656c Finding easy rel │ │ │ │ 0003bcf0: 6174 696f 6e73 2020 2020 2020 2020 2020 ations │ │ │ │ -0003bd00: 203a 2020 2d2d 2075 7365 6420 302e 3031 : -- used 0.01 │ │ │ │ -0003bd10: 3435 3639 3773 2028 6370 7529 3b20 302e 45697s (cpu); 0. │ │ │ │ -0003bd20: 3031 3338 3230 3773 2020 2020 207c 0a7c 0138207s |.| │ │ │ │ +0003bd00: 203a 2020 2d2d 2075 7365 6420 302e 3039 : -- used 0.09 │ │ │ │ +0003bd10: 3934 3439 7320 2863 7075 293b 2030 2e30 9449s (cpu); 0.0 │ │ │ │ +0003bd20: 3237 3738 3673 2020 2020 2020 207c 0a7c 27786s |.| │ │ │ │ 0003bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd90: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ @@ -15749,17 +15749,17 @@ │ │ │ │ 0003d840: 3a20 4841 203d 2068 6f6d 6f6c 6f67 7941 : HA = homologyA │ │ │ │ 0003d850: 6c67 6562 7261 2841 2920 2020 2020 2020 lgebra(A) │ │ │ │ 0003d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d880: 2020 2020 2020 2020 2020 7c0a 7c46 696e |.|Fin │ │ │ │ 0003d890: 6469 6e67 2065 6173 7920 7265 6c61 7469 ding easy relati │ │ │ │ 0003d8a0: 6f6e 7320 2020 2020 2020 2020 2020 3a20 ons : │ │ │ │ -0003d8b0: 202d 2d20 7573 6564 2030 2e30 3136 3934 -- used 0.01694 │ │ │ │ -0003d8c0: 3733 7320 2863 7075 293b 2030 2e30 3136 73s (cpu); 0.016 │ │ │ │ -0003d8d0: 3231 3032 7320 2020 2020 7c0a 7c20 2020 2102s |.| │ │ │ │ +0003d8b0: 202d 2d20 7573 6564 2030 2e30 3536 3333 -- used 0.05633 │ │ │ │ +0003d8c0: 3139 7320 2863 7075 293b 2030 2e30 3330 19s (cpu); 0.030 │ │ │ │ +0003d8d0: 3731 3432 7320 2020 2020 7c0a 7c20 2020 7142s |.| │ │ │ │ 0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d920: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ 0003d930: 3d20 4841 2020 2020 2020 2020 2020 2020 = HA │ │ │ │ 0003d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15912,16 +15912,16 @@ │ │ │ │ 0003e270: 6f6c 6f67 7941 6c67 6562 7261 2841 2920 ologyAlgebra(A) │ │ │ │ 0003e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2b0: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 0003e2c0: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 0003e2d0: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -0003e2e0: 2e30 3835 3332 3936 7320 2863 7075 293b .0853296s (cpu); │ │ │ │ -0003e2f0: 2030 2e30 3832 3638 3339 7320 2020 2020 0.0826839s │ │ │ │ +0003e2e0: 2e31 3039 3530 3173 2028 6370 7529 3b20 .109501s (cpu); │ │ │ │ +0003e2f0: 302e 3039 3538 3635 3273 2020 2020 2020 0.0958652s │ │ │ │ 0003e300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e350: 7c0a 7c6f 3820 3d20 4841 2020 2020 2020 |.|o8 = HA │ │ │ │ 0003e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -16277,16 +16277,16 @@ │ │ │ │ 0003f940: 6d6f 6c6f 6779 416c 6765 6272 6128 4129 mologyAlgebra(A) │ │ │ │ 0003f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f980: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 0003f990: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 0003f9a0: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -0003f9b0: 2e30 3531 3134 3438 7320 2863 7075 293b .0511448s (cpu); │ │ │ │ -0003f9c0: 2030 2e30 3439 3933 3034 7320 2020 2020 0.0499304s │ │ │ │ +0003f9b0: 2e30 3733 3832 3934 7320 2863 7075 293b .0738294s (cpu); │ │ │ │ +0003f9c0: 2030 2e30 3631 3139 3537 7320 2020 2020 0.0611957s │ │ │ │ 0003f9d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa20: 7c0a 7c6f 3136 203d 2048 4120 2020 2020 |.|o16 = HA │ │ │ │ 0003fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -16488,17 +16488,17 @@ │ │ │ │ 00040670: 3231 203a 2048 4220 3d20 686f 6d6f 6c6f 21 : HB = homolo │ │ │ │ 00040680: 6779 416c 6765 6272 6128 422c 4765 6e44 gyAlgebra(B,GenD │ │ │ │ 00040690: 6567 7265 654c 696d 6974 3d3e 372c 5265 egreeLimit=>7,Re │ │ │ │ 000406a0: 6c44 6567 7265 654c 696d 6974 3d3e 3134 lDegreeLimit=>14 │ │ │ │ 000406b0: 2920 2020 2020 2020 2020 2020 7c0a 7c46 ) |.|F │ │ │ │ 000406c0: 696e 6469 6e67 2065 6173 7920 7265 6c61 inding easy rela │ │ │ │ 000406d0: 7469 6f6e 7320 2020 2020 2020 2020 2020 tions │ │ │ │ -000406e0: 3a20 202d 2d20 7573 6564 2030 2e30 3136 : -- used 0.016 │ │ │ │ -000406f0: 3935 3838 7320 2863 7075 293b 2030 2e30 9588s (cpu); 0.0 │ │ │ │ -00040700: 3136 3232 3173 2020 2020 2020 7c0a 7c20 16221s |.| │ │ │ │ +000406e0: 3a20 202d 2d20 7573 6564 2030 2e30 3531 : -- used 0.051 │ │ │ │ +000406f0: 3936 3639 7320 2863 7075 293b 2030 2e30 9669s (cpu); 0.0 │ │ │ │ +00040700: 3237 3731 3935 7320 2020 2020 7c0a 7c20 277195s |.| │ │ │ │ 00040710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040750: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 00040760: 3231 203d 2048 4220 2020 2020 2020 2020 21 = HB │ │ │ │ 00040770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17245,17 +17245,17 @@ │ │ │ │ 000435c0: 203d 2048 4828 4b52 2920 2020 2020 2020 = HH(KR) │ │ │ │ 000435d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000435f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043600: 2020 2020 2020 207c 0a7c 4669 6e64 696e |.|Findin │ │ │ │ 00043610: 6720 6561 7379 2072 656c 6174 696f 6e73 g easy relations │ │ │ │ 00043620: 2020 2020 2020 2020 2020 203a 2020 2d2d : -- │ │ │ │ -00043630: 2075 7365 6420 302e 3031 3337 3432 3273 used 0.0137422s │ │ │ │ -00043640: 2028 6370 7529 3b20 302e 3031 3330 3232 (cpu); 0.013022 │ │ │ │ -00043650: 3373 2020 2020 207c 0a7c 2020 2020 2020 3s |.| │ │ │ │ +00043630: 2075 7365 6420 302e 3036 3031 3631 3673 used 0.0601616s │ │ │ │ +00043640: 2028 6370 7529 3b20 302e 3032 3336 3831 (cpu); 0.023681 │ │ │ │ +00043650: 7320 2020 2020 207c 0a7c 2020 2020 2020 s |.| │ │ │ │ 00043660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436a0: 2020 2020 2020 207c 0a7c 6f37 203d 2048 |.|o7 = H │ │ │ │ 000436b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000436c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -17611,18 +17611,18 @@ │ │ │ │ 00044ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044cc0: 2b0a 7c69 3620 3a20 484b 5220 3d20 4848 +.|i6 : HKR = HH │ │ │ │ 00044cd0: 284b 5229 2020 2020 2020 2020 2020 2020 (KR) │ │ │ │ 00044ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d00: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00044d10: 2d20 7573 6564 2030 2e32 3738 3138 7320 - used 0.27818s │ │ │ │ -00044d20: 2863 7075 293b 2030 2e32 3032 3336 3273 (cpu); 0.202362s │ │ │ │ -00044d30: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00044d40: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00044d10: 2d20 7573 6564 2030 2e35 3634 3730 3673 - used 0.564706s │ │ │ │ +00044d20: 2028 6370 7529 3b20 302e 3137 3439 3331 (cpu); 0.174931 │ │ │ │ +00044d30: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00044d40: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 00044d50: 2020 2020 2020 7c0a 7c46 696e 6469 6e67 |.|Finding │ │ │ │ 00044d60: 2065 6173 7920 7265 6c61 7469 6f6e 7320 easy relations │ │ │ │ 00044d70: 2020 2020 2020 2020 2020 3a20 2020 2020 : │ │ │ │ 00044d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044da0: 207c 0a7c 6f36 203d 2048 4b52 2020 2020 |.|o6 = HKR │ │ │ │ 00044db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -22288,16 +22288,16 @@ │ │ │ │ 000570f0: 6d61 7373 6579 5472 6970 6c65 5072 6f64 masseyTripleProd │ │ │ │ 00057100: 7563 7428 4b52 2c7a 312c 7a32 2c7a 3329 uct(KR,z1,z2,z3) │ │ │ │ 00057110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057130: 7c0a 7c46 696e 6469 6e67 2065 6173 7920 |.|Finding easy │ │ │ │ 00057140: 7265 6c61 7469 6f6e 7320 2020 2020 2020 relations │ │ │ │ 00057150: 2020 2020 3a20 202d 2d20 7573 6564 2030 : -- used 0 │ │ │ │ -00057160: 2e35 3137 3034 3273 2028 6370 7529 3b20 .517042s (cpu); │ │ │ │ -00057170: 302e 3434 3530 3832 7320 2020 2020 2020 0.445082s │ │ │ │ +00057160: 2e36 3833 3332 3873 2028 6370 7529 3b20 .683328s (cpu); │ │ │ │ +00057170: 302e 3538 3133 3834 7320 2020 2020 2020 0.581384s │ │ │ │ 00057180: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000571e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -22792,16 +22792,16 @@ │ │ │ │ 00059070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000590a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000590b0: 7c46 696e 6469 6e67 2065 6173 7920 7265 |Finding easy re │ │ │ │ 000590c0: 6c61 7469 6f6e 7320 2020 2020 2020 2020 lations │ │ │ │ 000590d0: 2020 3a20 202d 2d20 7573 6564 2030 2e31 : -- used 0.1 │ │ │ │ -000590e0: 3338 3838 3473 2028 6370 7529 3b20 302e 38884s (cpu); 0. │ │ │ │ -000590f0: 3133 3632 3332 7320 2020 2020 2020 7c0a 136232s |. │ │ │ │ +000590e0: 3831 3537 3573 2028 6370 7529 3b20 302e 81575s (cpu); 0. │ │ │ │ +000590f0: 3136 3738 3733 7320 2020 2020 2020 7c0a 167873s |. │ │ │ │ 00059100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00059110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00059150: 7c6f 3520 3d20 4820 2020 2020 2020 2020 |o5 = H │ │ │ │ 00059160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -26223,17 +26223,17 @@ │ │ │ │ 000666e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000666f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066700: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2048 -------+.|i4 : H │ │ │ │ 00066710: 4220 3d20 746f 7241 6c67 6562 7261 2852 B = torAlgebra(R │ │ │ │ 00066720: 2c53 2c47 656e 4465 6772 6565 4c69 6d69 ,S,GenDegreeLimi │ │ │ │ 00066730: 743d 3e34 2c52 656c 4465 6772 6565 4c69 t=>4,RelDegreeLi │ │ │ │ 00066740: 6d69 743d 3e38 2920 2020 2020 2020 2020 mit=>8) │ │ │ │ -00066750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3630 |.| -- used 0.60 │ │ │ │ -00066760: 3137 3636 7320 2863 7075 293b 2030 2e35 1766s (cpu); 0.5 │ │ │ │ -00066770: 3036 3830 3473 2028 7468 7265 6164 293b 06804s (thread); │ │ │ │ +00066750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3631 |.| -- used 0.61 │ │ │ │ +00066760: 3132 3333 7320 2863 7075 293b 2030 2e35 1233s (cpu); 0.5 │ │ │ │ +00066770: 3032 3330 3773 2028 7468 7265 6164 293b 02307s (thread); │ │ │ │ 00066780: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00066790: 2020 2020 2020 2020 207c 0a7c 4669 6e64 |.|Find │ │ │ │ 000667a0: 696e 6720 6561 7379 2072 656c 6174 696f ing easy relatio │ │ │ │ 000667b0: 6e73 2020 2020 2020 2020 2020 203a 2020 ns : │ │ │ │ 000667c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667e0: 2020 7c0a 7c6f 3420 3d20 4842 2020 2020 |.|o4 = HB │ │ ├── ./usr/share/info/EdgeIdeals.info.gz │ │ │ ├── EdgeIdeals.info │ │ │ │ @@ -21417,17 +21417,17 @@ │ │ │ │ 00053a80: 2020 207c 0a7c 6f33 203d 2048 7970 6572 |.|o3 = Hyper │ │ │ │ 00053a90: 4772 6170 687b 2265 6467 6573 2220 3d3e Graph{"edges" => │ │ │ │ 00053aa0: 207b 7b78 202c 2078 202c 2078 207d 2c20 {{x , x , x }, │ │ │ │ 00053ab0: 7b78 202c 2078 207d 2c20 7b78 202c 2078 {x , x }, {x , x │ │ │ │ 00053ac0: 202c 2078 202c 2078 207d 7d7d 2020 2020 , x , x }}} │ │ │ │ 00053ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053af0: 2020 2020 3120 2020 3320 2020 3420 2020 1 3 4 │ │ │ │ -00053b00: 2020 3120 2020 3520 2020 2020 3220 2020 1 5 2 │ │ │ │ -00053b10: 3320 2020 3420 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ +00053af0: 2020 2020 3120 2020 3220 2020 3320 2020 1 2 3 │ │ │ │ +00053b00: 2020 3320 2020 3520 2020 2020 3120 2020 3 5 1 │ │ │ │ +00053b10: 3220 2020 3420 2020 3520 2020 2020 2020 2 4 5 │ │ │ │ 00053b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053b30: 2020 2020 2020 2272 696e 6722 203d 3e20 "ring" => │ │ │ │ 00053b40: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00053b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053b80: 2020 2020 2020 2276 6572 7469 6365 7322 "vertices" │ │ │ │ @@ -21467,17 +21467,17 @@ │ │ │ │ 00053da0: 2020 207c 0a7c 6f34 203d 2048 7970 6572 |.|o4 = Hyper │ │ │ │ 00053db0: 4772 6170 687b 2265 6467 6573 2220 3d3e Graph{"edges" => │ │ │ │ 00053dc0: 207b 7b78 202c 2078 202c 2078 207d 2c20 {{x , x , x }, │ │ │ │ 00053dd0: 7b78 202c 2078 207d 2c20 7b78 202c 2078 {x , x }, {x , x │ │ │ │ 00053de0: 202c 2078 202c 2078 207d 7d7d 2020 2020 , x , x }}} │ │ │ │ 00053df0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053e10: 2020 2020 3220 2020 3320 2020 3420 2020 2 3 4 │ │ │ │ -00053e20: 2020 3120 2020 3220 2020 2020 3120 2020 1 2 1 │ │ │ │ -00053e30: 3320 2020 3420 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ +00053e10: 2020 2020 3120 2020 3220 2020 3420 2020 1 2 4 │ │ │ │ +00053e20: 2020 3420 2020 3520 2020 2020 3120 2020 4 5 1 │ │ │ │ +00053e30: 3220 2020 3320 2020 3520 2020 2020 2020 2 3 5 │ │ │ │ 00053e40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053e50: 2020 2020 2020 2272 696e 6722 203d 3e20 "ring" => │ │ │ │ 00053e60: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00053e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053ea0: 2020 2020 2020 2276 6572 7469 6365 7322 "vertices" │ │ ├── ./usr/share/info/EigenSolver.info.gz │ │ │ ├── EigenSolver.info │ │ │ │ @@ -171,16 +171,16 @@ │ │ │ │ 00000aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000ac0: 2b0a 7c69 3320 3a20 656c 6170 7365 6454 +.|i3 : elapsedT │ │ │ │ 00000ad0: 696d 6520 736f 6c73 203d 207a 6572 6f44 ime sols = zeroD │ │ │ │ 00000ae0: 696d 536f 6c76 6520 493b 2020 2020 2020 imSolve I; │ │ │ │ 00000af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000b10: 7c0a 7c20 2d2d 202e 3334 3134 3473 2065 |.| -- .34144s e │ │ │ │ -00000b20: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ +00000b10: 7c0a 7c20 2d2d 202e 3231 3930 3833 7320 |.| -- .219083s │ │ │ │ +00000b20: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00000b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000b60: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00000b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/Elimination.info.gz │ │ │ ├── Elimination.info │ │ │ │ @@ -336,17 +336,17 @@ │ │ │ │ 000014f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00001520: 6934 203a 2074 696d 6520 656c 696d 696e i4 : time elimin │ │ │ │ 00001530: 6174 6528 782c 6964 6561 6c28 662c 6729 ate(x,ideal(f,g) │ │ │ │ 00001540: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00001550: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00001560: 7573 6564 2030 2e30 3032 3736 3434 3873 used 0.00276448s │ │ │ │ -00001570: 2028 6370 7529 3b20 302e 3030 3237 3631 (cpu); 0.002761 │ │ │ │ -00001580: 3732 7320 2874 6872 6561 6429 3b20 3073 72s (thread); 0s │ │ │ │ +00001560: 7573 6564 2030 2e30 3033 3135 3038 3273 used 0.00315082s │ │ │ │ +00001570: 2028 6370 7529 3b20 302e 3030 3331 3436 (cpu); 0.003146 │ │ │ │ +00001580: 3731 7320 2874 6872 6561 6429 3b20 3073 71s (thread); 0s │ │ │ │ 00001590: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ 000015a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000015d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000015e0: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ 000015f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ @@ -366,17 +366,17 @@ │ │ │ │ 000016d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000016e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000016f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00001700: 6935 203a 2074 696d 6520 6964 6561 6c20 i5 : time ideal │ │ │ │ 00001710: 7265 7375 6c74 616e 7428 662c 672c 7829 resultant(f,g,x) │ │ │ │ 00001720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001730: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00001740: 7573 6564 2030 2e30 3031 3631 3936 3173 used 0.00161961s │ │ │ │ -00001750: 2028 6370 7529 3b20 302e 3030 3136 3230 (cpu); 0.001620 │ │ │ │ -00001760: 3133 7320 2874 6872 6561 6429 3b20 3073 13s (thread); 0s │ │ │ │ +00001740: 7573 6564 2030 2e30 3031 3831 3433 3173 used 0.00181431s │ │ │ │ +00001750: 2028 6370 7529 3b20 302e 3030 3138 3135 (cpu); 0.001815 │ │ │ │ +00001760: 3633 7320 2874 6872 6561 6429 3b20 3073 63s (thread); 0s │ │ │ │ 00001770: 2028 6763 297c 0a7c 2020 2020 2020 2020 (gc)|.| │ │ │ │ 00001780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000017a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000017b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000017c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 000017d0: 2032 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ @@ -620,18 +620,18 @@ │ │ │ │ 000026b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026e0: 2b0a 7c69 3420 3a20 7469 6d65 2065 6c69 +.|i4 : time eli │ │ │ │ 000026f0: 6d69 6e61 7465 2878 2c69 6465 616c 2866 minate(x,ideal(f │ │ │ │ 00002700: 2c67 2929 2020 2020 2020 2020 2020 2020 ,g)) │ │ │ │ 00002710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00002720: 2d2d 2075 7365 6420 302e 3030 3335 3739 -- used 0.003579 │ │ │ │ -00002730: 3036 7320 2863 7075 293b 2030 2e30 3033 06s (cpu); 0.003 │ │ │ │ -00002740: 3537 3730 3973 2028 7468 7265 6164 293b 57709s (thread); │ │ │ │ -00002750: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ +00002720: 2d2d 2075 7365 6420 302e 3030 3331 3432 -- used 0.003142 │ │ │ │ +00002730: 3137 7320 2863 7075 293b 2030 2e30 3033 17s (cpu); 0.003 │ │ │ │ +00002740: 3133 3873 2028 7468 7265 6164 293b 2030 138s (thread); 0 │ │ │ │ +00002750: 7320 2867 6329 2020 7c0a 7c20 2020 2020 s (gc) |.| │ │ │ │ 00002760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000027a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 000027b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000027c0: 3220 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ @@ -650,18 +650,18 @@ │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028c0: 2b0a 7c69 3520 3a20 7469 6d65 2069 6465 +.|i5 : time ide │ │ │ │ 000028d0: 616c 2072 6573 756c 7461 6e74 2866 2c67 al resultant(f,g │ │ │ │ 000028e0: 2c78 2920 2020 2020 2020 2020 2020 2020 ,x) │ │ │ │ 000028f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00002900: 2d2d 2075 7365 6420 302e 3030 3231 3137 -- used 0.002117 │ │ │ │ -00002910: 3836 7320 2863 7075 293b 2030 2e30 3032 86s (cpu); 0.002 │ │ │ │ -00002920: 3132 3136 7320 2874 6872 6561 6429 3b20 1216s (thread); │ │ │ │ -00002930: 3073 2028 6763 2920 7c0a 7c20 2020 2020 0s (gc) |.| │ │ │ │ +00002900: 2d2d 2075 7365 6420 302e 3030 3136 3731 -- used 0.001671 │ │ │ │ +00002910: 3035 7320 2863 7075 293b 2030 2e30 3031 05s (cpu); 0.001 │ │ │ │ +00002920: 3637 3234 3373 2028 7468 7265 6164 293b 67243s (thread); │ │ │ │ +00002930: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ 00002940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002970: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00002980: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 00002990: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000029a0: 2020 3220 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ @@ -995,16 +995,16 @@ │ │ │ │ 00003e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003e30: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2065 --+.|i4 : time e │ │ │ │ 00003e40: 6c69 6d69 6e61 7465 2869 6465 616c 2866 liminate(ideal(f │ │ │ │ 00003e50: 2c67 292c 7829 2020 2020 2020 2020 2020 ,g),x) │ │ │ │ 00003e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003e80: 2020 7c0a 7c20 2d2d 2075 7365 6420 312e |.| -- used 1. │ │ │ │ -00003e90: 3839 3036 3873 2028 6370 7529 3b20 312e 89068s (cpu); 1. │ │ │ │ -00003ea0: 3637 3038 3573 2028 7468 7265 6164 293b 67085s (thread); │ │ │ │ +00003e90: 3338 3734 3373 2028 6370 7529 3b20 312e 38743s (cpu); 1. │ │ │ │ +00003ea0: 3235 3837 3673 2028 7468 7265 6164 293b 25876s (thread); │ │ │ │ 00003eb0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00003ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00003ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1275,17 +1275,17 @@ │ │ │ │ 00004fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004fb0: 2d2d 2b0a 7c69 3520 3a20 7469 6d65 2069 --+.|i5 : time i │ │ │ │ 00004fc0: 6465 616c 2072 6573 756c 7461 6e74 2866 deal resultant(f │ │ │ │ 00004fd0: 2c67 2c78 2920 2020 2020 2020 2020 2020 ,g,x) │ │ │ │ 00004fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005000: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00005010: 3032 3430 3235 3373 2028 6370 7529 3b20 0240253s (cpu); │ │ │ │ -00005020: 302e 3032 3430 3238 3373 2028 7468 7265 0.0240283s (thre │ │ │ │ -00005030: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00005010: 3031 3538 3735 7320 2863 7075 293b 2030 015875s (cpu); 0 │ │ │ │ +00005020: 2e30 3135 3837 3638 7320 2874 6872 6561 .0158768s (threa │ │ │ │ +00005030: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00005040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00005060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000050a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ @@ -1917,16 +1917,16 @@ │ │ │ │ 000077c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000077d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ 000077e0: 3a20 7469 6d65 2065 6c69 6d69 6e61 7465 : time eliminate │ │ │ │ 000077f0: 2869 6465 616c 2866 2c67 292c 7829 2020 (ideal(f,g),x) │ │ │ │ 00007800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007820: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00007830: 2075 7365 6420 312e 3637 3633 3473 2028 used 1.67634s ( │ │ │ │ -00007840: 6370 7529 3b20 312e 3435 3039 3973 2028 cpu); 1.45099s ( │ │ │ │ +00007830: 2075 7365 6420 312e 3436 3538 3973 2028 used 1.46589s ( │ │ │ │ +00007840: 6370 7529 3b20 312e 3335 3032 3873 2028 cpu); 1.35028s ( │ │ │ │ 00007850: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00007860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007870: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00007880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2197,18 +2197,18 @@ │ │ │ │ 00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008950: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ 00008960: 3a20 7469 6d65 2069 6465 616c 2072 6573 : time ideal res │ │ │ │ 00008970: 756c 7461 6e74 2866 2c67 2c78 2920 2020 ultant(f,g,x) │ │ │ │ 00008980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089a0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000089b0: 2075 7365 6420 302e 3031 3631 3173 2028 used 0.01611s ( │ │ │ │ -000089c0: 6370 7529 3b20 302e 3031 3631 3132 7320 cpu); 0.016112s │ │ │ │ -000089d0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -000089e0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000089b0: 2075 7365 6420 302e 3031 3533 3938 3173 used 0.0153981s │ │ │ │ +000089c0: 2028 6370 7529 3b20 302e 3031 3534 3032 (cpu); 0.015402 │ │ │ │ +000089d0: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +000089e0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 000089f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00008a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00008a50: 2020 2020 2020 2020 2020 2037 2020 2020 7 │ │ ├── ./usr/share/info/EnumerationCurves.info.gz │ │ │ ├── EnumerationCurves.info │ │ │ │ @@ -256,16 +256,16 @@ │ │ │ │ 00000ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001000: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7469 ------+.|i1 : ti │ │ │ │ 00001010: 6d65 2066 6f72 206e 2066 726f 6d20 3220 me for n from 2 │ │ │ │ 00001020: 746f 2031 3020 6c69 7374 206c 696e 6573 to 10 list lines │ │ │ │ 00001030: 4879 7065 7273 7572 6661 6365 286e 2920 Hypersurface(n) │ │ │ │ 00001040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001050: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00001060: 6420 302e 3032 3830 3833 3573 2028 6370 d 0.0280835s (cp │ │ │ │ -00001070: 7529 3b20 302e 3032 3830 3836 3873 2028 u); 0.0280868s ( │ │ │ │ +00001060: 6420 302e 3032 3839 3830 3373 2028 6370 d 0.0289803s (cp │ │ │ │ +00001070: 7529 3b20 302e 3032 3839 3830 3673 2028 u); 0.0289806s ( │ │ │ │ 00001080: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00001090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000010b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000010e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -649,17 +649,17 @@ │ │ │ │ 00002880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2b0a 7c69 3720 3a20 7469 6d65 2066 --+.|i7 : time f │ │ │ │ 000028b0: 6f72 2044 2069 6e20 5420 6c69 7374 2072 or D in T list r │ │ │ │ 000028c0: 6174 696f 6e61 6c43 7572 7665 2832 2c44 ationalCurve(2,D │ │ │ │ 000028d0: 2920 2d20 7261 7469 6f6e 616c 4375 7276 ) - rationalCurv │ │ │ │ 000028e0: 6528 312c 4429 2f38 7c0a 7c20 2d2d 2075 e(1,D)/8|.| -- u │ │ │ │ -000028f0: 7365 6420 302e 3332 3837 3937 7320 2863 sed 0.328797s (c │ │ │ │ -00002900: 7075 293b 2030 2e32 3736 3933 3673 2028 pu); 0.276936s ( │ │ │ │ -00002910: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +000028f0: 7365 6420 302e 3334 3538 3734 7320 2863 sed 0.345874s (c │ │ │ │ +00002900: 7075 293b 2030 2e32 3931 3573 2028 7468 pu); 0.2915s (th │ │ │ │ +00002910: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00002920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00002930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00002940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002970: 2020 2020 7c0a 7c6f 3720 3d20 7b36 3039 |.|o7 = {609 │ │ │ │ 00002980: 3235 302c 2039 3232 3838 2c20 3532 3831 250, 92288, 5281 │ │ │ │ @@ -685,17 +685,17 @@ │ │ │ │ 00002ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00002af0: 3820 3a20 7469 6d65 2072 6174 696f 6e61 8 : time rationa │ │ │ │ 00002b00: 6c43 7572 7665 2833 2920 2020 2020 2020 lCurve(3) │ │ │ │ 00002b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00002b30: 6564 2030 2e32 3238 3134 3273 2028 6370 ed 0.228142s (cp │ │ │ │ -00002b40: 7529 3b20 302e 3136 3838 3437 7320 2874 u); 0.168847s (t │ │ │ │ -00002b50: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00002b30: 6564 2030 2e31 3330 3037 3373 2028 6370 ed 0.130073s (cp │ │ │ │ +00002b40: 7529 3b20 302e 3133 3030 3873 2028 7468 u); 0.13008s (th │ │ │ │ +00002b50: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00002b60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00002b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00002ba0: 2020 2020 2038 3536 3435 3735 3030 3020 8564575000 │ │ │ │ 00002bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -718,16 +718,16 @@ │ │ │ │ 00002cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00002d00: 0a7c 6939 203a 2074 696d 6520 666f 7220 .|i9 : time for │ │ │ │ 00002d10: 4420 696e 2054 206c 6973 7420 7261 7469 D in T list rati │ │ │ │ 00002d20: 6f6e 616c 4375 7276 6528 332c 4429 2020 onalCurve(3,D) │ │ │ │ 00002d30: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00002d40: 2075 7365 6420 352e 3332 3938 3973 2028 used 5.32989s ( │ │ │ │ -00002d50: 6370 7529 3b20 342e 3631 3639 3773 2028 cpu); 4.61697s ( │ │ │ │ +00002d40: 2075 7365 6420 342e 3931 3937 3973 2028 used 4.91979s ( │ │ │ │ +00002d50: 6370 7529 3b20 342e 3339 3538 3173 2028 cpu); 4.39581s ( │ │ │ │ 00002d60: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00002d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00002d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002db0: 7c0a 7c20 2020 2020 2038 3536 3435 3735 |.| 8564575 │ │ │ │ 00002dc0: 3030 3020 2034 3232 3639 3038 3136 2020 000 422690816 │ │ │ │ @@ -757,275 +757,274 @@ │ │ │ │ 00002f40: 6e20 6120 6765 6e65 7261 6c20 7175 696e n a general quin │ │ │ │ 00002f50: 7469 6320 7468 7265 6566 6f6c 6420 6361 tic threefold ca │ │ │ │ 00002f60: 6e20 6265 0a63 6f6d 7075 7465 6420 6173 n be.computed as │ │ │ │ 00002f70: 2066 6f6c 6c6f 7773 3a0a 0a0a 0a2b 2d2d follows:....+-- │ │ │ │ 00002f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002fb0: 2d2d 2d2b 0a7c 6931 3020 3a20 7469 6d65 ---+.|i10 : time │ │ │ │ -00002fc0: 2072 6174 696f 6e61 6c43 7572 7665 2833 rationalCurve(3 │ │ │ │ -00002fd0: 2920 2d20 7261 7469 6f6e 616c 4375 7276 ) - rationalCurv │ │ │ │ -00002fe0: 6528 3129 2f32 3720 2020 207c 0a7c 202d e(1)/27 |.| - │ │ │ │ -00002ff0: 2d20 7573 6564 2030 2e32 3137 3231 3473 - used 0.217214s │ │ │ │ -00003000: 2028 6370 7529 3b20 302e 3136 3735 3434 (cpu); 0.167544 │ │ │ │ -00003010: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00003020: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +00002fb0: 2d2b 0a7c 6931 3020 3a20 7469 6d65 2072 -+.|i10 : time r │ │ │ │ +00002fc0: 6174 696f 6e61 6c43 7572 7665 2833 2920 ationalCurve(3) │ │ │ │ +00002fd0: 2d20 7261 7469 6f6e 616c 4375 7276 6528 - rationalCurve( │ │ │ │ +00002fe0: 3129 2f32 3720 207c 0a7c 202d 2d20 7573 1)/27 |.| -- us │ │ │ │ +00002ff0: 6564 2030 2e31 3330 3173 2028 6370 7529 ed 0.1301s (cpu) │ │ │ │ +00003000: 3b20 302e 3133 3031 3037 7320 2874 6872 ; 0.130107s (thr │ │ │ │ +00003010: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ +00003020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003050: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00003060: 3020 3d20 3331 3732 3036 3337 3520 2020 0 = 317206375 │ │ │ │ +00003050: 2020 207c 0a7c 6f31 3020 3d20 3331 3732 |.|o10 = 3172 │ │ │ │ +00003060: 3036 3337 3520 2020 2020 2020 2020 2020 06375 │ │ │ │ 00003070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003090: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00003090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000030a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000030b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000030c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -000030d0: 3020 3a20 5151 2020 2020 2020 2020 2020 0 : QQ │ │ │ │ +000030b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000030c0: 0a7c 6f31 3020 3a20 5151 2020 2020 2020 .|o10 : QQ │ │ │ │ +000030d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000030e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000030f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003100: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000030f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00003100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -00003140: 6520 6e75 6d62 6572 7320 6f66 2072 6174 e numbers of rat │ │ │ │ -00003150: 696f 6e61 6c20 6375 7276 6573 206f 6620 ional curves of │ │ │ │ -00003160: 6465 6772 6565 2033 206f 6e20 6765 6e65 degree 3 on gene │ │ │ │ -00003170: 7261 6c20 636f 6d70 6c65 7465 2069 6e74 ral complete int │ │ │ │ -00003180: 6572 7365 6374 696f 6e0a 4361 6c61 6269 ersection.Calabi │ │ │ │ -00003190: 2d59 6175 2074 6872 6565 666f 6c64 7320 -Yau threefolds │ │ │ │ -000031a0: 6361 6e20 6265 2063 6f6d 7075 7465 6420 can be computed │ │ │ │ -000031b0: 6173 2066 6f6c 6c6f 7773 3a0a 0a0a 0a2b as follows:....+ │ │ │ │ +00003120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00003130: 6520 6e75 6d62 6572 7320 6f66 2072 6174 e numbers of rat │ │ │ │ +00003140: 696f 6e61 6c20 6375 7276 6573 206f 6620 ional curves of │ │ │ │ +00003150: 6465 6772 6565 2033 206f 6e20 6765 6e65 degree 3 on gene │ │ │ │ +00003160: 7261 6c20 636f 6d70 6c65 7465 2069 6e74 ral complete int │ │ │ │ +00003170: 6572 7365 6374 696f 6e0a 4361 6c61 6269 ersection.Calabi │ │ │ │ +00003180: 2d59 6175 2074 6872 6565 666f 6c64 7320 -Yau threefolds │ │ │ │ +00003190: 6361 6e20 6265 2063 6f6d 7075 7465 6420 can be computed │ │ │ │ +000031a0: 6173 2066 6f6c 6c6f 7773 3a0a 0a0a 0a2b as follows:....+ │ │ │ │ +000031b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000031c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000031d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000031e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000031f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003200: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 7469 -----+.|i11 : ti │ │ │ │ -00003210: 6d65 2066 6f72 2044 2069 6e20 5420 6c69 me for D in T li │ │ │ │ -00003220: 7374 2072 6174 696f 6e61 6c43 7572 7665 st rationalCurve │ │ │ │ -00003230: 2833 2c44 2920 2d20 7261 7469 6f6e 616c (3,D) - rational │ │ │ │ -00003240: 4375 7276 6528 312c 4429 2f32 377c 0a7c Curve(1,D)/27|.| │ │ │ │ -00003250: 202d 2d20 7573 6564 2035 2e33 3133 3432 -- used 5.31342 │ │ │ │ -00003260: 7320 2863 7075 293b 2034 2e36 3432 3038 s (cpu); 4.64208 │ │ │ │ -00003270: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00003280: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -00003290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000031f0: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 7469 -----+.|i11 : ti │ │ │ │ +00003200: 6d65 2066 6f72 2044 2069 6e20 5420 6c69 me for D in T li │ │ │ │ +00003210: 7374 2072 6174 696f 6e61 6c43 7572 7665 st rationalCurve │ │ │ │ +00003220: 2833 2c44 2920 2d20 7261 7469 6f6e 616c (3,D) - rational │ │ │ │ +00003230: 4375 7276 6528 312c 4429 2f32 377c 0a7c Curve(1,D)/27|.| │ │ │ │ +00003240: 202d 2d20 7573 6564 2034 2e39 3638 3038 -- used 4.96808 │ │ │ │ +00003250: 7320 2863 7075 293b 2034 2e34 3032 3233 s (cpu); 4.40223 │ │ │ │ +00003260: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00003270: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00003280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00003290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000032a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000032b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000032c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000032d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000032e0: 6f31 3120 3d20 7b33 3137 3230 3633 3735 o11 = {317206375 │ │ │ │ -000032f0: 2c20 3135 3635 3531 3638 2c20 3634 3234 , 15655168, 6424 │ │ │ │ -00003300: 3332 362c 2031 3631 3135 3034 2c20 3431 326, 1611504, 41 │ │ │ │ -00003310: 3632 3536 7d20 2020 2020 2020 2020 2020 6256} │ │ │ │ -00003320: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000032c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000032d0: 6f31 3120 3d20 7b33 3137 3230 3633 3735 o11 = {317206375 │ │ │ │ +000032e0: 2c20 3135 3635 3531 3638 2c20 3634 3234 , 15655168, 6424 │ │ │ │ +000032f0: 3332 362c 2031 3631 3135 3034 2c20 3431 326, 1611504, 41 │ │ │ │ +00003300: 3632 3536 7d20 2020 2020 2020 2020 2020 6256} │ │ │ │ +00003310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00003320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00003370: 6f31 3120 3a20 4c69 7374 2020 2020 2020 o11 : List │ │ │ │ +00003350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00003360: 6f31 3120 3a20 4c69 7374 2020 2020 2020 o11 : List │ │ │ │ +00003370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000033a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000033b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000033a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000033b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000033c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000033d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000033e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00003400: 466f 7220 7261 7469 6f6e 616c 2063 7572 For rational cur │ │ │ │ -00003410: 7665 7320 6f66 2064 6567 7265 6520 343a ves of degree 4: │ │ │ │ -00003420: 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ....+----------- │ │ │ │ +000033e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +000033f0: 466f 7220 7261 7469 6f6e 616c 2063 7572 For rational cur │ │ │ │ +00003400: 7665 7320 6f66 2064 6567 7265 6520 343a ves of degree 4: │ │ │ │ +00003410: 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ....+----------- │ │ │ │ +00003420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003450: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ -00003460: 2074 696d 6520 7261 7469 6f6e 616c 4375 time rationalCu │ │ │ │ -00003470: 7276 6528 3429 2020 2020 2020 2020 2020 rve(4) │ │ │ │ -00003480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00003490: 7c20 2d2d 2075 7365 6420 312e 3634 3937 | -- used 1.6497 │ │ │ │ -000034a0: 3673 2028 6370 7529 3b20 312e 3434 3231 6s (cpu); 1.4421 │ │ │ │ -000034b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000034c0: 6763 2920 7c0a 7c20 2020 2020 2020 2020 gc) |.| │ │ │ │ +00003440: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ +00003450: 2074 696d 6520 7261 7469 6f6e 616c 4375 time rationalCu │ │ │ │ +00003460: 7276 6528 3429 2020 2020 2020 2020 2020 rve(4) │ │ │ │ +00003470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00003480: 7c20 2d2d 2075 7365 6420 312e 3432 3338 | -- used 1.4238 │ │ │ │ +00003490: 3773 2028 6370 7529 3b20 312e 3330 3630 7s (cpu); 1.3060 │ │ │ │ +000034a0: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ +000034b0: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ +000034c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000034f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00003500: 2020 2031 3535 3137 3932 3637 3936 3837 1551792679687 │ │ │ │ -00003510: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00003520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003530: 7c0a 7c6f 3132 203d 202d 2d2d 2d2d 2d2d |.|o12 = ------- │ │ │ │ -00003540: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ -00003550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00003570: 2020 2020 2036 3420 2020 2020 2020 2020 64 │ │ │ │ -00003580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003590: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000034e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000034f0: 2020 2031 3535 3137 3932 3637 3936 3837 1551792679687 │ │ │ │ +00003500: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00003510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003520: 7c0a 7c6f 3132 203d 202d 2d2d 2d2d 2d2d |.|o12 = ------- │ │ │ │ +00003530: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00003540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00003560: 2020 2020 2036 3420 2020 2020 2020 2020 64 │ │ │ │ +00003570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003580: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00003590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000035a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000035b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000035c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000035d0: 2020 7c0a 7c6f 3132 203a 2051 5120 2020 |.|o12 : QQ │ │ │ │ +000035c0: 2020 7c0a 7c6f 3132 203a 2051 5120 2020 |.|o12 : QQ │ │ │ │ +000035d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000035e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000035f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003600: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000035f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00003600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00003640: 7c69 3133 203a 2074 696d 6520 7261 7469 |i13 : time rati │ │ │ │ -00003650: 6f6e 616c 4375 7276 6528 342c 7b34 2c32 onalCurve(4,{4,2 │ │ │ │ -00003660: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ -00003670: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00003680: 372e 3436 3738 3773 2028 6370 7529 3b20 7.46787s (cpu); │ │ │ │ -00003690: 352e 3739 3430 3473 2028 7468 7265 6164 5.79404s (thread │ │ │ │ -000036a0: 293b 2030 7320 2867 6329 7c0a 7c20 2020 ); 0s (gc)|.| │ │ │ │ +00003620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00003630: 7c69 3133 203a 2074 696d 6520 7261 7469 |i13 : time rati │ │ │ │ +00003640: 6f6e 616c 4375 7276 6528 342c 7b34 2c32 onalCurve(4,{4,2 │ │ │ │ +00003650: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +00003660: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00003670: 362e 3736 3339 3173 2028 6370 7529 3b20 6.76391s (cpu); │ │ │ │ +00003680: 352e 3637 3634 3173 2028 7468 7265 6164 5.67641s (thread │ │ │ │ +00003690: 293b 2030 7320 2867 6329 7c0a 7c20 2020 ); 0s (gc)|.| │ │ │ │ +000036a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000036d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000036e0: 7c0a 7c6f 3133 203d 2033 3838 3339 3134 |.|o13 = 3883914 │ │ │ │ -000036f0: 3038 3420 2020 2020 2020 2020 2020 2020 084 │ │ │ │ -00003700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000036d0: 7c0a 7c6f 3133 203d 2033 3838 3339 3134 |.|o13 = 3883914 │ │ │ │ +000036e0: 3038 3420 2020 2020 2020 2020 2020 2020 084 │ │ │ │ +000036f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003700: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00003710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003740: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00003750: 3133 203a 2051 5120 2020 2020 2020 2020 13 : QQ │ │ │ │ +00003730: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00003740: 3133 203a 2051 5120 2020 2020 2020 2020 13 : QQ │ │ │ │ +00003750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003780: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00003770: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00003780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000037a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000037b0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 206e --------+..The n │ │ │ │ -000037c0: 756d 6265 7220 6f66 2072 6174 696f 6e61 umber of rationa │ │ │ │ -000037d0: 6c20 6375 7276 6573 206f 6620 6465 6772 l curves of degr │ │ │ │ -000037e0: 6565 2034 206f 6e20 6120 6765 6e65 7261 ee 4 on a genera │ │ │ │ -000037f0: 6c20 7175 696e 7469 6320 7468 7265 6566 l quintic threef │ │ │ │ -00003800: 6f6c 6420 6361 6e20 6265 0a63 6f6d 7075 old can be.compu │ │ │ │ -00003810: 7465 6420 6173 2066 6f6c 6c6f 7773 3a0a ted as follows:. │ │ │ │ -00003820: 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +000037a0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 206e --------+..The n │ │ │ │ +000037b0: 756d 6265 7220 6f66 2072 6174 696f 6e61 umber of rationa │ │ │ │ +000037c0: 6c20 6375 7276 6573 206f 6620 6465 6772 l curves of degr │ │ │ │ +000037d0: 6565 2034 206f 6e20 6120 6765 6e65 7261 ee 4 on a genera │ │ │ │ +000037e0: 6c20 7175 696e 7469 6320 7468 7265 6566 l quintic threef │ │ │ │ +000037f0: 6f6c 6420 6361 6e20 6265 0a63 6f6d 7075 old can be.compu │ │ │ │ +00003800: 7465 6420 6173 2066 6f6c 6c6f 7773 3a0a ted as follows:. │ │ │ │ +00003810: 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00003820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003850: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -00003860: 7469 6d65 2072 6174 696f 6e61 6c43 7572 time rationalCur │ │ │ │ -00003870: 7665 2834 2920 2d20 7261 7469 6f6e 616c ve(4) - rational │ │ │ │ -00003880: 4375 7276 6528 3229 2f38 2020 207c 0a7c Curve(2)/8 |.| │ │ │ │ -00003890: 202d 2d20 7573 6564 2031 2e36 3539 3331 -- used 1.65931 │ │ │ │ -000038a0: 7320 2863 7075 293b 2031 2e34 3239 3732 s (cpu); 1.42972 │ │ │ │ -000038b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000038c0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +00003840: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ +00003850: 7469 6d65 2072 6174 696f 6e61 6c43 7572 time rationalCur │ │ │ │ +00003860: 7665 2834 2920 2d20 7261 7469 6f6e 616c ve(4) - rational │ │ │ │ +00003870: 4375 7276 6528 3229 2f38 2020 207c 0a7c Curve(2)/8 |.| │ │ │ │ +00003880: 202d 2d20 7573 6564 2031 2e35 3432 3532 -- used 1.54252 │ │ │ │ +00003890: 7320 2863 7075 293b 2031 2e33 3631 3235 s (cpu); 1.36125 │ │ │ │ +000038a0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000038b0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +000038c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000038d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000038e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000038f0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ -00003900: 3d20 3234 3234 3637 3533 3030 3030 2020 = 242467530000 │ │ │ │ -00003910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00003930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000038e0: 2020 2020 2020 2020 207c 0a7c 6f31 3420 |.|o14 │ │ │ │ +000038f0: 3d20 3234 3234 3637 3533 3030 3030 2020 = 242467530000 │ │ │ │ +00003900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00003920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00003930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003960: 2020 2020 207c 0a7c 6f31 3420 3a20 5151 |.|o14 : QQ │ │ │ │ +00003950: 2020 2020 207c 0a7c 6f31 3420 3a20 5151 |.|o14 : QQ │ │ │ │ +00003960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003990: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00003980: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00003990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000039a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000039b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000039c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000039d0: 2d2b 0a0a 5468 6520 6e75 6d62 6572 7320 -+..The numbers │ │ │ │ -000039e0: 6f66 2072 6174 696f 6e61 6c20 6375 7276 of rational curv │ │ │ │ -000039f0: 6573 206f 6620 6465 6772 6565 2034 206f es of degree 4 o │ │ │ │ -00003a00: 6e20 6765 6e65 7261 6c20 636f 6d70 6c65 n general comple │ │ │ │ -00003a10: 7465 2069 6e74 6572 7365 6374 696f 6e73 te intersections │ │ │ │ -00003a20: 206f 660a 7479 7065 7320 2834 2c32 2920 of.types (4,2) │ │ │ │ -00003a30: 616e 6420 2833 2c33 2920 696e 205c 6d61 and (3,3) in \ma │ │ │ │ -00003a40: 7468 6262 2050 5e35 2063 616e 2062 6520 thbb P^5 can be │ │ │ │ -00003a50: 636f 6d70 7574 6564 2061 7320 666f 6c6c computed as foll │ │ │ │ -00003a60: 6f77 733a 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d ows:....+------- │ │ │ │ +000039c0: 2d2b 0a0a 5468 6520 6e75 6d62 6572 7320 -+..The numbers │ │ │ │ +000039d0: 6f66 2072 6174 696f 6e61 6c20 6375 7276 of rational curv │ │ │ │ +000039e0: 6573 206f 6620 6465 6772 6565 2034 206f es of degree 4 o │ │ │ │ +000039f0: 6e20 6765 6e65 7261 6c20 636f 6d70 6c65 n general comple │ │ │ │ +00003a00: 7465 2069 6e74 6572 7365 6374 696f 6e73 te intersections │ │ │ │ +00003a10: 206f 660a 7479 7065 7320 2834 2c32 2920 of.types (4,2) │ │ │ │ +00003a20: 616e 6420 2833 2c33 2920 696e 205c 6d61 and (3,3) in \ma │ │ │ │ +00003a30: 7468 6262 2050 5e35 2063 616e 2062 6520 thbb P^5 can be │ │ │ │ +00003a40: 636f 6d70 7574 6564 2061 7320 666f 6c6c computed as foll │ │ │ │ +00003a50: 6f77 733a 0a0a 0a0a 2b2d 2d2d 2d2d 2d2d ows:....+------- │ │ │ │ +00003a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003aa0: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 7469 -----+.|i15 : ti │ │ │ │ -00003ab0: 6d65 2072 6174 696f 6e61 6c43 7572 7665 me rationalCurve │ │ │ │ -00003ac0: 2834 2c7b 342c 327d 2920 2d20 7261 7469 (4,{4,2}) - rati │ │ │ │ -00003ad0: 6f6e 616c 4375 7276 6528 322c 7b34 2c32 onalCurve(2,{4,2 │ │ │ │ -00003ae0: 7d29 2f38 7c0a 7c20 2d2d 2075 7365 6420 })/8|.| -- used │ │ │ │ -00003af0: 372e 3638 3037 3573 2028 6370 7529 3b20 7.68075s (cpu); │ │ │ │ -00003b00: 362e 3133 3632 3373 2028 7468 7265 6164 6.13623s (thread │ │ │ │ -00003b10: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00003b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003a90: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 7469 -----+.|i15 : ti │ │ │ │ +00003aa0: 6d65 2072 6174 696f 6e61 6c43 7572 7665 me rationalCurve │ │ │ │ +00003ab0: 2834 2c7b 342c 327d 2920 2d20 7261 7469 (4,{4,2}) - rati │ │ │ │ +00003ac0: 6f6e 616c 4375 7276 6528 322c 7b34 2c32 onalCurve(2,{4,2 │ │ │ │ +00003ad0: 7d29 2f38 7c0a 7c20 2d2d 2075 7365 6420 })/8|.| -- used │ │ │ │ +00003ae0: 362e 3538 3935 3673 2028 6370 7529 3b20 6.58956s (cpu); │ │ │ │ +00003af0: 352e 3437 3932 3373 2028 7468 7265 6164 5.47923s (thread │ │ │ │ +00003b00: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00003b10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003b60: 2020 7c0a 7c6f 3135 203d 2033 3838 3339 |.|o15 = 38839 │ │ │ │ -00003b70: 3032 3532 3820 2020 2020 2020 2020 2020 02528 │ │ │ │ +00003b50: 2020 7c0a 7c6f 3135 203d 2033 3838 3339 |.|o15 = 38839 │ │ │ │ +00003b60: 3032 3532 3820 2020 2020 2020 2020 2020 02528 │ │ │ │ +00003b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003ba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003b90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003be0: 7c0a 7c6f 3135 203a 2051 5120 2020 2020 |.|o15 : QQ │ │ │ │ +00003bd0: 7c0a 7c6f 3135 203a 2051 5120 2020 2020 |.|o15 : QQ │ │ │ │ +00003be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00003c20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00003c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00003c10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00003c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00003c60: 7c69 3136 203a 2074 696d 6520 7261 7469 |i16 : time rati │ │ │ │ -00003c70: 6f6e 616c 4375 7276 6528 342c 7b33 2c33 onalCurve(4,{3,3 │ │ │ │ -00003c80: 7d29 202d 2072 6174 696f 6e61 6c43 7572 }) - rationalCur │ │ │ │ -00003c90: 7665 2832 2c7b 332c 337d 292f 387c 0a7c ve(2,{3,3})/8|.| │ │ │ │ -00003ca0: 202d 2d20 7573 6564 2037 2e39 3236 3273 -- used 7.9262s │ │ │ │ -00003cb0: 2028 6370 7529 3b20 362e 3031 3639 3273 (cpu); 6.01692s │ │ │ │ -00003cc0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00003cd0: 6329 2020 2020 2020 2020 2020 7c0a 7c20 c) |.| │ │ │ │ +00003c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00003c50: 7c69 3136 203a 2074 696d 6520 7261 7469 |i16 : time rati │ │ │ │ +00003c60: 6f6e 616c 4375 7276 6528 342c 7b33 2c33 onalCurve(4,{3,3 │ │ │ │ +00003c70: 7d29 202d 2072 6174 696f 6e61 6c43 7572 }) - rationalCur │ │ │ │ +00003c80: 7665 2832 2c7b 332c 337d 292f 387c 0a7c ve(2,{3,3})/8|.| │ │ │ │ +00003c90: 202d 2d20 7573 6564 2036 2e38 3033 3234 -- used 6.80324 │ │ │ │ +00003ca0: 7320 2863 7075 293b 2035 2e36 3738 3736 s (cpu); 5.67876 │ │ │ │ +00003cb0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00003cc0: 6763 2920 2020 2020 2020 2020 7c0a 7c20 gc) |.| │ │ │ │ +00003cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d10: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00003d20: 3620 3d20 3131 3339 3434 3833 3834 2020 6 = 1139448384 │ │ │ │ +00003d00: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00003d10: 3620 3d20 3131 3339 3434 3833 3834 2020 6 = 1139448384 │ │ │ │ +00003d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00003d40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00003d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d90: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ -00003da0: 3a20 5151 2020 2020 2020 2020 2020 2020 : QQ │ │ │ │ +00003d80: 2020 2020 2020 2020 207c 0a7c 6f31 3620 |.|o16 │ │ │ │ +00003d90: 3a20 5151 2020 2020 2020 2020 2020 2020 : QQ │ │ │ │ +00003da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003dd0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00003dc0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00003dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003e10: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ -00003e20: 6f20 7573 6520 7261 7469 6f6e 616c 4375 o use rationalCu │ │ │ │ -00003e30: 7276 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d rve:.=========== │ │ │ │ -00003e40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00003e50: 0a20 202a 2022 7261 7469 6f6e 616c 4375 . * "rationalCu │ │ │ │ -00003e60: 7276 6528 5a5a 2922 0a20 202a 2022 7261 rve(ZZ)". * "ra │ │ │ │ -00003e70: 7469 6f6e 616c 4375 7276 6528 5a5a 2c4c tionalCurve(ZZ,L │ │ │ │ -00003e80: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ -00003e90: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00003ea0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00003eb0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00003ec0: 6174 696f 6e61 6c43 7572 7665 3a20 7261 ationalCurve: ra │ │ │ │ -00003ed0: 7469 6f6e 616c 4375 7276 652c 2069 7320 tionalCurve, is │ │ │ │ -00003ee0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -00003ef0: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ -00003f00: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -00003f10: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00003e00: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ +00003e10: 6f20 7573 6520 7261 7469 6f6e 616c 4375 o use rationalCu │ │ │ │ +00003e20: 7276 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d rve:.=========== │ │ │ │ +00003e30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00003e40: 0a20 202a 2022 7261 7469 6f6e 616c 4375 . * "rationalCu │ │ │ │ +00003e50: 7276 6528 5a5a 2922 0a20 202a 2022 7261 rve(ZZ)". * "ra │ │ │ │ +00003e60: 7469 6f6e 616c 4375 7276 6528 5a5a 2c4c tionalCurve(ZZ,L │ │ │ │ +00003e70: 6973 7429 220a 0a46 6f72 2074 6865 2070 ist)"..For the p │ │ │ │ +00003e80: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00003e90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00003ea0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00003eb0: 6174 696f 6e61 6c43 7572 7665 3a20 7261 ationalCurve: ra │ │ │ │ +00003ec0: 7469 6f6e 616c 4375 7276 652c 2069 7320 tionalCurve, is │ │ │ │ +00003ed0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +00003ee0: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +00003ef0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +00003f00: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00003f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003f60: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00003f70: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00003f80: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00003f90: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00003fa0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00003fb0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00003fc0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00003fd0: 0a45 6e75 6d65 7261 7469 6f6e 4375 7276 .EnumerationCurv │ │ │ │ -00003fe0: 6573 2e6d 323a 3938 313a 302e 0a1f 0a54 es.m2:981:0....T │ │ │ │ -00003ff0: 6167 2054 6162 6c65 3a0a 4e6f 6465 3a20 ag Table:.Node: │ │ │ │ -00004000: 546f 707f 3237 320a 4e6f 6465 3a20 6c69 Top.272.Node: li │ │ │ │ -00004010: 6e65 7348 7970 6572 7375 7266 6163 657f nesHypersurface. │ │ │ │ -00004020: 3334 3235 0a4e 6f64 653a 206d 756c 7469 3425.Node: multi │ │ │ │ -00004030: 706c 6543 6f76 6572 7f35 3238 340a 4e6f pleCover.5284.No │ │ │ │ -00004040: 6465 3a20 7261 7469 6f6e 616c 4375 7276 de: rationalCurv │ │ │ │ -00004050: 657f 3638 3434 0a1f 0a45 6e64 2054 6167 e.6844...End Tag │ │ │ │ -00004060: 2054 6162 6c65 0a Table. │ │ │ │ +00003f50: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00003f60: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00003f70: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00003f80: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00003f90: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00003fa0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00003fb0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00003fc0: 0a45 6e75 6d65 7261 7469 6f6e 4375 7276 .EnumerationCurv │ │ │ │ +00003fd0: 6573 2e6d 323a 3938 313a 302e 0a1f 0a54 es.m2:981:0....T │ │ │ │ +00003fe0: 6167 2054 6162 6c65 3a0a 4e6f 6465 3a20 ag Table:.Node: │ │ │ │ +00003ff0: 546f 707f 3237 320a 4e6f 6465 3a20 6c69 Top.272.Node: li │ │ │ │ +00004000: 6e65 7348 7970 6572 7375 7266 6163 657f nesHypersurface. │ │ │ │ +00004010: 3334 3235 0a4e 6f64 653a 206d 756c 7469 3425.Node: multi │ │ │ │ +00004020: 706c 6543 6f76 6572 7f35 3238 340a 4e6f pleCover.5284.No │ │ │ │ +00004030: 6465 3a20 7261 7469 6f6e 616c 4375 7276 de: rationalCurv │ │ │ │ +00004040: 657f 3638 3434 0a1f 0a45 6e64 2054 6167 e.6844...End Tag │ │ │ │ +00004050: 2054 6162 6c65 0a Table. │ │ ├── ./usr/share/info/EquivariantGB.info.gz │ │ │ ├── EquivariantGB.info │ │ │ │ @@ -1917,21 +1917,21 @@ │ │ │ │ 000077c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000077d0: 2020 2020 2020 2020 2020 7c0a 7c33 2020 |.|3 │ │ │ │ 000077e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000077f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007820: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007830: 2020 2d2d 2075 7365 6420 2e30 3031 3938 -- used .00198 │ │ │ │ -00007840: 3433 3720 7365 636f 6e64 7320 2020 2020 437 seconds │ │ │ │ +00007830: 2020 2d2d 2075 7365 6420 2e30 3032 3030 -- used .00200 │ │ │ │ +00007840: 3634 2073 6563 6f6e 6473 2020 2020 2020 64 seconds │ │ │ │ 00007850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007870: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007880: 2020 2d2d 2075 7365 6420 2e30 3030 3534 -- used .00054 │ │ │ │ -00007890: 3037 3334 2073 6563 6f6e 6473 2020 2020 0734 seconds │ │ │ │ +00007880: 2020 2d2d 2075 7365 6420 2e30 3030 3538 -- used .00058 │ │ │ │ +00007890: 3433 3838 2073 6563 6f6e 6473 2020 2020 4388 seconds │ │ │ │ 000078a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078c0: 2020 2020 2020 2020 2020 7c0a 7c28 392c |.|(9, │ │ │ │ 000078d0: 2039 2920 2020 2020 2020 2020 2020 2020 9) │ │ │ │ 000078e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000078f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1942,21 +1942,21 @@ │ │ │ │ 00007950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007960: 2020 2020 2020 2020 2020 7c0a 7c34 2020 |.|4 │ │ │ │ 00007970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000079c0: 2020 2d2d 2075 7365 6420 2e30 3033 3238 -- used .00328 │ │ │ │ -000079d0: 3738 3820 7365 636f 6e64 7320 2020 2020 788 seconds │ │ │ │ +000079c0: 2020 2d2d 2075 7365 6420 2e30 3034 3037 -- used .00407 │ │ │ │ +000079d0: 3533 3120 7365 636f 6e64 7320 2020 2020 531 seconds │ │ │ │ 000079e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000079f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007a10: 2020 2d2d 2075 7365 6420 2e30 3034 3332 -- used .00432 │ │ │ │ -00007a20: 3834 3820 7365 636f 6e64 7320 2020 2020 848 seconds │ │ │ │ +00007a10: 2020 2d2d 2075 7365 6420 2e30 3034 3838 -- used .00488 │ │ │ │ +00007a20: 3435 3820 7365 636f 6e64 7320 2020 2020 458 seconds │ │ │ │ 00007a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a50: 2020 2020 2020 2020 2020 7c0a 7c28 3136 |.|(16 │ │ │ │ 00007a60: 2c20 3236 2920 2020 2020 2020 2020 2020 , 26) │ │ │ │ 00007a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1967,61 +1967,61 @@ │ │ │ │ 00007ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007af0: 2020 2020 2020 2020 2020 7c0a 7c35 2020 |.|5 │ │ │ │ 00007b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007b50: 2020 2d2d 2075 7365 6420 2e30 3037 3838 -- used .00788 │ │ │ │ -00007b60: 3437 3620 7365 636f 6e64 7320 2020 2020 476 seconds │ │ │ │ +00007b50: 2020 2d2d 2075 7365 6420 2e30 3038 3434 -- used .00844 │ │ │ │ +00007b60: 3739 2073 6563 6f6e 6473 2020 2020 2020 79 seconds │ │ │ │ 00007b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007b90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007ba0: 2020 2d2d 2075 7365 6420 2e30 3236 3033 -- used .02603 │ │ │ │ -00007bb0: 3632 2073 6563 6f6e 6473 2020 2020 2020 62 seconds │ │ │ │ +00007ba0: 2020 2d2d 2075 7365 6420 2e30 3236 3235 -- used .02625 │ │ │ │ +00007bb0: 3620 7365 636f 6e64 7320 2020 2020 2020 6 seconds │ │ │ │ 00007bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007be0: 2020 2020 2020 2020 2020 7c0a 7c28 3235 |.|(25 │ │ │ │ 00007bf0: 2c20 3630 2920 2020 2020 2020 2020 2020 , 60) │ │ │ │ 00007c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c30: 2020 2020 2020 2020 2020 7c0a 7c36 2020 |.|6 │ │ │ │ 00007c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007c80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007c90: 2020 2d2d 2075 7365 6420 2e30 3137 3537 -- used .01757 │ │ │ │ -00007ca0: 3532 2073 6563 6f6e 6473 2020 2020 2020 52 seconds │ │ │ │ +00007c90: 2020 2d2d 2075 7365 6420 2e30 3138 3739 -- used .01879 │ │ │ │ +00007ca0: 3431 2073 6563 6f6e 6473 2020 2020 2020 41 seconds │ │ │ │ 00007cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007ce0: 2020 2d2d 2075 7365 6420 2e32 3132 3130 -- used .21210 │ │ │ │ -00007cf0: 3620 7365 636f 6e64 7320 2020 2020 2020 6 seconds │ │ │ │ +00007ce0: 2020 2d2d 2075 7365 6420 2e32 3031 3138 -- used .20118 │ │ │ │ +00007cf0: 3720 7365 636f 6e64 7320 2020 2020 2020 7 seconds │ │ │ │ 00007d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d20: 2020 2020 2020 2020 2020 7c0a 7c28 3336 |.|(36 │ │ │ │ 00007d30: 2c20 3132 3029 2020 2020 2020 2020 2020 , 120) │ │ │ │ 00007d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d70: 2020 2020 2020 2020 2020 7c0a 7c37 2020 |.|7 │ │ │ │ 00007d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007dc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007dd0: 2020 2d2d 2075 7365 6420 2e30 3337 3039 -- used .03709 │ │ │ │ -00007de0: 3734 2073 6563 6f6e 6473 2020 2020 2020 74 seconds │ │ │ │ +00007dd0: 2020 2d2d 2075 7365 6420 2e30 3430 3735 -- used .04075 │ │ │ │ +00007de0: 3636 2073 6563 6f6e 6473 2020 2020 2020 66 seconds │ │ │ │ 00007df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00007e20: 2020 2d2d 2075 7365 6420 2e37 3931 3337 -- used .79137 │ │ │ │ -00007e30: 3620 7365 636f 6e64 7320 2020 2020 2020 6 seconds │ │ │ │ +00007e20: 2020 2d2d 2075 7365 6420 2e38 3039 3530 -- used .80950 │ │ │ │ +00007e30: 3720 7365 636f 6e64 7320 2020 2020 2020 7 seconds │ │ │ │ 00007e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e60: 2020 2020 2020 2020 2020 7c0a 7c28 3439 |.|(49 │ │ │ │ 00007e70: 2c20 3231 3729 2020 2020 2020 2020 2020 , 217) │ │ │ │ 00007e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/FastMinors.info.gz │ │ │ ├── FastMinors.info │ │ │ │ @@ -4406,17 +4406,17 @@ │ │ │ │ 00011350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011360: 2d2d 2d2d 2d2d 2b0a 7c69 3238 203a 2074 ------+.|i28 : t │ │ │ │ 00011370: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011380: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011390: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000113a0: 6779 3d3e 5261 6e64 6f6d 2929 2020 2020 gy=>Random)) │ │ │ │ 000113b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000113c0: 6420 302e 3137 3739 3639 7320 2863 7075 d 0.177969s (cpu │ │ │ │ -000113d0: 293b 2030 2e31 3232 3030 3473 2028 7468 ); 0.122004s (th │ │ │ │ -000113e0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +000113c0: 6420 302e 3231 3939 3538 7320 2863 7075 d 0.219958s (cpu │ │ │ │ +000113d0: 293b 2030 2e31 3533 3632 7320 2874 6872 ); 0.15362s (thr │ │ │ │ +000113e0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 000113f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011450: 2020 2020 2020 7c0a 7c6f 3238 203d 2032 |.|o28 = 2 │ │ │ │ @@ -4431,16 +4431,16 @@ │ │ │ │ 000114e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000114f0: 2d2d 2d2d 2d2d 2b0a 7c69 3239 203a 2074 ------+.|i29 : t │ │ │ │ 00011500: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011510: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011520: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 00011530: 6779 3d3e 4c65 7853 6d61 6c6c 6573 7429 gy=>LexSmallest) │ │ │ │ 00011540: 2920 2020 2020 7c0a 7c20 2d2d 2075 7365 ) |.| -- use │ │ │ │ -00011550: 6420 302e 3332 3437 3632 7320 2863 7075 d 0.324762s (cpu │ │ │ │ -00011560: 293b 2030 2e32 3132 3635 3273 2028 7468 ); 0.212652s (th │ │ │ │ +00011550: 6420 302e 3335 3538 3737 7320 2863 7075 d 0.355877s (cpu │ │ │ │ +00011560: 293b 2030 2e32 3234 3031 3773 2028 7468 ); 0.224017s (th │ │ │ │ 00011570: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00011580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000115a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000115d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4456,17 +4456,17 @@ │ │ │ │ 00011670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011680: 2d2d 2d2d 2d2d 2b0a 7c69 3330 203a 2074 ------+.|i30 : t │ │ │ │ 00011690: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 000116a0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 000116b0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000116c0: 6779 3d3e 4c65 7853 6d61 6c6c 6573 7454 gy=>LexSmallestT │ │ │ │ 000116d0: 6572 6d29 2920 7c0a 7c20 2d2d 2075 7365 erm)) |.| -- use │ │ │ │ -000116e0: 6420 302e 3530 3530 3735 7320 2863 7075 d 0.505075s (cpu │ │ │ │ -000116f0: 293b 2030 2e33 3238 3334 7320 2874 6872 ); 0.32834s (thr │ │ │ │ -00011700: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +000116e0: 6420 302e 3536 3335 3839 7320 2863 7075 d 0.563589s (cpu │ │ │ │ +000116f0: 293b 2030 2e33 3630 3931 3373 2028 7468 ); 0.360913s (th │ │ │ │ +00011700: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00011710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011720: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011770: 2020 2020 2020 7c0a 7c6f 3330 203d 2031 |.|o30 = 1 │ │ │ │ @@ -4481,16 +4481,16 @@ │ │ │ │ 00011800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011810: 2d2d 2d2d 2d2d 2b0a 7c69 3331 203a 2074 ------+.|i31 : t │ │ │ │ 00011820: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011830: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 00011840: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 00011850: 6779 3d3e 4c65 784c 6172 6765 7374 2929 gy=>LexLargest)) │ │ │ │ 00011860: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011870: 6420 302e 3232 3638 3235 7320 2863 7075 d 0.226825s (cpu │ │ │ │ -00011880: 293b 2030 2e31 3835 3538 3773 2028 7468 ); 0.185587s (th │ │ │ │ +00011870: 6420 302e 3238 3831 3534 7320 2863 7075 d 0.288154s (cpu │ │ │ │ +00011880: 293b 2030 2e32 3235 3136 3273 2028 7468 ); 0.225162s (th │ │ │ │ 00011890: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000118a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000118c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4506,16 +4506,16 @@ │ │ │ │ 00011990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000119a0: 2d2d 2d2d 2d2d 2b0a 7c69 3332 203a 2074 ------+.|i32 : t │ │ │ │ 000119b0: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 000119c0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ 000119d0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ 000119e0: 6779 3d3e 4752 6576 4c65 7853 6d61 6c6c gy=>GRevLexSmall │ │ │ │ 000119f0: 6573 7429 2920 7c0a 7c20 2d2d 2075 7365 est)) |.| -- use │ │ │ │ -00011a00: 6420 302e 3338 3633 3738 7320 2863 7075 d 0.386378s (cpu │ │ │ │ -00011a10: 293b 2030 2e32 3132 3731 7320 2874 6872 ); 0.21271s (thr │ │ │ │ +00011a00: 6420 302e 3434 3033 3273 2028 6370 7529 d 0.44032s (cpu) │ │ │ │ +00011a10: 3b20 302e 3233 3333 3939 7320 2874 6872 ; 0.233399s (thr │ │ │ │ 00011a20: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00011a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4528,20 +4528,20 @@ │ │ │ │ 00011af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011b30: 2d2d 2d2d 2d2d 2b0a 7c69 3333 203a 2074 ------+.|i33 : t │ │ │ │ 00011b40: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ 00011b50: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011b60: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011b70: 6779 3d3e 2020 2020 2020 2020 2020 2020 gy=> │ │ │ │ +00011b60: 2036 2c20 4d2c 204a 2c20 2020 2020 2020 6, M, J, │ │ │ │ +00011b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011b80: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011b90: 6420 302e 3335 3630 3333 7320 2863 7075 d 0.356033s (cpu │ │ │ │ -00011ba0: 293b 2030 2e32 3439 3031 7320 2874 6872 ); 0.24901s (thr │ │ │ │ -00011bb0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00011b90: 6420 302e 3337 3132 3137 7320 2863 7075 d 0.371217s (cpu │ │ │ │ +00011ba0: 293b 2030 2e32 3339 3536 3873 2028 7468 ); 0.239568s (th │ │ │ │ +00011bb0: 7265 6164 293b 2030 7320 2020 2020 2020 read); 0s │ │ │ │ 00011bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011bd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c20: 2020 2020 2020 7c0a 7c6f 3333 203d 2033 |.|o33 = 3 │ │ │ │ @@ -4550,6019 +4550,6019 @@ │ │ │ │ 00011c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c70: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00011c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011cc0: 2d2d 2d2d 2d2d 7c0a 7c47 5265 764c 6578 ------|.|GRevLex │ │ │ │ -00011cd0: 536d 616c 6c65 7374 5465 726d 2929 2020 SmallestTerm)) │ │ │ │ -00011ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011cc0: 2d2d 2d2d 2d2d 7c0a 7c53 7472 6174 6567 ------|.|Strateg │ │ │ │ +00011cd0: 793d 3e47 5265 764c 6578 536d 616c 6c65 y=>GRevLexSmalle │ │ │ │ +00011ce0: 7374 5465 726d 2929 2020 2020 2020 2020 stTerm)) │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00011d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011d60: 2d2d 2d2d 2d2d 2b0a 7c69 3334 203a 2074 ------+.|i34 : t │ │ │ │ -00011d70: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ -00011d80: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011d90: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011da0: 6779 3d3e 4752 6576 4c65 784c 6172 6765 gy=>GRevLexLarge │ │ │ │ -00011db0: 7374 2929 2020 7c0a 7c20 2d2d 2075 7365 st)) |.| -- use │ │ │ │ -00011dc0: 6420 302e 3239 3938 3835 7320 2863 7075 d 0.299885s (cpu │ │ │ │ -00011dd0: 293b 2030 2e31 3838 3633 3673 2028 7468 ); 0.188636s (th │ │ │ │ -00011de0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ -00011df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00011e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d10: 2020 2020 2020 7c0a 7c28 6763 2920 2020 |.|(gc) │ │ │ │ +00011d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011d60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00011d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011db0: 2d2d 2d2d 2d2d 2b0a 7c69 3334 203a 2074 ------+.|i34 : t │ │ │ │ +00011dc0: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ +00011dd0: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ +00011de0: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ +00011df0: 6779 3d3e 4752 6576 4c65 784c 6172 6765 gy=>GRevLexLarge │ │ │ │ +00011e00: 7374 2929 2020 7c0a 7c20 2d2d 2075 7365 st)) |.| -- use │ │ │ │ +00011e10: 6420 302e 3334 3539 3832 7320 2863 7075 d 0.345982s (cpu │ │ │ │ +00011e20: 293b 2030 2e31 3938 3873 2028 7468 7265 ); 0.1988s (thre │ │ │ │ +00011e30: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00011e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011e50: 2020 2020 2020 7c0a 7c6f 3334 203d 2033 |.|o34 = 3 │ │ │ │ +00011e50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011ea0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00011eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00011ef0: 2d2d 2d2d 2d2d 2b0a 7c69 3335 203a 2074 ------+.|i35 : t │ │ │ │ -00011f00: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ -00011f10: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ -00011f20: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ -00011f30: 6779 3d3e 506f 696e 7473 2929 2020 2020 gy=>Points)) │ │ │ │ -00011f40: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011f50: 6420 3135 2e34 3736 3673 2028 6370 7529 d 15.4766s (cpu) │ │ │ │ -00011f60: 3b20 3130 2e35 3337 3573 2028 7468 7265 ; 10.5375s (thre │ │ │ │ -00011f70: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -00011f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00011fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ea0: 2020 2020 2020 7c0a 7c6f 3334 203d 2033 |.|o34 = 3 │ │ │ │ +00011eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011ef0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00011f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00011f40: 2d2d 2d2d 2d2d 2b0a 7c69 3335 203a 2074 ------+.|i35 : t │ │ │ │ +00011f50: 696d 6520 6469 6d20 284a 202b 2063 686f ime dim (J + cho │ │ │ │ +00011f60: 6f73 6547 6f6f 644d 696e 6f72 7328 382c oseGoodMinors(8, │ │ │ │ +00011f70: 2036 2c20 4d2c 204a 2c20 5374 7261 7465 6, M, J, Strate │ │ │ │ +00011f80: 6779 3d3e 506f 696e 7473 2929 2020 2020 gy=>Points)) │ │ │ │ +00011f90: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +00011fa0: 6420 3137 2e35 3232 3373 2028 6370 7529 d 17.5223s (cpu) │ │ │ │ +00011fb0: 3b20 3131 2e34 3932 3173 2028 7468 7265 ; 11.4921s (thre │ │ │ │ +00011fc0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00011fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011fe0: 2020 2020 2020 7c0a 7c6f 3335 203d 2031 |.|o35 = 1 │ │ │ │ +00011fe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00011ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012030: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00012040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012080: 2d2d 2d2d 2d2d 2b0a 0a49 6e64 6565 642c ------+..Indeed, │ │ │ │ -00012090: 2069 6e20 7468 6973 2065 7861 6d70 6c65 in this example │ │ │ │ -000120a0: 2c20 6576 656e 2063 6f6d 7075 7469 6e67 , even computing │ │ │ │ -000120b0: 2064 6574 6572 6d69 6e61 6e74 7320 6f66 determinants of │ │ │ │ -000120c0: 2031 2c30 3030 2072 616e 646f 6d0a 7375 1,000 random.su │ │ │ │ -000120d0: 626d 6174 7269 6365 7320 6973 206e 6f74 bmatrices is not │ │ │ │ -000120e0: 2074 7970 6963 616c 6c79 2065 6e6f 7567 typically enoug │ │ │ │ -000120f0: 6820 746f 2076 6572 6966 7920 7468 6174 h to verify that │ │ │ │ -00012100: 2024 5628 4a29 2420 6973 2072 6567 756c $V(J)$ is regul │ │ │ │ -00012110: 6172 2069 6e0a 636f 6469 6d65 6e73 696f ar in.codimensio │ │ │ │ -00012120: 6e20 312e 2020 4f6e 2074 6865 206f 7468 n 1. On the oth │ │ │ │ -00012130: 6572 2068 616e 642c 2050 6f69 6e74 7320 er hand, Points │ │ │ │ -00012140: 6973 2061 6c6d 6f73 7420 616c 7761 7973 is almost always │ │ │ │ -00012150: 2071 7569 7465 2065 6666 6563 7469 7665 quite effective │ │ │ │ -00012160: 2061 740a 6669 6e64 696e 6720 7661 6c75 at.finding valu │ │ │ │ -00012170: 6162 6c65 2073 7562 6d61 7472 6963 6573 able submatrices │ │ │ │ -00012180: 2c20 6275 7420 6361 6e20 6265 2071 7569 , but can be qui │ │ │ │ -00012190: 7465 2073 6c6f 772e 2020 496e 2074 6869 te slow. In thi │ │ │ │ -000121a0: 7320 7061 7274 6963 756c 6172 0a65 7861 s particular.exa │ │ │ │ -000121b0: 6d70 6c65 2c20 7765 2063 616e 2073 6565 mple, we can see │ │ │ │ -000121c0: 2074 6861 7420 4c65 7853 6d61 6c6c 6573 that LexSmalles │ │ │ │ -000121d0: 7454 6572 6d20 616c 736f 2070 6572 666f tTerm also perfo │ │ │ │ -000121e0: 726d 7320 7665 7279 2077 656c 6c20 2861 rms very well (a │ │ │ │ -000121f0: 6e64 2064 6f65 7320 6974 0a71 7569 636b nd does it.quick │ │ │ │ -00012200: 6c79 292e 2053 696e 6365 2064 6966 6665 ly). Since diffe │ │ │ │ -00012210: 7265 6e74 2073 7472 6174 6567 6965 7320 rent strategies │ │ │ │ -00012220: 776f 726b 2062 6574 7465 7220 6f72 2077 work better or w │ │ │ │ -00012230: 6f72 7365 206f 6e20 6469 6666 6572 656e orse on differen │ │ │ │ -00012240: 740a 6578 616d 706c 6573 2c20 7468 6520 t.examples, the │ │ │ │ -00012250: 6465 6661 756c 7420 7374 7261 7465 6779 default strategy │ │ │ │ -00012260: 2061 6374 7561 6c6c 7920 6d69 7865 7320 actually mixes │ │ │ │ -00012270: 616e 6420 6d61 7463 6865 7320 7661 7269 and matches vari │ │ │ │ -00012280: 6f75 7320 7374 7261 7465 6769 6573 2e0a ous strategies.. │ │ │ │ -00012290: 5468 6520 6465 6661 756c 7420 7374 7261 The default stra │ │ │ │ -000122a0: 7465 6779 2c20 7768 6963 6820 7765 206e tegy, which we n │ │ │ │ -000122b0: 6f77 2065 6c75 6369 6461 7465 2c0a 0a2b ow elucidate,..+ │ │ │ │ -000122c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000122e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000122f0: 3336 203a 2070 6565 6b20 5374 7261 7465 36 : peek Strate │ │ │ │ -00012300: 6779 4465 6661 756c 7420 2020 2020 2020 gyDefault │ │ │ │ -00012310: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00012320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012340: 2020 2020 2020 2020 2020 7c0a 7c6f 3336 |.|o36 │ │ │ │ -00012350: 203d 204f 7074 696f 6e54 6162 6c65 7b47 = OptionTable{G │ │ │ │ -00012360: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ -00012370: 2030 2020 2020 2020 7d7c 0a7c 2020 2020 0 }|.| │ │ │ │ -00012380: 2020 2020 2020 2020 2020 2020 2020 4752 GR │ │ │ │ -00012390: 6576 4c65 7853 6d61 6c6c 6573 7420 3d3e evLexSmallest => │ │ │ │ -000123a0: 2031 3620 2020 2020 7c0a 7c20 2020 2020 16 |.| │ │ │ │ -000123b0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ -000123c0: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ -000123d0: 203d 3e20 3136 207c 0a7c 2020 2020 2020 => 16 |.| │ │ │ │ -000123e0: 2020 2020 2020 2020 2020 2020 4c65 784c LexL │ │ │ │ -000123f0: 6172 6765 7374 203d 3e20 3020 2020 2020 argest => 0 │ │ │ │ -00012400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00012410: 2020 2020 2020 2020 2020 204c 6578 536d LexSm │ │ │ │ -00012420: 616c 6c65 7374 203d 3e20 3136 2020 2020 allest => 16 │ │ │ │ -00012430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00012440: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ -00012450: 6c6c 6573 7454 6572 6d20 3d3e 2031 3620 llestTerm => 16 │ │ │ │ -00012460: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00012470: 2020 2020 2020 2020 2050 6f69 6e74 7320 Points │ │ │ │ -00012480: 3d3e 2030 2020 2020 2020 2020 2020 2020 => 0 │ │ │ │ -00012490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000124a0: 2020 2020 2020 2020 5261 6e64 6f6d 203d Random = │ │ │ │ -000124b0: 3e20 3136 2020 2020 2020 2020 2020 2020 > 16 │ │ │ │ -000124c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000124d0: 2020 2020 2020 2052 616e 646f 6d4e 6f6e RandomNon │ │ │ │ -000124e0: 7a65 726f 203d 3e20 3136 2020 2020 2020 zero => 16 │ │ │ │ -000124f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00012500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012520: 2b0a 0a73 6179 7320 7468 6174 2077 6520 +..says that we │ │ │ │ -00012530: 7368 6f75 6c64 2075 7365 2047 5265 764c should use GRevL │ │ │ │ -00012540: 6578 536d 616c 6c65 7374 2c20 4752 6576 exSmallest, GRev │ │ │ │ -00012550: 4c65 7853 6d61 6c6c 6573 7454 6572 6d2c LexSmallestTerm, │ │ │ │ -00012560: 204c 6578 536d 616c 6c65 7374 2c0a 4c65 LexSmallest,.Le │ │ │ │ -00012570: 7853 6d61 6c6c 6573 7454 6572 6d2c 2052 xSmallestTerm, R │ │ │ │ -00012580: 616e 646f 6d2c 2052 616e 646f 6d4e 6f6e andom, RandomNon │ │ │ │ -00012590: 7a65 726f 2061 6c6c 2077 6974 6820 6571 zero all with eq │ │ │ │ -000125a0: 7561 6c20 7072 6f62 6162 696c 6974 7920 ual probability │ │ │ │ -000125b0: 286e 6f74 650a 5261 6e64 6f6d 4e6f 6e7a (note.RandomNonz │ │ │ │ -000125c0: 6572 6f2c 2077 6869 6368 2077 6520 6861 ero, which we ha │ │ │ │ -000125d0: 7665 206e 6f74 2079 6574 2064 6973 6375 ve not yet discu │ │ │ │ -000125e0: 7373 6564 2063 686f 6f73 6573 2072 616e ssed chooses ran │ │ │ │ -000125f0: 646f 6d20 7375 626d 6174 7269 6365 7320 dom submatrices │ │ │ │ -00012600: 7768 6572 650a 6e6f 2072 6f77 206f 7220 where.no row or │ │ │ │ -00012610: 636f 6c75 6d6e 2069 7320 7a65 726f 2c20 column is zero, │ │ │ │ -00012620: 7768 6963 6820 6973 2067 6f6f 6420 666f which is good fo │ │ │ │ -00012630: 7220 776f 726b 696e 6720 696e 2073 7061 r working in spa │ │ │ │ -00012640: 7273 6520 6d61 7472 6963 6573 292e 2020 rse matrices). │ │ │ │ -00012650: 466f 720a 696e 7374 616e 6365 2c20 6966 For.instance, if │ │ │ │ -00012660: 2077 6520 7275 6e3a 0a0a 2b2d 2d2d 2d2d we run:..+----- │ │ │ │ -00012670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000126a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000126b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 203a --------+.|i37 : │ │ │ │ -000126c0: 2074 696d 6520 6368 6f6f 7365 476f 6f64 time chooseGood │ │ │ │ -000126d0: 4d69 6e6f 7273 2832 302c 2036 2c20 4d2c Minors(20, 6, M, │ │ │ │ -000126e0: 204a 2c20 5374 7261 7465 6779 3d3e 5374 J, Strategy=>St │ │ │ │ -000126f0: 7261 7465 6779 4465 6661 756c 742c 2020 rategyDefault, │ │ │ │ -00012700: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00012710: 7365 6420 302e 3338 3331 3336 7320 2863 sed 0.383136s (c │ │ │ │ -00012720: 7075 293b 2030 2e33 3234 3137 3473 2028 pu); 0.324174s ( │ │ │ │ -00012730: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -00012740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012750: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ -00012760: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012770: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012030: 2020 2020 2020 7c0a 7c6f 3335 203d 2031 |.|o35 = 1 │ │ │ │ +00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012080: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00012090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000120d0: 2d2d 2d2d 2d2d 2b0a 0a49 6e64 6565 642c ------+..Indeed, │ │ │ │ +000120e0: 2069 6e20 7468 6973 2065 7861 6d70 6c65 in this example │ │ │ │ +000120f0: 2c20 6576 656e 2063 6f6d 7075 7469 6e67 , even computing │ │ │ │ +00012100: 2064 6574 6572 6d69 6e61 6e74 7320 6f66 determinants of │ │ │ │ +00012110: 2031 2c30 3030 2072 616e 646f 6d0a 7375 1,000 random.su │ │ │ │ +00012120: 626d 6174 7269 6365 7320 6973 206e 6f74 bmatrices is not │ │ │ │ +00012130: 2074 7970 6963 616c 6c79 2065 6e6f 7567 typically enoug │ │ │ │ +00012140: 6820 746f 2076 6572 6966 7920 7468 6174 h to verify that │ │ │ │ +00012150: 2024 5628 4a29 2420 6973 2072 6567 756c $V(J)$ is regul │ │ │ │ +00012160: 6172 2069 6e0a 636f 6469 6d65 6e73 696f ar in.codimensio │ │ │ │ +00012170: 6e20 312e 2020 4f6e 2074 6865 206f 7468 n 1. On the oth │ │ │ │ +00012180: 6572 2068 616e 642c 2050 6f69 6e74 7320 er hand, Points │ │ │ │ +00012190: 6973 2061 6c6d 6f73 7420 616c 7761 7973 is almost always │ │ │ │ +000121a0: 2071 7569 7465 2065 6666 6563 7469 7665 quite effective │ │ │ │ +000121b0: 2061 740a 6669 6e64 696e 6720 7661 6c75 at.finding valu │ │ │ │ +000121c0: 6162 6c65 2073 7562 6d61 7472 6963 6573 able submatrices │ │ │ │ +000121d0: 2c20 6275 7420 6361 6e20 6265 2071 7569 , but can be qui │ │ │ │ +000121e0: 7465 2073 6c6f 772e 2020 496e 2074 6869 te slow. In thi │ │ │ │ +000121f0: 7320 7061 7274 6963 756c 6172 0a65 7861 s particular.exa │ │ │ │ +00012200: 6d70 6c65 2c20 7765 2063 616e 2073 6565 mple, we can see │ │ │ │ +00012210: 2074 6861 7420 4c65 7853 6d61 6c6c 6573 that LexSmalles │ │ │ │ +00012220: 7454 6572 6d20 616c 736f 2070 6572 666f tTerm also perfo │ │ │ │ +00012230: 726d 7320 7665 7279 2077 656c 6c20 2861 rms very well (a │ │ │ │ +00012240: 6e64 2064 6f65 7320 6974 0a71 7569 636b nd does it.quick │ │ │ │ +00012250: 6c79 292e 2053 696e 6365 2064 6966 6665 ly). Since diffe │ │ │ │ +00012260: 7265 6e74 2073 7472 6174 6567 6965 7320 rent strategies │ │ │ │ +00012270: 776f 726b 2062 6574 7465 7220 6f72 2077 work better or w │ │ │ │ +00012280: 6f72 7365 206f 6e20 6469 6666 6572 656e orse on differen │ │ │ │ +00012290: 740a 6578 616d 706c 6573 2c20 7468 6520 t.examples, the │ │ │ │ +000122a0: 6465 6661 756c 7420 7374 7261 7465 6779 default strategy │ │ │ │ +000122b0: 2061 6374 7561 6c6c 7920 6d69 7865 7320 actually mixes │ │ │ │ +000122c0: 616e 6420 6d61 7463 6865 7320 7661 7269 and matches vari │ │ │ │ +000122d0: 6f75 7320 7374 7261 7465 6769 6573 2e0a ous strategies.. │ │ │ │ +000122e0: 5468 6520 6465 6661 756c 7420 7374 7261 The default stra │ │ │ │ +000122f0: 7465 6779 2c20 7768 6963 6820 7765 206e tegy, which we n │ │ │ │ +00012300: 6f77 2065 6c75 6369 6461 7465 2c0a 0a2b ow elucidate,..+ │ │ │ │ +00012310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00012340: 3336 203a 2070 6565 6b20 5374 7261 7465 36 : peek Strate │ │ │ │ +00012350: 6779 4465 6661 756c 7420 2020 2020 2020 gyDefault │ │ │ │ +00012360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00012370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012390: 2020 2020 2020 2020 2020 7c0a 7c6f 3336 |.|o36 │ │ │ │ +000123a0: 203d 204f 7074 696f 6e54 6162 6c65 7b47 = OptionTable{G │ │ │ │ +000123b0: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ +000123c0: 2030 2020 2020 2020 7d7c 0a7c 2020 2020 0 }|.| │ │ │ │ +000123d0: 2020 2020 2020 2020 2020 2020 2020 4752 GR │ │ │ │ +000123e0: 6576 4c65 7853 6d61 6c6c 6573 7420 3d3e evLexSmallest => │ │ │ │ +000123f0: 2031 3620 2020 2020 7c0a 7c20 2020 2020 16 |.| │ │ │ │ +00012400: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ +00012410: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ +00012420: 203d 3e20 3136 207c 0a7c 2020 2020 2020 => 16 |.| │ │ │ │ +00012430: 2020 2020 2020 2020 2020 2020 4c65 784c LexL │ │ │ │ +00012440: 6172 6765 7374 203d 3e20 3020 2020 2020 argest => 0 │ │ │ │ +00012450: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00012460: 2020 2020 2020 2020 2020 204c 6578 536d LexSm │ │ │ │ +00012470: 616c 6c65 7374 203d 3e20 3136 2020 2020 allest => 16 │ │ │ │ +00012480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00012490: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ +000124a0: 6c6c 6573 7454 6572 6d20 3d3e 2031 3620 llestTerm => 16 │ │ │ │ +000124b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000124c0: 2020 2020 2020 2020 2050 6f69 6e74 7320 Points │ │ │ │ +000124d0: 3d3e 2030 2020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +000124e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000124f0: 2020 2020 2020 2020 5261 6e64 6f6d 203d Random = │ │ │ │ +00012500: 3e20 3136 2020 2020 2020 2020 2020 2020 > 16 │ │ │ │ +00012510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00012520: 2020 2020 2020 2052 616e 646f 6d4e 6f6e RandomNon │ │ │ │ +00012530: 7a65 726f 203d 3e20 3136 2020 2020 2020 zero => 16 │ │ │ │ +00012540: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00012550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012570: 2b0a 0a73 6179 7320 7468 6174 2077 6520 +..says that we │ │ │ │ +00012580: 7368 6f75 6c64 2075 7365 2047 5265 764c should use GRevL │ │ │ │ +00012590: 6578 536d 616c 6c65 7374 2c20 4752 6576 exSmallest, GRev │ │ │ │ +000125a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d2c LexSmallestTerm, │ │ │ │ +000125b0: 204c 6578 536d 616c 6c65 7374 2c0a 4c65 LexSmallest,.Le │ │ │ │ +000125c0: 7853 6d61 6c6c 6573 7454 6572 6d2c 2052 xSmallestTerm, R │ │ │ │ +000125d0: 616e 646f 6d2c 2052 616e 646f 6d4e 6f6e andom, RandomNon │ │ │ │ +000125e0: 7a65 726f 2061 6c6c 2077 6974 6820 6571 zero all with eq │ │ │ │ +000125f0: 7561 6c20 7072 6f62 6162 696c 6974 7920 ual probability │ │ │ │ +00012600: 286e 6f74 650a 5261 6e64 6f6d 4e6f 6e7a (note.RandomNonz │ │ │ │ +00012610: 6572 6f2c 2077 6869 6368 2077 6520 6861 ero, which we ha │ │ │ │ +00012620: 7665 206e 6f74 2079 6574 2064 6973 6375 ve not yet discu │ │ │ │ +00012630: 7373 6564 2063 686f 6f73 6573 2072 616e ssed chooses ran │ │ │ │ +00012640: 646f 6d20 7375 626d 6174 7269 6365 7320 dom submatrices │ │ │ │ +00012650: 7768 6572 650a 6e6f 2072 6f77 206f 7220 where.no row or │ │ │ │ +00012660: 636f 6c75 6d6e 2069 7320 7a65 726f 2c20 column is zero, │ │ │ │ +00012670: 7768 6963 6820 6973 2067 6f6f 6420 666f which is good fo │ │ │ │ +00012680: 7220 776f 726b 696e 6720 696e 2073 7061 r working in spa │ │ │ │ +00012690: 7273 6520 6d61 7472 6963 6573 292e 2020 rse matrices). │ │ │ │ +000126a0: 466f 720a 696e 7374 616e 6365 2c20 6966 For.instance, if │ │ │ │ +000126b0: 2077 6520 7275 6e3a 0a0a 2b2d 2d2d 2d2d we run:..+----- │ │ │ │ +000126c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000126f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012700: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 203a --------+.|i37 : │ │ │ │ +00012710: 2074 696d 6520 6368 6f6f 7365 476f 6f64 time chooseGood │ │ │ │ +00012720: 4d69 6e6f 7273 2832 302c 2036 2c20 4d2c Minors(20, 6, M, │ │ │ │ +00012730: 204a 2c20 5374 7261 7465 6779 3d3e 5374 J, Strategy=>St │ │ │ │ +00012740: 7261 7465 6779 4465 6661 756c 742c 2020 rategyDefault, │ │ │ │ +00012750: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +00012760: 7365 6420 302e 3435 3033 3831 7320 2863 sed 0.450381s (c │ │ │ │ +00012770: 7075 293b 2030 2e33 3738 3332 3473 2028 pu); 0.378324s ( │ │ │ │ +00012780: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00012790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127a0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000127b0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000127c0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -000127d0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +000127c0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +000127d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127f0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012800: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012810: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012810: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012820: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 00012830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012840: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012850: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012860: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012870: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012860: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012890: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000128a0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000128b0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ -000128c0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +000128b0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000128c0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 000128d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128e0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000128f0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012900: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ 00012910: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012930: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012940: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012950: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012960: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00012950: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00012960: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012980: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012990: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000129a0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -000129b0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +000129a0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000129b0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 000129c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129d0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 000129e0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -000129f0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012a00: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +000129f0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012a00: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a20: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012a30: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012a40: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012a50: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012a40: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012a50: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a70: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012a80: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012a90: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012aa0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00012a90: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012aa0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012ac0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012ad0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012ae0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012af0: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00012ae0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012af0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b10: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012b20: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012b30: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ 00012b40: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b60: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012b70: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012b80: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012b80: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012b90: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012bb0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012bc0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012bd0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ -00012be0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00012bd0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012c00: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012c10: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ 00012c20: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ 00012c30: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012c50: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012c60: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012c70: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012c80: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00012c70: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00012c80: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00012c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012ca0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012cb0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012cc0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ -00012cd0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +00012cc0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012cd0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00012ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012cf0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012d00: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012d10: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ -00012d20: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00012d10: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00012d20: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00012d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012d40: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ 00012d50: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ -00012d60: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ -00012d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012d60: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00012d70: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00012d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012d90: 2020 2020 2020 2020 7c0a 7c63 686f 6f73 |.|choos │ │ │ │ -00012da0: 6547 6f6f 644d 696e 6f72 733a 2066 6f75 eGoodMinors: fou │ │ │ │ -00012db0: 6e64 203d 3230 2c20 6174 7465 6d70 7465 nd =20, attempte │ │ │ │ -00012dc0: 6420 3d20 3230 2020 2020 2020 2020 2020 d = 20 │ │ │ │ +00012d90: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00012da0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00012db0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00012dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00012df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012de0: 2020 2020 2020 2020 7c0a 7c63 686f 6f73 |.|choos │ │ │ │ +00012df0: 6547 6f6f 644d 696e 6f72 733a 2066 6f75 eGoodMinors: fou │ │ │ │ +00012e00: 6e64 203d 3230 2c20 6174 7465 6d70 7465 nd =20, attempte │ │ │ │ +00012e10: 6420 3d20 3230 2020 2020 2020 2020 2020 d = 20 │ │ │ │ 00012e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e30: 2020 2020 2020 2020 7c0a 7c6f 3337 203a |.|o37 : │ │ │ │ -00012e40: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +00012e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00012e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012e80: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ -00012e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012ed0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c56 6572 626f --------|.|Verbo │ │ │ │ -00012ee0: 7365 3d3e 7472 7565 293b 2020 2020 2020 se=>true); │ │ │ │ -00012ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012f20: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00012f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00012f70: 2d2d 2d2d 2d2d 2d2d 2b0a 0a77 6520 6361 --------+..we ca │ │ │ │ -00012f80: 6e20 7365 6520 6469 6666 6572 656e 7420 n see different │ │ │ │ -00012f90: 6d69 6e6f 7273 2062 6569 6e67 2063 686f minors being cho │ │ │ │ -00012fa0: 7365 6e20 7669 6120 6469 6666 6572 656e sen via differen │ │ │ │ -00012fb0: 7420 7374 7261 7465 6769 6573 2e0a 0a4e t strategies...N │ │ │ │ -00012fc0: 6f74 652c 2069 6620 6f6e 6520 6173 6b73 ote, if one asks │ │ │ │ -00012fd0: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ -00012fe0: 7320 666f 7220 6d6f 7265 2074 6861 6e20 s for more than │ │ │ │ -00012ff0: 6f6e 6520 6d69 6e6f 722c 2074 6865 6e20 one minor, then │ │ │ │ -00013000: 616e 7920 7469 6d65 2061 0a50 6f69 6e74 any time a.Point │ │ │ │ -00013010: 7320 7374 7261 7465 6779 2069 7320 7365 s strategy is se │ │ │ │ -00013020: 6c65 6374 6564 2c20 7468 6520 706f 696e lected, the poin │ │ │ │ -00013030: 7420 6973 2066 6f75 6e64 206f 6e20 244a t is found on $J │ │ │ │ -00013040: 2420 706c 7573 2074 6865 2069 6465 616c $ plus the ideal │ │ │ │ -00013050: 206f 6620 616c 6c0a 6d69 6e6f 7273 2063 of all.minors c │ │ │ │ -00013060: 6f6d 7075 7465 6420 7468 7573 2066 6172 omputed thus far │ │ │ │ -00013070: 2e0a 0a4c 6574 2075 7320 7461 6b65 2061 ...Let us take a │ │ │ │ -00013080: 206c 6f6f 6b20 6174 2073 6f6d 6520 6f74 look at some ot │ │ │ │ -00013090: 6865 7220 6275 696c 742d 696e 2073 7472 her built-in str │ │ │ │ -000130a0: 6174 6567 6965 732e 0a0a 2b2d 2d2d 2d2d ategies...+----- │ │ │ │ -000130b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000130d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 3a20 -------+.|i38 : │ │ │ │ -000130e0: 7065 656b 2053 7472 6174 6567 7944 6566 peek StrategyDef │ │ │ │ -000130f0: 6175 6c74 4e6f 6e52 616e 646f 6d20 2020 aultNonRandom │ │ │ │ -00013100: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00013110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013130: 2020 2020 207c 0a7c 6f33 3820 3d20 4f70 |.|o38 = Op │ │ │ │ -00013140: 7469 6f6e 5461 626c 657b 4752 6576 4c65 tionTable{GRevLe │ │ │ │ -00013150: 784c 6172 6765 7374 203d 3e20 3020 2020 xLargest => 0 │ │ │ │ -00013160: 2020 207d 7c0a 7c20 2020 2020 2020 2020 }|.| │ │ │ │ -00013170: 2020 2020 2020 2020 2047 5265 764c 6578 GRevLex │ │ │ │ -00013180: 536d 616c 6c65 7374 203d 3e20 3235 2020 Smallest => 25 │ │ │ │ -00013190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000131a0: 2020 2020 2020 2020 4752 6576 4c65 7853 GRevLexS │ │ │ │ -000131b0: 6d61 6c6c 6573 7454 6572 6d20 3d3e 2032 mallestTerm => 2 │ │ │ │ -000131c0: 3520 7c0a 7c20 2020 2020 2020 2020 2020 5 |.| │ │ │ │ -000131d0: 2020 2020 2020 204c 6578 4c61 7267 6573 LexLarges │ │ │ │ -000131e0: 7420 3d3e 2030 2020 2020 2020 2020 2020 t => 0 │ │ │ │ -000131f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013200: 2020 2020 2020 4c65 7853 6d61 6c6c 6573 LexSmalles │ │ │ │ -00013210: 7420 3d3e 2032 3520 2020 2020 2020 2020 t => 25 │ │ │ │ -00013220: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013230: 2020 2020 204c 6578 536d 616c 6c65 7374 LexSmallest │ │ │ │ -00013240: 5465 726d 203d 3e20 3235 2020 2020 207c Term => 25 | │ │ │ │ -00013250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00013260: 2020 2020 506f 696e 7473 203d 3e20 3020 Points => 0 │ │ │ │ -00013270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013280: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00013290: 2020 2052 616e 646f 6d20 3d3e 2030 2020 Random => 0 │ │ │ │ -000132a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000132b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000132c0: 2020 5261 6e64 6f6d 4e6f 6e7a 6572 6f20 RandomNonzero │ │ │ │ -000132d0: 3d3e 2030 2020 2020 2020 2020 7c0a 2b2d => 0 |.+- │ │ │ │ -000132e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000132f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00013310: 3920 3a20 7065 656b 2053 7472 6174 6567 9 : peek Strateg │ │ │ │ -00013320: 7944 6566 6175 6c74 5769 7468 506f 696e yDefaultWithPoin │ │ │ │ -00013330: 7473 2020 2020 2020 2020 7c0a 7c20 2020 ts |.| │ │ │ │ -00013340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013360: 2020 2020 2020 2020 207c 0a7c 6f33 3920 |.|o39 │ │ │ │ -00013370: 3d20 4f70 7469 6f6e 5461 626c 657b 4752 = OptionTable{GR │ │ │ │ -00013380: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ -00013390: 3020 2020 2020 207d 7c0a 7c20 2020 2020 0 }|.| │ │ │ │ -000133a0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ -000133b0: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ -000133c0: 3136 2020 2020 207c 0a7c 2020 2020 2020 16 |.| │ │ │ │ -000133d0: 2020 2020 2020 2020 2020 2020 4752 6576 GRev │ │ │ │ -000133e0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -000133f0: 3d3e 2031 3620 7c0a 7c20 2020 2020 2020 => 16 |.| │ │ │ │ -00013400: 2020 2020 2020 2020 2020 204c 6578 4c61 LexLa │ │ │ │ -00013410: 7267 6573 7420 3d3e 2030 2020 2020 2020 rgest => 0 │ │ │ │ -00013420: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00013430: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ -00013440: 6c6c 6573 7420 3d3e 2031 3620 2020 2020 llest => 16 │ │ │ │ -00013450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00013460: 2020 2020 2020 2020 204c 6578 536d 616c LexSmal │ │ │ │ -00013470: 6c65 7374 5465 726d 203d 3e20 3136 2020 lestTerm => 16 │ │ │ │ -00013480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00013490: 2020 2020 2020 2020 506f 696e 7473 203d Points = │ │ │ │ -000134a0: 3e20 3332 2020 2020 2020 2020 2020 2020 > 32 │ │ │ │ -000134b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000134c0: 2020 2020 2020 2052 616e 646f 6d20 3d3e Random => │ │ │ │ -000134d0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000134e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000134f0: 2020 2020 2020 5261 6e64 6f6d 4e6f 6e7a RandomNonz │ │ │ │ -00013500: 6572 6f20 3d3e 2030 2020 2020 2020 2020 ero => 0 │ │ │ │ -00013510: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00013520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013540: 0a7c 6934 3020 3a20 7065 656b 2053 7472 .|i40 : peek Str │ │ │ │ -00013550: 6174 6567 7950 6f69 6e74 7320 2020 2020 ategyPoints │ │ │ │ -00013560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00013570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00013580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013590: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000135a0: 6f34 3020 3d20 4f70 7469 6f6e 5461 626c o40 = OptionTabl │ │ │ │ -000135b0: 657b 4752 6576 4c65 784c 6172 6765 7374 e{GRevLexLargest │ │ │ │ -000135c0: 203d 3e20 3020 2020 2020 7d20 7c0a 7c20 => 0 } |.| │ │ │ │ +00012e80: 2020 2020 2020 2020 7c0a 7c6f 3337 203a |.|o37 : │ │ │ │ +00012e90: 2049 6465 616c 206f 6620 5320 2020 2020 Ideal of S │ │ │ │ +00012ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012ed0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00012ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f20: 2d2d 2d2d 2d2d 2d2d 7c0a 7c56 6572 626f --------|.|Verbo │ │ │ │ +00012f30: 7365 3d3e 7472 7565 293b 2020 2020 2020 se=>true); │ │ │ │ +00012f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00012f70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00012f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00012fc0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a77 6520 6361 --------+..we ca │ │ │ │ +00012fd0: 6e20 7365 6520 6469 6666 6572 656e 7420 n see different │ │ │ │ +00012fe0: 6d69 6e6f 7273 2062 6569 6e67 2063 686f minors being cho │ │ │ │ +00012ff0: 7365 6e20 7669 6120 6469 6666 6572 656e sen via differen │ │ │ │ +00013000: 7420 7374 7261 7465 6769 6573 2e0a 0a4e t strategies...N │ │ │ │ +00013010: 6f74 652c 2069 6620 6f6e 6520 6173 6b73 ote, if one asks │ │ │ │ +00013020: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ +00013030: 7320 666f 7220 6d6f 7265 2074 6861 6e20 s for more than │ │ │ │ +00013040: 6f6e 6520 6d69 6e6f 722c 2074 6865 6e20 one minor, then │ │ │ │ +00013050: 616e 7920 7469 6d65 2061 0a50 6f69 6e74 any time a.Point │ │ │ │ +00013060: 7320 7374 7261 7465 6779 2069 7320 7365 s strategy is se │ │ │ │ +00013070: 6c65 6374 6564 2c20 7468 6520 706f 696e lected, the poin │ │ │ │ +00013080: 7420 6973 2066 6f75 6e64 206f 6e20 244a t is found on $J │ │ │ │ +00013090: 2420 706c 7573 2074 6865 2069 6465 616c $ plus the ideal │ │ │ │ +000130a0: 206f 6620 616c 6c0a 6d69 6e6f 7273 2063 of all.minors c │ │ │ │ +000130b0: 6f6d 7075 7465 6420 7468 7573 2066 6172 omputed thus far │ │ │ │ +000130c0: 2e0a 0a4c 6574 2075 7320 7461 6b65 2061 ...Let us take a │ │ │ │ +000130d0: 206c 6f6f 6b20 6174 2073 6f6d 6520 6f74 look at some ot │ │ │ │ +000130e0: 6865 7220 6275 696c 742d 696e 2073 7472 her built-in str │ │ │ │ +000130f0: 6174 6567 6965 732e 0a0a 2b2d 2d2d 2d2d ategies...+----- │ │ │ │ +00013100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013120: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 3a20 -------+.|i38 : │ │ │ │ +00013130: 7065 656b 2053 7472 6174 6567 7944 6566 peek StrategyDef │ │ │ │ +00013140: 6175 6c74 4e6f 6e52 616e 646f 6d20 2020 aultNonRandom │ │ │ │ +00013150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00013160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013180: 2020 2020 207c 0a7c 6f33 3820 3d20 4f70 |.|o38 = Op │ │ │ │ +00013190: 7469 6f6e 5461 626c 657b 4752 6576 4c65 tionTable{GRevLe │ │ │ │ +000131a0: 784c 6172 6765 7374 203d 3e20 3020 2020 xLargest => 0 │ │ │ │ +000131b0: 2020 207d 7c0a 7c20 2020 2020 2020 2020 }|.| │ │ │ │ +000131c0: 2020 2020 2020 2020 2047 5265 764c 6578 GRevLex │ │ │ │ +000131d0: 536d 616c 6c65 7374 203d 3e20 3235 2020 Smallest => 25 │ │ │ │ +000131e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000131f0: 2020 2020 2020 2020 4752 6576 4c65 7853 GRevLexS │ │ │ │ +00013200: 6d61 6c6c 6573 7454 6572 6d20 3d3e 2032 mallestTerm => 2 │ │ │ │ +00013210: 3520 7c0a 7c20 2020 2020 2020 2020 2020 5 |.| │ │ │ │ +00013220: 2020 2020 2020 204c 6578 4c61 7267 6573 LexLarges │ │ │ │ +00013230: 7420 3d3e 2030 2020 2020 2020 2020 2020 t => 0 │ │ │ │ +00013240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013250: 2020 2020 2020 4c65 7853 6d61 6c6c 6573 LexSmalles │ │ │ │ +00013260: 7420 3d3e 2032 3520 2020 2020 2020 2020 t => 25 │ │ │ │ +00013270: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013280: 2020 2020 204c 6578 536d 616c 6c65 7374 LexSmallest │ │ │ │ +00013290: 5465 726d 203d 3e20 3235 2020 2020 207c Term => 25 | │ │ │ │ +000132a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000132b0: 2020 2020 506f 696e 7473 203d 3e20 3020 Points => 0 │ │ │ │ +000132c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000132d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000132e0: 2020 2052 616e 646f 6d20 3d3e 2030 2020 Random => 0 │ │ │ │ +000132f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00013300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013310: 2020 5261 6e64 6f6d 4e6f 6e7a 6572 6f20 RandomNonzero │ │ │ │ +00013320: 3d3e 2030 2020 2020 2020 2020 7c0a 2b2d => 0 |.+- │ │ │ │ +00013330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00013360: 3920 3a20 7065 656b 2053 7472 6174 6567 9 : peek Strateg │ │ │ │ +00013370: 7944 6566 6175 6c74 5769 7468 506f 696e yDefaultWithPoin │ │ │ │ +00013380: 7473 2020 2020 2020 2020 7c0a 7c20 2020 ts |.| │ │ │ │ +00013390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000133b0: 2020 2020 2020 2020 207c 0a7c 6f33 3920 |.|o39 │ │ │ │ +000133c0: 3d20 4f70 7469 6f6e 5461 626c 657b 4752 = OptionTable{GR │ │ │ │ +000133d0: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ +000133e0: 3020 2020 2020 207d 7c0a 7c20 2020 2020 0 }|.| │ │ │ │ +000133f0: 2020 2020 2020 2020 2020 2020 2047 5265 GRe │ │ │ │ +00013400: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ +00013410: 3136 2020 2020 207c 0a7c 2020 2020 2020 16 |.| │ │ │ │ +00013420: 2020 2020 2020 2020 2020 2020 4752 6576 GRev │ │ │ │ +00013430: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00013440: 3d3e 2031 3620 7c0a 7c20 2020 2020 2020 => 16 |.| │ │ │ │ +00013450: 2020 2020 2020 2020 2020 204c 6578 4c61 LexLa │ │ │ │ +00013460: 7267 6573 7420 3d3e 2030 2020 2020 2020 rgest => 0 │ │ │ │ +00013470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00013480: 2020 2020 2020 2020 2020 4c65 7853 6d61 LexSma │ │ │ │ +00013490: 6c6c 6573 7420 3d3e 2031 3620 2020 2020 llest => 16 │ │ │ │ +000134a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000134b0: 2020 2020 2020 2020 204c 6578 536d 616c LexSmal │ │ │ │ +000134c0: 6c65 7374 5465 726d 203d 3e20 3136 2020 lestTerm => 16 │ │ │ │ +000134d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000134e0: 2020 2020 2020 2020 506f 696e 7473 203d Points = │ │ │ │ +000134f0: 3e20 3332 2020 2020 2020 2020 2020 2020 > 32 │ │ │ │ +00013500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013510: 2020 2020 2020 2052 616e 646f 6d20 3d3e Random => │ │ │ │ +00013520: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00013530: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00013540: 2020 2020 2020 5261 6e64 6f6d 4e6f 6e7a RandomNonz │ │ │ │ +00013550: 6572 6f20 3d3e 2030 2020 2020 2020 2020 ero => 0 │ │ │ │ +00013560: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00013570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013590: 0a7c 6934 3020 3a20 7065 656b 2053 7472 .|i40 : peek Str │ │ │ │ +000135a0: 6174 6567 7950 6f69 6e74 7320 2020 2020 ategyPoints │ │ │ │ +000135b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000135c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000135d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000135e0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ -000135f0: 203d 3e20 3020 2020 2020 207c 0a7c 2020 => 0 |.| │ │ │ │ -00013600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013610: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ -00013620: 6572 6d20 3d3e 2030 2020 7c0a 7c20 2020 erm => 0 |.| │ │ │ │ -00013630: 2020 2020 2020 2020 2020 2020 2020 204c L │ │ │ │ -00013640: 6578 4c61 7267 6573 7420 3d3e 2030 2020 exLargest => 0 │ │ │ │ -00013650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00013660: 2020 2020 2020 2020 2020 2020 2020 4c65 Le │ │ │ │ -00013670: 7853 6d61 6c6c 6573 7420 3d3e 2030 2020 xSmallest => 0 │ │ │ │ -00013680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00013690: 2020 2020 2020 2020 2020 2020 204c 6578 Lex │ │ │ │ -000136a0: 536d 616c 6c65 7374 5465 726d 203d 3e20 SmallestTerm => │ │ │ │ -000136b0: 3020 2020 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ -000136c0: 2020 2020 2020 2020 2020 2020 506f 696e Poin │ │ │ │ -000136d0: 7473 203d 3e20 3130 3020 2020 2020 2020 ts => 100 │ │ │ │ -000136e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000136f0: 2020 2020 2020 2020 2020 2052 616e 646f Rando │ │ │ │ -00013700: 6d20 3d3e 2030 2020 2020 2020 2020 2020 m => 0 │ │ │ │ -00013710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00013720: 2020 2020 2020 2020 2020 5261 6e64 6f6d Random │ │ │ │ -00013730: 4e6f 6e7a 6572 6f20 3d3e 2030 2020 2020 Nonzero => 0 │ │ │ │ -00013740: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013770: 2d2d 2d2b 0a0a 5374 7261 7465 6779 4465 ---+..StrategyDe │ │ │ │ -00013780: 6661 756c 744e 6f6e 5261 6e64 6f6d 2069 faultNonRandom i │ │ │ │ -00013790: 7320 6c69 6b65 2053 7472 6174 6567 7944 s like StrategyD │ │ │ │ -000137a0: 6566 6175 6c74 2062 7574 2072 656d 6f76 efault but remov │ │ │ │ -000137b0: 6573 2072 616e 646f 6d20 7375 626d 6174 es random submat │ │ │ │ -000137c0: 7269 6365 730a 2877 6869 6368 2063 616e rices.(which can │ │ │ │ -000137d0: 2062 6520 7375 7270 7269 7369 6e67 6c79 be surprisingly │ │ │ │ -000137e0: 2062 656e 6566 6963 6961 6c20 696e 2073 beneficial in s │ │ │ │ -000137f0: 6f6d 6520 6361 7365 7329 2e0a 5374 7261 ome cases)..Stra │ │ │ │ -00013800: 7465 6779 4465 6661 756c 7457 6974 6850 tegyDefaultWithP │ │ │ │ -00013810: 6f69 6e74 7320 7265 6d6f 7665 7320 7261 oints removes ra │ │ │ │ -00013820: 6e64 6f6d 6e65 7373 2062 7574 2061 6464 ndomness but add │ │ │ │ -00013830: 7320 696e 2070 6f69 6e74 7320 696e 7374 s in points inst │ │ │ │ -00013840: 6561 642e 0a0a 4120 7761 726e 696e 6720 ead...A warning │ │ │ │ -00013850: 6f6e 2063 686f 6f73 6547 6f6f 644d 696e on chooseGoodMin │ │ │ │ -00013860: 6f72 733a 2020 5468 6520 7374 7261 7465 ors: The strate │ │ │ │ -00013870: 6769 6573 204c 6578 536d 616c 6c65 7374 gies LexSmallest │ │ │ │ -00013880: 2061 6e64 204c 6578 536d 616c 6c65 7374 and LexSmallest │ │ │ │ -00013890: 5465 726d 0a77 696c 6c20 7665 7279 2066 Term.will very f │ │ │ │ -000138a0: 7265 7175 656e 746c 7920 7265 7065 6174 requently repeat │ │ │ │ -000138b0: 6564 6c79 2063 686f 6f73 6520 7468 6520 edly choose the │ │ │ │ -000138c0: 7361 6d65 2073 7562 6d61 7472 6978 206f same submatrix o │ │ │ │ -000138d0: 6620 7468 6520 6769 7665 6e20 6d61 7472 f the given matr │ │ │ │ -000138e0: 6978 2e0a 4865 6e63 6520 6966 206f 6e65 ix..Hence if one │ │ │ │ -000138f0: 2074 7269 6573 2074 6f20 7275 6e20 6368 tries to run ch │ │ │ │ -00013900: 6f6f 7365 476f 6f64 4d69 6e6f 7273 2061 ooseGoodMinors a │ │ │ │ -00013910: 6e64 2063 686f 6f73 6520 746f 6f20 6d61 nd choose too ma │ │ │ │ -00013920: 6e79 206d 696e 6f72 7320 7769 7468 2073 ny minors with s │ │ │ │ -00013930: 7563 680a 6120 7374 7261 7465 6779 2c20 uch.a strategy, │ │ │ │ -00013940: 6f6e 6520 6361 6e20 6765 7420 696e 746f one can get into │ │ │ │ -00013950: 2061 206c 6f6e 6720 6c6f 6f70 2028 7468 a long loop (th │ │ │ │ -00013960: 6520 6675 6e63 7469 6f6e 2067 6976 6520 e function give │ │ │ │ -00013970: 7570 2065 7665 6e74 7561 6c6c 792c 2062 up eventually, b │ │ │ │ -00013980: 7574 0a6f 6e6c 7920 6166 7465 7220 646f ut.only after do │ │ │ │ -00013990: 696e 6720 7761 7920 746f 6f20 6d75 6368 ing way too much │ │ │ │ -000139a0: 2077 6f72 6b29 2e20 2054 6865 2047 5265 work). The GRe │ │ │ │ -000139b0: 764c 6578 2073 7472 6174 6567 6965 7320 vLex strategies │ │ │ │ -000139c0: 7065 7269 6f64 6963 616c 6c79 0a74 656d periodically.tem │ │ │ │ -000139d0: 706f 7261 7269 6c79 2063 6861 6e67 6520 porarily change │ │ │ │ -000139e0: 7468 6520 756e 6465 726c 7969 6e67 206d the underlying m │ │ │ │ -000139f0: 6174 7269 7820 746f 2061 766f 6964 2074 atrix to avoid t │ │ │ │ -00013a00: 6869 7320 736f 7274 206f 6620 6c6f 6f70 his sort of loop │ │ │ │ -00013a10: 2e0a 0a50 6f69 6e74 733a 204e 6f74 6963 ...Points: Notic │ │ │ │ -00013a20: 6520 7468 6174 2053 7472 6174 6567 7920 e that Strategy │ │ │ │ -00013a30: 3d3e 2053 7472 6174 6567 7950 6f69 6e74 => StrategyPoint │ │ │ │ -00013a40: 7320 616e 6420 5374 7261 7465 6779 203d s and Strategy = │ │ │ │ -00013a50: 3e20 506f 696e 7473 2064 6f20 7468 650a > Points do the. │ │ │ │ -00013a60: 7361 6d65 2074 6869 6e67 2e20 5765 2062 same thing. We b │ │ │ │ -00013a70: 7269 6566 6c79 2064 6573 6372 6962 6520 riefly describe │ │ │ │ -00013a80: 686f 7720 6368 6f6f 7365 476f 6f64 4d69 how chooseGoodMi │ │ │ │ -00013a90: 6e6f 7273 2069 6e74 6572 6163 7473 2077 nors interacts w │ │ │ │ -00013aa0: 6974 6820 506f 696e 7473 2e0a 496e 6465 ith Points..Inde │ │ │ │ -00013ab0: 6564 2050 6f69 6e74 7320 666f 726d 7320 ed Points forms │ │ │ │ -00013ac0: 7468 6520 6964 6561 6c20 6f66 206d 696e the ideal of min │ │ │ │ -00013ad0: 6f72 7320 636f 6d70 7574 6564 2073 6f20 ors computed so │ │ │ │ -00013ae0: 6661 7220 2870 6c75 7320 244a 2429 2c20 far (plus $J$), │ │ │ │ -00013af0: 6669 6e64 7320 610a 706f 696e 7420 7768 finds a.point wh │ │ │ │ -00013b00: 6572 6520 7468 6174 2069 6465 616c 2076 ere that ideal v │ │ │ │ -00013b10: 616e 6973 6865 7320 2877 6869 6368 2063 anishes (which c │ │ │ │ -00013b20: 616e 2062 6520 736c 6f77 292c 2065 7661 an be slow), eva │ │ │ │ -00013b30: 6c75 6174 6573 2074 6865 206d 6174 7269 luates the matri │ │ │ │ -00013b40: 7820 244d 240a 6174 2074 6861 7420 706f x $M$.at that po │ │ │ │ -00013b50: 696e 742c 2061 6e64 2074 6865 6e20 6669 int, and then fi │ │ │ │ -00013b60: 6e61 6c6c 7920 636f 6d70 7574 6573 2074 nally computes t │ │ │ │ -00013b70: 6865 2063 6f72 7265 7370 6f6e 6469 6e67 he corresponding │ │ │ │ -00013b80: 2064 6574 6572 6d69 6e61 6e74 206f 6620 determinant of │ │ │ │ -00013b90: 7468 650a 7375 626d 6174 7269 782e 2020 the.submatrix. │ │ │ │ -00013ba0: 5468 6973 2073 7562 6d61 7472 6978 2077 This submatrix w │ │ │ │ -00013bb0: 696c 6c20 616c 7761 7973 2070 726f 6475 ill always produ │ │ │ │ -00013bc0: 6365 2061 206d 696e 6f72 2077 6869 6368 ce a minor which │ │ │ │ -00013bd0: 2073 6872 696e 6b73 206f 7572 0a76 616e shrinks our.van │ │ │ │ -00013be0: 6973 6869 6e67 206c 6f63 7573 2e0a 0a42 ishing locus...B │ │ │ │ -00013bf0: 7920 6465 6661 756c 742c 2074 6865 2050 y default, the P │ │ │ │ -00013c00: 6f69 6e74 7320 7374 7261 7465 6779 2061 oints strategy a │ │ │ │ -00013c10: 6374 7561 6c6c 7920 6669 6e64 7320 6765 ctually finds ge │ │ │ │ -00013c20: 6f6d 6574 7269 6320 706f 696e 7473 2e20 ometric points. │ │ │ │ -00013c30: 2057 6869 6368 2063 616e 2062 650a 736f Which can be.so │ │ │ │ -00013c40: 6d65 7469 6d65 7320 736c 6f77 6572 2028 metimes slower ( │ │ │ │ -00013c50: 6275 7420 7768 6963 6820 6172 6520 616c but which are al │ │ │ │ -00013c60: 6d6f 7374 2063 6572 7461 696e 2074 6f20 most certain to │ │ │ │ -00013c70: 6578 6973 742c 2061 6e64 2061 7265 206c exist, and are l │ │ │ │ -00013c80: 6573 7320 6c69 6b65 6c79 2074 6f0a 6861 ess likely to.ha │ │ │ │ -00013c90: 6e67 2069 6620 7468 6520 6675 6e63 7469 ng if the functi │ │ │ │ -00013ca0: 6f6e 2068 6173 2074 726f 7562 6c65 2066 on has trouble f │ │ │ │ -00013cb0: 696e 6469 6e67 2061 2070 6f69 6e74 292e inding a point). │ │ │ │ -00013cc0: 2020 466f 7220 696e 7374 616e 6365 2c20 For instance, │ │ │ │ -00013cd0: 7765 2063 616e 0a63 6f6e 7472 6f6c 2074 we can.control t │ │ │ │ -00013ce0: 6861 7420 6173 2066 6f6c 6c6f 7773 2e0a hat as follows.. │ │ │ │ -00013cf0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013d40: 0a7c 6934 3120 3a20 7074 7353 7472 6174 .|i41 : ptsStrat │ │ │ │ -00013d50: 4765 6f6d 6574 7269 6320 3d20 6e65 7720 Geometric = new │ │ │ │ -00013d60: 4f70 7469 6f6e 5461 626c 6520 6672 6f6d OptionTable from │ │ │ │ -00013d70: 2028 6f70 7469 6f6e 7320 2020 2020 2020 (options │ │ │ │ -00013d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013d90: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00013da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00013de0: 0a7c 6368 6f6f 7365 476f 6f64 4d69 6e6f .|chooseGoodMino │ │ │ │ -00013df0: 7273 2923 506f 696e 744f 7074 696f 6e73 rs)#PointOptions │ │ │ │ -00013e00: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00013e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013e30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013e80: 0a7c 6934 3220 3a20 7074 7353 7472 6174 .|i42 : ptsStrat │ │ │ │ -00013e90: 4765 6f6d 6574 7269 6323 4578 7465 6e64 Geometric#Extend │ │ │ │ -00013ea0: 4669 656c 6420 2d2d 6c6f 6f6b 2061 7420 Field --look at │ │ │ │ -00013eb0: 7468 6520 6465 6661 756c 7420 7661 6c75 the default valu │ │ │ │ -00013ec0: 6520 2020 2020 2020 2020 2020 2020 207c e | │ │ │ │ -00013ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00013ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013f20: 0a7c 6f34 3220 3d20 7472 7565 2020 2020 .|o42 = true │ │ │ │ +000135e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000135f0: 6f34 3020 3d20 4f70 7469 6f6e 5461 626c o40 = OptionTabl │ │ │ │ +00013600: 657b 4752 6576 4c65 784c 6172 6765 7374 e{GRevLexLargest │ │ │ │ +00013610: 203d 3e20 3020 2020 2020 7d20 7c0a 7c20 => 0 } |.| │ │ │ │ +00013620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013630: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +00013640: 203d 3e20 3020 2020 2020 207c 0a7c 2020 => 0 |.| │ │ │ │ +00013650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013660: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00013670: 6572 6d20 3d3e 2030 2020 7c0a 7c20 2020 erm => 0 |.| │ │ │ │ +00013680: 2020 2020 2020 2020 2020 2020 2020 204c L │ │ │ │ +00013690: 6578 4c61 7267 6573 7420 3d3e 2030 2020 exLargest => 0 │ │ │ │ +000136a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000136b0: 2020 2020 2020 2020 2020 2020 2020 4c65 Le │ │ │ │ +000136c0: 7853 6d61 6c6c 6573 7420 3d3e 2030 2020 xSmallest => 0 │ │ │ │ +000136d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000136e0: 2020 2020 2020 2020 2020 2020 204c 6578 Lex │ │ │ │ +000136f0: 536d 616c 6c65 7374 5465 726d 203d 3e20 SmallestTerm => │ │ │ │ +00013700: 3020 2020 2020 207c 0a7c 2020 2020 2020 0 |.| │ │ │ │ +00013710: 2020 2020 2020 2020 2020 2020 506f 696e Poin │ │ │ │ +00013720: 7473 203d 3e20 3130 3020 2020 2020 2020 ts => 100 │ │ │ │ +00013730: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00013740: 2020 2020 2020 2020 2020 2052 616e 646f Rando │ │ │ │ +00013750: 6d20 3d3e 2030 2020 2020 2020 2020 2020 m => 0 │ │ │ │ +00013760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00013770: 2020 2020 2020 2020 2020 5261 6e64 6f6d Random │ │ │ │ +00013780: 4e6f 6e7a 6572 6f20 3d3e 2030 2020 2020 Nonzero => 0 │ │ │ │ +00013790: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000137a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000137c0: 2d2d 2d2b 0a0a 5374 7261 7465 6779 4465 ---+..StrategyDe │ │ │ │ +000137d0: 6661 756c 744e 6f6e 5261 6e64 6f6d 2069 faultNonRandom i │ │ │ │ +000137e0: 7320 6c69 6b65 2053 7472 6174 6567 7944 s like StrategyD │ │ │ │ +000137f0: 6566 6175 6c74 2062 7574 2072 656d 6f76 efault but remov │ │ │ │ +00013800: 6573 2072 616e 646f 6d20 7375 626d 6174 es random submat │ │ │ │ +00013810: 7269 6365 730a 2877 6869 6368 2063 616e rices.(which can │ │ │ │ +00013820: 2062 6520 7375 7270 7269 7369 6e67 6c79 be surprisingly │ │ │ │ +00013830: 2062 656e 6566 6963 6961 6c20 696e 2073 beneficial in s │ │ │ │ +00013840: 6f6d 6520 6361 7365 7329 2e0a 5374 7261 ome cases)..Stra │ │ │ │ +00013850: 7465 6779 4465 6661 756c 7457 6974 6850 tegyDefaultWithP │ │ │ │ +00013860: 6f69 6e74 7320 7265 6d6f 7665 7320 7261 oints removes ra │ │ │ │ +00013870: 6e64 6f6d 6e65 7373 2062 7574 2061 6464 ndomness but add │ │ │ │ +00013880: 7320 696e 2070 6f69 6e74 7320 696e 7374 s in points inst │ │ │ │ +00013890: 6561 642e 0a0a 4120 7761 726e 696e 6720 ead...A warning │ │ │ │ +000138a0: 6f6e 2063 686f 6f73 6547 6f6f 644d 696e on chooseGoodMin │ │ │ │ +000138b0: 6f72 733a 2020 5468 6520 7374 7261 7465 ors: The strate │ │ │ │ +000138c0: 6769 6573 204c 6578 536d 616c 6c65 7374 gies LexSmallest │ │ │ │ +000138d0: 2061 6e64 204c 6578 536d 616c 6c65 7374 and LexSmallest │ │ │ │ +000138e0: 5465 726d 0a77 696c 6c20 7665 7279 2066 Term.will very f │ │ │ │ +000138f0: 7265 7175 656e 746c 7920 7265 7065 6174 requently repeat │ │ │ │ +00013900: 6564 6c79 2063 686f 6f73 6520 7468 6520 edly choose the │ │ │ │ +00013910: 7361 6d65 2073 7562 6d61 7472 6978 206f same submatrix o │ │ │ │ +00013920: 6620 7468 6520 6769 7665 6e20 6d61 7472 f the given matr │ │ │ │ +00013930: 6978 2e0a 4865 6e63 6520 6966 206f 6e65 ix..Hence if one │ │ │ │ +00013940: 2074 7269 6573 2074 6f20 7275 6e20 6368 tries to run ch │ │ │ │ +00013950: 6f6f 7365 476f 6f64 4d69 6e6f 7273 2061 ooseGoodMinors a │ │ │ │ +00013960: 6e64 2063 686f 6f73 6520 746f 6f20 6d61 nd choose too ma │ │ │ │ +00013970: 6e79 206d 696e 6f72 7320 7769 7468 2073 ny minors with s │ │ │ │ +00013980: 7563 680a 6120 7374 7261 7465 6779 2c20 uch.a strategy, │ │ │ │ +00013990: 6f6e 6520 6361 6e20 6765 7420 696e 746f one can get into │ │ │ │ +000139a0: 2061 206c 6f6e 6720 6c6f 6f70 2028 7468 a long loop (th │ │ │ │ +000139b0: 6520 6675 6e63 7469 6f6e 2067 6976 6520 e function give │ │ │ │ +000139c0: 7570 2065 7665 6e74 7561 6c6c 792c 2062 up eventually, b │ │ │ │ +000139d0: 7574 0a6f 6e6c 7920 6166 7465 7220 646f ut.only after do │ │ │ │ +000139e0: 696e 6720 7761 7920 746f 6f20 6d75 6368 ing way too much │ │ │ │ +000139f0: 2077 6f72 6b29 2e20 2054 6865 2047 5265 work). The GRe │ │ │ │ +00013a00: 764c 6578 2073 7472 6174 6567 6965 7320 vLex strategies │ │ │ │ +00013a10: 7065 7269 6f64 6963 616c 6c79 0a74 656d periodically.tem │ │ │ │ +00013a20: 706f 7261 7269 6c79 2063 6861 6e67 6520 porarily change │ │ │ │ +00013a30: 7468 6520 756e 6465 726c 7969 6e67 206d the underlying m │ │ │ │ +00013a40: 6174 7269 7820 746f 2061 766f 6964 2074 atrix to avoid t │ │ │ │ +00013a50: 6869 7320 736f 7274 206f 6620 6c6f 6f70 his sort of loop │ │ │ │ +00013a60: 2e0a 0a50 6f69 6e74 733a 204e 6f74 6963 ...Points: Notic │ │ │ │ +00013a70: 6520 7468 6174 2053 7472 6174 6567 7920 e that Strategy │ │ │ │ +00013a80: 3d3e 2053 7472 6174 6567 7950 6f69 6e74 => StrategyPoint │ │ │ │ +00013a90: 7320 616e 6420 5374 7261 7465 6779 203d s and Strategy = │ │ │ │ +00013aa0: 3e20 506f 696e 7473 2064 6f20 7468 650a > Points do the. │ │ │ │ +00013ab0: 7361 6d65 2074 6869 6e67 2e20 5765 2062 same thing. We b │ │ │ │ +00013ac0: 7269 6566 6c79 2064 6573 6372 6962 6520 riefly describe │ │ │ │ +00013ad0: 686f 7720 6368 6f6f 7365 476f 6f64 4d69 how chooseGoodMi │ │ │ │ +00013ae0: 6e6f 7273 2069 6e74 6572 6163 7473 2077 nors interacts w │ │ │ │ +00013af0: 6974 6820 506f 696e 7473 2e0a 496e 6465 ith Points..Inde │ │ │ │ +00013b00: 6564 2050 6f69 6e74 7320 666f 726d 7320 ed Points forms │ │ │ │ +00013b10: 7468 6520 6964 6561 6c20 6f66 206d 696e the ideal of min │ │ │ │ +00013b20: 6f72 7320 636f 6d70 7574 6564 2073 6f20 ors computed so │ │ │ │ +00013b30: 6661 7220 2870 6c75 7320 244a 2429 2c20 far (plus $J$), │ │ │ │ +00013b40: 6669 6e64 7320 610a 706f 696e 7420 7768 finds a.point wh │ │ │ │ +00013b50: 6572 6520 7468 6174 2069 6465 616c 2076 ere that ideal v │ │ │ │ +00013b60: 616e 6973 6865 7320 2877 6869 6368 2063 anishes (which c │ │ │ │ +00013b70: 616e 2062 6520 736c 6f77 292c 2065 7661 an be slow), eva │ │ │ │ +00013b80: 6c75 6174 6573 2074 6865 206d 6174 7269 luates the matri │ │ │ │ +00013b90: 7820 244d 240a 6174 2074 6861 7420 706f x $M$.at that po │ │ │ │ +00013ba0: 696e 742c 2061 6e64 2074 6865 6e20 6669 int, and then fi │ │ │ │ +00013bb0: 6e61 6c6c 7920 636f 6d70 7574 6573 2074 nally computes t │ │ │ │ +00013bc0: 6865 2063 6f72 7265 7370 6f6e 6469 6e67 he corresponding │ │ │ │ +00013bd0: 2064 6574 6572 6d69 6e61 6e74 206f 6620 determinant of │ │ │ │ +00013be0: 7468 650a 7375 626d 6174 7269 782e 2020 the.submatrix. │ │ │ │ +00013bf0: 5468 6973 2073 7562 6d61 7472 6978 2077 This submatrix w │ │ │ │ +00013c00: 696c 6c20 616c 7761 7973 2070 726f 6475 ill always produ │ │ │ │ +00013c10: 6365 2061 206d 696e 6f72 2077 6869 6368 ce a minor which │ │ │ │ +00013c20: 2073 6872 696e 6b73 206f 7572 0a76 616e shrinks our.van │ │ │ │ +00013c30: 6973 6869 6e67 206c 6f63 7573 2e0a 0a42 ishing locus...B │ │ │ │ +00013c40: 7920 6465 6661 756c 742c 2074 6865 2050 y default, the P │ │ │ │ +00013c50: 6f69 6e74 7320 7374 7261 7465 6779 2061 oints strategy a │ │ │ │ +00013c60: 6374 7561 6c6c 7920 6669 6e64 7320 6765 ctually finds ge │ │ │ │ +00013c70: 6f6d 6574 7269 6320 706f 696e 7473 2e20 ometric points. │ │ │ │ +00013c80: 2057 6869 6368 2063 616e 2062 650a 736f Which can be.so │ │ │ │ +00013c90: 6d65 7469 6d65 7320 736c 6f77 6572 2028 metimes slower ( │ │ │ │ +00013ca0: 6275 7420 7768 6963 6820 6172 6520 616c but which are al │ │ │ │ +00013cb0: 6d6f 7374 2063 6572 7461 696e 2074 6f20 most certain to │ │ │ │ +00013cc0: 6578 6973 742c 2061 6e64 2061 7265 206c exist, and are l │ │ │ │ +00013cd0: 6573 7320 6c69 6b65 6c79 2074 6f0a 6861 ess likely to.ha │ │ │ │ +00013ce0: 6e67 2069 6620 7468 6520 6675 6e63 7469 ng if the functi │ │ │ │ +00013cf0: 6f6e 2068 6173 2074 726f 7562 6c65 2066 on has trouble f │ │ │ │ +00013d00: 696e 6469 6e67 2061 2070 6f69 6e74 292e inding a point). │ │ │ │ +00013d10: 2020 466f 7220 696e 7374 616e 6365 2c20 For instance, │ │ │ │ +00013d20: 7765 2063 616e 0a63 6f6e 7472 6f6c 2074 we can.control t │ │ │ │ +00013d30: 6861 7420 6173 2066 6f6c 6c6f 7773 2e0a hat as follows.. │ │ │ │ +00013d40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013d90: 0a7c 6934 3120 3a20 7074 7353 7472 6174 .|i41 : ptsStrat │ │ │ │ +00013da0: 4765 6f6d 6574 7269 6320 3d20 6e65 7720 Geometric = new │ │ │ │ +00013db0: 4f70 7469 6f6e 5461 626c 6520 6672 6f6d OptionTable from │ │ │ │ +00013dc0: 2028 6f70 7469 6f6e 7320 2020 2020 2020 (options │ │ │ │ +00013dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013de0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00013df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00013e30: 0a7c 6368 6f6f 7365 476f 6f64 4d69 6e6f .|chooseGoodMino │ │ │ │ +00013e40: 7273 2923 506f 696e 744f 7074 696f 6e73 rs)#PointOptions │ │ │ │ +00013e50: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00013e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013e80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00013ed0: 0a7c 6934 3220 3a20 7074 7353 7472 6174 .|i42 : ptsStrat │ │ │ │ +00013ee0: 4765 6f6d 6574 7269 6323 4578 7465 6e64 Geometric#Extend │ │ │ │ +00013ef0: 4669 656c 6420 2d2d 6c6f 6f6b 2061 7420 Field --look at │ │ │ │ +00013f00: 7468 6520 6465 6661 756c 7420 7661 6c75 the default valu │ │ │ │ +00013f10: 6520 2020 2020 2020 2020 2020 2020 207c e | │ │ │ │ +00013f20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00013f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00013f70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00013f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00013fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00013fc0: 0a7c 6934 3320 3a20 7469 6d65 2064 696d .|i43 : time dim │ │ │ │ -00013fd0: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ -00013fe0: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ -00013ff0: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ -00014000: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ -00014010: 0a7c 202d 2d20 7573 6564 2030 2e34 3837 .| -- used 0.487 │ │ │ │ -00014020: 3231 3473 2028 6370 7529 3b20 302e 3432 214s (cpu); 0.42 │ │ │ │ -00014030: 3633 3333 7320 2874 6872 6561 6429 3b20 6333s (thread); │ │ │ │ -00014040: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -00014050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f70: 0a7c 6f34 3220 3d20 7472 7565 2020 2020 .|o42 = true │ │ │ │ +00013f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00013fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00013fc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00013fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00013ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014010: 0a7c 6934 3320 3a20 7469 6d65 2064 696d .|i43 : time dim │ │ │ │ +00014020: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ +00014030: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ +00014040: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ +00014050: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ +00014060: 0a7c 202d 2d20 7573 6564 2030 2e37 3435 .| -- used 0.745 │ │ │ │ +00014070: 3733 3273 2028 6370 7529 3b20 302e 3630 732s (cpu); 0.60 │ │ │ │ +00014080: 3038 3933 7320 2874 6872 6561 6429 3b20 0893s (thread); │ │ │ │ +00014090: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 000140a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000140b0: 0a7c 6f34 3320 3d20 3220 2020 2020 2020 .|o43 = 2 │ │ │ │ +000140b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000140c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000140f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014100: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00014150: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ -00014160: 7074 7353 7472 6174 4765 6f6d 6574 7269 ptsStratGeometri │ │ │ │ -00014170: 6329 2920 2020 2020 2020 2020 2020 2020 c)) │ │ │ │ -00014180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000141a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000141b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000141e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000141f0: 0a7c 6934 3420 3a20 7074 7353 7472 6174 .|i44 : ptsStrat │ │ │ │ -00014200: 5261 7469 6f6e 616c 203d 2070 7473 5374 Rational = ptsSt │ │ │ │ -00014210: 7261 7447 656f 6d65 7472 6963 2b2b 7b45 ratGeometric++{E │ │ │ │ -00014220: 7874 656e 6446 6965 6c64 3d3e 6661 6c73 xtendField=>fals │ │ │ │ -00014230: 657d 202d 2d63 6861 6e67 6520 2020 207c e} --change | │ │ │ │ -00014240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014290: 0a7c 6f34 3420 3d20 4f70 7469 6f6e 5461 .|o44 = OptionTa │ │ │ │ -000142a0: 626c 657b 4465 636f 6d70 6f73 6974 696f ble{Decompositio │ │ │ │ -000142b0: 6e53 7472 6174 6567 7920 3d3e 2044 6563 nStrategy => Dec │ │ │ │ -000142c0: 6f6d 706f 7365 7d20 2020 2020 2020 2020 ompose} │ │ │ │ +00014100: 0a7c 6f34 3320 3d20 3220 2020 2020 2020 .|o43 = 2 │ │ │ │ +00014110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014150: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00014160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000141a0: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ +000141b0: 7074 7353 7472 6174 4765 6f6d 6574 7269 ptsStratGeometri │ │ │ │ +000141c0: 6329 2920 2020 2020 2020 2020 2020 2020 c)) │ │ │ │ +000141d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000141e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000141f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014240: 0a7c 6934 3420 3a20 7074 7353 7472 6174 .|i44 : ptsStrat │ │ │ │ +00014250: 5261 7469 6f6e 616c 203d 2070 7473 5374 Rational = ptsSt │ │ │ │ +00014260: 7261 7447 656f 6d65 7472 6963 2b2b 7b45 ratGeometric++{E │ │ │ │ +00014270: 7874 656e 6446 6965 6c64 3d3e 6661 6c73 xtendField=>fals │ │ │ │ +00014280: 657d 202d 2d63 6861 6e67 6520 2020 207c e} --change | │ │ │ │ +00014290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000142a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000142d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000142e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000142f0: 2020 2020 4469 6d65 6e73 696f 6e46 756e DimensionFun │ │ │ │ -00014300: 6374 696f 6e20 3d3e 2064 696d 2020 2020 ction => dim │ │ │ │ -00014310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000142e0: 0a7c 6f34 3420 3d20 4f70 7469 6f6e 5461 .|o44 = OptionTa │ │ │ │ +000142f0: 626c 657b 4465 636f 6d70 6f73 6974 696f ble{Decompositio │ │ │ │ +00014300: 6e53 7472 6174 6567 7920 3d3e 2044 6563 nStrategy => Dec │ │ │ │ +00014310: 6f6d 706f 7365 7d20 2020 2020 2020 2020 ompose} │ │ │ │ 00014320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014340: 2020 2020 4578 7465 6e64 4669 656c 6420 ExtendField │ │ │ │ -00014350: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ +00014340: 2020 2020 4469 6d65 6e73 696f 6e46 756e DimensionFun │ │ │ │ +00014350: 6374 696f 6e20 3d3e 2064 696d 2020 2020 ction => dim │ │ │ │ 00014360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014390: 2020 2020 486f 6d6f 6765 6e65 6f75 7320 Homogeneous │ │ │ │ +00014390: 2020 2020 4578 7465 6e64 4669 656c 6420 ExtendField │ │ │ │ 000143a0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 000143b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000143c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000143d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000143e0: 2020 2020 4e75 6d54 6872 6561 6473 546f NumThreadsTo │ │ │ │ -000143f0: 5573 6520 3d3e 2031 2020 2020 2020 2020 Use => 1 │ │ │ │ +000143e0: 2020 2020 486f 6d6f 6765 6e65 6f75 7320 Homogeneous │ │ │ │ +000143f0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 00014400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014430: 2020 2020 506f 696e 7443 6865 636b 4174 PointCheckAt │ │ │ │ -00014440: 7465 6d70 7473 203d 3e20 3020 2020 2020 tempts => 0 │ │ │ │ +00014430: 2020 2020 4e75 6d54 6872 6561 6473 546f NumThreadsTo │ │ │ │ +00014440: 5573 6520 3d3e 2031 2020 2020 2020 2020 Use => 1 │ │ │ │ 00014450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014480: 2020 2020 5265 706c 6163 656d 656e 7420 Replacement │ │ │ │ -00014490: 3d3e 2042 696e 6f6d 6961 6c20 2020 2020 => Binomial │ │ │ │ +00014480: 2020 2020 506f 696e 7443 6865 636b 4174 PointCheckAt │ │ │ │ +00014490: 7465 6d70 7473 203d 3e20 3020 2020 2020 tempts => 0 │ │ │ │ 000144a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000144c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000144d0: 2020 2020 5374 7261 7465 6779 203d 3e20 Strategy => │ │ │ │ -000144e0: 4465 6661 756c 7420 2020 2020 2020 2020 Default │ │ │ │ +000144d0: 2020 2020 5265 706c 6163 656d 656e 7420 Replacement │ │ │ │ +000144e0: 3d3e 2042 696e 6f6d 6961 6c20 2020 2020 => Binomial │ │ │ │ 000144f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014520: 2020 2020 5665 7262 6f73 6520 3d3e 2066 Verbose => f │ │ │ │ -00014530: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +00014520: 2020 2020 5374 7261 7465 6779 203d 3e20 Strategy => │ │ │ │ +00014530: 4465 6661 756c 7420 2020 2020 2020 2020 Default │ │ │ │ 00014540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00014560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014570: 2020 2020 5665 7262 6f73 6520 3d3e 2066 Verbose => f │ │ │ │ +00014580: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ 00014590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000145b0: 0a7c 6f34 3420 3a20 4f70 7469 6f6e 5461 .|o44 : OptionTa │ │ │ │ -000145c0: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +000145b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000145c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000145f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014600: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00014650: 0a7c 7468 6174 2076 616c 7565 2020 2020 .|that value │ │ │ │ -00014660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000146a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000146b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000146e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000146f0: 0a7c 6934 3520 3a20 7074 7353 7472 6174 .|i45 : ptsStrat │ │ │ │ -00014700: 5261 7469 6f6e 616c 2e45 7874 656e 6446 Rational.ExtendF │ │ │ │ -00014710: 6965 6c64 202d 2d6c 6f6f 6b20 6174 206f ield --look at o │ │ │ │ -00014720: 7572 2063 6861 6e67 6564 2076 616c 7565 ur changed value │ │ │ │ -00014730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014600: 0a7c 6f34 3420 3a20 4f70 7469 6f6e 5461 .|o44 : OptionTa │ │ │ │ +00014610: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ +00014620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014650: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00014660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000146a0: 0a7c 7468 6174 2076 616c 7565 2020 2020 .|that value │ │ │ │ +000146b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000146e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000146f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014740: 0a7c 6934 3520 3a20 7074 7353 7472 6174 .|i45 : ptsStrat │ │ │ │ +00014750: 5261 7469 6f6e 616c 2e45 7874 656e 6446 Rational.ExtendF │ │ │ │ +00014760: 6965 6c64 202d 2d6c 6f6f 6b20 6174 206f ield --look at o │ │ │ │ +00014770: 7572 2063 6861 6e67 6564 2076 616c 7565 ur changed value │ │ │ │ 00014780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014790: 0a7c 6f34 3520 3d20 6661 6c73 6520 2020 .|o45 = false │ │ │ │ +00014790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000147a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000147d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000147e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000147f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014830: 0a7c 6934 3620 3a20 7469 6d65 2064 696d .|i46 : time dim │ │ │ │ -00014840: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ -00014850: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ -00014860: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ -00014870: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ -00014880: 0a7c 202d 2d20 7573 6564 2030 2e35 3036 .| -- used 0.506 │ │ │ │ -00014890: 3638 3373 2028 6370 7529 3b20 302e 3337 683s (cpu); 0.37 │ │ │ │ -000148a0: 3936 3938 7320 2874 6872 6561 6429 3b20 9698s (thread); │ │ │ │ -000148b0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -000148c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000148d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000148e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000147e0: 0a7c 6f34 3520 3d20 6661 6c73 6520 2020 .|o45 = false │ │ │ │ +000147f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014830: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014880: 0a7c 6934 3620 3a20 7469 6d65 2064 696d .|i46 : time dim │ │ │ │ +00014890: 2028 4a20 2b20 6368 6f6f 7365 476f 6f64 (J + chooseGood │ │ │ │ +000148a0: 4d69 6e6f 7273 2831 2c20 362c 204d 2c20 Minors(1, 6, M, │ │ │ │ +000148b0: 4a2c 2053 7472 6174 6567 793d 3e50 6f69 J, Strategy=>Poi │ │ │ │ +000148c0: 6e74 732c 2020 2020 2020 2020 2020 207c nts, | │ │ │ │ +000148d0: 0a7c 202d 2d20 7573 6564 2030 2e34 3838 .| -- used 0.488 │ │ │ │ +000148e0: 3473 2028 6370 7529 3b20 302e 3431 3938 4s (cpu); 0.4198 │ │ │ │ +000148f0: 3731 7320 2874 6872 6561 6429 3b20 3073 71s (thread); 0s │ │ │ │ +00014900: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00014910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014920: 0a7c 6f34 3620 3d20 3220 2020 2020 2020 .|o46 = 2 │ │ │ │ +00014920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00014930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014970: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -00014980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000149b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000149c0: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ -000149d0: 7074 7353 7472 6174 5261 7469 6f6e 616c ptsStratRational │ │ │ │ -000149e0: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ -000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014a10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00014a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00014a60: 0a0a 4f74 6865 7220 6f70 7469 6f6e 7320 ..Other options │ │ │ │ -00014a70: 6d61 7920 616c 736f 2062 6520 7061 7373 may also be pass │ │ │ │ -00014a80: 6564 2074 6f20 7468 6520 2a6e 6f74 6520 ed to the *note │ │ │ │ -00014a90: 5261 6e64 6f6d 506f 696e 7473 3a20 2852 RandomPoints: (R │ │ │ │ -00014aa0: 616e 646f 6d50 6f69 6e74 7329 546f 702c andomPoints)Top, │ │ │ │ -00014ab0: 0a70 6163 6b61 6765 2076 6961 2074 6865 .package via the │ │ │ │ -00014ac0: 202a 6e6f 7465 2050 6f69 6e74 4f70 7469 *note PointOpti │ │ │ │ -00014ad0: 6f6e 733a 2050 6f69 6e74 4f70 7469 6f6e ons: PointOption │ │ │ │ -00014ae0: 732c 206f 7074 696f 6e2e 0a0a 7265 6775 s, option...regu │ │ │ │ -00014af0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00014b00: 3a20 2049 7420 6973 2072 6561 736f 6e61 : It is reasona │ │ │ │ -00014b10: 626c 6520 746f 2074 6869 6e6b 2074 6861 ble to think tha │ │ │ │ -00014b20: 7420 796f 7520 7368 6f75 6c64 2066 696e t you should fin │ │ │ │ -00014b30: 6420 6120 6665 770a 6d69 6e6f 7273 2028 d a few.minors ( │ │ │ │ -00014b40: 7769 7468 206f 6e65 2073 7472 6174 6567 with one strateg │ │ │ │ -00014b50: 7920 6f72 2061 6e6f 7468 6572 292c 2061 y or another), a │ │ │ │ -00014b60: 6e64 2073 6565 2069 6620 7065 7268 6170 nd see if perhap │ │ │ │ -00014b70: 7320 7468 6520 6d69 6e6f 7273 2079 6f75 s the minors you │ │ │ │ -00014b80: 2068 6176 650a 636f 6d70 7574 6564 2073 have.computed s │ │ │ │ -00014b90: 6f20 6661 7220 6172 6520 656e 6f75 6768 o far are enough │ │ │ │ -00014ba0: 2074 6f20 7665 7269 6679 206f 7572 2072 to verify our r │ │ │ │ -00014bb0: 696e 6720 6973 2072 6567 756c 6172 2069 ing is regular i │ │ │ │ -00014bc0: 6e20 636f 6469 6d65 6e73 696f 6e20 312e n codimension 1. │ │ │ │ -00014bd0: 0a54 6869 7320 6973 2065 7861 6374 6c79 .This is exactly │ │ │ │ -00014be0: 2077 6861 7420 7265 6775 6c61 7249 6e43 what regularInC │ │ │ │ -00014bf0: 6f64 696d 656e 7369 6f6e 2064 6f65 732e odimension does. │ │ │ │ -00014c00: 2020 4f6e 6520 6361 6e20 636f 6e74 726f One can contro │ │ │ │ -00014c10: 6c20 6174 2061 2066 696e 650a 6c65 7665 l at a fine.leve │ │ │ │ -00014c20: 6c20 686f 7720 6672 6571 7565 6e74 6c79 l how frequently │ │ │ │ -00014c30: 206e 6577 206d 696e 6f72 7320 6172 6520 new minors are │ │ │ │ -00014c40: 636f 6d70 7574 6564 2c20 616e 6420 686f computed, and ho │ │ │ │ -00014c50: 7720 6672 6571 7565 6e74 6c79 2074 6865 w frequently the │ │ │ │ -00014c60: 2064 696d 656e 7369 6f6e 0a6f 6620 7768 dimension.of wh │ │ │ │ -00014c70: 6174 2077 6520 6861 7665 2063 6f6d 7075 at we have compu │ │ │ │ -00014c80: 7465 6420 736f 2066 6172 2069 7320 6368 ted so far is ch │ │ │ │ -00014c90: 6563 6b65 642c 2062 7920 7468 6520 6f70 ecked, by the op │ │ │ │ -00014ca0: 7469 6f6e 2063 6f64 696d 4368 6563 6b46 tion codimCheckF │ │ │ │ -00014cb0: 756e 6374 696f 6e2e 0a46 6f72 206d 6f72 unction..For mor │ │ │ │ -00014cc0: 6520 6f6e 2074 6861 742c 2073 6565 202a e on that, see * │ │ │ │ -00014cd0: 6e6f 7465 2052 6567 756c 6172 496e 436f note RegularInCo │ │ │ │ -00014ce0: 6469 6d65 6e73 696f 6e54 7574 6f72 6961 dimensionTutoria │ │ │ │ -00014cf0: 6c3a 0a52 6567 756c 6172 496e 436f 6469 l:.RegularInCodi │ │ │ │ -00014d00: 6d65 6e73 696f 6e54 7574 6f72 6961 6c2c mensionTutorial, │ │ │ │ -00014d10: 2061 6e64 202a 6e6f 7465 2072 6567 756c and *note regul │ │ │ │ -00014d20: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ -00014d30: 0a72 6567 756c 6172 496e 436f 6469 6d65 .regularInCodime │ │ │ │ -00014d40: 6e73 696f 6e2c 2e20 204c 6574 2075 7320 nsion,. Let us │ │ │ │ -00014d50: 6669 6e69 7368 2072 756e 6e69 6e67 2072 finish running r │ │ │ │ -00014d60: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00014d70: 696f 6e20 6f6e 206f 7572 0a65 7861 6d70 ion on our.examp │ │ │ │ -00014d80: 6c65 2077 6974 6820 7365 7665 7261 6c20 le with several │ │ │ │ -00014d90: 6469 6666 6572 656e 7420 7374 7261 7465 different strate │ │ │ │ -00014da0: 6769 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gies...+-------- │ │ │ │ -00014db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014df0: 2d2d 2d2d 2d2b 0a7c 6934 3720 3a20 7469 -----+.|i47 : ti │ │ │ │ -00014e00: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00014e10: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00014e20: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00014e30: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00014e40: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00014e50: 2033 2e32 3839 3434 7320 2863 7075 293b 3.28944s (cpu); │ │ │ │ -00014e60: 2033 2e30 3132 3873 2028 7468 7265 6164 3.0128s (thread │ │ │ │ -00014e70: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00014e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014e90: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00014ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ee0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00014ef0: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00014f00: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ -00014f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f80: 2d2d 2d2d 2d2b 0a7c 6934 3820 3a20 7469 -----+.|i48 : ti │ │ │ │ -00014f90: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00014fa0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00014fb0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00014fc0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00014fd0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00014fe0: 2030 2e39 3035 3730 3373 2028 6370 7529 0.905703s (cpu) │ │ │ │ -00014ff0: 3b20 302e 3738 3934 3733 7320 2874 6872 ; 0.789473s (thr │ │ │ │ -00015000: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014970: 0a7c 6f34 3620 3d20 3220 2020 2020 2020 .|o46 = 2 │ │ │ │ +00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000149b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000149c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000149d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000149e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000149f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00014a10: 0a7c 506f 696e 744f 7074 696f 6e73 3d3e .|PointOptions=> │ │ │ │ +00014a20: 7074 7353 7472 6174 5261 7469 6f6e 616c ptsStratRational │ │ │ │ +00014a30: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +00014a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00014a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00014ab0: 0a0a 4f74 6865 7220 6f70 7469 6f6e 7320 ..Other options │ │ │ │ +00014ac0: 6d61 7920 616c 736f 2062 6520 7061 7373 may also be pass │ │ │ │ +00014ad0: 6564 2074 6f20 7468 6520 2a6e 6f74 6520 ed to the *note │ │ │ │ +00014ae0: 5261 6e64 6f6d 506f 696e 7473 3a20 2852 RandomPoints: (R │ │ │ │ +00014af0: 616e 646f 6d50 6f69 6e74 7329 546f 702c andomPoints)Top, │ │ │ │ +00014b00: 0a70 6163 6b61 6765 2076 6961 2074 6865 .package via the │ │ │ │ +00014b10: 202a 6e6f 7465 2050 6f69 6e74 4f70 7469 *note PointOpti │ │ │ │ +00014b20: 6f6e 733a 2050 6f69 6e74 4f70 7469 6f6e ons: PointOption │ │ │ │ +00014b30: 732c 206f 7074 696f 6e2e 0a0a 7265 6775 s, option...regu │ │ │ │ +00014b40: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00014b50: 3a20 2049 7420 6973 2072 6561 736f 6e61 : It is reasona │ │ │ │ +00014b60: 626c 6520 746f 2074 6869 6e6b 2074 6861 ble to think tha │ │ │ │ +00014b70: 7420 796f 7520 7368 6f75 6c64 2066 696e t you should fin │ │ │ │ +00014b80: 6420 6120 6665 770a 6d69 6e6f 7273 2028 d a few.minors ( │ │ │ │ +00014b90: 7769 7468 206f 6e65 2073 7472 6174 6567 with one strateg │ │ │ │ +00014ba0: 7920 6f72 2061 6e6f 7468 6572 292c 2061 y or another), a │ │ │ │ +00014bb0: 6e64 2073 6565 2069 6620 7065 7268 6170 nd see if perhap │ │ │ │ +00014bc0: 7320 7468 6520 6d69 6e6f 7273 2079 6f75 s the minors you │ │ │ │ +00014bd0: 2068 6176 650a 636f 6d70 7574 6564 2073 have.computed s │ │ │ │ +00014be0: 6f20 6661 7220 6172 6520 656e 6f75 6768 o far are enough │ │ │ │ +00014bf0: 2074 6f20 7665 7269 6679 206f 7572 2072 to verify our r │ │ │ │ +00014c00: 696e 6720 6973 2072 6567 756c 6172 2069 ing is regular i │ │ │ │ +00014c10: 6e20 636f 6469 6d65 6e73 696f 6e20 312e n codimension 1. │ │ │ │ +00014c20: 0a54 6869 7320 6973 2065 7861 6374 6c79 .This is exactly │ │ │ │ +00014c30: 2077 6861 7420 7265 6775 6c61 7249 6e43 what regularInC │ │ │ │ +00014c40: 6f64 696d 656e 7369 6f6e 2064 6f65 732e odimension does. │ │ │ │ +00014c50: 2020 4f6e 6520 6361 6e20 636f 6e74 726f One can contro │ │ │ │ +00014c60: 6c20 6174 2061 2066 696e 650a 6c65 7665 l at a fine.leve │ │ │ │ +00014c70: 6c20 686f 7720 6672 6571 7565 6e74 6c79 l how frequently │ │ │ │ +00014c80: 206e 6577 206d 696e 6f72 7320 6172 6520 new minors are │ │ │ │ +00014c90: 636f 6d70 7574 6564 2c20 616e 6420 686f computed, and ho │ │ │ │ +00014ca0: 7720 6672 6571 7565 6e74 6c79 2074 6865 w frequently the │ │ │ │ +00014cb0: 2064 696d 656e 7369 6f6e 0a6f 6620 7768 dimension.of wh │ │ │ │ +00014cc0: 6174 2077 6520 6861 7665 2063 6f6d 7075 at we have compu │ │ │ │ +00014cd0: 7465 6420 736f 2066 6172 2069 7320 6368 ted so far is ch │ │ │ │ +00014ce0: 6563 6b65 642c 2062 7920 7468 6520 6f70 ecked, by the op │ │ │ │ +00014cf0: 7469 6f6e 2063 6f64 696d 4368 6563 6b46 tion codimCheckF │ │ │ │ +00014d00: 756e 6374 696f 6e2e 0a46 6f72 206d 6f72 unction..For mor │ │ │ │ +00014d10: 6520 6f6e 2074 6861 742c 2073 6565 202a e on that, see * │ │ │ │ +00014d20: 6e6f 7465 2052 6567 756c 6172 496e 436f note RegularInCo │ │ │ │ +00014d30: 6469 6d65 6e73 696f 6e54 7574 6f72 6961 dimensionTutoria │ │ │ │ +00014d40: 6c3a 0a52 6567 756c 6172 496e 436f 6469 l:.RegularInCodi │ │ │ │ +00014d50: 6d65 6e73 696f 6e54 7574 6f72 6961 6c2c mensionTutorial, │ │ │ │ +00014d60: 2061 6e64 202a 6e6f 7465 2072 6567 756c and *note regul │ │ │ │ +00014d70: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00014d80: 0a72 6567 756c 6172 496e 436f 6469 6d65 .regularInCodime │ │ │ │ +00014d90: 6e73 696f 6e2c 2e20 204c 6574 2075 7320 nsion,. Let us │ │ │ │ +00014da0: 6669 6e69 7368 2072 756e 6e69 6e67 2072 finish running r │ │ │ │ +00014db0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00014dc0: 696f 6e20 6f6e 206f 7572 0a65 7861 6d70 ion on our.examp │ │ │ │ +00014dd0: 6c65 2077 6974 6820 7365 7665 7261 6c20 le with several │ │ │ │ +00014de0: 6469 6666 6572 656e 7420 7374 7261 7465 different strate │ │ │ │ +00014df0: 6769 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gies...+-------- │ │ │ │ +00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014e40: 2d2d 2d2d 2d2b 0a7c 6934 3720 3a20 7469 -----+.|i47 : ti │ │ │ │ +00014e50: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00014e60: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00014e70: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00014e80: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00014e90: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00014ea0: 2033 2e39 3834 3037 7320 2863 7075 293b 3.98407s (cpu); │ │ │ │ +00014eb0: 2033 2e35 3339 3539 7320 2874 6872 6561 3.53959s (threa │ │ │ │ +00014ec0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00014ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014ee0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00014ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014f30: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00014f40: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00014f50: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ +00014f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014f80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00014f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00014fd0: 2d2d 2d2d 2d2b 0a7c 6934 3820 3a20 7469 -----+.|i48 : ti │ │ │ │ +00014fe0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00014ff0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015000: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015010: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015020: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015030: 2030 2e38 3634 3431 3673 2028 6370 7529 0.864416s (cpu) │ │ │ │ +00015040: 3b20 302e 3732 3937 3739 7320 2874 6872 ; 0.729779s (thr │ │ │ │ +00015050: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015070: 2020 2020 207c 0a7c 6f34 3820 3d20 7472 |.|o48 = tr │ │ │ │ -00015080: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000150b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150c0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -000150d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000150e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000150f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015110: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015120: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00015130: 744e 6f6e 5261 6e64 6f6d 2920 2020 2020 tNonRandom) │ │ │ │ -00015140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015160: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151b0: 2d2d 2d2d 2d2b 0a7c 6934 3920 3a20 7469 -----+.|i49 : ti │ │ │ │ -000151c0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000151d0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000151e0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000151f0: 2c20 5374 7261 7465 6779 3d3e 5261 6e64 , Strategy=>Rand │ │ │ │ -00015200: 6f6d 2920 207c 0a7c 202d 2d20 7573 6564 om) |.| -- used │ │ │ │ -00015210: 2033 2e35 3832 3634 7320 2863 7075 293b 3.58264s (cpu); │ │ │ │ -00015220: 2033 2e33 3634 3534 7320 2874 6872 6561 3.36454s (threa │ │ │ │ -00015230: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015250: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000152a0: 2d2d 2d2d 2d2b 0a7c 6935 3020 3a20 7469 -----+.|i50 : ti │ │ │ │ -000152b0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000152c0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000152d0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000152e0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -000152f0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015300: 2032 2e33 3832 3739 7320 2863 7075 293b 2.38279s (cpu); │ │ │ │ -00015310: 2031 2e39 3838 3373 2028 7468 7265 6164 1.9883s (thread │ │ │ │ -00015320: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00015330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015340: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015390: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000153a0: 3d3e 4c65 7853 6d61 6c6c 6573 7429 2020 =>LexSmallest) │ │ │ │ -000153b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015430: 2d2d 2d2d 2d2b 0a7c 6935 3120 3a20 7469 -----+.|i51 : ti │ │ │ │ -00015440: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015450: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015460: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015470: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015480: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015490: 2030 2e38 3331 3137 3473 2028 6370 7529 0.831174s (cpu) │ │ │ │ -000154a0: 3b20 302e 3731 3537 3873 2028 7468 7265 ; 0.71578s (thre │ │ │ │ -000154b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -000154c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000154e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150c0: 2020 2020 207c 0a7c 6f34 3820 3d20 7472 |.|o48 = tr │ │ │ │ +000150d0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000150e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015110: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015160: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015170: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00015180: 744e 6f6e 5261 6e64 6f6d 2920 2020 2020 tNonRandom) │ │ │ │ +00015190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000151b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000151c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000151f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015200: 2d2d 2d2d 2d2b 0a7c 6934 3920 3a20 7469 -----+.|i49 : ti │ │ │ │ +00015210: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015220: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015230: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015240: 2c20 5374 7261 7465 6779 3d3e 5261 6e64 , Strategy=>Rand │ │ │ │ +00015250: 6f6d 2920 207c 0a7c 202d 2d20 7573 6564 om) |.| -- used │ │ │ │ +00015260: 2033 2e32 3436 3539 7320 2863 7075 293b 3.24659s (cpu); │ │ │ │ +00015270: 2033 2e30 3239 3739 7320 2874 6872 6561 3.02979s (threa │ │ │ │ +00015280: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00015290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000152a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000152b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000152f0: 2d2d 2d2d 2d2b 0a7c 6935 3020 3a20 7469 -----+.|i50 : ti │ │ │ │ +00015300: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015310: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015320: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015330: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015340: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015350: 2032 2e37 3532 3033 7320 2863 7075 293b 2.75203s (cpu); │ │ │ │ +00015360: 2032 2e32 3434 3937 7320 2874 6872 6561 2.24497s (threa │ │ │ │ +00015370: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00015380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015390: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000153a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000153e0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +000153f0: 3d3e 4c65 7853 6d61 6c6c 6573 7429 2020 =>LexSmallest) │ │ │ │ +00015400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015430: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015480: 2d2d 2d2d 2d2b 0a7c 6935 3120 3a20 7469 -----+.|i51 : ti │ │ │ │ +00015490: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000154a0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +000154b0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +000154c0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000154d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +000154e0: 2030 2e38 3737 3136 7320 2863 7075 293b 0.87716s (cpu); │ │ │ │ +000154f0: 2030 2e38 3135 3039 3173 2028 7468 7265 0.815091s (thre │ │ │ │ +00015500: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015520: 2020 2020 207c 0a7c 6f35 3120 3d20 7472 |.|o51 = tr │ │ │ │ -00015530: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015520: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015570: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000155c0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000155d0: 3d3e 4c65 7853 6d61 6c6c 6573 7454 6572 =>LexSmallestTer │ │ │ │ -000155e0: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ -000155f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015610: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015660: 2d2d 2d2d 2d2b 0a7c 6935 3220 3a20 7469 -----+.|i52 : ti │ │ │ │ -00015670: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015680: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015690: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000156a0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -000156b0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000156c0: 2032 2e36 3031 3873 2028 6370 7529 3b20 2.6018s (cpu); │ │ │ │ -000156d0: 322e 3135 3936 3173 2028 7468 7265 6164 2.15961s (thread │ │ │ │ -000156e0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -000156f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015700: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015750: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015760: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ -00015770: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ -00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000157b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000157f0: 2d2d 2d2d 2d2b 0a7c 6935 3320 3a20 7469 -----+.|i53 : ti │ │ │ │ -00015800: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015810: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015820: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015830: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015840: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015850: 2033 2e30 3330 3033 7320 2863 7075 293b 3.03003s (cpu); │ │ │ │ -00015860: 2032 2e36 3233 3639 7320 2874 6872 6561 2.62369s (threa │ │ │ │ -00015870: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015890: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -000158a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158e0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -000158f0: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ -00015900: 7454 6572 6d29 2020 2020 2020 2020 2020 tTerm) │ │ │ │ -00015910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015930: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015980: 2d2d 2d2d 2d2b 0a7c 6935 3420 3a20 7469 -----+.|i54 : ti │ │ │ │ -00015990: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -000159a0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -000159b0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -000159c0: 2c20 5374 7261 7465 6779 3d3e 506f 696e , Strategy=>Poin │ │ │ │ -000159d0: 7473 2920 207c 0a7c 202d 2d20 7573 6564 ts) |.| -- used │ │ │ │ -000159e0: 2039 2e31 3535 3331 7320 2863 7075 293b 9.15531s (cpu); │ │ │ │ -000159f0: 2037 2e35 3834 3435 7320 2874 6872 6561 7.58445s (threa │ │ │ │ -00015a00: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015570: 2020 2020 207c 0a7c 6f35 3120 3d20 7472 |.|o51 = tr │ │ │ │ +00015580: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155c0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000155d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000155f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015610: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015620: 3d3e 4c65 7853 6d61 6c6c 6573 7454 6572 =>LexSmallestTer │ │ │ │ +00015630: 6d29 2020 2020 2020 2020 2020 2020 2020 m) │ │ │ │ +00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015660: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000156a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000156b0: 2d2d 2d2d 2d2b 0a7c 6935 3220 3a20 7469 -----+.|i52 : ti │ │ │ │ +000156c0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000156d0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +000156e0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +000156f0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015700: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015710: 2033 2e30 3636 3035 7320 2863 7075 293b 3.06605s (cpu); │ │ │ │ +00015720: 2032 2e35 3139 3236 7320 2874 6872 6561 2.51926s (threa │ │ │ │ +00015730: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015750: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000157a0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +000157b0: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ +000157c0: 7429 2020 2020 2020 2020 2020 2020 2020 t) │ │ │ │ +000157d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000157e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000157f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015840: 2d2d 2d2d 2d2b 0a7c 6935 3320 3a20 7469 -----+.|i53 : ti │ │ │ │ +00015850: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015860: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015870: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015880: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015890: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +000158a0: 2033 2e35 3639 3437 7320 2863 7075 293b 3.56947s (cpu); │ │ │ │ +000158b0: 2033 2e30 3731 3635 7320 2874 6872 6561 3.07165s (threa │ │ │ │ +000158c0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +000158d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000158e0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000158f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015930: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015940: 3d3e 4752 6576 4c65 7853 6d61 6c6c 6573 =>GRevLexSmalles │ │ │ │ +00015950: 7454 6572 6d29 2020 2020 2020 2020 2020 tTerm) │ │ │ │ +00015960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015980: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000159d0: 2d2d 2d2d 2d2b 0a7c 6935 3420 3a20 7469 -----+.|i54 : ti │ │ │ │ +000159e0: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +000159f0: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015a00: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015a10: 2c20 5374 7261 7465 6779 3d3e 506f 696e , Strategy=>Poin │ │ │ │ +00015a20: 7473 2920 207c 0a7c 202d 2d20 7573 6564 ts) |.| -- used │ │ │ │ +00015a30: 2031 302e 3733 3636 7320 2863 7075 293b 10.7366s (cpu); │ │ │ │ +00015a40: 2038 2e38 3735 3539 7320 2874 6872 6561 8.87559s (threa │ │ │ │ +00015a50: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a70: 2020 2020 207c 0a7c 6f35 3420 3d20 7472 |.|o54 = tr │ │ │ │ -00015a80: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ac0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b10: 2d2d 2d2d 2d2b 0a7c 6935 3520 3a20 7469 -----+.|i55 : ti │ │ │ │ -00015b20: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ -00015b30: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ -00015b40: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015b50: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00015b60: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00015b70: 2037 2e31 3734 3536 7320 2863 7075 293b 7.17456s (cpu); │ │ │ │ -00015b80: 2035 2e38 3535 3332 7320 2874 6872 6561 5.85532s (threa │ │ │ │ -00015b90: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00015ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00015bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ac0: 2020 2020 207c 0a7c 6f35 3420 3d20 7472 |.|o54 = tr │ │ │ │ +00015ad0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015b60: 2d2d 2d2d 2d2b 0a7c 6935 3520 3a20 7469 -----+.|i55 : ti │ │ │ │ +00015b70: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00015b80: 6d65 6e73 696f 6e28 312c 2053 2f4a 2c20 mension(1, S/J, │ │ │ │ +00015b90: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015ba0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00015bb0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00015bc0: 2037 2e39 3830 3932 7320 2863 7075 293b 7.98092s (cpu); │ │ │ │ +00015bd0: 2036 2e35 3932 3138 7320 2874 6872 6561 6.59218s (threa │ │ │ │ +00015be0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c00: 2020 2020 207c 0a7c 6f35 3520 3d20 7472 |.|o55 = tr │ │ │ │ -00015c10: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015c00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c50: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00015c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ca0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ -00015cb0: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ -00015cc0: 7457 6974 6850 6f69 6e74 7329 2020 2020 tWithPoints) │ │ │ │ -00015cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00015d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015d40: 2d2d 2d2d 2d2b 0a0a 4966 2072 6567 756c -----+..If regul │ │ │ │ -00015d50: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -00015d60: 6f75 7470 7574 7320 6e6f 7468 696e 672c outputs nothing, │ │ │ │ -00015d70: 2074 6865 6e20 6974 2063 6f75 6c64 6e27 then it couldn' │ │ │ │ -00015d80: 7420 7665 7269 6679 2074 6861 7420 7468 t verify that th │ │ │ │ -00015d90: 6520 7269 6e67 0a77 6173 2072 6567 756c e ring.was regul │ │ │ │ -00015da0: 6172 2069 6e20 7468 6174 2063 6f64 696d ar in that codim │ │ │ │ -00015db0: 656e 7369 6f6e 2e20 2057 6520 7365 7420 ension. We set │ │ │ │ -00015dc0: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ -00015dd0: 2074 6f20 6b65 6570 2069 7420 6672 6f6d to keep it from │ │ │ │ -00015de0: 0a72 756e 6e69 6e67 2074 6f6f 206c 6f6e .running too lon │ │ │ │ -00015df0: 6720 7769 7468 2061 6e20 696e 6566 6665 g with an ineffe │ │ │ │ -00015e00: 6374 6976 6520 7374 7261 7465 6779 2e20 ctive strategy. │ │ │ │ -00015e10: 2041 6761 696e 2c20 6576 656e 2074 686f Again, even tho │ │ │ │ -00015e20: 7567 680a 4752 6576 4c65 7853 6d61 6c6c ugh.GRevLexSmall │ │ │ │ -00015e30: 6573 7420 616e 6420 4752 6576 4c65 7853 est and GRevLexS │ │ │ │ -00015e40: 6d61 6c6c 6573 7454 6572 6d20 6172 6520 mallestTerm are │ │ │ │ -00015e50: 6e6f 7420 6566 6665 6374 6976 6520 696e not effective in │ │ │ │ -00015e60: 2074 6869 7320 7061 7274 6963 756c 6172 this particular │ │ │ │ -00015e70: 0a65 7861 6d70 6c65 2c20 696e 206f 7468 .example, in oth │ │ │ │ -00015e80: 6572 7320 7468 6579 2070 6572 666f 726d ers they perform │ │ │ │ -00015e90: 2062 6574 7465 7220 7468 616e 206f 7468 better than oth │ │ │ │ -00015ea0: 6572 2073 7472 6174 6567 6965 732e 2020 er strategies. │ │ │ │ -00015eb0: 4e6f 7465 2073 696d 696c 6172 0a63 6f6e Note similar.con │ │ │ │ -00015ec0: 7369 6465 7261 7469 6f6e 7320 616c 736f siderations also │ │ │ │ -00015ed0: 2061 7070 6c79 2074 6f20 2a6e 6f74 6520 apply to *note │ │ │ │ -00015ee0: 7072 6f6a 4469 6d3a 2070 726f 6a44 696d projDim: projDim │ │ │ │ -00015ef0: 2c2e 0a0a 5365 6520 616c 736f 0a3d 3d3d ,...See also.=== │ │ │ │ -00015f00: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00015f10: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ -00015f20: 7328 2e2e 2e2c 5374 7261 7465 6779 3d3e s(...,Strategy=> │ │ │ │ -00015f30: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ -00015f40: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ -00015f50: 6769 6573 0a20 2020 2066 6f72 2063 686f gies. for cho │ │ │ │ -00015f60: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ -00015f70: 730a 2020 2a20 2a6e 6f74 6520 5265 6775 s. * *note Regu │ │ │ │ -00015f80: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00015f90: 5475 746f 7269 616c 3a20 5265 6775 6c61 Tutorial: Regula │ │ │ │ -00015fa0: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ -00015fb0: 746f 7269 616c 2c20 2d2d 2041 0a20 2020 torial, -- A. │ │ │ │ -00015fc0: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ -00015fd0: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ -00015fe0: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ -00015ff0: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ -00016000: 6469 6d65 6e73 696f 6e0a 2020 2020 6675 dimension. fu │ │ │ │ -00016010: 6e63 7469 6f6e 0a0a 466f 7220 7468 6520 nction..For the │ │ │ │ -00016020: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00016030: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00016040: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00016050: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ -00016060: 6779 5475 746f 7269 616c 3a20 4661 7374 gyTutorial: Fast │ │ │ │ -00016070: 4d69 6e6f 7273 5374 7261 7465 6779 5475 MinorsStrategyTu │ │ │ │ -00016080: 746f 7269 616c 2c20 6973 2061 0a2a 6e6f torial, is a.*no │ │ │ │ -00016090: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ -000160a0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -000160b0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -000160c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000160f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016100: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00016110: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00016120: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00016130: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00016140: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00016150: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00016160: 2f70 6163 6b61 6765 732f 4661 7374 4d69 /packages/FastMi │ │ │ │ -00016170: 6e6f 7273 2e0a 6d32 3a31 3532 353a 302e nors..m2:1525:0. │ │ │ │ -00016180: 0a1f 0a46 696c 653a 2046 6173 744d 696e ...File: FastMin │ │ │ │ -00016190: 6f72 732e 696e 666f 2c20 4e6f 6465 3a20 ors.info, Node: │ │ │ │ -000161a0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ -000161b0: 6e6b 2c20 4e65 7874 3a20 6973 436f 6469 nk, Next: isCodi │ │ │ │ -000161c0: 6d41 744c 6561 7374 2c20 5072 6576 3a20 mAtLeast, Prev: │ │ │ │ -000161d0: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ -000161e0: 6779 5475 746f 7269 616c 2c20 5570 3a20 gyTutorial, Up: │ │ │ │ -000161f0: 546f 700a 0a67 6574 5375 626d 6174 7269 Top..getSubmatri │ │ │ │ -00016200: 784f 6652 616e 6b20 2d2d 2074 7269 6573 xOfRank -- tries │ │ │ │ -00016210: 2074 6f20 6669 6e64 2061 2073 7562 6d61 to find a subma │ │ │ │ -00016220: 7472 6978 206f 6620 7468 6520 6769 7665 trix of the give │ │ │ │ -00016230: 6e20 7261 6e6b 0a2a 2a2a 2a2a 2a2a 2a2a n rank.********* │ │ │ │ -00016240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016270: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -00016280: 6167 653a 200a 2020 2020 2020 2020 6765 age: . ge │ │ │ │ -00016290: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ -000162a0: 286e 312c 204d 3129 0a20 202a 2049 6e70 (n1, M1). * Inp │ │ │ │ -000162b0: 7574 733a 0a20 2020 2020 202a 206e 312c uts:. * n1, │ │ │ │ -000162c0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -000162d0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -000162e0: 295a 5a2c 2c20 0a20 2020 2020 202a 204d )ZZ,, . * M │ │ │ │ -000162f0: 312c 2061 202a 6e6f 7465 206d 6174 7269 1, a *note matri │ │ │ │ -00016300: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -00016310: 294d 6174 7269 782c 2c20 0a20 202a 202a )Matrix,, . * * │ │ │ │ -00016320: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ -00016330: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ -00016340: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ -00016350: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00016360: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -00016370: 202a 202a 6e6f 7465 2044 6574 5374 7261 * *note DetStra │ │ │ │ -00016380: 7465 6779 3a20 4465 7453 7472 6174 6567 tegy: DetStrateg │ │ │ │ -00016390: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ -000163a0: 6c74 2076 616c 7565 2052 616e 6b2c 2044 lt value Rank, D │ │ │ │ -000163b0: 6574 5374 7261 7465 6779 0a20 2020 2020 etStrategy. │ │ │ │ -000163c0: 2020 2069 7320 6120 7374 7261 7465 6779 is a strategy │ │ │ │ -000163d0: 2066 6f72 2061 6c6c 6f77 696e 6720 7468 for allowing th │ │ │ │ -000163e0: 6520 7573 6572 2074 6f20 6368 6f6f 7365 e user to choose │ │ │ │ -000163f0: 2068 6f77 2064 6574 6572 6d69 6e61 6e74 how determinant │ │ │ │ -00016400: 7320 286f 720a 2020 2020 2020 2020 7261 s (or. ra │ │ │ │ -00016410: 6e6b 292c 2069 7320 636f 6d70 7574 6564 nk), is computed │ │ │ │ -00016420: 0a20 2020 2020 202a 202a 6e6f 7465 204d . * *note M │ │ │ │ -00016430: 6178 4d69 6e6f 7273 3a20 4d61 784d 696e axMinors: MaxMin │ │ │ │ -00016440: 6f72 732c 203d 3e20 2e2e 2e2c 2064 6566 ors, => ..., def │ │ │ │ -00016450: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ -00016460: 2061 6e20 6f70 7469 6f6e 2074 6f0a 2020 an option to. │ │ │ │ -00016470: 2020 2020 2020 636f 6e74 726f 6c20 6465 control de │ │ │ │ -00016480: 7074 6820 6f66 2073 6561 7263 680a 2020 pth of search. │ │ │ │ -00016490: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ -000164a0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ -000164b0: 7074 696f 6e73 2c20 3d3e 202e 2e2e 2c20 ptions, => ..., │ │ │ │ -000164c0: 6465 6661 756c 7420 7661 6c75 6520 7b53 default value {S │ │ │ │ -000164d0: 7472 6174 6567 7920 3d3e 0a20 2020 2020 trategy =>. │ │ │ │ -000164e0: 2020 2044 6566 6175 6c74 2c20 486f 6d6f Default, Homo │ │ │ │ -000164f0: 6765 6e65 6f75 7320 3d3e 2066 616c 7365 geneous => false │ │ │ │ -00016500: 2c20 5265 706c 6163 656d 656e 7420 3d3e , Replacement => │ │ │ │ -00016510: 2042 696e 6f6d 6961 6c2c 2045 7874 656e Binomial, Exten │ │ │ │ -00016520: 6446 6965 6c64 203d 3e0a 2020 2020 2020 dField =>. │ │ │ │ -00016530: 2020 7472 7565 2c20 506f 696e 7443 6865 true, PointChe │ │ │ │ -00016540: 636b 4174 7465 6d70 7473 203d 3e20 302c ckAttempts => 0, │ │ │ │ -00016550: 2044 6563 6f6d 706f 7369 7469 6f6e 5374 DecompositionSt │ │ │ │ -00016560: 7261 7465 6779 203d 3e20 4465 636f 6d70 rategy => Decomp │ │ │ │ -00016570: 6f73 652c 0a20 2020 2020 2020 204e 756d ose,. Num │ │ │ │ -00016580: 5468 7265 6164 7354 6f55 7365 203d 3e20 ThreadsToUse => │ │ │ │ -00016590: 312c 2044 696d 656e 7369 6f6e 4675 6e63 1, DimensionFunc │ │ │ │ -000165a0: 7469 6f6e 203d 3e20 6469 6d2c 2056 6572 tion => dim, Ver │ │ │ │ -000165b0: 626f 7365 203d 3e20 6661 6c73 657d 2c0a bose => false},. │ │ │ │ -000165c0: 2020 2020 2020 2020 6f70 7469 6f6e 7320 options │ │ │ │ -000165d0: 746f 2070 6173 7320 746f 2066 756e 6374 to pass to funct │ │ │ │ -000165e0: 696f 6e73 2069 6e20 7468 6520 7061 636b ions in the pack │ │ │ │ -000165f0: 6167 6520 5261 6e64 6f6d 506f 696e 7473 age RandomPoints │ │ │ │ -00016600: 0a20 2020 2020 202a 202a 6e6f 7465 2053 . * *note S │ │ │ │ -00016610: 7472 6174 6567 793a 2053 7472 6174 6567 trategy: Strateg │ │ │ │ -00016620: 7944 6566 6175 6c74 2c20 3d3e 202e 2e2e yDefault, => ... │ │ │ │ -00016630: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -00016640: 6e65 7720 4f70 7469 6f6e 5461 626c 650a new OptionTable. │ │ │ │ -00016650: 2020 2020 2020 2020 6672 6f6d 207b 506f from {Po │ │ │ │ -00016660: 696e 7473 203d 3e20 302c 2052 616e 646f ints => 0, Rando │ │ │ │ -00016670: 6d20 3d3e 2030 2c20 4752 6576 4c65 784c m => 0, GRevLexL │ │ │ │ -00016680: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ -00016690: 536d 616c 6c65 7374 5465 726d 203d 3e0a SmallestTerm =>. │ │ │ │ -000166a0: 2020 2020 2020 2020 3235 2c20 4c65 784c 25, LexL │ │ │ │ -000166b0: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ -000166c0: 536d 616c 6c65 7374 203d 3e20 3235 2c20 Smallest => 25, │ │ │ │ -000166d0: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ -000166e0: 6572 6d20 3d3e 2032 352c 0a20 2020 2020 erm => 25,. │ │ │ │ -000166f0: 2020 2052 616e 646f 6d4e 6f6e 7a65 726f RandomNonzero │ │ │ │ -00016700: 203d 3e20 302c 2047 5265 764c 6578 536d => 0, GRevLexSm │ │ │ │ -00016710: 616c 6c65 7374 203d 3e20 3235 7d2c 2073 allest => 25}, s │ │ │ │ -00016720: 7472 6174 6567 6965 7320 666f 7220 6368 trategies for ch │ │ │ │ -00016730: 6f6f 7369 6e67 0a20 2020 2020 2020 2073 oosing. s │ │ │ │ -00016740: 7562 6d61 7472 6963 6573 0a20 2020 2020 ubmatrices. │ │ │ │ -00016750: 202a 202a 6e6f 7465 2054 6872 6561 6473 * *note Threads │ │ │ │ -00016760: 3a20 6973 5261 6e6b 4174 4c65 6173 745f : isRankAtLeast_ │ │ │ │ -00016770: 6c70 5f70 645f 7064 5f70 645f 636d 5468 lp_pd_pd_pd_cmTh │ │ │ │ -00016780: 7265 6164 733d 3e5f 7064 5f70 645f 7064 reads=>_pd_pd_pd │ │ │ │ -00016790: 5f72 702c 203d 3e0a 2020 2020 2020 2020 _rp, =>. │ │ │ │ -000167a0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -000167b0: 7565 2031 2c20 616e 206f 7074 696f 6e20 ue 1, an option │ │ │ │ -000167c0: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ -000167d0: 7469 6f6e 730a 2020 2020 2020 2a20 5665 tions. * Ve │ │ │ │ -000167e0: 7262 6f73 6520 3d3e 202e 2e2e 2c20 6465 rbose => ..., de │ │ │ │ -000167f0: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -00016800: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -00016810: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ -00016820: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -00016830: 6f63 294c 6973 742c 2c20 7468 6520 6669 oc)List,, the fi │ │ │ │ -00016840: 7273 7420 656e 7472 7920 6973 2061 206c rst entry is a l │ │ │ │ -00016850: 6973 7420 6f66 2072 6f77 0a20 2020 2020 ist of row. │ │ │ │ -00016860: 2020 2069 6e64 6963 6573 2c20 7468 6520 indices, the │ │ │ │ -00016870: 7365 636f 6e64 2069 7320 6120 6c69 7374 second is a list │ │ │ │ -00016880: 206f 6620 636f 6c75 6d6e 2069 6e64 6963 of column indic │ │ │ │ -00016890: 6573 0a0a 4465 7363 7269 7074 696f 6e0a es..Description. │ │ │ │ -000168a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -000168b0: 7320 6675 6e63 7469 6f6e 206c 6f6f 6b73 s function looks │ │ │ │ -000168c0: 2061 7420 7375 626d 6174 7269 6365 7320 at submatrices │ │ │ │ -000168d0: 6f66 2074 6865 2067 6976 656e 206d 6174 of the given mat │ │ │ │ -000168e0: 7269 782c 2061 6e64 2074 7269 6573 2074 rix, and tries t │ │ │ │ -000168f0: 6f20 6669 6e64 206f 6e65 0a6f 6620 7468 o find one.of th │ │ │ │ -00016900: 6520 7370 6563 6966 6965 6420 7261 6e6b e specified rank │ │ │ │ -00016910: 2e20 2049 6620 6974 2073 7563 6365 6564 . If it succeed │ │ │ │ -00016920: 732c 2069 7420 7265 7475 726e 7320 6120 s, it returns a │ │ │ │ -00016930: 6c69 7374 206f 6620 7477 6f20 6c69 7374 list of two list │ │ │ │ -00016940: 732e 2054 6865 0a66 6972 7374 2069 7320 s. The.first is │ │ │ │ -00016950: 7468 6520 6c69 7374 206f 6620 726f 7720 the list of row │ │ │ │ -00016960: 696e 6469 6365 732c 2074 6865 2073 6563 indices, the sec │ │ │ │ -00016970: 6f6e 6420 6973 2074 6865 206c 6973 7420 ond is the list │ │ │ │ -00016980: 6f66 2063 6f6c 756d 6e73 2c20 6f66 2074 of columns, of t │ │ │ │ -00016990: 6865 0a64 6573 6972 6564 2072 616e 6b20 he.desired rank │ │ │ │ -000169a0: 7375 626d 6174 7269 782e 2049 6620 6974 submatrix. If it │ │ │ │ -000169b0: 2066 6169 6c73 2074 6f20 6669 6e64 2073 fails to find s │ │ │ │ -000169c0: 7563 6820 6120 6d61 7472 6978 2c20 7468 uch a matrix, th │ │ │ │ -000169d0: 6520 6675 6e63 7469 6f6e 2072 6574 7572 e function retur │ │ │ │ -000169e0: 6e73 0a6e 756c 6c2e 2020 5468 6520 6f70 ns.null. The op │ │ │ │ -000169f0: 7469 6f6e 204d 6178 4d69 6e6f 7273 2069 tion MaxMinors i │ │ │ │ -00016a00: 7320 7573 6564 2074 6f20 636f 6e74 726f s used to contro │ │ │ │ -00016a10: 6c20 686f 7720 6d61 6e79 206d 696e 6f72 l how many minor │ │ │ │ -00016a20: 7320 746f 2063 6f6e 7369 6465 722e 2020 s to consider. │ │ │ │ -00016a30: 4966 0a6c 6566 7420 6e75 6c6c 2c20 7468 If.left null, th │ │ │ │ -00016a40: 6520 6e75 6d62 6572 2063 6f6e 7369 6465 e number conside │ │ │ │ -00016a50: 7265 6420 6973 2062 6173 6564 206f 6e20 red is based on │ │ │ │ -00016a60: 7468 6520 7369 7a65 206f 6620 7468 6520 the size of the │ │ │ │ -00016a70: 6d61 7472 6978 2e0a 0a2b 2d2d 2d2d 2d2d matrix...+------ │ │ │ │ -00016a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ab0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -00016ac0: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -00016ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016af0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b30: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ -00016b40: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ -00016b50: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ -00016b60: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ -00016b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016bb0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00016bc0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +00015c50: 2020 2020 207c 0a7c 6f35 3520 3d20 7472 |.|o55 = tr │ │ │ │ +00015c60: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00015c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ca0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00015cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015cf0: 2d2d 2d2d 2d7c 0a7c 5374 7261 7465 6779 -----|.|Strategy │ │ │ │ +00015d00: 3d3e 5374 7261 7465 6779 4465 6661 756c =>StrategyDefaul │ │ │ │ +00015d10: 7457 6974 6850 6f69 6e74 7329 2020 2020 tWithPoints) │ │ │ │ +00015d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d40: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00015d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015d90: 2d2d 2d2d 2d2b 0a0a 4966 2072 6567 756c -----+..If regul │ │ │ │ +00015da0: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +00015db0: 6f75 7470 7574 7320 6e6f 7468 696e 672c outputs nothing, │ │ │ │ +00015dc0: 2074 6865 6e20 6974 2063 6f75 6c64 6e27 then it couldn' │ │ │ │ +00015dd0: 7420 7665 7269 6679 2074 6861 7420 7468 t verify that th │ │ │ │ +00015de0: 6520 7269 6e67 0a77 6173 2072 6567 756c e ring.was regul │ │ │ │ +00015df0: 6172 2069 6e20 7468 6174 2063 6f64 696d ar in that codim │ │ │ │ +00015e00: 656e 7369 6f6e 2e20 2057 6520 7365 7420 ension. We set │ │ │ │ +00015e10: 4d61 784d 696e 6f72 7320 3d3e 2031 3030 MaxMinors => 100 │ │ │ │ +00015e20: 2074 6f20 6b65 6570 2069 7420 6672 6f6d to keep it from │ │ │ │ +00015e30: 0a72 756e 6e69 6e67 2074 6f6f 206c 6f6e .running too lon │ │ │ │ +00015e40: 6720 7769 7468 2061 6e20 696e 6566 6665 g with an ineffe │ │ │ │ +00015e50: 6374 6976 6520 7374 7261 7465 6779 2e20 ctive strategy. │ │ │ │ +00015e60: 2041 6761 696e 2c20 6576 656e 2074 686f Again, even tho │ │ │ │ +00015e70: 7567 680a 4752 6576 4c65 7853 6d61 6c6c ugh.GRevLexSmall │ │ │ │ +00015e80: 6573 7420 616e 6420 4752 6576 4c65 7853 est and GRevLexS │ │ │ │ +00015e90: 6d61 6c6c 6573 7454 6572 6d20 6172 6520 mallestTerm are │ │ │ │ +00015ea0: 6e6f 7420 6566 6665 6374 6976 6520 696e not effective in │ │ │ │ +00015eb0: 2074 6869 7320 7061 7274 6963 756c 6172 this particular │ │ │ │ +00015ec0: 0a65 7861 6d70 6c65 2c20 696e 206f 7468 .example, in oth │ │ │ │ +00015ed0: 6572 7320 7468 6579 2070 6572 666f 726d ers they perform │ │ │ │ +00015ee0: 2062 6574 7465 7220 7468 616e 206f 7468 better than oth │ │ │ │ +00015ef0: 6572 2073 7472 6174 6567 6965 732e 2020 er strategies. │ │ │ │ +00015f00: 4e6f 7465 2073 696d 696c 6172 0a63 6f6e Note similar.con │ │ │ │ +00015f10: 7369 6465 7261 7469 6f6e 7320 616c 736f siderations also │ │ │ │ +00015f20: 2061 7070 6c79 2074 6f20 2a6e 6f74 6520 apply to *note │ │ │ │ +00015f30: 7072 6f6a 4469 6d3a 2070 726f 6a44 696d projDim: projDim │ │ │ │ +00015f40: 2c2e 0a0a 5365 6520 616c 736f 0a3d 3d3d ,...See also.=== │ │ │ │ +00015f50: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00015f60: 2063 686f 6f73 6547 6f6f 644d 696e 6f72 chooseGoodMinor │ │ │ │ +00015f70: 7328 2e2e 2e2c 5374 7261 7465 6779 3d3e s(...,Strategy=> │ │ │ │ +00015f80: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ +00015f90: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ +00015fa0: 6769 6573 0a20 2020 2066 6f72 2063 686f gies. for cho │ │ │ │ +00015fb0: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ +00015fc0: 730a 2020 2a20 2a6e 6f74 6520 5265 6775 s. * *note Regu │ │ │ │ +00015fd0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00015fe0: 5475 746f 7269 616c 3a20 5265 6775 6c61 Tutorial: Regula │ │ │ │ +00015ff0: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ +00016000: 746f 7269 616c 2c20 2d2d 2041 0a20 2020 torial, -- A. │ │ │ │ +00016010: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ +00016020: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ +00016030: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ +00016040: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ +00016050: 6469 6d65 6e73 696f 6e0a 2020 2020 6675 dimension. fu │ │ │ │ +00016060: 6e63 7469 6f6e 0a0a 466f 7220 7468 6520 nction..For the │ │ │ │ +00016070: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00016080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00016090: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +000160a0: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ +000160b0: 6779 5475 746f 7269 616c 3a20 4661 7374 gyTutorial: Fast │ │ │ │ +000160c0: 4d69 6e6f 7273 5374 7261 7465 6779 5475 MinorsStrategyTu │ │ │ │ +000160d0: 746f 7269 616c 2c20 6973 2061 0a2a 6e6f torial, is a.*no │ │ │ │ +000160e0: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ +000160f0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ +00016100: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +00016110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016150: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00016160: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00016170: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00016180: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00016190: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +000161a0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +000161b0: 2f70 6163 6b61 6765 732f 4661 7374 4d69 /packages/FastMi │ │ │ │ +000161c0: 6e6f 7273 2e0a 6d32 3a31 3532 353a 302e nors..m2:1525:0. │ │ │ │ +000161d0: 0a1f 0a46 696c 653a 2046 6173 744d 696e ...File: FastMin │ │ │ │ +000161e0: 6f72 732e 696e 666f 2c20 4e6f 6465 3a20 ors.info, Node: │ │ │ │ +000161f0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ +00016200: 6e6b 2c20 4e65 7874 3a20 6973 436f 6469 nk, Next: isCodi │ │ │ │ +00016210: 6d41 744c 6561 7374 2c20 5072 6576 3a20 mAtLeast, Prev: │ │ │ │ +00016220: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ +00016230: 6779 5475 746f 7269 616c 2c20 5570 3a20 gyTutorial, Up: │ │ │ │ +00016240: 546f 700a 0a67 6574 5375 626d 6174 7269 Top..getSubmatri │ │ │ │ +00016250: 784f 6652 616e 6b20 2d2d 2074 7269 6573 xOfRank -- tries │ │ │ │ +00016260: 2074 6f20 6669 6e64 2061 2073 7562 6d61 to find a subma │ │ │ │ +00016270: 7472 6978 206f 6620 7468 6520 6769 7665 trix of the give │ │ │ │ +00016280: 6e20 7261 6e6b 0a2a 2a2a 2a2a 2a2a 2a2a n rank.********* │ │ │ │ +00016290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000162c0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +000162d0: 6167 653a 200a 2020 2020 2020 2020 6765 age: . ge │ │ │ │ +000162e0: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ +000162f0: 286e 312c 204d 3129 0a20 202a 2049 6e70 (n1, M1). * Inp │ │ │ │ +00016300: 7574 733a 0a20 2020 2020 202a 206e 312c uts:. * n1, │ │ │ │ +00016310: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +00016320: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00016330: 295a 5a2c 2c20 0a20 2020 2020 202a 204d )ZZ,, . * M │ │ │ │ +00016340: 312c 2061 202a 6e6f 7465 206d 6174 7269 1, a *note matri │ │ │ │ +00016350: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00016360: 294d 6174 7269 782c 2c20 0a20 202a 202a )Matrix,, . * * │ │ │ │ +00016370: 6e6f 7465 204f 7074 696f 6e61 6c20 696e note Optional in │ │ │ │ +00016380: 7075 7473 3a20 284d 6163 6175 6c61 7932 puts: (Macaulay2 │ │ │ │ +00016390: 446f 6329 7573 696e 6720 6675 6e63 7469 Doc)using functi │ │ │ │ +000163a0: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +000163b0: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ +000163c0: 202a 202a 6e6f 7465 2044 6574 5374 7261 * *note DetStra │ │ │ │ +000163d0: 7465 6779 3a20 4465 7453 7472 6174 6567 tegy: DetStrateg │ │ │ │ +000163e0: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ +000163f0: 6c74 2076 616c 7565 2052 616e 6b2c 2044 lt value Rank, D │ │ │ │ +00016400: 6574 5374 7261 7465 6779 0a20 2020 2020 etStrategy. │ │ │ │ +00016410: 2020 2069 7320 6120 7374 7261 7465 6779 is a strategy │ │ │ │ +00016420: 2066 6f72 2061 6c6c 6f77 696e 6720 7468 for allowing th │ │ │ │ +00016430: 6520 7573 6572 2074 6f20 6368 6f6f 7365 e user to choose │ │ │ │ +00016440: 2068 6f77 2064 6574 6572 6d69 6e61 6e74 how determinant │ │ │ │ +00016450: 7320 286f 720a 2020 2020 2020 2020 7261 s (or. ra │ │ │ │ +00016460: 6e6b 292c 2069 7320 636f 6d70 7574 6564 nk), is computed │ │ │ │ +00016470: 0a20 2020 2020 202a 202a 6e6f 7465 204d . * *note M │ │ │ │ +00016480: 6178 4d69 6e6f 7273 3a20 4d61 784d 696e axMinors: MaxMin │ │ │ │ +00016490: 6f72 732c 203d 3e20 2e2e 2e2c 2064 6566 ors, => ..., def │ │ │ │ +000164a0: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ +000164b0: 2061 6e20 6f70 7469 6f6e 2074 6f0a 2020 an option to. │ │ │ │ +000164c0: 2020 2020 2020 636f 6e74 726f 6c20 6465 control de │ │ │ │ +000164d0: 7074 6820 6f66 2073 6561 7263 680a 2020 pth of search. │ │ │ │ +000164e0: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ +000164f0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ +00016500: 7074 696f 6e73 2c20 3d3e 202e 2e2e 2c20 ptions, => ..., │ │ │ │ +00016510: 6465 6661 756c 7420 7661 6c75 6520 7b53 default value {S │ │ │ │ +00016520: 7472 6174 6567 7920 3d3e 0a20 2020 2020 trategy =>. │ │ │ │ +00016530: 2020 2044 6566 6175 6c74 2c20 486f 6d6f Default, Homo │ │ │ │ +00016540: 6765 6e65 6f75 7320 3d3e 2066 616c 7365 geneous => false │ │ │ │ +00016550: 2c20 5265 706c 6163 656d 656e 7420 3d3e , Replacement => │ │ │ │ +00016560: 2042 696e 6f6d 6961 6c2c 2045 7874 656e Binomial, Exten │ │ │ │ +00016570: 6446 6965 6c64 203d 3e0a 2020 2020 2020 dField =>. │ │ │ │ +00016580: 2020 7472 7565 2c20 506f 696e 7443 6865 true, PointChe │ │ │ │ +00016590: 636b 4174 7465 6d70 7473 203d 3e20 302c ckAttempts => 0, │ │ │ │ +000165a0: 2044 6563 6f6d 706f 7369 7469 6f6e 5374 DecompositionSt │ │ │ │ +000165b0: 7261 7465 6779 203d 3e20 4465 636f 6d70 rategy => Decomp │ │ │ │ +000165c0: 6f73 652c 0a20 2020 2020 2020 204e 756d ose,. Num │ │ │ │ +000165d0: 5468 7265 6164 7354 6f55 7365 203d 3e20 ThreadsToUse => │ │ │ │ +000165e0: 312c 2044 696d 656e 7369 6f6e 4675 6e63 1, DimensionFunc │ │ │ │ +000165f0: 7469 6f6e 203d 3e20 6469 6d2c 2056 6572 tion => dim, Ver │ │ │ │ +00016600: 626f 7365 203d 3e20 6661 6c73 657d 2c0a bose => false},. │ │ │ │ +00016610: 2020 2020 2020 2020 6f70 7469 6f6e 7320 options │ │ │ │ +00016620: 746f 2070 6173 7320 746f 2066 756e 6374 to pass to funct │ │ │ │ +00016630: 696f 6e73 2069 6e20 7468 6520 7061 636b ions in the pack │ │ │ │ +00016640: 6167 6520 5261 6e64 6f6d 506f 696e 7473 age RandomPoints │ │ │ │ +00016650: 0a20 2020 2020 202a 202a 6e6f 7465 2053 . * *note S │ │ │ │ +00016660: 7472 6174 6567 793a 2053 7472 6174 6567 trategy: Strateg │ │ │ │ +00016670: 7944 6566 6175 6c74 2c20 3d3e 202e 2e2e yDefault, => ... │ │ │ │ +00016680: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00016690: 6e65 7720 4f70 7469 6f6e 5461 626c 650a new OptionTable. │ │ │ │ +000166a0: 2020 2020 2020 2020 6672 6f6d 207b 506f from {Po │ │ │ │ +000166b0: 696e 7473 203d 3e20 302c 2052 616e 646f ints => 0, Rando │ │ │ │ +000166c0: 6d20 3d3e 2030 2c20 4752 6576 4c65 784c m => 0, GRevLexL │ │ │ │ +000166d0: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ +000166e0: 536d 616c 6c65 7374 5465 726d 203d 3e0a SmallestTerm =>. │ │ │ │ +000166f0: 2020 2020 2020 2020 3235 2c20 4c65 784c 25, LexL │ │ │ │ +00016700: 6172 6765 7374 203d 3e20 302c 204c 6578 argest => 0, Lex │ │ │ │ +00016710: 536d 616c 6c65 7374 203d 3e20 3235 2c20 Smallest => 25, │ │ │ │ +00016720: 4752 6576 4c65 7853 6d61 6c6c 6573 7454 GRevLexSmallestT │ │ │ │ +00016730: 6572 6d20 3d3e 2032 352c 0a20 2020 2020 erm => 25,. │ │ │ │ +00016740: 2020 2052 616e 646f 6d4e 6f6e 7a65 726f RandomNonzero │ │ │ │ +00016750: 203d 3e20 302c 2047 5265 764c 6578 536d => 0, GRevLexSm │ │ │ │ +00016760: 616c 6c65 7374 203d 3e20 3235 7d2c 2073 allest => 25}, s │ │ │ │ +00016770: 7472 6174 6567 6965 7320 666f 7220 6368 trategies for ch │ │ │ │ +00016780: 6f6f 7369 6e67 0a20 2020 2020 2020 2073 oosing. s │ │ │ │ +00016790: 7562 6d61 7472 6963 6573 0a20 2020 2020 ubmatrices. │ │ │ │ +000167a0: 202a 202a 6e6f 7465 2054 6872 6561 6473 * *note Threads │ │ │ │ +000167b0: 3a20 6973 5261 6e6b 4174 4c65 6173 745f : isRankAtLeast_ │ │ │ │ +000167c0: 6c70 5f70 645f 7064 5f70 645f 636d 5468 lp_pd_pd_pd_cmTh │ │ │ │ +000167d0: 7265 6164 733d 3e5f 7064 5f70 645f 7064 reads=>_pd_pd_pd │ │ │ │ +000167e0: 5f72 702c 203d 3e0a 2020 2020 2020 2020 _rp, =>. │ │ │ │ +000167f0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00016800: 7565 2031 2c20 616e 206f 7074 696f 6e20 ue 1, an option │ │ │ │ +00016810: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ +00016820: 7469 6f6e 730a 2020 2020 2020 2a20 5665 tions. * Ve │ │ │ │ +00016830: 7262 6f73 6520 3d3e 202e 2e2e 2c20 6465 rbose => ..., de │ │ │ │ +00016840: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ +00016850: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ +00016860: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ +00016870: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00016880: 6f63 294c 6973 742c 2c20 7468 6520 6669 oc)List,, the fi │ │ │ │ +00016890: 7273 7420 656e 7472 7920 6973 2061 206c rst entry is a l │ │ │ │ +000168a0: 6973 7420 6f66 2072 6f77 0a20 2020 2020 ist of row. │ │ │ │ +000168b0: 2020 2069 6e64 6963 6573 2c20 7468 6520 indices, the │ │ │ │ +000168c0: 7365 636f 6e64 2069 7320 6120 6c69 7374 second is a list │ │ │ │ +000168d0: 206f 6620 636f 6c75 6d6e 2069 6e64 6963 of column indic │ │ │ │ +000168e0: 6573 0a0a 4465 7363 7269 7074 696f 6e0a es..Description. │ │ │ │ +000168f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +00016900: 7320 6675 6e63 7469 6f6e 206c 6f6f 6b73 s function looks │ │ │ │ +00016910: 2061 7420 7375 626d 6174 7269 6365 7320 at submatrices │ │ │ │ +00016920: 6f66 2074 6865 2067 6976 656e 206d 6174 of the given mat │ │ │ │ +00016930: 7269 782c 2061 6e64 2074 7269 6573 2074 rix, and tries t │ │ │ │ +00016940: 6f20 6669 6e64 206f 6e65 0a6f 6620 7468 o find one.of th │ │ │ │ +00016950: 6520 7370 6563 6966 6965 6420 7261 6e6b e specified rank │ │ │ │ +00016960: 2e20 2049 6620 6974 2073 7563 6365 6564 . If it succeed │ │ │ │ +00016970: 732c 2069 7420 7265 7475 726e 7320 6120 s, it returns a │ │ │ │ +00016980: 6c69 7374 206f 6620 7477 6f20 6c69 7374 list of two list │ │ │ │ +00016990: 732e 2054 6865 0a66 6972 7374 2069 7320 s. The.first is │ │ │ │ +000169a0: 7468 6520 6c69 7374 206f 6620 726f 7720 the list of row │ │ │ │ +000169b0: 696e 6469 6365 732c 2074 6865 2073 6563 indices, the sec │ │ │ │ +000169c0: 6f6e 6420 6973 2074 6865 206c 6973 7420 ond is the list │ │ │ │ +000169d0: 6f66 2063 6f6c 756d 6e73 2c20 6f66 2074 of columns, of t │ │ │ │ +000169e0: 6865 0a64 6573 6972 6564 2072 616e 6b20 he.desired rank │ │ │ │ +000169f0: 7375 626d 6174 7269 782e 2049 6620 6974 submatrix. If it │ │ │ │ +00016a00: 2066 6169 6c73 2074 6f20 6669 6e64 2073 fails to find s │ │ │ │ +00016a10: 7563 6820 6120 6d61 7472 6978 2c20 7468 uch a matrix, th │ │ │ │ +00016a20: 6520 6675 6e63 7469 6f6e 2072 6574 7572 e function retur │ │ │ │ +00016a30: 6e73 0a6e 756c 6c2e 2020 5468 6520 6f70 ns.null. The op │ │ │ │ +00016a40: 7469 6f6e 204d 6178 4d69 6e6f 7273 2069 tion MaxMinors i │ │ │ │ +00016a50: 7320 7573 6564 2074 6f20 636f 6e74 726f s used to contro │ │ │ │ +00016a60: 6c20 686f 7720 6d61 6e79 206d 696e 6f72 l how many minor │ │ │ │ +00016a70: 7320 746f 2063 6f6e 7369 6465 722e 2020 s to consider. │ │ │ │ +00016a80: 4966 0a6c 6566 7420 6e75 6c6c 2c20 7468 If.left null, th │ │ │ │ +00016a90: 6520 6e75 6d62 6572 2063 6f6e 7369 6465 e number conside │ │ │ │ +00016aa0: 7265 6420 6973 2062 6173 6564 206f 6e20 red is based on │ │ │ │ +00016ab0: 7468 6520 7369 7a65 206f 6620 7468 6520 the size of the │ │ │ │ +00016ac0: 6d61 7472 6978 2e0a 0a2b 2d2d 2d2d 2d2d matrix...+------ │ │ │ │ +00016ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b00: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +00016b10: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +00016b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016b40: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00016b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b80: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ +00016b90: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ +00016ba0: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ +00016bb0: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ +00016bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016be0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00016bf0: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ -00016c00: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -00016c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00016c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016c60: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206c -------+.|i3 : l │ │ │ │ -00016c70: 203d 2067 6574 5375 626d 6174 7269 784f = getSubmatrixO │ │ │ │ -00016c80: 6652 616e 6b28 322c 204d 2920 2020 2020 fRank(2, M) │ │ │ │ -00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 2020 207c 0a7c 6f33 203d 207b 7b31 2c20 |.|o3 = {{1, │ │ │ │ -00016cf0: 327d 2c20 7b32 2c20 317d 7d20 2020 2020 2}, {2, 1}} │ │ │ │ +00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00016c00: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00016c10: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c30: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00016c40: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ +00016c50: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00016c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00016c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206c -------+.|i3 : l │ │ │ │ +00016cc0: 203d 2067 6574 5375 626d 6174 7269 784f = getSubmatrixO │ │ │ │ +00016cd0: 6652 616e 6b28 322c 204d 2920 2020 2020 fRank(2, M) │ │ │ │ +00016ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00016d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016d60: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ -00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d30: 2020 207c 0a7c 6f33 203d 207b 7b31 2c20 |.|o3 = {{1, │ │ │ │ +00016d40: 327d 2c20 7b32 2c20 317d 7d20 2020 2020 2}, {2, 1}} │ │ │ │ +00016d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00016da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00016de0: 203a 2028 4d5e 286c 2330 2929 5f28 6c23 : (M^(l#0))_(l# │ │ │ │ -00016df0: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ -00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e50: 2020 2020 2020 207c 0a7c 6f34 203d 207c |.|o4 = | │ │ │ │ -00016e60: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ +00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016db0: 0a7c 6f33 203a 204c 6973 7420 2020 2020 .|o3 : List │ │ │ │ +00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00016df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00016e30: 203a 2028 4d5e 286c 2330 2929 5f28 6c23 : (M^(l#0))_(l# │ │ │ │ +00016e40: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ +00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 2020 2020 207c 0a7c 2020 2020 207c 2030 |.| | 0 │ │ │ │ -00016ea0: 2079 207c 2020 2020 2020 2020 2020 2020 y | │ │ │ │ -00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ea0: 2020 2020 2020 207c 0a7c 6f34 203d 207c |.|o4 = | │ │ │ │ +00016eb0: 2031 2030 207c 2020 2020 2020 2020 2020 1 0 | │ │ │ │ 00016ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ee0: 2020 2020 207c 0a7c 2020 2020 207c 2030 |.| | 0 │ │ │ │ +00016ef0: 2079 207c 2020 2020 2020 2020 2020 2020 y | │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016f20: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016f50: 0a7c 6f34 203a 204d 6174 7269 7820 5220 .|o4 : Matrix R │ │ │ │ -00016f60: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ -00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00016f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00016fd0: 203a 206c 203d 2067 6574 5375 626d 6174 : l = getSubmat │ │ │ │ -00016fe0: 7269 784f 6652 616e 6b28 322c 204d 2920 rixOfRank(2, M) │ │ │ │ -00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017040: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ -00017050: 7b31 2c20 307d 2c20 7b32 2c20 317d 7d20 {1, 0}, {2, 1}} │ │ │ │ +00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016f70: 2032 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016fa0: 0a7c 6f34 203a 204d 6174 7269 7820 5220 .|o4 : Matrix R │ │ │ │ +00016fb0: 203c 2d2d 2052 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fd0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00016fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +00017020: 203a 206c 203d 2067 6574 5375 626d 6174 : l = getSubmat │ │ │ │ +00017030: 7269 784f 6652 616e 6b28 322c 204d 2920 rixOfRank(2, M) │ │ │ │ +00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017090: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ +000170a0: 7b31 2c20 307d 2c20 7b32 2c20 317d 7d20 {1, 0}, {2, 1}} │ │ │ │ 000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170c0: 2020 207c 0a7c 6f35 203a 204c 6973 7420 |.|o5 : List │ │ │ │ -000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017100: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017140: 0a7c 6936 203a 2028 4d5e 286c 2330 2929 .|i6 : (M^(l#0)) │ │ │ │ -00017150: 5f28 6c23 3129 2020 2020 2020 2020 2020 _(l#1) │ │ │ │ -00017160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171b0: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ -000171c0: 203d 207c 2031 2030 207c 2020 2020 2020 = | 1 0 | │ │ │ │ +00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017110: 2020 207c 0a7c 6f35 203a 204c 6973 7420 |.|o5 : List │ │ │ │ +00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00017190: 0a7c 6936 203a 2028 4d5e 286c 2330 2929 .|i6 : (M^(l#0)) │ │ │ │ +000171a0: 5f28 6c23 3129 2020 2020 2020 2020 2020 _(l#1) │ │ │ │ +000171b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000171d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00017200: 207c 2032 2079 207c 2020 2020 2020 2020 | 2 y | │ │ │ │ -00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017200: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00017210: 203d 207c 2031 2030 207c 2020 2020 2020 = | 1 0 | │ │ │ │ 00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017250: 207c 2032 2079 207c 2020 2020 2020 2020 | 2 y | │ │ │ │ 00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017280: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172b0: 2020 207c 0a7c 6f36 203a 204d 6174 7269 |.|o6 : Matri │ │ │ │ -000172c0: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ -000172d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000172d0: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ 000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00017330: 0a7c 6937 203a 2067 6574 5375 626d 6174 .|i7 : getSubmat │ │ │ │ -00017340: 7269 784f 6652 616e 6b28 332c 204d 2920 rixOfRank(3, M) │ │ │ │ -00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017360: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000173a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -000173b0: 6520 6f70 7469 6f6e 2053 7472 6174 6567 e option Strateg │ │ │ │ -000173c0: 7920 6973 2075 7365 6420 746f 2075 7365 y is used to use │ │ │ │ -000173d0: 6420 746f 2063 6f6e 7472 6f6c 2068 6f77 d to control how │ │ │ │ -000173e0: 2074 6865 2066 756e 6374 696f 6e20 636f the function co │ │ │ │ -000173f0: 6d70 7574 6573 2074 6865 0a72 616e 6b20 mputes the.rank │ │ │ │ -00017400: 6f66 2074 6865 2073 7562 6d61 7472 6963 of the submatric │ │ │ │ -00017410: 6573 2063 6f6e 7369 6465 7265 642e 2020 es considered. │ │ │ │ -00017420: 5365 6520 2a6e 6f74 650a 6765 7453 7562 See *note.getSub │ │ │ │ -00017430: 6d61 7472 6978 4f66 5261 6e6b 282e 2e2e matrixOfRank(... │ │ │ │ -00017440: 2c53 7472 6174 6567 793d 3e2e 2e2e 293a ,Strategy=>...): │ │ │ │ -00017450: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ -00017460: 2c2e 2049 6e20 7468 6520 6675 7475 7265 ,. In the future │ │ │ │ -00017470: 2c20 7765 2068 6f70 650a 746f 2073 7065 , we hope.to spe │ │ │ │ -00017480: 6564 2075 7020 7468 6520 6675 6e63 7469 ed up the functi │ │ │ │ -00017490: 6f6e 2074 6f20 7573 6520 6d75 6c74 6970 on to use multip │ │ │ │ -000174a0: 6c65 2074 6872 6561 6473 206f 6620 6578 le threads of ex │ │ │ │ -000174b0: 6563 7574 696f 6e2c 2069 6e20 7768 6963 ecution, in whic │ │ │ │ -000174c0: 6820 6361 7365 0a74 6865 2074 6872 6561 h case.the threa │ │ │ │ -000174d0: 6469 6e67 2077 6f75 6c64 2062 6520 636f ding would be co │ │ │ │ -000174e0: 6e74 726f 6c6c 6564 2062 7920 7468 6520 ntrolled by the │ │ │ │ -000174f0: 6f70 7469 6f6e 2054 6872 6561 6473 2e0a option Threads.. │ │ │ │ -00017500: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00017510: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6973 ==.. * *note is │ │ │ │ -00017520: 5261 6e6b 4174 4c65 6173 743a 2069 7352 RankAtLeast: isR │ │ │ │ -00017530: 616e 6b41 744c 6561 7374 2c20 2d2d 2064 ankAtLeast, -- d │ │ │ │ -00017540: 6574 6572 6d69 6e65 7320 6966 2074 6865 etermines if the │ │ │ │ -00017550: 206d 6174 7269 7820 6861 7320 7261 6e6b matrix has rank │ │ │ │ -00017560: 2061 740a 2020 2020 6c65 6173 7420 6120 at. least a │ │ │ │ -00017570: 6e75 6d62 6572 0a20 202a 202a 6e6f 7465 number. * *note │ │ │ │ -00017580: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ -00017590: 616e 6b28 2e2e 2e2c 5374 7261 7465 6779 ank(...,Strategy │ │ │ │ -000175a0: 3d3e 2e2e 2e29 3a20 5374 7261 7465 6779 =>...): Strategy │ │ │ │ -000175b0: 4465 6661 756c 742c 202d 2d20 7374 7261 Default, -- stra │ │ │ │ -000175c0: 7465 6769 6573 0a20 2020 2066 6f72 2063 tegies. for c │ │ │ │ -000175d0: 686f 6f73 696e 6720 7375 626d 6174 7269 hoosing submatri │ │ │ │ -000175e0: 6365 730a 0a57 6179 7320 746f 2075 7365 ces..Ways to use │ │ │ │ -000175f0: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ -00017600: 616e 6b3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ank:.=========== │ │ │ │ -00017610: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017620: 3d3d 3d3d 0a0a 2020 2a20 2267 6574 5375 ====.. * "getSu │ │ │ │ -00017630: 626d 6174 7269 784f 6652 616e 6b28 5a5a bmatrixOfRank(ZZ │ │ │ │ -00017640: 2c4d 6174 7269 7829 220a 0a46 6f72 2074 ,Matrix)"..For t │ │ │ │ -00017650: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017300: 2020 207c 0a7c 6f36 203a 204d 6174 7269 |.|o6 : Matri │ │ │ │ +00017310: 7820 5220 203c 2d2d 2052 2020 2020 2020 x R <-- R │ │ │ │ +00017320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017340: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00017350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00017380: 0a7c 6937 203a 2067 6574 5375 626d 6174 .|i7 : getSubmat │ │ │ │ +00017390: 7269 784f 6652 616e 6b28 332c 204d 2920 rixOfRank(3, M) │ │ │ │ +000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000173c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00017400: 6520 6f70 7469 6f6e 2053 7472 6174 6567 e option Strateg │ │ │ │ +00017410: 7920 6973 2075 7365 6420 746f 2075 7365 y is used to use │ │ │ │ +00017420: 6420 746f 2063 6f6e 7472 6f6c 2068 6f77 d to control how │ │ │ │ +00017430: 2074 6865 2066 756e 6374 696f 6e20 636f the function co │ │ │ │ +00017440: 6d70 7574 6573 2074 6865 0a72 616e 6b20 mputes the.rank │ │ │ │ +00017450: 6f66 2074 6865 2073 7562 6d61 7472 6963 of the submatric │ │ │ │ +00017460: 6573 2063 6f6e 7369 6465 7265 642e 2020 es considered. │ │ │ │ +00017470: 5365 6520 2a6e 6f74 650a 6765 7453 7562 See *note.getSub │ │ │ │ +00017480: 6d61 7472 6978 4f66 5261 6e6b 282e 2e2e matrixOfRank(... │ │ │ │ +00017490: 2c53 7472 6174 6567 793d 3e2e 2e2e 293a ,Strategy=>...): │ │ │ │ +000174a0: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ +000174b0: 2c2e 2049 6e20 7468 6520 6675 7475 7265 ,. In the future │ │ │ │ +000174c0: 2c20 7765 2068 6f70 650a 746f 2073 7065 , we hope.to spe │ │ │ │ +000174d0: 6564 2075 7020 7468 6520 6675 6e63 7469 ed up the functi │ │ │ │ +000174e0: 6f6e 2074 6f20 7573 6520 6d75 6c74 6970 on to use multip │ │ │ │ +000174f0: 6c65 2074 6872 6561 6473 206f 6620 6578 le threads of ex │ │ │ │ +00017500: 6563 7574 696f 6e2c 2069 6e20 7768 6963 ecution, in whic │ │ │ │ +00017510: 6820 6361 7365 0a74 6865 2074 6872 6561 h case.the threa │ │ │ │ +00017520: 6469 6e67 2077 6f75 6c64 2062 6520 636f ding would be co │ │ │ │ +00017530: 6e74 726f 6c6c 6564 2062 7920 7468 6520 ntrolled by the │ │ │ │ +00017540: 6f70 7469 6f6e 2054 6872 6561 6473 2e0a option Threads.. │ │ │ │ +00017550: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +00017560: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6973 ==.. * *note is │ │ │ │ +00017570: 5261 6e6b 4174 4c65 6173 743a 2069 7352 RankAtLeast: isR │ │ │ │ +00017580: 616e 6b41 744c 6561 7374 2c20 2d2d 2064 ankAtLeast, -- d │ │ │ │ +00017590: 6574 6572 6d69 6e65 7320 6966 2074 6865 etermines if the │ │ │ │ +000175a0: 206d 6174 7269 7820 6861 7320 7261 6e6b matrix has rank │ │ │ │ +000175b0: 2061 740a 2020 2020 6c65 6173 7420 6120 at. least a │ │ │ │ +000175c0: 6e75 6d62 6572 0a20 202a 202a 6e6f 7465 number. * *note │ │ │ │ +000175d0: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ +000175e0: 616e 6b28 2e2e 2e2c 5374 7261 7465 6779 ank(...,Strategy │ │ │ │ +000175f0: 3d3e 2e2e 2e29 3a20 5374 7261 7465 6779 =>...): Strategy │ │ │ │ +00017600: 4465 6661 756c 742c 202d 2d20 7374 7261 Default, -- stra │ │ │ │ +00017610: 7465 6769 6573 0a20 2020 2066 6f72 2063 tegies. for c │ │ │ │ +00017620: 686f 6f73 696e 6720 7375 626d 6174 7269 hoosing submatri │ │ │ │ +00017630: 6365 730a 0a57 6179 7320 746f 2075 7365 ces..Ways to use │ │ │ │ +00017640: 2067 6574 5375 626d 6174 7269 784f 6652 getSubmatrixOfR │ │ │ │ +00017650: 616e 6b3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ank:.=========== │ │ │ │ 00017660: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00017670: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00017680: 7465 2067 6574 5375 626d 6174 7269 784f te getSubmatrixO │ │ │ │ -00017690: 6652 616e 6b3a 2067 6574 5375 626d 6174 fRank: getSubmat │ │ │ │ -000176a0: 7269 784f 6652 616e 6b2c 2069 7320 6120 rixOfRank, is a │ │ │ │ -000176b0: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ -000176c0: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ -000176d0: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -000176e0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -000176f0: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ -00017700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00017750: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00017760: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00017770: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00017780: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00017790: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -000177a0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -000177b0: 6b61 6765 732f 4661 7374 4d69 6e6f 7273 kages/FastMinors │ │ │ │ -000177c0: 2e0a 6d32 3a31 3737 323a 302e 0a1f 0a46 ..m2:1772:0....F │ │ │ │ -000177d0: 696c 653a 2046 6173 744d 696e 6f72 732e ile: FastMinors. │ │ │ │ -000177e0: 696e 666f 2c20 4e6f 6465 3a20 6973 436f info, Node: isCo │ │ │ │ -000177f0: 6469 6d41 744c 6561 7374 2c20 4e65 7874 dimAtLeast, Next │ │ │ │ -00017800: 3a20 6973 4469 6d41 744d 6f73 742c 2050 : isDimAtMost, P │ │ │ │ -00017810: 7265 763a 2067 6574 5375 626d 6174 7269 rev: getSubmatri │ │ │ │ -00017820: 784f 6652 616e 6b2c 2055 703a 2054 6f70 xOfRank, Up: Top │ │ │ │ -00017830: 0a0a 6973 436f 6469 6d41 744c 6561 7374 ..isCodimAtLeast │ │ │ │ -00017840: 202d 2d20 7265 7475 726e 7320 7472 7565 -- returns true │ │ │ │ -00017850: 2069 6620 7765 2063 616e 2071 7569 636b if we can quick │ │ │ │ -00017860: 6c79 2073 6565 2077 6865 7468 6572 2074 ly see whether t │ │ │ │ -00017870: 6865 2063 6f64 696d 2069 7320 6174 206c he codim is at l │ │ │ │ -00017880: 6561 7374 2061 2067 6976 656e 206e 756d east a given num │ │ │ │ -00017890: 6265 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ber.************ │ │ │ │ -000178a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000178f0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00017900: 3a20 0a20 2020 2020 2020 2069 7343 6f64 : . isCod │ │ │ │ -00017910: 696d 4174 4c65 6173 7428 6e2c 2049 290a imAtLeast(n, I). │ │ │ │ -00017920: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00017930: 2020 2a20 6e2c 2061 6e20 2a6e 6f74 6520 * n, an *note │ │ │ │ -00017940: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00017950: 6179 3244 6f63 295a 5a2c 2c20 616e 2069 ay2Doc)ZZ,, an i │ │ │ │ -00017960: 6e74 6567 6572 0a20 2020 2020 202a 2049 nteger. * I │ │ │ │ -00017970: 2c20 616e 202a 6e6f 7465 2069 6465 616c , an *note ideal │ │ │ │ -00017980: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00017990: 4964 6561 6c2c 2c20 616e 2069 6465 616c Ideal,, an ideal │ │ │ │ -000179a0: 2069 6e20 6120 706f 6c79 6e6f 6d69 616c in a polynomial │ │ │ │ -000179b0: 2072 696e 670a 2020 2020 2020 2020 6f76 ring. ov │ │ │ │ -000179c0: 6572 2061 2066 6965 6c64 2c20 6f72 2061 er a field, or a │ │ │ │ -000179d0: 2071 756f 7469 656e 7420 7269 6e67 0a20 quotient ring. │ │ │ │ -000179e0: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -000179f0: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -00017a00: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -00017a10: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -00017a20: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -00017a30: 2020 2020 202a 2053 5061 6972 7346 756e * SPairsFun │ │ │ │ -00017a40: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ -00017a50: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ -00017a60: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ -00017a70: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ -00017a80: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ -00017a90: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ -00017aa0: 744d 696e 6f72 732e 6d32 3a32 3131 3a32 tMinors.m2:211:2 │ │ │ │ -00017ab0: 332d 3231 313a 3432 5d2c 2061 2066 756e 3-211:42], a fun │ │ │ │ -00017ac0: 6374 696f 6e20 746f 0a20 2020 2020 2020 ction to. │ │ │ │ -00017ad0: 2063 6f6e 7472 6f6c 2068 6f77 2077 6865 control how whe │ │ │ │ -00017ae0: 6e20 7468 6520 636f 6469 6d65 6e73 696f n the codimensio │ │ │ │ -00017af0: 6e20 6f66 206d 696e 6f72 7320 6973 2063 n of minors is c │ │ │ │ -00017b00: 6f6d 7075 7465 642c 2064 6566 6175 6c74 omputed, default │ │ │ │ -00017b10: 2069 730a 2020 2020 2020 2020 692d 3e63 is. i->c │ │ │ │ -00017b20: 6569 6c69 6e67 2831 2e35 5e69 290a 2020 eiling(1.5^i). │ │ │ │ -00017b30: 2020 2020 2a20 5061 6972 4c69 6d69 7420 * PairLimit │ │ │ │ -00017b40: 3d3e 2061 202a 6e6f 7465 206e 756d 6265 => a *note numbe │ │ │ │ -00017b50: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -00017b60: 294e 756d 6265 722c 2c20 6465 6661 756c )Number,, defaul │ │ │ │ -00017b70: 7420 7661 6c75 6520 3130 302c 0a20 2020 t value 100,. │ │ │ │ -00017b80: 2020 2020 2074 6865 206d 6178 2076 616c the max val │ │ │ │ -00017b90: 7565 2074 6f20 6265 2070 6c75 6767 6564 ue to be plugged │ │ │ │ -00017ba0: 2069 6e74 6f20 5350 6169 7273 4675 6e63 into SPairsFunc │ │ │ │ -00017bb0: 7469 6f6e 0a20 2020 2020 202a 2056 6572 tion. * Ver │ │ │ │ -00017bc0: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ -00017bd0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00017be0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00017bf0: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ -00017c00: 6520 636f 6469 6d65 6e73 696f 6e20 6f66 e codimension of │ │ │ │ -00017c10: 2049 2069 7320 6174 206c 6561 7374 206e I is at least n │ │ │ │ -00017c20: 206f 7220 6e75 6c6c 2069 6620 7468 6520 or null if the │ │ │ │ -00017c30: 6675 6e63 7469 6f6e 0a20 2020 2020 2020 function. │ │ │ │ -00017c40: 2063 616e 6e6f 7420 7465 6c6c 2077 6865 cannot tell whe │ │ │ │ -00017c50: 7468 6572 2074 6865 2063 6f64 696d 656e ther the codimen │ │ │ │ -00017c60: 7369 6f6e 2069 7320 6174 206c 6561 7374 sion is at least │ │ │ │ -00017c70: 206e 0a0a 4465 7363 7269 7074 696f 6e0a n..Description. │ │ │ │ -00017c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -00017c90: 7320 636f 6d70 7574 6573 2061 2070 6172 s computes a par │ │ │ │ -00017ca0: 7469 616c 2047 726f 6562 6e65 7220 6261 tial Groebner ba │ │ │ │ -00017cb0: 7369 732c 2074 616b 6573 2074 6865 2069 sis, takes the i │ │ │ │ -00017cc0: 6e69 7469 616c 2074 6572 6d73 2c20 616e nitial terms, an │ │ │ │ -00017cd0: 6420 6368 6563 6b73 0a77 6865 7468 6572 d checks.whether │ │ │ │ -00017ce0: 2074 6861 7420 2870 6172 7469 616c 2920 that (partial) │ │ │ │ -00017cf0: 696e 6974 6961 6c20 6964 6561 6c20 6861 initial ideal ha │ │ │ │ -00017d00: 7320 636f 6469 6d65 6e73 696f 6e20 6174 s codimension at │ │ │ │ -00017d10: 206c 6561 7374 206e 2e20 436f 6e73 6964 least n. Consid │ │ │ │ -00017d20: 6572 2074 6865 0a66 6f6c 6c6f 7769 6e67 er the.following │ │ │ │ -00017d30: 2065 7861 6d70 6c65 2e20 2057 6520 6372 example. We cr │ │ │ │ -00017d40: 6561 7465 2061 6e20 6964 6561 6c20 6f66 eate an ideal of │ │ │ │ -00017d50: 2031 3520 6d69 6e6f 7273 206f 6620 7468 15 minors of th │ │ │ │ -00017d60: 6520 6d61 7472 6978 206d 7944 6966 6620 e matrix myDiff │ │ │ │ -00017d70: 2861 0a6d 6174 7269 7820 636f 6e73 7472 (a.matrix constr │ │ │ │ -00017d80: 7563 7465 6420 696e 2061 2077 6179 2074 ucted in a way t │ │ │ │ -00017d90: 7970 6963 616c 206f 6620 6170 706c 6963 ypical of applic │ │ │ │ -00017da0: 6174 696f 6e73 292e 2020 5765 2077 6f75 ations). We wou │ │ │ │ -00017db0: 6c64 206c 696b 6520 746f 2076 6572 6966 ld like to verif │ │ │ │ -00017dc0: 790a 7468 6174 2074 6865 2063 6f64 696d y.that the codim │ │ │ │ -00017dd0: 656e 7369 6f6e 206f 6620 7468 6973 2069 ension of this i │ │ │ │ -00017de0: 6465 616c 2069 7320 6174 206c 6561 7374 deal is at least │ │ │ │ -00017df0: 2033 2e20 2054 6865 2062 7569 6c74 2d69 3. The built-i │ │ │ │ -00017e00: 6e20 636f 6469 6d20 6675 6e63 7469 6f6e n codim function │ │ │ │ -00017e10: 0a74 7970 6963 616c 6c79 2064 6f65 7320 .typically does │ │ │ │ -00017e20: 6e6f 7420 7465 726d 696e 6174 652e 2048 not terminate. H │ │ │ │ -00017e30: 6f77 6576 6572 2c20 6973 436f 6469 6d41 owever, isCodimA │ │ │ │ -00017e40: 744c 6561 7374 2069 7320 6e6f 726d 616c tLeast is normal │ │ │ │ -00017e50: 6c79 2076 6572 7920 6661 7374 2e0a 0a2b ly very fast...+ │ │ │ │ -00017e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017eb0: 6931 203a 2052 203d 205a 5a2f 3132 375b i1 : R = ZZ/127[ │ │ │ │ -00017ec0: 785f 3120 2e2e 2078 5f28 3132 295d 3b20 x_1 .. x_(12)]; │ │ │ │ -00017ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ef0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00017f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00017f50: 6932 203a 2050 203d 206d 696e 6f72 7328 i2 : P = minors( │ │ │ │ -00017f60: 332c 6765 6e65 7269 634d 6174 7269 7828 3,genericMatrix( │ │ │ │ -00017f70: 522c 785f 312c 332c 3429 293b 2020 2020 R,x_1,3,4)); │ │ │ │ -00017f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017670: 3d3d 3d3d 0a0a 2020 2a20 2267 6574 5375 ====.. * "getSu │ │ │ │ +00017680: 626d 6174 7269 784f 6652 616e 6b28 5a5a bmatrixOfRank(ZZ │ │ │ │ +00017690: 2c4d 6174 7269 7829 220a 0a46 6f72 2074 ,Matrix)"..For t │ │ │ │ +000176a0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000176b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000176c0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +000176d0: 7465 2067 6574 5375 626d 6174 7269 784f te getSubmatrixO │ │ │ │ +000176e0: 6652 616e 6b3a 2067 6574 5375 626d 6174 fRank: getSubmat │ │ │ │ +000176f0: 7269 784f 6652 616e 6b2c 2069 7320 6120 rixOfRank, is a │ │ │ │ +00017700: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ +00017710: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ +00017720: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ +00017730: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +00017740: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +00017750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +000177a0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +000177b0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +000177c0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +000177d0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +000177e0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +000177f0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00017800: 6b61 6765 732f 4661 7374 4d69 6e6f 7273 kages/FastMinors │ │ │ │ +00017810: 2e0a 6d32 3a31 3737 323a 302e 0a1f 0a46 ..m2:1772:0....F │ │ │ │ +00017820: 696c 653a 2046 6173 744d 696e 6f72 732e ile: FastMinors. │ │ │ │ +00017830: 696e 666f 2c20 4e6f 6465 3a20 6973 436f info, Node: isCo │ │ │ │ +00017840: 6469 6d41 744c 6561 7374 2c20 4e65 7874 dimAtLeast, Next │ │ │ │ +00017850: 3a20 6973 4469 6d41 744d 6f73 742c 2050 : isDimAtMost, P │ │ │ │ +00017860: 7265 763a 2067 6574 5375 626d 6174 7269 rev: getSubmatri │ │ │ │ +00017870: 784f 6652 616e 6b2c 2055 703a 2054 6f70 xOfRank, Up: Top │ │ │ │ +00017880: 0a0a 6973 436f 6469 6d41 744c 6561 7374 ..isCodimAtLeast │ │ │ │ +00017890: 202d 2d20 7265 7475 726e 7320 7472 7565 -- returns true │ │ │ │ +000178a0: 2069 6620 7765 2063 616e 2071 7569 636b if we can quick │ │ │ │ +000178b0: 6c79 2073 6565 2077 6865 7468 6572 2074 ly see whether t │ │ │ │ +000178c0: 6865 2063 6f64 696d 2069 7320 6174 206c he codim is at l │ │ │ │ +000178d0: 6561 7374 2061 2067 6976 656e 206e 756d east a given num │ │ │ │ +000178e0: 6265 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ber.************ │ │ │ │ +000178f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00017940: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00017950: 3a20 0a20 2020 2020 2020 2069 7343 6f64 : . isCod │ │ │ │ +00017960: 696d 4174 4c65 6173 7428 6e2c 2049 290a imAtLeast(n, I). │ │ │ │ +00017970: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00017980: 2020 2a20 6e2c 2061 6e20 2a6e 6f74 6520 * n, an *note │ │ │ │ +00017990: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +000179a0: 6179 3244 6f63 295a 5a2c 2c20 616e 2069 ay2Doc)ZZ,, an i │ │ │ │ +000179b0: 6e74 6567 6572 0a20 2020 2020 202a 2049 nteger. * I │ │ │ │ +000179c0: 2c20 616e 202a 6e6f 7465 2069 6465 616c , an *note ideal │ │ │ │ +000179d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000179e0: 4964 6561 6c2c 2c20 616e 2069 6465 616c Ideal,, an ideal │ │ │ │ +000179f0: 2069 6e20 6120 706f 6c79 6e6f 6d69 616c in a polynomial │ │ │ │ +00017a00: 2072 696e 670a 2020 2020 2020 2020 6f76 ring. ov │ │ │ │ +00017a10: 6572 2061 2066 6965 6c64 2c20 6f72 2061 er a field, or a │ │ │ │ +00017a20: 2071 756f 7469 656e 7420 7269 6e67 0a20 quotient ring. │ │ │ │ +00017a30: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00017a40: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00017a50: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00017a60: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00017a70: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00017a80: 2020 2020 202a 2053 5061 6972 7346 756e * SPairsFun │ │ │ │ +00017a90: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ +00017aa0: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ +00017ab0: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ +00017ac0: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ +00017ad0: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ +00017ae0: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ +00017af0: 744d 696e 6f72 732e 6d32 3a32 3131 3a32 tMinors.m2:211:2 │ │ │ │ +00017b00: 332d 3231 313a 3432 5d2c 2061 2066 756e 3-211:42], a fun │ │ │ │ +00017b10: 6374 696f 6e20 746f 0a20 2020 2020 2020 ction to. │ │ │ │ +00017b20: 2063 6f6e 7472 6f6c 2068 6f77 2077 6865 control how whe │ │ │ │ +00017b30: 6e20 7468 6520 636f 6469 6d65 6e73 696f n the codimensio │ │ │ │ +00017b40: 6e20 6f66 206d 696e 6f72 7320 6973 2063 n of minors is c │ │ │ │ +00017b50: 6f6d 7075 7465 642c 2064 6566 6175 6c74 omputed, default │ │ │ │ +00017b60: 2069 730a 2020 2020 2020 2020 692d 3e63 is. i->c │ │ │ │ +00017b70: 6569 6c69 6e67 2831 2e35 5e69 290a 2020 eiling(1.5^i). │ │ │ │ +00017b80: 2020 2020 2a20 5061 6972 4c69 6d69 7420 * PairLimit │ │ │ │ +00017b90: 3d3e 2061 202a 6e6f 7465 206e 756d 6265 => a *note numbe │ │ │ │ +00017ba0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +00017bb0: 294e 756d 6265 722c 2c20 6465 6661 756c )Number,, defaul │ │ │ │ +00017bc0: 7420 7661 6c75 6520 3130 302c 0a20 2020 t value 100,. │ │ │ │ +00017bd0: 2020 2020 2074 6865 206d 6178 2076 616c the max val │ │ │ │ +00017be0: 7565 2074 6f20 6265 2070 6c75 6767 6564 ue to be plugged │ │ │ │ +00017bf0: 2069 6e74 6f20 5350 6169 7273 4675 6e63 into SPairsFunc │ │ │ │ +00017c00: 7469 6f6e 0a20 2020 2020 202a 2056 6572 tion. * Ver │ │ │ │ +00017c10: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ +00017c20: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00017c30: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00017c40: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ +00017c50: 6520 636f 6469 6d65 6e73 696f 6e20 6f66 e codimension of │ │ │ │ +00017c60: 2049 2069 7320 6174 206c 6561 7374 206e I is at least n │ │ │ │ +00017c70: 206f 7220 6e75 6c6c 2069 6620 7468 6520 or null if the │ │ │ │ +00017c80: 6675 6e63 7469 6f6e 0a20 2020 2020 2020 function. │ │ │ │ +00017c90: 2063 616e 6e6f 7420 7465 6c6c 2077 6865 cannot tell whe │ │ │ │ +00017ca0: 7468 6572 2074 6865 2063 6f64 696d 656e ther the codimen │ │ │ │ +00017cb0: 7369 6f6e 2069 7320 6174 206c 6561 7374 sion is at least │ │ │ │ +00017cc0: 206e 0a0a 4465 7363 7269 7074 696f 6e0a n..Description. │ │ │ │ +00017cd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +00017ce0: 7320 636f 6d70 7574 6573 2061 2070 6172 s computes a par │ │ │ │ +00017cf0: 7469 616c 2047 726f 6562 6e65 7220 6261 tial Groebner ba │ │ │ │ +00017d00: 7369 732c 2074 616b 6573 2074 6865 2069 sis, takes the i │ │ │ │ +00017d10: 6e69 7469 616c 2074 6572 6d73 2c20 616e nitial terms, an │ │ │ │ +00017d20: 6420 6368 6563 6b73 0a77 6865 7468 6572 d checks.whether │ │ │ │ +00017d30: 2074 6861 7420 2870 6172 7469 616c 2920 that (partial) │ │ │ │ +00017d40: 696e 6974 6961 6c20 6964 6561 6c20 6861 initial ideal ha │ │ │ │ +00017d50: 7320 636f 6469 6d65 6e73 696f 6e20 6174 s codimension at │ │ │ │ +00017d60: 206c 6561 7374 206e 2e20 436f 6e73 6964 least n. Consid │ │ │ │ +00017d70: 6572 2074 6865 0a66 6f6c 6c6f 7769 6e67 er the.following │ │ │ │ +00017d80: 2065 7861 6d70 6c65 2e20 2057 6520 6372 example. We cr │ │ │ │ +00017d90: 6561 7465 2061 6e20 6964 6561 6c20 6f66 eate an ideal of │ │ │ │ +00017da0: 2031 3520 6d69 6e6f 7273 206f 6620 7468 15 minors of th │ │ │ │ +00017db0: 6520 6d61 7472 6978 206d 7944 6966 6620 e matrix myDiff │ │ │ │ +00017dc0: 2861 0a6d 6174 7269 7820 636f 6e73 7472 (a.matrix constr │ │ │ │ +00017dd0: 7563 7465 6420 696e 2061 2077 6179 2074 ucted in a way t │ │ │ │ +00017de0: 7970 6963 616c 206f 6620 6170 706c 6963 ypical of applic │ │ │ │ +00017df0: 6174 696f 6e73 292e 2020 5765 2077 6f75 ations). We wou │ │ │ │ +00017e00: 6c64 206c 696b 6520 746f 2076 6572 6966 ld like to verif │ │ │ │ +00017e10: 790a 7468 6174 2074 6865 2063 6f64 696d y.that the codim │ │ │ │ +00017e20: 656e 7369 6f6e 206f 6620 7468 6973 2069 ension of this i │ │ │ │ +00017e30: 6465 616c 2069 7320 6174 206c 6561 7374 deal is at least │ │ │ │ +00017e40: 2033 2e20 2054 6865 2062 7569 6c74 2d69 3. The built-i │ │ │ │ +00017e50: 6e20 636f 6469 6d20 6675 6e63 7469 6f6e n codim function │ │ │ │ +00017e60: 0a74 7970 6963 616c 6c79 2064 6f65 7320 .typically does │ │ │ │ +00017e70: 6e6f 7420 7465 726d 696e 6174 652e 2048 not terminate. H │ │ │ │ +00017e80: 6f77 6576 6572 2c20 6973 436f 6469 6d41 owever, isCodimA │ │ │ │ +00017e90: 744c 6561 7374 2069 7320 6e6f 726d 616c tLeast is normal │ │ │ │ +00017ea0: 6c79 2076 6572 7920 6661 7374 2e0a 0a2b ly very fast...+ │ │ │ │ +00017eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017f00: 6931 203a 2052 203d 205a 5a2f 3132 375b i1 : R = ZZ/127[ │ │ │ │ +00017f10: 785f 3120 2e2e 2078 5f28 3132 295d 3b20 x_1 .. x_(12)]; │ │ │ │ +00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f40: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017fa0: 6932 203a 2050 203d 206d 696e 6f72 7328 i2 : P = minors( │ │ │ │ +00017fb0: 332c 6765 6e65 7269 634d 6174 7269 7828 3,genericMatrix( │ │ │ │ +00017fc0: 522c 785f 312c 332c 3429 293b 2020 2020 R,x_1,3,4)); │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017ff0: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ +00017ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018030: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018090: 6933 203a 2043 203d 2072 6573 2028 525e i3 : C = res (R^ │ │ │ │ -000180a0: 312f 2850 5e33 2929 3b20 2020 2020 2020 1/(P^3)); │ │ │ │ -000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000180e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018130: 6934 203a 206d 7944 6966 6620 3d20 432e i4 : myDiff = C. │ │ │ │ -00018140: 6464 5f33 3b20 2020 2020 2020 2020 2020 dd_3; │ │ │ │ -00018150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018030: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018040: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ +00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018080: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000180e0: 6933 203a 2043 203d 2072 6573 2028 525e i3 : C = res (R^ │ │ │ │ +000180f0: 312f 2850 5e33 2929 3b20 2020 2020 2020 1/(P^3)); │ │ │ │ +00018100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018120: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00018180: 6934 203a 206d 7944 6966 6620 3d20 432e i4 : myDiff = C. │ │ │ │ +00018190: 6464 5f33 3b20 2020 2020 2020 2020 2020 dd_3; │ │ │ │ 000181a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000181d0: 2020 2020 2020 2020 2020 2020 2033 3020 30 │ │ │ │ -000181e0: 2020 2020 2031 3220 2020 2020 2020 2020 12 │ │ │ │ +000181d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000181e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018210: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018220: 6f34 203a 204d 6174 7269 7820 5220 2020 o4 : Matrix R │ │ │ │ -00018230: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00018220: 2020 2020 2020 2020 2020 2020 2033 3020 30 │ │ │ │ +00018230: 2020 2020 2031 3220 2020 2020 2020 2020 12 │ │ │ │ 00018240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018260: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000182c0: 6935 203a 2072 203d 2072 616e 6b20 6d79 i5 : r = rank my │ │ │ │ -000182d0: 4469 6666 3b20 2020 2020 2020 2020 2020 Diff; │ │ │ │ -000182e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000182f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018300: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018360: 6936 203a 204a 203d 2063 686f 6f73 6547 i6 : J = chooseG │ │ │ │ -00018370: 6f6f 644d 696e 6f72 7328 3135 2c20 722c oodMinors(15, r, │ │ │ │ -00018380: 206d 7944 6966 662c 2053 7472 6174 6567 myDiff, Strateg │ │ │ │ -00018390: 793d 3e53 7472 6174 6567 7944 6566 6175 y=>StrategyDefau │ │ │ │ -000183a0: 6c74 4e6f 6e52 616e 646f 6d29 3b7c 0a7c ltNonRandom);|.| │ │ │ │ -000183b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018400: 6f36 203a 2049 6465 616c 206f 6620 5220 o6 : Ideal of R │ │ │ │ +00018260: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018270: 6f34 203a 204d 6174 7269 7820 5220 2020 o4 : Matrix R │ │ │ │ +00018280: 3c2d 2d20 5220 2020 2020 2020 2020 2020 <-- R │ │ │ │ +00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000182c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00018310: 6935 203a 2072 203d 2072 616e 6b20 6d79 i5 : r = rank my │ │ │ │ +00018320: 4469 6666 3b20 2020 2020 2020 2020 2020 Diff; │ │ │ │ +00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018350: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000183a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000183b0: 6936 203a 204a 203d 2063 686f 6f73 6547 i6 : J = chooseG │ │ │ │ +000183c0: 6f6f 644d 696e 6f72 7328 3135 2c20 722c oodMinors(15, r, │ │ │ │ +000183d0: 206d 7944 6966 662c 2053 7472 6174 6567 myDiff, Strateg │ │ │ │ +000183e0: 793d 3e53 7472 6174 6567 7944 6566 6175 y=>StrategyDefau │ │ │ │ +000183f0: 6c74 4e6f 6e52 616e 646f 6d29 3b7c 0a7c ltNonRandom);|.| │ │ │ │ +00018400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018440: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000184a0: 6937 203a 2074 696d 6520 6973 436f 6469 i7 : time isCodi │ │ │ │ -000184b0: 6d41 744c 6561 7374 2833 2c20 4a29 2020 mAtLeast(3, J) │ │ │ │ -000184c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000184f0: 202d 2d20 7573 6564 2030 2e30 3033 3934 -- used 0.00394 │ │ │ │ -00018500: 3539 3373 2028 6370 7529 3b20 302e 3030 593s (cpu); 0.00 │ │ │ │ -00018510: 3238 3031 3031 7320 2874 6872 6561 6429 280101s (thread) │ │ │ │ -00018520: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00018440: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018450: 6f36 203a 2049 6465 616c 206f 6620 5220 o6 : Ideal of R │ │ │ │ +00018460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018490: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000184a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000184f0: 6937 203a 2074 696d 6520 6973 436f 6469 i7 : time isCodi │ │ │ │ +00018500: 6d41 744c 6561 7374 2833 2c20 4a29 2020 mAtLeast(3, J) │ │ │ │ +00018510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018540: 202d 2d20 7573 6564 2030 2e30 3034 3035 -- used 0.00405 │ │ │ │ +00018550: 3033 3373 2028 6370 7529 3b20 302e 3030 033s (cpu); 0.00 │ │ │ │ +00018560: 3533 3233 3439 7320 2874 6872 6561 6429 532349s (thread) │ │ │ │ +00018570: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00018580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018590: 6f37 203d 2074 7275 6520 2020 2020 2020 o7 = true │ │ │ │ +00018590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000185e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000185f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00018630: 5468 6520 6675 6e63 7469 6f6e 2077 6f72 The function wor │ │ │ │ -00018640: 6b73 2062 7920 636f 6d70 7574 696e 6720 ks by computing │ │ │ │ -00018650: 6762 2849 2c20 5061 6972 4c69 6d69 743d gb(I, PairLimit= │ │ │ │ -00018660: 3e66 2869 2929 2066 6f72 2073 7563 6365 >f(i)) for succe │ │ │ │ -00018670: 7373 6976 6520 7661 6c75 6573 206f 660a ssive values of. │ │ │ │ -00018680: 692e 2020 4865 7265 2066 2869 2920 6973 i. Here f(i) is │ │ │ │ -00018690: 2061 2066 756e 6374 696f 6e20 7468 6174 a function that │ │ │ │ -000186a0: 2074 616b 6573 2074 2c20 736f 6d65 2061 takes t, some a │ │ │ │ -000186b0: 7070 726f 7869 6d61 7469 6f6e 206f 6620 pproximation of │ │ │ │ -000186c0: 7468 6520 6261 7365 2064 6567 7265 650a the base degree. │ │ │ │ -000186d0: 7661 6c75 6520 6f66 2074 6865 2070 6f6c value of the pol │ │ │ │ -000186e0: 796e 6f6d 6961 6c20 7269 6e67 2028 666f ynomial ring (fo │ │ │ │ -000186f0: 7220 6578 616d 706c 652c 2069 6e20 6120 r example, in a │ │ │ │ -00018700: 7374 616e 6461 7264 2067 7261 6465 6420 standard graded │ │ │ │ -00018710: 706f 6c79 6e6f 6d69 616c 0a72 696e 672c polynomial.ring, │ │ │ │ -00018720: 2074 6869 7320 6973 2070 726f 6261 626c this is probabl │ │ │ │ -00018730: 7920 6578 7065 6374 6564 2074 6f20 6265 y expected to be │ │ │ │ -00018740: 205c 7b31 5c7d 292e 2020 416e 6420 6920 \{1\}). And i │ │ │ │ -00018750: 6973 2061 2063 6f75 6e74 696e 6720 7661 is a counting va │ │ │ │ -00018760: 7269 6162 6c65 2e0a 596f 7520 6361 6e20 riable..You can │ │ │ │ -00018770: 7072 6f76 6964 6520 796f 7572 206f 776e provide your own │ │ │ │ -00018780: 2066 756e 6374 696f 6e20 6279 2063 616c function by cal │ │ │ │ -00018790: 6c69 6e67 2069 7343 6f64 696d 4174 4c65 ling isCodimAtLe │ │ │ │ -000187a0: 6173 7428 6e2c 2049 2c0a 5350 6169 7273 ast(n, I,.SPairs │ │ │ │ -000187b0: 4675 6e63 7469 6f6e 3d3e 2820 2869 2920 Function=>( (i) │ │ │ │ -000187c0: 2d3e 2066 2869 2920 292c 2074 6865 2064 -> f(i) ), the d │ │ │ │ -000187d0: 6566 6175 6c74 2066 756e 6374 696f 6e20 efault function │ │ │ │ -000187e0: 6973 0a53 5061 6972 7346 756e 6374 696f is.SPairsFunctio │ │ │ │ -000187f0: 6e3d 3e69 2d3e 6365 696c 696e 6728 312e n=>i->ceiling(1. │ │ │ │ -00018800: 355e 6929 2020 2050 6572 6861 7073 206d 5^i) Perhaps m │ │ │ │ -00018810: 6f72 6520 636f 6d6d 6f6e 6c79 2068 6f77 ore commonly how │ │ │ │ -00018820: 6576 6572 2c20 7468 6520 7573 6572 206d ever, the user m │ │ │ │ -00018830: 6179 0a77 616e 7420 746f 2069 6e73 7465 ay.want to inste │ │ │ │ -00018840: 6164 2074 656c 6c20 7468 6520 6675 6e63 ad tell the func │ │ │ │ -00018850: 7469 6f6e 2074 6f20 636f 6d70 7574 6520 tion to compute │ │ │ │ -00018860: 666f 7220 6c61 7267 6572 2076 616c 7565 for larger value │ │ │ │ -00018870: 7320 6f66 2069 2e20 2054 6869 7320 6973 s of i. This is │ │ │ │ -00018880: 0a64 6f6e 6520 7669 6120 7468 6520 6f70 .done via the op │ │ │ │ -00018890: 7469 6f6e 2050 6169 724c 696d 6974 2e20 tion PairLimit. │ │ │ │ -000188a0: 2054 6869 7320 6973 2074 6865 206d 6178 This is the max │ │ │ │ -000188b0: 2076 616c 7565 206f 6620 6920 746f 2062 value of i to b │ │ │ │ -000188c0: 6520 706c 7567 6765 6420 696e 746f 0a53 e plugged into.S │ │ │ │ -000188d0: 5061 6972 7346 756e 6374 696f 6e20 6265 PairsFunction be │ │ │ │ -000188e0: 666f 7265 2074 6865 2066 756e 6374 696f fore the functio │ │ │ │ -000188f0: 6e20 6769 7665 7320 7570 2e20 2049 6e20 n gives up. In │ │ │ │ -00018900: 6f74 6865 7220 776f 7264 732c 2050 6169 other words, Pai │ │ │ │ -00018910: 724c 696d 6974 3d3e 3520 7769 6c6c 0a74 rLimit=>5 will.t │ │ │ │ -00018920: 656c 6c20 7468 6520 6675 6e63 7469 6f6e ell the function │ │ │ │ -00018930: 2074 6f20 6368 6563 6b20 636f 6469 6d65 to check codime │ │ │ │ -00018940: 6e73 696f 6e20 3520 7469 6d65 732e 0a0a nsion 5 times... │ │ │ │ -00018950: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00018960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000189a0: 7c69 3820 3a20 4920 3d20 6964 6561 6c28 |i8 : I = ideal( │ │ │ │ -000189b0: 785f 325e 382a 785f 3130 5e33 2d33 2a78 x_2^8*x_10^3-3*x │ │ │ │ -000189c0: 5f31 2a78 5f32 5e37 2a78 5f31 305e 322a _1*x_2^7*x_10^2* │ │ │ │ -000189d0: 785f 3131 2b33 2a78 5f31 5e32 2a78 5f32 x_11+3*x_1^2*x_2 │ │ │ │ -000189e0: 5e36 2a78 5f31 302a 785f 3131 5e32 7c0a ^6*x_10*x_11^2|. │ │ │ │ -000189f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00018a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000185d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000185e0: 6f37 203d 2074 7275 6520 2020 2020 2020 o7 = true │ │ │ │ +000185f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018620: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00018680: 5468 6520 6675 6e63 7469 6f6e 2077 6f72 The function wor │ │ │ │ +00018690: 6b73 2062 7920 636f 6d70 7574 696e 6720 ks by computing │ │ │ │ +000186a0: 6762 2849 2c20 5061 6972 4c69 6d69 743d gb(I, PairLimit= │ │ │ │ +000186b0: 3e66 2869 2929 2066 6f72 2073 7563 6365 >f(i)) for succe │ │ │ │ +000186c0: 7373 6976 6520 7661 6c75 6573 206f 660a ssive values of. │ │ │ │ +000186d0: 692e 2020 4865 7265 2066 2869 2920 6973 i. Here f(i) is │ │ │ │ +000186e0: 2061 2066 756e 6374 696f 6e20 7468 6174 a function that │ │ │ │ +000186f0: 2074 616b 6573 2074 2c20 736f 6d65 2061 takes t, some a │ │ │ │ +00018700: 7070 726f 7869 6d61 7469 6f6e 206f 6620 pproximation of │ │ │ │ +00018710: 7468 6520 6261 7365 2064 6567 7265 650a the base degree. │ │ │ │ +00018720: 7661 6c75 6520 6f66 2074 6865 2070 6f6c value of the pol │ │ │ │ +00018730: 796e 6f6d 6961 6c20 7269 6e67 2028 666f ynomial ring (fo │ │ │ │ +00018740: 7220 6578 616d 706c 652c 2069 6e20 6120 r example, in a │ │ │ │ +00018750: 7374 616e 6461 7264 2067 7261 6465 6420 standard graded │ │ │ │ +00018760: 706f 6c79 6e6f 6d69 616c 0a72 696e 672c polynomial.ring, │ │ │ │ +00018770: 2074 6869 7320 6973 2070 726f 6261 626c this is probabl │ │ │ │ +00018780: 7920 6578 7065 6374 6564 2074 6f20 6265 y expected to be │ │ │ │ +00018790: 205c 7b31 5c7d 292e 2020 416e 6420 6920 \{1\}). And i │ │ │ │ +000187a0: 6973 2061 2063 6f75 6e74 696e 6720 7661 is a counting va │ │ │ │ +000187b0: 7269 6162 6c65 2e0a 596f 7520 6361 6e20 riable..You can │ │ │ │ +000187c0: 7072 6f76 6964 6520 796f 7572 206f 776e provide your own │ │ │ │ +000187d0: 2066 756e 6374 696f 6e20 6279 2063 616c function by cal │ │ │ │ +000187e0: 6c69 6e67 2069 7343 6f64 696d 4174 4c65 ling isCodimAtLe │ │ │ │ +000187f0: 6173 7428 6e2c 2049 2c0a 5350 6169 7273 ast(n, I,.SPairs │ │ │ │ +00018800: 4675 6e63 7469 6f6e 3d3e 2820 2869 2920 Function=>( (i) │ │ │ │ +00018810: 2d3e 2066 2869 2920 292c 2074 6865 2064 -> f(i) ), the d │ │ │ │ +00018820: 6566 6175 6c74 2066 756e 6374 696f 6e20 efault function │ │ │ │ +00018830: 6973 0a53 5061 6972 7346 756e 6374 696f is.SPairsFunctio │ │ │ │ +00018840: 6e3d 3e69 2d3e 6365 696c 696e 6728 312e n=>i->ceiling(1. │ │ │ │ +00018850: 355e 6929 2020 2050 6572 6861 7073 206d 5^i) Perhaps m │ │ │ │ +00018860: 6f72 6520 636f 6d6d 6f6e 6c79 2068 6f77 ore commonly how │ │ │ │ +00018870: 6576 6572 2c20 7468 6520 7573 6572 206d ever, the user m │ │ │ │ +00018880: 6179 0a77 616e 7420 746f 2069 6e73 7465 ay.want to inste │ │ │ │ +00018890: 6164 2074 656c 6c20 7468 6520 6675 6e63 ad tell the func │ │ │ │ +000188a0: 7469 6f6e 2074 6f20 636f 6d70 7574 6520 tion to compute │ │ │ │ +000188b0: 666f 7220 6c61 7267 6572 2076 616c 7565 for larger value │ │ │ │ +000188c0: 7320 6f66 2069 2e20 2054 6869 7320 6973 s of i. This is │ │ │ │ +000188d0: 0a64 6f6e 6520 7669 6120 7468 6520 6f70 .done via the op │ │ │ │ +000188e0: 7469 6f6e 2050 6169 724c 696d 6974 2e20 tion PairLimit. │ │ │ │ +000188f0: 2054 6869 7320 6973 2074 6865 206d 6178 This is the max │ │ │ │ +00018900: 2076 616c 7565 206f 6620 6920 746f 2062 value of i to b │ │ │ │ +00018910: 6520 706c 7567 6765 6420 696e 746f 0a53 e plugged into.S │ │ │ │ +00018920: 5061 6972 7346 756e 6374 696f 6e20 6265 PairsFunction be │ │ │ │ +00018930: 666f 7265 2074 6865 2066 756e 6374 696f fore the functio │ │ │ │ +00018940: 6e20 6769 7665 7320 7570 2e20 2049 6e20 n gives up. In │ │ │ │ +00018950: 6f74 6865 7220 776f 7264 732c 2050 6169 other words, Pai │ │ │ │ +00018960: 724c 696d 6974 3d3e 3520 7769 6c6c 0a74 rLimit=>5 will.t │ │ │ │ +00018970: 656c 6c20 7468 6520 6675 6e63 7469 6f6e ell the function │ │ │ │ +00018980: 2074 6f20 6368 6563 6b20 636f 6469 6d65 to check codime │ │ │ │ +00018990: 6e73 696f 6e20 3520 7469 6d65 732e 0a0a nsion 5 times... │ │ │ │ +000189a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000189b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000189e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000189f0: 7c69 3820 3a20 4920 3d20 6964 6561 6c28 |i8 : I = ideal( │ │ │ │ +00018a00: 785f 325e 382a 785f 3130 5e33 2d33 2a78 x_2^8*x_10^3-3*x │ │ │ │ +00018a10: 5f31 2a78 5f32 5e37 2a78 5f31 305e 322a _1*x_2^7*x_10^2* │ │ │ │ +00018a20: 785f 3131 2b33 2a78 5f31 5e32 2a78 5f32 x_11+3*x_1^2*x_2 │ │ │ │ +00018a30: 5e36 2a78 5f31 302a 785f 3131 5e32 7c0a ^6*x_10*x_11^2|. │ │ │ │ 00018a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00018a50: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00018a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00018a90: 7c6f 3820 3a20 4964 6561 6c20 6f66 202d |o8 : Ideal of - │ │ │ │ -00018aa0: 2d2d 5b78 2020 2c20 7820 2c20 7820 2c20 --[x , x , x , │ │ │ │ -00018ab0: 7820 2c20 7820 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -00018ac0: 2078 2020 2c20 7820 2c20 7820 2c20 7820 x , x , x , x │ │ │ │ -00018ad0: 2c20 7820 5d20 2020 2020 2020 2020 7c0a , x ] |. │ │ │ │ -00018ae0: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ -00018af0: 3237 2020 3131 2020 2038 2020 2031 2020 27 11 8 1 │ │ │ │ -00018b00: 2039 2020 2031 3220 2020 3620 2020 3520 9 12 6 5 │ │ │ │ -00018b10: 2020 3130 2020 2032 2020 2034 2020 2033 10 2 4 3 │ │ │ │ -00018b20: 2020 2037 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -00018b30: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018b80: 7c2d 785f 315e 332a 785f 325e 352a 785f |-x_1^3*x_2^5*x_ │ │ │ │ -00018b90: 3131 5e33 2c78 5f35 5e35 2a78 5f36 5e33 11^3,x_5^5*x_6^3 │ │ │ │ -00018ba0: 2a78 5f31 315e 332d 332a 785f 355e 362a *x_11^3-3*x_5^6* │ │ │ │ -00018bb0: 785f 365e 322a 785f 3131 5e32 2a78 5f31 x_6^2*x_11^2*x_1 │ │ │ │ -00018bc0: 322b 332a 785f 355e 372a 785f 362a 7c0a 2+3*x_5^7*x_6*|. │ │ │ │ -00018bd0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018c20: 7c78 5f31 312a 785f 3132 5e32 2d78 5f35 |x_11*x_12^2-x_5 │ │ │ │ -00018c30: 5e38 2a78 5f31 325e 332c 785f 315e 352a ^8*x_12^3,x_1^5* │ │ │ │ -00018c40: 785f 325e 332a 785f 345e 332d 332a 785f x_2^3*x_4^3-3*x_ │ │ │ │ -00018c50: 315e 362a 785f 325e 322a 785f 345e 322a 1^6*x_2^2*x_4^2* │ │ │ │ -00018c60: 785f 352b 332a 785f 315e 372a 785f 7c0a x_5+3*x_1^7*x_|. │ │ │ │ -00018c70: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018cc0: 7c32 2a78 5f34 2a78 5f35 5e32 2d78 5f31 |2*x_4*x_5^2-x_1 │ │ │ │ -00018cd0: 5e38 2a78 5f35 5e33 2c78 5f36 5e38 2a78 ^8*x_5^3,x_6^8*x │ │ │ │ -00018ce0: 5f31 315e 332d 332a 785f 352a 785f 365e _11^3-3*x_5*x_6^ │ │ │ │ -00018cf0: 372a 785f 3131 5e32 2a78 5f31 322b 332a 7*x_11^2*x_12+3* │ │ │ │ -00018d00: 785f 355e 322a 785f 365e 362a 785f 7c0a x_5^2*x_6^6*x_|. │ │ │ │ -00018d10: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018d60: 7c31 312a 785f 3132 5e32 2d78 5f35 5e33 |11*x_12^2-x_5^3 │ │ │ │ -00018d70: 2a78 5f36 5e35 2a78 5f31 325e 332c 785f *x_6^5*x_12^3,x_ │ │ │ │ -00018d80: 385e 332a 785f 3130 5e38 2d33 2a78 5f37 8^3*x_10^8-3*x_7 │ │ │ │ -00018d90: 2a78 5f38 5e32 2a78 5f31 305e 372a 785f *x_8^2*x_10^7*x_ │ │ │ │ -00018da0: 3131 2b33 2a78 5f37 5e32 2a78 5f38 7c0a 11+3*x_7^2*x_8|. │ │ │ │ -00018db0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018e00: 7c2a 785f 3130 5e36 2a78 5f31 315e 322d |*x_10^6*x_11^2- │ │ │ │ -00018e10: 785f 375e 332a 785f 3130 5e35 2a78 5f31 x_7^3*x_10^5*x_1 │ │ │ │ -00018e20: 315e 332c 785f 325e 382a 785f 345e 332d 1^3,x_2^8*x_4^3- │ │ │ │ -00018e30: 332a 785f 312a 785f 325e 372a 785f 345e 3*x_1*x_2^7*x_4^ │ │ │ │ -00018e40: 322a 785f 352b 332a 785f 315e 322a 7c0a 2*x_5+3*x_1^2*|. │ │ │ │ -00018e50: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018ea0: 7c78 5f32 5e36 2a78 5f34 2a78 5f35 5e32 |x_2^6*x_4*x_5^2 │ │ │ │ -00018eb0: 2d78 5f31 5e33 2a78 5f32 5e35 2a78 5f35 -x_1^3*x_2^5*x_5 │ │ │ │ -00018ec0: 5e33 2c2d 785f 365e 332a 785f 3131 5e38 ^3,-x_6^3*x_11^8 │ │ │ │ -00018ed0: 2b33 2a78 5f35 2a78 5f36 5e32 2a78 5f31 +3*x_5*x_6^2*x_1 │ │ │ │ -00018ee0: 315e 372a 785f 3132 2d33 2a78 5f35 7c0a 1^7*x_12-3*x_5|. │ │ │ │ -00018ef0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018f40: 7c5e 322a 785f 362a 785f 3131 5e36 2a78 |^2*x_6*x_11^6*x │ │ │ │ -00018f50: 5f31 325e 322b 785f 355e 332a 785f 3131 _12^2+x_5^3*x_11 │ │ │ │ -00018f60: 5e35 2a78 5f31 325e 332c 2d78 5f36 5e33 ^5*x_12^3,-x_6^3 │ │ │ │ -00018f70: 2a78 5f37 5e33 2a78 5f39 5e35 2b33 2a78 *x_7^3*x_9^5+3*x │ │ │ │ -00018f80: 5f34 2a78 5f36 5e32 2a78 5f37 5e32 7c0a _4*x_6^2*x_7^2|. │ │ │ │ -00018f90: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00018fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00018fe0: 7c2a 785f 395e 362d 332a 785f 345e 322a |*x_9^6-3*x_4^2* │ │ │ │ -00018ff0: 785f 362a 785f 372a 785f 395e 372b 785f x_6*x_7*x_9^7+x_ │ │ │ │ -00019000: 345e 332a 785f 395e 382c 785f 385e 382a 4^3*x_9^8,x_8^8* │ │ │ │ -00019010: 785f 3130 5e33 2d33 2a78 5f37 2a78 5f38 x_10^3-3*x_7*x_8 │ │ │ │ -00019020: 5e37 2a78 5f31 305e 322a 785f 3131 7c0a ^7*x_10^2*x_11|. │ │ │ │ -00019030: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00019040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00019080: 7c2b 332a 785f 375e 322a 785f 385e 362a |+3*x_7^2*x_8^6* │ │ │ │ -00019090: 785f 3130 2a78 5f31 315e 322d 785f 375e x_10*x_11^2-x_7^ │ │ │ │ -000190a0: 332a 785f 385e 352a 785f 3131 5e33 2c78 3*x_8^5*x_11^3,x │ │ │ │ -000190b0: 5f32 5e35 2a78 5f33 5e33 2a78 5f31 315e _2^5*x_3^3*x_11^ │ │ │ │ -000190c0: 332d 332a 785f 325e 362a 785f 335e 7c0a 3-3*x_2^6*x_3^|. │ │ │ │ -000190d0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -000190e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000190f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00019120: 7c32 2a78 5f31 315e 322a 785f 3132 2b33 |2*x_11^2*x_12+3 │ │ │ │ -00019130: 2a78 5f32 5e37 2a78 5f33 2a78 5f31 312a *x_2^7*x_3*x_11* │ │ │ │ -00019140: 785f 3132 5e32 2d78 5f32 5e38 2a78 5f31 x_12^2-x_2^8*x_1 │ │ │ │ -00019150: 325e 3329 3b20 2020 2020 2020 2020 2020 2^3); │ │ │ │ -00019160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019170: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00019180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000191a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000191b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000191c0: 7c69 3920 3a20 7469 6d65 2069 7343 6f64 |i9 : time isCod │ │ │ │ -000191d0: 696d 4174 4c65 6173 7428 352c 2049 2c20 imAtLeast(5, I, │ │ │ │ -000191e0: 5061 6972 4c69 6d69 7420 3d3e 2035 2c20 PairLimit => 5, │ │ │ │ -000191f0: 5665 7262 6f73 653d 3e74 7275 6529 2020 Verbose=>true) │ │ │ │ -00019200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019210: 7c20 2d2d 2075 7365 6420 302e 3030 3233 | -- used 0.0023 │ │ │ │ -00019220: 3133 3638 7320 2863 7075 293b 2030 2e30 1368s (cpu); 0.0 │ │ │ │ -00019230: 3032 3533 3933 3873 2028 7468 7265 6164 0253938s (thread │ │ │ │ -00019240: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00018a90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00018aa0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00018ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00018ae0: 7c6f 3820 3a20 4964 6561 6c20 6f66 202d |o8 : Ideal of - │ │ │ │ +00018af0: 2d2d 5b78 2020 2c20 7820 2c20 7820 2c20 --[x , x , x , │ │ │ │ +00018b00: 7820 2c20 7820 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ +00018b10: 2078 2020 2c20 7820 2c20 7820 2c20 7820 x , x , x , x │ │ │ │ +00018b20: 2c20 7820 5d20 2020 2020 2020 2020 7c0a , x ] |. │ │ │ │ +00018b30: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ +00018b40: 3237 2020 3131 2020 2038 2020 2031 2020 27 11 8 1 │ │ │ │ +00018b50: 2039 2020 2031 3220 2020 3620 2020 3520 9 12 6 5 │ │ │ │ +00018b60: 2020 3130 2020 2032 2020 2034 2020 2033 10 2 4 3 │ │ │ │ +00018b70: 2020 2037 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ +00018b80: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018bd0: 7c2d 785f 315e 332a 785f 325e 352a 785f |-x_1^3*x_2^5*x_ │ │ │ │ +00018be0: 3131 5e33 2c78 5f35 5e35 2a78 5f36 5e33 11^3,x_5^5*x_6^3 │ │ │ │ +00018bf0: 2a78 5f31 315e 332d 332a 785f 355e 362a *x_11^3-3*x_5^6* │ │ │ │ +00018c00: 785f 365e 322a 785f 3131 5e32 2a78 5f31 x_6^2*x_11^2*x_1 │ │ │ │ +00018c10: 322b 332a 785f 355e 372a 785f 362a 7c0a 2+3*x_5^7*x_6*|. │ │ │ │ +00018c20: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018c70: 7c78 5f31 312a 785f 3132 5e32 2d78 5f35 |x_11*x_12^2-x_5 │ │ │ │ +00018c80: 5e38 2a78 5f31 325e 332c 785f 315e 352a ^8*x_12^3,x_1^5* │ │ │ │ +00018c90: 785f 325e 332a 785f 345e 332d 332a 785f x_2^3*x_4^3-3*x_ │ │ │ │ +00018ca0: 315e 362a 785f 325e 322a 785f 345e 322a 1^6*x_2^2*x_4^2* │ │ │ │ +00018cb0: 785f 352b 332a 785f 315e 372a 785f 7c0a x_5+3*x_1^7*x_|. │ │ │ │ +00018cc0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018d10: 7c32 2a78 5f34 2a78 5f35 5e32 2d78 5f31 |2*x_4*x_5^2-x_1 │ │ │ │ +00018d20: 5e38 2a78 5f35 5e33 2c78 5f36 5e38 2a78 ^8*x_5^3,x_6^8*x │ │ │ │ +00018d30: 5f31 315e 332d 332a 785f 352a 785f 365e _11^3-3*x_5*x_6^ │ │ │ │ +00018d40: 372a 785f 3131 5e32 2a78 5f31 322b 332a 7*x_11^2*x_12+3* │ │ │ │ +00018d50: 785f 355e 322a 785f 365e 362a 785f 7c0a x_5^2*x_6^6*x_|. │ │ │ │ +00018d60: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018db0: 7c31 312a 785f 3132 5e32 2d78 5f35 5e33 |11*x_12^2-x_5^3 │ │ │ │ +00018dc0: 2a78 5f36 5e35 2a78 5f31 325e 332c 785f *x_6^5*x_12^3,x_ │ │ │ │ +00018dd0: 385e 332a 785f 3130 5e38 2d33 2a78 5f37 8^3*x_10^8-3*x_7 │ │ │ │ +00018de0: 2a78 5f38 5e32 2a78 5f31 305e 372a 785f *x_8^2*x_10^7*x_ │ │ │ │ +00018df0: 3131 2b33 2a78 5f37 5e32 2a78 5f38 7c0a 11+3*x_7^2*x_8|. │ │ │ │ +00018e00: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018e50: 7c2a 785f 3130 5e36 2a78 5f31 315e 322d |*x_10^6*x_11^2- │ │ │ │ +00018e60: 785f 375e 332a 785f 3130 5e35 2a78 5f31 x_7^3*x_10^5*x_1 │ │ │ │ +00018e70: 315e 332c 785f 325e 382a 785f 345e 332d 1^3,x_2^8*x_4^3- │ │ │ │ +00018e80: 332a 785f 312a 785f 325e 372a 785f 345e 3*x_1*x_2^7*x_4^ │ │ │ │ +00018e90: 322a 785f 352b 332a 785f 315e 322a 7c0a 2*x_5+3*x_1^2*|. │ │ │ │ +00018ea0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018ef0: 7c78 5f32 5e36 2a78 5f34 2a78 5f35 5e32 |x_2^6*x_4*x_5^2 │ │ │ │ +00018f00: 2d78 5f31 5e33 2a78 5f32 5e35 2a78 5f35 -x_1^3*x_2^5*x_5 │ │ │ │ +00018f10: 5e33 2c2d 785f 365e 332a 785f 3131 5e38 ^3,-x_6^3*x_11^8 │ │ │ │ +00018f20: 2b33 2a78 5f35 2a78 5f36 5e32 2a78 5f31 +3*x_5*x_6^2*x_1 │ │ │ │ +00018f30: 315e 372a 785f 3132 2d33 2a78 5f35 7c0a 1^7*x_12-3*x_5|. │ │ │ │ +00018f40: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00018f90: 7c5e 322a 785f 362a 785f 3131 5e36 2a78 |^2*x_6*x_11^6*x │ │ │ │ +00018fa0: 5f31 325e 322b 785f 355e 332a 785f 3131 _12^2+x_5^3*x_11 │ │ │ │ +00018fb0: 5e35 2a78 5f31 325e 332c 2d78 5f36 5e33 ^5*x_12^3,-x_6^3 │ │ │ │ +00018fc0: 2a78 5f37 5e33 2a78 5f39 5e35 2b33 2a78 *x_7^3*x_9^5+3*x │ │ │ │ +00018fd0: 5f34 2a78 5f36 5e32 2a78 5f37 5e32 7c0a _4*x_6^2*x_7^2|. │ │ │ │ +00018fe0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00018ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00019030: 7c2a 785f 395e 362d 332a 785f 345e 322a |*x_9^6-3*x_4^2* │ │ │ │ +00019040: 785f 362a 785f 372a 785f 395e 372b 785f x_6*x_7*x_9^7+x_ │ │ │ │ +00019050: 345e 332a 785f 395e 382c 785f 385e 382a 4^3*x_9^8,x_8^8* │ │ │ │ +00019060: 785f 3130 5e33 2d33 2a78 5f37 2a78 5f38 x_10^3-3*x_7*x_8 │ │ │ │ +00019070: 5e37 2a78 5f31 305e 322a 785f 3131 7c0a ^7*x_10^2*x_11|. │ │ │ │ +00019080: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000190c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000190d0: 7c2b 332a 785f 375e 322a 785f 385e 362a |+3*x_7^2*x_8^6* │ │ │ │ +000190e0: 785f 3130 2a78 5f31 315e 322d 785f 375e x_10*x_11^2-x_7^ │ │ │ │ +000190f0: 332a 785f 385e 352a 785f 3131 5e33 2c78 3*x_8^5*x_11^3,x │ │ │ │ +00019100: 5f32 5e35 2a78 5f33 5e33 2a78 5f31 315e _2^5*x_3^3*x_11^ │ │ │ │ +00019110: 332d 332a 785f 325e 362a 785f 335e 7c0a 3-3*x_2^6*x_3^|. │ │ │ │ +00019120: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00019130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00019170: 7c32 2a78 5f31 315e 322a 785f 3132 2b33 |2*x_11^2*x_12+3 │ │ │ │ +00019180: 2a78 5f32 5e37 2a78 5f33 2a78 5f31 312a *x_2^7*x_3*x_11* │ │ │ │ +00019190: 785f 3132 5e32 2d78 5f32 5e38 2a78 5f31 x_12^2-x_2^8*x_1 │ │ │ │ +000191a0: 325e 3329 3b20 2020 2020 2020 2020 2020 2^3); │ │ │ │ +000191b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000191c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000191e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000191f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00019210: 7c69 3920 3a20 7469 6d65 2069 7343 6f64 |i9 : time isCod │ │ │ │ +00019220: 696d 4174 4c65 6173 7428 352c 2049 2c20 imAtLeast(5, I, │ │ │ │ +00019230: 5061 6972 4c69 6d69 7420 3d3e 2035 2c20 PairLimit => 5, │ │ │ │ +00019240: 5665 7262 6f73 653d 3e74 7275 6529 2020 Verbose=>true) │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019260: 7c69 7343 6f64 696d 4174 4c65 6173 743a |isCodimAtLeast: │ │ │ │ -00019270: 2043 6f6d 7075 7469 6e67 2063 6f64 696d Computing codim │ │ │ │ -00019280: 206f 6620 6d6f 6e6f 6d69 616c 7320 6261 of monomials ba │ │ │ │ -00019290: 7365 6420 6f6e 2069 6465 616c 2067 656e sed on ideal gen │ │ │ │ -000192a0: 6572 6174 6f72 732e 2020 2020 2020 7c0a erators. |. │ │ │ │ -000192b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000192c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000192f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019300: 7c6f 3920 3d20 7472 7565 2020 2020 2020 |o9 = true │ │ │ │ +00019260: 7c20 2d2d 2075 7365 6420 302e 3030 3339 | -- used 0.0039 │ │ │ │ +00019270: 3632 3235 7320 2863 7075 293b 2030 2e30 6225s (cpu); 0.0 │ │ │ │ +00019280: 3035 3130 3536 3273 2028 7468 7265 6164 0510562s (thread │ │ │ │ +00019290: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +000192a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000192b0: 7c69 7343 6f64 696d 4174 4c65 6173 743a |isCodimAtLeast: │ │ │ │ +000192c0: 2043 6f6d 7075 7469 6e67 2063 6f64 696d Computing codim │ │ │ │ +000192d0: 206f 6620 6d6f 6e6f 6d69 616c 7320 6261 of monomials ba │ │ │ │ +000192e0: 7365 6420 6f6e 2069 6465 616c 2067 656e sed on ideal gen │ │ │ │ +000192f0: 6572 6174 6f72 732e 2020 2020 2020 7c0a erators. |. │ │ │ │ +00019300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00019310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019350: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00019360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000193a0: 7c69 3130 203a 2074 696d 6520 6973 436f |i10 : time isCo │ │ │ │ -000193b0: 6469 6d41 744c 6561 7374 2835 2c20 492c dimAtLeast(5, I, │ │ │ │ -000193c0: 2050 6169 724c 696d 6974 203d 3e20 3230 PairLimit => 20 │ │ │ │ -000193d0: 302c 2056 6572 626f 7365 3d3e 6661 6c73 0, Verbose=>fals │ │ │ │ -000193e0: 6529 2020 2020 2020 2020 2020 2020 7c0a e) |. │ │ │ │ -000193f0: 7c20 2d2d 2075 7365 6420 362e 3036 3034 | -- used 6.0604 │ │ │ │ -00019400: 652d 3035 7320 2863 7075 293b 2030 2e30 e-05s (cpu); 0.0 │ │ │ │ -00019410: 3032 3433 3835 3173 2028 7468 7265 6164 0243851s (thread │ │ │ │ -00019420: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00019430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00019450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019350: 7c6f 3920 3d20 7472 7565 2020 2020 2020 |o9 = true │ │ │ │ +00019360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000193a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +000193b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000193e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000193f0: 7c69 3130 203a 2074 696d 6520 6973 436f |i10 : time isCo │ │ │ │ +00019400: 6469 6d41 744c 6561 7374 2835 2c20 492c dimAtLeast(5, I, │ │ │ │ +00019410: 2050 6169 724c 696d 6974 203d 3e20 3230 PairLimit => 20 │ │ │ │ +00019420: 302c 2056 6572 626f 7365 3d3e 6661 6c73 0, Verbose=>fals │ │ │ │ +00019430: 6529 2020 2020 2020 2020 2020 2020 7c0a e) |. │ │ │ │ +00019440: 7c20 2d2d 2075 7365 6420 302e 3030 3438 | -- used 0.0048 │ │ │ │ +00019450: 3930 3831 7320 2863 7075 293b 2030 2e30 9081s (cpu); 0.0 │ │ │ │ +00019460: 3034 3833 3438 3673 2028 7468 7265 6164 0483486s (thread │ │ │ │ +00019470: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00019480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00019490: 7c6f 3130 203d 2074 7275 6520 2020 2020 |o10 = true │ │ │ │ +00019490: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000194a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000194e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000194f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00019530: 0a4e 6f74 6963 6520 696e 2074 6865 2066 .Notice in the f │ │ │ │ -00019540: 6972 7374 2063 6173 6520 7468 6520 6675 irst case the fu │ │ │ │ -00019550: 6e63 7469 6f6e 2072 6574 7572 6e65 6420 nction returned │ │ │ │ -00019560: 6e75 6c6c 2c20 6265 6361 7573 6520 7468 null, because th │ │ │ │ -00019570: 6520 6465 7074 6820 6f66 0a73 6561 7263 e depth of.searc │ │ │ │ -00019580: 6820 7761 7320 6e6f 7420 6869 6768 2065 h was not high e │ │ │ │ -00019590: 6e6f 7567 682e 2020 4974 206f 6e6c 7920 nough. It only │ │ │ │ -000195a0: 636f 6d70 7574 6564 2063 6f64 696d 2035 computed codim 5 │ │ │ │ -000195b0: 2074 696d 6573 2e20 2054 6865 2073 6563 times. The sec │ │ │ │ -000195c0: 6f6e 640a 7265 7475 726e 6564 2074 7275 ond.returned tru │ │ │ │ -000195d0: 652c 2062 7574 2069 7420 6469 6420 736f e, but it did so │ │ │ │ -000195e0: 2061 7320 736f 6f6e 2061 7320 7468 6520 as soon as the │ │ │ │ -000195f0: 616e 7377 6572 2077 6173 2066 6f75 6e64 answer was found │ │ │ │ -00019600: 2028 616e 6420 6265 666f 7265 2077 6520 (and before we │ │ │ │ -00019610: 6869 740a 7468 6520 5061 6972 4c69 6d69 hit.the PairLimi │ │ │ │ -00019620: 7420 6c69 6d69 7429 2e0a 0a57 6179 7320 t limit)...Ways │ │ │ │ -00019630: 746f 2075 7365 2069 7343 6f64 696d 4174 to use isCodimAt │ │ │ │ -00019640: 4c65 6173 743a 0a3d 3d3d 3d3d 3d3d 3d3d Least:.========= │ │ │ │ -00019650: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019660: 3d3d 0a0a 2020 2a20 2269 7343 6f64 696d ==.. * "isCodim │ │ │ │ -00019670: 4174 4c65 6173 7428 5a5a 2c49 6465 616c AtLeast(ZZ,Ideal │ │ │ │ -00019680: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -00019690: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -000196a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -000196b0: 626a 6563 7420 2a6e 6f74 6520 6973 436f bject *note isCo │ │ │ │ -000196c0: 6469 6d41 744c 6561 7374 3a20 6973 436f dimAtLeast: isCo │ │ │ │ -000196d0: 6469 6d41 744c 6561 7374 2c20 6973 2061 dimAtLeast, is a │ │ │ │ -000196e0: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -000196f0: 6e63 7469 6f6e 0a77 6974 6820 6f70 7469 nction.with opti │ │ │ │ -00019700: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ -00019710: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00019720: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ -00019730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00019780: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00019790: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -000197a0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -000197b0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -000197c0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -000197d0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -000197e0: 636b 6167 6573 2f46 6173 744d 696e 6f72 ckages/FastMinor │ │ │ │ -000197f0: 732e 0a6d 323a 3232 3436 3a30 2e0a 1f0a s..m2:2246:0.... │ │ │ │ -00019800: 4669 6c65 3a20 4661 7374 4d69 6e6f 7273 File: FastMinors │ │ │ │ -00019810: 2e69 6e66 6f2c 204e 6f64 653a 2069 7344 .info, Node: isD │ │ │ │ -00019820: 696d 4174 4d6f 7374 2c20 4e65 7874 3a20 imAtMost, Next: │ │ │ │ -00019830: 6973 5261 6e6b 4174 4c65 6173 742c 2050 isRankAtLeast, P │ │ │ │ -00019840: 7265 763a 2069 7343 6f64 696d 4174 4c65 rev: isCodimAtLe │ │ │ │ -00019850: 6173 742c 2055 703a 2054 6f70 0a0a 6973 ast, Up: Top..is │ │ │ │ -00019860: 4469 6d41 744d 6f73 7420 2d2d 2072 6574 DimAtMost -- ret │ │ │ │ -00019870: 7572 6e73 2074 7275 6520 6966 2077 6520 urns true if we │ │ │ │ -00019880: 6361 6e20 7175 6963 6b6c 7920 7365 6520 can quickly see │ │ │ │ -00019890: 7768 6574 6865 7220 7468 6520 6469 6d20 whether the dim │ │ │ │ -000198a0: 6973 2061 7420 6d6f 7374 2061 2067 6976 is at most a giv │ │ │ │ -000198b0: 656e 206e 756d 6265 720a 2a2a 2a2a 2a2a en number.****** │ │ │ │ -000198c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000198f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019910: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00019920: 3a20 0a20 2020 2020 2020 2069 7344 696d : . isDim │ │ │ │ -00019930: 4174 4d6f 7374 286e 2c20 4929 0a20 202a AtMost(n, I). * │ │ │ │ -00019940: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00019950: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ -00019960: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ -00019970: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ -00019980: 6765 720a 2020 2020 2020 2a20 492c 2061 ger. * I, a │ │ │ │ -00019990: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ -000199a0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ -000199b0: 616c 2c2c 2061 6e20 6964 6561 6c20 696e al,, an ideal in │ │ │ │ -000199c0: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ -000199d0: 6e67 0a20 2020 2020 2020 206f 7665 7220 ng. over │ │ │ │ -000199e0: 6120 6669 656c 642c 206f 7220 6120 7175 a field, or a qu │ │ │ │ -000199f0: 6f74 6965 6e74 2072 696e 6720 6f66 2073 otient ring of s │ │ │ │ -00019a00: 7563 680a 2020 2a20 2a6e 6f74 6520 4f70 uch. * *note Op │ │ │ │ -00019a10: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00019a20: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00019a30: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00019a40: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00019a50: 732c 3a0a 2020 2020 2020 2a20 5061 6972 s,:. * Pair │ │ │ │ -00019a60: 4c69 6d69 7420 3d3e 202e 2e2e 2c20 6465 Limit => ..., de │ │ │ │ -00019a70: 6661 756c 7420 7661 6c75 6520 3130 300a fault value 100. │ │ │ │ -00019a80: 2020 2020 2020 2a20 5350 6169 7273 4675 * SPairsFu │ │ │ │ -00019a90: 6e63 7469 6f6e 203d 3e20 2e2e 2e2c 2064 nction => ..., d │ │ │ │ -00019aa0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00019ab0: 2020 2020 2046 756e 6374 696f 6e43 6c6f FunctionClo │ │ │ │ -00019ac0: 7375 7265 5b2e 2e2f 4661 7374 4d69 6e6f sure[../FastMino │ │ │ │ -00019ad0: 7273 2e6d 323a 3231 313a 3233 2d32 3131 rs.m2:211:23-211 │ │ │ │ -00019ae0: 3a34 325d 0a20 2020 2020 202a 2056 6572 :42]. * Ver │ │ │ │ -00019af0: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ -00019b00: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00019b10: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00019b20: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ -00019b30: 6520 6469 6d65 6e73 696f 6e20 6f66 2049 e dimension of I │ │ │ │ -00019b40: 2069 7320 6174 206d 6f73 7420 6e20 6f72 is at most n or │ │ │ │ -00019b50: 206e 756c 6c20 6966 2074 6865 2066 756e null if the fun │ │ │ │ -00019b60: 6374 696f 6e20 6361 6e6e 6f74 0a20 2020 ction cannot. │ │ │ │ -00019b70: 2020 2020 2074 656c 6c20 7768 6574 6865 tell whethe │ │ │ │ -00019b80: 7220 7468 6520 6469 6d65 6e73 696f 6e20 r the dimension │ │ │ │ -00019b90: 6973 2061 7420 6d6f 7374 206e 0a0a 4465 is at most n..De │ │ │ │ -00019ba0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00019bb0: 3d3d 3d3d 3d0a 0a54 6869 7320 7369 6d70 =====..This simp │ │ │ │ -00019bc0: 6c79 2063 616c 6c73 2069 7343 6f64 696d ly calls isCodim │ │ │ │ -00019bd0: 4174 4c65 6173 742c 2070 6173 7369 6e67 AtLeast, passing │ │ │ │ -00019be0: 206f 7074 696f 6e73 2061 7320 6465 7363 options as desc │ │ │ │ -00019bf0: 7269 6265 6420 7468 6572 652e 0a0a 5365 ribed there...Se │ │ │ │ -00019c00: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00019c10: 0a20 202a 202a 6e6f 7465 2069 7343 6f64 . * *note isCod │ │ │ │ -00019c20: 696d 4174 4c65 6173 743a 2069 7343 6f64 imAtLeast: isCod │ │ │ │ -00019c30: 696d 4174 4c65 6173 742c 202d 2d20 7265 imAtLeast, -- re │ │ │ │ -00019c40: 7475 726e 7320 7472 7565 2069 6620 7765 turns true if we │ │ │ │ -00019c50: 2063 616e 2071 7569 636b 6c79 2073 6565 can quickly see │ │ │ │ -00019c60: 0a20 2020 2077 6865 7468 6572 2074 6865 . whether the │ │ │ │ -00019c70: 2063 6f64 696d 2069 7320 6174 206c 6561 codim is at lea │ │ │ │ -00019c80: 7374 2061 2067 6976 656e 206e 756d 6265 st a given numbe │ │ │ │ -00019c90: 720a 0a57 6179 7320 746f 2075 7365 2069 r..Ways to use i │ │ │ │ -00019ca0: 7344 696d 4174 4d6f 7374 3a0a 3d3d 3d3d sDimAtMost:.==== │ │ │ │ -00019cb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00019cc0: 3d3d 3d3d 0a0a 2020 2a20 2269 7344 696d ====.. * "isDim │ │ │ │ -00019cd0: 4174 4d6f 7374 285a 5a2c 4964 6561 6c29 AtMost(ZZ,Ideal) │ │ │ │ -00019ce0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00019cf0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00019d00: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00019d10: 6a65 6374 202a 6e6f 7465 2069 7344 696d ject *note isDim │ │ │ │ -00019d20: 4174 4d6f 7374 3a20 6973 4469 6d41 744d AtMost: isDimAtM │ │ │ │ -00019d30: 6f73 742c 2069 7320 6120 2a6e 6f74 6520 ost, is a *note │ │ │ │ -00019d40: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -00019d50: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ -00019d60: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00019d70: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00019d80: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ -00019d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019dd0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00019de0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00019df0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00019e00: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00019e10: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00019e20: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00019e30: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00019e40: 4661 7374 4d69 6e6f 7273 2e0a 6d32 3a32 FastMinors..m2:2 │ │ │ │ -00019e50: 3237 323a 302e 0a1f 0a46 696c 653a 2046 272:0....File: F │ │ │ │ -00019e60: 6173 744d 696e 6f72 732e 696e 666f 2c20 astMinors.info, │ │ │ │ -00019e70: 4e6f 6465 3a20 6973 5261 6e6b 4174 4c65 Node: isRankAtLe │ │ │ │ -00019e80: 6173 742c 204e 6578 743a 2069 7352 616e ast, Next: isRan │ │ │ │ -00019e90: 6b41 744c 6561 7374 5f6c 705f 7064 5f70 kAtLeast_lp_pd_p │ │ │ │ -00019ea0: 645f 7064 5f63 6d54 6872 6561 6473 3d3e d_pd_cmThreads=> │ │ │ │ -00019eb0: 5f70 645f 7064 5f70 645f 7270 2c20 5072 _pd_pd_pd_rp, Pr │ │ │ │ -00019ec0: 6576 3a20 6973 4469 6d41 744d 6f73 742c ev: isDimAtMost, │ │ │ │ -00019ed0: 2055 703a 2054 6f70 0a0a 6973 5261 6e6b Up: Top..isRank │ │ │ │ -00019ee0: 4174 4c65 6173 7420 2d2d 2064 6574 6572 AtLeast -- deter │ │ │ │ -00019ef0: 6d69 6e65 7320 6966 2074 6865 206d 6174 mines if the mat │ │ │ │ -00019f00: 7269 7820 6861 7320 7261 6e6b 2061 7420 rix has rank at │ │ │ │ -00019f10: 6c65 6173 7420 6120 6e75 6d62 6572 0a2a least a number.* │ │ │ │ -00019f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00019f60: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00019f70: 0a20 2020 2020 2020 2069 7352 616e 6b41 . isRankA │ │ │ │ -00019f80: 744c 6561 7374 286e 312c 204d 3129 0a20 tLeast(n1, M1). │ │ │ │ -00019f90: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00019fa0: 202a 206e 312c 2061 6e20 2a6e 6f74 6520 * n1, an *note │ │ │ │ -00019fb0: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -00019fc0: 6179 3244 6f63 295a 5a2c 2c20 0a20 2020 ay2Doc)ZZ,, . │ │ │ │ -00019fd0: 2020 202a 204d 312c 2061 202a 6e6f 7465 * M1, a *note │ │ │ │ -00019fe0: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ -00019ff0: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ -0001a000: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ -0001a010: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ -0001a020: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ -0001a030: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ -0001a040: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ -0001a050: 0a20 2020 2020 202a 202a 6e6f 7465 2044 . * *note D │ │ │ │ -0001a060: 6574 5374 7261 7465 6779 3a20 4465 7453 etStrategy: DetS │ │ │ │ -0001a070: 7472 6174 6567 792c 203d 3e20 2e2e 2e2c trategy, => ..., │ │ │ │ -0001a080: 2064 6566 6175 6c74 2076 616c 7565 2052 default value R │ │ │ │ -0001a090: 616e 6b2c 2044 6574 5374 7261 7465 6779 ank, DetStrategy │ │ │ │ -0001a0a0: 0a20 2020 2020 2020 2069 7320 6120 7374 . is a st │ │ │ │ -0001a0b0: 7261 7465 6779 2066 6f72 2061 6c6c 6f77 rategy for allow │ │ │ │ -0001a0c0: 696e 6720 7468 6520 7573 6572 2074 6f20 ing the user to │ │ │ │ -0001a0d0: 6368 6f6f 7365 2068 6f77 2064 6574 6572 choose how deter │ │ │ │ -0001a0e0: 6d69 6e61 6e74 7320 286f 720a 2020 2020 minants (or. │ │ │ │ -0001a0f0: 2020 2020 7261 6e6b 292c 2069 7320 636f rank), is co │ │ │ │ -0001a100: 6d70 7574 6564 0a20 2020 2020 202a 202a mputed. * * │ │ │ │ -0001a110: 6e6f 7465 204d 6178 4d69 6e6f 7273 3a20 note MaxMinors: │ │ │ │ -0001a120: 4d61 784d 696e 6f72 732c 203d 3e20 2e2e MaxMinors, => .. │ │ │ │ -0001a130: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -0001a140: 206e 756c 6c2c 2061 6e20 6f70 7469 6f6e null, an option │ │ │ │ -0001a150: 2074 6f0a 2020 2020 2020 2020 636f 6e74 to. cont │ │ │ │ -0001a160: 726f 6c20 6465 7074 6820 6f66 2073 6561 rol depth of sea │ │ │ │ -0001a170: 7263 680a 2020 2020 2020 2a20 2a6e 6f74 rch. * *not │ │ │ │ -0001a180: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ -0001a190: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ -0001a1a0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0001a1b0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001a1c0: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ -0001a1d0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001a1e0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001a1f0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001a200: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ -0001a210: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ -0001a220: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ -0001a230: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ -0001a240: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001a250: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ -0001a260: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ -0001a270: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ -0001a280: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001a290: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001a2a0: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ -0001a2b0: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ -0001a2c0: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ -0001a2d0: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ -0001a2e0: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ -0001a2f0: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ -0001a300: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -0001a310: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -0001a320: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ -0001a330: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ -0001a340: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ -0001a350: 2052 616e 646f 6d20 3d3e 2030 2c20 4752 Random => 0, GR │ │ │ │ -0001a360: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ -0001a370: 302c 204c 6578 536d 616c 6c65 7374 5465 0, LexSmallestTe │ │ │ │ -0001a380: 726d 203d 3e0a 2020 2020 2020 2020 3235 rm =>. 25 │ │ │ │ -0001a390: 2c20 4c65 784c 6172 6765 7374 203d 3e20 , LexLargest => │ │ │ │ -0001a3a0: 302c 204c 6578 536d 616c 6c65 7374 203d 0, LexSmallest = │ │ │ │ -0001a3b0: 3e20 3235 2c20 4752 6576 4c65 7853 6d61 > 25, GRevLexSma │ │ │ │ -0001a3c0: 6c6c 6573 7454 6572 6d20 3d3e 2032 352c llestTerm => 25, │ │ │ │ -0001a3d0: 0a20 2020 2020 2020 2052 616e 646f 6d4e . RandomN │ │ │ │ -0001a3e0: 6f6e 7a65 726f 203d 3e20 302c 2047 5265 onzero => 0, GRe │ │ │ │ -0001a3f0: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ -0001a400: 3235 7d2c 2073 7472 6174 6567 6965 7320 25}, strategies │ │ │ │ -0001a410: 666f 7220 6368 6f6f 7369 6e67 0a20 2020 for choosing. │ │ │ │ -0001a420: 2020 2020 2073 7562 6d61 7472 6963 6573 submatrices │ │ │ │ -0001a430: 0a20 2020 2020 202a 202a 6e6f 7465 2054 . * *note T │ │ │ │ -0001a440: 6872 6561 6473 3a20 6973 5261 6e6b 4174 hreads: isRankAt │ │ │ │ -0001a450: 4c65 6173 745f 6c70 5f70 645f 7064 5f70 Least_lp_pd_pd_p │ │ │ │ -0001a460: 645f 636d 5468 7265 6164 733d 3e5f 7064 d_cmThreads=>_pd │ │ │ │ -0001a470: 5f70 645f 7064 5f72 702c 203d 3e0a 2020 _pd_pd_rp, =>. │ │ │ │ -0001a480: 2020 2020 2020 2e2e 2e2c 2064 6566 6175 ..., defau │ │ │ │ -0001a490: 6c74 2076 616c 7565 2031 2c20 616e 206f lt value 1, an o │ │ │ │ -0001a4a0: 7074 696f 6e20 666f 7220 7661 7269 6f75 ption for variou │ │ │ │ -0001a4b0: 7320 6675 6e63 7469 6f6e 730a 2020 2020 s functions. │ │ │ │ -0001a4c0: 2020 2a20 5665 7262 6f73 6520 3d3e 202e * Verbose => . │ │ │ │ -0001a4d0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -0001a4e0: 6520 6661 6c73 650a 2020 2a20 4f75 7470 e false. * Outp │ │ │ │ -0001a4f0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -0001a500: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -0001a510: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ -0001a520: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ -0001a530: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0001a540: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ -0001a550: 7469 6f6e 2074 7269 6573 2074 6f20 7175 tion tries to qu │ │ │ │ -0001a560: 6963 6b6c 7920 6465 7465 726d 696e 6520 ickly determine │ │ │ │ -0001a570: 7768 6574 6865 7220 7468 6520 6d61 7472 whether the matr │ │ │ │ -0001a580: 6978 2068 6173 2061 2067 6976 656e 2072 ix has a given r │ │ │ │ -0001a590: 616e 6b2e 0a69 7352 616e 6b41 744c 6561 ank..isRankAtLea │ │ │ │ -0001a5a0: 7374 2063 616c 6c73 202a 6e6f 7465 2067 st calls *note g │ │ │ │ -0001a5b0: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ -0001a5c0: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ -0001a5d0: 6652 616e 6b2c 2e20 2049 6620 7468 6174 fRank,. If that │ │ │ │ -0001a5e0: 0a66 756e 6374 696f 6e20 6669 6e64 7320 .function finds │ │ │ │ -0001a5f0: 6120 7375 626d 6174 7269 7820 6f66 2061 a submatrix of a │ │ │ │ -0001a600: 2063 6572 7461 696e 2072 616e 6b2c 2074 certain rank, t │ │ │ │ -0001a610: 6869 7320 7265 7475 726e 7320 7472 7565 his returns true │ │ │ │ -0001a620: 2e20 2049 6620 7468 6174 0a66 756e 6374 . If that.funct │ │ │ │ -0001a630: 696f 6e20 6661 696c 7320 746f 2066 696e ion fails to fin │ │ │ │ -0001a640: 6420 6120 7375 626d 6174 7269 7820 6f66 d a submatrix of │ │ │ │ -0001a650: 2061 2063 6572 7461 696e 2072 616e 6b2c a certain rank, │ │ │ │ -0001a660: 2074 6869 7320 7369 6d70 6c79 2063 616c this simply cal │ │ │ │ -0001a670: 6c73 202a 6e6f 7465 0a72 616e 6b3a 2028 ls *note.rank: ( │ │ │ │ -0001a680: 4d61 6361 756c 6179 3244 6f63 2972 616e Macaulay2Doc)ran │ │ │ │ -0001a690: 6b2c 2e20 2054 6f20 636f 6e74 726f 6c20 k,. To control │ │ │ │ -0001a6a0: 7468 6520 6e75 6d62 6572 206f 6620 7469 the number of ti │ │ │ │ -0001a6b0: 6d65 7320 6765 7453 7562 6d61 7472 6978 mes getSubmatrix │ │ │ │ -0001a6c0: 4f66 5261 6e6b 0a63 6f6e 7369 6465 7273 OfRank.considers │ │ │ │ -0001a6d0: 2073 7562 6d61 7472 6963 6573 2c20 7573 submatrices, us │ │ │ │ -0001a6e0: 6520 7468 6520 6f70 7469 6f6e 204d 6178 e the option Max │ │ │ │ -0001a6f0: 4d69 6e6f 7273 2e0a 0a2b 2d2d 2d2d 2d2d Minors...+------ │ │ │ │ -0001a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a730: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001a740: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a770: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7b0: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ -0001a7c0: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ -0001a7d0: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ -0001a7e0: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ -0001a7f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001a830: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -0001a840: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +000194e0: 7c6f 3130 203d 2074 7275 6520 2020 2020 |o10 = true │ │ │ │ +000194f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00019530: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00019540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00019580: 0a4e 6f74 6963 6520 696e 2074 6865 2066 .Notice in the f │ │ │ │ +00019590: 6972 7374 2063 6173 6520 7468 6520 6675 irst case the fu │ │ │ │ +000195a0: 6e63 7469 6f6e 2072 6574 7572 6e65 6420 nction returned │ │ │ │ +000195b0: 6e75 6c6c 2c20 6265 6361 7573 6520 7468 null, because th │ │ │ │ +000195c0: 6520 6465 7074 6820 6f66 0a73 6561 7263 e depth of.searc │ │ │ │ +000195d0: 6820 7761 7320 6e6f 7420 6869 6768 2065 h was not high e │ │ │ │ +000195e0: 6e6f 7567 682e 2020 4974 206f 6e6c 7920 nough. It only │ │ │ │ +000195f0: 636f 6d70 7574 6564 2063 6f64 696d 2035 computed codim 5 │ │ │ │ +00019600: 2074 696d 6573 2e20 2054 6865 2073 6563 times. The sec │ │ │ │ +00019610: 6f6e 640a 7265 7475 726e 6564 2074 7275 ond.returned tru │ │ │ │ +00019620: 652c 2062 7574 2069 7420 6469 6420 736f e, but it did so │ │ │ │ +00019630: 2061 7320 736f 6f6e 2061 7320 7468 6520 as soon as the │ │ │ │ +00019640: 616e 7377 6572 2077 6173 2066 6f75 6e64 answer was found │ │ │ │ +00019650: 2028 616e 6420 6265 666f 7265 2077 6520 (and before we │ │ │ │ +00019660: 6869 740a 7468 6520 5061 6972 4c69 6d69 hit.the PairLimi │ │ │ │ +00019670: 7420 6c69 6d69 7429 2e0a 0a57 6179 7320 t limit)...Ways │ │ │ │ +00019680: 746f 2075 7365 2069 7343 6f64 696d 4174 to use isCodimAt │ │ │ │ +00019690: 4c65 6173 743a 0a3d 3d3d 3d3d 3d3d 3d3d Least:.========= │ │ │ │ +000196a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000196b0: 3d3d 0a0a 2020 2a20 2269 7343 6f64 696d ==.. * "isCodim │ │ │ │ +000196c0: 4174 4c65 6173 7428 5a5a 2c49 6465 616c AtLeast(ZZ,Ideal │ │ │ │ +000196d0: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +000196e0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +000196f0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00019700: 626a 6563 7420 2a6e 6f74 6520 6973 436f bject *note isCo │ │ │ │ +00019710: 6469 6d41 744c 6561 7374 3a20 6973 436f dimAtLeast: isCo │ │ │ │ +00019720: 6469 6d41 744c 6561 7374 2c20 6973 2061 dimAtLeast, is a │ │ │ │ +00019730: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +00019740: 6e63 7469 6f6e 0a77 6974 6820 6f70 7469 nction.with opti │ │ │ │ +00019750: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +00019760: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +00019770: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +00019780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000197c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +000197d0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000197e0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +000197f0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00019800: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00019810: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00019820: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00019830: 636b 6167 6573 2f46 6173 744d 696e 6f72 ckages/FastMinor │ │ │ │ +00019840: 732e 0a6d 323a 3232 3436 3a30 2e0a 1f0a s..m2:2246:0.... │ │ │ │ +00019850: 4669 6c65 3a20 4661 7374 4d69 6e6f 7273 File: FastMinors │ │ │ │ +00019860: 2e69 6e66 6f2c 204e 6f64 653a 2069 7344 .info, Node: isD │ │ │ │ +00019870: 696d 4174 4d6f 7374 2c20 4e65 7874 3a20 imAtMost, Next: │ │ │ │ +00019880: 6973 5261 6e6b 4174 4c65 6173 742c 2050 isRankAtLeast, P │ │ │ │ +00019890: 7265 763a 2069 7343 6f64 696d 4174 4c65 rev: isCodimAtLe │ │ │ │ +000198a0: 6173 742c 2055 703a 2054 6f70 0a0a 6973 ast, Up: Top..is │ │ │ │ +000198b0: 4469 6d41 744d 6f73 7420 2d2d 2072 6574 DimAtMost -- ret │ │ │ │ +000198c0: 7572 6e73 2074 7275 6520 6966 2077 6520 urns true if we │ │ │ │ +000198d0: 6361 6e20 7175 6963 6b6c 7920 7365 6520 can quickly see │ │ │ │ +000198e0: 7768 6574 6865 7220 7468 6520 6469 6d20 whether the dim │ │ │ │ +000198f0: 6973 2061 7420 6d6f 7374 2061 2067 6976 is at most a giv │ │ │ │ +00019900: 656e 206e 756d 6265 720a 2a2a 2a2a 2a2a en number.****** │ │ │ │ +00019910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019960: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00019970: 3a20 0a20 2020 2020 2020 2069 7344 696d : . isDim │ │ │ │ +00019980: 4174 4d6f 7374 286e 2c20 4929 0a20 202a AtMost(n, I). * │ │ │ │ +00019990: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +000199a0: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ +000199b0: 6567 6572 3a20 284d 6163 6175 6c61 7932 eger: (Macaulay2 │ │ │ │ +000199c0: 446f 6329 5a5a 2c2c 2061 6e20 696e 7465 Doc)ZZ,, an inte │ │ │ │ +000199d0: 6765 720a 2020 2020 2020 2a20 492c 2061 ger. * I, a │ │ │ │ +000199e0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ +000199f0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ +00019a00: 616c 2c2c 2061 6e20 6964 6561 6c20 696e al,, an ideal in │ │ │ │ +00019a10: 2061 2070 6f6c 796e 6f6d 6961 6c20 7269 a polynomial ri │ │ │ │ +00019a20: 6e67 0a20 2020 2020 2020 206f 7665 7220 ng. over │ │ │ │ +00019a30: 6120 6669 656c 642c 206f 7220 6120 7175 a field, or a qu │ │ │ │ +00019a40: 6f74 6965 6e74 2072 696e 6720 6f66 2073 otient ring of s │ │ │ │ +00019a50: 7563 680a 2020 2a20 2a6e 6f74 6520 4f70 uch. * *note Op │ │ │ │ +00019a60: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +00019a70: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +00019a80: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +00019a90: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00019aa0: 732c 3a0a 2020 2020 2020 2a20 5061 6972 s,:. * Pair │ │ │ │ +00019ab0: 4c69 6d69 7420 3d3e 202e 2e2e 2c20 6465 Limit => ..., de │ │ │ │ +00019ac0: 6661 756c 7420 7661 6c75 6520 3130 300a fault value 100. │ │ │ │ +00019ad0: 2020 2020 2020 2a20 5350 6169 7273 4675 * SPairsFu │ │ │ │ +00019ae0: 6e63 7469 6f6e 203d 3e20 2e2e 2e2c 2064 nction => ..., d │ │ │ │ +00019af0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +00019b00: 2020 2020 2046 756e 6374 696f 6e43 6c6f FunctionClo │ │ │ │ +00019b10: 7375 7265 5b2e 2e2f 4661 7374 4d69 6e6f sure[../FastMino │ │ │ │ +00019b20: 7273 2e6d 323a 3231 313a 3233 2d32 3131 rs.m2:211:23-211 │ │ │ │ +00019b30: 3a34 325d 0a20 2020 2020 202a 2056 6572 :42]. * Ver │ │ │ │ +00019b40: 626f 7365 203d 3e20 2e2e 2e2c 2064 6566 bose => ..., def │ │ │ │ +00019b50: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +00019b60: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00019b70: 2020 2020 2a20 7472 7565 2069 6620 7468 * true if th │ │ │ │ +00019b80: 6520 6469 6d65 6e73 696f 6e20 6f66 2049 e dimension of I │ │ │ │ +00019b90: 2069 7320 6174 206d 6f73 7420 6e20 6f72 is at most n or │ │ │ │ +00019ba0: 206e 756c 6c20 6966 2074 6865 2066 756e null if the fun │ │ │ │ +00019bb0: 6374 696f 6e20 6361 6e6e 6f74 0a20 2020 ction cannot. │ │ │ │ +00019bc0: 2020 2020 2074 656c 6c20 7768 6574 6865 tell whethe │ │ │ │ +00019bd0: 7220 7468 6520 6469 6d65 6e73 696f 6e20 r the dimension │ │ │ │ +00019be0: 6973 2061 7420 6d6f 7374 206e 0a0a 4465 is at most n..De │ │ │ │ +00019bf0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00019c00: 3d3d 3d3d 3d0a 0a54 6869 7320 7369 6d70 =====..This simp │ │ │ │ +00019c10: 6c79 2063 616c 6c73 2069 7343 6f64 696d ly calls isCodim │ │ │ │ +00019c20: 4174 4c65 6173 742c 2070 6173 7369 6e67 AtLeast, passing │ │ │ │ +00019c30: 206f 7074 696f 6e73 2061 7320 6465 7363 options as desc │ │ │ │ +00019c40: 7269 6265 6420 7468 6572 652e 0a0a 5365 ribed there...Se │ │ │ │ +00019c50: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00019c60: 0a20 202a 202a 6e6f 7465 2069 7343 6f64 . * *note isCod │ │ │ │ +00019c70: 696d 4174 4c65 6173 743a 2069 7343 6f64 imAtLeast: isCod │ │ │ │ +00019c80: 696d 4174 4c65 6173 742c 202d 2d20 7265 imAtLeast, -- re │ │ │ │ +00019c90: 7475 726e 7320 7472 7565 2069 6620 7765 turns true if we │ │ │ │ +00019ca0: 2063 616e 2071 7569 636b 6c79 2073 6565 can quickly see │ │ │ │ +00019cb0: 0a20 2020 2077 6865 7468 6572 2074 6865 . whether the │ │ │ │ +00019cc0: 2063 6f64 696d 2069 7320 6174 206c 6561 codim is at lea │ │ │ │ +00019cd0: 7374 2061 2067 6976 656e 206e 756d 6265 st a given numbe │ │ │ │ +00019ce0: 720a 0a57 6179 7320 746f 2075 7365 2069 r..Ways to use i │ │ │ │ +00019cf0: 7344 696d 4174 4d6f 7374 3a0a 3d3d 3d3d sDimAtMost:.==== │ │ │ │ +00019d00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00019d10: 3d3d 3d3d 0a0a 2020 2a20 2269 7344 696d ====.. * "isDim │ │ │ │ +00019d20: 4174 4d6f 7374 285a 5a2c 4964 6561 6c29 AtMost(ZZ,Ideal) │ │ │ │ +00019d30: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00019d40: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00019d50: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00019d60: 6a65 6374 202a 6e6f 7465 2069 7344 696d ject *note isDim │ │ │ │ +00019d70: 4174 4d6f 7374 3a20 6973 4469 6d41 744d AtMost: isDimAtM │ │ │ │ +00019d80: 6f73 742c 2069 7320 6120 2a6e 6f74 6520 ost, is a *note │ │ │ │ +00019d90: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ +00019da0: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ +00019db0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +00019dc0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ +00019dd0: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ +00019de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019e20: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00019e30: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00019e40: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00019e50: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00019e60: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00019e70: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00019e80: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00019e90: 4661 7374 4d69 6e6f 7273 2e0a 6d32 3a32 FastMinors..m2:2 │ │ │ │ +00019ea0: 3237 323a 302e 0a1f 0a46 696c 653a 2046 272:0....File: F │ │ │ │ +00019eb0: 6173 744d 696e 6f72 732e 696e 666f 2c20 astMinors.info, │ │ │ │ +00019ec0: 4e6f 6465 3a20 6973 5261 6e6b 4174 4c65 Node: isRankAtLe │ │ │ │ +00019ed0: 6173 742c 204e 6578 743a 2069 7352 616e ast, Next: isRan │ │ │ │ +00019ee0: 6b41 744c 6561 7374 5f6c 705f 7064 5f70 kAtLeast_lp_pd_p │ │ │ │ +00019ef0: 645f 7064 5f63 6d54 6872 6561 6473 3d3e d_pd_cmThreads=> │ │ │ │ +00019f00: 5f70 645f 7064 5f70 645f 7270 2c20 5072 _pd_pd_pd_rp, Pr │ │ │ │ +00019f10: 6576 3a20 6973 4469 6d41 744d 6f73 742c ev: isDimAtMost, │ │ │ │ +00019f20: 2055 703a 2054 6f70 0a0a 6973 5261 6e6b Up: Top..isRank │ │ │ │ +00019f30: 4174 4c65 6173 7420 2d2d 2064 6574 6572 AtLeast -- deter │ │ │ │ +00019f40: 6d69 6e65 7320 6966 2074 6865 206d 6174 mines if the mat │ │ │ │ +00019f50: 7269 7820 6861 7320 7261 6e6b 2061 7420 rix has rank at │ │ │ │ +00019f60: 6c65 6173 7420 6120 6e75 6d62 6572 0a2a least a number.* │ │ │ │ +00019f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019fa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00019fb0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00019fc0: 0a20 2020 2020 2020 2069 7352 616e 6b41 . isRankA │ │ │ │ +00019fd0: 744c 6561 7374 286e 312c 204d 3129 0a20 tLeast(n1, M1). │ │ │ │ +00019fe0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00019ff0: 202a 206e 312c 2061 6e20 2a6e 6f74 6520 * n1, an *note │ │ │ │ +0001a000: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001a010: 6179 3244 6f63 295a 5a2c 2c20 0a20 2020 ay2Doc)ZZ,, . │ │ │ │ +0001a020: 2020 202a 204d 312c 2061 202a 6e6f 7465 * M1, a *note │ │ │ │ +0001a030: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +0001a040: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +0001a050: 0a20 202a 202a 6e6f 7465 204f 7074 696f . * *note Optio │ │ │ │ +0001a060: 6e61 6c20 696e 7075 7473 3a20 284d 6163 nal inputs: (Mac │ │ │ │ +0001a070: 6175 6c61 7932 446f 6329 7573 696e 6720 aulay2Doc)using │ │ │ │ +0001a080: 6675 6e63 7469 6f6e 7320 7769 7468 206f functions with o │ │ │ │ +0001a090: 7074 696f 6e61 6c20 696e 7075 7473 2c3a ptional inputs,: │ │ │ │ +0001a0a0: 0a20 2020 2020 202a 202a 6e6f 7465 2044 . * *note D │ │ │ │ +0001a0b0: 6574 5374 7261 7465 6779 3a20 4465 7453 etStrategy: DetS │ │ │ │ +0001a0c0: 7472 6174 6567 792c 203d 3e20 2e2e 2e2c trategy, => ..., │ │ │ │ +0001a0d0: 2064 6566 6175 6c74 2076 616c 7565 2052 default value R │ │ │ │ +0001a0e0: 616e 6b2c 2044 6574 5374 7261 7465 6779 ank, DetStrategy │ │ │ │ +0001a0f0: 0a20 2020 2020 2020 2069 7320 6120 7374 . is a st │ │ │ │ +0001a100: 7261 7465 6779 2066 6f72 2061 6c6c 6f77 rategy for allow │ │ │ │ +0001a110: 696e 6720 7468 6520 7573 6572 2074 6f20 ing the user to │ │ │ │ +0001a120: 6368 6f6f 7365 2068 6f77 2064 6574 6572 choose how deter │ │ │ │ +0001a130: 6d69 6e61 6e74 7320 286f 720a 2020 2020 minants (or. │ │ │ │ +0001a140: 2020 2020 7261 6e6b 292c 2069 7320 636f rank), is co │ │ │ │ +0001a150: 6d70 7574 6564 0a20 2020 2020 202a 202a mputed. * * │ │ │ │ +0001a160: 6e6f 7465 204d 6178 4d69 6e6f 7273 3a20 note MaxMinors: │ │ │ │ +0001a170: 4d61 784d 696e 6f72 732c 203d 3e20 2e2e MaxMinors, => .. │ │ │ │ +0001a180: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0001a190: 206e 756c 6c2c 2061 6e20 6f70 7469 6f6e null, an option │ │ │ │ +0001a1a0: 2074 6f0a 2020 2020 2020 2020 636f 6e74 to. cont │ │ │ │ +0001a1b0: 726f 6c20 6465 7074 6820 6f66 2073 6561 rol depth of sea │ │ │ │ +0001a1c0: 7263 680a 2020 2020 2020 2a20 2a6e 6f74 rch. * *not │ │ │ │ +0001a1d0: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ +0001a1e0: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ +0001a1f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001a200: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001a210: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ +0001a220: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001a230: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001a240: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001a250: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ +0001a260: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ +0001a270: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ +0001a280: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ +0001a290: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001a2a0: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ +0001a2b0: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ +0001a2c0: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ +0001a2d0: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001a2e0: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001a2f0: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ +0001a300: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ +0001a310: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ +0001a320: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ +0001a330: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ +0001a340: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ +0001a350: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +0001a360: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0001a370: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ +0001a380: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ +0001a390: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ +0001a3a0: 2052 616e 646f 6d20 3d3e 2030 2c20 4752 Random => 0, GR │ │ │ │ +0001a3b0: 6576 4c65 784c 6172 6765 7374 203d 3e20 evLexLargest => │ │ │ │ +0001a3c0: 302c 204c 6578 536d 616c 6c65 7374 5465 0, LexSmallestTe │ │ │ │ +0001a3d0: 726d 203d 3e0a 2020 2020 2020 2020 3235 rm =>. 25 │ │ │ │ +0001a3e0: 2c20 4c65 784c 6172 6765 7374 203d 3e20 , LexLargest => │ │ │ │ +0001a3f0: 302c 204c 6578 536d 616c 6c65 7374 203d 0, LexSmallest = │ │ │ │ +0001a400: 3e20 3235 2c20 4752 6576 4c65 7853 6d61 > 25, GRevLexSma │ │ │ │ +0001a410: 6c6c 6573 7454 6572 6d20 3d3e 2032 352c llestTerm => 25, │ │ │ │ +0001a420: 0a20 2020 2020 2020 2052 616e 646f 6d4e . RandomN │ │ │ │ +0001a430: 6f6e 7a65 726f 203d 3e20 302c 2047 5265 onzero => 0, GRe │ │ │ │ +0001a440: 764c 6578 536d 616c 6c65 7374 203d 3e20 vLexSmallest => │ │ │ │ +0001a450: 3235 7d2c 2073 7472 6174 6567 6965 7320 25}, strategies │ │ │ │ +0001a460: 666f 7220 6368 6f6f 7369 6e67 0a20 2020 for choosing. │ │ │ │ +0001a470: 2020 2020 2073 7562 6d61 7472 6963 6573 submatrices │ │ │ │ +0001a480: 0a20 2020 2020 202a 202a 6e6f 7465 2054 . * *note T │ │ │ │ +0001a490: 6872 6561 6473 3a20 6973 5261 6e6b 4174 hreads: isRankAt │ │ │ │ +0001a4a0: 4c65 6173 745f 6c70 5f70 645f 7064 5f70 Least_lp_pd_pd_p │ │ │ │ +0001a4b0: 645f 636d 5468 7265 6164 733d 3e5f 7064 d_cmThreads=>_pd │ │ │ │ +0001a4c0: 5f70 645f 7064 5f72 702c 203d 3e0a 2020 _pd_pd_rp, =>. │ │ │ │ +0001a4d0: 2020 2020 2020 2e2e 2e2c 2064 6566 6175 ..., defau │ │ │ │ +0001a4e0: 6c74 2076 616c 7565 2031 2c20 616e 206f lt value 1, an o │ │ │ │ +0001a4f0: 7074 696f 6e20 666f 7220 7661 7269 6f75 ption for variou │ │ │ │ +0001a500: 7320 6675 6e63 7469 6f6e 730a 2020 2020 s functions. │ │ │ │ +0001a510: 2020 2a20 5665 7262 6f73 6520 3d3e 202e * Verbose => . │ │ │ │ +0001a520: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ +0001a530: 6520 6661 6c73 650a 2020 2a20 4f75 7470 e false. * Outp │ │ │ │ +0001a540: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0001a550: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ +0001a560: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ +0001a570: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ +0001a580: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0001a590: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ +0001a5a0: 7469 6f6e 2074 7269 6573 2074 6f20 7175 tion tries to qu │ │ │ │ +0001a5b0: 6963 6b6c 7920 6465 7465 726d 696e 6520 ickly determine │ │ │ │ +0001a5c0: 7768 6574 6865 7220 7468 6520 6d61 7472 whether the matr │ │ │ │ +0001a5d0: 6978 2068 6173 2061 2067 6976 656e 2072 ix has a given r │ │ │ │ +0001a5e0: 616e 6b2e 0a69 7352 616e 6b41 744c 6561 ank..isRankAtLea │ │ │ │ +0001a5f0: 7374 2063 616c 6c73 202a 6e6f 7465 2067 st calls *note g │ │ │ │ +0001a600: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ +0001a610: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ +0001a620: 6652 616e 6b2c 2e20 2049 6620 7468 6174 fRank,. If that │ │ │ │ +0001a630: 0a66 756e 6374 696f 6e20 6669 6e64 7320 .function finds │ │ │ │ +0001a640: 6120 7375 626d 6174 7269 7820 6f66 2061 a submatrix of a │ │ │ │ +0001a650: 2063 6572 7461 696e 2072 616e 6b2c 2074 certain rank, t │ │ │ │ +0001a660: 6869 7320 7265 7475 726e 7320 7472 7565 his returns true │ │ │ │ +0001a670: 2e20 2049 6620 7468 6174 0a66 756e 6374 . If that.funct │ │ │ │ +0001a680: 696f 6e20 6661 696c 7320 746f 2066 696e ion fails to fin │ │ │ │ +0001a690: 6420 6120 7375 626d 6174 7269 7820 6f66 d a submatrix of │ │ │ │ +0001a6a0: 2061 2063 6572 7461 696e 2072 616e 6b2c a certain rank, │ │ │ │ +0001a6b0: 2074 6869 7320 7369 6d70 6c79 2063 616c this simply cal │ │ │ │ +0001a6c0: 6c73 202a 6e6f 7465 0a72 616e 6b3a 2028 ls *note.rank: ( │ │ │ │ +0001a6d0: 4d61 6361 756c 6179 3244 6f63 2972 616e Macaulay2Doc)ran │ │ │ │ +0001a6e0: 6b2c 2e20 2054 6f20 636f 6e74 726f 6c20 k,. To control │ │ │ │ +0001a6f0: 7468 6520 6e75 6d62 6572 206f 6620 7469 the number of ti │ │ │ │ +0001a700: 6d65 7320 6765 7453 7562 6d61 7472 6978 mes getSubmatrix │ │ │ │ +0001a710: 4f66 5261 6e6b 0a63 6f6e 7369 6465 7273 OfRank.considers │ │ │ │ +0001a720: 2073 7562 6d61 7472 6963 6573 2c20 7573 submatrices, us │ │ │ │ +0001a730: 6520 7468 6520 6f70 7469 6f6e 204d 6178 e the option Max │ │ │ │ +0001a740: 4d69 6e6f 7273 2e0a 0a2b 2d2d 2d2d 2d2d Minors...+------ │ │ │ │ +0001a750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a780: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0001a790: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a7c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a800: 2d2b 0a7c 6932 203a 204d 203d 206d 6174 -+.|i2 : M = mat │ │ │ │ +0001a810: 7269 787b 7b78 2c79 2c32 2c30 2c32 2a78 rix{{x,y,2,0,2*x │ │ │ │ +0001a820: 2b79 7d2c 207b 302c 302c 312c 302c 787d +y}, {0,0,1,0,x} │ │ │ │ +0001a830: 2c20 7b78 2c79 2c30 2c30 2c79 7d7d 3b7c , {x,y,0,0,y}};| │ │ │ │ +0001a840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a860: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0001a870: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ -0001a880: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a8e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2072 -------+.|i3 : r │ │ │ │ -0001a8f0: 616e 6b20 4d20 2020 2020 2020 2020 2020 ank M │ │ │ │ -0001a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001a880: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0001a890: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001a8c0: 203a 204d 6174 7269 7820 5220 203c 2d2d : Matrix R <-- │ │ │ │ +0001a8d0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a930: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2072 -------+.|i3 : r │ │ │ │ +0001a940: 616e 6b20 4d20 2020 2020 2020 2020 2020 ank M │ │ │ │ 0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a960: 2020 207c 0a7c 6f33 203d 2032 2020 2020 |.|o3 = 2 │ │ │ │ -0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001a9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001a9e0: 0a7c 6934 203a 2069 7352 616e 6b41 744c .|i4 : isRankAtL │ │ │ │ -0001a9f0: 6561 7374 2832 2c20 4d29 2020 2020 2020 east(2, M) │ │ │ │ -0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa50: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -0001aa60: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9b0: 2020 207c 0a7c 6f33 203d 2032 2020 2020 |.|o3 = 2 │ │ │ │ +0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001aa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001aa30: 0a7c 6934 203a 2069 7352 616e 6b41 744c .|i4 : isRankAtL │ │ │ │ +0001aa40: 6561 7374 2832 2c20 4d29 2020 2020 2020 east(2, M) │ │ │ │ +0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aad0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ -0001aae0: 7352 616e 6b41 744c 6561 7374 2833 2c20 sRankAtLeast(3, │ │ │ │ -0001aaf0: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ -0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab50: 2020 207c 0a7c 6f35 203d 2066 616c 7365 |.|o5 = false │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aaa0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0001aab0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0001aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aae0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ab20: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ +0001ab30: 7352 616e 6b41 744c 6561 7374 2833 2c20 sRankAtLeast(3, │ │ │ │ +0001ab40: 4d29 2020 2020 2020 2020 2020 2020 2020 M) │ │ │ │ +0001ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0001ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001abd0: 0a0a 5468 6520 6f70 7469 6f6e 2054 6872 ..The option Thr │ │ │ │ -0001abe0: 6561 6473 2063 616e 2062 6520 7573 6564 eads can be used │ │ │ │ -0001abf0: 2061 6c6c 6f77 2074 6865 2066 756e 6374 allow the funct │ │ │ │ -0001ac00: 696f 6e20 7573 6520 6d75 6c74 6970 6c65 ion use multiple │ │ │ │ -0001ac10: 2074 6872 6561 6473 206f 660a 6578 6563 threads of.exec │ │ │ │ -0001ac20: 7574 696f 6e2e 2020 4966 2061 6c6c 6f77 ution. If allow │ │ │ │ -0001ac30: 6162 6c65 5468 7265 6164 7320 6973 2061 ableThreads is a │ │ │ │ -0001ac40: 626f 7665 2032 2061 6e64 2054 6872 6561 bove 2 and Threa │ │ │ │ -0001ac50: 6473 2069 7320 7365 7420 6162 6f76 6520 ds is set above │ │ │ │ -0001ac60: 312c 2074 6865 6e0a 7468 6973 2066 756e 1, then.this fun │ │ │ │ -0001ac70: 6374 696f 6e20 7769 6c6c 2074 7279 2074 ction will try t │ │ │ │ -0001ac80: 6f20 7369 6d75 6c74 616e 656f 7573 6c79 o simultaneously │ │ │ │ -0001ac90: 2063 6f6d 7075 7465 2074 6865 2072 616e compute the ran │ │ │ │ -0001aca0: 6b20 6f66 2074 6865 206d 6174 7269 7820 k of the matrix │ │ │ │ -0001acb0: 7768 696c 650a 6c6f 6f6b 696e 6720 666f while.looking fo │ │ │ │ -0001acc0: 7220 6120 7375 626d 6174 7269 7820 6f66 r a submatrix of │ │ │ │ -0001acd0: 2061 2063 6572 7461 696e 2072 616e 6b2e a certain rank. │ │ │ │ -0001ace0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0001acf0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2067 ===.. * *note g │ │ │ │ -0001ad00: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ -0001ad10: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ -0001ad20: 6652 616e 6b2c 202d 2d20 7472 6965 7320 fRank, -- tries │ │ │ │ -0001ad30: 746f 2066 696e 6420 6120 7375 626d 6174 to find a submat │ │ │ │ -0001ad40: 7269 780a 2020 2020 6f66 2074 6865 2067 rix. of the g │ │ │ │ -0001ad50: 6976 656e 2072 616e 6b0a 2020 2a20 2a6e iven rank. * *n │ │ │ │ -0001ad60: 6f74 6520 6973 5261 6e6b 4174 4c65 6173 ote isRankAtLeas │ │ │ │ -0001ad70: 7428 2e2e 2e2c 5374 7261 7465 6779 3d3e t(...,Strategy=> │ │ │ │ -0001ad80: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ -0001ad90: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ -0001ada0: 6769 6573 2066 6f72 0a20 2020 2063 686f gies for. cho │ │ │ │ -0001adb0: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ -0001adc0: 730a 0a57 6179 7320 746f 2075 7365 2069 s..Ways to use i │ │ │ │ -0001add0: 7352 616e 6b41 744c 6561 7374 3a0a 3d3d sRankAtLeast:.== │ │ │ │ -0001ade0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001adf0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ -0001ae00: 7352 616e 6b41 744c 6561 7374 285a 5a2c sRankAtLeast(ZZ, │ │ │ │ -0001ae10: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ -0001ae20: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001ae30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001ae40: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001ae50: 6520 6973 5261 6e6b 4174 4c65 6173 743a e isRankAtLeast: │ │ │ │ -0001ae60: 2069 7352 616e 6b41 744c 6561 7374 2c20 isRankAtLeast, │ │ │ │ -0001ae70: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -0001ae80: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ -0001ae90: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -0001aea0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0001aeb0: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -0001aec0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -0001aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af10: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0001af20: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0001af30: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0001af40: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0001af50: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0001af60: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0001af70: 322f 7061 636b 6167 6573 2f46 6173 744d 2/packages/FastM │ │ │ │ -0001af80: 696e 6f72 732e 0a6d 323a 3137 3331 3a30 inors..m2:1731:0 │ │ │ │ -0001af90: 2e0a 1f0a 4669 6c65 3a20 4661 7374 4d69 ....File: FastMi │ │ │ │ -0001afa0: 6e6f 7273 2e69 6e66 6f2c 204e 6f64 653a nors.info, Node: │ │ │ │ -0001afb0: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ -0001afc0: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ -0001afd0: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ -0001afe0: 7270 2c20 4e65 7874 3a20 4d61 784d 696e rp, Next: MaxMin │ │ │ │ -0001aff0: 6f72 732c 2050 7265 763a 2069 7352 616e ors, Prev: isRan │ │ │ │ -0001b000: 6b41 744c 6561 7374 2c20 5570 3a20 546f kAtLeast, Up: To │ │ │ │ -0001b010: 700a 0a69 7352 616e 6b41 744c 6561 7374 p..isRankAtLeast │ │ │ │ -0001b020: 282e 2e2e 2c54 6872 6561 6473 3d3e 2e2e (...,Threads=>.. │ │ │ │ -0001b030: 2e29 202d 2d20 616e 206f 7074 696f 6e20 .) -- an option │ │ │ │ -0001b040: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ -0001b050: 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a tions.********** │ │ │ │ -0001b060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b090: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ -0001b0a0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0001b0b0: 3d0a 0a49 6e63 7265 6173 696e 6720 7468 =..Increasing th │ │ │ │ -0001b0c0: 6973 206f 7074 696f 6e20 6d61 7920 7465 is option may te │ │ │ │ -0001b0d0: 6c6c 2076 6172 696f 7573 2066 756e 6374 ll various funct │ │ │ │ -0001b0e0: 696f 6e73 2074 6f20 6d75 6c74 6974 6872 ions to multithr │ │ │ │ -0001b0f0: 6561 6420 7468 6569 720a 6f70 6572 6174 ead their.operat │ │ │ │ -0001b100: 696f 6e73 2e20 2059 6f75 206d 6179 2061 ions. You may a │ │ │ │ -0001b110: 6c73 6f20 7761 6e74 2074 6f20 696e 6372 lso want to incr │ │ │ │ -0001b120: 6561 7365 2061 6c6c 6f77 6162 6c65 5468 ease allowableTh │ │ │ │ -0001b130: 7265 6164 732e 0a0a 5365 6520 616c 736f reads...See also │ │ │ │ -0001b140: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -0001b150: 6e6f 7465 2069 7352 616e 6b41 744c 6561 note isRankAtLea │ │ │ │ -0001b160: 7374 3a20 6973 5261 6e6b 4174 4c65 6173 st: isRankAtLeas │ │ │ │ -0001b170: 742c 202d 2d20 6465 7465 726d 696e 6573 t, -- determines │ │ │ │ -0001b180: 2069 6620 7468 6520 6d61 7472 6978 2068 if the matrix h │ │ │ │ -0001b190: 6173 2072 616e 6b20 6174 0a20 2020 206c as rank at. l │ │ │ │ -0001b1a0: 6561 7374 2061 206e 756d 6265 720a 2020 east a number. │ │ │ │ -0001b1b0: 2a20 2a6e 6f74 6520 6765 7453 7562 6d61 * *note getSubma │ │ │ │ -0001b1c0: 7472 6978 4f66 5261 6e6b 3a20 6765 7453 trixOfRank: getS │ │ │ │ -0001b1d0: 7562 6d61 7472 6978 4f66 5261 6e6b 2c20 ubmatrixOfRank, │ │ │ │ -0001b1e0: 2d2d 2074 7269 6573 2074 6f20 6669 6e64 -- tries to find │ │ │ │ -0001b1f0: 2061 2073 7562 6d61 7472 6978 0a20 2020 a submatrix. │ │ │ │ -0001b200: 206f 6620 7468 6520 6769 7665 6e20 7261 of the given ra │ │ │ │ -0001b210: 6e6b 0a20 202a 202a 6e6f 7465 2072 6563 nk. * *note rec │ │ │ │ -0001b220: 7572 7369 7665 4d69 6e6f 7273 3a20 7265 ursiveMinors: re │ │ │ │ -0001b230: 6375 7273 6976 654d 696e 6f72 732c 202d cursiveMinors, - │ │ │ │ -0001b240: 2d20 7573 6573 2061 2072 6563 7572 7369 - uses a recursi │ │ │ │ -0001b250: 7665 2063 6f66 6163 746f 720a 2020 2020 ve cofactor. │ │ │ │ -0001b260: 616c 676f 7269 7468 6d20 746f 2063 6f6d algorithm to com │ │ │ │ -0001b270: 7075 7465 2074 6865 2069 6465 616c 206f pute the ideal o │ │ │ │ -0001b280: 6620 6d69 6e6f 7273 206f 6620 6120 6d61 f minors of a ma │ │ │ │ -0001b290: 7472 6978 0a0a 4675 6e63 7469 6f6e 7320 trix..Functions │ │ │ │ -0001b2a0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -0001b2b0: 6775 6d65 6e74 206e 616d 6564 2054 6872 gument named Thr │ │ │ │ -0001b2c0: 6561 6473 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eads:.========== │ │ │ │ -0001b2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b2e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b2f0: 3d3d 3d3d 3d0a 0a20 202a 2022 6765 7453 =====.. * "getS │ │ │ │ -0001b300: 7562 6d61 7472 6978 4f66 5261 6e6b 282e ubmatrixOfRank(. │ │ │ │ -0001b310: 2e2e 2c54 6872 6561 6473 3d3e 2e2e 2e29 ..,Threads=>...) │ │ │ │ -0001b320: 220a 2020 2a20 2a6e 6f74 6520 6973 5261 ". * *note isRa │ │ │ │ -0001b330: 6e6b 4174 4c65 6173 7428 2e2e 2e2c 5468 nkAtLeast(...,Th │ │ │ │ -0001b340: 7265 6164 733d 3e2e 2e2e 293a 0a20 2020 reads=>...):. │ │ │ │ -0001b350: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ -0001b360: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ -0001b370: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ -0001b380: 7270 2c20 2d2d 2061 6e20 6f70 7469 6f6e rp, -- an option │ │ │ │ -0001b390: 2066 6f72 2076 6172 696f 7573 0a20 2020 for various. │ │ │ │ -0001b3a0: 2066 756e 6374 696f 6e73 0a20 202a 2022 functions. * " │ │ │ │ -0001b3b0: 7265 6375 7273 6976 654d 696e 6f72 7328 recursiveMinors( │ │ │ │ -0001b3c0: 2e2e 2e2c 5468 7265 6164 733d 3e2e 2e2e ...,Threads=>... │ │ │ │ -0001b3d0: 2922 0a0a 4675 7274 6865 7220 696e 666f )"..Further info │ │ │ │ -0001b3e0: 726d 6174 696f 6e0a 3d3d 3d3d 3d3d 3d3d rmation.======== │ │ │ │ -0001b3f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001b400: 2044 6566 6175 6c74 2076 616c 7565 3a20 Default value: │ │ │ │ -0001b410: 310a 2020 2a20 4675 6e63 7469 6f6e 3a20 1. * Function: │ │ │ │ -0001b420: 2a6e 6f74 6520 6973 5261 6e6b 4174 4c65 *note isRankAtLe │ │ │ │ -0001b430: 6173 743a 2069 7352 616e 6b41 744c 6561 ast: isRankAtLea │ │ │ │ -0001b440: 7374 2c20 2d2d 2064 6574 6572 6d69 6e65 st, -- determine │ │ │ │ -0001b450: 7320 6966 2074 6865 206d 6174 7269 780a s if the matrix. │ │ │ │ -0001b460: 2020 2020 6861 7320 7261 6e6b 2061 7420 has rank at │ │ │ │ -0001b470: 6c65 6173 7420 6120 6e75 6d62 6572 0a20 least a number. │ │ │ │ -0001b480: 202a 204f 7074 696f 6e20 6b65 793a 202a * Option key: * │ │ │ │ -0001b490: 6e6f 7465 2054 6872 6561 6473 3a20 284d note Threads: (M │ │ │ │ -0001b4a0: 6163 6175 6c61 7932 446f 6329 5468 7265 acaulay2Doc)Thre │ │ │ │ -0001b4b0: 6164 732c 202d 2d20 616e 206f 7074 696f ads, -- an optio │ │ │ │ -0001b4c0: 6e61 6c20 6172 6775 6d65 6e74 0a2d 2d2d nal argument.--- │ │ │ │ -0001b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001b520: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001b530: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001b540: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001b550: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001b560: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001b570: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001b580: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001b590: 6d32 3a32 3132 303a 302e 0a1f 0a46 696c m2:2120:0....Fil │ │ │ │ -0001b5a0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001b5b0: 666f 2c20 4e6f 6465 3a20 4d61 784d 696e fo, Node: MaxMin │ │ │ │ -0001b5c0: 6f72 732c 204e 6578 743a 204d 696e 4469 ors, Next: MinDi │ │ │ │ -0001b5d0: 6d65 6e73 696f 6e2c 2050 7265 763a 2069 mension, Prev: i │ │ │ │ -0001b5e0: 7352 616e 6b41 744c 6561 7374 5f6c 705f sRankAtLeast_lp_ │ │ │ │ -0001b5f0: 7064 5f70 645f 7064 5f63 6d54 6872 6561 pd_pd_pd_cmThrea │ │ │ │ -0001b600: 6473 3d3e 5f70 645f 7064 5f70 645f 7270 ds=>_pd_pd_pd_rp │ │ │ │ -0001b610: 2c20 5570 3a20 546f 700a 0a4d 6178 4d69 , Up: Top..MaxMi │ │ │ │ -0001b620: 6e6f 7273 202d 2d20 616e 206f 7074 696f nors -- an optio │ │ │ │ -0001b630: 6e20 746f 2063 6f6e 7472 6f6c 2064 6570 n to control dep │ │ │ │ -0001b640: 7468 206f 6620 7365 6172 6368 0a2a 2a2a th of search.*** │ │ │ │ -0001b650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001b670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0001b680: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001b690: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6f70 =======..This op │ │ │ │ -0001b6a0: 7469 6f6e 2063 6f6e 7472 6f6c 7320 686f tion controls ho │ │ │ │ -0001b6b0: 7720 6d61 6e79 206d 696e 6f72 7320 7661 w many minors va │ │ │ │ -0001b6c0: 7269 6f75 7320 6675 6e63 7469 6f6e 7320 rious functions │ │ │ │ -0001b6d0: 636f 6e73 6964 6572 2e20 2049 6e63 7265 consider. Incre │ │ │ │ -0001b6e0: 6173 696e 6720 6974 0a77 696c 6c20 6d61 asing it.will ma │ │ │ │ -0001b6f0: 6b65 2063 6572 7461 696e 2066 756e 6374 ke certain funct │ │ │ │ -0001b700: 696f 6e73 2073 6561 7263 6820 6c6f 6e67 ions search long │ │ │ │ -0001b710: 6572 2c20 6275 7420 6d61 7920 6d61 6b65 er, but may make │ │ │ │ -0001b720: 2074 6865 6d20 6769 7665 206d 6f72 6520 them give more │ │ │ │ -0001b730: 7573 6566 756c 0a6f 7574 7075 7473 2e20 useful.outputs. │ │ │ │ -0001b740: 2054 6865 2066 756e 6374 696f 6e73 2070 The functions p │ │ │ │ -0001b750: 726f 6a44 696d 2061 6e64 2072 6567 756c rojDim and regul │ │ │ │ -0001b760: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -0001b770: 6361 6e20 616c 736f 2074 616b 6520 696e can also take in │ │ │ │ -0001b780: 206d 6f72 650a 636f 6d70 6c69 6361 7465 more.complicate │ │ │ │ -0001b790: 6420 696e 7075 7473 2e20 2053 6565 2074 d inputs. See t │ │ │ │ -0001b7a0: 6865 6972 2064 6f63 756d 656e 7461 7469 heir documentati │ │ │ │ -0001b7b0: 6f6e 2066 6f72 2064 6574 6169 6c73 2e0a on for details.. │ │ │ │ -0001b7c0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0001b7d0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7265 ==.. * *note re │ │ │ │ -0001b7e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -0001b7f0: 6f6e 3a20 7265 6775 6c61 7249 6e43 6f64 on: regularInCod │ │ │ │ -0001b800: 696d 656e 7369 6f6e 2c20 2d2d 2061 7474 imension, -- att │ │ │ │ -0001b810: 656d 7074 7320 746f 2073 686f 7720 7468 empts to show th │ │ │ │ -0001b820: 6174 0a20 2020 2074 6865 2072 696e 6720 at. the ring │ │ │ │ -0001b830: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ -0001b840: 6469 6d65 6e73 696f 6e20 6e0a 2020 2a20 dimension n. * │ │ │ │ -0001b850: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ -0001b860: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ -0001b870: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ -0001b880: 666f 7220 7468 6520 7072 6f6a 6563 7469 for the projecti │ │ │ │ -0001b890: 7665 0a20 2020 2064 696d 656e 7369 6f6e ve. dimension │ │ │ │ -0001b8a0: 206f 6620 6120 6d6f 6475 6c65 0a20 202a of a module. * │ │ │ │ -0001b8b0: 202a 6e6f 7465 2069 7352 616e 6b41 744c *note isRankAtL │ │ │ │ -0001b8c0: 6561 7374 3a20 6973 5261 6e6b 4174 4c65 east: isRankAtLe │ │ │ │ -0001b8d0: 6173 742c 202d 2d20 6465 7465 726d 696e ast, -- determin │ │ │ │ -0001b8e0: 6573 2069 6620 7468 6520 6d61 7472 6978 es if the matrix │ │ │ │ -0001b8f0: 2068 6173 2072 616e 6b20 6174 0a20 2020 has rank at. │ │ │ │ -0001b900: 206c 6561 7374 2061 206e 756d 6265 720a least a number. │ │ │ │ -0001b910: 2020 2a20 2a6e 6f74 6520 6765 7453 7562 * *note getSub │ │ │ │ -0001b920: 6d61 7472 6978 4f66 5261 6e6b 3a20 6765 matrixOfRank: ge │ │ │ │ -0001b930: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ -0001b940: 2c20 2d2d 2074 7269 6573 2074 6f20 6669 , -- tries to fi │ │ │ │ -0001b950: 6e64 2061 2073 7562 6d61 7472 6978 0a20 nd a submatrix. │ │ │ │ -0001b960: 2020 206f 6620 7468 6520 6769 7665 6e20 of the given │ │ │ │ -0001b970: 7261 6e6b 0a0a 4675 6e63 7469 6f6e 7320 rank..Functions │ │ │ │ -0001b980: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ -0001b990: 6775 6d65 6e74 206e 616d 6564 204d 6178 gument named Max │ │ │ │ -0001b9a0: 4d69 6e6f 7273 3a0a 3d3d 3d3d 3d3d 3d3d Minors:.======== │ │ │ │ -0001b9b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b9c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001b9d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0001b9e0: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ -0001b9f0: 6e6b 282e 2e2e 2c4d 6178 4d69 6e6f 7273 nk(...,MaxMinors │ │ │ │ -0001ba00: 3d3e 2e2e 2e29 220a 2020 2a20 2269 7352 =>...)". * "isR │ │ │ │ -0001ba10: 616e 6b41 744c 6561 7374 282e 2e2e 2c4d ankAtLeast(...,M │ │ │ │ -0001ba20: 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 220a axMinors=>...)". │ │ │ │ -0001ba30: 2020 2a20 2270 726f 6a44 696d 282e 2e2e * "projDim(... │ │ │ │ -0001ba40: 2c4d 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 ,MaxMinors=>...) │ │ │ │ -0001ba50: 220a 2020 2a20 2272 6567 756c 6172 496e ". * "regularIn │ │ │ │ -0001ba60: 436f 6469 6d65 6e73 696f 6e28 2e2e 2e2c Codimension(..., │ │ │ │ -0001ba70: 4d61 784d 696e 6f72 733d 3e2e 2e2e 2922 MaxMinors=>...)" │ │ │ │ -0001ba80: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0001ba90: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0001baa0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0001bab0: 6563 7420 2a6e 6f74 6520 4d61 784d 696e ect *note MaxMin │ │ │ │ -0001bac0: 6f72 733a 204d 6178 4d69 6e6f 7273 2c20 ors: MaxMinors, │ │ │ │ -0001bad0: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001bae0: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ -0001baf0: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ -0001bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001bb50: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001bb60: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001bb70: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001bb80: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001bb90: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001bba0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001bbb0: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ -0001bbc0: 3a32 3133 393a 302e 0a1f 0a46 696c 653a :2139:0....File: │ │ │ │ -0001bbd0: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ -0001bbe0: 2c20 4e6f 6465 3a20 4d69 6e44 696d 656e , Node: MinDimen │ │ │ │ -0001bbf0: 7369 6f6e 2c20 4e65 7874 3a20 4d6f 6475 sion, Next: Modu │ │ │ │ -0001bc00: 6c75 732c 2050 7265 763a 204d 6178 4d69 lus, Prev: MaxMi │ │ │ │ -0001bc10: 6e6f 7273 2c20 5570 3a20 546f 700a 0a4d nors, Up: Top..M │ │ │ │ -0001bc20: 696e 4469 6d65 6e73 696f 6e20 2d2d 2061 inDimension -- a │ │ │ │ -0001bc30: 6e20 6f70 7469 6f6e 2066 6f72 2070 726f n option for pro │ │ │ │ -0001bc40: 6a44 696d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a jDim.*********** │ │ │ │ -0001bc50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001bc60: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -0001bc70: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0001bc80: 3d3d 3d0a 0a54 6869 7320 6f70 7469 6f6e ===..This option │ │ │ │ -0001bc90: 2069 7320 7573 6564 2074 6f20 7465 6c6c is used to tell │ │ │ │ -0001bca0: 2074 6865 2066 756e 6374 696f 6e20 7072 the function pr │ │ │ │ -0001bcb0: 6f6a 4469 6d20 6e6f 7420 746f 206c 6f6f ojDim not to loo │ │ │ │ -0001bcc0: 6b20 666f 7220 7072 6f6a 6563 7469 7665 k for projective │ │ │ │ -0001bcd0: 0a64 696d 656e 7369 6f6e 2062 656c 6f77 .dimension below │ │ │ │ -0001bce0: 2074 6865 206f 7074 696f 6e20 7661 6c75 the option valu │ │ │ │ -0001bcf0: 652e 0a0a 5365 6520 616c 736f 0a3d 3d3d e...See also.=== │ │ │ │ -0001bd00: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0001bd10: 2070 726f 6a44 696d 3a20 7072 6f6a 4469 projDim: projDi │ │ │ │ -0001bd20: 6d2c 202d 2d20 6669 6e64 7320 616e 2075 m, -- finds an u │ │ │ │ -0001bd30: 7070 6572 2062 6f75 6e64 2066 6f72 2074 pper bound for t │ │ │ │ -0001bd40: 6865 2070 726f 6a65 6374 6976 650a 2020 he projective. │ │ │ │ -0001bd50: 2020 6469 6d65 6e73 696f 6e20 6f66 2061 dimension of a │ │ │ │ -0001bd60: 206d 6f64 756c 650a 0a46 756e 6374 696f module..Functio │ │ │ │ -0001bd70: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -0001bd80: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ -0001bd90: 4d69 6e44 696d 656e 7369 6f6e 3a0a 3d3d MinDimension:.== │ │ │ │ -0001bda0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001bdd0: 3d3d 0a0a 2020 2a20 2270 726f 6a44 696d ==.. * "projDim │ │ │ │ -0001bde0: 282e 2e2e 2c4d 696e 4469 6d65 6e73 696f (...,MinDimensio │ │ │ │ -0001bdf0: 6e3d 3e2e 2e2e 2922 202d 2d20 7365 6520 n=>...)" -- see │ │ │ │ -0001be00: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ -0001be10: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ -0001be20: 2061 6e0a 2020 2020 7570 7065 7220 626f an. upper bo │ │ │ │ -0001be30: 756e 6420 666f 7220 7468 6520 7072 6f6a und for the proj │ │ │ │ -0001be40: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ -0001be50: 206f 6620 6120 6d6f 6475 6c65 0a0a 466f of a module..Fo │ │ │ │ -0001be60: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0001be70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0001be80: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0001be90: 2a6e 6f74 6520 4d69 6e44 696d 656e 7369 *note MinDimensi │ │ │ │ -0001bea0: 6f6e 3a20 4d69 6e44 696d 656e 7369 6f6e on: MinDimension │ │ │ │ -0001beb0: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -0001bec0: 626f 6c3a 0a28 4d61 6361 756c 6179 3244 bol:.(Macaulay2D │ │ │ │ -0001bed0: 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2d2d oc)Symbol,...--- │ │ │ │ -0001bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001bf30: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001bf40: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001bf50: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001bf60: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001bf70: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001bf80: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001bf90: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001bfa0: 6d32 3a32 3039 323a 302e 0a1f 0a46 696c m2:2092:0....Fil │ │ │ │ -0001bfb0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001bfc0: 666f 2c20 4e6f 6465 3a20 4d6f 6475 6c75 fo, Node: Modulu │ │ │ │ -0001bfd0: 732c 204e 6578 743a 2050 6f69 6e74 4f70 s, Next: PointOp │ │ │ │ -0001bfe0: 7469 6f6e 732c 2050 7265 763a 204d 696e tions, Prev: Min │ │ │ │ -0001bff0: 4469 6d65 6e73 696f 6e2c 2055 703a 2054 Dimension, Up: T │ │ │ │ -0001c000: 6f70 0a0a 4d6f 6475 6c75 7320 2d2d 2061 op..Modulus -- a │ │ │ │ -0001c010: 6e20 6f70 7469 6f6e 2066 6f72 2072 6567 n option for reg │ │ │ │ -0001c020: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0001c030: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ -0001c040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0001c060: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -0001c070: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ -0001c080: 7074 696f 6e20 6973 2075 7365 6420 746f ption is used to │ │ │ │ -0001c090: 2074 656c 6c20 7468 6520 6675 6e63 7469 tell the functi │ │ │ │ -0001c0a0: 6f6e 2074 6f20 646f 2074 6865 2063 6f6d on to do the com │ │ │ │ -0001c0b0: 7075 7461 7469 6f6e 206d 6f64 756c 6f20 putation modulo │ │ │ │ -0001c0c0: 6120 7072 696d 650a 702e 0a0a 5365 6520 a prime.p...See │ │ │ │ -0001c0d0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0001c0e0: 202a 202a 6e6f 7465 2072 6567 756c 6172 * *note regular │ │ │ │ -0001c0f0: 496e 436f 6469 6d65 6e73 696f 6e3a 2072 InCodimension: r │ │ │ │ -0001c100: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0001c110: 696f 6e2c 202d 2d20 6174 7465 6d70 7473 ion, -- attempts │ │ │ │ -0001c120: 2074 6f20 7368 6f77 2074 6861 740a 2020 to show that. │ │ │ │ -0001c130: 2020 7468 6520 7269 6e67 2069 7320 7265 the ring is re │ │ │ │ -0001c140: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ -0001c150: 7369 6f6e 206e 0a0a 4675 6e63 7469 6f6e sion n..Function │ │ │ │ -0001c160: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -0001c170: 6172 6775 6d65 6e74 206e 616d 6564 204d argument named M │ │ │ │ -0001c180: 6f64 756c 7573 3a0a 3d3d 3d3d 3d3d 3d3d odulus:.======== │ │ │ │ -0001c190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001c1b0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7265 =======.. * "re │ │ │ │ -0001c1c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -0001c1d0: 6f6e 282e 2e2e 2c4d 6f64 756c 7573 3d3e on(...,Modulus=> │ │ │ │ -0001c1e0: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ -0001c1f0: 7465 2072 6567 756c 6172 496e 436f 6469 te regularInCodi │ │ │ │ -0001c200: 6d65 6e73 696f 6e3a 0a20 2020 2072 6567 mension:. reg │ │ │ │ -0001c210: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0001c220: 6e2c 202d 2d20 6174 7465 6d70 7473 2074 n, -- attempts t │ │ │ │ -0001c230: 6f20 7368 6f77 2074 6861 7420 7468 6520 o show that the │ │ │ │ -0001c240: 7269 6e67 2069 7320 7265 6775 6c61 7220 ring is regular │ │ │ │ -0001c250: 696e 0a20 2020 2063 6f64 696d 656e 7369 in. codimensi │ │ │ │ -0001c260: 6f6e 206e 0a0a 466f 7220 7468 6520 7072 on n..For the pr │ │ │ │ -0001c270: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0001c280: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0001c290: 206f 626a 6563 7420 2a6e 6f74 6520 4d6f object *note Mo │ │ │ │ -0001c2a0: 6475 6c75 733a 204d 6f64 756c 7573 2c20 dulus: Modulus, │ │ │ │ -0001c2b0: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001c2c0: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ -0001c2d0: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ -0001c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c320: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001c330: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001c340: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001c350: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001c360: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001c370: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001c380: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001c390: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ -0001c3a0: 3a32 3130 343a 302e 0a1f 0a46 696c 653a :2104:0....File: │ │ │ │ -0001c3b0: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ -0001c3c0: 2c20 4e6f 6465 3a20 506f 696e 744f 7074 , Node: PointOpt │ │ │ │ -0001c3d0: 696f 6e73 2c20 4e65 7874 3a20 7072 6f6a ions, Next: proj │ │ │ │ -0001c3e0: 4469 6d2c 2050 7265 763a 204d 6f64 756c Dim, Prev: Modul │ │ │ │ -0001c3f0: 7573 2c20 5570 3a20 546f 700a 0a50 6f69 us, Up: Top..Poi │ │ │ │ -0001c400: 6e74 4f70 7469 6f6e 7320 2d2d 206f 7074 ntOptions -- opt │ │ │ │ -0001c410: 696f 6e73 2074 6f20 7061 7373 2074 6f20 ions to pass to │ │ │ │ -0001c420: 6675 6e63 7469 6f6e 7320 696e 2074 6865 functions in the │ │ │ │ -0001c430: 2070 6163 6b61 6765 2052 616e 646f 6d50 package RandomP │ │ │ │ -0001c440: 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a 2a2a oints.********** │ │ │ │ -0001c450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001c480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0001c490: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0001c4a0: 3d3d 3d3d 3d3d 3d0a 0a50 6f69 6e74 4f70 =======..PointOp │ │ │ │ -0001c4b0: 7469 6f6e 7320 6973 2061 6e20 6f70 7469 tions is an opti │ │ │ │ -0001c4c0: 6f6e 2069 6e20 7661 7269 6f75 7320 6675 on in various fu │ │ │ │ -0001c4d0: 6e63 7469 6f6e 7320 696e 2074 6869 7320 nctions in this │ │ │ │ -0001c4e0: 7061 636b 6167 652c 2077 6869 6368 2063 package, which c │ │ │ │ -0001c4f0: 616e 2073 746f 7265 0a6f 7074 696f 6e73 an store.options │ │ │ │ -0001c500: 2074 6f20 6265 2070 6173 7365 6420 746f to be passed to │ │ │ │ -0001c510: 2074 6865 2066 756e 6374 696f 6e20 6669 the function fi │ │ │ │ -0001c520: 6e64 414e 6f6e 5a65 726f 4d69 6e6f 7220 ndANonZeroMinor │ │ │ │ -0001c530: 616e 6420 6f74 6865 7220 6675 6e63 7469 and other functi │ │ │ │ -0001c540: 6f6e 7320 696e 0a52 616e 646f 6d50 6f69 ons in.RandomPoi │ │ │ │ -0001c550: 6e74 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d nts...+--------- │ │ │ │ -0001c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c5a0: 2d2d 2d2d 2b0a 7c69 3120 3a20 286f 7074 ----+.|i1 : (opt │ │ │ │ -0001c5b0: 696f 6e73 2072 6567 756c 6172 496e 436f ions regularInCo │ │ │ │ -0001c5c0: 6469 6d65 6e73 696f 6e29 2350 6f69 6e74 dimension)#Point │ │ │ │ -0001c5d0: 4f70 7469 6f6e 7320 2020 2020 2020 2020 Options │ │ │ │ -0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aba0: 2020 207c 0a7c 6f35 203d 2066 616c 7365 |.|o5 = false │ │ │ │ +0001abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001abe0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ac20: 0a0a 5468 6520 6f70 7469 6f6e 2054 6872 ..The option Thr │ │ │ │ +0001ac30: 6561 6473 2063 616e 2062 6520 7573 6564 eads can be used │ │ │ │ +0001ac40: 2061 6c6c 6f77 2074 6865 2066 756e 6374 allow the funct │ │ │ │ +0001ac50: 696f 6e20 7573 6520 6d75 6c74 6970 6c65 ion use multiple │ │ │ │ +0001ac60: 2074 6872 6561 6473 206f 660a 6578 6563 threads of.exec │ │ │ │ +0001ac70: 7574 696f 6e2e 2020 4966 2061 6c6c 6f77 ution. If allow │ │ │ │ +0001ac80: 6162 6c65 5468 7265 6164 7320 6973 2061 ableThreads is a │ │ │ │ +0001ac90: 626f 7665 2032 2061 6e64 2054 6872 6561 bove 2 and Threa │ │ │ │ +0001aca0: 6473 2069 7320 7365 7420 6162 6f76 6520 ds is set above │ │ │ │ +0001acb0: 312c 2074 6865 6e0a 7468 6973 2066 756e 1, then.this fun │ │ │ │ +0001acc0: 6374 696f 6e20 7769 6c6c 2074 7279 2074 ction will try t │ │ │ │ +0001acd0: 6f20 7369 6d75 6c74 616e 656f 7573 6c79 o simultaneously │ │ │ │ +0001ace0: 2063 6f6d 7075 7465 2074 6865 2072 616e compute the ran │ │ │ │ +0001acf0: 6b20 6f66 2074 6865 206d 6174 7269 7820 k of the matrix │ │ │ │ +0001ad00: 7768 696c 650a 6c6f 6f6b 696e 6720 666f while.looking fo │ │ │ │ +0001ad10: 7220 6120 7375 626d 6174 7269 7820 6f66 r a submatrix of │ │ │ │ +0001ad20: 2061 2063 6572 7461 696e 2072 616e 6b2e a certain rank. │ │ │ │ +0001ad30: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0001ad40: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2067 ===.. * *note g │ │ │ │ +0001ad50: 6574 5375 626d 6174 7269 784f 6652 616e etSubmatrixOfRan │ │ │ │ +0001ad60: 6b3a 2067 6574 5375 626d 6174 7269 784f k: getSubmatrixO │ │ │ │ +0001ad70: 6652 616e 6b2c 202d 2d20 7472 6965 7320 fRank, -- tries │ │ │ │ +0001ad80: 746f 2066 696e 6420 6120 7375 626d 6174 to find a submat │ │ │ │ +0001ad90: 7269 780a 2020 2020 6f66 2074 6865 2067 rix. of the g │ │ │ │ +0001ada0: 6976 656e 2072 616e 6b0a 2020 2a20 2a6e iven rank. * *n │ │ │ │ +0001adb0: 6f74 6520 6973 5261 6e6b 4174 4c65 6173 ote isRankAtLeas │ │ │ │ +0001adc0: 7428 2e2e 2e2c 5374 7261 7465 6779 3d3e t(...,Strategy=> │ │ │ │ +0001add0: 2e2e 2e29 3a20 5374 7261 7465 6779 4465 ...): StrategyDe │ │ │ │ +0001ade0: 6661 756c 742c 202d 2d20 7374 7261 7465 fault, -- strate │ │ │ │ +0001adf0: 6769 6573 2066 6f72 0a20 2020 2063 686f gies for. cho │ │ │ │ +0001ae00: 6f73 696e 6720 7375 626d 6174 7269 6365 osing submatrice │ │ │ │ +0001ae10: 730a 0a57 6179 7320 746f 2075 7365 2069 s..Ways to use i │ │ │ │ +0001ae20: 7352 616e 6b41 744c 6561 7374 3a0a 3d3d sRankAtLeast:.== │ │ │ │ +0001ae30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ae40: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 ========.. * "i │ │ │ │ +0001ae50: 7352 616e 6b41 744c 6561 7374 285a 5a2c sRankAtLeast(ZZ, │ │ │ │ +0001ae60: 4d61 7472 6978 2922 0a0a 466f 7220 7468 Matrix)"..For th │ │ │ │ +0001ae70: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0001ae80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0001ae90: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0001aea0: 6520 6973 5261 6e6b 4174 4c65 6173 743a e isRankAtLeast: │ │ │ │ +0001aeb0: 2069 7352 616e 6b41 744c 6561 7374 2c20 isRankAtLeast, │ │ │ │ +0001aec0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0001aed0: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ +0001aee0: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ +0001aef0: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0001af00: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ +0001af10: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ +0001af20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001af60: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0001af70: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0001af80: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0001af90: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0001afa0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0001afb0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0001afc0: 322f 7061 636b 6167 6573 2f46 6173 744d 2/packages/FastM │ │ │ │ +0001afd0: 696e 6f72 732e 0a6d 323a 3137 3331 3a30 inors..m2:1731:0 │ │ │ │ +0001afe0: 2e0a 1f0a 4669 6c65 3a20 4661 7374 4d69 ....File: FastMi │ │ │ │ +0001aff0: 6e6f 7273 2e69 6e66 6f2c 204e 6f64 653a nors.info, Node: │ │ │ │ +0001b000: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ +0001b010: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ +0001b020: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ +0001b030: 7270 2c20 4e65 7874 3a20 4d61 784d 696e rp, Next: MaxMin │ │ │ │ +0001b040: 6f72 732c 2050 7265 763a 2069 7352 616e ors, Prev: isRan │ │ │ │ +0001b050: 6b41 744c 6561 7374 2c20 5570 3a20 546f kAtLeast, Up: To │ │ │ │ +0001b060: 700a 0a69 7352 616e 6b41 744c 6561 7374 p..isRankAtLeast │ │ │ │ +0001b070: 282e 2e2e 2c54 6872 6561 6473 3d3e 2e2e (...,Threads=>.. │ │ │ │ +0001b080: 2e29 202d 2d20 616e 206f 7074 696f 6e20 .) -- an option │ │ │ │ +0001b090: 666f 7220 7661 7269 6f75 7320 6675 6e63 for various func │ │ │ │ +0001b0a0: 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a 2a2a tions.********** │ │ │ │ +0001b0b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b0e0: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0001b0f0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0001b100: 3d0a 0a49 6e63 7265 6173 696e 6720 7468 =..Increasing th │ │ │ │ +0001b110: 6973 206f 7074 696f 6e20 6d61 7920 7465 is option may te │ │ │ │ +0001b120: 6c6c 2076 6172 696f 7573 2066 756e 6374 ll various funct │ │ │ │ +0001b130: 696f 6e73 2074 6f20 6d75 6c74 6974 6872 ions to multithr │ │ │ │ +0001b140: 6561 6420 7468 6569 720a 6f70 6572 6174 ead their.operat │ │ │ │ +0001b150: 696f 6e73 2e20 2059 6f75 206d 6179 2061 ions. You may a │ │ │ │ +0001b160: 6c73 6f20 7761 6e74 2074 6f20 696e 6372 lso want to incr │ │ │ │ +0001b170: 6561 7365 2061 6c6c 6f77 6162 6c65 5468 ease allowableTh │ │ │ │ +0001b180: 7265 6164 732e 0a0a 5365 6520 616c 736f reads...See also │ │ │ │ +0001b190: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0001b1a0: 6e6f 7465 2069 7352 616e 6b41 744c 6561 note isRankAtLea │ │ │ │ +0001b1b0: 7374 3a20 6973 5261 6e6b 4174 4c65 6173 st: isRankAtLeas │ │ │ │ +0001b1c0: 742c 202d 2d20 6465 7465 726d 696e 6573 t, -- determines │ │ │ │ +0001b1d0: 2069 6620 7468 6520 6d61 7472 6978 2068 if the matrix h │ │ │ │ +0001b1e0: 6173 2072 616e 6b20 6174 0a20 2020 206c as rank at. l │ │ │ │ +0001b1f0: 6561 7374 2061 206e 756d 6265 720a 2020 east a number. │ │ │ │ +0001b200: 2a20 2a6e 6f74 6520 6765 7453 7562 6d61 * *note getSubma │ │ │ │ +0001b210: 7472 6978 4f66 5261 6e6b 3a20 6765 7453 trixOfRank: getS │ │ │ │ +0001b220: 7562 6d61 7472 6978 4f66 5261 6e6b 2c20 ubmatrixOfRank, │ │ │ │ +0001b230: 2d2d 2074 7269 6573 2074 6f20 6669 6e64 -- tries to find │ │ │ │ +0001b240: 2061 2073 7562 6d61 7472 6978 0a20 2020 a submatrix. │ │ │ │ +0001b250: 206f 6620 7468 6520 6769 7665 6e20 7261 of the given ra │ │ │ │ +0001b260: 6e6b 0a20 202a 202a 6e6f 7465 2072 6563 nk. * *note rec │ │ │ │ +0001b270: 7572 7369 7665 4d69 6e6f 7273 3a20 7265 ursiveMinors: re │ │ │ │ +0001b280: 6375 7273 6976 654d 696e 6f72 732c 202d cursiveMinors, - │ │ │ │ +0001b290: 2d20 7573 6573 2061 2072 6563 7572 7369 - uses a recursi │ │ │ │ +0001b2a0: 7665 2063 6f66 6163 746f 720a 2020 2020 ve cofactor. │ │ │ │ +0001b2b0: 616c 676f 7269 7468 6d20 746f 2063 6f6d algorithm to com │ │ │ │ +0001b2c0: 7075 7465 2074 6865 2069 6465 616c 206f pute the ideal o │ │ │ │ +0001b2d0: 6620 6d69 6e6f 7273 206f 6620 6120 6d61 f minors of a ma │ │ │ │ +0001b2e0: 7472 6978 0a0a 4675 6e63 7469 6f6e 7320 trix..Functions │ │ │ │ +0001b2f0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ +0001b300: 6775 6d65 6e74 206e 616d 6564 2054 6872 gument named Thr │ │ │ │ +0001b310: 6561 6473 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eads:.========== │ │ │ │ +0001b320: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001b330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001b340: 3d3d 3d3d 3d0a 0a20 202a 2022 6765 7453 =====.. * "getS │ │ │ │ +0001b350: 7562 6d61 7472 6978 4f66 5261 6e6b 282e ubmatrixOfRank(. │ │ │ │ +0001b360: 2e2e 2c54 6872 6561 6473 3d3e 2e2e 2e29 ..,Threads=>...) │ │ │ │ +0001b370: 220a 2020 2a20 2a6e 6f74 6520 6973 5261 ". * *note isRa │ │ │ │ +0001b380: 6e6b 4174 4c65 6173 7428 2e2e 2e2c 5468 nkAtLeast(...,Th │ │ │ │ +0001b390: 7265 6164 733d 3e2e 2e2e 293a 0a20 2020 reads=>...):. │ │ │ │ +0001b3a0: 2069 7352 616e 6b41 744c 6561 7374 5f6c isRankAtLeast_l │ │ │ │ +0001b3b0: 705f 7064 5f70 645f 7064 5f63 6d54 6872 p_pd_pd_pd_cmThr │ │ │ │ +0001b3c0: 6561 6473 3d3e 5f70 645f 7064 5f70 645f eads=>_pd_pd_pd_ │ │ │ │ +0001b3d0: 7270 2c20 2d2d 2061 6e20 6f70 7469 6f6e rp, -- an option │ │ │ │ +0001b3e0: 2066 6f72 2076 6172 696f 7573 0a20 2020 for various. │ │ │ │ +0001b3f0: 2066 756e 6374 696f 6e73 0a20 202a 2022 functions. * " │ │ │ │ +0001b400: 7265 6375 7273 6976 654d 696e 6f72 7328 recursiveMinors( │ │ │ │ +0001b410: 2e2e 2e2c 5468 7265 6164 733d 3e2e 2e2e ...,Threads=>... │ │ │ │ +0001b420: 2922 0a0a 4675 7274 6865 7220 696e 666f )"..Further info │ │ │ │ +0001b430: 726d 6174 696f 6e0a 3d3d 3d3d 3d3d 3d3d rmation.======== │ │ │ │ +0001b440: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0001b450: 2044 6566 6175 6c74 2076 616c 7565 3a20 Default value: │ │ │ │ +0001b460: 310a 2020 2a20 4675 6e63 7469 6f6e 3a20 1. * Function: │ │ │ │ +0001b470: 2a6e 6f74 6520 6973 5261 6e6b 4174 4c65 *note isRankAtLe │ │ │ │ +0001b480: 6173 743a 2069 7352 616e 6b41 744c 6561 ast: isRankAtLea │ │ │ │ +0001b490: 7374 2c20 2d2d 2064 6574 6572 6d69 6e65 st, -- determine │ │ │ │ +0001b4a0: 7320 6966 2074 6865 206d 6174 7269 780a s if the matrix. │ │ │ │ +0001b4b0: 2020 2020 6861 7320 7261 6e6b 2061 7420 has rank at │ │ │ │ +0001b4c0: 6c65 6173 7420 6120 6e75 6d62 6572 0a20 least a number. │ │ │ │ +0001b4d0: 202a 204f 7074 696f 6e20 6b65 793a 202a * Option key: * │ │ │ │ +0001b4e0: 6e6f 7465 2054 6872 6561 6473 3a20 284d note Threads: (M │ │ │ │ +0001b4f0: 6163 6175 6c61 7932 446f 6329 5468 7265 acaulay2Doc)Thre │ │ │ │ +0001b500: 6164 732c 202d 2d20 616e 206f 7074 696f ads, -- an optio │ │ │ │ +0001b510: 6e61 6c20 6172 6775 6d65 6e74 0a2d 2d2d nal argument.--- │ │ │ │ +0001b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001b570: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001b580: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001b590: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001b5a0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001b5b0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001b5c0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001b5d0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001b5e0: 6d32 3a32 3132 303a 302e 0a1f 0a46 696c m2:2120:0....Fil │ │ │ │ +0001b5f0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001b600: 666f 2c20 4e6f 6465 3a20 4d61 784d 696e fo, Node: MaxMin │ │ │ │ +0001b610: 6f72 732c 204e 6578 743a 204d 696e 4469 ors, Next: MinDi │ │ │ │ +0001b620: 6d65 6e73 696f 6e2c 2050 7265 763a 2069 mension, Prev: i │ │ │ │ +0001b630: 7352 616e 6b41 744c 6561 7374 5f6c 705f sRankAtLeast_lp_ │ │ │ │ +0001b640: 7064 5f70 645f 7064 5f63 6d54 6872 6561 pd_pd_pd_cmThrea │ │ │ │ +0001b650: 6473 3d3e 5f70 645f 7064 5f70 645f 7270 ds=>_pd_pd_pd_rp │ │ │ │ +0001b660: 2c20 5570 3a20 546f 700a 0a4d 6178 4d69 , Up: Top..MaxMi │ │ │ │ +0001b670: 6e6f 7273 202d 2d20 616e 206f 7074 696f nors -- an optio │ │ │ │ +0001b680: 6e20 746f 2063 6f6e 7472 6f6c 2064 6570 n to control dep │ │ │ │ +0001b690: 7468 206f 6620 7365 6172 6368 0a2a 2a2a th of search.*** │ │ │ │ +0001b6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001b6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0001b6d0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001b6e0: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6f70 =======..This op │ │ │ │ +0001b6f0: 7469 6f6e 2063 6f6e 7472 6f6c 7320 686f tion controls ho │ │ │ │ +0001b700: 7720 6d61 6e79 206d 696e 6f72 7320 7661 w many minors va │ │ │ │ +0001b710: 7269 6f75 7320 6675 6e63 7469 6f6e 7320 rious functions │ │ │ │ +0001b720: 636f 6e73 6964 6572 2e20 2049 6e63 7265 consider. Incre │ │ │ │ +0001b730: 6173 696e 6720 6974 0a77 696c 6c20 6d61 asing it.will ma │ │ │ │ +0001b740: 6b65 2063 6572 7461 696e 2066 756e 6374 ke certain funct │ │ │ │ +0001b750: 696f 6e73 2073 6561 7263 6820 6c6f 6e67 ions search long │ │ │ │ +0001b760: 6572 2c20 6275 7420 6d61 7920 6d61 6b65 er, but may make │ │ │ │ +0001b770: 2074 6865 6d20 6769 7665 206d 6f72 6520 them give more │ │ │ │ +0001b780: 7573 6566 756c 0a6f 7574 7075 7473 2e20 useful.outputs. │ │ │ │ +0001b790: 2054 6865 2066 756e 6374 696f 6e73 2070 The functions p │ │ │ │ +0001b7a0: 726f 6a44 696d 2061 6e64 2072 6567 756c rojDim and regul │ │ │ │ +0001b7b0: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +0001b7c0: 6361 6e20 616c 736f 2074 616b 6520 696e can also take in │ │ │ │ +0001b7d0: 206d 6f72 650a 636f 6d70 6c69 6361 7465 more.complicate │ │ │ │ +0001b7e0: 6420 696e 7075 7473 2e20 2053 6565 2074 d inputs. See t │ │ │ │ +0001b7f0: 6865 6972 2064 6f63 756d 656e 7461 7469 heir documentati │ │ │ │ +0001b800: 6f6e 2066 6f72 2064 6574 6169 6c73 2e0a on for details.. │ │ │ │ +0001b810: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0001b820: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7265 ==.. * *note re │ │ │ │ +0001b830: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +0001b840: 6f6e 3a20 7265 6775 6c61 7249 6e43 6f64 on: regularInCod │ │ │ │ +0001b850: 696d 656e 7369 6f6e 2c20 2d2d 2061 7474 imension, -- att │ │ │ │ +0001b860: 656d 7074 7320 746f 2073 686f 7720 7468 empts to show th │ │ │ │ +0001b870: 6174 0a20 2020 2074 6865 2072 696e 6720 at. the ring │ │ │ │ +0001b880: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ +0001b890: 6469 6d65 6e73 696f 6e20 6e0a 2020 2a20 dimension n. * │ │ │ │ +0001b8a0: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ +0001b8b0: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ +0001b8c0: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ +0001b8d0: 666f 7220 7468 6520 7072 6f6a 6563 7469 for the projecti │ │ │ │ +0001b8e0: 7665 0a20 2020 2064 696d 656e 7369 6f6e ve. dimension │ │ │ │ +0001b8f0: 206f 6620 6120 6d6f 6475 6c65 0a20 202a of a module. * │ │ │ │ +0001b900: 202a 6e6f 7465 2069 7352 616e 6b41 744c *note isRankAtL │ │ │ │ +0001b910: 6561 7374 3a20 6973 5261 6e6b 4174 4c65 east: isRankAtLe │ │ │ │ +0001b920: 6173 742c 202d 2d20 6465 7465 726d 696e ast, -- determin │ │ │ │ +0001b930: 6573 2069 6620 7468 6520 6d61 7472 6978 es if the matrix │ │ │ │ +0001b940: 2068 6173 2072 616e 6b20 6174 0a20 2020 has rank at. │ │ │ │ +0001b950: 206c 6561 7374 2061 206e 756d 6265 720a least a number. │ │ │ │ +0001b960: 2020 2a20 2a6e 6f74 6520 6765 7453 7562 * *note getSub │ │ │ │ +0001b970: 6d61 7472 6978 4f66 5261 6e6b 3a20 6765 matrixOfRank: ge │ │ │ │ +0001b980: 7453 7562 6d61 7472 6978 4f66 5261 6e6b tSubmatrixOfRank │ │ │ │ +0001b990: 2c20 2d2d 2074 7269 6573 2074 6f20 6669 , -- tries to fi │ │ │ │ +0001b9a0: 6e64 2061 2073 7562 6d61 7472 6978 0a20 nd a submatrix. │ │ │ │ +0001b9b0: 2020 206f 6620 7468 6520 6769 7665 6e20 of the given │ │ │ │ +0001b9c0: 7261 6e6b 0a0a 4675 6e63 7469 6f6e 7320 rank..Functions │ │ │ │ +0001b9d0: 7769 7468 206f 7074 696f 6e61 6c20 6172 with optional ar │ │ │ │ +0001b9e0: 6775 6d65 6e74 206e 616d 6564 204d 6178 gument named Max │ │ │ │ +0001b9f0: 4d69 6e6f 7273 3a0a 3d3d 3d3d 3d3d 3d3d Minors:.======== │ │ │ │ +0001ba00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ba10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ba20: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +0001ba30: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ +0001ba40: 6e6b 282e 2e2e 2c4d 6178 4d69 6e6f 7273 nk(...,MaxMinors │ │ │ │ +0001ba50: 3d3e 2e2e 2e29 220a 2020 2a20 2269 7352 =>...)". * "isR │ │ │ │ +0001ba60: 616e 6b41 744c 6561 7374 282e 2e2e 2c4d ankAtLeast(...,M │ │ │ │ +0001ba70: 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 220a axMinors=>...)". │ │ │ │ +0001ba80: 2020 2a20 2270 726f 6a44 696d 282e 2e2e * "projDim(... │ │ │ │ +0001ba90: 2c4d 6178 4d69 6e6f 7273 3d3e 2e2e 2e29 ,MaxMinors=>...) │ │ │ │ +0001baa0: 220a 2020 2a20 2272 6567 756c 6172 496e ". * "regularIn │ │ │ │ +0001bab0: 436f 6469 6d65 6e73 696f 6e28 2e2e 2e2c Codimension(..., │ │ │ │ +0001bac0: 4d61 784d 696e 6f72 733d 3e2e 2e2e 2922 MaxMinors=>...)" │ │ │ │ +0001bad0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0001bae0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0001baf0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0001bb00: 6563 7420 2a6e 6f74 6520 4d61 784d 696e ect *note MaxMin │ │ │ │ +0001bb10: 6f72 733a 204d 6178 4d69 6e6f 7273 2c20 ors: MaxMinors, │ │ │ │ +0001bb20: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ +0001bb30: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ +0001bb40: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ +0001bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0001bba0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0001bbb0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0001bbc0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0001bbd0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0001bbe0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0001bbf0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0001bc00: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ +0001bc10: 3a32 3133 393a 302e 0a1f 0a46 696c 653a :2139:0....File: │ │ │ │ +0001bc20: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ +0001bc30: 2c20 4e6f 6465 3a20 4d69 6e44 696d 656e , Node: MinDimen │ │ │ │ +0001bc40: 7369 6f6e 2c20 4e65 7874 3a20 4d6f 6475 sion, Next: Modu │ │ │ │ +0001bc50: 6c75 732c 2050 7265 763a 204d 6178 4d69 lus, Prev: MaxMi │ │ │ │ +0001bc60: 6e6f 7273 2c20 5570 3a20 546f 700a 0a4d nors, Up: Top..M │ │ │ │ +0001bc70: 696e 4469 6d65 6e73 696f 6e20 2d2d 2061 inDimension -- a │ │ │ │ +0001bc80: 6e20 6f70 7469 6f6e 2066 6f72 2070 726f n option for pro │ │ │ │ +0001bc90: 6a44 696d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a jDim.*********** │ │ │ │ +0001bca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001bcb0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +0001bcc0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0001bcd0: 3d3d 3d0a 0a54 6869 7320 6f70 7469 6f6e ===..This option │ │ │ │ +0001bce0: 2069 7320 7573 6564 2074 6f20 7465 6c6c is used to tell │ │ │ │ +0001bcf0: 2074 6865 2066 756e 6374 696f 6e20 7072 the function pr │ │ │ │ +0001bd00: 6f6a 4469 6d20 6e6f 7420 746f 206c 6f6f ojDim not to loo │ │ │ │ +0001bd10: 6b20 666f 7220 7072 6f6a 6563 7469 7665 k for projective │ │ │ │ +0001bd20: 0a64 696d 656e 7369 6f6e 2062 656c 6f77 .dimension below │ │ │ │ +0001bd30: 2074 6865 206f 7074 696f 6e20 7661 6c75 the option valu │ │ │ │ +0001bd40: 652e 0a0a 5365 6520 616c 736f 0a3d 3d3d e...See also.=== │ │ │ │ +0001bd50: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0001bd60: 2070 726f 6a44 696d 3a20 7072 6f6a 4469 projDim: projDi │ │ │ │ +0001bd70: 6d2c 202d 2d20 6669 6e64 7320 616e 2075 m, -- finds an u │ │ │ │ +0001bd80: 7070 6572 2062 6f75 6e64 2066 6f72 2074 pper bound for t │ │ │ │ +0001bd90: 6865 2070 726f 6a65 6374 6976 650a 2020 he projective. │ │ │ │ +0001bda0: 2020 6469 6d65 6e73 696f 6e20 6f66 2061 dimension of a │ │ │ │ +0001bdb0: 206d 6f64 756c 650a 0a46 756e 6374 696f module..Functio │ │ │ │ +0001bdc0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +0001bdd0: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ +0001bde0: 4d69 6e44 696d 656e 7369 6f6e 3a0a 3d3d MinDimension:.== │ │ │ │ +0001bdf0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001be20: 3d3d 0a0a 2020 2a20 2270 726f 6a44 696d ==.. * "projDim │ │ │ │ +0001be30: 282e 2e2e 2c4d 696e 4469 6d65 6e73 696f (...,MinDimensio │ │ │ │ +0001be40: 6e3d 3e2e 2e2e 2922 202d 2d20 7365 6520 n=>...)" -- see │ │ │ │ +0001be50: 2a6e 6f74 6520 7072 6f6a 4469 6d3a 2070 *note projDim: p │ │ │ │ +0001be60: 726f 6a44 696d 2c20 2d2d 2066 696e 6473 rojDim, -- finds │ │ │ │ +0001be70: 2061 6e0a 2020 2020 7570 7065 7220 626f an. upper bo │ │ │ │ +0001be80: 756e 6420 666f 7220 7468 6520 7072 6f6a und for the proj │ │ │ │ +0001be90: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ +0001bea0: 206f 6620 6120 6d6f 6475 6c65 0a0a 466f of a module..Fo │ │ │ │ +0001beb0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +0001bec0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001bed0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +0001bee0: 2a6e 6f74 6520 4d69 6e44 696d 656e 7369 *note MinDimensi │ │ │ │ +0001bef0: 6f6e 3a20 4d69 6e44 696d 656e 7369 6f6e on: MinDimension │ │ │ │ +0001bf00: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ +0001bf10: 626f 6c3a 0a28 4d61 6361 756c 6179 3244 bol:.(Macaulay2D │ │ │ │ +0001bf20: 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2d2d oc)Symbol,...--- │ │ │ │ +0001bf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001bf80: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001bf90: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001bfa0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001bfb0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001bfc0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001bfd0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001bfe0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001bff0: 6d32 3a32 3039 323a 302e 0a1f 0a46 696c m2:2092:0....Fil │ │ │ │ +0001c000: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001c010: 666f 2c20 4e6f 6465 3a20 4d6f 6475 6c75 fo, Node: Modulu │ │ │ │ +0001c020: 732c 204e 6578 743a 2050 6f69 6e74 4f70 s, Next: PointOp │ │ │ │ +0001c030: 7469 6f6e 732c 2050 7265 763a 204d 696e tions, Prev: Min │ │ │ │ +0001c040: 4469 6d65 6e73 696f 6e2c 2055 703a 2054 Dimension, Up: T │ │ │ │ +0001c050: 6f70 0a0a 4d6f 6475 6c75 7320 2d2d 2061 op..Modulus -- a │ │ │ │ +0001c060: 6e20 6f70 7469 6f6e 2066 6f72 2072 6567 n option for reg │ │ │ │ +0001c070: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +0001c080: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ +0001c090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c0a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0001c0b0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0001c0c0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ +0001c0d0: 7074 696f 6e20 6973 2075 7365 6420 746f ption is used to │ │ │ │ +0001c0e0: 2074 656c 6c20 7468 6520 6675 6e63 7469 tell the functi │ │ │ │ +0001c0f0: 6f6e 2074 6f20 646f 2074 6865 2063 6f6d on to do the com │ │ │ │ +0001c100: 7075 7461 7469 6f6e 206d 6f64 756c 6f20 putation modulo │ │ │ │ +0001c110: 6120 7072 696d 650a 702e 0a0a 5365 6520 a prime.p...See │ │ │ │ +0001c120: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +0001c130: 202a 202a 6e6f 7465 2072 6567 756c 6172 * *note regular │ │ │ │ +0001c140: 496e 436f 6469 6d65 6e73 696f 6e3a 2072 InCodimension: r │ │ │ │ +0001c150: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +0001c160: 696f 6e2c 202d 2d20 6174 7465 6d70 7473 ion, -- attempts │ │ │ │ +0001c170: 2074 6f20 7368 6f77 2074 6861 740a 2020 to show that. │ │ │ │ +0001c180: 2020 7468 6520 7269 6e67 2069 7320 7265 the ring is re │ │ │ │ +0001c190: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ +0001c1a0: 7369 6f6e 206e 0a0a 4675 6e63 7469 6f6e sion n..Function │ │ │ │ +0001c1b0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0001c1c0: 6172 6775 6d65 6e74 206e 616d 6564 204d argument named M │ │ │ │ +0001c1d0: 6f64 756c 7573 3a0a 3d3d 3d3d 3d3d 3d3d odulus:.======== │ │ │ │ +0001c1e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001c1f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001c200: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7265 =======.. * "re │ │ │ │ +0001c210: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +0001c220: 6f6e 282e 2e2e 2c4d 6f64 756c 7573 3d3e on(...,Modulus=> │ │ │ │ +0001c230: 2e2e 2e29 2220 2d2d 2073 6565 202a 6e6f ...)" -- see *no │ │ │ │ +0001c240: 7465 2072 6567 756c 6172 496e 436f 6469 te regularInCodi │ │ │ │ +0001c250: 6d65 6e73 696f 6e3a 0a20 2020 2072 6567 mension:. reg │ │ │ │ +0001c260: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +0001c270: 6e2c 202d 2d20 6174 7465 6d70 7473 2074 n, -- attempts t │ │ │ │ +0001c280: 6f20 7368 6f77 2074 6861 7420 7468 6520 o show that the │ │ │ │ +0001c290: 7269 6e67 2069 7320 7265 6775 6c61 7220 ring is regular │ │ │ │ +0001c2a0: 696e 0a20 2020 2063 6f64 696d 656e 7369 in. codimensi │ │ │ │ +0001c2b0: 6f6e 206e 0a0a 466f 7220 7468 6520 7072 on n..For the pr │ │ │ │ +0001c2c0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0001c2d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0001c2e0: 206f 626a 6563 7420 2a6e 6f74 6520 4d6f object *note Mo │ │ │ │ +0001c2f0: 6475 6c75 733a 204d 6f64 756c 7573 2c20 dulus: Modulus, │ │ │ │ +0001c300: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ +0001c310: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0001c320: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ +0001c330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c370: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0001c380: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0001c390: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0001c3a0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0001c3b0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0001c3c0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0001c3d0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0001c3e0: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ +0001c3f0: 3a32 3130 343a 302e 0a1f 0a46 696c 653a :2104:0....File: │ │ │ │ +0001c400: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ +0001c410: 2c20 4e6f 6465 3a20 506f 696e 744f 7074 , Node: PointOpt │ │ │ │ +0001c420: 696f 6e73 2c20 4e65 7874 3a20 7072 6f6a ions, Next: proj │ │ │ │ +0001c430: 4469 6d2c 2050 7265 763a 204d 6f64 756c Dim, Prev: Modul │ │ │ │ +0001c440: 7573 2c20 5570 3a20 546f 700a 0a50 6f69 us, Up: Top..Poi │ │ │ │ +0001c450: 6e74 4f70 7469 6f6e 7320 2d2d 206f 7074 ntOptions -- opt │ │ │ │ +0001c460: 696f 6e73 2074 6f20 7061 7373 2074 6f20 ions to pass to │ │ │ │ +0001c470: 6675 6e63 7469 6f6e 7320 696e 2074 6865 functions in the │ │ │ │ +0001c480: 2070 6163 6b61 6765 2052 616e 646f 6d50 package RandomP │ │ │ │ +0001c490: 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a 2a2a oints.********** │ │ │ │ +0001c4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001c4d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0001c4e0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001c4f0: 3d3d 3d3d 3d3d 3d0a 0a50 6f69 6e74 4f70 =======..PointOp │ │ │ │ +0001c500: 7469 6f6e 7320 6973 2061 6e20 6f70 7469 tions is an opti │ │ │ │ +0001c510: 6f6e 2069 6e20 7661 7269 6f75 7320 6675 on in various fu │ │ │ │ +0001c520: 6e63 7469 6f6e 7320 696e 2074 6869 7320 nctions in this │ │ │ │ +0001c530: 7061 636b 6167 652c 2077 6869 6368 2063 package, which c │ │ │ │ +0001c540: 616e 2073 746f 7265 0a6f 7074 696f 6e73 an store.options │ │ │ │ +0001c550: 2074 6f20 6265 2070 6173 7365 6420 746f to be passed to │ │ │ │ +0001c560: 2074 6865 2066 756e 6374 696f 6e20 6669 the function fi │ │ │ │ +0001c570: 6e64 414e 6f6e 5a65 726f 4d69 6e6f 7220 ndANonZeroMinor │ │ │ │ +0001c580: 616e 6420 6f74 6865 7220 6675 6e63 7469 and other functi │ │ │ │ +0001c590: 6f6e 7320 696e 0a52 616e 646f 6d50 6f69 ons in.RandomPoi │ │ │ │ +0001c5a0: 6e74 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d nts...+--------- │ │ │ │ +0001c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c5f0: 2d2d 2d2d 2b0a 7c69 3120 3a20 286f 7074 ----+.|i1 : (opt │ │ │ │ +0001c600: 696f 6e73 2072 6567 756c 6172 496e 436f ions regularInCo │ │ │ │ +0001c610: 6469 6d65 6e73 696f 6e29 2350 6f69 6e74 dimension)#Point │ │ │ │ +0001c620: 4f70 7469 6f6e 7320 2020 2020 2020 2020 Options │ │ │ │ 0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c640: 2020 2020 7c0a 7c6f 3120 3d20 7b53 7472 |.|o1 = {Str │ │ │ │ -0001c650: 6174 6567 7920 3d3e 2044 6566 6175 6c74 ategy => Default │ │ │ │ -0001c660: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001c670: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001c680: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001c690: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ -0001c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c6e0: 2d2d 2d2d 7c0a 7c20 2020 2020 4578 7465 ----|.| Exte │ │ │ │ -0001c6f0: 6e64 4669 656c 6420 3d3e 2074 7275 652c ndField => true, │ │ │ │ -0001c700: 2050 6f69 6e74 4368 6563 6b41 7474 656d PointCheckAttem │ │ │ │ -0001c710: 7074 7320 3d3e 2030 2c20 4465 636f 6d70 pts => 0, Decomp │ │ │ │ -0001c720: 6f73 6974 696f 6e53 7472 6174 6567 7920 ositionStrategy │ │ │ │ -0001c730: 3d3e 2020 7c0a 7c20 2020 2020 2d2d 2d2d => |.| ---- │ │ │ │ -0001c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c780: 2d2d 2d2d 7c0a 7c20 2020 2020 4465 636f ----|.| Deco │ │ │ │ -0001c790: 6d70 6f73 652c 204e 756d 5468 7265 6164 mpose, NumThread │ │ │ │ -0001c7a0: 7354 6f55 7365 203d 3e20 312c 2044 696d sToUse => 1, Dim │ │ │ │ -0001c7b0: 656e 7369 6f6e 4675 6e63 7469 6f6e 203d ensionFunction = │ │ │ │ -0001c7c0: 3e20 6469 6d2c 2056 6572 626f 7365 203d > dim, Verbose = │ │ │ │ -0001c7d0: 3e20 2020 7c0a 7c20 2020 2020 2d2d 2d2d > |.| ---- │ │ │ │ -0001c7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c820: 2d2d 2d2d 7c0a 7c20 2020 2020 6661 6c73 ----|.| fals │ │ │ │ -0001c830: 657d 2020 2020 2020 2020 2020 2020 2020 e} │ │ │ │ -0001c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c870: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c640: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c690: 2020 2020 7c0a 7c6f 3120 3d20 7b53 7472 |.|o1 = {Str │ │ │ │ +0001c6a0: 6174 6567 7920 3d3e 2044 6566 6175 6c74 ategy => Default │ │ │ │ +0001c6b0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001c6c0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001c6d0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001c6e0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +0001c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c730: 2d2d 2d2d 7c0a 7c20 2020 2020 4578 7465 ----|.| Exte │ │ │ │ +0001c740: 6e64 4669 656c 6420 3d3e 2074 7275 652c ndField => true, │ │ │ │ +0001c750: 2050 6f69 6e74 4368 6563 6b41 7474 656d PointCheckAttem │ │ │ │ +0001c760: 7074 7320 3d3e 2030 2c20 4465 636f 6d70 pts => 0, Decomp │ │ │ │ +0001c770: 6f73 6974 696f 6e53 7472 6174 6567 7920 ositionStrategy │ │ │ │ +0001c780: 3d3e 2020 7c0a 7c20 2020 2020 2d2d 2d2d => |.| ---- │ │ │ │ +0001c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c7d0: 2d2d 2d2d 7c0a 7c20 2020 2020 4465 636f ----|.| Deco │ │ │ │ +0001c7e0: 6d70 6f73 652c 204e 756d 5468 7265 6164 mpose, NumThread │ │ │ │ +0001c7f0: 7354 6f55 7365 203d 3e20 312c 2044 696d sToUse => 1, Dim │ │ │ │ +0001c800: 656e 7369 6f6e 4675 6e63 7469 6f6e 203d ensionFunction = │ │ │ │ +0001c810: 3e20 6469 6d2c 2056 6572 626f 7365 203d > dim, Verbose = │ │ │ │ +0001c820: 3e20 2020 7c0a 7c20 2020 2020 2d2d 2d2d > |.| ---- │ │ │ │ +0001c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c870: 2d2d 2d2d 7c0a 7c20 2020 2020 6661 6c73 ----|.| fals │ │ │ │ +0001c880: 657d 2020 2020 2020 2020 2020 2020 2020 e} │ │ │ │ 0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8c0: 2020 2020 7c0a 7c6f 3120 3a20 4c69 7374 |.|o1 : List │ │ │ │ +0001c8c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c910: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001c920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c960: 2d2d 2d2d 2b0a 7c69 3220 3a20 6f70 7469 ----+.|i2 : opti │ │ │ │ -0001c970: 6f6e 7320 6669 6e64 414e 6f6e 5a65 726f ons findANonZero │ │ │ │ -0001c980: 4d69 6e6f 7220 2020 2020 2020 2020 2020 Minor │ │ │ │ -0001c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c910: 2020 2020 7c0a 7c6f 3120 3a20 4c69 7374 |.|o1 : List │ │ │ │ +0001c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c960: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c9b0: 2d2d 2d2d 2b0a 7c69 3220 3a20 6f70 7469 ----+.|i2 : opti │ │ │ │ +0001c9c0: 6f6e 7320 6669 6e64 414e 6f6e 5a65 726f ons findANonZero │ │ │ │ +0001c9d0: 4d69 6e6f 7220 2020 2020 2020 2020 2020 Minor │ │ │ │ 0001c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca00: 2020 2020 7c0a 7c6f 3220 3d20 4f70 7469 |.|o2 = Opti │ │ │ │ -0001ca10: 6f6e 5461 626c 657b 4465 636f 6d70 6f73 onTable{Decompos │ │ │ │ -0001ca20: 6974 696f 6e53 7472 6174 6567 7920 3d3e itionStrategy => │ │ │ │ -0001ca30: 206e 756c 6c7d 2020 2020 2020 2020 2020 null} │ │ │ │ +0001ca00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001ca60: 2020 2020 2020 2020 4469 6d65 6e73 696f Dimensio │ │ │ │ -0001ca70: 6e46 756e 6374 696f 6e20 3d3e 2064 696d nFunction => dim │ │ │ │ -0001ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca50: 2020 2020 7c0a 7c6f 3220 3d20 4f70 7469 |.|o2 = Opti │ │ │ │ +0001ca60: 6f6e 5461 626c 657b 4465 636f 6d70 6f73 onTable{Decompos │ │ │ │ +0001ca70: 6974 696f 6e53 7472 6174 6567 7920 3d3e itionStrategy => │ │ │ │ +0001ca80: 206e 756c 6c7d 2020 2020 2020 2020 2020 null} │ │ │ │ 0001ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001caa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cab0: 2020 2020 2020 2020 4578 7465 6e64 4669 ExtendFi │ │ │ │ -0001cac0: 656c 6420 3d3e 2074 7275 6520 2020 2020 eld => true │ │ │ │ +0001cab0: 2020 2020 2020 2020 4469 6d65 6e73 696f Dimensio │ │ │ │ +0001cac0: 6e46 756e 6374 696f 6e20 3d3e 2064 696d nFunction => dim │ │ │ │ 0001cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001caf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cb00: 2020 2020 2020 2020 486f 6d6f 6765 6e65 Homogene │ │ │ │ -0001cb10: 6f75 7320 3d3e 2066 616c 7365 2020 2020 ous => false │ │ │ │ +0001cb00: 2020 2020 2020 2020 4578 7465 6e64 4669 ExtendFi │ │ │ │ +0001cb10: 656c 6420 3d3e 2074 7275 6520 2020 2020 eld => true │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cb50: 2020 2020 2020 2020 4d69 6e6f 7250 6f69 MinorPoi │ │ │ │ -0001cb60: 6e74 4174 7465 6d70 7473 203d 3e20 3520 ntAttempts => 5 │ │ │ │ +0001cb50: 2020 2020 2020 2020 486f 6d6f 6765 6e65 Homogene │ │ │ │ +0001cb60: 6f75 7320 3d3e 2066 616c 7365 2020 2020 ous => false │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cba0: 2020 2020 2020 2020 4e75 6d54 6872 6561 NumThrea │ │ │ │ -0001cbb0: 6473 546f 5573 6520 3d3e 2031 2020 2020 dsToUse => 1 │ │ │ │ +0001cba0: 2020 2020 2020 2020 4d69 6e6f 7250 6f69 MinorPoi │ │ │ │ +0001cbb0: 6e74 4174 7465 6d70 7473 203d 3e20 3520 ntAttempts => 5 │ │ │ │ 0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cbf0: 2020 2020 2020 2020 506f 696e 7443 6865 PointChe │ │ │ │ -0001cc00: 636b 4174 7465 6d70 7473 203d 3e20 3020 ckAttempts => 0 │ │ │ │ +0001cbf0: 2020 2020 2020 2020 4e75 6d54 6872 6561 NumThrea │ │ │ │ +0001cc00: 6473 546f 5573 6520 3d3e 2031 2020 2020 dsToUse => 1 │ │ │ │ 0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cc40: 2020 2020 2020 2020 5265 706c 6163 656d Replacem │ │ │ │ -0001cc50: 656e 7420 3d3e 2042 696e 6f6d 6961 6c20 ent => Binomial │ │ │ │ +0001cc40: 2020 2020 2020 2020 506f 696e 7443 6865 PointChe │ │ │ │ +0001cc50: 636b 4174 7465 6d70 7473 203d 3e20 3020 ckAttempts => 0 │ │ │ │ 0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cc90: 2020 2020 2020 2020 5374 7261 7465 6779 Strategy │ │ │ │ -0001cca0: 203d 3e20 4465 6661 756c 7420 2020 2020 => Default │ │ │ │ +0001cc90: 2020 2020 2020 2020 5265 706c 6163 656d Replacem │ │ │ │ +0001cca0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c20 ent => Binomial │ │ │ │ 0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cce0: 2020 2020 2020 2020 5665 7262 6f73 6520 Verbose │ │ │ │ -0001ccf0: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ +0001cce0: 2020 2020 2020 2020 5374 7261 7465 6779 Strategy │ │ │ │ +0001ccf0: 203d 3e20 4465 6661 756c 7420 2020 2020 => Default │ │ │ │ 0001cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd30: 2020 2020 2020 2020 5665 7262 6f73 6520 Verbose │ │ │ │ +0001cd40: 3d3e 2066 616c 7365 2020 2020 2020 2020 => false │ │ │ │ 0001cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd70: 2020 2020 7c0a 7c6f 3220 3a20 4f70 7469 |.|o2 : Opti │ │ │ │ -0001cd80: 6f6e 5461 626c 6520 2020 2020 2020 2020 onTable │ │ │ │ +0001cd70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce10: 2d2d 2d2d 2b0a 0a54 6865 2064 6566 6175 ----+..The defau │ │ │ │ -0001ce20: 6c74 2073 6574 7469 6e67 2045 7874 656e lt setting Exten │ │ │ │ -0001ce30: 6446 6965 6c64 203d 3e20 7472 7565 206d dField => true m │ │ │ │ -0001ce40: 6561 6e73 2074 6861 7420 706f 696e 7473 eans that points │ │ │ │ -0001ce50: 2077 686f 7365 2072 6573 6964 7565 2066 whose residue f │ │ │ │ -0001ce60: 6965 6c64 0a61 7265 2066 696e 6974 6520 ield.are finite │ │ │ │ -0001ce70: 6578 7465 6e73 696f 6e73 206f 6620 7468 extensions of th │ │ │ │ -0001ce80: 6520 7072 696d 6520 6669 656c 6420 6172 e prime field ar │ │ │ │ -0001ce90: 6520 7661 6c69 642c 2061 6e64 2061 7265 e valid, and are │ │ │ │ -0001cea0: 2075 7365 6420 746f 2073 7475 6479 2074 used to study t │ │ │ │ -0001ceb0: 6865 0a6d 6174 7269 782e 2020 4675 7274 he.matrix. Furt │ │ │ │ -0001cec0: 6865 726d 6f72 652c 2077 6520 6861 7665 hermore, we have │ │ │ │ -0001ced0: 2073 6574 2048 6f6d 6f67 656e 656f 7573 set Homogeneous │ │ │ │ -0001cee0: 3d3e 6661 6c73 6520 6279 2064 6566 6175 =>false by defau │ │ │ │ -0001cef0: 6c74 2077 6869 6368 206d 6561 6e73 2074 lt which means t │ │ │ │ -0001cf00: 6865 0a6f 7269 6769 6e20 6973 2074 7265 he.origin is tre │ │ │ │ -0001cf10: 6174 6564 2061 7320 6120 7661 6c69 6420 ated as a valid │ │ │ │ -0001cf20: 706f 696e 742e 2020 5365 7474 696e 6720 point. Setting │ │ │ │ -0001cf30: 4578 7465 6e64 4669 656c 643d 3e66 616c ExtendField=>fal │ │ │ │ -0001cf40: 7365 2077 696c 6c20 736f 6d65 7469 6d65 se will sometime │ │ │ │ -0001cf50: 730a 7370 6565 6420 7570 2063 6f6d 7075 s.speed up compu │ │ │ │ -0001cf60: 7461 7469 6f6e 2c20 6275 7420 6361 6e20 tation, but can │ │ │ │ -0001cf70: 616c 736f 206d 6973 7320 736f 6d65 2069 also miss some i │ │ │ │ -0001cf80: 6d70 6f72 7461 6e74 2073 7562 6d61 7472 mportant submatr │ │ │ │ -0001cf90: 6963 6573 2069 6620 7468 6174 0a64 6574 ices if that.det │ │ │ │ -0001cfa0: 6572 6d69 6e61 6e74 2028 706c 7573 2077 erminant (plus w │ │ │ │ -0001cfb0: 6861 7420 6861 7320 616c 7265 6164 7920 hat has already │ │ │ │ -0001cfc0: 6265 656e 2063 6f6d 7075 7465 6429 2064 been computed) d │ │ │ │ -0001cfd0: 6566 696e 6573 2061 2073 6368 656d 6520 efines a scheme │ │ │ │ -0001cfe0: 7769 7468 206e 6f20 6f72 0a72 656c 6174 with no or.relat │ │ │ │ -0001cff0: 6976 656c 7920 6665 7720 7261 7469 6f6e ively few ration │ │ │ │ -0001d000: 616c 2070 6f69 6e74 732e 2020 496e 2073 al points. In s │ │ │ │ -0001d010: 7563 6820 6120 6361 7365 2c20 4578 7465 uch a case, Exte │ │ │ │ -0001d020: 6e64 4669 656c 6420 3d3e 2066 616c 7365 ndField => false │ │ │ │ -0001d030: 2077 696c 6c0a 7479 7069 6361 6c6c 7920 will.typically │ │ │ │ -0001d040: 7375 6273 7461 6e74 6961 6c6c 7920 736c substantially sl │ │ │ │ -0001d050: 6f77 2064 6f77 6e20 636f 6d70 7574 6174 ow down computat │ │ │ │ -0001d060: 696f 6e73 2e0a 0a53 6565 2061 6c73 6f0a ions...See also. │ │ │ │ -0001d070: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0001d080: 6f74 6520 6669 6e64 414e 6f6e 5a65 726f ote findANonZero │ │ │ │ -0001d090: 4d69 6e6f 723a 2028 5261 6e64 6f6d 506f Minor: (RandomPo │ │ │ │ -0001d0a0: 696e 7473 2966 696e 6441 4e6f 6e5a 6572 ints)findANonZer │ │ │ │ -0001d0b0: 6f4d 696e 6f72 2c20 2d2d 2066 696e 6473 oMinor, -- finds │ │ │ │ -0001d0c0: 2061 0a20 2020 206e 6f6e 2d76 616e 6973 a. non-vanis │ │ │ │ -0001d0d0: 6869 6e67 206d 696e 6f72 2061 7420 736f hing minor at so │ │ │ │ -0001d0e0: 6d65 2072 616e 646f 6d6c 7920 6368 6f73 me randomly chos │ │ │ │ -0001d0f0: 656e 2070 6f69 6e74 0a0a 4675 6e63 7469 en point..Functi │ │ │ │ -0001d100: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -0001d110: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ -0001d120: 2050 6f69 6e74 4f70 7469 6f6e 733a 0a3d PointOptions:.= │ │ │ │ -0001d130: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d160: 3d3d 3d0a 0a20 202a 2022 6368 6f6f 7365 ===.. * "choose │ │ │ │ -0001d170: 476f 6f64 4d69 6e6f 7273 282e 2e2e 2c50 GoodMinors(...,P │ │ │ │ -0001d180: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d190: 2922 0a20 202a 2022 6765 7453 7562 6d61 )". * "getSubma │ │ │ │ -0001d1a0: 7472 6978 4f66 5261 6e6b 282e 2e2e 2c50 trixOfRank(...,P │ │ │ │ -0001d1b0: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d1c0: 2922 0a20 202a 2022 6973 5261 6e6b 4174 )". * "isRankAt │ │ │ │ -0001d1d0: 4c65 6173 7428 2e2e 2e2c 506f 696e 744f Least(...,PointO │ │ │ │ -0001d1e0: 7074 696f 6e73 3d3e 2e2e 2e29 220a 2020 ptions=>...)". │ │ │ │ -0001d1f0: 2a20 2270 726f 6a44 696d 282e 2e2e 2c50 * "projDim(...,P │ │ │ │ +0001cdc0: 2020 2020 7c0a 7c6f 3220 3a20 4f70 7469 |.|o2 : Opti │ │ │ │ +0001cdd0: 6f6e 5461 626c 6520 2020 2020 2020 2020 onTable │ │ │ │ +0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce10: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce60: 2d2d 2d2d 2b0a 0a54 6865 2064 6566 6175 ----+..The defau │ │ │ │ +0001ce70: 6c74 2073 6574 7469 6e67 2045 7874 656e lt setting Exten │ │ │ │ +0001ce80: 6446 6965 6c64 203d 3e20 7472 7565 206d dField => true m │ │ │ │ +0001ce90: 6561 6e73 2074 6861 7420 706f 696e 7473 eans that points │ │ │ │ +0001cea0: 2077 686f 7365 2072 6573 6964 7565 2066 whose residue f │ │ │ │ +0001ceb0: 6965 6c64 0a61 7265 2066 696e 6974 6520 ield.are finite │ │ │ │ +0001cec0: 6578 7465 6e73 696f 6e73 206f 6620 7468 extensions of th │ │ │ │ +0001ced0: 6520 7072 696d 6520 6669 656c 6420 6172 e prime field ar │ │ │ │ +0001cee0: 6520 7661 6c69 642c 2061 6e64 2061 7265 e valid, and are │ │ │ │ +0001cef0: 2075 7365 6420 746f 2073 7475 6479 2074 used to study t │ │ │ │ +0001cf00: 6865 0a6d 6174 7269 782e 2020 4675 7274 he.matrix. Furt │ │ │ │ +0001cf10: 6865 726d 6f72 652c 2077 6520 6861 7665 hermore, we have │ │ │ │ +0001cf20: 2073 6574 2048 6f6d 6f67 656e 656f 7573 set Homogeneous │ │ │ │ +0001cf30: 3d3e 6661 6c73 6520 6279 2064 6566 6175 =>false by defau │ │ │ │ +0001cf40: 6c74 2077 6869 6368 206d 6561 6e73 2074 lt which means t │ │ │ │ +0001cf50: 6865 0a6f 7269 6769 6e20 6973 2074 7265 he.origin is tre │ │ │ │ +0001cf60: 6174 6564 2061 7320 6120 7661 6c69 6420 ated as a valid │ │ │ │ +0001cf70: 706f 696e 742e 2020 5365 7474 696e 6720 point. Setting │ │ │ │ +0001cf80: 4578 7465 6e64 4669 656c 643d 3e66 616c ExtendField=>fal │ │ │ │ +0001cf90: 7365 2077 696c 6c20 736f 6d65 7469 6d65 se will sometime │ │ │ │ +0001cfa0: 730a 7370 6565 6420 7570 2063 6f6d 7075 s.speed up compu │ │ │ │ +0001cfb0: 7461 7469 6f6e 2c20 6275 7420 6361 6e20 tation, but can │ │ │ │ +0001cfc0: 616c 736f 206d 6973 7320 736f 6d65 2069 also miss some i │ │ │ │ +0001cfd0: 6d70 6f72 7461 6e74 2073 7562 6d61 7472 mportant submatr │ │ │ │ +0001cfe0: 6963 6573 2069 6620 7468 6174 0a64 6574 ices if that.det │ │ │ │ +0001cff0: 6572 6d69 6e61 6e74 2028 706c 7573 2077 erminant (plus w │ │ │ │ +0001d000: 6861 7420 6861 7320 616c 7265 6164 7920 hat has already │ │ │ │ +0001d010: 6265 656e 2063 6f6d 7075 7465 6429 2064 been computed) d │ │ │ │ +0001d020: 6566 696e 6573 2061 2073 6368 656d 6520 efines a scheme │ │ │ │ +0001d030: 7769 7468 206e 6f20 6f72 0a72 656c 6174 with no or.relat │ │ │ │ +0001d040: 6976 656c 7920 6665 7720 7261 7469 6f6e ively few ration │ │ │ │ +0001d050: 616c 2070 6f69 6e74 732e 2020 496e 2073 al points. In s │ │ │ │ +0001d060: 7563 6820 6120 6361 7365 2c20 4578 7465 uch a case, Exte │ │ │ │ +0001d070: 6e64 4669 656c 6420 3d3e 2066 616c 7365 ndField => false │ │ │ │ +0001d080: 2077 696c 6c0a 7479 7069 6361 6c6c 7920 will.typically │ │ │ │ +0001d090: 7375 6273 7461 6e74 6961 6c6c 7920 736c substantially sl │ │ │ │ +0001d0a0: 6f77 2064 6f77 6e20 636f 6d70 7574 6174 ow down computat │ │ │ │ +0001d0b0: 696f 6e73 2e0a 0a53 6565 2061 6c73 6f0a ions...See also. │ │ │ │ +0001d0c0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0001d0d0: 6f74 6520 6669 6e64 414e 6f6e 5a65 726f ote findANonZero │ │ │ │ +0001d0e0: 4d69 6e6f 723a 2028 5261 6e64 6f6d 506f Minor: (RandomPo │ │ │ │ +0001d0f0: 696e 7473 2966 696e 6441 4e6f 6e5a 6572 ints)findANonZer │ │ │ │ +0001d100: 6f4d 696e 6f72 2c20 2d2d 2066 696e 6473 oMinor, -- finds │ │ │ │ +0001d110: 2061 0a20 2020 206e 6f6e 2d76 616e 6973 a. non-vanis │ │ │ │ +0001d120: 6869 6e67 206d 696e 6f72 2061 7420 736f hing minor at so │ │ │ │ +0001d130: 6d65 2072 616e 646f 6d6c 7920 6368 6f73 me randomly chos │ │ │ │ +0001d140: 656e 2070 6f69 6e74 0a0a 4675 6e63 7469 en point..Functi │ │ │ │ +0001d150: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +0001d160: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ +0001d170: 2050 6f69 6e74 4f70 7469 6f6e 733a 0a3d PointOptions:.= │ │ │ │ +0001d180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001d1b0: 3d3d 3d0a 0a20 202a 2022 6368 6f6f 7365 ===.. * "choose │ │ │ │ +0001d1c0: 476f 6f64 4d69 6e6f 7273 282e 2e2e 2c50 GoodMinors(...,P │ │ │ │ +0001d1d0: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ +0001d1e0: 2922 0a20 202a 2022 6765 7453 7562 6d61 )". * "getSubma │ │ │ │ +0001d1f0: 7472 6978 4f66 5261 6e6b 282e 2e2e 2c50 trixOfRank(...,P │ │ │ │ 0001d200: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ -0001d210: 2922 0a20 202a 2022 7265 6775 6c61 7249 )". * "regularI │ │ │ │ -0001d220: 6e43 6f64 696d 656e 7369 6f6e 282e 2e2e nCodimension(... │ │ │ │ -0001d230: 2c50 6f69 6e74 4f70 7469 6f6e 733d 3e2e ,PointOptions=>. │ │ │ │ -0001d240: 2e2e 2922 0a0a 466f 7220 7468 6520 7072 ..)"..For the pr │ │ │ │ -0001d250: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0001d260: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0001d270: 206f 626a 6563 7420 2a6e 6f74 6520 506f object *note Po │ │ │ │ -0001d280: 696e 744f 7074 696f 6e73 3a20 506f 696e intOptions: Poin │ │ │ │ -0001d290: 744f 7074 696f 6e73 2c20 6973 2061 202a tOptions, is a * │ │ │ │ -0001d2a0: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ -0001d2b0: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ -0001d2c0: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ -0001d2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d310: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0001d320: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0001d330: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0001d340: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0001d350: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0001d360: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0001d370: 7932 2f70 6163 6b61 6765 732f 4661 7374 y2/packages/Fast │ │ │ │ -0001d380: 4d69 6e6f 7273 2e0a 6d32 3a31 3739 343a Minors..m2:1794: │ │ │ │ -0001d390: 302e 0a1f 0a46 696c 653a 2046 6173 744d 0....File: FastM │ │ │ │ -0001d3a0: 696e 6f72 732e 696e 666f 2c20 4e6f 6465 inors.info, Node │ │ │ │ -0001d3b0: 3a20 7072 6f6a 4469 6d2c 204e 6578 743a : projDim, Next: │ │ │ │ -0001d3c0: 2072 6563 7572 7369 7665 4d69 6e6f 7273 recursiveMinors │ │ │ │ -0001d3d0: 2c20 5072 6576 3a20 506f 696e 744f 7074 , Prev: PointOpt │ │ │ │ -0001d3e0: 696f 6e73 2c20 5570 3a20 546f 700a 0a70 ions, Up: Top..p │ │ │ │ -0001d3f0: 726f 6a44 696d 202d 2d20 6669 6e64 7320 rojDim -- finds │ │ │ │ -0001d400: 616e 2075 7070 6572 2062 6f75 6e64 2066 an upper bound f │ │ │ │ -0001d410: 6f72 2074 6865 2070 726f 6a65 6374 6976 or the projectiv │ │ │ │ -0001d420: 6520 6469 6d65 6e73 696f 6e20 6f66 2061 e dimension of a │ │ │ │ -0001d430: 206d 6f64 756c 650a 2a2a 2a2a 2a2a 2a2a module.******** │ │ │ │ -0001d440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d480: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -0001d490: 2020 2020 2020 6e20 3d20 7072 6f6a 4469 n = projDi │ │ │ │ -0001d4a0: 6d28 4e2c 204d 696e 4469 6d65 6e73 696f m(N, MinDimensio │ │ │ │ -0001d4b0: 6e3d 3e64 290a 2020 2a20 496e 7075 7473 n=>d). * Inputs │ │ │ │ -0001d4c0: 3a0a 2020 2020 2020 2a20 4e2c 2061 202a :. * N, a * │ │ │ │ -0001d4d0: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ -0001d4e0: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ -0001d4f0: 652c 2c20 6120 6d6f 6475 6c65 206f 7665 e,, a module ove │ │ │ │ -0001d500: 7220 6120 706f 6c79 6e6f 6d69 616c 0a20 r a polynomial. │ │ │ │ -0001d510: 2020 2020 2020 2072 696e 670a 2020 2020 ring. │ │ │ │ -0001d520: 2020 2a20 642c 2061 6e20 2a6e 6f74 6520 * d, an *note │ │ │ │ -0001d530: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -0001d540: 6179 3244 6f63 295a 5a2c 2c20 7468 6520 ay2Doc)ZZ,, the │ │ │ │ -0001d550: 6d69 6e69 6d75 6d20 7072 6f6a 6563 7469 minimum projecti │ │ │ │ -0001d560: 7665 0a20 2020 2020 2020 2064 696d 656e ve. dimen │ │ │ │ -0001d570: 7369 6f6e 206f 6620 7468 6520 6d6f 6475 sion of the modu │ │ │ │ -0001d580: 6c65 0a20 202a 202a 6e6f 7465 204f 7074 le. * *note Opt │ │ │ │ -0001d590: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -0001d5a0: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -0001d5b0: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -0001d5c0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -0001d5d0: 2c3a 0a20 2020 2020 202a 204d 696e 4469 ,:. * MinDi │ │ │ │ -0001d5e0: 6d65 6e73 696f 6e20 3d3e 2061 202a 6e6f mension => a *no │ │ │ │ -0001d5f0: 7465 206e 756d 6265 723a 2028 4d61 6361 te number: (Maca │ │ │ │ -0001d600: 756c 6179 3244 6f63 294e 756d 6265 722c ulay2Doc)Number, │ │ │ │ -0001d610: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0001d620: 302c 0a20 2020 2020 2020 2073 746f 7020 0,. stop │ │ │ │ -0001d630: 6166 7465 7220 7665 7269 6679 696e 6720 after verifying │ │ │ │ -0001d640: 7468 6520 6d6f 6475 6c65 2068 6173 2061 the module has a │ │ │ │ -0001d650: 7420 6d6f 7374 2061 2063 6572 7461 696e t most a certain │ │ │ │ -0001d660: 2070 726f 6a65 6374 6976 650a 2020 2020 projective. │ │ │ │ -0001d670: 2020 2020 6469 6d65 6e73 696f 6e0a 2020 dimension. │ │ │ │ -0001d680: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ -0001d690: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ -0001d6a0: 7074 696f 6e73 2c20 3d3e 2061 202a 6e6f ptions, => a *no │ │ │ │ -0001d6b0: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ -0001d6c0: 6179 3244 6f63 294c 6973 742c 2c0a 2020 ay2Doc)List,,. │ │ │ │ -0001d6d0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ -0001d6e0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001d6f0: 2044 6566 6175 6c74 2c20 486f 6d6f 6765 Default, Homoge │ │ │ │ -0001d700: 6e65 6f75 7320 3d3e 2066 616c 7365 2c20 neous => false, │ │ │ │ -0001d710: 5265 706c 6163 656d 656e 740a 2020 2020 Replacement. │ │ │ │ -0001d720: 2020 2020 3d3e 2042 696e 6f6d 6961 6c2c => Binomial, │ │ │ │ -0001d730: 2045 7874 656e 6446 6965 6c64 203d 3e20 ExtendField => │ │ │ │ -0001d740: 7472 7565 2c20 506f 696e 7443 6865 636b true, PointCheck │ │ │ │ -0001d750: 4174 7465 6d70 7473 203d 3e20 302c 0a20 Attempts => 0,. │ │ │ │ -0001d760: 2020 2020 2020 2044 6563 6f6d 706f 7369 Decomposi │ │ │ │ -0001d770: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001d780: 4465 636f 6d70 6f73 652c 204e 756d 5468 Decompose, NumTh │ │ │ │ -0001d790: 7265 6164 7354 6f55 7365 203d 3e20 312c readsToUse => 1, │ │ │ │ -0001d7a0: 0a20 2020 2020 2020 2044 696d 656e 7369 . Dimensi │ │ │ │ -0001d7b0: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001d7c0: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001d7d0: 6c73 657d 2c20 6f70 7469 6f6e 7320 746f lse}, options to │ │ │ │ -0001d7e0: 2062 6520 7061 7373 6564 2074 6f0a 2020 be passed to. │ │ │ │ -0001d7f0: 2020 2020 2020 7468 6520 5261 6e64 6f6d the Random │ │ │ │ -0001d800: 506f 696e 7473 2070 6163 6b61 6765 0a20 Points package. │ │ │ │ -0001d810: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ -0001d820: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ -0001d830: 732c 203d 3e20 2e2e 2e2c 2064 6566 6175 s, => ..., defau │ │ │ │ -0001d840: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ -0001d850: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ -0001d860: 5b2e 2e2f 4661 7374 4d69 6e6f 7273 2e6d [../FastMinors.m │ │ │ │ -0001d870: 323a 3138 363a 3138 2d31 3836 3a34 355d 2:186:18-186:45] │ │ │ │ -0001d880: 2c20 7573 6564 2074 6f20 636f 6e74 726f , used to contro │ │ │ │ -0001d890: 6c20 686f 770a 2020 2020 2020 2020 6d61 l how. ma │ │ │ │ -0001d8a0: 6e79 206d 696e 6f72 7320 6172 6520 636f ny minors are co │ │ │ │ -0001d8b0: 6d70 7574 6564 206f 6620 7468 6520 6d61 mputed of the ma │ │ │ │ -0001d8c0: 7472 6963 6573 2069 6e20 6120 7072 6f6a trices in a proj │ │ │ │ -0001d8d0: 6563 7469 7665 2072 6573 6f6c 7574 696f ective resolutio │ │ │ │ -0001d8e0: 6e0a 2020 2020 2020 2a20 2a6e 6f74 6520 n. * *note │ │ │ │ -0001d8f0: 4465 7453 7472 6174 6567 793a 2044 6574 DetStrategy: Det │ │ │ │ -0001d900: 5374 7261 7465 6779 2c20 3d3e 202e 2e2e Strategy, => ... │ │ │ │ -0001d910: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -0001d920: 436f 6661 6374 6f72 2c0a 2020 2020 2020 Cofactor,. │ │ │ │ -0001d930: 2020 4465 7453 7472 6174 6567 7920 6973 DetStrategy is │ │ │ │ -0001d940: 2061 2073 7472 6174 6567 7920 666f 7220 a strategy for │ │ │ │ -0001d950: 616c 6c6f 7769 6e67 2074 6865 2075 7365 allowing the use │ │ │ │ -0001d960: 7220 746f 2063 686f 6f73 6520 686f 770a r to choose how. │ │ │ │ -0001d970: 2020 2020 2020 2020 6465 7465 726d 696e determin │ │ │ │ -0001d980: 616e 7473 2028 6f72 2072 616e 6b29 2c20 ants (or rank), │ │ │ │ -0001d990: 6973 2063 6f6d 7075 7465 640a 2020 2020 is computed. │ │ │ │ -0001d9a0: 2020 2a20 2a6e 6f74 6520 5374 7261 7465 * *note Strate │ │ │ │ -0001d9b0: 6779 3a20 5374 7261 7465 6779 4465 6661 gy: StrategyDefa │ │ │ │ -0001d9c0: 756c 742c 203d 3e20 2e2e 2e2c 2064 6566 ult, => ..., def │ │ │ │ -0001d9d0: 6175 6c74 2076 616c 7565 206e 6577 204f ault value new O │ │ │ │ -0001d9e0: 7074 696f 6e54 6162 6c65 0a20 2020 2020 ptionTable. │ │ │ │ -0001d9f0: 2020 2066 726f 6d20 7b50 6f69 6e74 7320 from {Points │ │ │ │ -0001da00: 3d3e 2030 2c20 5261 6e64 6f6d 203d 3e20 => 0, Random => │ │ │ │ -0001da10: 3136 2c20 4752 6576 4c65 784c 6172 6765 16, GRevLexLarge │ │ │ │ -0001da20: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ -0001da30: 6c65 7374 5465 726d 0a20 2020 2020 2020 lestTerm. │ │ │ │ -0001da40: 203d 3e20 3136 2c20 4c65 784c 6172 6765 => 16, LexLarge │ │ │ │ -0001da50: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ -0001da60: 6c65 7374 203d 3e20 3136 2c20 4752 6576 lest => 16, GRev │ │ │ │ -0001da70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -0001da80: 3d3e 2031 362c 0a20 2020 2020 2020 2052 => 16,. R │ │ │ │ -0001da90: 616e 646f 6d4e 6f6e 7a65 726f 203d 3e20 andomNonzero => │ │ │ │ -0001daa0: 3136 2c20 4752 6576 4c65 7853 6d61 6c6c 16, GRevLexSmall │ │ │ │ -0001dab0: 6573 7420 3d3e 2031 367d 2c20 7374 7261 est => 16}, stra │ │ │ │ -0001dac0: 7465 6769 6573 2066 6f72 2063 686f 6f73 tegies for choos │ │ │ │ -0001dad0: 696e 670a 2020 2020 2020 2020 7375 626d ing. subm │ │ │ │ -0001dae0: 6174 7269 6365 730a 2020 2020 2020 2a20 atrices. * │ │ │ │ -0001daf0: 5665 7262 6f73 6520 3d3e 202e 2e2e 2c20 Verbose => ..., │ │ │ │ -0001db00: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ -0001db10: 6c73 650a 2020 2a20 4f75 7470 7574 733a lse. * Outputs: │ │ │ │ -0001db20: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ -0001db30: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ -0001db40: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ -0001db50: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ -0001db60: 666f 7220 7468 650a 2020 2020 2020 2020 for the. │ │ │ │ -0001db70: 7072 6f6a 6563 7469 7665 2064 696d 656e projective dimen │ │ │ │ -0001db80: 7369 6f6e 206f 6620 4e0a 0a44 6573 6372 sion of N..Descr │ │ │ │ -0001db90: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0001dba0: 3d3d 0a0a 5468 6520 6675 6e63 7469 6f6e ==..The function │ │ │ │ -0001dbb0: 2070 6469 6d20 7265 7475 726e 7320 7468 pdim returns th │ │ │ │ -0001dbc0: 6520 6c65 6e67 7468 206f 6620 6120 7072 e length of a pr │ │ │ │ -0001dbd0: 6f6a 6563 7469 7665 2072 6573 6f6c 7574 ojective resolut │ │ │ │ -0001dbe0: 696f 6e2e 2049 6620 7468 6520 6d6f 6475 ion. If the modu │ │ │ │ -0001dbf0: 6c65 0a70 6173 7365 6420 6973 206e 6f74 le.passed is not │ │ │ │ -0001dc00: 2068 6f6d 6f67 656e 656f 7573 2c20 7468 homogeneous, th │ │ │ │ -0001dc10: 656e 2074 6865 2070 726f 6a65 6374 6976 en the projectiv │ │ │ │ -0001dc20: 6520 7265 736f 6c75 7469 6f6e 206d 6179 e resolution may │ │ │ │ -0001dc30: 206e 6f74 2062 6520 6d69 6e69 6d61 6c0a not be minimal. │ │ │ │ -0001dc40: 616e 6420 736f 2070 6469 6d20 6361 6e20 and so pdim can │ │ │ │ -0001dc50: 6769 7665 2074 6865 2077 726f 6e67 2061 give the wrong a │ │ │ │ -0001dc60: 6e73 7765 722e 2020 5468 6973 2066 756e nswer. This fun │ │ │ │ -0001dc70: 6374 696f 6e20 7072 6f6a 4469 6d20 7472 ction projDim tr │ │ │ │ -0001dc80: 6965 7320 746f 2069 6d70 726f 7665 0a74 ies to improve.t │ │ │ │ -0001dc90: 6869 7320 626f 756e 6420 6279 2063 6f6e his bound by con │ │ │ │ -0001dca0: 7369 6465 7269 6e67 2069 6465 616c 7320 sidering ideals │ │ │ │ -0001dcb0: 6f66 2061 7070 726f 7072 6961 7465 6c79 of appropriately │ │ │ │ -0001dcc0: 2073 697a 6564 206d 696e 6f72 7320 6f66 sized minors of │ │ │ │ -0001dcd0: 2074 6865 0a72 6573 6f6c 7574 696f 6e20 the.resolution │ │ │ │ -0001dce0: 2873 7461 7274 696e 6720 6672 6f6d 2074 (starting from t │ │ │ │ -0001dcf0: 6865 2065 6e64 206f 6620 7468 6520 7265 he end of the re │ │ │ │ -0001dd00: 736f 6c75 7469 6f6e 2061 6e64 2077 6f72 solution and wor │ │ │ │ -0001dd10: 6b69 6e67 2062 6163 6b77 6172 6473 292e king backwards). │ │ │ │ -0001dd20: 0a55 7369 6e67 2074 6865 206f 7074 696f .Using the optio │ │ │ │ -0001dd30: 6e20 4d69 6e44 696d 656e 7369 6f6e 2028 n MinDimension ( │ │ │ │ -0001dd40: 6465 6661 756c 7420 7661 6c75 6520 3029 default value 0) │ │ │ │ -0001dd50: 2067 6976 6573 2061 206c 6f77 6572 2062 gives a lower b │ │ │ │ -0001dd60: 6f75 6e64 206f 6e20 7468 650a 7072 6f6a ound on the.proj │ │ │ │ -0001dd70: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ -0001dd80: 2c20 696e 6372 6561 7369 6e67 2069 7420 , increasing it │ │ │ │ -0001dd90: 6361 6e20 7468 7573 2069 6d70 726f 7665 can thus improve │ │ │ │ -0001dda0: 2074 6865 2073 7065 6564 206f 6620 636f the speed of co │ │ │ │ -0001ddb0: 6d70 7574 6174 696f 6e2e 0a0a 2b2d 2d2d mputation...+--- │ │ │ │ -0001ddc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ddf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de00: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001de10: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ -0001de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0001de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0001dea0: 203a 2049 203d 2069 6465 616c 2828 785e : I = ideal((x^ │ │ │ │ -0001deb0: 332b 7929 5e32 2c20 2878 5e32 2b79 5e32 3+y)^2, (x^2+y^2 │ │ │ │ -0001dec0: 295e 322c 2028 782b 795e 3329 5e32 2c20 )^2, (x+y^3)^2, │ │ │ │ -0001ded0: 2878 2a79 295e 3229 3b20 2020 2020 2020 (x*y)^2); │ │ │ │ -0001dee0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df30: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ -0001df40: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001d210: 2922 0a20 202a 2022 6973 5261 6e6b 4174 )". * "isRankAt │ │ │ │ +0001d220: 4c65 6173 7428 2e2e 2e2c 506f 696e 744f Least(...,PointO │ │ │ │ +0001d230: 7074 696f 6e73 3d3e 2e2e 2e29 220a 2020 ptions=>...)". │ │ │ │ +0001d240: 2a20 2270 726f 6a44 696d 282e 2e2e 2c50 * "projDim(...,P │ │ │ │ +0001d250: 6f69 6e74 4f70 7469 6f6e 733d 3e2e 2e2e ointOptions=>... │ │ │ │ +0001d260: 2922 0a20 202a 2022 7265 6775 6c61 7249 )". * "regularI │ │ │ │ +0001d270: 6e43 6f64 696d 656e 7369 6f6e 282e 2e2e nCodimension(... │ │ │ │ +0001d280: 2c50 6f69 6e74 4f70 7469 6f6e 733d 3e2e ,PointOptions=>. │ │ │ │ +0001d290: 2e2e 2922 0a0a 466f 7220 7468 6520 7072 ..)"..For the pr │ │ │ │ +0001d2a0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0001d2b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0001d2c0: 206f 626a 6563 7420 2a6e 6f74 6520 506f object *note Po │ │ │ │ +0001d2d0: 696e 744f 7074 696f 6e73 3a20 506f 696e intOptions: Poin │ │ │ │ +0001d2e0: 744f 7074 696f 6e73 2c20 6973 2061 202a tOptions, is a * │ │ │ │ +0001d2f0: 6e6f 7465 2073 796d 626f 6c3a 0a28 4d61 note symbol:.(Ma │ │ │ │ +0001d300: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ +0001d310: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ +0001d320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d360: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0001d370: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0001d380: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0001d390: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0001d3a0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0001d3b0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0001d3c0: 7932 2f70 6163 6b61 6765 732f 4661 7374 y2/packages/Fast │ │ │ │ +0001d3d0: 4d69 6e6f 7273 2e0a 6d32 3a31 3739 343a Minors..m2:1794: │ │ │ │ +0001d3e0: 302e 0a1f 0a46 696c 653a 2046 6173 744d 0....File: FastM │ │ │ │ +0001d3f0: 696e 6f72 732e 696e 666f 2c20 4e6f 6465 inors.info, Node │ │ │ │ +0001d400: 3a20 7072 6f6a 4469 6d2c 204e 6578 743a : projDim, Next: │ │ │ │ +0001d410: 2072 6563 7572 7369 7665 4d69 6e6f 7273 recursiveMinors │ │ │ │ +0001d420: 2c20 5072 6576 3a20 506f 696e 744f 7074 , Prev: PointOpt │ │ │ │ +0001d430: 696f 6e73 2c20 5570 3a20 546f 700a 0a70 ions, Up: Top..p │ │ │ │ +0001d440: 726f 6a44 696d 202d 2d20 6669 6e64 7320 rojDim -- finds │ │ │ │ +0001d450: 616e 2075 7070 6572 2062 6f75 6e64 2066 an upper bound f │ │ │ │ +0001d460: 6f72 2074 6865 2070 726f 6a65 6374 6976 or the projectiv │ │ │ │ +0001d470: 6520 6469 6d65 6e73 696f 6e20 6f66 2061 e dimension of a │ │ │ │ +0001d480: 206d 6f64 756c 650a 2a2a 2a2a 2a2a 2a2a module.******** │ │ │ │ +0001d490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d4d0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0001d4e0: 2020 2020 2020 6e20 3d20 7072 6f6a 4469 n = projDi │ │ │ │ +0001d4f0: 6d28 4e2c 204d 696e 4469 6d65 6e73 696f m(N, MinDimensio │ │ │ │ +0001d500: 6e3d 3e64 290a 2020 2a20 496e 7075 7473 n=>d). * Inputs │ │ │ │ +0001d510: 3a0a 2020 2020 2020 2a20 4e2c 2061 202a :. * N, a * │ │ │ │ +0001d520: 6e6f 7465 206d 6f64 756c 653a 2028 4d61 note module: (Ma │ │ │ │ +0001d530: 6361 756c 6179 3244 6f63 294d 6f64 756c caulay2Doc)Modul │ │ │ │ +0001d540: 652c 2c20 6120 6d6f 6475 6c65 206f 7665 e,, a module ove │ │ │ │ +0001d550: 7220 6120 706f 6c79 6e6f 6d69 616c 0a20 r a polynomial. │ │ │ │ +0001d560: 2020 2020 2020 2072 696e 670a 2020 2020 ring. │ │ │ │ +0001d570: 2020 2a20 642c 2061 6e20 2a6e 6f74 6520 * d, an *note │ │ │ │ +0001d580: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001d590: 6179 3244 6f63 295a 5a2c 2c20 7468 6520 ay2Doc)ZZ,, the │ │ │ │ +0001d5a0: 6d69 6e69 6d75 6d20 7072 6f6a 6563 7469 minimum projecti │ │ │ │ +0001d5b0: 7665 0a20 2020 2020 2020 2064 696d 656e ve. dimen │ │ │ │ +0001d5c0: 7369 6f6e 206f 6620 7468 6520 6d6f 6475 sion of the modu │ │ │ │ +0001d5d0: 6c65 0a20 202a 202a 6e6f 7465 204f 7074 le. * *note Opt │ │ │ │ +0001d5e0: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +0001d5f0: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +0001d600: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +0001d610: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +0001d620: 2c3a 0a20 2020 2020 202a 204d 696e 4469 ,:. * MinDi │ │ │ │ +0001d630: 6d65 6e73 696f 6e20 3d3e 2061 202a 6e6f mension => a *no │ │ │ │ +0001d640: 7465 206e 756d 6265 723a 2028 4d61 6361 te number: (Maca │ │ │ │ +0001d650: 756c 6179 3244 6f63 294e 756d 6265 722c ulay2Doc)Number, │ │ │ │ +0001d660: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +0001d670: 302c 0a20 2020 2020 2020 2073 746f 7020 0,. stop │ │ │ │ +0001d680: 6166 7465 7220 7665 7269 6679 696e 6720 after verifying │ │ │ │ +0001d690: 7468 6520 6d6f 6475 6c65 2068 6173 2061 the module has a │ │ │ │ +0001d6a0: 7420 6d6f 7374 2061 2063 6572 7461 696e t most a certain │ │ │ │ +0001d6b0: 2070 726f 6a65 6374 6976 650a 2020 2020 projective. │ │ │ │ +0001d6c0: 2020 2020 6469 6d65 6e73 696f 6e0a 2020 dimension. │ │ │ │ +0001d6d0: 2020 2020 2a20 2a6e 6f74 6520 506f 696e * *note Poin │ │ │ │ +0001d6e0: 744f 7074 696f 6e73 3a20 506f 696e 744f tOptions: PointO │ │ │ │ +0001d6f0: 7074 696f 6e73 2c20 3d3e 2061 202a 6e6f ptions, => a *no │ │ │ │ +0001d700: 7465 206c 6973 743a 2028 4d61 6361 756c te list: (Macaul │ │ │ │ +0001d710: 6179 3244 6f63 294c 6973 742c 2c0a 2020 ay2Doc)List,,. │ │ │ │ +0001d720: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +0001d730: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001d740: 2044 6566 6175 6c74 2c20 486f 6d6f 6765 Default, Homoge │ │ │ │ +0001d750: 6e65 6f75 7320 3d3e 2066 616c 7365 2c20 neous => false, │ │ │ │ +0001d760: 5265 706c 6163 656d 656e 740a 2020 2020 Replacement. │ │ │ │ +0001d770: 2020 2020 3d3e 2042 696e 6f6d 6961 6c2c => Binomial, │ │ │ │ +0001d780: 2045 7874 656e 6446 6965 6c64 203d 3e20 ExtendField => │ │ │ │ +0001d790: 7472 7565 2c20 506f 696e 7443 6865 636b true, PointCheck │ │ │ │ +0001d7a0: 4174 7465 6d70 7473 203d 3e20 302c 0a20 Attempts => 0,. │ │ │ │ +0001d7b0: 2020 2020 2020 2044 6563 6f6d 706f 7369 Decomposi │ │ │ │ +0001d7c0: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001d7d0: 4465 636f 6d70 6f73 652c 204e 756d 5468 Decompose, NumTh │ │ │ │ +0001d7e0: 7265 6164 7354 6f55 7365 203d 3e20 312c readsToUse => 1, │ │ │ │ +0001d7f0: 0a20 2020 2020 2020 2044 696d 656e 7369 . Dimensi │ │ │ │ +0001d800: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001d810: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001d820: 6c73 657d 2c20 6f70 7469 6f6e 7320 746f lse}, options to │ │ │ │ +0001d830: 2062 6520 7061 7373 6564 2074 6f0a 2020 be passed to. │ │ │ │ +0001d840: 2020 2020 2020 7468 6520 5261 6e64 6f6d the Random │ │ │ │ +0001d850: 506f 696e 7473 2070 6163 6b61 6765 0a20 Points package. │ │ │ │ +0001d860: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ +0001d870: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ +0001d880: 732c 203d 3e20 2e2e 2e2c 2064 6566 6175 s, => ..., defau │ │ │ │ +0001d890: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ +0001d8a0: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ +0001d8b0: 5b2e 2e2f 4661 7374 4d69 6e6f 7273 2e6d [../FastMinors.m │ │ │ │ +0001d8c0: 323a 3138 363a 3138 2d31 3836 3a34 355d 2:186:18-186:45] │ │ │ │ +0001d8d0: 2c20 7573 6564 2074 6f20 636f 6e74 726f , used to contro │ │ │ │ +0001d8e0: 6c20 686f 770a 2020 2020 2020 2020 6d61 l how. ma │ │ │ │ +0001d8f0: 6e79 206d 696e 6f72 7320 6172 6520 636f ny minors are co │ │ │ │ +0001d900: 6d70 7574 6564 206f 6620 7468 6520 6d61 mputed of the ma │ │ │ │ +0001d910: 7472 6963 6573 2069 6e20 6120 7072 6f6a trices in a proj │ │ │ │ +0001d920: 6563 7469 7665 2072 6573 6f6c 7574 696f ective resolutio │ │ │ │ +0001d930: 6e0a 2020 2020 2020 2a20 2a6e 6f74 6520 n. * *note │ │ │ │ +0001d940: 4465 7453 7472 6174 6567 793a 2044 6574 DetStrategy: Det │ │ │ │ +0001d950: 5374 7261 7465 6779 2c20 3d3e 202e 2e2e Strategy, => ... │ │ │ │ +0001d960: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +0001d970: 436f 6661 6374 6f72 2c0a 2020 2020 2020 Cofactor,. │ │ │ │ +0001d980: 2020 4465 7453 7472 6174 6567 7920 6973 DetStrategy is │ │ │ │ +0001d990: 2061 2073 7472 6174 6567 7920 666f 7220 a strategy for │ │ │ │ +0001d9a0: 616c 6c6f 7769 6e67 2074 6865 2075 7365 allowing the use │ │ │ │ +0001d9b0: 7220 746f 2063 686f 6f73 6520 686f 770a r to choose how. │ │ │ │ +0001d9c0: 2020 2020 2020 2020 6465 7465 726d 696e determin │ │ │ │ +0001d9d0: 616e 7473 2028 6f72 2072 616e 6b29 2c20 ants (or rank), │ │ │ │ +0001d9e0: 6973 2063 6f6d 7075 7465 640a 2020 2020 is computed. │ │ │ │ +0001d9f0: 2020 2a20 2a6e 6f74 6520 5374 7261 7465 * *note Strate │ │ │ │ +0001da00: 6779 3a20 5374 7261 7465 6779 4465 6661 gy: StrategyDefa │ │ │ │ +0001da10: 756c 742c 203d 3e20 2e2e 2e2c 2064 6566 ult, => ..., def │ │ │ │ +0001da20: 6175 6c74 2076 616c 7565 206e 6577 204f ault value new O │ │ │ │ +0001da30: 7074 696f 6e54 6162 6c65 0a20 2020 2020 ptionTable. │ │ │ │ +0001da40: 2020 2066 726f 6d20 7b50 6f69 6e74 7320 from {Points │ │ │ │ +0001da50: 3d3e 2030 2c20 5261 6e64 6f6d 203d 3e20 => 0, Random => │ │ │ │ +0001da60: 3136 2c20 4752 6576 4c65 784c 6172 6765 16, GRevLexLarge │ │ │ │ +0001da70: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ +0001da80: 6c65 7374 5465 726d 0a20 2020 2020 2020 lestTerm. │ │ │ │ +0001da90: 203d 3e20 3136 2c20 4c65 784c 6172 6765 => 16, LexLarge │ │ │ │ +0001daa0: 7374 203d 3e20 302c 204c 6578 536d 616c st => 0, LexSmal │ │ │ │ +0001dab0: 6c65 7374 203d 3e20 3136 2c20 4752 6576 lest => 16, GRev │ │ │ │ +0001dac0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +0001dad0: 3d3e 2031 362c 0a20 2020 2020 2020 2052 => 16,. R │ │ │ │ +0001dae0: 616e 646f 6d4e 6f6e 7a65 726f 203d 3e20 andomNonzero => │ │ │ │ +0001daf0: 3136 2c20 4752 6576 4c65 7853 6d61 6c6c 16, GRevLexSmall │ │ │ │ +0001db00: 6573 7420 3d3e 2031 367d 2c20 7374 7261 est => 16}, stra │ │ │ │ +0001db10: 7465 6769 6573 2066 6f72 2063 686f 6f73 tegies for choos │ │ │ │ +0001db20: 696e 670a 2020 2020 2020 2020 7375 626d ing. subm │ │ │ │ +0001db30: 6174 7269 6365 730a 2020 2020 2020 2a20 atrices. * │ │ │ │ +0001db40: 5665 7262 6f73 6520 3d3e 202e 2e2e 2c20 Verbose => ..., │ │ │ │ +0001db50: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ +0001db60: 6c73 650a 2020 2a20 4f75 7470 7574 733a lse. * Outputs: │ │ │ │ +0001db70: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ +0001db80: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +0001db90: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +0001dba0: 2061 6e20 7570 7065 7220 626f 756e 6420 an upper bound │ │ │ │ +0001dbb0: 666f 7220 7468 650a 2020 2020 2020 2020 for the. │ │ │ │ +0001dbc0: 7072 6f6a 6563 7469 7665 2064 696d 656e projective dimen │ │ │ │ +0001dbd0: 7369 6f6e 206f 6620 4e0a 0a44 6573 6372 sion of N..Descr │ │ │ │ +0001dbe0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0001dbf0: 3d3d 0a0a 5468 6520 6675 6e63 7469 6f6e ==..The function │ │ │ │ +0001dc00: 2070 6469 6d20 7265 7475 726e 7320 7468 pdim returns th │ │ │ │ +0001dc10: 6520 6c65 6e67 7468 206f 6620 6120 7072 e length of a pr │ │ │ │ +0001dc20: 6f6a 6563 7469 7665 2072 6573 6f6c 7574 ojective resolut │ │ │ │ +0001dc30: 696f 6e2e 2049 6620 7468 6520 6d6f 6475 ion. If the modu │ │ │ │ +0001dc40: 6c65 0a70 6173 7365 6420 6973 206e 6f74 le.passed is not │ │ │ │ +0001dc50: 2068 6f6d 6f67 656e 656f 7573 2c20 7468 homogeneous, th │ │ │ │ +0001dc60: 656e 2074 6865 2070 726f 6a65 6374 6976 en the projectiv │ │ │ │ +0001dc70: 6520 7265 736f 6c75 7469 6f6e 206d 6179 e resolution may │ │ │ │ +0001dc80: 206e 6f74 2062 6520 6d69 6e69 6d61 6c0a not be minimal. │ │ │ │ +0001dc90: 616e 6420 736f 2070 6469 6d20 6361 6e20 and so pdim can │ │ │ │ +0001dca0: 6769 7665 2074 6865 2077 726f 6e67 2061 give the wrong a │ │ │ │ +0001dcb0: 6e73 7765 722e 2020 5468 6973 2066 756e nswer. This fun │ │ │ │ +0001dcc0: 6374 696f 6e20 7072 6f6a 4469 6d20 7472 ction projDim tr │ │ │ │ +0001dcd0: 6965 7320 746f 2069 6d70 726f 7665 0a74 ies to improve.t │ │ │ │ +0001dce0: 6869 7320 626f 756e 6420 6279 2063 6f6e his bound by con │ │ │ │ +0001dcf0: 7369 6465 7269 6e67 2069 6465 616c 7320 sidering ideals │ │ │ │ +0001dd00: 6f66 2061 7070 726f 7072 6961 7465 6c79 of appropriately │ │ │ │ +0001dd10: 2073 697a 6564 206d 696e 6f72 7320 6f66 sized minors of │ │ │ │ +0001dd20: 2074 6865 0a72 6573 6f6c 7574 696f 6e20 the.resolution │ │ │ │ +0001dd30: 2873 7461 7274 696e 6720 6672 6f6d 2074 (starting from t │ │ │ │ +0001dd40: 6865 2065 6e64 206f 6620 7468 6520 7265 he end of the re │ │ │ │ +0001dd50: 736f 6c75 7469 6f6e 2061 6e64 2077 6f72 solution and wor │ │ │ │ +0001dd60: 6b69 6e67 2062 6163 6b77 6172 6473 292e king backwards). │ │ │ │ +0001dd70: 0a55 7369 6e67 2074 6865 206f 7074 696f .Using the optio │ │ │ │ +0001dd80: 6e20 4d69 6e44 696d 656e 7369 6f6e 2028 n MinDimension ( │ │ │ │ +0001dd90: 6465 6661 756c 7420 7661 6c75 6520 3029 default value 0) │ │ │ │ +0001dda0: 2067 6976 6573 2061 206c 6f77 6572 2062 gives a lower b │ │ │ │ +0001ddb0: 6f75 6e64 206f 6e20 7468 650a 7072 6f6a ound on the.proj │ │ │ │ +0001ddc0: 6563 7469 7665 2064 696d 656e 7369 6f6e ective dimension │ │ │ │ +0001ddd0: 2c20 696e 6372 6561 7369 6e67 2069 7420 , increasing it │ │ │ │ +0001dde0: 6361 6e20 7468 7573 2069 6d70 726f 7665 can thus improve │ │ │ │ +0001ddf0: 2074 6865 2073 7065 6564 206f 6620 636f the speed of co │ │ │ │ +0001de00: 6d70 7574 6174 696f 6e2e 0a0a 2b2d 2d2d mputation...+--- │ │ │ │ +0001de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001de50: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0001de60: 2051 515b 782c 795d 3b20 2020 2020 2020 QQ[x,y]; │ │ │ │ +0001de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dea0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001def0: 203a 2049 203d 2069 6465 616c 2828 785e : I = ideal((x^ │ │ │ │ +0001df00: 332b 7929 5e32 2c20 2878 5e32 2b79 5e32 3+y)^2, (x^2+y^2 │ │ │ │ +0001df10: 295e 322c 2028 782b 795e 3329 5e32 2c20 )^2, (x+y^3)^2, │ │ │ │ +0001df20: 2878 2a79 295e 3229 3b20 2020 2020 2020 (x*y)^2); │ │ │ │ +0001df30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001df70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 -------+.|i3 : p │ │ │ │ -0001dfd0: 6469 6d28 6d6f 6475 6c65 2049 2920 2020 dim(module I) │ │ │ │ -0001dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001df80: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ +0001df90: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001dfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e010: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 -------+.|i3 : p │ │ │ │ +0001e020: 6469 6d28 6d6f 6475 6c65 2049 2920 2020 dim(module I) │ │ │ │ 0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e060: 6f33 203d 2032 2020 2020 2020 2020 2020 o3 = 2 │ │ │ │ +0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001e0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e0f0: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ -0001e100: 7072 6f6a 4469 6d28 6d6f 6475 6c65 2049 projDim(module I │ │ │ │ -0001e110: 2c20 5374 7261 7465 6779 3d3e 5374 7261 , Strategy=>Stra │ │ │ │ -0001e120: 7465 6779 5261 6e64 6f6d 2920 2020 2020 tegyRandom) │ │ │ │ -0001e130: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e140: 7c20 2d2d 2075 7365 6420 302e 3236 3732 | -- used 0.2672 │ │ │ │ -0001e150: 3737 7320 2863 7075 293b 2030 2e31 3538 77s (cpu); 0.158 │ │ │ │ -0001e160: 3638 3373 2028 7468 7265 6164 293b 2030 683s (thread); 0 │ │ │ │ -0001e170: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0001e180: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1d0: 2020 2020 7c0a 7c6f 3420 3d20 3120 2020 |.|o4 = 1 │ │ │ │ +0001e0a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e0b0: 6f33 203d 2032 2020 2020 2020 2020 2020 o3 = 2 │ │ │ │ +0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001e100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e140: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ +0001e150: 7072 6f6a 4469 6d28 6d6f 6475 6c65 2049 projDim(module I │ │ │ │ +0001e160: 2c20 5374 7261 7465 6779 3d3e 5374 7261 , Strategy=>Stra │ │ │ │ +0001e170: 7465 6779 5261 6e64 6f6d 2920 2020 2020 tegyRandom) │ │ │ │ +0001e180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e190: 7c20 2d2d 2075 7365 6420 302e 3237 3832 | -- used 0.2782 │ │ │ │ +0001e1a0: 3173 2028 6370 7529 3b20 302e 3136 3734 1s (cpu); 0.1674 │ │ │ │ +0001e1b0: 3937 7320 2874 6872 6561 6429 3b20 3073 97s (thread); 0s │ │ │ │ +0001e1c0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0001e1d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e220: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0001e270: 3a20 7469 6d65 2070 726f 6a44 696d 286d : time projDim(m │ │ │ │ -0001e280: 6f64 756c 6520 492c 2053 7472 6174 6567 odule I, Strateg │ │ │ │ -0001e290: 793d 3e53 7472 6174 6567 7952 616e 646f y=>StrategyRando │ │ │ │ -0001e2a0: 6d2c 204d 696e 4469 6d65 6e73 696f 6e20 m, MinDimension │ │ │ │ -0001e2b0: 3d3e 2031 297c 0a7c 202d 2d20 7573 6564 => 1)|.| -- used │ │ │ │ -0001e2c0: 2030 2e30 3130 3730 3236 7320 2863 7075 0.0107026s (cpu │ │ │ │ -0001e2d0: 293b 2030 2e30 3132 3637 3839 7320 2874 ); 0.0126789s (t │ │ │ │ -0001e2e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -0001e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e340: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -0001e350: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e220: 2020 2020 7c0a 7c6f 3420 3d20 3120 2020 |.|o4 = 1 │ │ │ │ +0001e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e270: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +0001e2c0: 3a20 7469 6d65 2070 726f 6a44 696d 286d : time projDim(m │ │ │ │ +0001e2d0: 6f64 756c 6520 492c 2053 7472 6174 6567 odule I, Strateg │ │ │ │ +0001e2e0: 793d 3e53 7472 6174 6567 7952 616e 646f y=>StrategyRando │ │ │ │ +0001e2f0: 6d2c 204d 696e 4469 6d65 6e73 696f 6e20 m, MinDimension │ │ │ │ +0001e300: 3d3e 2031 297c 0a7c 202d 2d20 7573 6564 => 1)|.| -- used │ │ │ │ +0001e310: 2030 2e30 3132 3537 3131 7320 2863 7075 0.0125711s (cpu │ │ │ │ +0001e320: 293b 2030 2e30 3135 3038 3537 7320 2874 ); 0.0150857s (t │ │ │ │ +0001e330: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e390: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0001e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3e0: 2d2b 0a0a 5468 6520 6f70 7469 6f6e 204d -+..The option M │ │ │ │ -0001e3f0: 6178 4d69 6e6f 7273 2063 616e 2062 6520 axMinors can be │ │ │ │ -0001e400: 7573 6564 2074 6f20 636f 6e74 726f 6c20 used to control │ │ │ │ -0001e410: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ -0001e420: 6172 6520 636f 6d70 7574 6564 2061 740a are computed at. │ │ │ │ -0001e430: 6561 6368 2073 7465 702e 2049 6620 7468 each step. If th │ │ │ │ -0001e440: 6973 2069 7320 6e6f 7420 7370 6563 6966 is is not specif │ │ │ │ -0001e450: 6965 642c 2074 6865 206e 756d 6265 7220 ied, the number │ │ │ │ -0001e460: 6f66 206d 696e 6f72 7320 6973 2061 2066 of minors is a f │ │ │ │ -0001e470: 756e 6374 696f 6e20 6f66 2074 6865 0a64 unction of the.d │ │ │ │ -0001e480: 696d 656e 7369 6f6e 2024 6424 206f 6620 imension $d$ of │ │ │ │ -0001e490: 7468 6520 706f 6c79 6e6f 6d69 616c 2072 the polynomial r │ │ │ │ -0001e4a0: 696e 6720 616e 6420 7468 6520 706f 7373 ing and the poss │ │ │ │ -0001e4b0: 6962 6c65 206d 696e 6f72 7320 2463 242e ible minors $c$. │ │ │ │ -0001e4c0: 2053 7065 6369 6669 6361 6c6c 790a 6974 Specifically.it │ │ │ │ -0001e4d0: 2069 7320 3130 202a 2064 202b 2032 202a is 10 * d + 2 * │ │ │ │ -0001e4e0: 206c 6f67 5f31 2e33 2863 292e 204f 7468 log_1.3(c). Oth │ │ │ │ -0001e4f0: 6572 7769 7365 2074 6865 2075 7365 7220 erwise the user │ │ │ │ -0001e500: 6361 6e20 7365 7420 7468 6520 6f70 7469 can set the opti │ │ │ │ -0001e510: 6f6e 204d 6178 4d69 6e6f 7273 0a3d 3e20 on MaxMinors.=> │ │ │ │ -0001e520: 5a5a 2074 6f20 7370 6563 6966 7920 7468 ZZ to specify th │ │ │ │ -0001e530: 6174 2061 2066 6978 6564 2069 6e74 6567 at a fixed integ │ │ │ │ -0001e540: 6572 2069 7320 7573 6564 2066 6f72 2065 er is used for e │ │ │ │ -0001e550: 6163 6820 7374 6570 2e20 2041 6c74 6572 ach step. Alter │ │ │ │ -0001e560: 6e61 7469 7665 6c79 2c0a 7468 6520 7573 natively,.the us │ │ │ │ -0001e570: 6572 2063 616e 2063 6f6e 7472 6f6c 2074 er can control t │ │ │ │ -0001e580: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ -0001e590: 6f72 7320 636f 6d70 7574 6564 2061 7420 ors computed at │ │ │ │ -0001e5a0: 6561 6368 2073 7465 7020 6279 2073 6574 each step by set │ │ │ │ -0001e5b0: 7469 6e67 2074 6865 0a6f 7074 696f 6e20 ting the.option │ │ │ │ -0001e5c0: 4d61 784d 696e 6f72 7320 3d3e 204c 6973 MaxMinors => Lis │ │ │ │ -0001e5d0: 742e 2020 496e 2074 6869 7320 6361 7365 t. In this case │ │ │ │ -0001e5e0: 2c20 7468 6520 6c69 7374 2073 7065 6369 , the list speci │ │ │ │ -0001e5f0: 6669 6573 2068 6f77 206d 616e 7920 6d69 fies how many mi │ │ │ │ -0001e600: 6e6f 7273 2074 6f0a 6265 2063 6f6d 7075 nors to.be compu │ │ │ │ -0001e610: 7465 6420 6174 2065 6163 6820 7374 6570 ted at each step │ │ │ │ -0001e620: 2c20 2877 6f72 6b69 6e67 2062 6163 6b77 , (working backw │ │ │ │ -0001e630: 6172 6473 292e 2046 696e 616c 6c79 2c20 ards). Finally, │ │ │ │ -0001e640: 796f 7520 6361 6e20 616c 736f 2073 6574 you can also set │ │ │ │ -0001e650: 0a4d 6178 4d69 6e6f 7273 2074 6f20 6265 .MaxMinors to be │ │ │ │ -0001e660: 2061 2063 7573 746f 6d20 6675 6e63 7469 a custom functi │ │ │ │ -0001e670: 6f6e 206f 6620 7468 6520 6469 6d65 6e73 on of the dimens │ │ │ │ -0001e680: 696f 6e20 2464 2420 6f66 2074 6865 2070 ion $d$ of the p │ │ │ │ -0001e690: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a61 olynomial ring.a │ │ │ │ -0001e6a0: 6e64 2074 6865 206d 6178 696d 756d 206e nd the maximum n │ │ │ │ -0001e6b0: 756d 6265 7220 6f66 206d 696e 6f72 732e umber of minors. │ │ │ │ -0001e6c0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0001e6d0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2070 ===.. * *note p │ │ │ │ -0001e6e0: 6469 6d3a 2028 4d61 6361 756c 6179 3244 dim: (Macaulay2D │ │ │ │ -0001e6f0: 6f63 2970 6469 6d2c 202d 2d20 636f 6d70 oc)pdim, -- comp │ │ │ │ -0001e700: 7574 6520 7468 6520 7072 6f6a 6563 7469 ute the projecti │ │ │ │ -0001e710: 7665 2064 696d 656e 7369 6f6e 0a0a 5761 ve dimension..Wa │ │ │ │ -0001e720: 7973 2074 6f20 7573 6520 7072 6f6a 4469 ys to use projDi │ │ │ │ -0001e730: 6d3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d m:.============= │ │ │ │ -0001e740: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7072 =======.. * "pr │ │ │ │ -0001e750: 6f6a 4469 6d28 4d6f 6475 6c65 2922 0a0a ojDim(Module)".. │ │ │ │ -0001e760: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0001e770: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0001e780: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0001e790: 7420 2a6e 6f74 6520 7072 6f6a 4469 6d3a t *note projDim: │ │ │ │ -0001e7a0: 2070 726f 6a44 696d 2c20 6973 2061 202a projDim, is a * │ │ │ │ -0001e7b0: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0001e7c0: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ -0001e7d0: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ -0001e7e0: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ -0001e7f0: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ -0001e800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0001e850: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0001e860: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0001e870: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0001e880: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0001e890: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0001e8a0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0001e8b0: 6167 6573 2f46 6173 744d 696e 6f72 732e ages/FastMinors. │ │ │ │ -0001e8c0: 0a6d 323a 3230 3739 3a30 2e0a 1f0a 4669 .m2:2079:0....Fi │ │ │ │ -0001e8d0: 6c65 3a20 4661 7374 4d69 6e6f 7273 2e69 le: FastMinors.i │ │ │ │ -0001e8e0: 6e66 6f2c 204e 6f64 653a 2072 6563 7572 nfo, Node: recur │ │ │ │ -0001e8f0: 7369 7665 4d69 6e6f 7273 2c20 4e65 7874 siveMinors, Next │ │ │ │ -0001e900: 3a20 7265 6775 6c61 7249 6e43 6f64 696d : regularInCodim │ │ │ │ -0001e910: 656e 7369 6f6e 2c20 5072 6576 3a20 7072 ension, Prev: pr │ │ │ │ -0001e920: 6f6a 4469 6d2c 2055 703a 2054 6f70 0a0a ojDim, Up: Top.. │ │ │ │ -0001e930: 7265 6375 7273 6976 654d 696e 6f72 7320 recursiveMinors │ │ │ │ -0001e940: 2d2d 2075 7365 7320 6120 7265 6375 7273 -- uses a recurs │ │ │ │ -0001e950: 6976 6520 636f 6661 6374 6f72 2061 6c67 ive cofactor alg │ │ │ │ -0001e960: 6f72 6974 686d 2074 6f20 636f 6d70 7574 orithm to comput │ │ │ │ -0001e970: 6520 7468 6520 6964 6561 6c20 6f66 206d e the ideal of m │ │ │ │ -0001e980: 696e 6f72 7320 6f66 2061 206d 6174 7269 inors of a matri │ │ │ │ -0001e990: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ -0001e9a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001e9f0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0001ea00: 0a20 2020 2020 2020 2049 203d 2072 6563 . I = rec │ │ │ │ -0001ea10: 7572 7369 7665 4d69 6e6f 7273 286e 2c20 ursiveMinors(n, │ │ │ │ -0001ea20: 4d2c 2054 6872 6561 6473 3d3e 742c 204d M, Threads=>t, M │ │ │ │ -0001ea30: 696e 6f72 7343 6163 6865 3d3e 6229 0a20 inorsCache=>b). │ │ │ │ -0001ea40: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0001ea50: 202a 206e 2c20 616e 202a 6e6f 7465 2069 * n, an *note i │ │ │ │ -0001ea60: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -0001ea70: 7932 446f 6329 5a5a 2c2c 2074 6865 2073 y2Doc)ZZ,, the s │ │ │ │ -0001ea80: 697a 6520 6f66 206d 696e 6f72 7320 746f ize of minors to │ │ │ │ -0001ea90: 2063 6f6d 7075 7465 0a20 2020 2020 202a compute. * │ │ │ │ -0001eaa0: 204d 2c20 6120 2a6e 6f74 6520 6d61 7472 M, a *note matr │ │ │ │ -0001eab0: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ -0001eac0: 6329 4d61 7472 6978 2c2c 200a 2020 2020 c)Matrix,, . │ │ │ │ -0001ead0: 2020 2a20 742c 2061 6e20 2a6e 6f74 6520 * t, an *note │ │ │ │ -0001eae0: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ -0001eaf0: 6179 3244 6f63 295a 5a2c 2c20 616e 206f ay2Doc)ZZ,, an o │ │ │ │ -0001eb00: 7074 696f 6e61 6c20 696e 7075 742c 2077 ptional input, w │ │ │ │ -0001eb10: 6869 6368 0a20 2020 2020 2020 2064 6573 hich. des │ │ │ │ -0001eb20: 6372 6962 6573 2074 6865 206e 756d 6265 cribes the numbe │ │ │ │ -0001eb30: 7220 6f66 2074 6872 6561 6473 2074 6f20 r of threads to │ │ │ │ -0001eb40: 7573 6573 0a20 2020 2020 202a 2062 2c20 uses. * b, │ │ │ │ -0001eb50: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ -0001eb60: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ -0001eb70: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2061 2Doc)Boolean,, a │ │ │ │ -0001eb80: 6e20 6f70 7469 6f6e 616c 2069 6e70 7574 n optional input │ │ │ │ -0001eb90: 2c0a 2020 2020 2020 2020 7768 6963 6820 ,. which │ │ │ │ -0001eba0: 7361 7973 2077 6865 7468 6572 2074 6f20 says whether to │ │ │ │ -0001ebb0: 6361 6368 6520 696e 2069 6e70 7574 0a20 cache in input. │ │ │ │ -0001ebc0: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -0001ebd0: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -0001ebe0: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -0001ebf0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0001ec00: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -0001ec10: 2020 2020 202a 204d 696e 6f72 7343 6163 * MinorsCac │ │ │ │ -0001ec20: 6865 203d 3e20 2e2e 2e2c 2064 6566 6175 he => ..., defau │ │ │ │ -0001ec30: 6c74 2076 616c 7565 2074 7275 650a 2020 lt value true. │ │ │ │ -0001ec40: 2020 2020 2a20 2a6e 6f74 6520 5468 7265 * *note Thre │ │ │ │ -0001ec50: 6164 733a 2069 7352 616e 6b41 744c 6561 ads: isRankAtLea │ │ │ │ -0001ec60: 7374 5f6c 705f 7064 5f70 645f 7064 5f63 st_lp_pd_pd_pd_c │ │ │ │ -0001ec70: 6d54 6872 6561 6473 3d3e 5f70 645f 7064 mThreads=>_pd_pd │ │ │ │ -0001ec80: 5f70 645f 7270 2c20 3d3e 0a20 2020 2020 _pd_rp, =>. │ │ │ │ -0001ec90: 2020 202e 2e2e 2c20 6465 6661 756c 7420 ..., default │ │ │ │ -0001eca0: 7661 6c75 6520 302c 2061 6e20 6f70 7469 value 0, an opti │ │ │ │ -0001ecb0: 6f6e 2066 6f72 2076 6172 696f 7573 2066 on for various f │ │ │ │ -0001ecc0: 756e 6374 696f 6e73 0a20 2020 2020 202a unctions. * │ │ │ │ -0001ecd0: 2056 6572 626f 7365 203d 3e20 2e2e 2e2c Verbose => ..., │ │ │ │ -0001ece0: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ -0001ecf0: 616c 7365 0a20 202a 204f 7574 7075 7473 alse. * Outputs │ │ │ │ -0001ed00: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ -0001ed10: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -0001ed20: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -0001ed30: 2c2c 2074 6865 2069 6465 616c 206f 6620 ,, the ideal of │ │ │ │ -0001ed40: 6d69 6e6f 7273 206f 6620 4d0a 0a44 6573 minors of M..Des │ │ │ │ -0001ed50: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0001ed60: 3d3d 3d3d 0a0a 4769 7665 6e20 6120 6d61 ====..Given a ma │ │ │ │ -0001ed70: 7472 6978 2024 4d24 2c20 7468 6973 2063 trix $M$, this c │ │ │ │ -0001ed80: 6f6d 7075 7465 7320 7468 6520 6964 6561 omputes the idea │ │ │ │ -0001ed90: 6c20 6f66 2064 6574 6572 6d69 6e61 6e74 l of determinant │ │ │ │ -0001eda0: 7320 6f66 2073 697a 6520 246e 205c 7469 s of size $n \ti │ │ │ │ -0001edb0: 6d65 730a 6e24 2073 7562 6d61 7472 6963 mes.n$ submatric │ │ │ │ -0001edc0: 6573 2e20 5468 6520 7265 6375 7273 6976 es. The recursiv │ │ │ │ -0001edd0: 654d 696e 6f72 7320 6675 6e63 7469 6f6e eMinors function │ │ │ │ -0001ede0: 2075 7365 7320 6120 7265 6375 7273 6976 uses a recursiv │ │ │ │ -0001edf0: 6520 7374 7261 7465 6779 2c20 6b65 6570 e strategy, keep │ │ │ │ -0001ee00: 696e 670a 7472 6163 6b20 6f66 2074 6865 ing.track of the │ │ │ │ -0001ee10: 2073 6d61 6c6c 6572 206d 696e 6f72 7320 smaller minors │ │ │ │ -0001ee20: 636f 6d70 7574 6564 2073 6f20 6661 722c computed so far, │ │ │ │ -0001ee30: 2075 6e6c 696b 6520 7468 6520 6275 696c unlike the buil │ │ │ │ -0001ee40: 742d 696e 2043 6f66 6163 746f 720a 7374 t-in Cofactor.st │ │ │ │ -0001ee50: 7261 7465 6779 2066 6f72 206d 696e 6f72 rategy for minor │ │ │ │ -0001ee60: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ -0001ee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0001eea0: 2052 203d 2051 515b 782c 795d 3b20 2020 R = QQ[x,y]; │ │ │ │ -0001eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001eed0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ef00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0001ef10: 204d 203d 2072 616e 646f 6d28 525e 7b35 M = random(R^{5 │ │ │ │ -0001ef20: 2c35 2c35 2c35 2c35 2c35 7d2c 2052 5e37 ,5,5,5,5,5}, R^7 │ │ │ │ -0001ef30: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -0001ef40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001ef80: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -0001ef90: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001e390: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +0001e3a0: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ +0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e430: 2d2b 0a0a 5468 6520 6f70 7469 6f6e 204d -+..The option M │ │ │ │ +0001e440: 6178 4d69 6e6f 7273 2063 616e 2062 6520 axMinors can be │ │ │ │ +0001e450: 7573 6564 2074 6f20 636f 6e74 726f 6c20 used to control │ │ │ │ +0001e460: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ +0001e470: 6172 6520 636f 6d70 7574 6564 2061 740a are computed at. │ │ │ │ +0001e480: 6561 6368 2073 7465 702e 2049 6620 7468 each step. If th │ │ │ │ +0001e490: 6973 2069 7320 6e6f 7420 7370 6563 6966 is is not specif │ │ │ │ +0001e4a0: 6965 642c 2074 6865 206e 756d 6265 7220 ied, the number │ │ │ │ +0001e4b0: 6f66 206d 696e 6f72 7320 6973 2061 2066 of minors is a f │ │ │ │ +0001e4c0: 756e 6374 696f 6e20 6f66 2074 6865 0a64 unction of the.d │ │ │ │ +0001e4d0: 696d 656e 7369 6f6e 2024 6424 206f 6620 imension $d$ of │ │ │ │ +0001e4e0: 7468 6520 706f 6c79 6e6f 6d69 616c 2072 the polynomial r │ │ │ │ +0001e4f0: 696e 6720 616e 6420 7468 6520 706f 7373 ing and the poss │ │ │ │ +0001e500: 6962 6c65 206d 696e 6f72 7320 2463 242e ible minors $c$. │ │ │ │ +0001e510: 2053 7065 6369 6669 6361 6c6c 790a 6974 Specifically.it │ │ │ │ +0001e520: 2069 7320 3130 202a 2064 202b 2032 202a is 10 * d + 2 * │ │ │ │ +0001e530: 206c 6f67 5f31 2e33 2863 292e 204f 7468 log_1.3(c). Oth │ │ │ │ +0001e540: 6572 7769 7365 2074 6865 2075 7365 7220 erwise the user │ │ │ │ +0001e550: 6361 6e20 7365 7420 7468 6520 6f70 7469 can set the opti │ │ │ │ +0001e560: 6f6e 204d 6178 4d69 6e6f 7273 0a3d 3e20 on MaxMinors.=> │ │ │ │ +0001e570: 5a5a 2074 6f20 7370 6563 6966 7920 7468 ZZ to specify th │ │ │ │ +0001e580: 6174 2061 2066 6978 6564 2069 6e74 6567 at a fixed integ │ │ │ │ +0001e590: 6572 2069 7320 7573 6564 2066 6f72 2065 er is used for e │ │ │ │ +0001e5a0: 6163 6820 7374 6570 2e20 2041 6c74 6572 ach step. Alter │ │ │ │ +0001e5b0: 6e61 7469 7665 6c79 2c0a 7468 6520 7573 natively,.the us │ │ │ │ +0001e5c0: 6572 2063 616e 2063 6f6e 7472 6f6c 2074 er can control t │ │ │ │ +0001e5d0: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ +0001e5e0: 6f72 7320 636f 6d70 7574 6564 2061 7420 ors computed at │ │ │ │ +0001e5f0: 6561 6368 2073 7465 7020 6279 2073 6574 each step by set │ │ │ │ +0001e600: 7469 6e67 2074 6865 0a6f 7074 696f 6e20 ting the.option │ │ │ │ +0001e610: 4d61 784d 696e 6f72 7320 3d3e 204c 6973 MaxMinors => Lis │ │ │ │ +0001e620: 742e 2020 496e 2074 6869 7320 6361 7365 t. In this case │ │ │ │ +0001e630: 2c20 7468 6520 6c69 7374 2073 7065 6369 , the list speci │ │ │ │ +0001e640: 6669 6573 2068 6f77 206d 616e 7920 6d69 fies how many mi │ │ │ │ +0001e650: 6e6f 7273 2074 6f0a 6265 2063 6f6d 7075 nors to.be compu │ │ │ │ +0001e660: 7465 6420 6174 2065 6163 6820 7374 6570 ted at each step │ │ │ │ +0001e670: 2c20 2877 6f72 6b69 6e67 2062 6163 6b77 , (working backw │ │ │ │ +0001e680: 6172 6473 292e 2046 696e 616c 6c79 2c20 ards). Finally, │ │ │ │ +0001e690: 796f 7520 6361 6e20 616c 736f 2073 6574 you can also set │ │ │ │ +0001e6a0: 0a4d 6178 4d69 6e6f 7273 2074 6f20 6265 .MaxMinors to be │ │ │ │ +0001e6b0: 2061 2063 7573 746f 6d20 6675 6e63 7469 a custom functi │ │ │ │ +0001e6c0: 6f6e 206f 6620 7468 6520 6469 6d65 6e73 on of the dimens │ │ │ │ +0001e6d0: 696f 6e20 2464 2420 6f66 2074 6865 2070 ion $d$ of the p │ │ │ │ +0001e6e0: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a61 olynomial ring.a │ │ │ │ +0001e6f0: 6e64 2074 6865 206d 6178 696d 756d 206e nd the maximum n │ │ │ │ +0001e700: 756d 6265 7220 6f66 206d 696e 6f72 732e umber of minors. │ │ │ │ +0001e710: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0001e720: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2070 ===.. * *note p │ │ │ │ +0001e730: 6469 6d3a 2028 4d61 6361 756c 6179 3244 dim: (Macaulay2D │ │ │ │ +0001e740: 6f63 2970 6469 6d2c 202d 2d20 636f 6d70 oc)pdim, -- comp │ │ │ │ +0001e750: 7574 6520 7468 6520 7072 6f6a 6563 7469 ute the projecti │ │ │ │ +0001e760: 7665 2064 696d 656e 7369 6f6e 0a0a 5761 ve dimension..Wa │ │ │ │ +0001e770: 7973 2074 6f20 7573 6520 7072 6f6a 4469 ys to use projDi │ │ │ │ +0001e780: 6d3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d m:.============= │ │ │ │ +0001e790: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7072 =======.. * "pr │ │ │ │ +0001e7a0: 6f6a 4469 6d28 4d6f 6475 6c65 2922 0a0a ojDim(Module)".. │ │ │ │ +0001e7b0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0001e7c0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0001e7d0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0001e7e0: 7420 2a6e 6f74 6520 7072 6f6a 4469 6d3a t *note projDim: │ │ │ │ +0001e7f0: 2070 726f 6a44 696d 2c20 6973 2061 202a projDim, is a * │ │ │ │ +0001e800: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +0001e810: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +0001e820: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ +0001e830: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +0001e840: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ +0001e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +0001e8a0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +0001e8b0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +0001e8c0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +0001e8d0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +0001e8e0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +0001e8f0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +0001e900: 6167 6573 2f46 6173 744d 696e 6f72 732e ages/FastMinors. │ │ │ │ +0001e910: 0a6d 323a 3230 3739 3a30 2e0a 1f0a 4669 .m2:2079:0....Fi │ │ │ │ +0001e920: 6c65 3a20 4661 7374 4d69 6e6f 7273 2e69 le: FastMinors.i │ │ │ │ +0001e930: 6e66 6f2c 204e 6f64 653a 2072 6563 7572 nfo, Node: recur │ │ │ │ +0001e940: 7369 7665 4d69 6e6f 7273 2c20 4e65 7874 siveMinors, Next │ │ │ │ +0001e950: 3a20 7265 6775 6c61 7249 6e43 6f64 696d : regularInCodim │ │ │ │ +0001e960: 656e 7369 6f6e 2c20 5072 6576 3a20 7072 ension, Prev: pr │ │ │ │ +0001e970: 6f6a 4469 6d2c 2055 703a 2054 6f70 0a0a ojDim, Up: Top.. │ │ │ │ +0001e980: 7265 6375 7273 6976 654d 696e 6f72 7320 recursiveMinors │ │ │ │ +0001e990: 2d2d 2075 7365 7320 6120 7265 6375 7273 -- uses a recurs │ │ │ │ +0001e9a0: 6976 6520 636f 6661 6374 6f72 2061 6c67 ive cofactor alg │ │ │ │ +0001e9b0: 6f72 6974 686d 2074 6f20 636f 6d70 7574 orithm to comput │ │ │ │ +0001e9c0: 6520 7468 6520 6964 6561 6c20 6f66 206d e the ideal of m │ │ │ │ +0001e9d0: 696e 6f72 7320 6f66 2061 206d 6174 7269 inors of a matri │ │ │ │ +0001e9e0: 780a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a x.************** │ │ │ │ +0001e9f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001ea40: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +0001ea50: 0a20 2020 2020 2020 2049 203d 2072 6563 . I = rec │ │ │ │ +0001ea60: 7572 7369 7665 4d69 6e6f 7273 286e 2c20 ursiveMinors(n, │ │ │ │ +0001ea70: 4d2c 2054 6872 6561 6473 3d3e 742c 204d M, Threads=>t, M │ │ │ │ +0001ea80: 696e 6f72 7343 6163 6865 3d3e 6229 0a20 inorsCache=>b). │ │ │ │ +0001ea90: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0001eaa0: 202a 206e 2c20 616e 202a 6e6f 7465 2069 * n, an *note i │ │ │ │ +0001eab0: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ +0001eac0: 7932 446f 6329 5a5a 2c2c 2074 6865 2073 y2Doc)ZZ,, the s │ │ │ │ +0001ead0: 697a 6520 6f66 206d 696e 6f72 7320 746f ize of minors to │ │ │ │ +0001eae0: 2063 6f6d 7075 7465 0a20 2020 2020 202a compute. * │ │ │ │ +0001eaf0: 204d 2c20 6120 2a6e 6f74 6520 6d61 7472 M, a *note matr │ │ │ │ +0001eb00: 6978 3a20 284d 6163 6175 6c61 7932 446f ix: (Macaulay2Do │ │ │ │ +0001eb10: 6329 4d61 7472 6978 2c2c 200a 2020 2020 c)Matrix,, . │ │ │ │ +0001eb20: 2020 2a20 742c 2061 6e20 2a6e 6f74 6520 * t, an *note │ │ │ │ +0001eb30: 696e 7465 6765 723a 2028 4d61 6361 756c integer: (Macaul │ │ │ │ +0001eb40: 6179 3244 6f63 295a 5a2c 2c20 616e 206f ay2Doc)ZZ,, an o │ │ │ │ +0001eb50: 7074 696f 6e61 6c20 696e 7075 742c 2077 ptional input, w │ │ │ │ +0001eb60: 6869 6368 0a20 2020 2020 2020 2064 6573 hich. des │ │ │ │ +0001eb70: 6372 6962 6573 2074 6865 206e 756d 6265 cribes the numbe │ │ │ │ +0001eb80: 7220 6f66 2074 6872 6561 6473 2074 6f20 r of threads to │ │ │ │ +0001eb90: 7573 6573 0a20 2020 2020 202a 2062 2c20 uses. * b, │ │ │ │ +0001eba0: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ +0001ebb0: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ +0001ebc0: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2061 2Doc)Boolean,, a │ │ │ │ +0001ebd0: 6e20 6f70 7469 6f6e 616c 2069 6e70 7574 n optional input │ │ │ │ +0001ebe0: 2c0a 2020 2020 2020 2020 7768 6963 6820 ,. which │ │ │ │ +0001ebf0: 7361 7973 2077 6865 7468 6572 2074 6f20 says whether to │ │ │ │ +0001ec00: 6361 6368 6520 696e 2069 6e70 7574 0a20 cache in input. │ │ │ │ +0001ec10: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +0001ec20: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +0001ec30: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +0001ec40: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +0001ec50: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +0001ec60: 2020 2020 202a 204d 696e 6f72 7343 6163 * MinorsCac │ │ │ │ +0001ec70: 6865 203d 3e20 2e2e 2e2c 2064 6566 6175 he => ..., defau │ │ │ │ +0001ec80: 6c74 2076 616c 7565 2074 7275 650a 2020 lt value true. │ │ │ │ +0001ec90: 2020 2020 2a20 2a6e 6f74 6520 5468 7265 * *note Thre │ │ │ │ +0001eca0: 6164 733a 2069 7352 616e 6b41 744c 6561 ads: isRankAtLea │ │ │ │ +0001ecb0: 7374 5f6c 705f 7064 5f70 645f 7064 5f63 st_lp_pd_pd_pd_c │ │ │ │ +0001ecc0: 6d54 6872 6561 6473 3d3e 5f70 645f 7064 mThreads=>_pd_pd │ │ │ │ +0001ecd0: 5f70 645f 7270 2c20 3d3e 0a20 2020 2020 _pd_rp, =>. │ │ │ │ +0001ece0: 2020 202e 2e2e 2c20 6465 6661 756c 7420 ..., default │ │ │ │ +0001ecf0: 7661 6c75 6520 302c 2061 6e20 6f70 7469 value 0, an opti │ │ │ │ +0001ed00: 6f6e 2066 6f72 2076 6172 696f 7573 2066 on for various f │ │ │ │ +0001ed10: 756e 6374 696f 6e73 0a20 2020 2020 202a unctions. * │ │ │ │ +0001ed20: 2056 6572 626f 7365 203d 3e20 2e2e 2e2c Verbose => ..., │ │ │ │ +0001ed30: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +0001ed40: 616c 7365 0a20 202a 204f 7574 7075 7473 alse. * Outputs │ │ │ │ +0001ed50: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ +0001ed60: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ +0001ed70: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ +0001ed80: 2c2c 2074 6865 2069 6465 616c 206f 6620 ,, the ideal of │ │ │ │ +0001ed90: 6d69 6e6f 7273 206f 6620 4d0a 0a44 6573 minors of M..Des │ │ │ │ +0001eda0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0001edb0: 3d3d 3d3d 0a0a 4769 7665 6e20 6120 6d61 ====..Given a ma │ │ │ │ +0001edc0: 7472 6978 2024 4d24 2c20 7468 6973 2063 trix $M$, this c │ │ │ │ +0001edd0: 6f6d 7075 7465 7320 7468 6520 6964 6561 omputes the idea │ │ │ │ +0001ede0: 6c20 6f66 2064 6574 6572 6d69 6e61 6e74 l of determinant │ │ │ │ +0001edf0: 7320 6f66 2073 697a 6520 246e 205c 7469 s of size $n \ti │ │ │ │ +0001ee00: 6d65 730a 6e24 2073 7562 6d61 7472 6963 mes.n$ submatric │ │ │ │ +0001ee10: 6573 2e20 5468 6520 7265 6375 7273 6976 es. The recursiv │ │ │ │ +0001ee20: 654d 696e 6f72 7320 6675 6e63 7469 6f6e eMinors function │ │ │ │ +0001ee30: 2075 7365 7320 6120 7265 6375 7273 6976 uses a recursiv │ │ │ │ +0001ee40: 6520 7374 7261 7465 6779 2c20 6b65 6570 e strategy, keep │ │ │ │ +0001ee50: 696e 670a 7472 6163 6b20 6f66 2074 6865 ing.track of the │ │ │ │ +0001ee60: 2073 6d61 6c6c 6572 206d 696e 6f72 7320 smaller minors │ │ │ │ +0001ee70: 636f 6d70 7574 6564 2073 6f20 6661 722c computed so far, │ │ │ │ +0001ee80: 2075 6e6c 696b 6520 7468 6520 6275 696c unlike the buil │ │ │ │ +0001ee90: 742d 696e 2043 6f66 6163 746f 720a 7374 t-in Cofactor.st │ │ │ │ +0001eea0: 7261 7465 6779 2066 6f72 206d 696e 6f72 rategy for minor │ │ │ │ +0001eeb0: 730a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s..+------------ │ │ │ │ +0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0001eef0: 2052 203d 2051 515b 782c 795d 3b20 2020 R = QQ[x,y]; │ │ │ │ +0001ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef20: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ef50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0001ef60: 204d 203d 2072 616e 646f 6d28 525e 7b35 M = random(R^{5 │ │ │ │ +0001ef70: 2c35 2c35 2c35 2c35 2c35 7d2c 2052 5e37 ,5,5,5,5,5}, R^7 │ │ │ │ +0001ef80: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +0001ef90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efb0: 207c 0a7c 6f32 203a 204d 6174 7269 7820 |.|o2 : Matrix │ │ │ │ -0001efc0: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ -0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efe0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001eff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f020: 2d2b 0a7c 6933 203a 2074 696d 6520 4932 -+.|i3 : time I2 │ │ │ │ -0001f030: 203d 2072 6563 7572 7369 7665 4d69 6e6f = recursiveMino │ │ │ │ -0001f040: 7273 2834 2c20 4d2c 2054 6872 6561 6473 rs(4, M, Threads │ │ │ │ -0001f050: 3d3e 3029 3b20 2020 207c 0a7c 202d 2d20 =>0); |.| -- │ │ │ │ -0001f060: 7573 6564 2030 2e35 3134 3935 3273 2028 used 0.514952s ( │ │ │ │ -0001f070: 6370 7529 3b20 302e 3436 3135 3434 7320 cpu); 0.461544s │ │ │ │ -0001f080: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -0001f090: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ -0001f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0c0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0001f0d0: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ -0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001efd0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +0001efe0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +0001eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f000: 207c 0a7c 6f32 203a 204d 6174 7269 7820 |.|o2 : Matrix │ │ │ │ +0001f010: 5220 203c 2d2d 2052 2020 2020 2020 2020 R <-- R │ │ │ │ +0001f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f030: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f070: 2d2b 0a7c 6933 203a 2074 696d 6520 4932 -+.|i3 : time I2 │ │ │ │ +0001f080: 203d 2072 6563 7572 7369 7665 4d69 6e6f = recursiveMino │ │ │ │ +0001f090: 7273 2834 2c20 4d2c 2054 6872 6561 6473 rs(4, M, Threads │ │ │ │ +0001f0a0: 3d3e 3029 3b20 2020 207c 0a7c 202d 2d20 =>0); |.| -- │ │ │ │ +0001f0b0: 7573 6564 2030 2e35 3638 3931 3873 2028 used 0.568918s ( │ │ │ │ +0001f0c0: 6370 7529 3b20 302e 3530 3735 3331 7320 cpu); 0.507531s │ │ │ │ +0001f0d0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +0001f0e0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f100: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f130: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0001f140: 2074 696d 6520 4931 203d 206d 696e 6f72 time I1 = minor │ │ │ │ -0001f150: 7328 342c 204d 2c20 5374 7261 7465 6779 s(4, M, Strategy │ │ │ │ -0001f160: 3d3e 436f 6661 6374 6f72 293b 2020 2020 =>Cofactor); │ │ │ │ -0001f170: 207c 0a7c 202d 2d20 7573 6564 2031 2e34 |.| -- used 1.4 │ │ │ │ -0001f180: 3738 3831 7320 2863 7075 293b 2031 2e32 7881s (cpu); 1.2 │ │ │ │ -0001f190: 3736 3837 7320 2874 6872 6561 6429 3b20 7687s (thread); │ │ │ │ -0001f1a0: 3073 2028 6763 2920 207c 0a7c 2020 2020 0s (gc) |.| │ │ │ │ -0001f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1e0: 207c 0a7c 6f34 203a 2049 6465 616c 206f |.|o4 : Ideal o │ │ │ │ -0001f1f0: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f110: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +0001f120: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ +0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f180: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +0001f190: 2074 696d 6520 4931 203d 206d 696e 6f72 time I1 = minor │ │ │ │ +0001f1a0: 7328 342c 204d 2c20 5374 7261 7465 6779 s(4, M, Strategy │ │ │ │ +0001f1b0: 3d3e 436f 6661 6374 6f72 293b 2020 2020 =>Cofactor); │ │ │ │ +0001f1c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e33 |.| -- used 1.3 │ │ │ │ +0001f1d0: 3731 3235 7320 2863 7075 293b 2031 2e32 7125s (cpu); 1.2 │ │ │ │ +0001f1e0: 3534 3831 7320 2874 6872 6561 6429 3b20 5481s (thread); │ │ │ │ +0001f1f0: 3073 2028 6763 2920 207c 0a7c 2020 2020 0s (gc) |.| │ │ │ │ 0001f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f210: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f250: 2d2b 0a7c 6935 203a 2049 3120 3d3d 2049 -+.|i5 : I1 == I │ │ │ │ -0001f260: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2c0: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ -0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f230: 207c 0a7c 6f34 203a 2049 6465 616c 206f |.|o4 : Ideal o │ │ │ │ +0001f240: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ +0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f260: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2a0: 2d2b 0a7c 6935 203a 2049 3120 3d3d 2049 -+.|i5 : I1 == I │ │ │ │ +0001f2b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f2d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0001f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f330: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -0001f340: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0001f350: 206d 696e 6f72 733a 2028 4d61 6361 756c minors: (Macaul │ │ │ │ -0001f360: 6179 3244 6f63 296d 696e 6f72 735f 6c70 ay2Doc)minors_lp │ │ │ │ -0001f370: 5a5a 5f63 6d4d 6174 7269 785f 7270 2c20 ZZ_cmMatrix_rp, │ │ │ │ -0001f380: 2d2d 2069 6465 616c 2067 656e 6572 6174 -- ideal generat │ │ │ │ -0001f390: 6564 2062 790a 2020 2020 6d69 6e6f 7273 ed by. minors │ │ │ │ -0001f3a0: 0a0a 5761 7973 2074 6f20 7573 6520 7265 ..Ways to use re │ │ │ │ -0001f3b0: 6375 7273 6976 654d 696e 6f72 733a 0a3d cursiveMinors:.= │ │ │ │ -0001f3c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001f3d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001f3e0: 2022 7265 6375 7273 6976 654d 696e 6f72 "recursiveMinor │ │ │ │ -0001f3f0: 7328 5a5a 2c4d 6174 7269 7829 220a 0a46 s(ZZ,Matrix)"..F │ │ │ │ -0001f400: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0001f410: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0001f420: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0001f430: 202a 6e6f 7465 2072 6563 7572 7369 7665 *note recursive │ │ │ │ -0001f440: 4d69 6e6f 7273 3a20 7265 6375 7273 6976 Minors: recursiv │ │ │ │ -0001f450: 654d 696e 6f72 732c 2069 7320 6120 2a6e eMinors, is a *n │ │ │ │ -0001f460: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -0001f470: 696f 6e0a 7769 7468 206f 7074 696f 6e73 ion.with options │ │ │ │ -0001f480: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001f490: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -0001f4a0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ -0001f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0001f500: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0001f510: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0001f520: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0001f530: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0001f540: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0001f550: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0001f560: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ -0001f570: 6d32 3a32 3033 303a 302e 0a1f 0a46 696c m2:2030:0....Fil │ │ │ │ -0001f580: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ -0001f590: 666f 2c20 4e6f 6465 3a20 7265 6775 6c61 fo, Node: regula │ │ │ │ -0001f5a0: 7249 6e43 6f64 696d 656e 7369 6f6e 2c20 rInCodimension, │ │ │ │ -0001f5b0: 4e65 7874 3a20 5265 6775 6c61 7249 6e43 Next: RegularInC │ │ │ │ -0001f5c0: 6f64 696d 656e 7369 6f6e 5475 746f 7269 odimensionTutori │ │ │ │ -0001f5d0: 616c 2c20 5072 6576 3a20 7265 6375 7273 al, Prev: recurs │ │ │ │ -0001f5e0: 6976 654d 696e 6f72 732c 2055 703a 2054 iveMinors, Up: T │ │ │ │ -0001f5f0: 6f70 0a0a 7265 6775 6c61 7249 6e43 6f64 op..regularInCod │ │ │ │ -0001f600: 696d 656e 7369 6f6e 202d 2d20 6174 7465 imension -- atte │ │ │ │ -0001f610: 6d70 7473 2074 6f20 7368 6f77 2074 6861 mpts to show tha │ │ │ │ -0001f620: 7420 7468 6520 7269 6e67 2069 7320 7265 t the ring is re │ │ │ │ -0001f630: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ -0001f640: 7369 6f6e 206e 0a2a 2a2a 2a2a 2a2a 2a2a sion n.********* │ │ │ │ -0001f650: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f660: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001f690: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -0001f6a0: 7361 6765 3a20 0a20 2020 2020 2020 2072 sage: . r │ │ │ │ -0001f6b0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0001f6c0: 696f 6e28 6e2c 2052 290a 2020 2a20 496e ion(n, R). * In │ │ │ │ -0001f6d0: 7075 7473 3a0a 2020 2020 2020 2a20 6e2c puts:. * n, │ │ │ │ -0001f6e0: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -0001f6f0: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ -0001f700: 295a 5a2c 2c20 0a20 2020 2020 202a 2052 )ZZ,, . * R │ │ │ │ -0001f710: 2c20 6120 2a6e 6f74 6520 7269 6e67 3a20 , a *note ring: │ │ │ │ -0001f720: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ -0001f730: 6e67 2c2c 200a 2020 2a20 2a6e 6f74 6520 ng,, . * *note │ │ │ │ -0001f740: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0001f750: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0001f760: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0001f770: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0001f780: 7574 732c 3a0a 2020 2020 2020 2a20 4d6f uts,:. * Mo │ │ │ │ -0001f790: 6475 6c75 7320 3d3e 2061 202a 6e6f 7465 dulus => a *note │ │ │ │ -0001f7a0: 206e 756d 6265 723a 2028 4d61 6361 756c number: (Macaul │ │ │ │ -0001f7b0: 6179 3244 6f63 294e 756d 6265 722c 2c20 ay2Doc)Number,, │ │ │ │ -0001f7c0: 6465 6661 756c 7420 7661 6c75 6520 302c default value 0, │ │ │ │ -0001f7d0: 2077 6f72 6b0a 2020 2020 2020 2020 6d6f work. mo │ │ │ │ -0001f7e0: 6475 6c6f 2074 6865 2067 6976 656e 2070 dulo the given p │ │ │ │ -0001f7f0: 7269 6d65 206d 6f64 756c 7573 0a20 2020 rime modulus. │ │ │ │ -0001f800: 2020 202a 2050 6169 724c 696d 6974 203d * PairLimit = │ │ │ │ -0001f810: 3e20 6120 2a6e 6f74 6520 6e75 6d62 6572 > a *note number │ │ │ │ -0001f820: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0001f830: 4e75 6d62 6572 2c2c 2064 6566 6175 6c74 Number,, default │ │ │ │ -0001f840: 2076 616c 7565 2031 3030 2c0a 2020 2020 value 100,. │ │ │ │ -0001f850: 2020 2020 7061 7373 6564 2074 6f20 6973 passed to is │ │ │ │ -0001f860: 436f 6469 6d41 744c 6561 7374 0a20 2020 CodimAtLeast. │ │ │ │ -0001f870: 2020 202a 2053 5061 6972 7346 756e 6374 * SPairsFunct │ │ │ │ -0001f880: 696f 6e20 3d3e 2061 202a 6e6f 7465 2066 ion => a *note f │ │ │ │ -0001f890: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ -0001f8a0: 6179 3244 6f63 2946 756e 6374 696f 6e2c ay2Doc)Function, │ │ │ │ -0001f8b0: 2c20 6465 6661 756c 740a 2020 2020 2020 , default. │ │ │ │ -0001f8c0: 2020 7661 6c75 6520 4675 6e63 7469 6f6e value Function │ │ │ │ -0001f8d0: 436c 6f73 7572 655b 2e2e 2f46 6173 744d Closure[../FastM │ │ │ │ -0001f8e0: 696e 6f72 732e 6d32 3a31 3639 3a32 332d inors.m2:169:23- │ │ │ │ -0001f8f0: 3136 393a 3432 5d2c 2070 6173 7365 6420 169:42], passed │ │ │ │ -0001f900: 746f 0a20 2020 2020 2020 2069 7343 6f64 to. isCod │ │ │ │ -0001f910: 696d 4174 4c65 6173 740a 2020 2020 2020 imAtLeast. │ │ │ │ -0001f920: 2a20 5573 654f 6e6c 7946 6173 7443 6f64 * UseOnlyFastCod │ │ │ │ -0001f930: 696d 203d 3e20 6120 2a6e 6f74 6520 426f im => a *note Bo │ │ │ │ -0001f940: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ -0001f950: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ -0001f960: 616e 2c2c 0a20 2020 2020 2020 2064 6566 an,,. def │ │ │ │ -0001f970: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -0001f980: 2c20 7465 6c6c 2074 6865 2066 756e 6374 , tell the funct │ │ │ │ -0001f990: 696f 6e20 6e6f 7420 746f 2075 7365 2074 ion not to use t │ │ │ │ -0001f9a0: 6865 2062 7569 6c74 2069 6e20 6469 6d0a he built in dim. │ │ │ │ -0001f9b0: 2020 2020 2020 2020 636f 6d6d 616e 6420 command │ │ │ │ -0001f9c0: 616e 6420 6f6e 6c79 2075 7365 2069 7343 and only use isC │ │ │ │ -0001f9d0: 6f64 696d 4174 4c65 6173 740a 2020 2020 odimAtLeast. │ │ │ │ -0001f9e0: 2020 2a20 4d69 6e4d 696e 6f72 7346 756e * MinMinorsFun │ │ │ │ -0001f9f0: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ -0001fa00: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ -0001fa10: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ -0001fa20: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ -0001fa30: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ -0001fa40: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ -0001fa50: 744d 696e 6f72 732e 6d32 3a31 3634 3a32 tMinors.m2:164:2 │ │ │ │ -0001fa60: 362d 3136 343a 3430 5d2c 2063 6f6e 7472 6-164:40], contr │ │ │ │ -0001fa70: 6f6c 2068 6f77 206d 616e 790a 2020 2020 ol how many. │ │ │ │ -0001fa80: 2020 2020 6d69 6e6f 7273 2061 7265 2063 minors are c │ │ │ │ -0001fa90: 6f6d 7075 7465 6420 6265 666f 7265 2063 omputed before c │ │ │ │ -0001faa0: 6f6d 7075 7469 6e67 2063 6f64 696d 0a20 omputing codim. │ │ │ │ -0001fab0: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ -0001fac0: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ -0001fad0: 732c 203d 3e20 6120 2a6e 6f74 6520 6675 s, => a *note fu │ │ │ │ -0001fae0: 6e63 7469 6f6e 3a0a 2020 2020 2020 2020 nction:. │ │ │ │ -0001faf0: 284d 6163 6175 6c61 7932 446f 6329 4675 (Macaulay2Doc)Fu │ │ │ │ -0001fb00: 6e63 7469 6f6e 2c2c 2064 6566 6175 6c74 nction,, default │ │ │ │ -0001fb10: 2076 616c 7565 0a20 2020 2020 2020 2046 value. F │ │ │ │ -0001fb20: 756e 6374 696f 6e43 6c6f 7375 7265 5b2e unctionClosure[. │ │ │ │ -0001fb30: 2e2f 4661 7374 4d69 6e6f 7273 2e6d 323a ./FastMinors.m2: │ │ │ │ -0001fb40: 3135 393a 3138 2d31 3539 3a35 305d 2c20 159:18-159:50], │ │ │ │ -0001fb50: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ -0001fb60: 746f 0a20 2020 2020 2020 2063 6f6e 7369 to. consi │ │ │ │ -0001fb70: 6465 7220 6265 666f 7265 2067 6976 696e der before givin │ │ │ │ -0001fb80: 6720 7570 0a20 2020 2020 202a 2043 6f64 g up. * Cod │ │ │ │ -0001fb90: 696d 4368 6563 6b46 756e 6374 696f 6e20 imCheckFunction │ │ │ │ -0001fba0: 3d3e 2061 202a 6e6f 7465 2066 756e 6374 => a *note funct │ │ │ │ -0001fbb0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -0001fbc0: 6f63 2946 756e 6374 696f 6e2c 2c0a 2020 oc)Function,,. │ │ │ │ -0001fbd0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ -0001fbe0: 6c75 6520 4675 6e63 7469 6f6e 436c 6f73 lue FunctionClos │ │ │ │ -0001fbf0: 7572 655b 2e2e 2f46 6173 744d 696e 6f72 ure[../FastMinor │ │ │ │ -0001fc00: 732e 6d32 3a31 3635 3a32 372d 3136 353a s.m2:165:27-165: │ │ │ │ -0001fc10: 3436 5d2c 2063 6f6e 7472 6f6c 0a20 2020 46], control. │ │ │ │ -0001fc20: 2020 2020 2068 6f77 206d 616e 7920 6d69 how many mi │ │ │ │ -0001fc30: 6e6f 7273 2074 6f20 636f 6d70 7574 6520 nors to compute │ │ │ │ -0001fc40: 696e 2062 6574 7765 656e 2063 616c 6c73 in between calls │ │ │ │ -0001fc50: 2074 6f20 636f 6469 6d0a 2020 2020 2020 to codim. │ │ │ │ -0001fc60: 2a20 2a6e 6f74 6520 4465 7453 7472 6174 * *note DetStrat │ │ │ │ -0001fc70: 6567 793a 2044 6574 5374 7261 7465 6779 egy: DetStrategy │ │ │ │ -0001fc80: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ -0001fc90: 7420 7661 6c75 6520 436f 6661 6374 6f72 t value Cofactor │ │ │ │ -0001fca0: 2c0a 2020 2020 2020 2020 4465 7453 7472 ,. DetStr │ │ │ │ -0001fcb0: 6174 6567 7920 6973 2061 2073 7472 6174 ategy is a strat │ │ │ │ -0001fcc0: 6567 7920 666f 7220 616c 6c6f 7769 6e67 egy for allowing │ │ │ │ -0001fcd0: 2074 6865 2075 7365 7220 746f 2063 686f the user to cho │ │ │ │ -0001fce0: 6f73 6520 686f 770a 2020 2020 2020 2020 ose how. │ │ │ │ -0001fcf0: 6465 7465 726d 696e 616e 7473 2028 6f72 determinants (or │ │ │ │ -0001fd00: 2072 616e 6b29 2c20 6973 2063 6f6d 7075 rank), is compu │ │ │ │ -0001fd10: 7465 640a 2020 2020 2020 2a20 2a6e 6f74 ted. * *not │ │ │ │ -0001fd20: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ -0001fd30: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ -0001fd40: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -0001fd50: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ -0001fd60: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ -0001fd70: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ -0001fd80: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ -0001fd90: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ -0001fda0: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ -0001fdb0: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ -0001fdc0: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ -0001fdd0: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ -0001fde0: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ -0001fdf0: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ -0001fe00: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ -0001fe10: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ -0001fe20: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ -0001fe30: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ -0001fe40: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ -0001fe50: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ -0001fe60: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ -0001fe70: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ -0001fe80: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ -0001fe90: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ -0001fea0: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -0001feb0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -0001fec0: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ -0001fed0: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ -0001fee0: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ -0001fef0: 2052 616e 646f 6d20 3d3e 2031 362c 2047 Random => 16, G │ │ │ │ -0001ff00: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ -0001ff10: 2030 2c20 4c65 7853 6d61 6c6c 6573 7454 0, LexSmallestT │ │ │ │ -0001ff20: 6572 6d0a 2020 2020 2020 2020 3d3e 2031 erm. => 1 │ │ │ │ -0001ff30: 362c 204c 6578 4c61 7267 6573 7420 3d3e 6, LexLargest => │ │ │ │ -0001ff40: 2030 2c20 4c65 7853 6d61 6c6c 6573 7420 0, LexSmallest │ │ │ │ -0001ff50: 3d3e 2031 362c 2047 5265 764c 6578 536d => 16, GRevLexSm │ │ │ │ -0001ff60: 616c 6c65 7374 5465 726d 203d 3e20 3136 allestTerm => 16 │ │ │ │ -0001ff70: 2c0a 2020 2020 2020 2020 5261 6e64 6f6d ,. Random │ │ │ │ -0001ff80: 4e6f 6e7a 6572 6f20 3d3e 2031 362c 2047 Nonzero => 16, G │ │ │ │ -0001ff90: 5265 764c 6578 536d 616c 6c65 7374 203d RevLexSmallest = │ │ │ │ -0001ffa0: 3e20 3136 7d2c 2073 7472 6174 6567 6965 > 16}, strategie │ │ │ │ -0001ffb0: 7320 666f 7220 6368 6f6f 7369 6e67 0a20 s for choosing. │ │ │ │ -0001ffc0: 2020 2020 2020 2073 7562 6d61 7472 6963 submatric │ │ │ │ -0001ffd0: 6573 0a20 2020 2020 202a 2056 6572 626f es. * Verbo │ │ │ │ -0001ffe0: 7365 203d 3e20 2e2e 2e2c 2064 6566 6175 se => ..., defau │ │ │ │ -0001fff0: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ -00020000: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00020010: 2020 2a20 7472 7565 2c20 6966 2074 6865 * true, if the │ │ │ │ -00020020: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ -00020030: 2069 6e20 636f 6469 6d65 6e73 696f 6e20 in codimension │ │ │ │ -00020040: 6e2c 2066 616c 7365 2069 6620 6974 2064 n, false if it d │ │ │ │ -00020050: 6574 6572 6d69 6e65 730a 2020 2020 2020 etermines. │ │ │ │ -00020060: 2020 6974 2069 7320 6e6f 742c 2061 6e64 it is not, and │ │ │ │ -00020070: 206e 756c 6c20 6966 206e 6f20 6465 7465 null if no dete │ │ │ │ -00020080: 726d 696e 6174 696f 6e20 6973 206d 6164 rmination is mad │ │ │ │ -00020090: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ -000200a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -000200b0: 2066 756e 6374 696f 6e20 7265 7475 726e function return │ │ │ │ -000200c0: 7320 7472 7565 2069 6620 5220 6973 2072 s true if R is r │ │ │ │ -000200d0: 6567 756c 6172 2069 6e20 636f 6469 6d65 egular in codime │ │ │ │ -000200e0: 6e73 696f 6e20 6e2c 2066 616c 7365 2069 nsion n, false i │ │ │ │ -000200f0: 6620 6974 2069 730a 6e6f 742c 2061 6e64 f it is.not, and │ │ │ │ -00020100: 206e 756c 6c20 6966 2069 7420 6469 6420 null if it did │ │ │ │ -00020110: 6e6f 7420 6d61 6b65 2061 2064 6574 6572 not make a deter │ │ │ │ -00020120: 6d69 6e61 7469 6f6e 2e20 4974 2063 6f6e mination. It con │ │ │ │ -00020130: 7369 6465 7273 2069 6e74 6572 6573 7469 siders interesti │ │ │ │ -00020140: 6e67 0a6d 696e 6f72 7320 6f66 2074 6865 ng.minors of the │ │ │ │ -00020150: 206a 6163 6f62 6961 6e20 6d61 7472 6978 jacobian matrix │ │ │ │ -00020160: 2074 6f20 7472 7920 746f 2076 6572 6966 to try to verif │ │ │ │ -00020170: 7920 7468 6174 2074 6865 2072 696e 6720 y that the ring │ │ │ │ -00020180: 6973 2072 6567 756c 6172 2069 6e0a 636f is regular in.co │ │ │ │ -00020190: 6469 6d65 6e73 696f 6e20 6e2e 2049 7420 dimension n. It │ │ │ │ -000201a0: 6973 2066 7265 7175 656e 746c 7920 6d75 is frequently mu │ │ │ │ -000201b0: 6368 2066 6173 7465 7220 6174 2067 6976 ch faster at giv │ │ │ │ -000201c0: 696e 6720 616e 2061 6666 6972 6d61 7469 ing an affirmati │ │ │ │ -000201d0: 7665 2061 6e73 7765 720a 7468 616e 2063 ve answer.than c │ │ │ │ -000201e0: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ -000201f0: 656e 7369 6f6e 206f 6620 7468 6520 6964 ension of the id │ │ │ │ -00020200: 6561 6c20 6f66 2061 6c6c 206d 696e 6f72 eal of all minor │ │ │ │ -00020210: 7320 6f66 2074 6865 204a 6163 6f62 6961 s of the Jacobia │ │ │ │ -00020220: 6e2e 2057 650a 6265 6769 6e20 7769 7468 n. We.begin with │ │ │ │ -00020230: 2061 2073 696d 706c 6520 6578 616d 706c a simple exampl │ │ │ │ -00020240: 6520 7768 6963 6820 6973 2052 312c 2062 e which is R1, b │ │ │ │ -00020250: 7574 206e 6f74 2052 322e 0a0a 2b2d 2d2d ut not R2...+--- │ │ │ │ -00020260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020280: 2d2b 0a7c 6931 203a 2052 203d 2051 515b -+.|i1 : R = QQ[ │ │ │ │ -00020290: 782c 2079 2c20 7a5d 2f69 6465 616c 2878 x, y, z]/ideal(x │ │ │ │ -000202a0: 2a79 2d7a 5e32 293b 7c0a 2b2d 2d2d 2d2d *y-z^2);|.+----- │ │ │ │ +0001f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f310: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ +0001f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f340: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f380: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ +0001f390: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0001f3a0: 206d 696e 6f72 733a 2028 4d61 6361 756c minors: (Macaul │ │ │ │ +0001f3b0: 6179 3244 6f63 296d 696e 6f72 735f 6c70 ay2Doc)minors_lp │ │ │ │ +0001f3c0: 5a5a 5f63 6d4d 6174 7269 785f 7270 2c20 ZZ_cmMatrix_rp, │ │ │ │ +0001f3d0: 2d2d 2069 6465 616c 2067 656e 6572 6174 -- ideal generat │ │ │ │ +0001f3e0: 6564 2062 790a 2020 2020 6d69 6e6f 7273 ed by. minors │ │ │ │ +0001f3f0: 0a0a 5761 7973 2074 6f20 7573 6520 7265 ..Ways to use re │ │ │ │ +0001f400: 6375 7273 6976 654d 696e 6f72 733a 0a3d cursiveMinors:.= │ │ │ │ +0001f410: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001f420: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0001f430: 2022 7265 6375 7273 6976 654d 696e 6f72 "recursiveMinor │ │ │ │ +0001f440: 7328 5a5a 2c4d 6174 7269 7829 220a 0a46 s(ZZ,Matrix)"..F │ │ │ │ +0001f450: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0001f460: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0001f470: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0001f480: 202a 6e6f 7465 2072 6563 7572 7369 7665 *note recursive │ │ │ │ +0001f490: 4d69 6e6f 7273 3a20 7265 6375 7273 6976 Minors: recursiv │ │ │ │ +0001f4a0: 654d 696e 6f72 732c 2069 7320 6120 2a6e eMinors, is a *n │ │ │ │ +0001f4b0: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +0001f4c0: 696f 6e0a 7769 7468 206f 7074 696f 6e73 ion.with options │ │ │ │ +0001f4d0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001f4e0: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +0001f4f0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +0001f500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0001f550: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0001f560: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0001f570: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0001f580: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0001f590: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0001f5a0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0001f5b0: 6765 732f 4661 7374 4d69 6e6f 7273 2e0a ges/FastMinors.. │ │ │ │ +0001f5c0: 6d32 3a32 3033 303a 302e 0a1f 0a46 696c m2:2030:0....Fil │ │ │ │ +0001f5d0: 653a 2046 6173 744d 696e 6f72 732e 696e e: FastMinors.in │ │ │ │ +0001f5e0: 666f 2c20 4e6f 6465 3a20 7265 6775 6c61 fo, Node: regula │ │ │ │ +0001f5f0: 7249 6e43 6f64 696d 656e 7369 6f6e 2c20 rInCodimension, │ │ │ │ +0001f600: 4e65 7874 3a20 5265 6775 6c61 7249 6e43 Next: RegularInC │ │ │ │ +0001f610: 6f64 696d 656e 7369 6f6e 5475 746f 7269 odimensionTutori │ │ │ │ +0001f620: 616c 2c20 5072 6576 3a20 7265 6375 7273 al, Prev: recurs │ │ │ │ +0001f630: 6976 654d 696e 6f72 732c 2055 703a 2054 iveMinors, Up: T │ │ │ │ +0001f640: 6f70 0a0a 7265 6775 6c61 7249 6e43 6f64 op..regularInCod │ │ │ │ +0001f650: 696d 656e 7369 6f6e 202d 2d20 6174 7465 imension -- atte │ │ │ │ +0001f660: 6d70 7473 2074 6f20 7368 6f77 2074 6861 mpts to show tha │ │ │ │ +0001f670: 7420 7468 6520 7269 6e67 2069 7320 7265 t the ring is re │ │ │ │ +0001f680: 6775 6c61 7220 696e 2063 6f64 696d 656e gular in codimen │ │ │ │ +0001f690: 7369 6f6e 206e 0a2a 2a2a 2a2a 2a2a 2a2a sion n.********* │ │ │ │ +0001f6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001f6e0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0001f6f0: 7361 6765 3a20 0a20 2020 2020 2020 2072 sage: . r │ │ │ │ +0001f700: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +0001f710: 696f 6e28 6e2c 2052 290a 2020 2a20 496e ion(n, R). * In │ │ │ │ +0001f720: 7075 7473 3a0a 2020 2020 2020 2a20 6e2c puts:. * n, │ │ │ │ +0001f730: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ +0001f740: 723a 2028 4d61 6361 756c 6179 3244 6f63 r: (Macaulay2Doc │ │ │ │ +0001f750: 295a 5a2c 2c20 0a20 2020 2020 202a 2052 )ZZ,, . * R │ │ │ │ +0001f760: 2c20 6120 2a6e 6f74 6520 7269 6e67 3a20 , a *note ring: │ │ │ │ +0001f770: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ +0001f780: 6e67 2c2c 200a 2020 2a20 2a6e 6f74 6520 ng,, . * *note │ │ │ │ +0001f790: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ +0001f7a0: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ +0001f7b0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ +0001f7c0: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ +0001f7d0: 7574 732c 3a0a 2020 2020 2020 2a20 4d6f uts,:. * Mo │ │ │ │ +0001f7e0: 6475 6c75 7320 3d3e 2061 202a 6e6f 7465 dulus => a *note │ │ │ │ +0001f7f0: 206e 756d 6265 723a 2028 4d61 6361 756c number: (Macaul │ │ │ │ +0001f800: 6179 3244 6f63 294e 756d 6265 722c 2c20 ay2Doc)Number,, │ │ │ │ +0001f810: 6465 6661 756c 7420 7661 6c75 6520 302c default value 0, │ │ │ │ +0001f820: 2077 6f72 6b0a 2020 2020 2020 2020 6d6f work. mo │ │ │ │ +0001f830: 6475 6c6f 2074 6865 2067 6976 656e 2070 dulo the given p │ │ │ │ +0001f840: 7269 6d65 206d 6f64 756c 7573 0a20 2020 rime modulus. │ │ │ │ +0001f850: 2020 202a 2050 6169 724c 696d 6974 203d * PairLimit = │ │ │ │ +0001f860: 3e20 6120 2a6e 6f74 6520 6e75 6d62 6572 > a *note number │ │ │ │ +0001f870: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0001f880: 4e75 6d62 6572 2c2c 2064 6566 6175 6c74 Number,, default │ │ │ │ +0001f890: 2076 616c 7565 2031 3030 2c0a 2020 2020 value 100,. │ │ │ │ +0001f8a0: 2020 2020 7061 7373 6564 2074 6f20 6973 passed to is │ │ │ │ +0001f8b0: 436f 6469 6d41 744c 6561 7374 0a20 2020 CodimAtLeast. │ │ │ │ +0001f8c0: 2020 202a 2053 5061 6972 7346 756e 6374 * SPairsFunct │ │ │ │ +0001f8d0: 696f 6e20 3d3e 2061 202a 6e6f 7465 2066 ion => a *note f │ │ │ │ +0001f8e0: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ +0001f8f0: 6179 3244 6f63 2946 756e 6374 696f 6e2c ay2Doc)Function, │ │ │ │ +0001f900: 2c20 6465 6661 756c 740a 2020 2020 2020 , default. │ │ │ │ +0001f910: 2020 7661 6c75 6520 4675 6e63 7469 6f6e value Function │ │ │ │ +0001f920: 436c 6f73 7572 655b 2e2e 2f46 6173 744d Closure[../FastM │ │ │ │ +0001f930: 696e 6f72 732e 6d32 3a31 3639 3a32 332d inors.m2:169:23- │ │ │ │ +0001f940: 3136 393a 3432 5d2c 2070 6173 7365 6420 169:42], passed │ │ │ │ +0001f950: 746f 0a20 2020 2020 2020 2069 7343 6f64 to. isCod │ │ │ │ +0001f960: 696d 4174 4c65 6173 740a 2020 2020 2020 imAtLeast. │ │ │ │ +0001f970: 2a20 5573 654f 6e6c 7946 6173 7443 6f64 * UseOnlyFastCod │ │ │ │ +0001f980: 696d 203d 3e20 6120 2a6e 6f74 6520 426f im => a *note Bo │ │ │ │ +0001f990: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ +0001f9a0: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ +0001f9b0: 616e 2c2c 0a20 2020 2020 2020 2064 6566 an,,. def │ │ │ │ +0001f9c0: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ +0001f9d0: 2c20 7465 6c6c 2074 6865 2066 756e 6374 , tell the funct │ │ │ │ +0001f9e0: 696f 6e20 6e6f 7420 746f 2075 7365 2074 ion not to use t │ │ │ │ +0001f9f0: 6865 2062 7569 6c74 2069 6e20 6469 6d0a he built in dim. │ │ │ │ +0001fa00: 2020 2020 2020 2020 636f 6d6d 616e 6420 command │ │ │ │ +0001fa10: 616e 6420 6f6e 6c79 2075 7365 2069 7343 and only use isC │ │ │ │ +0001fa20: 6f64 696d 4174 4c65 6173 740a 2020 2020 odimAtLeast. │ │ │ │ +0001fa30: 2020 2a20 4d69 6e4d 696e 6f72 7346 756e * MinMinorsFun │ │ │ │ +0001fa40: 6374 696f 6e20 3d3e 2061 202a 6e6f 7465 ction => a *note │ │ │ │ +0001fa50: 2066 756e 6374 696f 6e3a 2028 4d61 6361 function: (Maca │ │ │ │ +0001fa60: 756c 6179 3244 6f63 2946 756e 6374 696f ulay2Doc)Functio │ │ │ │ +0001fa70: 6e2c 2c20 6465 6661 756c 740a 2020 2020 n,, default. │ │ │ │ +0001fa80: 2020 2020 7661 6c75 6520 4675 6e63 7469 value Functi │ │ │ │ +0001fa90: 6f6e 436c 6f73 7572 655b 2e2e 2f46 6173 onClosure[../Fas │ │ │ │ +0001faa0: 744d 696e 6f72 732e 6d32 3a31 3634 3a32 tMinors.m2:164:2 │ │ │ │ +0001fab0: 362d 3136 343a 3430 5d2c 2063 6f6e 7472 6-164:40], contr │ │ │ │ +0001fac0: 6f6c 2068 6f77 206d 616e 790a 2020 2020 ol how many. │ │ │ │ +0001fad0: 2020 2020 6d69 6e6f 7273 2061 7265 2063 minors are c │ │ │ │ +0001fae0: 6f6d 7075 7465 6420 6265 666f 7265 2063 omputed before c │ │ │ │ +0001faf0: 6f6d 7075 7469 6e67 2063 6f64 696d 0a20 omputing codim. │ │ │ │ +0001fb00: 2020 2020 202a 202a 6e6f 7465 204d 6178 * *note Max │ │ │ │ +0001fb10: 4d69 6e6f 7273 3a20 4d61 784d 696e 6f72 Minors: MaxMinor │ │ │ │ +0001fb20: 732c 203d 3e20 6120 2a6e 6f74 6520 6675 s, => a *note fu │ │ │ │ +0001fb30: 6e63 7469 6f6e 3a0a 2020 2020 2020 2020 nction:. │ │ │ │ +0001fb40: 284d 6163 6175 6c61 7932 446f 6329 4675 (Macaulay2Doc)Fu │ │ │ │ +0001fb50: 6e63 7469 6f6e 2c2c 2064 6566 6175 6c74 nction,, default │ │ │ │ +0001fb60: 2076 616c 7565 0a20 2020 2020 2020 2046 value. F │ │ │ │ +0001fb70: 756e 6374 696f 6e43 6c6f 7375 7265 5b2e unctionClosure[. │ │ │ │ +0001fb80: 2e2f 4661 7374 4d69 6e6f 7273 2e6d 323a ./FastMinors.m2: │ │ │ │ +0001fb90: 3135 393a 3138 2d31 3539 3a35 305d 2c20 159:18-159:50], │ │ │ │ +0001fba0: 686f 7720 6d61 6e79 206d 696e 6f72 7320 how many minors │ │ │ │ +0001fbb0: 746f 0a20 2020 2020 2020 2063 6f6e 7369 to. consi │ │ │ │ +0001fbc0: 6465 7220 6265 666f 7265 2067 6976 696e der before givin │ │ │ │ +0001fbd0: 6720 7570 0a20 2020 2020 202a 2043 6f64 g up. * Cod │ │ │ │ +0001fbe0: 696d 4368 6563 6b46 756e 6374 696f 6e20 imCheckFunction │ │ │ │ +0001fbf0: 3d3e 2061 202a 6e6f 7465 2066 756e 6374 => a *note funct │ │ │ │ +0001fc00: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +0001fc10: 6f63 2946 756e 6374 696f 6e2c 2c0a 2020 oc)Function,,. │ │ │ │ +0001fc20: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +0001fc30: 6c75 6520 4675 6e63 7469 6f6e 436c 6f73 lue FunctionClos │ │ │ │ +0001fc40: 7572 655b 2e2e 2f46 6173 744d 696e 6f72 ure[../FastMinor │ │ │ │ +0001fc50: 732e 6d32 3a31 3635 3a32 372d 3136 353a s.m2:165:27-165: │ │ │ │ +0001fc60: 3436 5d2c 2063 6f6e 7472 6f6c 0a20 2020 46], control. │ │ │ │ +0001fc70: 2020 2020 2068 6f77 206d 616e 7920 6d69 how many mi │ │ │ │ +0001fc80: 6e6f 7273 2074 6f20 636f 6d70 7574 6520 nors to compute │ │ │ │ +0001fc90: 696e 2062 6574 7765 656e 2063 616c 6c73 in between calls │ │ │ │ +0001fca0: 2074 6f20 636f 6469 6d0a 2020 2020 2020 to codim. │ │ │ │ +0001fcb0: 2a20 2a6e 6f74 6520 4465 7453 7472 6174 * *note DetStrat │ │ │ │ +0001fcc0: 6567 793a 2044 6574 5374 7261 7465 6779 egy: DetStrategy │ │ │ │ +0001fcd0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +0001fce0: 7420 7661 6c75 6520 436f 6661 6374 6f72 t value Cofactor │ │ │ │ +0001fcf0: 2c0a 2020 2020 2020 2020 4465 7453 7472 ,. DetStr │ │ │ │ +0001fd00: 6174 6567 7920 6973 2061 2073 7472 6174 ategy is a strat │ │ │ │ +0001fd10: 6567 7920 666f 7220 616c 6c6f 7769 6e67 egy for allowing │ │ │ │ +0001fd20: 2074 6865 2075 7365 7220 746f 2063 686f the user to cho │ │ │ │ +0001fd30: 6f73 6520 686f 770a 2020 2020 2020 2020 ose how. │ │ │ │ +0001fd40: 6465 7465 726d 696e 616e 7473 2028 6f72 determinants (or │ │ │ │ +0001fd50: 2072 616e 6b29 2c20 6973 2063 6f6d 7075 rank), is compu │ │ │ │ +0001fd60: 7465 640a 2020 2020 2020 2a20 2a6e 6f74 ted. * *not │ │ │ │ +0001fd70: 6520 506f 696e 744f 7074 696f 6e73 3a20 e PointOptions: │ │ │ │ +0001fd80: 506f 696e 744f 7074 696f 6e73 2c20 3d3e PointOptions, => │ │ │ │ +0001fd90: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0001fda0: 6c75 6520 7b53 7472 6174 6567 7920 3d3e lue {Strategy => │ │ │ │ +0001fdb0: 0a20 2020 2020 2020 2044 6566 6175 6c74 . Default │ │ │ │ +0001fdc0: 2c20 486f 6d6f 6765 6e65 6f75 7320 3d3e , Homogeneous => │ │ │ │ +0001fdd0: 2066 616c 7365 2c20 5265 706c 6163 656d false, Replacem │ │ │ │ +0001fde0: 656e 7420 3d3e 2042 696e 6f6d 6961 6c2c ent => Binomial, │ │ │ │ +0001fdf0: 2045 7874 656e 6446 6965 6c64 203d 3e0a ExtendField =>. │ │ │ │ +0001fe00: 2020 2020 2020 2020 7472 7565 2c20 506f true, Po │ │ │ │ +0001fe10: 696e 7443 6865 636b 4174 7465 6d70 7473 intCheckAttempts │ │ │ │ +0001fe20: 203d 3e20 302c 2044 6563 6f6d 706f 7369 => 0, Decomposi │ │ │ │ +0001fe30: 7469 6f6e 5374 7261 7465 6779 203d 3e20 tionStrategy => │ │ │ │ +0001fe40: 4465 636f 6d70 6f73 652c 0a20 2020 2020 Decompose,. │ │ │ │ +0001fe50: 2020 204e 756d 5468 7265 6164 7354 6f55 NumThreadsToU │ │ │ │ +0001fe60: 7365 203d 3e20 312c 2044 696d 656e 7369 se => 1, Dimensi │ │ │ │ +0001fe70: 6f6e 4675 6e63 7469 6f6e 203d 3e20 6469 onFunction => di │ │ │ │ +0001fe80: 6d2c 2056 6572 626f 7365 203d 3e20 6661 m, Verbose => fa │ │ │ │ +0001fe90: 6c73 657d 2c0a 2020 2020 2020 2020 6f70 lse},. op │ │ │ │ +0001fea0: 7469 6f6e 7320 746f 2070 6173 7320 746f tions to pass to │ │ │ │ +0001feb0: 2066 756e 6374 696f 6e73 2069 6e20 7468 functions in th │ │ │ │ +0001fec0: 6520 7061 636b 6167 6520 5261 6e64 6f6d e package Random │ │ │ │ +0001fed0: 506f 696e 7473 0a20 2020 2020 202a 202a Points. * * │ │ │ │ +0001fee0: 6e6f 7465 2053 7472 6174 6567 793a 2053 note Strategy: S │ │ │ │ +0001fef0: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +0001ff00: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0001ff10: 7661 6c75 6520 6e65 7720 4f70 7469 6f6e value new Option │ │ │ │ +0001ff20: 5461 626c 650a 2020 2020 2020 2020 6672 Table. fr │ │ │ │ +0001ff30: 6f6d 207b 506f 696e 7473 203d 3e20 302c om {Points => 0, │ │ │ │ +0001ff40: 2052 616e 646f 6d20 3d3e 2031 362c 2047 Random => 16, G │ │ │ │ +0001ff50: 5265 764c 6578 4c61 7267 6573 7420 3d3e RevLexLargest => │ │ │ │ +0001ff60: 2030 2c20 4c65 7853 6d61 6c6c 6573 7454 0, LexSmallestT │ │ │ │ +0001ff70: 6572 6d0a 2020 2020 2020 2020 3d3e 2031 erm. => 1 │ │ │ │ +0001ff80: 362c 204c 6578 4c61 7267 6573 7420 3d3e 6, LexLargest => │ │ │ │ +0001ff90: 2030 2c20 4c65 7853 6d61 6c6c 6573 7420 0, LexSmallest │ │ │ │ +0001ffa0: 3d3e 2031 362c 2047 5265 764c 6578 536d => 16, GRevLexSm │ │ │ │ +0001ffb0: 616c 6c65 7374 5465 726d 203d 3e20 3136 allestTerm => 16 │ │ │ │ +0001ffc0: 2c0a 2020 2020 2020 2020 5261 6e64 6f6d ,. Random │ │ │ │ +0001ffd0: 4e6f 6e7a 6572 6f20 3d3e 2031 362c 2047 Nonzero => 16, G │ │ │ │ +0001ffe0: 5265 764c 6578 536d 616c 6c65 7374 203d RevLexSmallest = │ │ │ │ +0001fff0: 3e20 3136 7d2c 2073 7472 6174 6567 6965 > 16}, strategie │ │ │ │ +00020000: 7320 666f 7220 6368 6f6f 7369 6e67 0a20 s for choosing. │ │ │ │ +00020010: 2020 2020 2020 2073 7562 6d61 7472 6963 submatric │ │ │ │ +00020020: 6573 0a20 2020 2020 202a 2056 6572 626f es. * Verbo │ │ │ │ +00020030: 7365 203d 3e20 2e2e 2e2c 2064 6566 6175 se => ..., defau │ │ │ │ +00020040: 6c74 2076 616c 7565 2066 616c 7365 0a20 lt value false. │ │ │ │ +00020050: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00020060: 2020 2a20 7472 7565 2c20 6966 2074 6865 * true, if the │ │ │ │ +00020070: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ +00020080: 2069 6e20 636f 6469 6d65 6e73 696f 6e20 in codimension │ │ │ │ +00020090: 6e2c 2066 616c 7365 2069 6620 6974 2064 n, false if it d │ │ │ │ +000200a0: 6574 6572 6d69 6e65 730a 2020 2020 2020 etermines. │ │ │ │ +000200b0: 2020 6974 2069 7320 6e6f 742c 2061 6e64 it is not, and │ │ │ │ +000200c0: 206e 756c 6c20 6966 206e 6f20 6465 7465 null if no dete │ │ │ │ +000200d0: 726d 696e 6174 696f 6e20 6973 206d 6164 rmination is mad │ │ │ │ +000200e0: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ +000200f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +00020100: 2066 756e 6374 696f 6e20 7265 7475 726e function return │ │ │ │ +00020110: 7320 7472 7565 2069 6620 5220 6973 2072 s true if R is r │ │ │ │ +00020120: 6567 756c 6172 2069 6e20 636f 6469 6d65 egular in codime │ │ │ │ +00020130: 6e73 696f 6e20 6e2c 2066 616c 7365 2069 nsion n, false i │ │ │ │ +00020140: 6620 6974 2069 730a 6e6f 742c 2061 6e64 f it is.not, and │ │ │ │ +00020150: 206e 756c 6c20 6966 2069 7420 6469 6420 null if it did │ │ │ │ +00020160: 6e6f 7420 6d61 6b65 2061 2064 6574 6572 not make a deter │ │ │ │ +00020170: 6d69 6e61 7469 6f6e 2e20 4974 2063 6f6e mination. It con │ │ │ │ +00020180: 7369 6465 7273 2069 6e74 6572 6573 7469 siders interesti │ │ │ │ +00020190: 6e67 0a6d 696e 6f72 7320 6f66 2074 6865 ng.minors of the │ │ │ │ +000201a0: 206a 6163 6f62 6961 6e20 6d61 7472 6978 jacobian matrix │ │ │ │ +000201b0: 2074 6f20 7472 7920 746f 2076 6572 6966 to try to verif │ │ │ │ +000201c0: 7920 7468 6174 2074 6865 2072 696e 6720 y that the ring │ │ │ │ +000201d0: 6973 2072 6567 756c 6172 2069 6e0a 636f is regular in.co │ │ │ │ +000201e0: 6469 6d65 6e73 696f 6e20 6e2e 2049 7420 dimension n. It │ │ │ │ +000201f0: 6973 2066 7265 7175 656e 746c 7920 6d75 is frequently mu │ │ │ │ +00020200: 6368 2066 6173 7465 7220 6174 2067 6976 ch faster at giv │ │ │ │ +00020210: 696e 6720 616e 2061 6666 6972 6d61 7469 ing an affirmati │ │ │ │ +00020220: 7665 2061 6e73 7765 720a 7468 616e 2063 ve answer.than c │ │ │ │ +00020230: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ +00020240: 656e 7369 6f6e 206f 6620 7468 6520 6964 ension of the id │ │ │ │ +00020250: 6561 6c20 6f66 2061 6c6c 206d 696e 6f72 eal of all minor │ │ │ │ +00020260: 7320 6f66 2074 6865 204a 6163 6f62 6961 s of the Jacobia │ │ │ │ +00020270: 6e2e 2057 650a 6265 6769 6e20 7769 7468 n. We.begin with │ │ │ │ +00020280: 2061 2073 696d 706c 6520 6578 616d 706c a simple exampl │ │ │ │ +00020290: 6520 7768 6963 6820 6973 2052 312c 2062 e which is R1, b │ │ │ │ +000202a0: 7574 206e 6f74 2052 322e 0a0a 2b2d 2d2d ut not R2...+--- │ │ │ │ 000202b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000202d0: 0a7c 6932 203a 2072 6567 756c 6172 496e .|i2 : regularIn │ │ │ │ -000202e0: 436f 6469 6d65 6e73 696f 6e28 312c 2052 Codimension(1, R │ │ │ │ -000202f0: 2920 2020 2020 7c0a 7c20 2020 2020 2020 ) |.| │ │ │ │ -00020300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020320: 6f32 203d 2074 7275 6520 2020 2020 2020 o2 = true │ │ │ │ -00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020340: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00020350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00020370: 203a 2072 6567 756c 6172 496e 436f 6469 : regularInCodi │ │ │ │ -00020380: 6d65 6e73 696f 6e28 322c 2052 2920 2020 mension(2, R) │ │ │ │ -00020390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000202c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202d0: 2d2b 0a7c 6931 203a 2052 203d 2051 515b -+.|i1 : R = QQ[ │ │ │ │ +000202e0: 782c 2079 2c20 7a5d 2f69 6465 616c 2878 x, y, z]/ideal(x │ │ │ │ +000202f0: 2a79 2d7a 5e32 293b 7c0a 2b2d 2d2d 2d2d *y-z^2);|.+----- │ │ │ │ +00020300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00020320: 0a7c 6932 203a 2072 6567 756c 6172 496e .|i2 : regularIn │ │ │ │ +00020330: 436f 6469 6d65 6e73 696f 6e28 312c 2052 Codimension(1, R │ │ │ │ +00020340: 2920 2020 2020 7c0a 7c20 2020 2020 2020 ) |.| │ │ │ │ +00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020370: 6f32 203d 2074 7275 6520 2020 2020 2020 o2 = true │ │ │ │ +00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020390: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 000203a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000203b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e65 7874 ---------+..Next │ │ │ │ -000203c0: 2077 6520 636f 6e73 6964 6572 2061 206d we consider a m │ │ │ │ -000203d0: 6f72 6520 696e 7465 7265 7374 696e 6720 ore interesting │ │ │ │ -000203e0: 6578 616d 706c 6520 7468 6174 2069 7320 example that is │ │ │ │ -000203f0: 5231 2062 7574 206e 6f74 2052 322c 2061 R1 but not R2, a │ │ │ │ -00020400: 6e64 0a68 6967 686c 6967 6874 2074 6865 nd.highlight the │ │ │ │ -00020410: 2073 7065 6564 2064 6966 6665 7265 6e63 speed differenc │ │ │ │ -00020420: 6573 2e20 204e 6f74 6520 7468 6174 2072 es. Note that r │ │ │ │ -00020430: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00020440: 696f 6e28 322c 2052 2920 7265 7475 726e ion(2, R) return │ │ │ │ -00020450: 730a 6e6f 7468 696e 672c 2061 7320 7468 s.nothing, as th │ │ │ │ -00020460: 6520 6675 6e63 7469 6f6e 2064 6964 206e e function did n │ │ │ │ -00020470: 6f74 2064 6574 6572 6d69 6e65 2077 6865 ot determine whe │ │ │ │ -00020480: 7468 6572 2074 6865 2072 696e 6720 7761 ther the ring wa │ │ │ │ -00020490: 7320 7265 6775 6c61 7220 696e 0a63 6f64 s regular in.cod │ │ │ │ -000204a0: 696d 656e 7369 6f6e 206e 2e0a 0a2b 2d2d imension n...+-- │ │ │ │ -000204b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00020500: 203a 2054 203d 205a 5a2f 3130 315b 7831 : T = ZZ/101[x1 │ │ │ │ -00020510: 2c78 322c 7833 2c78 342c 7835 2c78 362c ,x2,x3,x4,x5,x6, │ │ │ │ -00020520: 7837 5d3b 2020 2020 2020 2020 2020 2020 x7]; │ │ │ │ -00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -000205a0: 203a 2049 203d 2020 6964 6561 6c28 7835 : I = ideal(x5 │ │ │ │ -000205b0: 2a78 362d 7834 2a78 372c 7831 2a78 362d *x6-x4*x7,x1*x6- │ │ │ │ -000205c0: 7832 2a78 372c 7835 5e32 2d78 312a 7837 x2*x7,x5^2-x1*x7 │ │ │ │ -000205d0: 2c78 342a 7835 2d78 322a 7837 2c78 345e ,x4*x5-x2*x7,x4^ │ │ │ │ -000205e0: 322d 7832 2a78 362c 7831 2a7c 0a7c 2020 2-x2*x6,x1*|.| │ │ │ │ -000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020630: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00020640: 203a 2049 6465 616c 206f 6620 5420 2020 : Ideal of T │ │ │ │ +000203b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000203c0: 203a 2072 6567 756c 6172 496e 436f 6469 : regularInCodi │ │ │ │ +000203d0: 6d65 6e73 696f 6e28 322c 2052 2920 2020 mension(2, R) │ │ │ │ +000203e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000203f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020400: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4e65 7874 ---------+..Next │ │ │ │ +00020410: 2077 6520 636f 6e73 6964 6572 2061 206d we consider a m │ │ │ │ +00020420: 6f72 6520 696e 7465 7265 7374 696e 6720 ore interesting │ │ │ │ +00020430: 6578 616d 706c 6520 7468 6174 2069 7320 example that is │ │ │ │ +00020440: 5231 2062 7574 206e 6f74 2052 322c 2061 R1 but not R2, a │ │ │ │ +00020450: 6e64 0a68 6967 686c 6967 6874 2074 6865 nd.highlight the │ │ │ │ +00020460: 2073 7065 6564 2064 6966 6665 7265 6e63 speed differenc │ │ │ │ +00020470: 6573 2e20 204e 6f74 6520 7468 6174 2072 es. Note that r │ │ │ │ +00020480: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00020490: 696f 6e28 322c 2052 2920 7265 7475 726e ion(2, R) return │ │ │ │ +000204a0: 730a 6e6f 7468 696e 672c 2061 7320 7468 s.nothing, as th │ │ │ │ +000204b0: 6520 6675 6e63 7469 6f6e 2064 6964 206e e function did n │ │ │ │ +000204c0: 6f74 2064 6574 6572 6d69 6e65 2077 6865 ot determine whe │ │ │ │ +000204d0: 7468 6572 2074 6865 2072 696e 6720 7761 ther the ring wa │ │ │ │ +000204e0: 7320 7265 6775 6c61 7220 696e 0a63 6f64 s regular in.cod │ │ │ │ +000204f0: 696d 656e 7369 6f6e 206e 2e0a 0a2b 2d2d imension n...+-- │ │ │ │ +00020500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00020550: 203a 2054 203d 205a 5a2f 3130 315b 7831 : T = ZZ/101[x1 │ │ │ │ +00020560: 2c78 322c 7833 2c78 342c 7835 2c78 362c ,x2,x3,x4,x5,x6, │ │ │ │ +00020570: 7837 5d3b 2020 2020 2020 2020 2020 2020 x7]; │ │ │ │ +00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020590: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000205a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000205e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +000205f0: 203a 2049 203d 2020 6964 6561 6c28 7835 : I = ideal(x5 │ │ │ │ +00020600: 2a78 362d 7834 2a78 372c 7831 2a78 362d *x6-x4*x7,x1*x6- │ │ │ │ +00020610: 7832 2a78 372c 7835 5e32 2d78 312a 7837 x2*x7,x5^2-x1*x7 │ │ │ │ +00020620: 2c78 342a 7835 2d78 322a 7837 2c78 345e ,x4*x5-x2*x7,x4^ │ │ │ │ +00020630: 322d 7832 2a78 362c 7831 2a7c 0a7c 2020 2-x2*x6,x1*|.| │ │ │ │ +00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -00020690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7834 -----------|.|x4 │ │ │ │ -000206e0: 2d78 322a 7835 2c78 322a 7833 5e33 2a78 -x2*x5,x2*x3^3*x │ │ │ │ -000206f0: 352b 332a 7832 2a78 335e 322a 7837 2b38 5+3*x2*x3^2*x7+8 │ │ │ │ -00020700: 2a78 325e 322a 7835 2b33 2a78 332a 7834 *x2^2*x5+3*x3*x4 │ │ │ │ -00020710: 2a78 372d 382a 7834 2a78 372b 7836 2a78 *x7-8*x4*x7+x6*x │ │ │ │ -00020720: 372c 7831 2a78 335e 332a 207c 0a7c 2d2d 7,x1*x3^3* |.|-- │ │ │ │ -00020730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7835 -----------|.|x5 │ │ │ │ -00020780: 2b33 2a78 312a 7833 5e32 2a78 372b 382a +3*x1*x3^2*x7+8* │ │ │ │ -00020790: 7831 2a78 322a 7835 2b33 2a78 332a 7835 x1*x2*x5+3*x3*x5 │ │ │ │ -000207a0: 2a78 372d 382a 7835 2a78 372b 7837 5e32 *x7-8*x5*x7+x7^2 │ │ │ │ -000207b0: 2c78 322a 7833 5e33 2a78 342b 332a 7832 ,x2*x3^3*x4+3*x2 │ │ │ │ -000207c0: 2a78 335e 322a 7836 2b38 2a7c 0a7c 2d2d *x3^2*x6+8*|.|-- │ │ │ │ -000207d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7832 -----------|.|x2 │ │ │ │ -00020820: 5e32 2a78 342b 332a 7833 2a78 342a 7836 ^2*x4+3*x3*x4*x6 │ │ │ │ -00020830: 2d38 2a78 342a 7836 2b78 365e 322c 7832 -8*x4*x6+x6^2,x2 │ │ │ │ -00020840: 5e32 2a78 335e 332b 332a 7832 2a78 335e ^2*x3^3+3*x2*x3^ │ │ │ │ -00020850: 322a 7834 2b38 2a78 325e 332b 332a 7832 2*x4+8*x2^3+3*x2 │ │ │ │ -00020860: 2a78 332a 7836 2d38 2a78 327c 0a7c 2d2d *x3*x6-8*x2|.|-- │ │ │ │ -00020870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000208a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000208b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 -----------|.|*x │ │ │ │ -000208c0: 362b 7834 2a78 362c 7831 2a78 322a 7833 6+x4*x6,x1*x2*x3 │ │ │ │ -000208d0: 5e33 2b33 2a78 322a 7833 5e32 2a78 352b ^3+3*x2*x3^2*x5+ │ │ │ │ -000208e0: 382a 7831 2a78 325e 322b 332a 7832 2a78 8*x1*x2^2+3*x2*x │ │ │ │ -000208f0: 332a 7837 2d38 2a78 322a 7837 2b78 342a 3*x7-8*x2*x7+x4* │ │ │ │ -00020900: 7837 2c78 315e 322a 7833 5e7c 0a7c 2d2d x7,x1^2*x3^|.|-- │ │ │ │ -00020910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 332b -----------|.|3+ │ │ │ │ -00020960: 332a 7831 2a78 335e 322a 7835 2b38 2a78 3*x1*x3^2*x5+8*x │ │ │ │ -00020970: 315e 322a 7832 2b33 2a78 312a 7833 2a78 1^2*x2+3*x1*x3*x │ │ │ │ -00020980: 372d 382a 7831 2a78 372b 7835 2a78 3729 7-8*x1*x7+x5*x7) │ │ │ │ -00020990: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -000209a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000209b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00020a00: 203a 2053 203d 2054 2f49 3b20 2020 2020 : S = T/I; │ │ │ │ -00020a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -00020aa0: 203a 2064 696d 2053 2020 2020 2020 2020 : dim S │ │ │ │ -00020ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020680: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00020690: 203a 2049 6465 616c 206f 6620 5420 2020 : Ideal of T │ │ │ │ +000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000206d0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000206e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7834 -----------|.|x4 │ │ │ │ +00020730: 2d78 322a 7835 2c78 322a 7833 5e33 2a78 -x2*x5,x2*x3^3*x │ │ │ │ +00020740: 352b 332a 7832 2a78 335e 322a 7837 2b38 5+3*x2*x3^2*x7+8 │ │ │ │ +00020750: 2a78 325e 322a 7835 2b33 2a78 332a 7834 *x2^2*x5+3*x3*x4 │ │ │ │ +00020760: 2a78 372d 382a 7834 2a78 372b 7836 2a78 *x7-8*x4*x7+x6*x │ │ │ │ +00020770: 372c 7831 2a78 335e 332a 207c 0a7c 2d2d 7,x1*x3^3* |.|-- │ │ │ │ +00020780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7835 -----------|.|x5 │ │ │ │ +000207d0: 2b33 2a78 312a 7833 5e32 2a78 372b 382a +3*x1*x3^2*x7+8* │ │ │ │ +000207e0: 7831 2a78 322a 7835 2b33 2a78 332a 7835 x1*x2*x5+3*x3*x5 │ │ │ │ +000207f0: 2a78 372d 382a 7835 2a78 372b 7837 5e32 *x7-8*x5*x7+x7^2 │ │ │ │ +00020800: 2c78 322a 7833 5e33 2a78 342b 332a 7832 ,x2*x3^3*x4+3*x2 │ │ │ │ +00020810: 2a78 335e 322a 7836 2b38 2a7c 0a7c 2d2d *x3^2*x6+8*|.|-- │ │ │ │ +00020820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7832 -----------|.|x2 │ │ │ │ +00020870: 5e32 2a78 342b 332a 7833 2a78 342a 7836 ^2*x4+3*x3*x4*x6 │ │ │ │ +00020880: 2d38 2a78 342a 7836 2b78 365e 322c 7832 -8*x4*x6+x6^2,x2 │ │ │ │ +00020890: 5e32 2a78 335e 332b 332a 7832 2a78 335e ^2*x3^3+3*x2*x3^ │ │ │ │ +000208a0: 322a 7834 2b38 2a78 325e 332b 332a 7832 2*x4+8*x2^3+3*x2 │ │ │ │ +000208b0: 2a78 332a 7836 2d38 2a78 327c 0a7c 2d2d *x3*x6-8*x2|.|-- │ │ │ │ +000208c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000208f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 -----------|.|*x │ │ │ │ +00020910: 362b 7834 2a78 362c 7831 2a78 322a 7833 6+x4*x6,x1*x2*x3 │ │ │ │ +00020920: 5e33 2b33 2a78 322a 7833 5e32 2a78 352b ^3+3*x2*x3^2*x5+ │ │ │ │ +00020930: 382a 7831 2a78 325e 322b 332a 7832 2a78 8*x1*x2^2+3*x2*x │ │ │ │ +00020940: 332a 7837 2d38 2a78 322a 7837 2b78 342a 3*x7-8*x2*x7+x4* │ │ │ │ +00020950: 7837 2c78 315e 322a 7833 5e7c 0a7c 2d2d x7,x1^2*x3^|.|-- │ │ │ │ +00020960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000209a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 332b -----------|.|3+ │ │ │ │ +000209b0: 332a 7831 2a78 335e 322a 7835 2b38 2a78 3*x1*x3^2*x5+8*x │ │ │ │ +000209c0: 315e 322a 7832 2b33 2a78 312a 7833 2a78 1^2*x2+3*x1*x3*x │ │ │ │ +000209d0: 372d 382a 7831 2a78 372b 7835 2a78 3729 7-8*x1*x7+x5*x7) │ │ │ │ +000209e0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +000209f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +00020a50: 203a 2053 203d 2054 2f49 3b20 2020 2020 : S = T/I; │ │ │ │ +00020a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a90: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00020af0: 203a 2064 696d 2053 2020 2020 2020 2020 : dim S │ │ │ │ 00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b30: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -00020b40: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ +00020b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -00020be0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00020bf0: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ -00020c00: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ -00020c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c20: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00020c30: 2d20 7573 6564 2030 2e36 3534 3339 3273 - used 0.654392s │ │ │ │ -00020c40: 2028 6370 7529 3b20 302e 3439 3935 3433 (cpu); 0.499543 │ │ │ │ -00020c50: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00020c60: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -00020c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00020c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cc0: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00020cd0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00020b80: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +00020b90: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ +00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020bd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +00020c30: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ +00020c40: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ +00020c50: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ +00020c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020c70: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00020c80: 2d20 7573 6564 2030 2e37 3334 3337 3873 - used 0.734378s │ │ │ │ +00020c90: 2028 6370 7529 3b20 302e 3538 3834 3137 (cpu); 0.588417 │ │ │ │ +00020ca0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00020cb0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00020cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00020cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ -00020d70: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00020d80: 6e43 6f64 696d 656e 7369 6f6e 2832 2c20 nCodimension(2, │ │ │ │ -00020d90: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ -00020da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020db0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00020dc0: 2d20 7573 6564 2037 2e30 3031 3937 7320 - used 7.00197s │ │ │ │ -00020dd0: 2863 7075 293b 2035 2e32 3738 3032 7320 (cpu); 5.27802s │ │ │ │ -00020de0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -00020df0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00020e00: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00020e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -00020e60: 6572 6520 6172 6520 6e75 6d65 726f 7573 ere are numerous │ │ │ │ -00020e70: 2065 7861 6d70 6c65 7320 7768 6572 6520 examples where │ │ │ │ -00020e80: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00020e90: 7369 6f6e 2069 7320 7365 7665 7261 6c20 sion is several │ │ │ │ -00020ea0: 6f72 6465 7273 206f 660a 6d61 676e 6974 orders of.magnit │ │ │ │ -00020eb0: 7564 6520 6661 7374 6572 2074 6861 7420 ude faster that │ │ │ │ -00020ec0: 6361 6c6c 7320 6f66 2064 696d 2073 696e calls of dim sin │ │ │ │ -00020ed0: 6775 6c61 724c 6f63 7573 2e0a 0a54 6865 gularLocus...The │ │ │ │ -00020ee0: 2066 6f6c 6c6f 7769 6e67 2069 7320 6120 following is a │ │ │ │ -00020ef0: 2870 7275 6e65 6429 2061 6666 696e 6520 (pruned) affine │ │ │ │ -00020f00: 6368 6172 7420 6f6e 2061 6e20 4162 656c chart on an Abel │ │ │ │ -00020f10: 6961 6e20 7375 7266 6163 6520 6f62 7461 ian surface obta │ │ │ │ -00020f20: 696e 6564 2061 7320 610a 7072 6f64 7563 ined as a.produc │ │ │ │ -00020f30: 7420 6f66 2074 776f 2065 6c6c 6970 7469 t of two ellipti │ │ │ │ -00020f40: 6320 6375 7276 6573 2e20 2049 7420 6973 c curves. It is │ │ │ │ -00020f50: 206e 6f6e 7369 6e67 756c 6172 2c20 6173 nonsingular, as │ │ │ │ -00020f60: 206f 7572 2066 756e 6374 696f 6e20 7665 our function ve │ │ │ │ -00020f70: 7269 6669 6573 2e0a 4966 206f 6e65 2064 rifies..If one d │ │ │ │ -00020f80: 6f65 7320 6e6f 7420 7072 756e 6520 6974 oes not prune it │ │ │ │ -00020f90: 2c20 7468 656e 2074 6865 2064 696d 2073 , then the dim s │ │ │ │ -00020fa0: 696e 6775 6c61 724c 6f63 7573 2063 616c ingularLocus cal │ │ │ │ -00020fb0: 6c20 7461 6b65 7320 616e 2065 6e6f 726d l takes an enorm │ │ │ │ -00020fc0: 6f75 730a 616d 6f75 6e74 206f 6620 7469 ous.amount of ti │ │ │ │ -00020fd0: 6d65 2c20 6f74 6865 7277 6973 6520 7468 me, otherwise th │ │ │ │ -00020fe0: 6520 7275 6e6e 696e 6720 7469 6d65 7320 e running times │ │ │ │ -00020ff0: 6f66 2064 696d 2073 696e 6775 6c61 724c of dim singularL │ │ │ │ -00021000: 6f63 7573 2061 6e64 206f 7572 0a66 756e ocus and our.fun │ │ │ │ -00021010: 6374 696f 6e20 6172 6520 6672 6571 7565 ction are freque │ │ │ │ -00021020: 6e74 6c79 2061 626f 7574 2074 6865 2073 ntly about the s │ │ │ │ -00021030: 616d 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ame...+--------- │ │ │ │ -00021040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021080: 2d2d 2d2d 2b0a 7c69 3130 203a 2052 203d ----+.|i10 : R = │ │ │ │ -00021090: 2051 515b 632c 2066 2c20 672c 2068 5d2f QQ[c, f, g, h]/ │ │ │ │ -000210a0: 6964 6561 6c28 675e 332b 685e 332b 312c ideal(g^3+h^3+1, │ │ │ │ -000210b0: 662a 675e 332b 662a 685e 332b 662c 632a f*g^3+f*h^3+f,c* │ │ │ │ -000210c0: 675e 332b 632a 685e 332b 632c 665e 322a g^3+c*h^3+c,f^2* │ │ │ │ -000210d0: 675e 332b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^3+|.|--------- │ │ │ │ -000210e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021120: 2d2d 2d2d 7c0a 7c66 5e32 2a68 5e33 2b66 ----|.|f^2*h^3+f │ │ │ │ -00021130: 5e32 2c63 2a66 2a67 5e33 2b63 2a66 2a68 ^2,c*f*g^3+c*f*h │ │ │ │ -00021140: 5e33 2b63 2a66 2c63 5e32 2a67 5e33 2b63 ^3+c*f,c^2*g^3+c │ │ │ │ -00021150: 5e32 2a68 5e33 2b63 5e32 2c66 5e33 2a67 ^2*h^3+c^2,f^3*g │ │ │ │ -00021160: 5e33 2b66 5e33 2a68 5e33 2b66 5e33 2c63 ^3+f^3*h^3+f^3,c │ │ │ │ -00021170: 2a66 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *f^2|.|--------- │ │ │ │ -00021180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000211c0: 2d2d 2d2d 7c0a 7c2a 675e 332b 632a 665e ----|.|*g^3+c*f^ │ │ │ │ -000211d0: 322a 685e 332b 632a 665e 322c 635e 322a 2*h^3+c*f^2,c^2* │ │ │ │ -000211e0: 662a 675e 332b 635e 322a 662a 685e 332b f*g^3+c^2*f*h^3+ │ │ │ │ -000211f0: 635e 322a 662c 635e 332d 665e 322d 632c c^2*f,c^3-f^2-c, │ │ │ │ -00021200: 635e 332a 682d 665e 322a 682d 632a 682c c^3*h-f^2*h-c*h, │ │ │ │ -00021210: 635e 332a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d c^3*|.|--------- │ │ │ │ -00021220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021260: 2d2d 2d2d 7c0a 7c67 2d66 5e32 2a67 2d63 ----|.|g-f^2*g-c │ │ │ │ -00021270: 2a67 2c63 5e33 2a68 5e32 2d66 5e32 2a68 *g,c^3*h^2-f^2*h │ │ │ │ -00021280: 5e32 2d63 2a68 5e32 2c63 5e33 2a67 2a68 ^2-c*h^2,c^3*g*h │ │ │ │ -00021290: 2d66 5e32 2a67 2a68 2d63 2a67 2a68 2c63 -f^2*g*h-c*g*h,c │ │ │ │ -000212a0: 5e33 2a67 5e32 2d66 5e32 2a67 5e32 2d63 ^3*g^2-f^2*g^2-c │ │ │ │ -000212b0: 2a67 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *g^2|.|--------- │ │ │ │ -000212c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000212f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021300: 2d2d 2d2d 7c0a 7c2c 635e 332a 685e 332d ----|.|,c^3*h^3- │ │ │ │ -00021310: 665e 322a 685e 332d 632a 685e 332c 635e f^2*h^3-c*h^3,c^ │ │ │ │ -00021320: 332a 672a 685e 322d 665e 322a 672a 685e 3*g*h^2-f^2*g*h^ │ │ │ │ -00021330: 322d 632a 672a 685e 322c 635e 332a 675e 2-c*g*h^2,c^3*g^ │ │ │ │ -00021340: 322a 682d 665e 322a 675e 322a 682d 632a 2*h-f^2*g^2*h-c* │ │ │ │ -00021350: 675e 322a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^2*|.|--------- │ │ │ │ -00021360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000213a0: 2d2d 2d2d 7c0a 7c68 2c63 5e33 2a67 5e33 ----|.|h,c^3*g^3 │ │ │ │ -000213b0: 2b66 5e32 2a68 5e33 2b63 2a68 5e33 2b66 +f^2*h^3+c*h^3+f │ │ │ │ -000213c0: 5e32 2b63 293b 2020 2020 2020 2020 2020 ^2+c); │ │ │ │ -000213d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021440: 2d2d 2d2d 2b0a 7c69 3131 203a 2064 696d ----+.|i11 : dim │ │ │ │ -00021450: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ -00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d10: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ +00020d20: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00020d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d60: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ +00020dc0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ +00020dd0: 6e43 6f64 696d 656e 7369 6f6e 2832 2c20 nCodimension(2, │ │ │ │ +00020de0: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ +00020df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020e00: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00020e10: 2d20 7573 6564 2037 2e30 3730 3338 7320 - used 7.07038s │ │ │ │ +00020e20: 2863 7075 293b 2035 2e33 3538 3334 7320 (cpu); 5.35834s │ │ │ │ +00020e30: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00020e40: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00020e50: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00020e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00020eb0: 6572 6520 6172 6520 6e75 6d65 726f 7573 ere are numerous │ │ │ │ +00020ec0: 2065 7861 6d70 6c65 7320 7768 6572 6520 examples where │ │ │ │ +00020ed0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00020ee0: 7369 6f6e 2069 7320 7365 7665 7261 6c20 sion is several │ │ │ │ +00020ef0: 6f72 6465 7273 206f 660a 6d61 676e 6974 orders of.magnit │ │ │ │ +00020f00: 7564 6520 6661 7374 6572 2074 6861 7420 ude faster that │ │ │ │ +00020f10: 6361 6c6c 7320 6f66 2064 696d 2073 696e calls of dim sin │ │ │ │ +00020f20: 6775 6c61 724c 6f63 7573 2e0a 0a54 6865 gularLocus...The │ │ │ │ +00020f30: 2066 6f6c 6c6f 7769 6e67 2069 7320 6120 following is a │ │ │ │ +00020f40: 2870 7275 6e65 6429 2061 6666 696e 6520 (pruned) affine │ │ │ │ +00020f50: 6368 6172 7420 6f6e 2061 6e20 4162 656c chart on an Abel │ │ │ │ +00020f60: 6961 6e20 7375 7266 6163 6520 6f62 7461 ian surface obta │ │ │ │ +00020f70: 696e 6564 2061 7320 610a 7072 6f64 7563 ined as a.produc │ │ │ │ +00020f80: 7420 6f66 2074 776f 2065 6c6c 6970 7469 t of two ellipti │ │ │ │ +00020f90: 6320 6375 7276 6573 2e20 2049 7420 6973 c curves. It is │ │ │ │ +00020fa0: 206e 6f6e 7369 6e67 756c 6172 2c20 6173 nonsingular, as │ │ │ │ +00020fb0: 206f 7572 2066 756e 6374 696f 6e20 7665 our function ve │ │ │ │ +00020fc0: 7269 6669 6573 2e0a 4966 206f 6e65 2064 rifies..If one d │ │ │ │ +00020fd0: 6f65 7320 6e6f 7420 7072 756e 6520 6974 oes not prune it │ │ │ │ +00020fe0: 2c20 7468 656e 2074 6865 2064 696d 2073 , then the dim s │ │ │ │ +00020ff0: 696e 6775 6c61 724c 6f63 7573 2063 616c ingularLocus cal │ │ │ │ +00021000: 6c20 7461 6b65 7320 616e 2065 6e6f 726d l takes an enorm │ │ │ │ +00021010: 6f75 730a 616d 6f75 6e74 206f 6620 7469 ous.amount of ti │ │ │ │ +00021020: 6d65 2c20 6f74 6865 7277 6973 6520 7468 me, otherwise th │ │ │ │ +00021030: 6520 7275 6e6e 696e 6720 7469 6d65 7320 e running times │ │ │ │ +00021040: 6f66 2064 696d 2073 696e 6775 6c61 724c of dim singularL │ │ │ │ +00021050: 6f63 7573 2061 6e64 206f 7572 0a66 756e ocus and our.fun │ │ │ │ +00021060: 6374 696f 6e20 6172 6520 6672 6571 7565 ction are freque │ │ │ │ +00021070: 6e74 6c79 2061 626f 7574 2074 6865 2073 ntly about the s │ │ │ │ +00021080: 616d 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ame...+--------- │ │ │ │ +00021090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210d0: 2d2d 2d2d 2b0a 7c69 3130 203a 2052 203d ----+.|i10 : R = │ │ │ │ +000210e0: 2051 515b 632c 2066 2c20 672c 2068 5d2f QQ[c, f, g, h]/ │ │ │ │ +000210f0: 6964 6561 6c28 675e 332b 685e 332b 312c ideal(g^3+h^3+1, │ │ │ │ +00021100: 662a 675e 332b 662a 685e 332b 662c 632a f*g^3+f*h^3+f,c* │ │ │ │ +00021110: 675e 332b 632a 685e 332b 632c 665e 322a g^3+c*h^3+c,f^2* │ │ │ │ +00021120: 675e 332b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^3+|.|--------- │ │ │ │ +00021130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021170: 2d2d 2d2d 7c0a 7c66 5e32 2a68 5e33 2b66 ----|.|f^2*h^3+f │ │ │ │ +00021180: 5e32 2c63 2a66 2a67 5e33 2b63 2a66 2a68 ^2,c*f*g^3+c*f*h │ │ │ │ +00021190: 5e33 2b63 2a66 2c63 5e32 2a67 5e33 2b63 ^3+c*f,c^2*g^3+c │ │ │ │ +000211a0: 5e32 2a68 5e33 2b63 5e32 2c66 5e33 2a67 ^2*h^3+c^2,f^3*g │ │ │ │ +000211b0: 5e33 2b66 5e33 2a68 5e33 2b66 5e33 2c63 ^3+f^3*h^3+f^3,c │ │ │ │ +000211c0: 2a66 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *f^2|.|--------- │ │ │ │ +000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021210: 2d2d 2d2d 7c0a 7c2a 675e 332b 632a 665e ----|.|*g^3+c*f^ │ │ │ │ +00021220: 322a 685e 332b 632a 665e 322c 635e 322a 2*h^3+c*f^2,c^2* │ │ │ │ +00021230: 662a 675e 332b 635e 322a 662a 685e 332b f*g^3+c^2*f*h^3+ │ │ │ │ +00021240: 635e 322a 662c 635e 332d 665e 322d 632c c^2*f,c^3-f^2-c, │ │ │ │ +00021250: 635e 332a 682d 665e 322a 682d 632a 682c c^3*h-f^2*h-c*h, │ │ │ │ +00021260: 635e 332a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d c^3*|.|--------- │ │ │ │ +00021270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000212a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000212b0: 2d2d 2d2d 7c0a 7c67 2d66 5e32 2a67 2d63 ----|.|g-f^2*g-c │ │ │ │ +000212c0: 2a67 2c63 5e33 2a68 5e32 2d66 5e32 2a68 *g,c^3*h^2-f^2*h │ │ │ │ +000212d0: 5e32 2d63 2a68 5e32 2c63 5e33 2a67 2a68 ^2-c*h^2,c^3*g*h │ │ │ │ +000212e0: 2d66 5e32 2a67 2a68 2d63 2a67 2a68 2c63 -f^2*g*h-c*g*h,c │ │ │ │ +000212f0: 5e33 2a67 5e32 2d66 5e32 2a67 5e32 2d63 ^3*g^2-f^2*g^2-c │ │ │ │ +00021300: 2a67 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d *g^2|.|--------- │ │ │ │ +00021310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021350: 2d2d 2d2d 7c0a 7c2c 635e 332a 685e 332d ----|.|,c^3*h^3- │ │ │ │ +00021360: 665e 322a 685e 332d 632a 685e 332c 635e f^2*h^3-c*h^3,c^ │ │ │ │ +00021370: 332a 672a 685e 322d 665e 322a 672a 685e 3*g*h^2-f^2*g*h^ │ │ │ │ +00021380: 322d 632a 672a 685e 322c 635e 332a 675e 2-c*g*h^2,c^3*g^ │ │ │ │ +00021390: 322a 682d 665e 322a 675e 322a 682d 632a 2*h-f^2*g^2*h-c* │ │ │ │ +000213a0: 675e 322a 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d g^2*|.|--------- │ │ │ │ +000213b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000213f0: 2d2d 2d2d 7c0a 7c68 2c63 5e33 2a67 5e33 ----|.|h,c^3*g^3 │ │ │ │ +00021400: 2b66 5e32 2a68 5e33 2b63 2a68 5e33 2b66 +f^2*h^3+c*h^3+f │ │ │ │ +00021410: 5e32 2b63 293b 2020 2020 2020 2020 2020 ^2+c); │ │ │ │ +00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021440: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021490: 2d2d 2d2d 2b0a 7c69 3131 203a 2064 696d ----+.|i11 : dim │ │ │ │ +000214a0: 2852 2920 2020 2020 2020 2020 2020 2020 (R) │ │ │ │ 000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214e0: 2020 2020 7c0a 7c6f 3131 203d 2032 2020 |.|o11 = 2 │ │ │ │ +000214e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000214f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021530: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021580: 2d2d 2d2d 2b0a 7c69 3132 203a 2074 696d ----+.|i12 : tim │ │ │ │ -00021590: 6520 2864 696d 2073 696e 6775 6c61 724c e (dim singularL │ │ │ │ -000215a0: 6f63 7573 2028 5229 2920 2020 2020 2020 ocus (R)) │ │ │ │ -000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215d0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000215e0: 302e 3031 3939 3938 3873 2028 6370 7529 0.0199988s (cpu) │ │ │ │ -000215f0: 3b20 302e 3031 3938 3039 3673 2028 7468 ; 0.0198096s (th │ │ │ │ -00021600: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00021530: 2020 2020 7c0a 7c6f 3131 203d 2032 2020 |.|o11 = 2 │ │ │ │ +00021540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021580: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000215d0: 2d2d 2d2d 2b0a 7c69 3132 203a 2074 696d ----+.|i12 : tim │ │ │ │ +000215e0: 6520 2864 696d 2073 696e 6775 6c61 724c e (dim singularL │ │ │ │ +000215f0: 6f63 7573 2028 5229 2920 2020 2020 2020 ocus (R)) │ │ │ │ +00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021620: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021630: 302e 3032 3339 3434 3473 2028 6370 7529 0.0239444s (cpu) │ │ │ │ +00021640: 3b20 302e 3032 3131 3433 3673 2028 7468 ; 0.0211436s (th │ │ │ │ +00021650: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00021660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021670: 2020 2020 7c0a 7c6f 3132 203d 202d 3120 |.|o12 = -1 │ │ │ │ +00021670: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000216d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000216f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021710: 2d2d 2d2d 2b0a 7c69 3133 203a 2074 696d ----+.|i13 : tim │ │ │ │ -00021720: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00021730: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021760: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021770: 302e 3138 3238 3835 7320 2863 7075 293b 0.182885s (cpu); │ │ │ │ -00021780: 2030 2e31 3335 3134 3773 2028 7468 7265 0.135147s (thre │ │ │ │ -00021790: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000216c0: 2020 2020 7c0a 7c6f 3132 203d 202d 3120 |.|o12 = -1 │ │ │ │ +000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021710: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021760: 2d2d 2d2d 2b0a 7c69 3133 203a 2074 696d ----+.|i13 : tim │ │ │ │ +00021770: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021780: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000217c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217b0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000217c0: 302e 3139 3830 3539 7320 2863 7075 293b 0.198059s (cpu); │ │ │ │ +000217d0: 2030 2e31 3530 3630 3873 2028 7468 7265 0.150608s (thre │ │ │ │ +000217e0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000217f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021800: 2020 2020 7c0a 7c6f 3133 203d 2074 7275 |.|o13 = tru │ │ │ │ -00021810: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021850: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000218a0: 2d2d 2d2d 2b0a 7c69 3134 203a 2074 696d ----+.|i14 : tim │ │ │ │ -000218b0: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -000218c0: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -000218d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218f0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021900: 302e 3931 3934 3973 2028 6370 7529 3b20 0.91949s (cpu); │ │ │ │ -00021910: 302e 3537 3233 3332 7320 2874 6872 6561 0.572332s (threa │ │ │ │ -00021920: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00021850: 2020 2020 7c0a 7c6f 3133 203d 2074 7275 |.|o13 = tru │ │ │ │ +00021860: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000218a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000218b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000218f0: 2d2d 2d2d 2b0a 7c69 3134 203a 2074 696d ----+.|i14 : tim │ │ │ │ +00021900: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021910: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021940: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021950: 312e 3035 3439 3273 2028 6370 7529 3b20 1.05492s (cpu); │ │ │ │ +00021960: 302e 3637 3234 3734 7320 2874 6872 6561 0.672474s (threa │ │ │ │ +00021970: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00021980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021990: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ -000219a0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000219a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000219f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021a30: 2d2d 2d2d 2b0a 7c69 3135 203a 2074 696d ----+.|i15 : tim │ │ │ │ -00021a40: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00021a50: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ -00021a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a80: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021a90: 312e 3234 3130 3373 2028 6370 7529 3b20 1.24103s (cpu); │ │ │ │ -00021aa0: 302e 3836 3633 3033 7320 2874 6872 6561 0.866303s (threa │ │ │ │ -00021ab0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +000219e0: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ +000219f0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021a30: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021a80: 2d2d 2d2d 2b0a 7c69 3135 203a 2074 696d ----+.|i15 : tim │ │ │ │ +00021a90: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00021aa0: 656e 7369 6f6e 2832 2c20 5229 2020 2020 ension(2, R) │ │ │ │ +00021ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00021ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ad0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00021ae0: 312e 3436 3939 3873 2028 6370 7529 3b20 1.46998s (cpu); │ │ │ │ +00021af0: 312e 3030 3836 3873 2028 7468 7265 6164 1.00868s (thread │ │ │ │ +00021b00: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00021b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b20: 2020 2020 7c0a 7c6f 3135 203d 2074 7275 |.|o15 = tru │ │ │ │ -00021b30: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021b20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00021b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00021b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021bc0: 2d2d 2d2d 2b0a 0a54 6865 2066 756e 6374 ----+..The funct │ │ │ │ -00021bd0: 696f 6e20 776f 726b 7320 6279 2063 686f ion works by cho │ │ │ │ -00021be0: 6f73 696e 6720 696e 7465 7265 7374 696e osing interestin │ │ │ │ -00021bf0: 6720 6c6f 6f6b 696e 6720 7375 626d 6174 g looking submat │ │ │ │ -00021c00: 7269 6365 732c 2063 6f6d 7075 7469 6e67 rices, computing │ │ │ │ -00021c10: 2074 6865 6972 0a64 6574 6572 6d69 6e61 their.determina │ │ │ │ -00021c20: 6e74 732c 2061 6e64 2070 6572 696f 6469 nts, and periodi │ │ │ │ -00021c30: 6361 6c6c 7920 2862 6173 6564 206f 6e20 cally (based on │ │ │ │ -00021c40: 6120 6c6f 6761 7269 7468 6d69 6320 6772 a logarithmic gr │ │ │ │ -00021c50: 6f77 7468 2073 6574 7469 6e67 292c 0a63 owth setting),.c │ │ │ │ -00021c60: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ -00021c70: 656e 7369 6f6e 206f 6620 6120 7375 6269 ension of a subi │ │ │ │ -00021c80: 6465 616c 206f 6620 7468 6520 4a61 636f deal of the Jaco │ │ │ │ -00021c90: 6269 616e 2e20 5468 6520 6f70 7469 6f6e bian. The option │ │ │ │ -00021ca0: 2056 6572 626f 7365 2063 616e 0a62 6520 Verbose can.be │ │ │ │ -00021cb0: 7573 6564 2074 6f20 7365 6520 7468 6973 used to see this │ │ │ │ -00021cc0: 2069 6e20 6163 7469 6f6e 2e0a 0a2b 2d2d in action...+-- │ │ │ │ -00021cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00021d20: 3620 3a20 7469 6d65 2072 6567 756c 6172 6 : time regular │ │ │ │ -00021d30: 496e 436f 6469 6d65 6e73 696f 6e28 322c InCodimension(2, │ │ │ │ -00021d40: 2053 2c20 5665 7262 6f73 653d 3e74 7275 S, Verbose=>tru │ │ │ │ -00021d50: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ -00021d60: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00021d70: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00021d80: 6f6e 3a20 7269 6e67 2064 696d 656e 7369 on: ring dimensi │ │ │ │ -00021d90: 6f6e 203d 332c 2074 6865 7265 2061 7265 on =3, there are │ │ │ │ -00021da0: 2031 3733 3235 2070 6f73 7369 626c 6520 17325 possible │ │ │ │ -00021db0: 3420 6279 2034 206d 696e 6f7c 0a7c 7265 4 by 4 mino|.|re │ │ │ │ +00021b70: 2020 2020 7c0a 7c6f 3135 203d 2074 7275 |.|o15 = tru │ │ │ │ +00021b80: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00021b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021bc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00021bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021c10: 2d2d 2d2d 2b0a 0a54 6865 2066 756e 6374 ----+..The funct │ │ │ │ +00021c20: 696f 6e20 776f 726b 7320 6279 2063 686f ion works by cho │ │ │ │ +00021c30: 6f73 696e 6720 696e 7465 7265 7374 696e osing interestin │ │ │ │ +00021c40: 6720 6c6f 6f6b 696e 6720 7375 626d 6174 g looking submat │ │ │ │ +00021c50: 7269 6365 732c 2063 6f6d 7075 7469 6e67 rices, computing │ │ │ │ +00021c60: 2074 6865 6972 0a64 6574 6572 6d69 6e61 their.determina │ │ │ │ +00021c70: 6e74 732c 2061 6e64 2070 6572 696f 6469 nts, and periodi │ │ │ │ +00021c80: 6361 6c6c 7920 2862 6173 6564 206f 6e20 cally (based on │ │ │ │ +00021c90: 6120 6c6f 6761 7269 7468 6d69 6320 6772 a logarithmic gr │ │ │ │ +00021ca0: 6f77 7468 2073 6574 7469 6e67 292c 0a63 owth setting),.c │ │ │ │ +00021cb0: 6f6d 7075 7469 6e67 2074 6865 2064 696d omputing the dim │ │ │ │ +00021cc0: 656e 7369 6f6e 206f 6620 6120 7375 6269 ension of a subi │ │ │ │ +00021cd0: 6465 616c 206f 6620 7468 6520 4a61 636f deal of the Jaco │ │ │ │ +00021ce0: 6269 616e 2e20 5468 6520 6f70 7469 6f6e bian. The option │ │ │ │ +00021cf0: 2056 6572 626f 7365 2063 616e 0a62 6520 Verbose can.be │ │ │ │ +00021d00: 7573 6564 2074 6f20 7365 6520 7468 6973 used to see this │ │ │ │ +00021d10: 2069 6e20 6163 7469 6f6e 2e0a 0a2b 2d2d in action...+-- │ │ │ │ +00021d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00021d70: 3620 3a20 7469 6d65 2072 6567 756c 6172 6 : time regular │ │ │ │ +00021d80: 496e 436f 6469 6d65 6e73 696f 6e28 322c InCodimension(2, │ │ │ │ +00021d90: 2053 2c20 5665 7262 6f73 653d 3e74 7275 S, Verbose=>tru │ │ │ │ +00021da0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ +00021db0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00021dc0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00021dd0: 6f6e 3a20 4162 6f75 7420 746f 2065 6e74 on: About to ent │ │ │ │ -00021de0: 6572 206c 6f6f 7020 2020 2020 2020 2020 er loop │ │ │ │ -00021df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ -00021e10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021e20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00021e30: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00021dd0: 6f6e 3a20 7269 6e67 2064 696d 656e 7369 on: ring dimensi │ │ │ │ +00021de0: 6f6e 203d 332c 2074 6865 7265 2061 7265 on =3, there are │ │ │ │ +00021df0: 2031 3733 3235 2070 6f73 7369 626c 6520 17325 possible │ │ │ │ +00021e00: 3420 6279 2034 206d 696e 6f7c 0a7c 7265 4 by 4 mino|.|re │ │ │ │ +00021e10: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00021e20: 6f6e 3a20 4162 6f75 7420 746f 2065 6e74 on: About to ent │ │ │ │ +00021e30: 6572 206c 6f6f 7020 2020 2020 2020 2020 er loop │ │ │ │ 00021e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021e60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021e70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021e80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00021e70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00021e80: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ea0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021eb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021ec0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00021ed0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00021ec0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00021ed0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ef0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021f00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00021f10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00021f20: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00021f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021f50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00021f60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021f70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00021f60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00021f70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00021f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021f90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021fa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00021fb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00021fc0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00021fc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00021fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fe0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00021ff0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022000: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022010: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022000: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022010: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022030: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022040: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022050: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022060: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022050: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022060: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00022070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022080: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022090: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000220a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000220b0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000220c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000220d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000220e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000220f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022100: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022110: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022120: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000220d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000220e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000220f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022100: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022120: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022130: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022140: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022150: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022160: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022170: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022140: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022150: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022160: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022170: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022180: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022190: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000221a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000221b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000221c0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -000221d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000221e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000221f0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ -00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022210: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022190: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000221a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000221b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000221c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000221d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000221e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000221f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022200: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022210: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 00022220: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022230: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022240: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00022230: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022240: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022260: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022270: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022280: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022290: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000222a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000222b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022260: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022270: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022280: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022290: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000222a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000222c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000222d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000222e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000222f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022300: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000222d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000222e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000222f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022300: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022310: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022320: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022330: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022340: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022350: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -00022360: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022370: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022380: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ -00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022320: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022330: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022340: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022350: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022360: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022370: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022380: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022390: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000223a0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 000223b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000223c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000223d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000223c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000223d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000223e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022400: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022410: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022420: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022440: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022450: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022460: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022470: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022460: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022470: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022490: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000224a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000224b0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -000224c0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000224d0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000224e0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022490: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000224a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000224b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000224c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000224d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000224f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022500: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022510: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022520: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022530: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022500: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022510: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022520: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022530: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022540: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022550: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022560: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022570: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022580: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ -00022590: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000225a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000225b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022550: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022560: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022570: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022580: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022590: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000225a0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000225b0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000225c0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000225d0: 3d20 3220 2020 2020 2020 207c 0a7c 696e = 2 |.|in │ │ │ │ 000225e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000225f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022600: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000225f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022600: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022620: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022630: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022640: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022650: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022650: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022670: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022680: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022690: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000226a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022690: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000226a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000226b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000226d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000226e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000226f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000226e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000226f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022710: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022720: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022730: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022740: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022760: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022770: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022780: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022790: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000227a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000227b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022760: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022770: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022780: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022790: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000227a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000227b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000227c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000227d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000227e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000227f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022800: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000227d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000227e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000227f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022800: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022810: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022820: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022830: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022840: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022850: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022860: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022870: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022880: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ -00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022820: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022830: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022840: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022850: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022860: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022870: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022880: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022890: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000228a0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000228b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000228c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000228d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000228c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000228d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022900: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022910: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022920: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022940: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022950: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022960: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022970: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022960: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022970: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022990: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000229a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000229b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000229c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000229b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000229c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000229f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022a00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022a10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022a40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022a50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022a60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022a50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022a60: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a80: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022a90: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022aa0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022ab0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022ac0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022ad0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022a80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022a90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022aa0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022ab0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ad0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022ae0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022af0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022b00: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022b10: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022b20: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022af0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022b00: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022b10: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022b20: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022b30: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022b40: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022b50: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022b60: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022b70: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022b80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022b90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022ba0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00022bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022bc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022b40: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022b50: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022b60: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022b70: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022b80: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022b90: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022ba0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022bb0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022bc0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00022bd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022be0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022bf0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00022be0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022bf0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00022c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022c20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022c30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00022c40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022c70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022c80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022c90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00022c80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022c90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022cc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022cd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022ce0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022cd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022ce0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00022cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022d10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022d20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022d30: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00022d20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022d30: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00022d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022d60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00022d70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00022d80: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022da0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022db0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022dc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022dd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00022dc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022dd0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022df0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022e00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022e10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00022e20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022e10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00022e20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00022e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e40: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00022e50: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022e60: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00022e70: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00022e80: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00022e90: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00022e40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022e50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00022e60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00022e70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00022e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e90: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00022ea0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022eb0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00022ec0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00022ed0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00022ee0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022eb0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00022ec0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00022ed0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00022ee0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00022ef0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00022f00: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00022f10: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00022f20: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00022f30: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00022f40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022f50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00022f60: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -00022f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00022f00: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00022f10: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00022f20: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00022f30: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00022f40: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00022f50: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00022f60: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00022f70: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00022f80: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00022f90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022fa0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00022fb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00022fa0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00022fb0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00022fe0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00022ff0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023000: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00022ff0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023000: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023020: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023030: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023040: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023050: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023070: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023080: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023090: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000230a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000230a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000230b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000230d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000230e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000230f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000230e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000230f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023110: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023120: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023130: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00023140: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023160: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023170: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023180: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023190: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023180: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023190: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000231a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000231c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000231d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000231e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000231d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000231e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000231f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023200: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023210: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023220: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023230: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023250: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023260: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023270: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023280: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000232b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000232c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000232d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000232c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000232d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232f0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00023300: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023310: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00023320: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00023330: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00023340: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000232f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023300: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00023310: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023320: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023340: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00023350: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023360: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00023370: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00023380: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00023390: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023360: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00023370: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00023380: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00023390: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000233a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000233b0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000233c0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000233d0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000233e0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000233f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023400: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023410: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -00023420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023430: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000233b0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000233c0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000233d0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000233e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000233f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00023400: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00023410: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00023420: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00023430: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00023440: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023450: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00023460: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023480: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023490: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000234a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000234b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000234a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000234b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000234c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000234e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000234f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023500: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000234f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023500: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023520: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023530: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023540: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023550: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023550: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023570: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023580: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023590: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000235a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000235b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000235d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000235e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000235f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000235e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000235f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023610: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023620: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023630: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023640: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023630: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023640: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023660: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023670: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023680: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023690: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023690: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000236a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000236c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000236d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000236e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000236d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000236e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000236f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023700: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023710: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023720: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023730: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023720: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023730: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023750: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023760: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023770: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023780: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023770: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023780: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000237b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000237c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000237d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000237c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000237d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000237e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023800: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023810: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023820: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023820: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023840: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023850: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023860: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023870: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023860: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023870: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023890: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000238a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000238b0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -000238c0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000238d0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000238e0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00023890: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000238a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000238b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000238c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000238d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000238e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000238f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023900: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00023910: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00023920: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00023930: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023900: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00023910: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00023920: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00023930: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00023940: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023950: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00023960: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00023970: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00023980: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00023990: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000239a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000239b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ -000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023950: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00023960: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00023970: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00023980: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00023990: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000239a0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000239b0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000239c0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000239d0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000239e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000239f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023a00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000239f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023a00: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023a30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023a40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023a50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023a80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023a90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023aa0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ac0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023ad0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023ae0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023af0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023ae0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023af0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023b20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023b30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023b40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023b40: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023b70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023b80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023b90: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023b80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023b90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023bc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023bd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023be0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00023bd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023be0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023c10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023c20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00023c30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023c60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023c70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023c80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023c70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023c80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ca0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023cb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023cc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023cd0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023cc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023cd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023cf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023d00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023d10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023d20: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00023d10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023d20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023d50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023d60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023d70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023d70: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023da0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023db0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00023dc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023de0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023df0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023e00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023e10: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023e00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023e10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023e40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023e50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00023e60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00023e50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023e60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023e90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023ea0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023eb0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00023ea0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00023eb0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ed0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023ee0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00023ef0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00023f00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023f30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023f40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00023f50: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00023f40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023f50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00023f80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00023f90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00023fa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00023f90: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00023fa0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fc0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00023fd0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00023fe0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00023ff0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00024000: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00024010: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00023fc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00023fd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00023fe0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00023ff0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024010: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00024020: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024030: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00024040: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00024050: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00024060: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00024030: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00024040: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00024050: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00024060: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00024070: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024080: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00024090: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000240a0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000240b0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000240c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000240d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000240e0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -000240f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024100: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00024080: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00024090: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000240a0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000240b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000240c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000240d0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000240e0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +000240f0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00024100: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00024110: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024120: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024130: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024120: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024130: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024150: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024160: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024170: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024180: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00024170: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024180: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000241b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000241c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000241d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000241d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000241e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024200: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024210: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024220: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024210: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024220: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024240: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024250: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024260: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024270: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024260: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024270: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024290: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000242a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000242b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000242c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000242b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000242c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000242d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000242e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000242f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024300: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024310: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024310: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00024320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024330: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024340: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024350: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024360: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00024360: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024380: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024390: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000243a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000243b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000243a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000243b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000243c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000243d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000243e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000243f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024400: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024400: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024420: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024430: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024440: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024450: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024440: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024450: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024470: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024480: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024490: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000244a0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024490: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000244a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000244d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000244e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000244f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000244f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024510: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024520: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024530: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024540: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024530: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024540: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024560: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024570: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024580: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00024590: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000245c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000245d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000245e0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000245d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000245e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024600: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024610: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024620: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024630: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024650: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024660: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024670: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024680: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024670: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024680: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000246b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000246c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000246d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000246c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000246d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024700: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024710: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024720: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024720: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024740: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024750: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024760: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024770: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024760: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024770: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024790: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000247a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000247b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000247c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000247d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000247f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024800: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024810: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024800: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024810: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024830: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024840: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024850: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024860: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024850: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024860: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024880: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024890: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000248a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 000248b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000248e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000248f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00024900: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00024910: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00024920: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000248d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000248e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000248f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024900: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024920: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00024930: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024940: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00024950: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00024960: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00024970: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00024940: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00024950: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00024960: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00024970: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00024980: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00024990: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000249a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000249b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000249c0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000249d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000249e0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000249f0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00024a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00024990: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000249a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000249b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000249c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000249d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000249e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000249f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00024a00: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00024a10: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00024a20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024a30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024a40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024a30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024a40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024a70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024a80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024a90: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ab0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ac0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024ad0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00024ae0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024b10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024b20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024b30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024b20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024b30: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024b60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024b70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024b80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024b70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024b80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ba0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024bb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024bc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024bd0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024bc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024bd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024bf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024c00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024c10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00024c20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024c50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024c60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00024c70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ca0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024cb0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024cc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00024cb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024cc0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ce0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024cf0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024d00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024d10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024d00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024d10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00024d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024d40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024d50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024d60: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024d50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024d60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024d90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00024da0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024db0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024db0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024dd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024de0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024df0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024e00: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024df0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024e00: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024e30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024e40: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024e50: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024e40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024e50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024e80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024e90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024ea0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024e90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024ea0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ec0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024ed0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024ee0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024ef0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00024ee0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00024ef0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00024f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024f20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024f30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00024f40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00024f30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024f40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024f70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024f80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00024f90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00024f80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00024f90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00024fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00024fc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00024fd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00024fe0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00024fd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00024fe0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025010: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025020: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025030: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025020: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025030: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025050: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025060: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025070: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025080: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025070: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025080: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000250b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000250c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000250d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000250c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000250d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025100: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025110: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025120: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025120: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025140: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025150: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025160: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025170: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025160: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025170: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025190: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000251a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000251b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000251c0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000251b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000251c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000251f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025200: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025210: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025210: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025230: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025240: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025250: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025260: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025250: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025260: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025290: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000252a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000252b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000252a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000252b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000252e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000252f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025300: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000252f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025300: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025320: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025330: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025340: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025350: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025350: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025370: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025380: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025390: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000253a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025390: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000253a0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000253b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000253d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000253e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000253f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000253e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000253f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025410: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025420: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025430: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025440: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025430: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025440: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025460: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00025470: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00025480: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00025490: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -000254a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -000254b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00025460: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00025470: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00025480: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025490: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000254b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000254c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000254d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -000254e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000254f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00025500: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000254d0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +000254e0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000254f0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00025500: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00025510: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00025520: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00025530: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00025540: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00025550: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00025560: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025570: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025580: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ -00025590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00025520: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00025530: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00025540: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00025550: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00025560: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00025570: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00025580: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00025590: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +000255a0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 000255b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000255c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000255d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000255c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000255d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025600: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025610: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025620: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025610: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025620: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025640: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025650: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025660: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025670: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025660: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025670: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025690: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000256a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000256b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000256c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000256b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000256c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000256f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025700: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025710: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025700: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025710: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025730: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025740: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025750: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025760: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025750: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025760: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025780: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025790: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000257a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000257b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000257a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000257b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000257e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000257f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025800: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000257f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025800: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025820: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025830: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025840: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025850: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025840: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025850: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025870: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025880: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025890: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000258a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025890: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000258a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000258d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000258e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000258f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025910: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025920: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025930: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025940: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025930: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025940: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025960: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025970: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025980: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025990: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025990: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000259c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000259d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000259e0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025a10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025a20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00025a30: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025a60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025a70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025a80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025a70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025a80: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025aa0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ab0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ac0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025ad0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025ac0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025ad0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025af0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025b00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025b10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025b20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025b10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025b20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025b50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025b60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025b70: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025b60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025b70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ba0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025bb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025bc0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025bb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025bc0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025be0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025bf0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025c00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025c10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00025c00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025c10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025c40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025c50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025c60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025c50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025c60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00025c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025c90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ca0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025cb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025ca0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025cb0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025cd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ce0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025cf0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025d00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025cf0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025d00: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025d30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00025d40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025d50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00025d50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025d80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025d90: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025da0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025d90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025da0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00025db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025dc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025dd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025de0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025df0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025de0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025df0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025e20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025e30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025e40: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00025e30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025e40: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025e70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025e80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025e90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025e80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025e90: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00025ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025eb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025ec0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025ed0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025ee0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025ed0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00025ee0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00025ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025f10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025f20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00025f30: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00025f20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025f30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025f60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025f70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00025f80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00025f70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00025f80: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00025f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025fa0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00025fb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00025fc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00025fd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00025fc0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00025fd0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00025fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ff0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026000: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026010: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026020: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026020: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026040: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026050: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026060: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026070: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026060: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026070: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026090: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000260a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000260b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000260c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000260b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000260c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000260d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000260f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026100: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00026110: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026130: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026140: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026150: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026160: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026150: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026160: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026180: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026190: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000261a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000261b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000261a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000261b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000261c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000261e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000261f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026200: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000261f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026200: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026220: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026230: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026240: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026250: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026240: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026250: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026270: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026280: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026290: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000262a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000262a0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000262b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000262d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000262e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000262f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026310: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00026320: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00026330: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00026340: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00026350: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00026360: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00026310: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00026320: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00026330: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026340: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026360: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00026370: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00026380: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00026390: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -000263a0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -000263b0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00026380: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00026390: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +000263a0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +000263b0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000263c0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000263d0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000263e0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000263f0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00026400: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00026410: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026420: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026430: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ -00026440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026450: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000263d0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000263e0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000263f0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00026400: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00026410: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00026420: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00026430: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00026440: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00026450: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00026460: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026470: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026480: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026480: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000264b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000264c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000264d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000264c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000264d0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026500: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026510: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00026520: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026540: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026550: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026560: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026570: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026560: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026570: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026590: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000265a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000265b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000265c0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000265c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000265f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026600: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026610: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026610: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026630: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026640: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026650: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026660: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026650: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026660: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026680: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026690: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000266a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000266b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000266a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000266b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000266c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000266d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000266e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000266f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026700: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000266f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026700: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026720: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026730: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026740: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026750: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026740: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026750: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026770: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026780: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026790: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000267a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00026790: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000267a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000267b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000267d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000267e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000267f0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026810: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026820: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026830: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026840: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026840: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026860: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026870: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026880: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026890: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026880: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026890: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000268a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000268b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000268c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000268d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000268e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000268d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000268e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026900: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026910: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026920: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026930: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026920: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026930: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026950: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026960: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026970: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026980: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026970: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026980: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000269b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000269c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000269d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000269c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000269d0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026a00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026a10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026a20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00026a10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026a20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026a50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026a60: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026a70: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026a60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026a70: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026aa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ab0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026ac0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026ab0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ac0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026af0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026b00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00026b10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026b40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026b50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026b60: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026b60: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026b90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ba0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026bb0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026ba0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026bb0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026bd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026be0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026bf0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026c00: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026bf0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026c00: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026c30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026c40: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026c50: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00026c40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026c50: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026c80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026c90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026ca0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026c90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ca0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00026cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026cd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ce0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026cf0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026ce0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026cf0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026d20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026d30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026d40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026d30: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026d40: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026d70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026d80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026d90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026d80: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026d90: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026db0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026dc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026dd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026de0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026dd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026de0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026e10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026e20: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026e30: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026e20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026e30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026e50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026e60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026e70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026e80: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026e70: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026e80: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ea0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026eb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026ec0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00026ed0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00026ec0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00026ed0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00026ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ef0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026f00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026f10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026f20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00026f10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00026f20: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00026f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026f50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00026f60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00026f70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00026f70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026fa0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00026fb0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00026fc0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00026fb0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00026fc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fe0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00026ff0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027000: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027010: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027010: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027030: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027040: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027050: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027060: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027060: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027080: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027090: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000270a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000270b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000270a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000270b0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000270e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000270f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027100: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000270f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027100: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027120: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027130: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027140: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027150: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00027150: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027170: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027180: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027190: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000271a0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000271a0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000271b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000271d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000271e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000271f0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000271e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000271f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027210: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027220: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027230: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027240: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027260: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027270: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027280: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027290: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027290: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000272a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000272b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000272c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000272d0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000272e0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000272d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000272e0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000272f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027300: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027310: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027320: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027330: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027320: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027330: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027350: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027360: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027370: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027380: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000273b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000273c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000273d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000273c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000273d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000273e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027400: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027410: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00027420: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027440: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027450: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027460: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027470: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027470: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027490: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000274a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000274b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000274c0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000274b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000274c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000274f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027500: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027510: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027530: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027540: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027550: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027560: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027550: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027560: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027580: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027590: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000275a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000275b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000275a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000275b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -000275e0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000275f0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00027600: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00027610: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00027620: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000275d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +000275e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +000275f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027600: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027620: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00027630: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00027640: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00027650: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00027660: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00027670: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00027640: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00027650: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00027660: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00027670: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00027680: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00027690: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000276a0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000276b0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000276c0: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -000276d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000276e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000276f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ -00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00027690: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000276a0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000276b0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000276c0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +000276d0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +000276e0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +000276f0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00027700: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00027710: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00027720: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027730: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027740: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027760: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027770: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027780: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027790: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000277c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000277d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000277e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000277d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000277e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000277f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027800: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027810: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027820: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027830: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027820: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027830: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027850: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027860: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027870: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027880: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027870: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027880: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000278b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000278c0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000278d0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +000278d0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027900: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027910: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027920: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027920: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027940: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027950: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027960: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027970: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027960: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027970: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027990: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000279a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000279b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000279c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +000279b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000279c0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000279d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000279e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000279f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027a00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027a10: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027a00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027a10: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027a40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027a50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027a60: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027a90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027aa0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ab0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027ab0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ad0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ae0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027af0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027b00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027af0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027b00: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027b30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027b40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027b50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027b50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027b80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027b90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ba0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027b90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027ba0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027bc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027bd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027be0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027bf0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027c20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027c30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027c40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00027c30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027c40: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027c70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027c80: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027c90: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027c80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027c90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00027ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027cb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027cc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027cd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027ce0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00027cd0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027ce0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027d10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027d20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027d30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027d20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027d30: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00027d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027d60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027d70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027d80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027d70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027d80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027da0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027db0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027dc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00027dd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027df0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027e00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027e10: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027e20: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00027e10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027e20: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027e50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027e60: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027e70: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027e70: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00027e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ea0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00027eb0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00027ec0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ee0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027ef0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027f00: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00027f10: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00027f00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00027f10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00027f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027f40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027f50: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00027f60: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027f50: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00027f60: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00027f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f80: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027f90: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027fa0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00027fb0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00027fa0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00027fb0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00027fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027fd0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00027fe0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00027ff0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028000: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00027ff0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028000: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028020: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028030: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028040: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00028050: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028070: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028080: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028090: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000280a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028090: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000280a0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 000280b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000280c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000280d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000280e0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000280f0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000280e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000280f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028110: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028120: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028130: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028140: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028130: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028140: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028160: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028170: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028180: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00028190: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000281a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000281c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000281d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000281e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000281d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +000281e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 000281f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028200: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028210: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028220: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028230: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028220: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028230: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028250: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028260: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028270: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 00028280: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000282b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000282c0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000282d0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000282d0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000282e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000282f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028300: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028310: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028320: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028310: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028320: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028340: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028350: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028360: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028370: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028360: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028370: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028390: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000283a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000283b0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000283c0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000283c0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000283d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000283e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000283f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028400: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00028410: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028430: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028440: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028450: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028460: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028450: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028460: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028480: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028490: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000284a0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000284b0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000284a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000284b0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000284c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000284e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000284f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028500: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000284f0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028500: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028520: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028530: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028540: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028550: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028540: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028550: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028570: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028580: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028590: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000285a0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 000285b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285c0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000285d0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000285e0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ 000285f0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028610: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028620: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028630: 723a 2043 6820 2d2d 2075 7365 6420 362e r: Ch -- used 6. │ │ │ │ -00028640: 3536 3836 3573 2028 6370 7529 3b20 342e 56865s (cpu); 4. │ │ │ │ -00028650: 3934 3932 3873 2028 7468 7265 6164 293b 94928s (thread); │ │ │ │ -00028660: 2030 7320 2867 6329 2020 207c 0a7c 6f6f 0s (gc) |.|oo │ │ │ │ -00028670: 7369 6e67 2047 5265 764c 6578 536d 616c sing GRevLexSmal │ │ │ │ -00028680: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ -00028690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ -000286c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000286d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -000286e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028630: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028640: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028660: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028670: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00028680: 723a 2043 6820 2d2d 2075 7365 6420 372e r: Ch -- used 7. │ │ │ │ +00028690: 3634 3136 3173 2028 6370 7529 3b20 352e 64161s (cpu); 5. │ │ │ │ +000286a0: 3634 3535 3373 2028 7468 7265 6164 293b 64553s (thread); │ │ │ │ +000286b0: 2030 7320 2867 6329 2020 207c 0a7c 6f6f 0s (gc) |.|oo │ │ │ │ +000286c0: 7369 6e67 2047 5265 764c 6578 536d 616c sing GRevLexSmal │ │ │ │ +000286d0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +000286e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028700: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028710: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028720: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028730: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028720: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028730: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028750: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028760: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028770: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028780: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028770: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028780: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000287b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000287c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000287d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000287e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028800: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028810: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028820: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028810: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028820: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028840: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028850: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028860: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028870: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028860: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028870: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028890: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000288a0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000288b0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000288c0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +000288b0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +000288c0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 000288d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000288e0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000288f0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028900: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028910: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00028900: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028910: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028930: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028940: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028950: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00028960: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028980: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028990: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000289a0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -000289b0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +000289a0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000289b0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000289c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289d0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000289e0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000289f0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028a00: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +000289f0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028a00: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a20: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028a30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028a40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028a50: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028a40: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028a50: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028a80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028a90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028aa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028aa0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ac0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028ad0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028ae0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028af0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028ae0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028af0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028b20: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028b30: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028b40: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028b30: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028b40: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b60: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028b70: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028b80: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028b90: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028b90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bb0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028bc0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028bd0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028be0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028bd0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028be0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c00: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028c10: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028c20: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028c30: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028c20: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028c30: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c50: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028c60: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028c70: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028c80: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ +00028c70: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028c80: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ca0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028cb0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028cc0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028cd0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028cd0: 6d61 6c6c 6573 7454 6572 6d20 2020 2020 mallestTerm │ │ │ │ 00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cf0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028d00: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028d10: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028d20: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00028d10: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028d20: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d40: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028d50: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028d60: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028d70: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ +00028d70: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028da0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00028db0: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ 00028dc0: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028de0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028df0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028e00: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028e10: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028e00: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028e10: 4c65 7853 6d61 6c6c 6573 7420 2020 2020 LexSmallest │ │ │ │ 00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e30: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00028e40: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028e50: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00028e60: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00028e70: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00028e80: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +00028e30: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028e40: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00028e50: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00028e60: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e80: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00028e90: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028ea0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00028eb0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00028ec0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00028ed0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00028ea0: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00028eb0: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00028ec0: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00028ed0: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 00028ee0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00028ef0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -00028f00: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00028f10: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -00028f20: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ -00028f30: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028f40: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00028f50: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00028ef0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +00028f00: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +00028f10: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +00028f20: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00028f30: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00028f40: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00028f50: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00028f60: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00028f70: 3d20 3120 2020 2020 2020 207c 0a7c 696e = 1 |.|in │ │ │ │ 00028f80: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028f90: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -00028fa0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +00028f90: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00028fa0: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00028fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fc0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00028fd0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00028fe0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00028ff0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ +00028fe0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00028ff0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00029000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029010: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029020: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00029030: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00029040: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029060: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029070: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 00029080: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 00029090: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000290a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290b0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000290c0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -000290d0: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ -000290e0: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ +000290d0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +000290e0: 6f6d 4e6f 6e5a 6572 6f20 2020 2020 2020 omNonZero │ │ │ │ 000290f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029100: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029110: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00029120: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ -00029130: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ +00029120: 723a 2043 686f 6f73 696e 6720 4c65 7853 r: Choosing LexS │ │ │ │ +00029130: 6d61 6c6c 6573 7420 2020 2020 2020 2020 mallest │ │ │ │ 00029140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029150: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 00029160: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ -00029170: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ -00029180: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00029170: 723a 2043 686f 6f73 696e 6720 4752 6576 r: Choosing GRev │ │ │ │ +00029180: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ 00029190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291a0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ 000291b0: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ 000291c0: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ 000291d0: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ 000291e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291f0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ -00029200: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029210: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ -00029220: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ -00029230: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ -00029240: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ +000291f0: 2020 2020 2020 2020 2020 207c 0a7c 696e |.|in │ │ │ │ +00029200: 7465 726e 616c 4368 6f6f 7365 4d69 6e6f ternalChooseMino │ │ │ │ +00029210: 723a 2043 686f 6f73 696e 6720 5261 6e64 r: Choosing Rand │ │ │ │ +00029220: 6f6d 2020 2020 2020 2020 2020 2020 2020 om │ │ │ │ +00029230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029240: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 00029250: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029260: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ -00029270: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ -00029280: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ -00029290: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ +00029260: 6f6e 3a20 204c 6f6f 7020 7374 6570 2c20 on: Loop step, │ │ │ │ +00029270: 6162 6f75 7420 746f 2063 6f6d 7075 7465 about to compute │ │ │ │ +00029280: 2064 696d 656e 7369 6f6e 2e20 2053 7562 dimension. Sub │ │ │ │ +00029290: 6d61 7472 6963 6573 2063 6f7c 0a7c 7265 matrices co|.|re │ │ │ │ 000292a0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000292b0: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ -000292c0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -000292d0: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ -000292e0: 3d20 3120 2020 2020 2020 207c 0a7c 7265 = 1 |.|re │ │ │ │ +000292b0: 6f6e 3a20 2069 7343 6f64 696d 4174 4c65 on: isCodimAtLe │ │ │ │ +000292c0: 6173 7420 6661 696c 6564 2c20 636f 6d70 ast failed, comp │ │ │ │ +000292d0: 7574 696e 6720 636f 6469 6d2e 2020 2020 uting codim. │ │ │ │ +000292e0: 2020 2020 2020 2020 2020 207c 0a7c 7265 |.|re │ │ │ │ 000292f0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -00029300: 6f6e 3a20 204c 6f6f 7020 636f 6d70 6c65 on: Loop comple │ │ │ │ -00029310: 7465 642c 2073 7562 6d61 7472 6963 6573 ted, submatrices │ │ │ │ -00029320: 2063 6f6e 7369 6465 7265 6420 3d20 3332 considered = 32 │ │ │ │ -00029330: 382c 2061 6e64 2063 6f6d 707c 0a7c 2d2d 8, and comp|.|-- │ │ │ │ -00029340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7273 -----------|.|rs │ │ │ │ -00029390: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ -000293a0: 6520 7570 2074 6f20 3332 372e 3539 3920 e up to 327.599 │ │ │ │ -000293b0: 6f66 2074 6865 6d2e 2020 2020 2020 2020 of them. │ │ │ │ -000293c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000293e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029300: 6f6e 3a20 2070 6172 7469 616c 2073 696e on: partial sin │ │ │ │ +00029310: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ +00029320: 6e73 696f 6e20 636f 6d70 7574 6564 2c20 nsion computed, │ │ │ │ +00029330: 3d20 3120 2020 2020 2020 207c 0a7c 7265 = 1 |.|re │ │ │ │ +00029340: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00029350: 6f6e 3a20 204c 6f6f 7020 636f 6d70 6c65 on: Loop comple │ │ │ │ +00029360: 7465 642c 2073 7562 6d61 7472 6963 6573 ted, submatrices │ │ │ │ +00029370: 2063 6f6e 7369 6465 7265 6420 3d20 3332 considered = 32 │ │ │ │ +00029380: 382c 2061 6e64 2063 6f6d 707c 0a7c 2d2d 8, and comp|.|-- │ │ │ │ +00029390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7273 -----------|.|rs │ │ │ │ +000293e0: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ +000293f0: 6520 7570 2074 6f20 3332 372e 3539 3920 e up to 327.599 │ │ │ │ +00029400: 6f66 2074 6865 6d2e 2020 2020 2020 2020 of them. │ │ │ │ 00029410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029470: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ @@ -10601,22 +10601,22 @@ │ │ │ │ 00029680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000296b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296f0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029700: 6964 6572 6564 3a20 392c 2061 6e64 2063 idered: 9, and c │ │ │ │ -00029710: 6f6d 7075 7465 6420 3d20 3920 2020 2020 omputed = 9 │ │ │ │ +000296f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029740: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029750: 6964 6572 6564 3a20 392c 2061 6e64 2063 idered: 9, and c │ │ │ │ +00029760: 6f6d 7075 7465 6420 3d20 3920 2020 2020 omputed = 9 │ │ │ │ 00029770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10626,22 +10626,22 @@ │ │ │ │ 00029810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029880: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029890: 6964 6572 6564 3a20 3131 2c20 616e 6420 idered: 11, and │ │ │ │ -000298a0: 636f 6d70 7574 6564 203d 2031 3020 2020 computed = 10 │ │ │ │ +00029880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000298e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298d0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +000298e0: 6964 6572 6564 3a20 3131 2c20 616e 6420 idered: 11, and │ │ │ │ +000298f0: 636f 6d70 7574 6564 203d 2031 3020 2020 computed = 10 │ │ │ │ 00029900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10661,22 +10661,22 @@ │ │ │ │ 00029a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ab0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029ac0: 6964 6572 6564 3a20 3135 2c20 616e 6420 idered: 15, and │ │ │ │ -00029ad0: 636f 6d70 7574 6564 203d 2031 3320 2020 computed = 13 │ │ │ │ +00029ab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029b00: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029b10: 6964 6572 6564 3a20 3135 2c20 616e 6420 idered: 15, and │ │ │ │ +00029b20: 636f 6d70 7574 6564 203d 2031 3320 2020 computed = 13 │ │ │ │ 00029b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10706,22 +10706,22 @@ │ │ │ │ 00029d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d80: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00029d90: 6964 6572 6564 3a20 3231 2c20 616e 6420 idered: 21, and │ │ │ │ -00029da0: 636f 6d70 7574 6564 203d 2031 3820 2020 computed = 18 │ │ │ │ +00029d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029dd0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00029de0: 6964 6572 6564 3a20 3231 2c20 616e 6420 idered: 21, and │ │ │ │ +00029df0: 636f 6d70 7574 6564 203d 2031 3820 2020 computed = 18 │ │ │ │ 00029e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00029e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10756,22 +10756,22 @@ │ │ │ │ 0002a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a050: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0a0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a0b0: 6964 6572 6564 3a20 3238 2c20 616e 6420 idered: 28, and │ │ │ │ -0002a0c0: 636f 6d70 7574 6564 203d 2032 3320 2020 computed = 23 │ │ │ │ +0002a0a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0f0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a100: 6964 6572 6564 3a20 3238 2c20 616e 6420 idered: 28, and │ │ │ │ +0002a110: 636f 6d70 7574 6564 203d 2032 3320 2020 computed = 23 │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a140: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10816,22 +10816,22 @@ │ │ │ │ 0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a410: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a460: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a470: 6964 6572 6564 3a20 3337 2c20 616e 6420 idered: 37, and │ │ │ │ -0002a480: 636f 6d70 7574 6564 203d 2033 3020 2020 computed = 30 │ │ │ │ +0002a460: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4b0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a4c0: 6964 6572 6564 3a20 3337 2c20 616e 6420 idered: 37, and │ │ │ │ +0002a4d0: 636f 6d70 7574 6564 203d 2033 3020 2020 computed = 30 │ │ │ │ 0002a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a500: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10891,22 +10891,22 @@ │ │ │ │ 0002a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a910: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002a920: 6964 6572 6564 3a20 3439 2c20 616e 6420 idered: 49, and │ │ │ │ -0002a930: 636f 6d70 7574 6564 203d 2033 3620 2020 computed = 36 │ │ │ │ +0002a910: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a960: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a960: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002a970: 6964 6572 6564 3a20 3439 2c20 616e 6420 idered: 49, and │ │ │ │ +0002a980: 636f 6d70 7574 6564 203d 2033 3620 2020 computed = 36 │ │ │ │ 0002a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10981,22 +10981,22 @@ │ │ │ │ 0002ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aeb0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002aec0: 6964 6572 6564 3a20 3634 2c20 616e 6420 idered: 64, and │ │ │ │ -0002aed0: 636f 6d70 7574 6564 203d 2034 3420 2020 computed = 44 │ │ │ │ +0002aeb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af00: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002af10: 6964 6572 6564 3a20 3634 2c20 616e 6420 idered: 64, and │ │ │ │ +0002af20: 636f 6d70 7574 6564 203d 2034 3420 2020 computed = 44 │ │ │ │ 0002af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11096,22 +11096,22 @@ │ │ │ │ 0002b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002b5f0: 6964 6572 6564 3a20 3834 2c20 616e 6420 idered: 84, and │ │ │ │ -0002b600: 636f 6d70 7574 6564 203d 2035 3620 2020 computed = 56 │ │ │ │ +0002b5e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b630: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002b640: 6964 6572 6564 3a20 3834 2c20 616e 6420 idered: 84, and │ │ │ │ +0002b650: 636f 6d70 7574 6564 203d 2035 3620 2020 computed = 56 │ │ │ │ 0002b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b680: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11241,22 +11241,22 @@ │ │ │ │ 0002be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bef0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002bf00: 6964 6572 6564 3a20 3131 302c 2061 6e64 idered: 110, and │ │ │ │ -0002bf10: 2063 6f6d 7075 7465 6420 3d20 3639 2020 computed = 69 │ │ │ │ +0002bef0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf40: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002bf50: 6964 6572 6564 3a20 3131 302c 2061 6e64 idered: 110, and │ │ │ │ +0002bf60: 2063 6f6d 7075 7465 6420 3d20 3639 2020 computed = 69 │ │ │ │ 0002bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11426,22 +11426,22 @@ │ │ │ │ 0002ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca80: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002ca90: 6964 6572 6564 3a20 3134 342c 2061 6e64 idered: 144, and │ │ │ │ -0002caa0: 2063 6f6d 7075 7465 6420 3d20 3833 2020 computed = 83 │ │ │ │ +0002ca80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cad0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cad0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002cae0: 6964 6572 6564 3a20 3134 342c 2061 6e64 idered: 144, and │ │ │ │ +0002caf0: 2063 6f6d 7075 7465 6420 3d20 3833 2020 computed = 83 │ │ │ │ 0002cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11661,22 +11661,22 @@ │ │ │ │ 0002d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d930: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002d940: 6964 6572 6564 3a20 3138 382c 2061 6e64 idered: 188, and │ │ │ │ -0002d950: 2063 6f6d 7075 7465 6420 3d20 3130 3520 computed = 105 │ │ │ │ +0002d930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d980: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d980: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002d990: 6964 6572 6564 3a20 3138 382c 2061 6e64 idered: 188, and │ │ │ │ +0002d9a0: 2063 6f6d 7075 7465 6420 3d20 3130 3520 computed = 105 │ │ │ │ 0002d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -11961,22 +11961,22 @@ │ │ │ │ 0002eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebf0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -0002ec00: 6964 6572 6564 3a20 3234 352c 2061 6e64 idered: 245, and │ │ │ │ -0002ec10: 2063 6f6d 7075 7465 6420 3d20 3133 3520 computed = 135 │ │ │ │ +0002ebf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0002ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec40: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +0002ec50: 6964 6572 6564 3a20 3234 352c 2061 6e64 idered: 245, and │ │ │ │ +0002ec60: 2063 6f6d 7075 7465 6420 3d20 3133 3520 computed = 135 │ │ │ │ 0002ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12351,22 +12351,22 @@ │ │ │ │ 000303e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030400: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00030410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030450: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00030460: 6964 6572 6564 3a20 3331 392c 2061 6e64 idered: 319, and │ │ │ │ -00030470: 2063 6f6d 7075 7465 6420 3d20 3137 3520 computed = 175 │ │ │ │ +00030450: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000304b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000304a0: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +000304b0: 6964 6572 6564 3a20 3331 392c 2061 6e64 idered: 319, and │ │ │ │ +000304c0: 2063 6f6d 7075 7465 6420 3d20 3137 3520 computed = 175 │ │ │ │ 000304d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00030500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12411,357 +12411,357 @@ │ │ │ │ 000307a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000307d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000307f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030810: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ -00030820: 6964 6572 6564 3a20 3332 382c 2061 6e64 idered: 328, and │ │ │ │ -00030830: 2063 6f6d 7075 7465 6420 3d20 3138 3020 computed = 180 │ │ │ │ +00030810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00030870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030860: 2020 2020 2020 2020 2020 207c 0a7c 6e73 |.|ns │ │ │ │ +00030870: 6964 6572 6564 3a20 3332 382c 2061 6e64 idered: 328, and │ │ │ │ +00030880: 2063 6f6d 7075 7465 6420 3d20 3138 3020 computed = 180 │ │ │ │ 00030890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000308c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000308f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030900: 2020 2020 2020 2020 2020 207c 0a7c 7574 |.|ut │ │ │ │ -00030910: 6564 203d 2031 3830 2e20 2073 696e 6775 ed = 180. singu │ │ │ │ -00030920: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -00030930: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ -00030940: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ -00030950: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00030960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000309a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ -000309b0: 6520 6d61 7869 6d75 6d20 6e75 6d62 6572 e maximum number │ │ │ │ -000309c0: 206f 6620 6d69 6e6f 7273 2063 6f6e 7369 of minors consi │ │ │ │ -000309d0: 6465 7265 6420 6361 6e20 6265 2063 6f6e dered can be con │ │ │ │ -000309e0: 7472 6f6c 6c65 6420 6279 2074 6865 206f trolled by the o │ │ │ │ -000309f0: 7074 696f 6e0a 4d61 784d 696e 6f72 732e ption.MaxMinors. │ │ │ │ -00030a00: 2020 416c 7465 726e 6174 6976 656c 792c Alternatively, │ │ │ │ -00030a10: 2069 7420 6361 6e20 6265 2063 6f6e 7472 it can be contr │ │ │ │ -00030a20: 6f6c 6c65 6420 696e 2061 206d 6f72 6520 olled in a more │ │ │ │ -00030a30: 7072 6563 6973 6520 7761 7920 6279 0a70 precise way by.p │ │ │ │ -00030a40: 6173 7369 6e67 2061 2066 756e 6374 696f assing a functio │ │ │ │ -00030a50: 6e20 746f 2074 6865 206f 7074 696f 6e20 n to the option │ │ │ │ -00030a60: 4d61 784d 696e 6f72 732e 2020 5468 6973 MaxMinors. This │ │ │ │ -00030a70: 2066 756e 6374 696f 6e20 7368 6f75 6c64 function should │ │ │ │ -00030a80: 2068 6176 6520 7477 6f0a 696e 7075 7473 have two.inputs │ │ │ │ -00030a90: 3b20 7468 6520 6669 7273 7420 6973 206d ; the first is m │ │ │ │ -00030aa0: 696e 696d 756d 206e 756d 6265 7220 6f66 inimum number of │ │ │ │ -00030ab0: 206d 696e 6f72 7320 6e65 6564 6564 2074 minors needed t │ │ │ │ -00030ac0: 6f20 6465 7465 726d 696e 6520 7768 6574 o determine whet │ │ │ │ -00030ad0: 6865 7220 7468 650a 7269 6e67 2069 7320 her the.ring is │ │ │ │ -00030ae0: 7265 6775 6c61 7220 696e 2063 6f64 696d regular in codim │ │ │ │ -00030af0: 656e 7369 6f6e 206e 2c20 616e 6420 7468 ension n, and th │ │ │ │ -00030b00: 6520 7365 636f 6e64 2069 7320 7468 6520 e second is the │ │ │ │ -00030b10: 746f 7461 6c20 6e75 6d62 6572 206f 6620 total number of │ │ │ │ -00030b20: 6d69 6e6f 7273 0a61 7661 696c 6162 6c65 minors.available │ │ │ │ -00030b30: 2069 6e20 7468 6520 4a61 636f 6269 616e in the Jacobian │ │ │ │ -00030b40: 2e20 5468 6520 6675 6e63 7469 6f6e 2072 . The function r │ │ │ │ -00030b50: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00030b60: 696f 6e20 646f 6573 206e 6f74 2072 6563 ion does not rec │ │ │ │ -00030b70: 6f6d 7075 7465 0a64 6574 6572 6d69 6e61 ompute.determina │ │ │ │ -00030b80: 6e74 732c 2073 6f20 4d61 784d 696e 6f72 nts, so MaxMinor │ │ │ │ -00030b90: 7320 6f72 2069 7320 6f6e 6c79 2061 6e20 s or is only an │ │ │ │ -00030ba0: 7570 7065 7220 626f 756e 6420 6f6e 2074 upper bound on t │ │ │ │ -00030bb0: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ -00030bc0: 6f72 730a 636f 6d70 7574 6564 2e0a 0a2b ors.computed...+ │ │ │ │ -00030bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00030c20: 6931 3720 3a20 7469 6d65 2072 6567 756c i17 : time regul │ │ │ │ -00030c30: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -00030c40: 322c 2053 2c20 5665 7262 6f73 653d 3e74 2, S, Verbose=>t │ │ │ │ -00030c50: 7275 652c 204d 6178 4d69 6e6f 7273 3d3e rue, MaxMinors=> │ │ │ │ -00030c60: 3330 2920 2020 2020 2020 2020 207c 0a7c 30) |.| │ │ │ │ -00030c70: 202d 2d20 7573 6564 2031 2e32 3732 3033 -- used 1.27203 │ │ │ │ -00030c80: 7320 2863 7075 293b 2030 2e39 3538 3532 s (cpu); 0.95852 │ │ │ │ -00030c90: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00030ca0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -00030cb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00030cc0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00030cd0: 7369 6f6e 3a20 7269 6e67 2064 696d 656e sion: ring dimen │ │ │ │ -00030ce0: 7369 6f6e 203d 332c 2074 6865 7265 2061 sion =3, there a │ │ │ │ -00030cf0: 7265 2031 3733 3235 2070 6f73 7369 626c re 17325 possibl │ │ │ │ -00030d00: 6520 3420 6279 2034 206d 696e 6f7c 0a7c e 4 by 4 mino|.| │ │ │ │ +00030900: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00030910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030950: 2020 2020 2020 2020 2020 207c 0a7c 7574 |.|ut │ │ │ │ +00030960: 6564 203d 2031 3830 2e20 2073 696e 6775 ed = 180. singu │ │ │ │ +00030970: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00030980: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ +00030990: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ +000309a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000309b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000309f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 -----------+..Th │ │ │ │ +00030a00: 6520 6d61 7869 6d75 6d20 6e75 6d62 6572 e maximum number │ │ │ │ +00030a10: 206f 6620 6d69 6e6f 7273 2063 6f6e 7369 of minors consi │ │ │ │ +00030a20: 6465 7265 6420 6361 6e20 6265 2063 6f6e dered can be con │ │ │ │ +00030a30: 7472 6f6c 6c65 6420 6279 2074 6865 206f trolled by the o │ │ │ │ +00030a40: 7074 696f 6e0a 4d61 784d 696e 6f72 732e ption.MaxMinors. │ │ │ │ +00030a50: 2020 416c 7465 726e 6174 6976 656c 792c Alternatively, │ │ │ │ +00030a60: 2069 7420 6361 6e20 6265 2063 6f6e 7472 it can be contr │ │ │ │ +00030a70: 6f6c 6c65 6420 696e 2061 206d 6f72 6520 olled in a more │ │ │ │ +00030a80: 7072 6563 6973 6520 7761 7920 6279 0a70 precise way by.p │ │ │ │ +00030a90: 6173 7369 6e67 2061 2066 756e 6374 696f assing a functio │ │ │ │ +00030aa0: 6e20 746f 2074 6865 206f 7074 696f 6e20 n to the option │ │ │ │ +00030ab0: 4d61 784d 696e 6f72 732e 2020 5468 6973 MaxMinors. This │ │ │ │ +00030ac0: 2066 756e 6374 696f 6e20 7368 6f75 6c64 function should │ │ │ │ +00030ad0: 2068 6176 6520 7477 6f0a 696e 7075 7473 have two.inputs │ │ │ │ +00030ae0: 3b20 7468 6520 6669 7273 7420 6973 206d ; the first is m │ │ │ │ +00030af0: 696e 696d 756d 206e 756d 6265 7220 6f66 inimum number of │ │ │ │ +00030b00: 206d 696e 6f72 7320 6e65 6564 6564 2074 minors needed t │ │ │ │ +00030b10: 6f20 6465 7465 726d 696e 6520 7768 6574 o determine whet │ │ │ │ +00030b20: 6865 7220 7468 650a 7269 6e67 2069 7320 her the.ring is │ │ │ │ +00030b30: 7265 6775 6c61 7220 696e 2063 6f64 696d regular in codim │ │ │ │ +00030b40: 656e 7369 6f6e 206e 2c20 616e 6420 7468 ension n, and th │ │ │ │ +00030b50: 6520 7365 636f 6e64 2069 7320 7468 6520 e second is the │ │ │ │ +00030b60: 746f 7461 6c20 6e75 6d62 6572 206f 6620 total number of │ │ │ │ +00030b70: 6d69 6e6f 7273 0a61 7661 696c 6162 6c65 minors.available │ │ │ │ +00030b80: 2069 6e20 7468 6520 4a61 636f 6269 616e in the Jacobian │ │ │ │ +00030b90: 2e20 5468 6520 6675 6e63 7469 6f6e 2072 . The function r │ │ │ │ +00030ba0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00030bb0: 696f 6e20 646f 6573 206e 6f74 2072 6563 ion does not rec │ │ │ │ +00030bc0: 6f6d 7075 7465 0a64 6574 6572 6d69 6e61 ompute.determina │ │ │ │ +00030bd0: 6e74 732c 2073 6f20 4d61 784d 696e 6f72 nts, so MaxMinor │ │ │ │ +00030be0: 7320 6f72 2069 7320 6f6e 6c79 2061 6e20 s or is only an │ │ │ │ +00030bf0: 7570 7065 7220 626f 756e 6420 6f6e 2074 upper bound on t │ │ │ │ +00030c00: 6865 206e 756d 6265 7220 6f66 206d 696e he number of min │ │ │ │ +00030c10: 6f72 730a 636f 6d70 7574 6564 2e0a 0a2b ors.computed...+ │ │ │ │ +00030c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00030c70: 6931 3720 3a20 7469 6d65 2072 6567 756c i17 : time regul │ │ │ │ +00030c80: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00030c90: 322c 2053 2c20 5665 7262 6f73 653d 3e74 2, S, Verbose=>t │ │ │ │ +00030ca0: 7275 652c 204d 6178 4d69 6e6f 7273 3d3e rue, MaxMinors=> │ │ │ │ +00030cb0: 3330 2920 2020 2020 2020 2020 207c 0a7c 30) |.| │ │ │ │ +00030cc0: 202d 2d20 7573 6564 2031 2e36 3137 3831 -- used 1.61781 │ │ │ │ +00030cd0: 7320 2863 7075 293b 2031 2e32 3235 3873 s (cpu); 1.2258s │ │ │ │ +00030ce0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +00030cf0: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00030d00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030d10: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00030d20: 7369 6f6e 3a20 4162 6f75 7420 746f 2065 sion: About to e │ │ │ │ -00030d30: 6e74 6572 206c 6f6f 7020 2020 2020 2020 nter loop │ │ │ │ -00030d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00030d60: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030d70: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030d80: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +00030d20: 7369 6f6e 3a20 7269 6e67 2064 696d 656e sion: ring dimen │ │ │ │ +00030d30: 7369 6f6e 203d 332c 2074 6865 7265 2061 sion =3, there a │ │ │ │ +00030d40: 7265 2031 3733 3235 2070 6f73 7369 626c re 17325 possibl │ │ │ │ +00030d50: 6520 3420 6279 2034 206d 696e 6f7c 0a7c e 4 by 4 mino|.| │ │ │ │ +00030d60: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00030d70: 7369 6f6e 3a20 4162 6f75 7420 746f 2065 sion: About to e │ │ │ │ +00030d80: 6e74 6572 206c 6f6f 7020 2020 2020 2020 nter loop │ │ │ │ 00030d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030db0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030dc0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ 00030dd0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030df0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030e00: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030e10: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00030e20: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00030e10: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030e20: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030e50: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030e60: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 00030e70: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 00030e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030ea0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030eb0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030ec0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +00030eb0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00030ec0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 00030ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ee0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030ef0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030f00: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00030f10: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00030f00: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030f10: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00030f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030f40: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030f50: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00030f60: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00030f50: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00030f60: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00030f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030f90: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00030fa0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00030fb0: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ +00030fa0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00030fb0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00030fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00030fe0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00030ff0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031000: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031000: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ 00031010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031020: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031030: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031040: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031050: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031060: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031070: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +00031030: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031040: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031050: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031070: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031080: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031090: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -000310a0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -000310b0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -000310c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031090: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +000310a0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +000310b0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +000310c0: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 000310d0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000310e0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -000310f0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031100: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031110: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ -00031120: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031130: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031140: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ -00031150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000310e0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +000310f0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031100: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031110: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031120: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031130: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031140: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031150: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031160: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ 00031170: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031180: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031190: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031180: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031190: 6e64 6f6d 2020 2020 2020 2020 2020 2020 ndom │ │ │ │ 000311a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000311c0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000311d0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -000311e0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -000311f0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031200: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000311c0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000311d0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +000311e0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +000311f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031210: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031220: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031230: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031240: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031220: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031230: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031240: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031250: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031260: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031270: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031280: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031290: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000312a0: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ -000312b0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000312c0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -000312d0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ -000312e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031270: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031280: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031290: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000312a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000312b0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000312c0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +000312d0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +000312e0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +000312f0: 2c20 3d20 3220 2020 2020 2020 207c 0a7c , = 2 |.| │ │ │ │ 00031300: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031310: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031320: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031320: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00031330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031340: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031350: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031360: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ 00031370: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00031380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031390: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000313a0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000313b0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000313c0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +000313b0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +000313c0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 000313d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000313f0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031400: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031410: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031420: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031430: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000313f0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031400: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031410: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031440: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031450: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031460: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031470: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031450: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031460: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031470: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031480: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031490: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000314a0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -000314b0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -000314c0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000314d0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -000314e0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000314f0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031500: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -00031510: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00031520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000314a0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +000314b0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +000314c0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000314d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000314e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000314f0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031500: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031510: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031520: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031530: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031540: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031550: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ -00031560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031540: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031550: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031560: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031580: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031590: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000315a0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031590: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +000315a0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 000315b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000315d0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000315e0: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -000315f0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +000315e0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +000315f0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00031600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031620: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031630: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031640: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031640: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ 00031650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031670: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031680: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -00031690: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +00031680: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00031690: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 000316a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000316b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000316c0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000316d0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -000316e0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -000316f0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031700: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000316c0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000316d0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +000316e0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ +000316f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031710: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031720: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031730: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031740: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031720: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031730: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031740: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031750: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031760: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031770: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031780: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031790: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -000317a0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -000317b0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -000317c0: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ -000317d0: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ -000317e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031770: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031780: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031790: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +000317a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000317b0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +000317c0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +000317d0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +000317e0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +000317f0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031800: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031810: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ -00031820: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +00031810: 6e6f 723a 2043 686f 6f73 696e 6720 5261 nor: Choosing Ra │ │ │ │ +00031820: 6e64 6f6d 4e6f 6e5a 6572 6f20 2020 2020 ndomNonZero │ │ │ │ 00031830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031850: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031860: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031870: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031860: 6e6f 723a 2043 686f 6f73 696e 6720 4c65 nor: Choosing Le │ │ │ │ +00031870: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ 00031880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000318a0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 000318b0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -000318c0: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -000318d0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +000318c0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +000318d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000318e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000318f0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031900: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 00031910: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ 00031920: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031940: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031950: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031960: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ -00031970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031960: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031970: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 00031980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031990: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 000319a0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ 000319b0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ 000319c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000319d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000319e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000319f0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031a00: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031a10: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031a20: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +000319e0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +000319f0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031a00: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031a20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031a30: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031a40: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031a50: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031a60: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031a70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031a40: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031a50: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031a60: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031a70: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031a80: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031a90: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031aa0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031ab0: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031ac0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ -00031ad0: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ -00031ae0: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031af0: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ -00031b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031a90: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031aa0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031ab0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031ad0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031ae0: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031af0: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031b00: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031b10: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ 00031b20: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ 00031b30: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ -00031b40: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ -00031b50: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +00031b40: 6576 4c65 7853 6d61 6c6c 6573 7420 2020 evLexSmallest │ │ │ │ +00031b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031b70: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031b80: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ -00031b90: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ -00031ba0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ -00031bb0: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ +00031b70: 696e 7465 726e 616c 4368 6f6f 7365 4d69 internalChooseMi │ │ │ │ +00031b80: 6e6f 723a 2043 686f 6f73 696e 6720 4752 nor: Choosing GR │ │ │ │ +00031b90: 6576 4c65 7853 6d61 6c6c 6573 7454 6572 evLexSmallestTer │ │ │ │ +00031ba0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +00031bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031bc0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031bd0: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ -00031be0: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ -00031bf0: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ -00031c00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00031bd0: 7369 6f6e 3a20 204c 6f6f 7020 7374 6570 sion: Loop step │ │ │ │ +00031be0: 2c20 6162 6f75 7420 746f 2063 6f6d 7075 , about to compu │ │ │ │ +00031bf0: 7465 2064 696d 656e 7369 6f6e 2e20 2053 te dimension. S │ │ │ │ +00031c00: 7562 6d61 7472 6963 6573 2063 6f7c 0a7c ubmatrices co|.| │ │ │ │ 00031c10: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031c20: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ -00031c30: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ -00031c40: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ -00031c50: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ +00031c20: 7369 6f6e 3a20 2069 7343 6f64 696d 4174 sion: isCodimAt │ │ │ │ +00031c30: 4c65 6173 7420 6661 696c 6564 2c20 636f Least failed, co │ │ │ │ +00031c40: 6d70 7574 696e 6720 636f 6469 6d2e 2020 mputing codim. │ │ │ │ +00031c50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031c60: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -00031c70: 7369 6f6e 3a20 204c 6f6f 7020 636f 6d70 sion: Loop comp │ │ │ │ -00031c80: 6c65 7465 642c 2073 7562 6d61 7472 6963 leted, submatric │ │ │ │ -00031c90: 6573 2063 6f6e 7369 6465 7265 6420 3d20 es considered = │ │ │ │ -00031ca0: 3330 2c20 616e 6420 636f 6d70 757c 0a7c 30, and compu|.| │ │ │ │ -00031cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00031d00: 7273 2c20 7765 2077 696c 6c20 636f 6d70 rs, we will comp │ │ │ │ -00031d10: 7574 6520 7570 2074 6f20 3330 206f 6620 ute up to 30 of │ │ │ │ -00031d20: 7468 656d 2e20 2020 2020 2020 2020 2020 them. │ │ │ │ -00031d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00031d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031c70: 7369 6f6e 3a20 2070 6172 7469 616c 2073 sion: partial s │ │ │ │ +00031c80: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +00031c90: 6d65 6e73 696f 6e20 636f 6d70 7574 6564 mension computed │ │ │ │ +00031ca0: 2c20 3d20 3120 2020 2020 2020 207c 0a7c , = 1 |.| │ │ │ │ +00031cb0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00031cc0: 7369 6f6e 3a20 204c 6f6f 7020 636f 6d70 sion: Loop comp │ │ │ │ +00031cd0: 6c65 7465 642c 2073 7562 6d61 7472 6963 leted, submatric │ │ │ │ +00031ce0: 6573 2063 6f6e 7369 6465 7265 6420 3d20 es considered = │ │ │ │ +00031cf0: 3330 2c20 616e 6420 636f 6d70 757c 0a7c 30, and compu|.| │ │ │ │ +00031d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00031d50: 7273 2c20 7765 2077 696c 6c20 636f 6d70 rs, we will comp │ │ │ │ +00031d60: 7574 6520 7570 2074 6f20 3330 206f 6620 ute up to 30 of │ │ │ │ +00031d70: 7468 656d 2e20 2020 2020 2020 2020 2020 them. │ │ │ │ 00031d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00031da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031de0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -12801,21 +12801,21 @@ │ │ │ │ 00032000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032070: 6e73 6964 6572 6564 3a20 392c 2061 6e64 nsidered: 9, and │ │ │ │ -00032080: 2063 6f6d 7075 7465 6420 3d20 3720 2020 computed = 7 │ │ │ │ +00032070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000320c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000320d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000320c0: 6e73 6964 6572 6564 3a20 392c 2061 6e64 nsidered: 9, and │ │ │ │ +000320d0: 2063 6f6d 7075 7465 6420 3d20 3720 2020 computed = 7 │ │ │ │ 000320e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12826,21 +12826,21 @@ │ │ │ │ 00032190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000321b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032200: 6e73 6964 6572 6564 3a20 3131 2c20 616e nsidered: 11, an │ │ │ │ -00032210: 6420 636f 6d70 7574 6564 203d 2039 2020 d computed = 9 │ │ │ │ +00032200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032240: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032250: 6e73 6964 6572 6564 3a20 3131 2c20 616e nsidered: 11, an │ │ │ │ +00032260: 6420 636f 6d70 7574 6564 203d 2039 2020 d computed = 9 │ │ │ │ 00032270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032290: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000322a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12861,21 +12861,21 @@ │ │ │ │ 000323c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000323d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000323e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000323f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032430: 6e73 6964 6572 6564 3a20 3135 2c20 616e nsidered: 15, an │ │ │ │ -00032440: 6420 636f 6d70 7574 6564 203d 2031 3120 d computed = 11 │ │ │ │ +00032430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032480: 6e73 6964 6572 6564 3a20 3135 2c20 616e nsidered: 15, an │ │ │ │ +00032490: 6420 636f 6d70 7574 6564 203d 2031 3120 d computed = 11 │ │ │ │ 000324a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000324d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12906,21 +12906,21 @@ │ │ │ │ 00032690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000326b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032700: 6e73 6964 6572 6564 3a20 3231 2c20 616e nsidered: 21, an │ │ │ │ -00032710: 6420 636f 6d70 7574 6564 203d 2031 3620 d computed = 16 │ │ │ │ +00032700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032750: 6e73 6964 6572 6564 3a20 3231 2c20 616e nsidered: 21, an │ │ │ │ +00032760: 6420 636f 6d70 7574 6564 203d 2031 3620 d computed = 16 │ │ │ │ 00032770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032790: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000327a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000327d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12956,21 +12956,21 @@ │ │ │ │ 000329b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000329d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000329f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032a20: 6e73 6964 6572 6564 3a20 3238 2c20 616e nsidered: 28, an │ │ │ │ -00032a30: 6420 636f 6d70 7574 6564 203d 2032 3220 d computed = 22 │ │ │ │ +00032a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032a60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032a70: 6e73 6964 6572 6564 3a20 3238 2c20 616e nsidered: 28, an │ │ │ │ +00032a80: 6420 636f 6d70 7574 6564 203d 2032 3220 d computed = 22 │ │ │ │ 00032a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ab0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -12981,4040 +12981,4045 @@ │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032ba0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032bb0: 6e73 6964 6572 6564 3a20 3330 2c20 616e nsidered: 30, an │ │ │ │ -00032bc0: 6420 636f 6d70 7574 6564 203d 2032 3320 d computed = 23 │ │ │ │ +00032bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032c00: 6e73 6964 6572 6564 3a20 3330 2c20 616e nsidered: 30, an │ │ │ │ +00032c10: 6420 636f 6d70 7574 6564 203d 2032 3320 d computed = 23 │ │ │ │ 00032c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00032c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032c90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00032ca0: 7465 6420 3d20 3233 2e20 2073 696e 6775 ted = 23. singu │ │ │ │ -00032cb0: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -00032cc0: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ -00032cd0: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ -00032ce0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00032cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00032d40: 5468 6973 2066 756e 6374 696f 6e20 6861 This function ha │ │ │ │ -00032d50: 7320 6d61 6e79 206f 7074 696f 6e73 2077 s many options w │ │ │ │ -00032d60: 6869 6368 2061 6c6c 6f77 2079 6f75 2074 hich allow you t │ │ │ │ -00032d70: 6f20 6669 6e65 2074 756e 6520 7468 6520 o fine tune the │ │ │ │ -00032d80: 7374 7261 7465 6779 2075 7365 640a 746f strategy used.to │ │ │ │ -00032d90: 2066 696e 6420 696e 7465 7265 7374 696e find interestin │ │ │ │ -00032da0: 6720 6d69 6e6f 7273 2e20 596f 7520 6361 g minors. You ca │ │ │ │ -00032db0: 6e20 7061 7373 2069 7420 6120 4861 7368 n pass it a Hash │ │ │ │ -00032dc0: 5461 626c 6520 7370 6563 6966 7969 6e67 Table specifying │ │ │ │ -00032dd0: 2074 6865 2073 7472 6174 6567 790a 7669 the strategy.vi │ │ │ │ -00032de0: 6120 7468 6520 6f70 7469 6f6e 2053 7472 a the option Str │ │ │ │ -00032df0: 6174 6567 792e 2020 5365 6520 2a6e 6f74 ategy. See *not │ │ │ │ -00032e00: 6520 4c65 7853 6d61 6c6c 6573 743a 2053 e LexSmallest: S │ │ │ │ -00032e10: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ -00032e20: 666f 7220 686f 7720 746f 0a63 6f6e 7374 for how to.const │ │ │ │ -00032e30: 7275 6374 2074 6869 7320 4861 7368 5461 ruct this HashTa │ │ │ │ -00032e40: 626c 652e 2054 6865 2064 6566 6175 6c74 ble. The default │ │ │ │ -00032e50: 2073 7472 6174 6567 7920 6973 2053 7472 strategy is Str │ │ │ │ -00032e60: 6174 6567 7944 6566 6175 6c74 2c20 7768 ategyDefault, wh │ │ │ │ -00032e70: 6963 6820 7365 656d 730a 746f 2077 6f72 ich seems.to wor │ │ │ │ -00032e80: 6b20 7765 6c6c 206f 6e20 7468 6520 6578 k well on the ex │ │ │ │ -00032e90: 616d 706c 6573 2077 6520 6861 7665 2065 amples we have e │ │ │ │ -00032ea0: 7870 6c6f 7265 642e 2020 486f 7765 7665 xplored. Howeve │ │ │ │ -00032eb0: 722c 2063 6175 7469 6f6e 206d 7573 7420 r, caution must │ │ │ │ -00032ec0: 6265 0a65 7865 7263 6973 6564 2c20 6265 be.exercised, be │ │ │ │ -00032ed0: 6361 7573 652c 2065 7665 6e20 696e 2074 cause, even in t │ │ │ │ -00032ee0: 6865 2065 7861 6d70 6c65 7320 6162 6f76 he examples abov │ │ │ │ -00032ef0: 652c 2063 6572 7461 696e 2073 7472 6174 e, certain strat │ │ │ │ -00032f00: 6567 6965 7320 776f 726b 2077 656c 6c0a egies work well. │ │ │ │ -00032f10: 7768 696c 6520 6f74 6865 7273 2064 6f20 while others do │ │ │ │ -00032f20: 6e6f 742e 2020 496e 2074 6865 2041 6265 not. In the Abe │ │ │ │ -00032f30: 6c69 616e 2073 7572 6661 6365 2065 7861 lian surface exa │ │ │ │ -00032f40: 6d70 6c65 2c20 4c65 7853 6d61 6c6c 6573 mple, LexSmalles │ │ │ │ -00032f50: 7420 776f 726b 7320 7665 7279 0a77 656c t works very.wel │ │ │ │ -00032f60: 6c2c 2077 6869 6c65 204c 6578 536d 616c l, while LexSmal │ │ │ │ -00032f70: 6c65 7374 5465 726d 2064 6f65 7320 6e6f lestTerm does no │ │ │ │ -00032f80: 7420 6576 656e 2074 7970 6963 616c 6c79 t even typically │ │ │ │ -00032f90: 2063 6f72 7265 6374 6c79 2069 6465 6e74 correctly ident │ │ │ │ -00032fa0: 6966 7920 7468 6520 7269 6e67 0a61 7320 ify the ring.as │ │ │ │ -00032fb0: 6e6f 6e73 696e 6775 6c61 7220 2874 6869 nonsingular (thi │ │ │ │ -00032fc0: 7320 6973 2062 6563 6175 7365 2074 6865 s is because the │ │ │ │ -00032fd0: 7265 2061 7265 2061 2073 6d61 6c6c 206e re are a small n │ │ │ │ -00032fe0: 756d 6265 7220 6f66 2065 6e74 7269 6573 umber of entries │ │ │ │ -00032ff0: 2077 6974 680a 6e6f 6e7a 6572 6f20 636f with.nonzero co │ │ │ │ -00033000: 6e73 7461 6e74 2074 6572 6d73 2c20 7768 nstant terms, wh │ │ │ │ -00033010: 6963 6820 6172 6520 7365 6c65 6374 6564 ich are selected │ │ │ │ -00033020: 2072 6570 6561 7465 646c 7929 2e20 486f repeatedly). Ho │ │ │ │ -00033030: 7765 7665 722c 2069 6e20 6f75 7220 6669 wever, in our fi │ │ │ │ -00033040: 7273 740a 6578 616d 706c 652c 2074 6865 rst.example, the │ │ │ │ -00033050: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ -00033060: 2069 7320 6d75 6368 2066 6173 7465 722c is much faster, │ │ │ │ -00033070: 2061 6e64 2052 616e 646f 6d20 646f 6573 and Random does │ │ │ │ -00033080: 206e 6f74 2070 6572 666f 726d 2077 656c not perform wel │ │ │ │ -00033090: 6c0a 6174 2061 6c6c 2e0a 0a2b 2d2d 2d2d l.at all...+---- │ │ │ │ -000330a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000330d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000330e0: 3138 203a 2053 7472 6174 6567 7943 7572 18 : StrategyCur │ │ │ │ -000330f0: 7265 6e74 2352 616e 646f 6d20 3d20 303b rent#Random = 0; │ │ │ │ -00033100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00033120: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00033130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033160: 2d2d 2b0a 7c69 3139 203a 2053 7472 6174 --+.|i19 : Strat │ │ │ │ -00033170: 6567 7943 7572 7265 6e74 234c 6578 536d egyCurrent#LexSm │ │ │ │ -00033180: 616c 6c65 7374 203d 2031 3030 3b20 2020 allest = 100; │ │ │ │ -00033190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000331a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000331b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000331e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ -000331f0: 2053 7472 6174 6567 7943 7572 7265 6e74 StrategyCurrent │ │ │ │ -00033200: 234c 6578 536d 616c 6c65 7374 5465 726d #LexSmallestTerm │ │ │ │ -00033210: 203d 2030 3b20 2020 2020 2020 2020 2020 = 0; │ │ │ │ -00033220: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00033230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00033270: 7c69 3231 203a 2074 696d 6520 7265 6775 |i21 : time regu │ │ │ │ -00033280: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00033290: 2832 2c20 522c 2053 7472 6174 6567 793d (2, R, Strategy= │ │ │ │ -000332a0: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ -000332b0: 297c 0a7c 202d 2d20 7573 6564 2030 2e33 )|.| -- used 0.3 │ │ │ │ -000332c0: 3033 3036 7320 2863 7075 293b 2030 2e32 0306s (cpu); 0.2 │ │ │ │ -000332d0: 3137 3137 3673 2028 7468 7265 6164 293b 17176s (thread); │ │ │ │ -000332e0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -000332f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00033300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033330: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ -00033340: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00032ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00032ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00032cf0: 7465 6420 3d20 3233 2e20 2073 696e 6775 ted = 23. singu │ │ │ │ +00032d00: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00032d10: 696f 6e20 6170 7065 6172 7320 746f 2062 ion appears to b │ │ │ │ +00032d20: 6520 3d20 3120 2020 2020 2020 2020 2020 e = 1 │ │ │ │ +00032d30: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00032d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00032d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00032d90: 5468 6973 2066 756e 6374 696f 6e20 6861 This function ha │ │ │ │ +00032da0: 7320 6d61 6e79 206f 7074 696f 6e73 2077 s many options w │ │ │ │ +00032db0: 6869 6368 2061 6c6c 6f77 2079 6f75 2074 hich allow you t │ │ │ │ +00032dc0: 6f20 6669 6e65 2074 756e 6520 7468 6520 o fine tune the │ │ │ │ +00032dd0: 7374 7261 7465 6779 2075 7365 640a 746f strategy used.to │ │ │ │ +00032de0: 2066 696e 6420 696e 7465 7265 7374 696e find interestin │ │ │ │ +00032df0: 6720 6d69 6e6f 7273 2e20 596f 7520 6361 g minors. You ca │ │ │ │ +00032e00: 6e20 7061 7373 2069 7420 6120 4861 7368 n pass it a Hash │ │ │ │ +00032e10: 5461 626c 6520 7370 6563 6966 7969 6e67 Table specifying │ │ │ │ +00032e20: 2074 6865 2073 7472 6174 6567 790a 7669 the strategy.vi │ │ │ │ +00032e30: 6120 7468 6520 6f70 7469 6f6e 2053 7472 a the option Str │ │ │ │ +00032e40: 6174 6567 792e 2020 5365 6520 2a6e 6f74 ategy. See *not │ │ │ │ +00032e50: 6520 4c65 7853 6d61 6c6c 6573 743a 2053 e LexSmallest: S │ │ │ │ +00032e60: 7472 6174 6567 7944 6566 6175 6c74 2c20 trategyDefault, │ │ │ │ +00032e70: 666f 7220 686f 7720 746f 0a63 6f6e 7374 for how to.const │ │ │ │ +00032e80: 7275 6374 2074 6869 7320 4861 7368 5461 ruct this HashTa │ │ │ │ +00032e90: 626c 652e 2054 6865 2064 6566 6175 6c74 ble. The default │ │ │ │ +00032ea0: 2073 7472 6174 6567 7920 6973 2053 7472 strategy is Str │ │ │ │ +00032eb0: 6174 6567 7944 6566 6175 6c74 2c20 7768 ategyDefault, wh │ │ │ │ +00032ec0: 6963 6820 7365 656d 730a 746f 2077 6f72 ich seems.to wor │ │ │ │ +00032ed0: 6b20 7765 6c6c 206f 6e20 7468 6520 6578 k well on the ex │ │ │ │ +00032ee0: 616d 706c 6573 2077 6520 6861 7665 2065 amples we have e │ │ │ │ +00032ef0: 7870 6c6f 7265 642e 2020 486f 7765 7665 xplored. Howeve │ │ │ │ +00032f00: 722c 2063 6175 7469 6f6e 206d 7573 7420 r, caution must │ │ │ │ +00032f10: 6265 0a65 7865 7263 6973 6564 2c20 6265 be.exercised, be │ │ │ │ +00032f20: 6361 7573 652c 2065 7665 6e20 696e 2074 cause, even in t │ │ │ │ +00032f30: 6865 2065 7861 6d70 6c65 7320 6162 6f76 he examples abov │ │ │ │ +00032f40: 652c 2063 6572 7461 696e 2073 7472 6174 e, certain strat │ │ │ │ +00032f50: 6567 6965 7320 776f 726b 2077 656c 6c0a egies work well. │ │ │ │ +00032f60: 7768 696c 6520 6f74 6865 7273 2064 6f20 while others do │ │ │ │ +00032f70: 6e6f 742e 2020 496e 2074 6865 2041 6265 not. In the Abe │ │ │ │ +00032f80: 6c69 616e 2073 7572 6661 6365 2065 7861 lian surface exa │ │ │ │ +00032f90: 6d70 6c65 2c20 4c65 7853 6d61 6c6c 6573 mple, LexSmalles │ │ │ │ +00032fa0: 7420 776f 726b 7320 7665 7279 0a77 656c t works very.wel │ │ │ │ +00032fb0: 6c2c 2077 6869 6c65 204c 6578 536d 616c l, while LexSmal │ │ │ │ +00032fc0: 6c65 7374 5465 726d 2064 6f65 7320 6e6f lestTerm does no │ │ │ │ +00032fd0: 7420 6576 656e 2074 7970 6963 616c 6c79 t even typically │ │ │ │ +00032fe0: 2063 6f72 7265 6374 6c79 2069 6465 6e74 correctly ident │ │ │ │ +00032ff0: 6966 7920 7468 6520 7269 6e67 0a61 7320 ify the ring.as │ │ │ │ +00033000: 6e6f 6e73 696e 6775 6c61 7220 2874 6869 nonsingular (thi │ │ │ │ +00033010: 7320 6973 2062 6563 6175 7365 2074 6865 s is because the │ │ │ │ +00033020: 7265 2061 7265 2061 2073 6d61 6c6c 206e re are a small n │ │ │ │ +00033030: 756d 6265 7220 6f66 2065 6e74 7269 6573 umber of entries │ │ │ │ +00033040: 2077 6974 680a 6e6f 6e7a 6572 6f20 636f with.nonzero co │ │ │ │ +00033050: 6e73 7461 6e74 2074 6572 6d73 2c20 7768 nstant terms, wh │ │ │ │ +00033060: 6963 6820 6172 6520 7365 6c65 6374 6564 ich are selected │ │ │ │ +00033070: 2072 6570 6561 7465 646c 7929 2e20 486f repeatedly). Ho │ │ │ │ +00033080: 7765 7665 722c 2069 6e20 6f75 7220 6669 wever, in our fi │ │ │ │ +00033090: 7273 740a 6578 616d 706c 652c 2074 6865 rst.example, the │ │ │ │ +000330a0: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +000330b0: 2069 7320 6d75 6368 2066 6173 7465 722c is much faster, │ │ │ │ +000330c0: 2061 6e64 2052 616e 646f 6d20 646f 6573 and Random does │ │ │ │ +000330d0: 206e 6f74 2070 6572 666f 726d 2077 656c not perform wel │ │ │ │ +000330e0: 6c0a 6174 2061 6c6c 2e0a 0a2b 2d2d 2d2d l.at all...+---- │ │ │ │ +000330f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033130: 3138 203a 2053 7472 6174 6567 7943 7572 18 : StrategyCur │ │ │ │ +00033140: 7265 6e74 2352 616e 646f 6d20 3d20 303b rent#Random = 0; │ │ │ │ +00033150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00033170: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00033180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000331a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000331b0: 2d2d 2b0a 7c69 3139 203a 2053 7472 6174 --+.|i19 : Strat │ │ │ │ +000331c0: 6567 7943 7572 7265 6e74 234c 6578 536d egyCurrent#LexSm │ │ │ │ +000331d0: 616c 6c65 7374 203d 2031 3030 3b20 2020 allest = 100; │ │ │ │ +000331e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000331f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00033200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033230: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ +00033240: 2053 7472 6174 6567 7943 7572 7265 6e74 StrategyCurrent │ │ │ │ +00033250: 234c 6578 536d 616c 6c65 7374 5465 726d #LexSmallestTerm │ │ │ │ +00033260: 203d 2030 3b20 2020 2020 2020 2020 2020 = 0; │ │ │ │ +00033270: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00033280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000332a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000332b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000332c0: 7c69 3231 203a 2074 696d 6520 7265 6775 |i21 : time regu │ │ │ │ +000332d0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000332e0: 2832 2c20 522c 2053 7472 6174 6567 793d (2, R, Strategy= │ │ │ │ +000332f0: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ +00033300: 297c 0a7c 202d 2d20 7573 6564 2030 2e33 )|.| -- used 0.3 │ │ │ │ +00033310: 3737 3732 3573 2028 6370 7529 3b20 302e 77725s (cpu); 0. │ │ │ │ +00033320: 3234 3435 3036 7320 2874 6872 6561 6429 244506s (thread) │ │ │ │ +00033330: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00033340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00033350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033370: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00033380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000333a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000333b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000333c0: 6932 3220 3a20 7469 6d65 2072 6567 756c i22 : time regul │ │ │ │ -000333d0: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -000333e0: 322c 2052 2c20 5374 7261 7465 6779 3d3e 2, R, Strategy=> │ │ │ │ -000333f0: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ -00033400: 7c0a 7c20 2d2d 2075 7365 6420 302e 3131 |.| -- used 0.11 │ │ │ │ -00033410: 3336 3538 7320 2863 7075 293b 2030 2e30 3658s (cpu); 0.0 │ │ │ │ -00033420: 3739 3238 3831 7320 2874 6872 6561 6429 792881s (thread) │ │ │ │ -00033430: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00033440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033480: 2020 2020 2020 7c0a 7c6f 3232 203d 2074 |.|o22 = t │ │ │ │ -00033490: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033380: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ +00033390: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +000333a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000333c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000333d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000333e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000333f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033410: 6932 3220 3a20 7469 6d65 2072 6567 756c i22 : time regul │ │ │ │ +00033420: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00033430: 322c 2052 2c20 5374 7261 7465 6779 3d3e 2, R, Strategy=> │ │ │ │ +00033440: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ +00033450: 7c0a 7c20 2d2d 2075 7365 6420 302e 3134 |.| -- used 0.14 │ │ │ │ +00033460: 3639 3837 7320 2863 7075 293b 2030 2e30 6987s (cpu); 0.0 │ │ │ │ +00033470: 3833 3439 3273 2028 7468 7265 6164 293b 83492s (thread); │ │ │ │ +00033480: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +00033490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000334a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000334b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000334c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000334d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000334f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00033510: 3233 203a 2074 696d 6520 7265 6775 6c61 23 : time regula │ │ │ │ -00033520: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ -00033530: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ -00033540: 7472 6174 6567 7943 7572 7265 6e74 297c trategyCurrent)| │ │ │ │ -00033550: 0a7c 202d 2d20 7573 6564 2030 2e33 3636 .| -- used 0.366 │ │ │ │ -00033560: 3034 3473 2028 6370 7529 3b20 302e 3237 044s (cpu); 0.27 │ │ │ │ -00033570: 3237 3233 7320 2874 6872 6561 6429 3b20 2723s (thread); │ │ │ │ -00033580: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ -00033590: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000335a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000335d0: 2020 2020 207c 0a7c 6f32 3320 3d20 7472 |.|o23 = tr │ │ │ │ -000335e0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +000334c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000334d0: 2020 2020 2020 7c0a 7c6f 3232 203d 2074 |.|o22 = t │ │ │ │ +000334e0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +000334f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033510: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00033520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033560: 3233 203a 2074 696d 6520 7265 6775 6c61 23 : time regula │ │ │ │ +00033570: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ +00033580: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ +00033590: 7472 6174 6567 7943 7572 7265 6e74 297c trategyCurrent)| │ │ │ │ +000335a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3532 .| -- used 0.452 │ │ │ │ +000335b0: 3634 3173 2028 6370 7529 3b20 302e 3331 641s (cpu); 0.31 │ │ │ │ +000335c0: 3835 3633 7320 2874 6872 6561 6429 3b20 8563s (thread); │ │ │ │ +000335d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +000335e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000335f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033610: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00033620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00033660: 3420 3a20 7469 6d65 2072 6567 756c 6172 4 : time regular │ │ │ │ -00033670: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ -00033680: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ -00033690: 7261 7465 6779 4375 7272 656e 7429 7c0a rategyCurrent)|. │ │ │ │ -000336a0: 7c20 2d2d 2075 7365 6420 312e 3733 3338 | -- used 1.7338 │ │ │ │ -000336b0: 3173 2028 6370 7529 3b20 312e 3235 3132 1s (cpu); 1.2512 │ │ │ │ -000336c0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000336d0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -000336e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000336f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033720: 2020 2020 7c0a 7c6f 3234 203d 2074 7275 |.|o24 = tru │ │ │ │ -00033730: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033620: 2020 2020 207c 0a7c 6f32 3320 3d20 7472 |.|o23 = tr │ │ │ │ +00033630: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033660: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000336a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000336b0: 3420 3a20 7469 6d65 2072 6567 756c 6172 4 : time regular │ │ │ │ +000336c0: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ +000336d0: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ +000336e0: 7261 7465 6779 4375 7272 656e 7429 7c0a rategyCurrent)|. │ │ │ │ +000336f0: 7c20 2d2d 2075 7365 6420 312e 3934 3534 | -- used 1.9454 │ │ │ │ +00033700: 3373 2028 6370 7529 3b20 312e 3430 3730 3s (cpu); 1.4070 │ │ │ │ +00033710: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ +00033720: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00033730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033760: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00033770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000337a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3235 ----------+.|i25 │ │ │ │ -000337b0: 203a 2053 7472 6174 6567 7943 7572 7265 : StrategyCurre │ │ │ │ -000337c0: 6e74 234c 6578 536d 616c 6c65 7374 203d nt#LexSmallest = │ │ │ │ -000337d0: 2030 3b20 2020 2020 2020 2020 2020 2020 0; │ │ │ │ -000337e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -000337f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033830: 2b0a 7c69 3236 203a 2053 7472 6174 6567 +.|i26 : Strateg │ │ │ │ -00033840: 7943 7572 7265 6e74 234c 6578 536d 616c yCurrent#LexSmal │ │ │ │ -00033850: 6c65 7374 5465 726d 203d 2031 3030 3b20 lestTerm = 100; │ │ │ │ -00033860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033870: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00033880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000338a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000338b0: 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a 2074 ------+.|i27 : t │ │ │ │ -000338c0: 696d 6520 7265 6775 6c61 7249 6e43 6f64 ime regularInCod │ │ │ │ -000338d0: 696d 656e 7369 6f6e 2832 2c20 522c 2053 imension(2, R, S │ │ │ │ -000338e0: 7472 6174 6567 793d 3e53 7472 6174 6567 trategy=>Strateg │ │ │ │ -000338f0: 7943 7572 7265 6e74 297c 0a7c 202d 2d20 yCurrent)|.| -- │ │ │ │ -00033900: 7573 6564 2032 2e33 3239 3632 7320 2863 used 2.32962s (c │ │ │ │ -00033910: 7075 293b 2031 2e36 3434 3538 7320 2874 pu); 1.64458s (t │ │ │ │ -00033920: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -00033930: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00033940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00033980: 0a7c 6932 3820 3a20 7469 6d65 2072 6567 .|i28 : time reg │ │ │ │ -00033990: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -000339a0: 6e28 322c 2052 2c20 5374 7261 7465 6779 n(2, R, Strategy │ │ │ │ -000339b0: 3d3e 5374 7261 7465 6779 4375 7272 656e =>StrategyCurren │ │ │ │ -000339c0: 7429 7c0a 7c20 2d2d 2075 7365 6420 322e t)|.| -- used 2. │ │ │ │ -000339d0: 3338 3734 3173 2028 6370 7529 3b20 312e 38741s (cpu); 1. │ │ │ │ -000339e0: 3631 3339 3673 2028 7468 7265 6164 293b 61396s (thread); │ │ │ │ -000339f0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -00033a00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00033a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a40: 2020 2020 2020 2020 7c0a 7c6f 3238 203d |.|o28 = │ │ │ │ -00033a50: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00033760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033770: 2020 2020 7c0a 7c6f 3234 203d 2074 7275 |.|o24 = tru │ │ │ │ +00033780: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000337a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000337b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000337c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000337f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3235 ----------+.|i25 │ │ │ │ +00033800: 203a 2053 7472 6174 6567 7943 7572 7265 : StrategyCurre │ │ │ │ +00033810: 6e74 234c 6578 536d 616c 6c65 7374 203d nt#LexSmallest = │ │ │ │ +00033820: 2030 3b20 2020 2020 2020 2020 2020 2020 0; │ │ │ │ +00033830: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00033840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033880: 2b0a 7c69 3236 203a 2053 7472 6174 6567 +.|i26 : Strateg │ │ │ │ +00033890: 7943 7572 7265 6e74 234c 6578 536d 616c yCurrent#LexSmal │ │ │ │ +000338a0: 6c65 7374 5465 726d 203d 2031 3030 3b20 lestTerm = 100; │ │ │ │ +000338b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000338c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000338d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000338e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000338f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033900: 2d2d 2d2d 2d2d 2b0a 7c69 3237 203a 2074 ------+.|i27 : t │ │ │ │ +00033910: 696d 6520 7265 6775 6c61 7249 6e43 6f64 ime regularInCod │ │ │ │ +00033920: 696d 656e 7369 6f6e 2832 2c20 522c 2053 imension(2, R, S │ │ │ │ +00033930: 7472 6174 6567 793d 3e53 7472 6174 6567 trategy=>Strateg │ │ │ │ +00033940: 7943 7572 7265 6e74 297c 0a7c 202d 2d20 yCurrent)|.| -- │ │ │ │ +00033950: 7573 6564 2032 2e35 3832 3833 7320 2863 used 2.58283s (c │ │ │ │ +00033960: 7075 293b 2031 2e38 3031 3973 2028 7468 pu); 1.8019s (th │ │ │ │ +00033970: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00033980: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00033990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000339c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000339d0: 0a7c 6932 3820 3a20 7469 6d65 2072 6567 .|i28 : time reg │ │ │ │ +000339e0: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +000339f0: 6e28 322c 2052 2c20 5374 7261 7465 6779 n(2, R, Strategy │ │ │ │ +00033a00: 3d3e 5374 7261 7465 6779 4375 7272 656e =>StrategyCurren │ │ │ │ +00033a10: 7429 7c0a 7c20 2d2d 2075 7365 6420 322e t)|.| -- used 2. │ │ │ │ +00033a20: 3732 3731 3773 2028 6370 7529 3b20 312e 72717s (cpu); 1. │ │ │ │ +00033a30: 3831 3639 7320 2874 6872 6561 6429 3b20 8169s (thread); │ │ │ │ +00033a40: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00033a50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00033a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033a80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00033a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00033ad0: 7c69 3239 203a 2074 696d 6520 7265 6775 |i29 : time regu │ │ │ │ -00033ae0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00033af0: 2831 2c20 532c 2053 7472 6174 6567 793d (1, S, Strategy= │ │ │ │ -00033b00: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ -00033b10: 297c 0a7c 202d 2d20 7573 6564 2030 2e34 )|.| -- used 0.4 │ │ │ │ -00033b20: 3632 3935 3673 2028 6370 7529 3b20 302e 62956s (cpu); 0. │ │ │ │ -00033b30: 3337 3031 3633 7320 2874 6872 6561 6429 370163s (thread) │ │ │ │ -00033b40: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00033b50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00033b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033b90: 2020 2020 2020 207c 0a7c 6f32 3920 3d20 |.|o29 = │ │ │ │ -00033ba0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00033a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033a90: 2020 2020 2020 2020 7c0a 7c6f 3238 203d |.|o28 = │ │ │ │ +00033aa0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00033ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ad0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00033ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00033b20: 7c69 3239 203a 2074 696d 6520 7265 6775 |i29 : time regu │ │ │ │ +00033b30: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00033b40: 2831 2c20 532c 2053 7472 6174 6567 793d (1, S, Strategy= │ │ │ │ +00033b50: 3e53 7472 6174 6567 7943 7572 7265 6e74 >StrategyCurrent │ │ │ │ +00033b60: 297c 0a7c 202d 2d20 7573 6564 2030 2e34 )|.| -- used 0.4 │ │ │ │ +00033b70: 3737 3232 3773 2028 6370 7529 3b20 302e 77227s (cpu); 0. │ │ │ │ +00033b80: 3335 3636 3933 7320 2874 6872 6561 6429 356693s (thread) │ │ │ │ +00033b90: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00033ba0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00033bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033bd0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00033be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00033c20: 6933 3020 3a20 7469 6d65 2072 6567 756c i30 : time regul │ │ │ │ -00033c30: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ -00033c40: 312c 2053 2c20 5374 7261 7465 6779 3d3e 1, S, Strategy=> │ │ │ │ -00033c50: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ -00033c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3737 |.| -- used 0.77 │ │ │ │ -00033c70: 3032 3032 7320 2863 7075 293b 2030 2e36 0202s (cpu); 0.6 │ │ │ │ -00033c80: 3034 3237 3273 2028 7468 7265 6164 293b 04272s (thread); │ │ │ │ -00033c90: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -00033ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033ce0: 2020 2020 2020 7c0a 7c6f 3330 203d 2074 |.|o30 = t │ │ │ │ -00033cf0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033be0: 2020 2020 2020 207c 0a7c 6f32 3920 3d20 |.|o29 = │ │ │ │ +00033bf0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00033c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033c20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00033c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00033c70: 6933 3020 3a20 7469 6d65 2072 6567 756c i30 : time regul │ │ │ │ +00033c80: 6172 496e 436f 6469 6d65 6e73 696f 6e28 arInCodimension( │ │ │ │ +00033c90: 312c 2053 2c20 5374 7261 7465 6779 3d3e 1, S, Strategy=> │ │ │ │ +00033ca0: 5374 7261 7465 6779 4375 7272 656e 7429 StrategyCurrent) │ │ │ │ +00033cb0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3938 |.| -- used 0.98 │ │ │ │ +00033cc0: 3830 3831 7320 2863 7075 293b 2030 2e37 8081s (cpu); 0.7 │ │ │ │ +00033cd0: 3932 3636 3373 2028 7468 7265 6164 293b 92663s (thread); │ │ │ │ +00033ce0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +00033cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033d20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00033d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00033d70: 3331 203a 2074 696d 6520 7265 6775 6c61 31 : time regula │ │ │ │ -00033d80: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ -00033d90: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ -00033da0: 7472 6174 6567 7952 616e 646f 6d29 207c trategyRandom) | │ │ │ │ -00033db0: 0a7c 202d 2d20 7573 6564 2031 2e30 3738 .| -- used 1.078 │ │ │ │ -00033dc0: 3732 7320 2863 7075 293b 2030 2e38 3731 72s (cpu); 0.871 │ │ │ │ -00033dd0: 3233 3573 2028 7468 7265 6164 293b 2030 235s (thread); 0 │ │ │ │ -00033de0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -00033df0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e30: 2020 2020 207c 0a7c 6f33 3120 3d20 7472 |.|o31 = tr │ │ │ │ -00033e40: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d30: 2020 2020 2020 7c0a 7c6f 3330 203d 2074 |.|o30 = t │ │ │ │ +00033d40: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00033d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033d70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00033d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00033dc0: 3331 203a 2074 696d 6520 7265 6775 6c61 31 : time regula │ │ │ │ +00033dd0: 7249 6e43 6f64 696d 656e 7369 6f6e 2831 rInCodimension(1 │ │ │ │ +00033de0: 2c20 532c 2053 7472 6174 6567 793d 3e53 , S, Strategy=>S │ │ │ │ +00033df0: 7472 6174 6567 7952 616e 646f 6d29 207c trategyRandom) | │ │ │ │ +00033e00: 0a7c 202d 2d20 7573 6564 2031 2e32 3234 .| -- used 1.224 │ │ │ │ +00033e10: 3634 7320 2863 7075 293b 2030 2e39 3637 64s (cpu); 0.967 │ │ │ │ +00033e20: 3739 3473 2028 7468 7265 6164 293b 2030 794s (thread); 0 │ │ │ │ +00033e30: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00033e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033e70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00033e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00033ec0: 3220 3a20 7469 6d65 2072 6567 756c 6172 2 : time regular │ │ │ │ -00033ed0: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ -00033ee0: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ -00033ef0: 7261 7465 6779 5261 6e64 6f6d 2920 7c0a rategyRandom) |. │ │ │ │ -00033f00: 7c20 2d2d 2075 7365 6420 312e 3835 3933 | -- used 1.8593 │ │ │ │ -00033f10: 3673 2028 6370 7529 3b20 312e 3438 3037 6s (cpu); 1.4807 │ │ │ │ -00033f20: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ -00033f30: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00033f40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00033f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033f80: 2020 2020 7c0a 7c6f 3332 203d 2074 7275 |.|o32 = tru │ │ │ │ -00033f90: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033e80: 2020 2020 207c 0a7c 6f33 3120 3d20 7472 |.|o31 = tr │ │ │ │ +00033e90: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ +00033ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033ec0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00033ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00033f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00033f10: 3220 3a20 7469 6d65 2072 6567 756c 6172 2 : time regular │ │ │ │ +00033f20: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ +00033f30: 2053 2c20 5374 7261 7465 6779 3d3e 5374 S, Strategy=>St │ │ │ │ +00033f40: 7261 7465 6779 5261 6e64 6f6d 2920 7c0a rategyRandom) |. │ │ │ │ +00033f50: 7c20 2d2d 2075 7365 6420 312e 3938 3036 | -- used 1.9806 │ │ │ │ +00033f60: 3373 2028 6370 7529 3b20 312e 3439 3932 3s (cpu); 1.4992 │ │ │ │ +00033f70: 3473 2028 7468 7265 6164 293b 2030 7320 4s (thread); 0s │ │ │ │ +00033f80: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +00033f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00033fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00033fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00033fc0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00033fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034000: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 ----------+..The │ │ │ │ -00034010: 206d 696e 696d 756d 206e 756d 6265 7220 minimum number │ │ │ │ -00034020: 6f66 206d 696e 6f72 7320 636f 6d70 7574 of minors comput │ │ │ │ -00034030: 6564 2062 6566 6f72 6520 6368 6563 6b69 ed before checki │ │ │ │ -00034040: 6e67 2074 6865 2063 6f64 696d 656e 7369 ng the codimensi │ │ │ │ -00034050: 6f6e 2063 616e 2061 6c73 6f0a 6265 2063 on can also.be c │ │ │ │ -00034060: 6f6e 7472 6f6c 6c65 6420 6279 2061 6e20 ontrolled by an │ │ │ │ -00034070: 6f70 7469 6f6e 204d 696e 4d69 6e6f 7273 option MinMinors │ │ │ │ -00034080: 4675 6e63 7469 6f6e 2e20 2054 6869 7320 Function. This │ │ │ │ -00034090: 6973 2073 686f 756c 6420 6265 2061 2066 is should be a f │ │ │ │ -000340a0: 756e 6374 696f 6e20 6f66 0a61 2073 696e unction of.a sin │ │ │ │ -000340b0: 676c 6520 7661 7269 6162 6c65 2c20 7468 gle variable, th │ │ │ │ -000340c0: 6520 6e75 6d62 6572 206f 6620 6d69 6e6f e number of mino │ │ │ │ -000340d0: 7273 2063 6f6d 7075 7465 642e 2020 4669 rs computed. Fi │ │ │ │ -000340e0: 6e61 6c6c 792c 2076 6961 2074 6865 206f nally, via the o │ │ │ │ -000340f0: 7074 696f 6e0a 436f 6469 6d43 6865 636b ption.CodimCheck │ │ │ │ -00034100: 4675 6e63 7469 6f6e 2c20 796f 7520 6361 Function, you ca │ │ │ │ -00034110: 6e20 7061 7373 2074 6865 2072 6567 756c n pass the regul │ │ │ │ -00034120: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ -00034130: 6120 6675 6e63 7469 6f6e 2077 6869 6368 a function which │ │ │ │ -00034140: 0a63 6f6e 7472 6f6c 7320 686f 7720 6672 .controls how fr │ │ │ │ -00034150: 6571 7565 6e74 6c79 2074 6865 2063 6f64 equently the cod │ │ │ │ -00034160: 696d 656e 7369 6f6e 206f 6620 7468 6520 imension of the │ │ │ │ -00034170: 7061 7274 6961 6c20 4a61 636f 6269 616e partial Jacobian │ │ │ │ -00034180: 2069 6465 616c 2069 730a 636f 6d70 7574 ideal is.comput │ │ │ │ -00034190: 6564 2e20 2042 7920 6465 6661 756c 7420 ed. By default │ │ │ │ -000341a0: 7468 6973 2069 7320 7468 6520 666c 6f6f this is the floo │ │ │ │ -000341b0: 7220 6f66 2031 2e33 5e6b 2e20 4669 6e61 r of 1.3^k. Fina │ │ │ │ -000341c0: 6c6c 792c 2070 6173 7369 6e67 2074 6865 lly, passing the │ │ │ │ -000341d0: 206f 7074 696f 6e0a 4d6f 6475 6c75 7320 option.Modulus │ │ │ │ -000341e0: 3d3e 2070 2077 696c 6c20 646f 2074 6865 => p will do the │ │ │ │ -000341f0: 2063 6f6d 7075 7461 7469 6f6e 2061 6674 computation aft │ │ │ │ -00034200: 6572 2063 6861 6e67 696e 6720 7468 6520 er changing the │ │ │ │ -00034210: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ -00034220: 2074 6f0a 5a5a 2f70 2e0a 0a54 6865 206f to.ZZ/p...The o │ │ │ │ -00034230: 7074 696f 6e73 2050 6169 724c 696d 6974 ptions PairLimit │ │ │ │ -00034240: 2061 6e64 2053 5061 6972 7346 756e 6374 and SPairsFunct │ │ │ │ -00034250: 696f 6e20 6172 6520 7061 7373 6564 2064 ion are passed d │ │ │ │ -00034260: 6972 6563 746c 7920 746f 2069 7343 6f64 irectly to isCod │ │ │ │ -00034270: 696d 4174 4c65 6173 742e 0a59 6f75 2063 imAtLeast..You c │ │ │ │ -00034280: 616e 2074 7572 6e20 6f66 6620 696e 7465 an turn off inte │ │ │ │ -00034290: 726e 616c 2063 616c 6c73 2074 6f20 636f rnal calls to co │ │ │ │ -000342a0: 6469 6d2f 6469 6d2c 2061 6e64 206f 6e6c dim/dim, and onl │ │ │ │ -000342b0: 7920 7573 6520 6973 436f 6469 6d41 744c y use isCodimAtL │ │ │ │ -000342c0: 6561 7374 2062 790a 7365 7474 696e 6720 east by.setting │ │ │ │ -000342d0: 5573 654f 6e6c 7946 6173 7443 6f64 696d UseOnlyFastCodim │ │ │ │ -000342e0: 203d 3e20 7472 7565 2e0a 0a53 6565 2061 => true...See a │ │ │ │ -000342f0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00034300: 2a20 2a6e 6f74 6520 6973 436f 6469 6d41 * *note isCodimA │ │ │ │ -00034310: 744c 6561 7374 3a20 6973 436f 6469 6d41 tLeast: isCodimA │ │ │ │ -00034320: 744c 6561 7374 2c20 2d2d 2072 6574 7572 tLeast, -- retur │ │ │ │ -00034330: 6e73 2074 7275 6520 6966 2077 6520 6361 ns true if we ca │ │ │ │ -00034340: 6e20 7175 6963 6b6c 7920 7365 650a 2020 n quickly see. │ │ │ │ -00034350: 2020 7768 6574 6865 7220 7468 6520 636f whether the co │ │ │ │ -00034360: 6469 6d20 6973 2061 7420 6c65 6173 7420 dim is at least │ │ │ │ -00034370: 6120 6769 7665 6e20 6e75 6d62 6572 0a0a a given number.. │ │ │ │ -00034380: 5761 7973 2074 6f20 7573 6520 7265 6775 Ways to use regu │ │ │ │ -00034390: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -000343a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000343b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000343c0: 3d3d 3d0a 0a20 202a 2022 7265 6775 6c61 ===.. * "regula │ │ │ │ -000343d0: 7249 6e43 6f64 696d 656e 7369 6f6e 285a rInCodimension(Z │ │ │ │ -000343e0: 5a2c 5269 6e67 2922 0a0a 466f 7220 7468 Z,Ring)"..For th │ │ │ │ -000343f0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00034400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00034410: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00034420: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00034430: 656e 7369 6f6e 3a20 7265 6775 6c61 7249 ension: regularI │ │ │ │ -00034440: 6e43 6f64 696d 656e 7369 6f6e 2c20 6973 nCodimension, is │ │ │ │ -00034450: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ -00034460: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ -00034470: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ -00034480: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00034490: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -000344a0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -000344b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000344f0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00034500: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00034510: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00034520: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00034530: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00034540: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00034550: 7061 636b 6167 6573 2f46 6173 744d 696e packages/FastMin │ │ │ │ -00034560: 6f72 732e 0a6d 323a 3139 3036 3a30 2e0a ors..m2:1906:0.. │ │ │ │ -00034570: 1f0a 4669 6c65 3a20 4661 7374 4d69 6e6f ..File: FastMino │ │ │ │ -00034580: 7273 2e69 6e66 6f2c 204e 6f64 653a 2052 rs.info, Node: R │ │ │ │ -00034590: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -000345a0: 696f 6e54 7574 6f72 6961 6c2c 204e 6578 ionTutorial, Nex │ │ │ │ -000345b0: 743a 2072 656f 7264 6572 506f 6c79 6e6f t: reorderPolyno │ │ │ │ -000345c0: 6d69 616c 5269 6e67 2c20 5072 6576 3a20 mialRing, Prev: │ │ │ │ -000345d0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000345e0: 7369 6f6e 2c20 5570 3a20 546f 700a 0a52 sion, Up: Top..R │ │ │ │ -000345f0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00034600: 696f 6e54 7574 6f72 6961 6c20 2d2d 2041 ionTutorial -- A │ │ │ │ -00034610: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ -00034620: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ -00034630: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ -00034640: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ -00034650: 6469 6d65 6e73 696f 6e20 6675 6e63 7469 dimension functi │ │ │ │ -00034660: 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a on.************* │ │ │ │ -00034670: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00034680: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00034690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00033fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00033fd0: 2020 2020 7c0a 7c6f 3332 203d 2074 7275 |.|o32 = tru │ │ │ │ +00033fe0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00033ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034010: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00034020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034050: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6865 ----------+..The │ │ │ │ +00034060: 206d 696e 696d 756d 206e 756d 6265 7220 minimum number │ │ │ │ +00034070: 6f66 206d 696e 6f72 7320 636f 6d70 7574 of minors comput │ │ │ │ +00034080: 6564 2062 6566 6f72 6520 6368 6563 6b69 ed before checki │ │ │ │ +00034090: 6e67 2074 6865 2063 6f64 696d 656e 7369 ng the codimensi │ │ │ │ +000340a0: 6f6e 2063 616e 2061 6c73 6f0a 6265 2063 on can also.be c │ │ │ │ +000340b0: 6f6e 7472 6f6c 6c65 6420 6279 2061 6e20 ontrolled by an │ │ │ │ +000340c0: 6f70 7469 6f6e 204d 696e 4d69 6e6f 7273 option MinMinors │ │ │ │ +000340d0: 4675 6e63 7469 6f6e 2e20 2054 6869 7320 Function. This │ │ │ │ +000340e0: 6973 2073 686f 756c 6420 6265 2061 2066 is should be a f │ │ │ │ +000340f0: 756e 6374 696f 6e20 6f66 0a61 2073 696e unction of.a sin │ │ │ │ +00034100: 676c 6520 7661 7269 6162 6c65 2c20 7468 gle variable, th │ │ │ │ +00034110: 6520 6e75 6d62 6572 206f 6620 6d69 6e6f e number of mino │ │ │ │ +00034120: 7273 2063 6f6d 7075 7465 642e 2020 4669 rs computed. Fi │ │ │ │ +00034130: 6e61 6c6c 792c 2076 6961 2074 6865 206f nally, via the o │ │ │ │ +00034140: 7074 696f 6e0a 436f 6469 6d43 6865 636b ption.CodimCheck │ │ │ │ +00034150: 4675 6e63 7469 6f6e 2c20 796f 7520 6361 Function, you ca │ │ │ │ +00034160: 6e20 7061 7373 2074 6865 2072 6567 756c n pass the regul │ │ │ │ +00034170: 6172 496e 436f 6469 6d65 6e73 696f 6e20 arInCodimension │ │ │ │ +00034180: 6120 6675 6e63 7469 6f6e 2077 6869 6368 a function which │ │ │ │ +00034190: 0a63 6f6e 7472 6f6c 7320 686f 7720 6672 .controls how fr │ │ │ │ +000341a0: 6571 7565 6e74 6c79 2074 6865 2063 6f64 equently the cod │ │ │ │ +000341b0: 696d 656e 7369 6f6e 206f 6620 7468 6520 imension of the │ │ │ │ +000341c0: 7061 7274 6961 6c20 4a61 636f 6269 616e partial Jacobian │ │ │ │ +000341d0: 2069 6465 616c 2069 730a 636f 6d70 7574 ideal is.comput │ │ │ │ +000341e0: 6564 2e20 2042 7920 6465 6661 756c 7420 ed. By default │ │ │ │ +000341f0: 7468 6973 2069 7320 7468 6520 666c 6f6f this is the floo │ │ │ │ +00034200: 7220 6f66 2031 2e33 5e6b 2e20 4669 6e61 r of 1.3^k. Fina │ │ │ │ +00034210: 6c6c 792c 2070 6173 7369 6e67 2074 6865 lly, passing the │ │ │ │ +00034220: 206f 7074 696f 6e0a 4d6f 6475 6c75 7320 option.Modulus │ │ │ │ +00034230: 3d3e 2070 2077 696c 6c20 646f 2074 6865 => p will do the │ │ │ │ +00034240: 2063 6f6d 7075 7461 7469 6f6e 2061 6674 computation aft │ │ │ │ +00034250: 6572 2063 6861 6e67 696e 6720 7468 6520 er changing the │ │ │ │ +00034260: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ +00034270: 2074 6f0a 5a5a 2f70 2e0a 0a54 6865 206f to.ZZ/p...The o │ │ │ │ +00034280: 7074 696f 6e73 2050 6169 724c 696d 6974 ptions PairLimit │ │ │ │ +00034290: 2061 6e64 2053 5061 6972 7346 756e 6374 and SPairsFunct │ │ │ │ +000342a0: 696f 6e20 6172 6520 7061 7373 6564 2064 ion are passed d │ │ │ │ +000342b0: 6972 6563 746c 7920 746f 2069 7343 6f64 irectly to isCod │ │ │ │ +000342c0: 696d 4174 4c65 6173 742e 0a59 6f75 2063 imAtLeast..You c │ │ │ │ +000342d0: 616e 2074 7572 6e20 6f66 6620 696e 7465 an turn off inte │ │ │ │ +000342e0: 726e 616c 2063 616c 6c73 2074 6f20 636f rnal calls to co │ │ │ │ +000342f0: 6469 6d2f 6469 6d2c 2061 6e64 206f 6e6c dim/dim, and onl │ │ │ │ +00034300: 7920 7573 6520 6973 436f 6469 6d41 744c y use isCodimAtL │ │ │ │ +00034310: 6561 7374 2062 790a 7365 7474 696e 6720 east by.setting │ │ │ │ +00034320: 5573 654f 6e6c 7946 6173 7443 6f64 696d UseOnlyFastCodim │ │ │ │ +00034330: 203d 3e20 7472 7565 2e0a 0a53 6565 2061 => true...See a │ │ │ │ +00034340: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00034350: 2a20 2a6e 6f74 6520 6973 436f 6469 6d41 * *note isCodimA │ │ │ │ +00034360: 744c 6561 7374 3a20 6973 436f 6469 6d41 tLeast: isCodimA │ │ │ │ +00034370: 744c 6561 7374 2c20 2d2d 2072 6574 7572 tLeast, -- retur │ │ │ │ +00034380: 6e73 2074 7275 6520 6966 2077 6520 6361 ns true if we ca │ │ │ │ +00034390: 6e20 7175 6963 6b6c 7920 7365 650a 2020 n quickly see. │ │ │ │ +000343a0: 2020 7768 6574 6865 7220 7468 6520 636f whether the co │ │ │ │ +000343b0: 6469 6d20 6973 2061 7420 6c65 6173 7420 dim is at least │ │ │ │ +000343c0: 6120 6769 7665 6e20 6e75 6d62 6572 0a0a a given number.. │ │ │ │ +000343d0: 5761 7973 2074 6f20 7573 6520 7265 6775 Ways to use regu │ │ │ │ +000343e0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000343f0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00034400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00034410: 3d3d 3d0a 0a20 202a 2022 7265 6775 6c61 ===.. * "regula │ │ │ │ +00034420: 7249 6e43 6f64 696d 656e 7369 6f6e 285a rInCodimension(Z │ │ │ │ +00034430: 5a2c 5269 6e67 2922 0a0a 466f 7220 7468 Z,Ring)"..For th │ │ │ │ +00034440: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00034450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00034460: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00034470: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ +00034480: 656e 7369 6f6e 3a20 7265 6775 6c61 7249 ension: regularI │ │ │ │ +00034490: 6e43 6f64 696d 656e 7369 6f6e 2c20 6973 nCodimension, is │ │ │ │ +000344a0: 2061 202a 6e6f 7465 206d 6574 686f 640a a *note method. │ │ │ │ +000344b0: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ +000344c0: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ +000344d0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +000344e0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +000344f0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +00034500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034540: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00034550: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00034560: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00034570: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00034580: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00034590: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +000345a0: 7061 636b 6167 6573 2f46 6173 744d 696e packages/FastMin │ │ │ │ +000345b0: 6f72 732e 0a6d 323a 3139 3036 3a30 2e0a ors..m2:1906:0.. │ │ │ │ +000345c0: 1f0a 4669 6c65 3a20 4661 7374 4d69 6e6f ..File: FastMino │ │ │ │ +000345d0: 7273 2e69 6e66 6f2c 204e 6f64 653a 2052 rs.info, Node: R │ │ │ │ +000345e0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +000345f0: 696f 6e54 7574 6f72 6961 6c2c 204e 6578 ionTutorial, Nex │ │ │ │ +00034600: 743a 2072 656f 7264 6572 506f 6c79 6e6f t: reorderPolyno │ │ │ │ +00034610: 6d69 616c 5269 6e67 2c20 5072 6576 3a20 mialRing, Prev: │ │ │ │ +00034620: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +00034630: 7369 6f6e 2c20 5570 3a20 546f 700a 0a52 sion, Up: Top..R │ │ │ │ +00034640: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00034650: 696f 6e54 7574 6f72 6961 6c20 2d2d 2041 ionTutorial -- A │ │ │ │ +00034660: 2074 7574 6f72 6961 6c20 666f 7220 686f tutorial for ho │ │ │ │ +00034670: 7720 746f 2075 7365 2074 6865 2061 6476 w to use the adv │ │ │ │ +00034680: 616e 6365 6420 6f70 7469 6f6e 7320 6f66 anced options of │ │ │ │ +00034690: 2074 6865 2072 6567 756c 6172 496e 436f the regularInCo │ │ │ │ +000346a0: 6469 6d65 6e73 696f 6e20 6675 6e63 7469 dimension functi │ │ │ │ +000346b0: 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a on.************* │ │ │ │ 000346c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000346d0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -000346e0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000346f0: 0a49 6e20 7468 6973 2074 7574 6f72 6961 .In this tutoria │ │ │ │ -00034700: 6c20 7765 2065 7870 6c6f 7265 2074 6865 l we explore the │ │ │ │ -00034710: 2064 6966 6665 7265 6e74 206f 7074 696f different optio │ │ │ │ -00034720: 6e73 206f 6620 5265 6775 6c61 7249 6e43 ns of RegularInC │ │ │ │ -00034730: 6f64 696d 656e 7369 6f6e 2028 616e 640a odimension (and. │ │ │ │ -00034740: 7265 6c61 7465 6420 6675 6e63 7469 6f6e related function │ │ │ │ -00034750: 7329 206f 6e20 736f 6d65 2063 6f6e 6520 s) on some cone │ │ │ │ -00034760: 7369 6e67 756c 6172 6974 6965 732e 2020 singularities. │ │ │ │ -00034770: 466f 7220 7468 6520 6d6f 7374 2070 6172 For the most par │ │ │ │ -00034780: 7420 7765 2077 696c 6c20 6e6f 740a 7461 t we will not.ta │ │ │ │ -00034790: 6c6b 2061 626f 7574 2074 6865 2053 7472 lk about the Str │ │ │ │ -000347a0: 6174 6567 7920 6f70 7469 6f6e 2c20 7765 ategy option, we │ │ │ │ -000347b0: 2068 6176 6520 6120 7365 7061 7261 7465 have a separate │ │ │ │ -000347c0: 2074 7574 6f72 6961 6c20 666f 7220 7468 tutorial for th │ │ │ │ -000347d0: 6174 202a 6e6f 7465 0a46 6173 744d 696e at *note.FastMin │ │ │ │ -000347e0: 6f72 7353 7472 6174 6567 7954 7574 6f72 orsStrategyTutor │ │ │ │ -000347f0: 6961 6c3a 2046 6173 744d 696e 6f72 7353 ial: FastMinorsS │ │ │ │ -00034800: 7472 6174 6567 7954 7574 6f72 6961 6c2c trategyTutorial, │ │ │ │ -00034810: 2e0a 0a57 6520 6265 6769 6e20 7769 7468 ...We begin with │ │ │ │ -00034820: 2074 6865 2066 6f6c 6c6f 7769 6e67 2069 the following i │ │ │ │ -00034830: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ -00034840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034880: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 203d -----+.|i1 : S = │ │ │ │ -00034890: 205a 5a2f 3130 335b 785f 312e 2e78 5f39 ZZ/103[x_1..x_9 │ │ │ │ -000348a0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ -000348b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000348e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000348f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034920: 2d2d 2d2d 2d2b 0a7c 6932 203a 204a 203d -----+.|i2 : J = │ │ │ │ -00034930: 2069 6465 616c 2878 5f36 2a78 5f38 2d78 ideal(x_6*x_8-x │ │ │ │ -00034940: 5f35 2a78 5f39 2c78 5f33 2a78 5f38 2d78 _5*x_9,x_3*x_8-x │ │ │ │ -00034950: 5f32 2a78 5f39 2c78 5f36 2a78 5f37 2d78 _2*x_9,x_6*x_7-x │ │ │ │ -00034960: 5f34 2a78 5f39 2c78 5f35 2a78 5f37 2d78 _4*x_9,x_5*x_7-x │ │ │ │ -00034970: 5f34 2a78 5f7c 0a7c 2020 2020 2020 2020 _4*x_|.| │ │ │ │ -00034980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000349c0: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ -000349d0: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +000346d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000346e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000346f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00034720: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00034730: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00034740: 0a49 6e20 7468 6973 2074 7574 6f72 6961 .In this tutoria │ │ │ │ +00034750: 6c20 7765 2065 7870 6c6f 7265 2074 6865 l we explore the │ │ │ │ +00034760: 2064 6966 6665 7265 6e74 206f 7074 696f different optio │ │ │ │ +00034770: 6e73 206f 6620 5265 6775 6c61 7249 6e43 ns of RegularInC │ │ │ │ +00034780: 6f64 696d 656e 7369 6f6e 2028 616e 640a odimension (and. │ │ │ │ +00034790: 7265 6c61 7465 6420 6675 6e63 7469 6f6e related function │ │ │ │ +000347a0: 7329 206f 6e20 736f 6d65 2063 6f6e 6520 s) on some cone │ │ │ │ +000347b0: 7369 6e67 756c 6172 6974 6965 732e 2020 singularities. │ │ │ │ +000347c0: 466f 7220 7468 6520 6d6f 7374 2070 6172 For the most par │ │ │ │ +000347d0: 7420 7765 2077 696c 6c20 6e6f 740a 7461 t we will not.ta │ │ │ │ +000347e0: 6c6b 2061 626f 7574 2074 6865 2053 7472 lk about the Str │ │ │ │ +000347f0: 6174 6567 7920 6f70 7469 6f6e 2c20 7765 ategy option, we │ │ │ │ +00034800: 2068 6176 6520 6120 7365 7061 7261 7465 have a separate │ │ │ │ +00034810: 2074 7574 6f72 6961 6c20 666f 7220 7468 tutorial for th │ │ │ │ +00034820: 6174 202a 6e6f 7465 0a46 6173 744d 696e at *note.FastMin │ │ │ │ +00034830: 6f72 7353 7472 6174 6567 7954 7574 6f72 orsStrategyTutor │ │ │ │ +00034840: 6961 6c3a 2046 6173 744d 696e 6f72 7353 ial: FastMinorsS │ │ │ │ +00034850: 7472 6174 6567 7954 7574 6f72 6961 6c2c trategyTutorial, │ │ │ │ +00034860: 2e0a 0a57 6520 6265 6769 6e20 7769 7468 ...We begin with │ │ │ │ +00034870: 2074 6865 2066 6f6c 6c6f 7769 6e67 2069 the following i │ │ │ │ +00034880: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ +00034890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000348d0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 203d -----+.|i1 : S = │ │ │ │ +000348e0: 205a 5a2f 3130 335b 785f 312e 2e78 5f39 ZZ/103[x_1..x_9 │ │ │ │ +000348f0: 5d3b 2020 2020 2020 2020 2020 2020 2020 ]; │ │ │ │ +00034900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034920: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034970: 2d2d 2d2d 2d2b 0a7c 6932 203a 204a 203d -----+.|i2 : J = │ │ │ │ +00034980: 2069 6465 616c 2878 5f36 2a78 5f38 2d78 ideal(x_6*x_8-x │ │ │ │ +00034990: 5f35 2a78 5f39 2c78 5f33 2a78 5f38 2d78 _5*x_9,x_3*x_8-x │ │ │ │ +000349a0: 5f32 2a78 5f39 2c78 5f36 2a78 5f37 2d78 _2*x_9,x_6*x_7-x │ │ │ │ +000349b0: 5f34 2a78 5f39 2c78 5f35 2a78 5f37 2d78 _4*x_9,x_5*x_7-x │ │ │ │ +000349c0: 5f34 2a78 5f7c 0a7c 2020 2020 2020 2020 _4*x_|.| │ │ │ │ +000349d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000349f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034a10: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00034a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034a60: 2d2d 2d2d 2d7c 0a7c 382c 785f 332a 785f -----|.|8,x_3*x_ │ │ │ │ -00034a70: 372d 785f 312a 785f 392c 785f 322a 785f 7-x_1*x_9,x_2*x_ │ │ │ │ -00034a80: 372d 785f 312a 785f 382c 785f 332a 785f 7-x_1*x_8,x_3*x_ │ │ │ │ -00034a90: 352d 785f 322a 785f 362c 785f 332a 785f 5-x_2*x_6,x_3*x_ │ │ │ │ -00034aa0: 342d 785f 312a 785f 362c 785f 322a 785f 4-x_1*x_6,x_2*x_ │ │ │ │ -00034ab0: 342d 785f 317c 0a7c 2d2d 2d2d 2d2d 2d2d 4-x_1|.|-------- │ │ │ │ -00034ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b00: 2d2d 2d2d 2d7c 0a7c 2a78 5f35 2c78 5f33 -----|.|*x_5,x_3 │ │ │ │ -00034b10: 5e33 2d78 5f36 5e33 2d78 5f39 5e33 2c78 ^3-x_6^3-x_9^3,x │ │ │ │ -00034b20: 5f32 2a78 5f33 5e32 2d78 5f35 2a78 5f36 _2*x_3^2-x_5*x_6 │ │ │ │ -00034b30: 5e32 2d78 5f38 2a78 5f39 5e32 2c78 5f31 ^2-x_8*x_9^2,x_1 │ │ │ │ -00034b40: 2a78 5f33 5e32 2d78 5f34 2a78 5f36 5e32 *x_3^2-x_4*x_6^2 │ │ │ │ -00034b50: 2d78 5f37 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d -x_7*|.|-------- │ │ │ │ -00034b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ba0: 2d2d 2d2d 2d7c 0a7c 785f 395e 322c 785f -----|.|x_9^2,x_ │ │ │ │ -00034bb0: 325e 322a 785f 332d 785f 355e 322a 785f 2^2*x_3-x_5^2*x_ │ │ │ │ -00034bc0: 362d 785f 385e 322a 785f 392c 785f 312a 6-x_8^2*x_9,x_1* │ │ │ │ -00034bd0: 785f 322a 785f 332d 785f 342a 785f 352a x_2*x_3-x_4*x_5* │ │ │ │ -00034be0: 785f 362d 785f 372a 785f 382a 785f 392c x_6-x_7*x_8*x_9, │ │ │ │ -00034bf0: 785f 315e 327c 0a7c 2d2d 2d2d 2d2d 2d2d x_1^2|.|-------- │ │ │ │ -00034c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c40: 2d2d 2d2d 2d7c 0a7c 2a78 5f33 2d78 5f34 -----|.|*x_3-x_4 │ │ │ │ -00034c50: 5e32 2a78 5f36 2d78 5f37 5e32 2a78 5f39 ^2*x_6-x_7^2*x_9 │ │ │ │ -00034c60: 2c78 5f32 5e33 2d78 5f35 5e33 2d78 5f38 ,x_2^3-x_5^3-x_8 │ │ │ │ -00034c70: 5e33 2c78 5f31 2a78 5f32 5e32 2d78 5f34 ^3,x_1*x_2^2-x_4 │ │ │ │ -00034c80: 2a78 5f35 5e32 2d78 5f37 2a78 5f38 5e32 *x_5^2-x_7*x_8^2 │ │ │ │ -00034c90: 2c78 5f31 5e7c 0a7c 2d2d 2d2d 2d2d 2d2d ,x_1^|.|-------- │ │ │ │ -00034ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ce0: 2d2d 2d2d 2d7c 0a7c 322a 785f 322d 785f -----|.|2*x_2-x_ │ │ │ │ -00034cf0: 345e 322a 785f 352d 785f 375e 322a 785f 4^2*x_5-x_7^2*x_ │ │ │ │ -00034d00: 382c 785f 315e 332d 785f 345e 332d 785f 8,x_1^3-x_4^3-x_ │ │ │ │ -00034d10: 375e 3329 3b20 2020 2020 2020 2020 2020 7^3); │ │ │ │ -00034d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00034d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d80: 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 696d -----+.|i3 : dim │ │ │ │ -00034d90: 2028 532f 4a29 2020 2020 2020 2020 2020 (S/J) │ │ │ │ -00034da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00034de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a10: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ +00034a20: 616c 206f 6620 5320 2020 2020 2020 2020 al of S │ │ │ │ +00034a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034a60: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00034a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ab0: 2d2d 2d2d 2d7c 0a7c 382c 785f 332a 785f -----|.|8,x_3*x_ │ │ │ │ +00034ac0: 372d 785f 312a 785f 392c 785f 322a 785f 7-x_1*x_9,x_2*x_ │ │ │ │ +00034ad0: 372d 785f 312a 785f 382c 785f 332a 785f 7-x_1*x_8,x_3*x_ │ │ │ │ +00034ae0: 352d 785f 322a 785f 362c 785f 332a 785f 5-x_2*x_6,x_3*x_ │ │ │ │ +00034af0: 342d 785f 312a 785f 362c 785f 322a 785f 4-x_1*x_6,x_2*x_ │ │ │ │ +00034b00: 342d 785f 317c 0a7c 2d2d 2d2d 2d2d 2d2d 4-x_1|.|-------- │ │ │ │ +00034b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034b50: 2d2d 2d2d 2d7c 0a7c 2a78 5f35 2c78 5f33 -----|.|*x_5,x_3 │ │ │ │ +00034b60: 5e33 2d78 5f36 5e33 2d78 5f39 5e33 2c78 ^3-x_6^3-x_9^3,x │ │ │ │ +00034b70: 5f32 2a78 5f33 5e32 2d78 5f35 2a78 5f36 _2*x_3^2-x_5*x_6 │ │ │ │ +00034b80: 5e32 2d78 5f38 2a78 5f39 5e32 2c78 5f31 ^2-x_8*x_9^2,x_1 │ │ │ │ +00034b90: 2a78 5f33 5e32 2d78 5f34 2a78 5f36 5e32 *x_3^2-x_4*x_6^2 │ │ │ │ +00034ba0: 2d78 5f37 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d -x_7*|.|-------- │ │ │ │ +00034bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034bf0: 2d2d 2d2d 2d7c 0a7c 785f 395e 322c 785f -----|.|x_9^2,x_ │ │ │ │ +00034c00: 325e 322a 785f 332d 785f 355e 322a 785f 2^2*x_3-x_5^2*x_ │ │ │ │ +00034c10: 362d 785f 385e 322a 785f 392c 785f 312a 6-x_8^2*x_9,x_1* │ │ │ │ +00034c20: 785f 322a 785f 332d 785f 342a 785f 352a x_2*x_3-x_4*x_5* │ │ │ │ +00034c30: 785f 362d 785f 372a 785f 382a 785f 392c x_6-x_7*x_8*x_9, │ │ │ │ +00034c40: 785f 315e 327c 0a7c 2d2d 2d2d 2d2d 2d2d x_1^2|.|-------- │ │ │ │ +00034c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034c90: 2d2d 2d2d 2d7c 0a7c 2a78 5f33 2d78 5f34 -----|.|*x_3-x_4 │ │ │ │ +00034ca0: 5e32 2a78 5f36 2d78 5f37 5e32 2a78 5f39 ^2*x_6-x_7^2*x_9 │ │ │ │ +00034cb0: 2c78 5f32 5e33 2d78 5f35 5e33 2d78 5f38 ,x_2^3-x_5^3-x_8 │ │ │ │ +00034cc0: 5e33 2c78 5f31 2a78 5f32 5e32 2d78 5f34 ^3,x_1*x_2^2-x_4 │ │ │ │ +00034cd0: 2a78 5f35 5e32 2d78 5f37 2a78 5f38 5e32 *x_5^2-x_7*x_8^2 │ │ │ │ +00034ce0: 2c78 5f31 5e7c 0a7c 2d2d 2d2d 2d2d 2d2d ,x_1^|.|-------- │ │ │ │ +00034cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034d30: 2d2d 2d2d 2d7c 0a7c 322a 785f 322d 785f -----|.|2*x_2-x_ │ │ │ │ +00034d40: 345e 322a 785f 352d 785f 375e 322a 785f 4^2*x_5-x_7^2*x_ │ │ │ │ +00034d50: 382c 785f 315e 332d 785f 345e 332d 785f 8,x_1^3-x_4^3-x_ │ │ │ │ +00034d60: 375e 3329 3b20 2020 2020 2020 2020 2020 7^3); │ │ │ │ +00034d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034d80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034dd0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 696d -----+.|i3 : dim │ │ │ │ +00034de0: 2028 532f 4a29 2020 2020 2020 2020 2020 (S/J) │ │ │ │ 00034df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e20: 2020 2020 207c 0a7c 6f33 203d 2034 2020 |.|o3 = 4 │ │ │ │ +00034e20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00034e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00034e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034ec0: 2d2d 2d2d 2d2b 0a0a 4974 2069 7320 7468 -----+..It is th │ │ │ │ -00034ed0: 6520 636f 6e65 206f 7665 7220 2450 5e32 e cone over $P^2 │ │ │ │ -00034ee0: 205c 7469 6d65 7320 4524 2077 6865 7265 \times E$ where │ │ │ │ -00034ef0: 2024 4524 2069 7320 616e 2065 6c6c 6970 $E$ is an ellip │ │ │ │ -00034f00: 7469 6320 6375 7276 652e 2020 5765 2068 tic curve. We h │ │ │ │ -00034f10: 6176 650a 656d 6265 6464 6564 2069 7420 ave.embedded it │ │ │ │ -00034f20: 7769 7468 2061 2053 6567 7265 2065 6d62 with a Segre emb │ │ │ │ -00034f30: 6564 6469 6e67 2069 6e73 6964 6520 2450 edding inside $P │ │ │ │ -00034f40: 5e38 242e 2020 496e 2070 6172 7469 6375 ^8$. In particu │ │ │ │ -00034f50: 6c61 722c 2074 6869 7320 6578 616d 706c lar, this exampl │ │ │ │ -00034f60: 650a 6973 2065 7665 6e20 7265 6775 6c61 e.is even regula │ │ │ │ -00034f70: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ -00034f80: 2033 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 3...+---------- │ │ │ │ -00034f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00034fc0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -00034fd0: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ -00034fe0: 532f 4a29 2020 2020 2020 2020 2020 2020 S/J) │ │ │ │ -00034ff0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00035000: 2e39 3534 3338 3973 2028 6370 7529 3b20 .954389s (cpu); │ │ │ │ -00035010: 302e 3633 3532 3036 7320 2874 6872 6561 0.635206s (threa │ │ │ │ -00035020: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ -00035030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035060: 2020 207c 0a7c 6f34 203d 2074 7275 6520 |.|o4 = true │ │ │ │ -00035070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034e70: 2020 2020 207c 0a7c 6f33 203d 2034 2020 |.|o3 = 4 │ │ │ │ +00034e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034ec0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00034ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034f10: 2d2d 2d2d 2d2b 0a0a 4974 2069 7320 7468 -----+..It is th │ │ │ │ +00034f20: 6520 636f 6e65 206f 7665 7220 2450 5e32 e cone over $P^2 │ │ │ │ +00034f30: 205c 7469 6d65 7320 4524 2077 6865 7265 \times E$ where │ │ │ │ +00034f40: 2024 4524 2069 7320 616e 2065 6c6c 6970 $E$ is an ellip │ │ │ │ +00034f50: 7469 6320 6375 7276 652e 2020 5765 2068 tic curve. We h │ │ │ │ +00034f60: 6176 650a 656d 6265 6464 6564 2069 7420 ave.embedded it │ │ │ │ +00034f70: 7769 7468 2061 2053 6567 7265 2065 6d62 with a Segre emb │ │ │ │ +00034f80: 6564 6469 6e67 2069 6e73 6964 6520 2450 edding inside $P │ │ │ │ +00034f90: 5e38 242e 2020 496e 2070 6172 7469 6375 ^8$. In particu │ │ │ │ +00034fa0: 6c61 722c 2074 6869 7320 6578 616d 706c lar, this exampl │ │ │ │ +00034fb0: 650a 6973 2065 7665 6e20 7265 6775 6c61 e.is even regula │ │ │ │ +00034fc0: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ +00034fd0: 2033 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 3...+---------- │ │ │ │ +00034fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00034ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035000: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +00035010: 3a20 7469 6d65 2072 6567 756c 6172 496e : time regularIn │ │ │ │ +00035020: 436f 6469 6d65 6e73 696f 6e28 312c 2053 Codimension(1, S │ │ │ │ +00035030: 2f4a 2920 2020 2020 2020 2020 2020 2020 /J) │ │ │ │ +00035040: 207c 0a7c 202d 2d20 7573 6564 2031 2e31 |.| -- used 1.1 │ │ │ │ +00035050: 3238 3332 7320 2863 7075 293b 2030 2e37 2832s (cpu); 0.7 │ │ │ │ +00035060: 3539 3737 3573 2028 7468 7265 6164 293b 59775s (thread); │ │ │ │ +00035070: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ 00035080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035090: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000350a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000350d0: 2d2d 2d2b 0a7c 6935 203a 2074 696d 6520 ---+.|i5 : time │ │ │ │ -000350e0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000350f0: 7369 6f6e 2832 2c20 532f 4a29 2020 2020 sion(2, S/J) │ │ │ │ -00035100: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035110: 2d20 7573 6564 2031 312e 3137 3934 7320 - used 11.1794s │ │ │ │ -00035120: 2863 7075 293b 2038 2e31 3034 3332 7320 (cpu); 8.10432s │ │ │ │ -00035130: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -00035140: 2920 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ) |.+---------- │ │ │ │ -00035150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5765 -----------+..We │ │ │ │ -00035180: 2074 7279 2074 6f20 7665 7269 6679 2074 try to verify t │ │ │ │ -00035190: 6861 7420 2453 2f4a 2420 6973 2072 6567 hat $S/J$ is reg │ │ │ │ -000351a0: 756c 6172 2069 6e20 636f 6469 6d65 6e73 ular in codimens │ │ │ │ -000351b0: 696f 6e20 3120 6f72 2032 2062 7920 636f ion 1 or 2 by co │ │ │ │ -000351c0: 6d70 7574 696e 6720 7468 650a 6964 6561 mputing the.idea │ │ │ │ -000351d0: 6c20 6d61 6465 2075 7020 6f66 2061 2073 l made up of a s │ │ │ │ -000351e0: 6d61 6c6c 206e 756d 6265 7220 6f66 206d mall number of m │ │ │ │ -000351f0: 696e 6f72 7320 6f66 2074 6865 204a 6163 inors of the Jac │ │ │ │ -00035200: 6f62 6961 6e20 6d61 7472 6978 2e20 496e obian matrix. In │ │ │ │ -00035210: 2074 6869 730a 6578 616d 706c 652c 2069 this.example, i │ │ │ │ -00035220: 6e73 7465 6164 206f 6620 636f 6d70 7574 nstead of comput │ │ │ │ -00035230: 696e 6720 616c 6c20 7265 6c65 7661 6e74 ing all relevant │ │ │ │ -00035240: 2031 3436 3531 3238 206d 696e 6f72 7320 1465128 minors │ │ │ │ -00035250: 746f 2063 6f6d 7075 7465 2074 6865 0a73 to compute the.s │ │ │ │ -00035260: 696e 6775 6c61 7220 6c6f 6375 732c 2061 ingular locus, a │ │ │ │ -00035270: 6e64 2074 6865 6e20 7472 7969 6e67 2074 nd then trying t │ │ │ │ -00035280: 6f20 636f 6d70 7574 6520 7468 6520 6469 o compute the di │ │ │ │ -00035290: 6d65 6e73 696f 6e20 6f66 2074 6865 2069 mension of the i │ │ │ │ -000352a0: 6465 616c 2074 6865 790a 6765 6e65 7261 deal they.genera │ │ │ │ -000352b0: 7465 2c20 7765 2069 6e73 7465 6164 2063 te, we instead c │ │ │ │ -000352c0: 6f6d 7075 7465 2061 2066 6577 206f 6620 ompute a few of │ │ │ │ -000352d0: 7468 656d 2e20 2072 6567 756c 6172 496e them. regularIn │ │ │ │ -000352e0: 436f 6469 6d65 6e73 696f 6e20 7265 7475 Codimension retu │ │ │ │ -000352f0: 726e 7320 7472 7565 0a69 6620 6974 2076 rns true.if it v │ │ │ │ -00035300: 6572 6966 6965 6420 7468 6174 2074 6865 erified that the │ │ │ │ -00035310: 2072 696e 6720 6973 2072 6567 756c 6172 ring is regular │ │ │ │ -00035320: 2069 6e20 636f 6469 6d20 3120 6f72 2032 in codim 1 or 2 │ │ │ │ -00035330: 2028 7265 7370 6563 7469 7665 6c79 2920 (respectively) │ │ │ │ -00035340: 616e 6420 6e75 6c6c 0a69 6620 6e6f 742e and null.if not. │ │ │ │ -00035350: 2020 4265 6361 7573 6520 6f66 2074 6865 Because of the │ │ │ │ -00035360: 2072 616e 646f 6d6e 6573 7320 7468 6174 randomness that │ │ │ │ -00035370: 2065 7869 7374 7320 696e 2074 6572 6d73 exists in terms │ │ │ │ -00035380: 206f 6620 7365 6c65 6374 696e 6720 6d69 of selecting mi │ │ │ │ -00035390: 6e6f 7273 2c0a 7468 6520 6578 6563 7574 nors,.the execut │ │ │ │ -000353a0: 696f 6e20 7469 6d65 2063 616e 2061 6374 ion time can act │ │ │ │ -000353b0: 7561 6c6c 7920 7661 7279 2071 7569 7465 ually vary quite │ │ │ │ -000353c0: 2061 2062 6974 2e20 2020 4c65 7427 7320 a bit. Let's │ │ │ │ -000353d0: 7461 6b65 2061 206c 6f6f 6b20 6174 2077 take a look at w │ │ │ │ -000353e0: 6861 740a 6973 206f 6363 7572 7269 6e67 hat.is occurring │ │ │ │ -000353f0: 2062 7920 7573 696e 6720 7468 6520 5665 by using the Ve │ │ │ │ -00035400: 7262 6f73 6520 6f70 7469 6f6e 2e20 2057 rbose option. W │ │ │ │ -00035410: 6520 676f 2074 6872 6f75 6768 2074 6865 e go through the │ │ │ │ -00035420: 206f 7574 7075 7420 616e 6420 6578 706c output and expl │ │ │ │ -00035430: 6169 6e0a 7768 6174 2065 6163 6820 6c69 ain.what each li │ │ │ │ -00035440: 6e65 2069 7320 7465 6c6c 696e 6720 7573 ne is telling us │ │ │ │ -00035450: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -00035460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000354a0: 2d2b 0a7c 6936 203a 2074 696d 6520 7265 -+.|i6 : time re │ │ │ │ -000354b0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ -000354c0: 6f6e 2831 2c20 532f 4a2c 2056 6572 626f on(1, S/J, Verbo │ │ │ │ -000354d0: 7365 3d3e 7472 7565 2920 2020 2020 2020 se=>true) │ │ │ │ -000354e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354f0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035500: 696d 656e 7369 6f6e 3a20 7269 6e67 2064 imension: ring d │ │ │ │ -00035510: 696d 656e 7369 6f6e 203d 342c 2074 6865 imension =4, the │ │ │ │ -00035520: 7265 2061 7265 2031 3436 3531 3238 2070 re are 1465128 p │ │ │ │ -00035530: 6f73 7369 626c 6520 3520 6279 2035 206d ossible 5 by 5 m │ │ │ │ -00035540: 697c 0a7c 7265 6775 6c61 7249 6e43 6f64 i|.|regularInCod │ │ │ │ -00035550: 696d 656e 7369 6f6e 3a20 4162 6f75 7420 imension: About │ │ │ │ -00035560: 746f 2065 6e74 6572 206c 6f6f 7020 2020 to enter loop │ │ │ │ -00035570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035590: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000355a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000355b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000355c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000355d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000355e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000355f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035600: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00035090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000350b0: 0a7c 6f34 203d 2074 7275 6520 2020 2020 .|o4 = true │ │ │ │ +000350c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000350e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000350f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00035110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00035120: 6935 203a 2074 696d 6520 7265 6775 6c61 i5 : time regula │ │ │ │ +00035130: 7249 6e43 6f64 696d 656e 7369 6f6e 2832 rInCodimension(2 │ │ │ │ +00035140: 2c20 532f 4a29 2020 2020 2020 2020 2020 , S/J) │ │ │ │ +00035150: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +00035160: 3131 2e38 3534 3373 2028 6370 7529 3b20 11.8543s (cpu); │ │ │ │ +00035170: 382e 3532 3933 3873 2028 7468 7265 6164 8.52938s (thread │ │ │ │ +00035180: 293b 2030 7320 2867 6329 207c 0a2b 2d2d ); 0s (gc) |.+-- │ │ │ │ +00035190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000351a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000351b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000351c0: 2d2d 2b0a 0a57 6520 7472 7920 746f 2076 --+..We try to v │ │ │ │ +000351d0: 6572 6966 7920 7468 6174 2024 532f 4a24 erify that $S/J$ │ │ │ │ +000351e0: 2069 7320 7265 6775 6c61 7220 696e 2063 is regular in c │ │ │ │ +000351f0: 6f64 696d 656e 7369 6f6e 2031 206f 7220 odimension 1 or │ │ │ │ +00035200: 3220 6279 2063 6f6d 7075 7469 6e67 2074 2 by computing t │ │ │ │ +00035210: 6865 0a69 6465 616c 206d 6164 6520 7570 he.ideal made up │ │ │ │ +00035220: 206f 6620 6120 736d 616c 6c20 6e75 6d62 of a small numb │ │ │ │ +00035230: 6572 206f 6620 6d69 6e6f 7273 206f 6620 er of minors of │ │ │ │ +00035240: 7468 6520 4a61 636f 6269 616e 206d 6174 the Jacobian mat │ │ │ │ +00035250: 7269 782e 2049 6e20 7468 6973 0a65 7861 rix. In this.exa │ │ │ │ +00035260: 6d70 6c65 2c20 696e 7374 6561 6420 6f66 mple, instead of │ │ │ │ +00035270: 2063 6f6d 7075 7469 6e67 2061 6c6c 2072 computing all r │ │ │ │ +00035280: 656c 6576 616e 7420 3134 3635 3132 3820 elevant 1465128 │ │ │ │ +00035290: 6d69 6e6f 7273 2074 6f20 636f 6d70 7574 minors to comput │ │ │ │ +000352a0: 6520 7468 650a 7369 6e67 756c 6172 206c e the.singular l │ │ │ │ +000352b0: 6f63 7573 2c20 616e 6420 7468 656e 2074 ocus, and then t │ │ │ │ +000352c0: 7279 696e 6720 746f 2063 6f6d 7075 7465 rying to compute │ │ │ │ +000352d0: 2074 6865 2064 696d 656e 7369 6f6e 206f the dimension o │ │ │ │ +000352e0: 6620 7468 6520 6964 6561 6c20 7468 6579 f the ideal they │ │ │ │ +000352f0: 0a67 656e 6572 6174 652c 2077 6520 696e .generate, we in │ │ │ │ +00035300: 7374 6561 6420 636f 6d70 7574 6520 6120 stead compute a │ │ │ │ +00035310: 6665 7720 6f66 2074 6865 6d2e 2020 7265 few of them. re │ │ │ │ +00035320: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +00035330: 6f6e 2072 6574 7572 6e73 2074 7275 650a on returns true. │ │ │ │ +00035340: 6966 2069 7420 7665 7269 6669 6564 2074 if it verified t │ │ │ │ +00035350: 6861 7420 7468 6520 7269 6e67 2069 7320 hat the ring is │ │ │ │ +00035360: 7265 6775 6c61 7220 696e 2063 6f64 696d regular in codim │ │ │ │ +00035370: 2031 206f 7220 3220 2872 6573 7065 6374 1 or 2 (respect │ │ │ │ +00035380: 6976 656c 7929 2061 6e64 206e 756c 6c0a ively) and null. │ │ │ │ +00035390: 6966 206e 6f74 2e20 2042 6563 6175 7365 if not. Because │ │ │ │ +000353a0: 206f 6620 7468 6520 7261 6e64 6f6d 6e65 of the randomne │ │ │ │ +000353b0: 7373 2074 6861 7420 6578 6973 7473 2069 ss that exists i │ │ │ │ +000353c0: 6e20 7465 726d 7320 6f66 2073 656c 6563 n terms of selec │ │ │ │ +000353d0: 7469 6e67 206d 696e 6f72 732c 0a74 6865 ting minors,.the │ │ │ │ +000353e0: 2065 7865 6375 7469 6f6e 2074 696d 6520 execution time │ │ │ │ +000353f0: 6361 6e20 6163 7475 616c 6c79 2076 6172 can actually var │ │ │ │ +00035400: 7920 7175 6974 6520 6120 6269 742e 2020 y quite a bit. │ │ │ │ +00035410: 204c 6574 2773 2074 616b 6520 6120 6c6f Let's take a lo │ │ │ │ +00035420: 6f6b 2061 7420 7768 6174 0a69 7320 6f63 ok at what.is oc │ │ │ │ +00035430: 6375 7272 696e 6720 6279 2075 7369 6e67 curring by using │ │ │ │ +00035440: 2074 6865 2056 6572 626f 7365 206f 7074 the Verbose opt │ │ │ │ +00035450: 696f 6e2e 2020 5765 2067 6f20 7468 726f ion. We go thro │ │ │ │ +00035460: 7567 6820 7468 6520 6f75 7470 7574 2061 ugh the output a │ │ │ │ +00035470: 6e64 2065 7870 6c61 696e 0a77 6861 7420 nd explain.what │ │ │ │ +00035480: 6561 6368 206c 696e 6520 6973 2074 656c each line is tel │ │ │ │ +00035490: 6c69 6e67 2075 732e 0a0a 2b2d 2d2d 2d2d ling us...+----- │ │ │ │ +000354a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000354e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +000354f0: 7469 6d65 2072 6567 756c 6172 496e 436f time regularInCo │ │ │ │ +00035500: 6469 6d65 6e73 696f 6e28 312c 2053 2f4a dimension(1, S/J │ │ │ │ +00035510: 2c20 5665 7262 6f73 653d 3e74 7275 6529 , Verbose=>true) │ │ │ │ +00035520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035530: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035540: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035550: 2072 696e 6720 6469 6d65 6e73 696f 6e20 ring dimension │ │ │ │ +00035560: 3d34 2c20 7468 6572 6520 6172 6520 3134 =4, there are 14 │ │ │ │ +00035570: 3635 3132 3820 706f 7373 6962 6c65 2035 65128 possible 5 │ │ │ │ +00035580: 2062 7920 3520 6d69 7c0a 7c72 6567 756c by 5 mi|.|regul │ │ │ │ +00035590: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +000355a0: 2041 626f 7574 2074 6f20 656e 7465 7220 About to enter │ │ │ │ +000355b0: 6c6f 6f70 2020 2020 2020 2020 2020 2020 loop │ │ │ │ +000355c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000355d0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000355e0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000355f0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035600: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00035610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035630: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035640: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035650: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035660: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00035670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035680: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035690: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000356a0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +00035620: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035630: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035640: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00035650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035670: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035680: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035690: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000356a0: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 000356b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356d0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000356e0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000356f0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +000356c0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000356d0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000356e0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000356f0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 00035700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035720: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035730: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035740: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035750: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00035760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035770: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035780: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035790: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000357a0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000357c0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000357d0: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -000357e0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -000357f0: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035800: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035810: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035820: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035830: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035840: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035850: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035860: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035870: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035880: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035890: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000358a0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -000358b0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000358c0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000358d0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000358e0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000358f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035900: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035910: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035920: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +00035710: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035720: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035730: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035740: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00035750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035760: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035770: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035780: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00035790: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +000357a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000357b0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000357c0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000357d0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000357e0: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +000357f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035800: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035810: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035820: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00035830: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00035840: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00035850: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00035860: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035870: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +00035880: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +00035890: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +000358a0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +000358b0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +000358c0: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +000358d0: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +000358e0: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +000358f0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035900: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035910: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035920: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00035930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035950: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035960: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035970: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +00035940: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035950: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035960: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035970: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 00035980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000359a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000359b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000359c0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000359d0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000359e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000359f0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035a00: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035a10: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035a20: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035a30: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035a40: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035a50: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035a60: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035a70: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035a80: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035a90: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035aa0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035ab0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035ac0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035ad0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035ae0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035af0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035b00: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -00035b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b30: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035b40: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035b50: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00035b60: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00035b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035b80: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035b90: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035ba0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00035990: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000359a0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000359b0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +000359c0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +000359d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000359e0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000359f0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035a00: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00035a10: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00035a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035a30: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035a40: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035a50: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00035a60: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00035a70: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00035a80: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00035a90: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035aa0: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +00035ab0: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +00035ac0: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +00035ad0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035ae0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035af0: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +00035b00: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +00035b10: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +00035b20: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035b30: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035b40: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035b50: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00035b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035b70: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035b80: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035b90: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035ba0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00035bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035bd0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035be0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035bf0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035c00: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00035c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035c20: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035c30: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035c40: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035c50: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035c60: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035c70: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035c80: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035c90: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035ca0: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035cb0: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035cc0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035cd0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035ce0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035cf0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035d00: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035d10: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035d20: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035d30: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00035d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035d60: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035d70: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035d80: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +00035bc0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035bd0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035be0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00035bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035c10: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035c20: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035c30: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00035c40: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00035c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035c60: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035c70: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035c80: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00035c90: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00035ca0: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00035cb0: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00035cc0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035cd0: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +00035ce0: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +00035cf0: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +00035d00: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035d10: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035d20: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +00035d30: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +00035d40: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +00035d50: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035d60: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035d70: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00035d80: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00035d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035db0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035dc0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035dd0: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +00035da0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035db0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035dc0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00035dd0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00035de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e00: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035e10: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035e20: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00035e30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00035e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035e50: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035e60: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035e70: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00035e80: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00035e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ea0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035eb0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00035ec0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00035df0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035e00: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035e10: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00035e20: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +00035e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035e40: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035e50: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035e60: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00035e70: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00035e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035e90: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035ea0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035eb0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00035ec0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00035ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035ef0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035f00: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00035f10: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00035f20: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00035f30: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00035f40: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00035f50: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00035f60: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00035f70: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00035f80: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00035f90: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00035fa0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00035fb0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00035fc0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00035fd0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00035fe0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00035ff0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036000: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ -00036010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036030: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036040: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036050: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036060: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036080: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036090: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000360a0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00035ee0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00035ef0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00035f00: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00035f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035f30: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035f40: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035f50: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00035f60: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00035f70: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00035f80: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00035f90: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035fa0: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +00035fb0: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +00035fc0: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +00035fd0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00035fe0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00035ff0: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +00036000: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +00036010: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +00036020: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036030: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036040: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00036050: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +00036060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036070: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036080: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036090: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000360a0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 000360b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000360d0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000360e0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000360f0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036100: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036120: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036130: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036140: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036150: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036170: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036180: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036190: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +000360c0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000360d0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000360e0: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +000360f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036110: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036120: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036130: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036140: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00036150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036160: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036170: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036180: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00036190: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 000361a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361c0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000361d0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000361e0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000361f0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036210: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036220: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036230: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036240: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036250: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036260: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036270: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00036280: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00036290: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -000362a0: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -000362b0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000362c0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -000362d0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -000362e0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000362f0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -00036300: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036310: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036320: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036330: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036350: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036360: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036370: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +000361b0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000361c0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000361d0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000361e0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +000361f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036200: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036210: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036220: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036230: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00036240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036250: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00036260: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036270: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00036280: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00036290: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +000362a0: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +000362b0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +000362c0: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +000362d0: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +000362e0: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +000362f0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00036300: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036310: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +00036320: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +00036330: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +00036340: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036350: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036360: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00036370: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 00036380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000363b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000363c0: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +00036390: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000363a0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000363b0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000363c0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 000363d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000363f0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036400: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036410: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +000363e0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000363f0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036400: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00036410: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ 00036420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036440: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036450: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036460: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +00036430: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036440: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036450: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00036460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036490: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000364a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000364b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000364c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000364d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000364f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036500: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +00036480: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036490: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000364a0: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +000364b0: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +000364c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000364d0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000364e0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000364f0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036500: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00036510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036530: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036540: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036550: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036560: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036580: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036590: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000365a0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -000365b0: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -000365c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365d0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -000365e0: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -000365f0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036600: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036610: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036620: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036630: 696d 656e 7369 6f6e 3a20 2069 7343 6f64 imension: isCod │ │ │ │ -00036640: 696d 4174 4c65 6173 7420 6661 696c 6564 imAtLeast failed │ │ │ │ -00036650: 2c20 636f 6d70 7574 696e 6720 636f 6469 , computing codi │ │ │ │ -00036660: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ -00036670: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036680: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00036690: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -000366a0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -000366b0: 7574 6564 2c20 3d20 3320 2020 2020 2020 uted, = 3 │ │ │ │ -000366c0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000366d0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000366e0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ -000366f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036710: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036720: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036730: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036740: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00036750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036760: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036770: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036780: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -00036790: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000367a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367b0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000367c0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000367d0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00036520: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036530: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036540: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036550: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00036560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036570: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036580: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036590: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000365a0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +000365b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000365c0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000365d0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000365e0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000365f0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +00036600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036610: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00036620: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036630: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00036640: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00036650: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00036660: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00036670: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036680: 2020 6973 436f 6469 6d41 744c 6561 7374 isCodimAtLeast │ │ │ │ +00036690: 2066 6169 6c65 642c 2063 6f6d 7075 7469 failed, computi │ │ │ │ +000366a0: 6e67 2063 6f64 696d 2e20 2020 2020 2020 ng codim. │ │ │ │ +000366b0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +000366c0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +000366d0: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +000366e0: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +000366f0: 6f6e 2063 6f6d 7075 7465 642c 203d 2033 on computed, = 3 │ │ │ │ +00036700: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036710: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036720: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036730: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +00036740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036750: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036760: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036770: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036780: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ +00036790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000367a0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000367b0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000367c0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000367d0: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 000367e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000367f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036800: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036810: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036820: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +000367f0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036800: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036810: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00036820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036850: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036860: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036870: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036880: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00036890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368a0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000368b0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000368c0: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00036840: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036850: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036860: 4368 6f6f 7369 6e67 2052 616e 646f 6d4e Choosing RandomN │ │ │ │ +00036870: 6f6e 5a65 726f 2020 2020 2020 2020 2020 onZero │ │ │ │ +00036880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036890: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000368a0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000368b0: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +000368c0: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ 000368d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000368f0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036900: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036910: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ -00036920: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00036930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036940: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036950: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036960: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +000368e0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000368f0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036900: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00036910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036930: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036940: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036950: 4368 6f6f 7369 6e67 2047 5265 764c 6578 Choosing GRevLex │ │ │ │ +00036960: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ 00036970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036990: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000369a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -000369b0: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ -000369c0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000369d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000369e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -000369f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036a00: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +00036980: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036990: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000369a0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +000369b0: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ +000369c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000369d0: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +000369e0: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +000369f0: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036a00: 6c65 7374 5465 726d 2020 2020 2020 2020 lestTerm │ │ │ │ 00036a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a30: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ -00036a40: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ -00036a50: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +00036a20: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036a30: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036a40: 4368 6f6f 7369 6e67 204c 6578 536d 616c Choosing LexSmal │ │ │ │ +00036a50: 6c65 7374 2020 2020 2020 2020 2020 2020 lest │ │ │ │ 00036a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036a80: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036a90: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036aa0: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ -00036ab0: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ -00036ac0: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ -00036ad0: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ -00036ae0: 696d 656e 7369 6f6e 3a20 2073 696e 6775 imension: singu │ │ │ │ -00036af0: 6c61 724c 6f63 7573 2064 696d 656e 7369 larLocus dimensi │ │ │ │ -00036b00: 6f6e 2076 6572 6966 6965 6420 6279 2069 on verified by i │ │ │ │ -00036b10: 7343 6f64 696d 4174 4c65 6173 7420 2020 sCodimAtLeast │ │ │ │ -00036b20: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036b30: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ -00036b40: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ -00036b50: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ -00036b60: 7574 6564 2c20 3d20 3220 2020 2020 2020 uted, = 2 │ │ │ │ -00036b70: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ -00036b80: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ -00036b90: 636f 6d70 6c65 7465 642c 2073 7562 6d61 completed, subma │ │ │ │ -00036ba0: 7472 6963 6573 2063 6f6e 7369 6465 7265 trices considere │ │ │ │ -00036bb0: 6420 3d20 3439 2c20 616e 6420 636f 6d70 d = 49, and comp │ │ │ │ -00036bc0: 757c 0a7c 6420 3d20 3339 2e20 2073 696e u|.|d = 39. sin │ │ │ │ -00036bd0: 6775 6c61 7220 6c6f 6375 7320 6469 6d65 gular locus dime │ │ │ │ -00036be0: 6e73 696f 6e20 6170 7065 6172 7320 746f nsion appears to │ │ │ │ -00036bf0: 2062 6520 3d20 3220 2020 2020 2020 2020 be = 2 │ │ │ │ -00036c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036a70: 2020 2020 2020 2020 7c0a 7c69 6e74 6572 |.|inter │ │ │ │ +00036a80: 6e61 6c43 686f 6f73 654d 696e 6f72 3a20 nalChooseMinor: │ │ │ │ +00036a90: 4368 6f6f 7369 6e67 2052 616e 646f 6d20 Choosing Random │ │ │ │ +00036aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ac0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00036ad0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036ae0: 2020 4c6f 6f70 2073 7465 702c 2061 626f Loop step, abo │ │ │ │ +00036af0: 7574 2074 6f20 636f 6d70 7574 6520 6469 ut to compute di │ │ │ │ +00036b00: 6d65 6e73 696f 6e2e 2020 5375 626d 6174 mension. Submat │ │ │ │ +00036b10: 7269 6365 7320 636f 7c0a 7c72 6567 756c rices co|.|regul │ │ │ │ +00036b20: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036b30: 2020 7369 6e67 756c 6172 4c6f 6375 7320 singularLocus │ │ │ │ +00036b40: 6469 6d65 6e73 696f 6e20 7665 7269 6669 dimension verifi │ │ │ │ +00036b50: 6564 2062 7920 6973 436f 6469 6d41 744c ed by isCodimAtL │ │ │ │ +00036b60: 6561 7374 2020 2020 7c0a 7c72 6567 756c east |.|regul │ │ │ │ +00036b70: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036b80: 2020 7061 7274 6961 6c20 7369 6e67 756c partial singul │ │ │ │ +00036b90: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +00036ba0: 6f6e 2063 6f6d 7075 7465 642c 203d 2032 on computed, = 2 │ │ │ │ +00036bb0: 2020 2020 2020 2020 7c0a 7c72 6567 756c |.|regul │ │ │ │ +00036bc0: 6172 496e 436f 6469 6d65 6e73 696f 6e3a arInCodimension: │ │ │ │ +00036bd0: 2020 4c6f 6f70 2063 6f6d 706c 6574 6564 Loop completed │ │ │ │ +00036be0: 2c20 7375 626d 6174 7269 6365 7320 636f , submatrices co │ │ │ │ +00036bf0: 6e73 6964 6572 6564 203d 2034 392c 2061 nsidered = 49, a │ │ │ │ +00036c00: 6e64 2063 6f6d 7075 7c0a 7c64 203d 2033 nd compu|.|d = 3 │ │ │ │ +00036c10: 392e 2020 7369 6e67 756c 6172 206c 6f63 9. singular loc │ │ │ │ +00036c20: 7573 2064 696d 656e 7369 6f6e 2061 7070 us dimension app │ │ │ │ +00036c30: 6561 7273 2074 6f20 6265 203d 2032 2020 ears to be = 2 │ │ │ │ 00036c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036c60: 207c 0a7c 6f36 203d 2074 7275 6520 2020 |.|o6 = true │ │ │ │ +00036c50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036cb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ -00036cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036d00: 2d7c 0a7c 6e6f 7273 2c20 7765 2077 696c -|.|nors, we wil │ │ │ │ -00036d10: 6c20 636f 6d70 7574 6520 7570 2074 6f20 l compute up to │ │ │ │ -00036d20: 3435 322e 3930 3820 6f66 2074 6865 6d2e 452.908 of them. │ │ │ │ -00036d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ca0: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +00036cb0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +00036cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036cf0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00036d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00036d40: 2d2d 2d2d 2d2d 2d2d 7c0a 7c6e 6f72 732c --------|.|nors, │ │ │ │ +00036d50: 2077 6520 7769 6c6c 2063 6f6d 7075 7465 we will compute │ │ │ │ +00036d60: 2075 7020 746f 2034 3532 2e39 3038 206f up to 452.908 o │ │ │ │ +00036d70: 6620 7468 656d 2e20 2020 2020 2020 2020 f them. │ │ │ │ 00036d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036da0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036e90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036ee0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036f80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036fd0: 207c 0a7c 6e73 6964 6572 6564 3a20 372c |.|nsidered: 7, │ │ │ │ -00036fe0: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ -00036ff0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +00036fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00036fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037020: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037010: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037020: 7265 643a 2037 2c20 616e 6420 636f 6d70 red: 7, and comp │ │ │ │ +00037030: 7574 6564 203d 2037 2020 2020 2020 2020 uted = 7 │ │ │ │ 00037040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000370c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000370b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000370c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000370f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000371a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000371b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000371e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037200: 207c 0a7c 6e73 6964 6572 6564 3a20 3131 |.|nsidered: 11 │ │ │ │ -00037210: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037220: 2031 3020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ +000371f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037240: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037250: 7265 643a 2031 312c 2061 6e64 2063 6f6d red: 11, and com │ │ │ │ +00037260: 7075 7465 6420 3d20 3130 2020 2020 2020 puted = 10 │ │ │ │ 00037270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000372a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000372b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000372c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000372d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000372f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000372e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000372f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000373e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000373d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000373e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000373f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037430: 207c 0a7c 6e73 6964 6572 6564 3a20 3135 |.|nsidered: 15 │ │ │ │ -00037440: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037450: 2031 3320 2020 2020 2020 2020 2020 2020 13 │ │ │ │ +00037420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037470: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037480: 7265 643a 2031 352c 2061 6e64 2063 6f6d red: 15, and com │ │ │ │ +00037490: 7075 7465 6420 3d20 3133 2020 2020 2020 puted = 13 │ │ │ │ 000374a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000374c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000374d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000374f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000375b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000375c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037650: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000376a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037700: 207c 0a7c 6e73 6964 6572 6564 3a20 3231 |.|nsidered: 21 │ │ │ │ -00037710: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037720: 2031 3820 2020 2020 2020 2020 2020 2020 18 │ │ │ │ +000376f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037740: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037750: 7265 643a 2032 312c 2061 6e64 2063 6f6d red: 21, and com │ │ │ │ +00037760: 7075 7465 6420 3d20 3138 2020 2020 2020 puted = 18 │ │ │ │ 00037770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000377a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000377d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000377f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000377e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000377f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000378d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000378e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000378d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000378e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000378f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000379a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000379b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000379c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000379d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000379e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000379f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a20: 207c 0a7c 6e73 6964 6572 6564 3a20 3238 |.|nsidered: 28 │ │ │ │ -00037a30: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037a40: 2032 3420 2020 2020 2020 2020 2020 2020 24 │ │ │ │ +00037a10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037a60: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037a70: 7265 643a 2032 382c 2061 6e64 2063 6f6d red: 28, and com │ │ │ │ +00037a80: 7075 7465 6420 3d20 3234 2020 2020 2020 puted = 24 │ │ │ │ 00037a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037b60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037b50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037ba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037c00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037bf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037c50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037c40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037c90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037ce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037d30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037d90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037d80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037de0: 207c 0a7c 6e73 6964 6572 6564 3a20 3337 |.|nsidered: 37 │ │ │ │ -00037df0: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00037e00: 2033 3020 2020 2020 2020 2020 2020 2020 30 │ │ │ │ +00037dd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00037e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037e20: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +00037e30: 7265 643a 2033 372c 2061 6e64 2063 6f6d red: 37, and com │ │ │ │ +00037e40: 7075 7465 6420 3d20 3330 2020 2020 2020 puted = 30 │ │ │ │ 00037e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037e80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037e70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037ed0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037f70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037fc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00037fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038010: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000380a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000380b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000380a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000380b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000380e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000380f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000380f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038150: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000381a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000381a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000381b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000381c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000381d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000381e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000381f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000381e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000381f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038290: 207c 0a7c 6e73 6964 6572 6564 3a20 3439 |.|nsidered: 49 │ │ │ │ -000382a0: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -000382b0: 2033 3920 2020 2020 2020 2020 2020 2020 39 │ │ │ │ +00038280: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000382a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000382b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000382c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000382d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000382e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000382f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000382d0: 2020 2020 2020 2020 7c0a 7c6e 7369 6465 |.|nside │ │ │ │ +000382e0: 7265 643a 2034 392c 2061 6e64 2063 6f6d red: 49, and com │ │ │ │ +000382f0: 7075 7465 6420 3d20 3339 2020 2020 2020 puted = 39 │ │ │ │ 00038300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038330: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038380: 207c 0a7c 7465 202d 2d20 7573 6564 2031 |.|te -- used 1 │ │ │ │ -00038390: 2e34 3334 3538 7320 2863 7075 293b 2031 .43458s (cpu); 1 │ │ │ │ -000383a0: 2e30 3136 3036 7320 2874 6872 6561 6429 .01606s (thread) │ │ │ │ -000383b0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -000383c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000383d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -000383e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000383f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038420: 2d2b 0a0a 4d61 784d 696e 6f72 732e 2020 -+..MaxMinors. │ │ │ │ -00038430: 5468 6520 6669 7273 7420 6f75 7470 7574 The first output │ │ │ │ -00038440: 2073 6179 7320 7468 6174 2077 6520 7769 says that we wi │ │ │ │ -00038450: 6c6c 2063 6f6d 7075 7465 2075 7020 746f ll compute up to │ │ │ │ -00038460: 2034 3532 2e39 206d 696e 6f72 730a 6265 452.9 minors.be │ │ │ │ -00038470: 666f 7265 2067 6976 696e 6720 7570 2e20 fore giving up. │ │ │ │ -00038480: 2057 6520 6361 6e20 636f 6e74 726f 6c20 We can control │ │ │ │ -00038490: 7468 6174 2062 7920 7365 7474 696e 6720 that by setting │ │ │ │ -000384a0: 7468 6520 6f70 7469 6f6e 204d 6178 4d69 the option MaxMi │ │ │ │ -000384b0: 6e6f 7273 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d nors...+-------- │ │ │ │ -000384c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000384d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000384e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000384f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038500: 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 696d -----+.|i7 : tim │ │ │ │ -00038510: 6520 7265 6775 6c61 7249 6e43 6f64 696d e regularInCodim │ │ │ │ -00038520: 656e 7369 6f6e 2831 2c20 532f 4a2c 204d ension(1, S/J, M │ │ │ │ -00038530: 6178 4d69 6e6f 7273 3d3e 3130 2c20 5665 axMinors=>10, Ve │ │ │ │ -00038540: 7262 6f73 653d 3e74 7275 6529 2020 2020 rbose=>true) │ │ │ │ -00038550: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00038560: 2030 2e31 3735 3839 3973 2028 6370 7529 0.175899s (cpu) │ │ │ │ -00038570: 3b20 302e 3132 3435 3273 2028 7468 7265 ; 0.12452s (thre │ │ │ │ -00038580: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -00038590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000385a0: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -000385b0: 6e43 6f64 696d 656e 7369 6f6e 3a20 7269 nCodimension: ri │ │ │ │ -000385c0: 6e67 2064 696d 656e 7369 6f6e 203d 342c ng dimension =4, │ │ │ │ -000385d0: 2074 6865 7265 2061 7265 2031 3436 3531 there are 14651 │ │ │ │ -000385e0: 3238 2070 6f73 7369 626c 6520 3520 6279 28 possible 5 by │ │ │ │ -000385f0: 2035 206d 697c 0a7c 7265 6775 6c61 7249 5 mi|.|regularI │ │ │ │ -00038600: 6e43 6f64 696d 656e 7369 6f6e 3a20 4162 nCodimension: Ab │ │ │ │ -00038610: 6f75 7420 746f 2065 6e74 6572 206c 6f6f out to enter loo │ │ │ │ -00038620: 7020 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ -00038630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038640: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038650: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038660: 6f73 696e 6720 5261 6e64 6f6d 2020 2020 osing Random │ │ │ │ +00038370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00038380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000383a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000383b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000383c0: 2020 2020 2020 2020 7c0a 7c74 6520 2d2d |.|te -- │ │ │ │ +000383d0: 2075 7365 6420 312e 3630 3931 3973 2028 used 1.60919s ( │ │ │ │ +000383e0: 6370 7529 3b20 312e 3135 3934 3873 2028 cpu); 1.15948s ( │ │ │ │ +000383f0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00038400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038410: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00038420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038460: 2d2d 2d2d 2d2d 2d2d 2b0a 0a4d 6178 4d69 --------+..MaxMi │ │ │ │ +00038470: 6e6f 7273 2e20 2054 6865 2066 6972 7374 nors. The first │ │ │ │ +00038480: 206f 7574 7075 7420 7361 7973 2074 6861 output says tha │ │ │ │ +00038490: 7420 7765 2077 696c 6c20 636f 6d70 7574 t we will comput │ │ │ │ +000384a0: 6520 7570 2074 6f20 3435 322e 3920 6d69 e up to 452.9 mi │ │ │ │ +000384b0: 6e6f 7273 0a62 6566 6f72 6520 6769 7669 nors.before givi │ │ │ │ +000384c0: 6e67 2075 702e 2020 5765 2063 616e 2063 ng up. We can c │ │ │ │ +000384d0: 6f6e 7472 6f6c 2074 6861 7420 6279 2073 ontrol that by s │ │ │ │ +000384e0: 6574 7469 6e67 2074 6865 206f 7074 696f etting the optio │ │ │ │ +000384f0: 6e20 4d61 784d 696e 6f72 732e 0a0a 2b2d n MaxMinors...+- │ │ │ │ +00038500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00038550: 3720 3a20 7469 6d65 2072 6567 756c 6172 7 : time regular │ │ │ │ +00038560: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ +00038570: 2053 2f4a 2c20 4d61 784d 696e 6f72 733d S/J, MaxMinors= │ │ │ │ +00038580: 3e31 302c 2056 6572 626f 7365 3d3e 7472 >10, Verbose=>tr │ │ │ │ +00038590: 7565 2920 2020 2020 2020 2020 7c0a 7c20 ue) |.| │ │ │ │ +000385a0: 2d2d 2075 7365 6420 302e 3233 3036 3637 -- used 0.230667 │ │ │ │ +000385b0: 7320 2863 7075 293b 2030 2e31 3736 3939 s (cpu); 0.17699 │ │ │ │ +000385c0: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ +000385d0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000385e0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ +000385f0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038600: 696f 6e3a 2072 696e 6720 6469 6d65 6e73 ion: ring dimens │ │ │ │ +00038610: 696f 6e20 3d34 2c20 7468 6572 6520 6172 ion =4, there ar │ │ │ │ +00038620: 6520 3134 3635 3132 3820 706f 7373 6962 e 1465128 possib │ │ │ │ +00038630: 6c65 2035 2062 7920 3520 6d69 7c0a 7c72 le 5 by 5 mi|.|r │ │ │ │ +00038640: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038650: 696f 6e3a 2041 626f 7574 2074 6f20 656e ion: About to en │ │ │ │ +00038660: 7465 7220 6c6f 6f70 2020 2020 2020 2020 ter loop │ │ │ │ 00038670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038690: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -000386a0: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -000386b0: 6f73 696e 6720 5261 6e64 6f6d 4e6f 6e5a osing RandomNonZ │ │ │ │ -000386c0: 6572 6f20 2020 2020 2020 2020 2020 2020 ero │ │ │ │ -000386d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000386e0: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -000386f0: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038700: 6f73 696e 6720 4752 6576 4c65 7853 6d61 osing GRevLexSma │ │ │ │ -00038710: 6c6c 6573 7454 6572 6d20 2020 2020 2020 llestTerm │ │ │ │ -00038720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038730: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038740: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038750: 6f73 696e 6720 5261 6e64 6f6d 2020 2020 osing Random │ │ │ │ +00038680: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038690: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +000386a0: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +000386b0: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ +000386c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000386d0: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +000386e0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +000386f0: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +00038700: 646f 6d4e 6f6e 5a65 726f 2020 2020 2020 domNonZero │ │ │ │ +00038710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038720: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038730: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038740: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ +00038750: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ 00038760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038780: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038790: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -000387a0: 6f73 696e 6720 5261 6e64 6f6d 2020 2020 osing Random │ │ │ │ +00038770: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038780: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038790: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +000387a0: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ 000387b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000387c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000387d0: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -000387e0: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -000387f0: 6f73 696e 6720 5261 6e64 6f6d 2020 2020 osing Random │ │ │ │ +000387c0: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +000387d0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +000387e0: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +000387f0: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ 00038800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038820: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038830: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038840: 6f73 696e 6720 4c65 7853 6d61 6c6c 6573 osing LexSmalles │ │ │ │ -00038850: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ -00038860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038870: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -00038880: 6e43 6f64 696d 656e 7369 6f6e 3a20 204c nCodimension: L │ │ │ │ -00038890: 6f6f 7020 7374 6570 2c20 6162 6f75 7420 oop step, about │ │ │ │ -000388a0: 746f 2063 6f6d 7075 7465 2064 696d 656e to compute dimen │ │ │ │ -000388b0: 7369 6f6e 2e20 2053 7562 6d61 7472 6963 sion. Submatric │ │ │ │ -000388c0: 6573 2063 6f7c 0a7c 7265 6775 6c61 7249 es co|.|regularI │ │ │ │ -000388d0: 6e43 6f64 696d 656e 7369 6f6e 3a20 2069 nCodimension: i │ │ │ │ -000388e0: 7343 6f64 696d 4174 4c65 6173 7420 6661 sCodimAtLeast fa │ │ │ │ -000388f0: 696c 6564 2c20 636f 6d70 7574 696e 6720 iled, computing │ │ │ │ -00038900: 636f 6469 6d2e 2020 2020 2020 2020 2020 codim. │ │ │ │ -00038910: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -00038920: 6e43 6f64 696d 656e 7369 6f6e 3a20 2070 nCodimension: p │ │ │ │ -00038930: 6172 7469 616c 2073 696e 6775 6c61 7220 artial singular │ │ │ │ -00038940: 6c6f 6375 7320 6469 6d65 6e73 696f 6e20 locus dimension │ │ │ │ -00038950: 636f 6d70 7574 6564 2c20 3d20 3320 2020 computed, = 3 │ │ │ │ -00038960: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038970: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038980: 6f73 696e 6720 5261 6e64 6f6d 2020 2020 osing Random │ │ │ │ -00038990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389b0: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -000389c0: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -000389d0: 6f73 696e 6720 4752 6576 4c65 7853 6d61 osing GRevLexSma │ │ │ │ -000389e0: 6c6c 6573 7420 2020 2020 2020 2020 2020 llest │ │ │ │ -000389f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a00: 2020 2020 207c 0a7c 696e 7465 726e 616c |.|internal │ │ │ │ -00038a10: 4368 6f6f 7365 4d69 6e6f 723a 2043 686f ChooseMinor: Cho │ │ │ │ -00038a20: 6f73 696e 6720 4c65 7853 6d61 6c6c 6573 osing LexSmalles │ │ │ │ -00038a30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00038a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a50: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -00038a60: 6e43 6f64 696d 656e 7369 6f6e 3a20 204c nCodimension: L │ │ │ │ -00038a70: 6f6f 7020 7374 6570 2c20 6162 6f75 7420 oop step, about │ │ │ │ -00038a80: 746f 2063 6f6d 7075 7465 2064 696d 656e to compute dimen │ │ │ │ -00038a90: 7369 6f6e 2e20 2053 7562 6d61 7472 6963 sion. Submatric │ │ │ │ -00038aa0: 6573 2063 6f7c 0a7c 7265 6775 6c61 7249 es co|.|regularI │ │ │ │ -00038ab0: 6e43 6f64 696d 656e 7369 6f6e 3a20 2069 nCodimension: i │ │ │ │ -00038ac0: 7343 6f64 696d 4174 4c65 6173 7420 6661 sCodimAtLeast fa │ │ │ │ -00038ad0: 696c 6564 2c20 636f 6d70 7574 696e 6720 iled, computing │ │ │ │ -00038ae0: 636f 6469 6d2e 2020 2020 2020 2020 2020 codim. │ │ │ │ -00038af0: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -00038b00: 6e43 6f64 696d 656e 7369 6f6e 3a20 2070 nCodimension: p │ │ │ │ -00038b10: 6172 7469 616c 2073 696e 6775 6c61 7220 artial singular │ │ │ │ -00038b20: 6c6f 6375 7320 6469 6d65 6e73 696f 6e20 locus dimension │ │ │ │ -00038b30: 636f 6d70 7574 6564 2c20 3d20 3320 2020 computed, = 3 │ │ │ │ -00038b40: 2020 2020 207c 0a7c 7265 6775 6c61 7249 |.|regularI │ │ │ │ -00038b50: 6e43 6f64 696d 656e 7369 6f6e 3a20 204c nCodimension: L │ │ │ │ -00038b60: 6f6f 7020 636f 6d70 6c65 7465 642c 2073 oop completed, s │ │ │ │ -00038b70: 7562 6d61 7472 6963 6573 2063 6f6e 7369 ubmatrices consi │ │ │ │ -00038b80: 6465 7265 6420 3d20 3130 2c20 616e 6420 dered = 10, and │ │ │ │ -00038b90: 636f 6d70 757c 0a7c 2d2d 2d2d 2d2d 2d2d compu|.|-------- │ │ │ │ -00038ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038be0: 2d2d 2d2d 2d7c 0a7c 6e6f 7273 2c20 7765 -----|.|nors, we │ │ │ │ -00038bf0: 2077 696c 6c20 636f 6d70 7574 6520 7570 will compute up │ │ │ │ -00038c00: 2074 6f20 3130 206f 6620 7468 656d 2e20 to 10 of them. │ │ │ │ -00038c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00038c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038810: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038820: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038830: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +00038840: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ +00038850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038860: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038870: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038880: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ +00038890: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +000388a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000388b0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ +000388c0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +000388d0: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ +000388e0: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ +000388f0: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ +00038900: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ +00038910: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038920: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ +00038930: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ +00038940: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ +00038950: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ +00038960: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038970: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ +00038980: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ +00038990: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ +000389a0: 203d 2033 2020 2020 2020 2020 7c0a 7c69 = 3 |.|i │ │ │ │ +000389b0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +000389c0: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ +000389d0: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ +000389e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000389f0: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038a00: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038a10: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ +00038a20: 764c 6578 536d 616c 6c65 7374 2020 2020 vLexSmallest │ │ │ │ +00038a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038a40: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ +00038a50: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ +00038a60: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ +00038a70: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +00038a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038a90: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ +00038aa0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038ab0: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ +00038ac0: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ +00038ad0: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ +00038ae0: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ +00038af0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038b00: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ +00038b10: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ +00038b20: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ +00038b30: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ +00038b40: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038b50: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ +00038b60: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ +00038b70: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ +00038b80: 203d 2033 2020 2020 2020 2020 7c0a 7c72 = 3 |.|r │ │ │ │ +00038b90: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00038ba0: 696f 6e3a 2020 4c6f 6f70 2063 6f6d 706c ion: Loop compl │ │ │ │ +00038bb0: 6574 6564 2c20 7375 626d 6174 7269 6365 eted, submatrice │ │ │ │ +00038bc0: 7320 636f 6e73 6964 6572 6564 203d 2031 s considered = 1 │ │ │ │ +00038bd0: 302c 2061 6e64 2063 6f6d 7075 7c0a 7c2d 0, and compu|.|- │ │ │ │ +00038be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00038c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6e ------------|.|n │ │ │ │ +00038c30: 6f72 732c 2077 6520 7769 6c6c 2063 6f6d ors, we will com │ │ │ │ +00038c40: 7075 7465 2075 7020 746f 2031 3020 6f66 pute up to 10 of │ │ │ │ +00038c50: 2074 6865 6d2e 2020 2020 2020 2020 2020 them. │ │ │ │ 00038c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038cc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038d10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038d60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038db0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038e00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038e50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038eb0: 2020 2020 207c 0a7c 6e73 6964 6572 6564 |.|nsidered │ │ │ │ -00038ec0: 3a20 372c 2061 6e64 2063 6f6d 7075 7465 : 7, and compute │ │ │ │ -00038ed0: 6420 3d20 3720 2020 2020 2020 2020 2020 d = 7 │ │ │ │ +00038ea0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00038f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ +00038f00: 7369 6465 7265 643a 2037 2c20 616e 6420 sidered: 7, and │ │ │ │ +00038f10: 636f 6d70 7574 6564 203d 2037 2020 2020 computed = 7 │ │ │ │ 00038f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038f40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038f90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00038fe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00038ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00039040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039090: 2020 2020 207c 0a7c 6e73 6964 6572 6564 |.|nsidered │ │ │ │ -000390a0: 3a20 3130 2c20 616e 6420 636f 6d70 7574 : 10, and comput │ │ │ │ -000390b0: 6564 203d 2031 3020 2020 2020 2020 2020 ed = 10 │ │ │ │ +00039080: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00039090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000390a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000390b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000390c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000390e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000390f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000390d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ +000390e0: 7369 6465 7265 643a 2031 302c 2061 6e64 sidered: 10, and │ │ │ │ +000390f0: 2063 6f6d 7075 7465 6420 3d20 3130 2020 computed = 10 │ │ │ │ 00039100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00039120: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00039130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039180: 2020 2020 207c 0a7c 7465 6420 3d20 3130 |.|ted = 10 │ │ │ │ -00039190: 2e20 2073 696e 6775 6c61 7220 6c6f 6375 . singular locu │ │ │ │ -000391a0: 7320 6469 6d65 6e73 696f 6e20 6170 7065 s dimension appe │ │ │ │ -000391b0: 6172 7320 746f 2062 6520 3d20 3320 2020 ars to be = 3 │ │ │ │ -000391c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000391e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000391f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039220: 2d2d 2d2d 2d2b 0a0a 5468 6572 6520 6172 -----+..There ar │ │ │ │ -00039230: 6520 6f74 6865 7220 6669 6e65 7220 7761 e other finer wa │ │ │ │ -00039240: 7973 2074 6f20 636f 6e74 726f 6c20 7468 ys to control th │ │ │ │ -00039250: 6520 4d61 784d 696e 6f72 7320 6f70 7469 e MaxMinors opti │ │ │ │ -00039260: 6f6e 2c20 6275 7420 7468 6579 2077 696c on, but they wil │ │ │ │ -00039270: 6c20 6e6f 740a 6265 2064 6973 6375 7373 l not.be discuss │ │ │ │ -00039280: 6564 2069 6e20 7468 6973 2074 7574 6f72 ed in this tutor │ │ │ │ -00039290: 6961 6c2e 2020 5365 6520 2a6e 6f74 6520 ial. See *note │ │ │ │ -000392a0: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ -000392b0: 7369 6f6e 3a0a 7265 6775 6c61 7249 6e43 sion:.regularInC │ │ │ │ -000392c0: 6f64 696d 656e 7369 6f6e 2c2e 0a0a 5365 odimension,...Se │ │ │ │ -000392d0: 6c65 6374 696e 6720 7375 626d 6174 7269 lecting submatri │ │ │ │ -000392e0: 6365 7320 6f66 2074 6865 204a 6163 6f62 ces of the Jacob │ │ │ │ -000392f0: 6961 6e2e 2020 5765 2061 6c73 6f20 7365 ian. We also se │ │ │ │ -00039300: 6520 6f75 7470 7574 206c 696b 653a 2060 e output like: ` │ │ │ │ -00039310: 6043 686f 6f73 696e 670a 4c65 7853 6d61 `Choosing.LexSma │ │ │ │ -00039320: 6c6c 6573 7427 2720 6f72 2060 6043 686f llest'' or ``Cho │ │ │ │ -00039330: 6f73 696e 6720 5261 6e64 6f6d 2727 2e20 osing Random''. │ │ │ │ -00039340: 2054 6869 7320 6973 2073 6179 696e 6720 This is saying │ │ │ │ -00039350: 686f 7720 7765 2061 7265 2073 656c 6563 how we are selec │ │ │ │ -00039360: 7469 6e67 2061 0a67 6976 656e 2073 7562 ting a.given sub │ │ │ │ -00039370: 6d61 7472 6978 2e20 2046 6f72 2069 6e73 matrix. For ins │ │ │ │ -00039380: 7461 6e63 652c 2077 6520 6361 6e20 7275 tance, we can ru │ │ │ │ -00039390: 6e3a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d n:..+----------- │ │ │ │ -000393a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000393b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000393c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000393d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000393e0: 2d2d 2b0a 7c69 3820 3a20 7469 6d65 2072 --+.|i8 : time r │ │ │ │ -000393f0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00039400: 696f 6e28 312c 2053 2f4a 2c20 4d61 784d ion(1, S/J, MaxM │ │ │ │ -00039410: 696e 6f72 733d 3e31 302c 2053 7472 6174 inors=>10, Strat │ │ │ │ -00039420: 6567 793d 3e53 7472 6174 6567 7952 616e egy=>StrategyRan │ │ │ │ -00039430: 646f 7c0a 7c20 2d2d 2075 7365 6420 302e do|.| -- used 0. │ │ │ │ -00039440: 3135 3730 3773 2028 6370 7529 3b20 302e 15707s (cpu); 0. │ │ │ │ -00039450: 3130 3637 3233 7320 2874 6872 6561 6429 106723s (thread) │ │ │ │ -00039460: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -00039470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039480: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -00039490: 6469 6d65 6e73 696f 6e3a 2072 696e 6720 dimension: ring │ │ │ │ -000394a0: 6469 6d65 6e73 696f 6e20 3d34 2c20 7468 dimension =4, th │ │ │ │ -000394b0: 6572 6520 6172 6520 3134 3635 3132 3820 ere are 1465128 │ │ │ │ -000394c0: 706f 7373 6962 6c65 2035 2062 7920 3520 possible 5 by 5 │ │ │ │ -000394d0: 6d69 7c0a 7c72 6567 756c 6172 496e 436f mi|.|regularInCo │ │ │ │ -000394e0: 6469 6d65 6e73 696f 6e3a 2041 626f 7574 dimension: About │ │ │ │ -000394f0: 2074 6f20 656e 7465 7220 6c6f 6f70 2020 to enter loop │ │ │ │ -00039500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039520: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039530: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039540: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +00039170: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00039180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000391a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000391b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000391c0: 2020 2020 2020 2020 2020 2020 7c0a 7c74 |.|t │ │ │ │ +000391d0: 6564 203d 2031 302e 2020 7369 6e67 756c ed = 10. singul │ │ │ │ +000391e0: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ +000391f0: 6f6e 2061 7070 6561 7273 2074 6f20 6265 on appears to be │ │ │ │ +00039200: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ +00039210: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00039220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 ------------+..T │ │ │ │ +00039270: 6865 7265 2061 7265 206f 7468 6572 2066 here are other f │ │ │ │ +00039280: 696e 6572 2077 6179 7320 746f 2063 6f6e iner ways to con │ │ │ │ +00039290: 7472 6f6c 2074 6865 204d 6178 4d69 6e6f trol the MaxMino │ │ │ │ +000392a0: 7273 206f 7074 696f 6e2c 2062 7574 2074 rs option, but t │ │ │ │ +000392b0: 6865 7920 7769 6c6c 206e 6f74 0a62 6520 hey will not.be │ │ │ │ +000392c0: 6469 7363 7573 7365 6420 696e 2074 6869 discussed in thi │ │ │ │ +000392d0: 7320 7475 746f 7269 616c 2e20 2053 6565 s tutorial. See │ │ │ │ +000392e0: 202a 6e6f 7465 2072 6567 756c 6172 496e *note regularIn │ │ │ │ +000392f0: 436f 6469 6d65 6e73 696f 6e3a 0a72 6567 Codimension:.reg │ │ │ │ +00039300: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ +00039310: 6e2c 2e0a 0a53 656c 6563 7469 6e67 2073 n,...Selecting s │ │ │ │ +00039320: 7562 6d61 7472 6963 6573 206f 6620 7468 ubmatrices of th │ │ │ │ +00039330: 6520 4a61 636f 6269 616e 2e20 2057 6520 e Jacobian. We │ │ │ │ +00039340: 616c 736f 2073 6565 206f 7574 7075 7420 also see output │ │ │ │ +00039350: 6c69 6b65 3a20 6060 4368 6f6f 7369 6e67 like: ``Choosing │ │ │ │ +00039360: 0a4c 6578 536d 616c 6c65 7374 2727 206f .LexSmallest'' o │ │ │ │ +00039370: 7220 6060 4368 6f6f 7369 6e67 2052 616e r ``Choosing Ran │ │ │ │ +00039380: 646f 6d27 272e 2020 5468 6973 2069 7320 dom''. This is │ │ │ │ +00039390: 7361 7969 6e67 2068 6f77 2077 6520 6172 saying how we ar │ │ │ │ +000393a0: 6520 7365 6c65 6374 696e 6720 610a 6769 e selecting a.gi │ │ │ │ +000393b0: 7665 6e20 7375 626d 6174 7269 782e 2020 ven submatrix. │ │ │ │ +000393c0: 466f 7220 696e 7374 616e 6365 2c20 7765 For instance, we │ │ │ │ +000393d0: 2063 616e 2072 756e 3a0a 0a2b 2d2d 2d2d can run:..+---- │ │ │ │ +000393e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000393f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039420: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a ---------+.|i8 : │ │ │ │ +00039430: 2074 696d 6520 7265 6775 6c61 7249 6e43 time regularInC │ │ │ │ +00039440: 6f64 696d 656e 7369 6f6e 2831 2c20 532f odimension(1, S/ │ │ │ │ +00039450: 4a2c 204d 6178 4d69 6e6f 7273 3d3e 3130 J, MaxMinors=>10 │ │ │ │ +00039460: 2c20 5374 7261 7465 6779 3d3e 5374 7261 , Strategy=>Stra │ │ │ │ +00039470: 7465 6779 5261 6e64 6f7c 0a7c 202d 2d20 tegyRando|.| -- │ │ │ │ +00039480: 7573 6564 2030 2e31 3731 3331 3273 2028 used 0.171312s ( │ │ │ │ +00039490: 6370 7529 3b20 302e 3131 3736 3738 7320 cpu); 0.117678s │ │ │ │ +000394a0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +000394b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000394c0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ +000394d0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000394e0: 3a20 7269 6e67 2064 696d 656e 7369 6f6e : ring dimension │ │ │ │ +000394f0: 203d 342c 2074 6865 7265 2061 7265 2031 =4, there are 1 │ │ │ │ +00039500: 3436 3531 3238 2070 6f73 7369 626c 6520 465128 possible │ │ │ │ +00039510: 3520 6279 2035 206d 697c 0a7c 7265 6775 5 by 5 mi|.|regu │ │ │ │ +00039520: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039530: 3a20 4162 6f75 7420 746f 2065 6e74 6572 : About to enter │ │ │ │ +00039540: 206c 6f6f 7020 2020 2020 2020 2020 2020 loop │ │ │ │ 00039550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039570: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039580: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039590: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +00039560: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039570: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039580: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000395a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000395b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000395c0: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -000395d0: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -000395e0: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +000395b0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +000395c0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +000395d0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +000395e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000395f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039610: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039620: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039630: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +00039600: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039610: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039620: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039660: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039670: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039680: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +00039650: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039660: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039670: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396b0: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -000396c0: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -000396d0: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +000396a0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +000396b0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +000396c0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +000396d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000396e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039700: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039710: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039720: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +000396f0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039700: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039710: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039750: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -00039760: 6469 6d65 6e73 696f 6e3a 2020 4c6f 6f70 dimension: Loop │ │ │ │ -00039770: 2073 7465 702c 2061 626f 7574 2074 6f20 step, about to │ │ │ │ -00039780: 636f 6d70 7574 6520 6469 6d65 6e73 696f compute dimensio │ │ │ │ -00039790: 6e2e 2020 5375 626d 6174 7269 6365 7320 n. Submatrices │ │ │ │ -000397a0: 636f 7c0a 7c72 6567 756c 6172 496e 436f co|.|regularInCo │ │ │ │ -000397b0: 6469 6d65 6e73 696f 6e3a 2020 6973 436f dimension: isCo │ │ │ │ -000397c0: 6469 6d41 744c 6561 7374 2066 6169 6c65 dimAtLeast faile │ │ │ │ -000397d0: 642c 2063 6f6d 7075 7469 6e67 2063 6f64 d, computing cod │ │ │ │ -000397e0: 696d 2e20 2020 2020 2020 2020 2020 2020 im. │ │ │ │ -000397f0: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -00039800: 6469 6d65 6e73 696f 6e3a 2020 7061 7274 dimension: part │ │ │ │ -00039810: 6961 6c20 7369 6e67 756c 6172 206c 6f63 ial singular loc │ │ │ │ -00039820: 7573 2064 696d 656e 7369 6f6e 2063 6f6d us dimension com │ │ │ │ -00039830: 7075 7465 642c 203d 2033 2020 2020 2020 puted, = 3 │ │ │ │ -00039840: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -00039850: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039860: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ -00039870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039890: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -000398a0: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -000398b0: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +00039740: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039750: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039760: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039790: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ +000397a0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000397b0: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ +000397c0: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ +000397d0: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ +000397e0: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ +000397f0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039800: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ +00039810: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ +00039820: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ +00039830: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ +00039840: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039850: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ +00039860: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00039870: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ +00039880: 3320 2020 2020 2020 207c 0a7c 696e 7465 3 |.|inte │ │ │ │ +00039890: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +000398a0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +000398b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000398c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000398e0: 2020 7c0a 7c69 6e74 6572 6e61 6c43 686f |.|internalCho │ │ │ │ -000398f0: 6f73 654d 696e 6f72 3a20 4368 6f6f 7369 oseMinor: Choosi │ │ │ │ -00039900: 6e67 2052 616e 646f 6d20 2020 2020 2020 ng Random │ │ │ │ +000398d0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +000398e0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +000398f0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039930: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -00039940: 6469 6d65 6e73 696f 6e3a 2020 4c6f 6f70 dimension: Loop │ │ │ │ -00039950: 2073 7465 702c 2061 626f 7574 2074 6f20 step, about to │ │ │ │ -00039960: 636f 6d70 7574 6520 6469 6d65 6e73 696f compute dimensio │ │ │ │ -00039970: 6e2e 2020 5375 626d 6174 7269 6365 7320 n. Submatrices │ │ │ │ -00039980: 636f 7c0a 7c72 6567 756c 6172 496e 436f co|.|regularInCo │ │ │ │ -00039990: 6469 6d65 6e73 696f 6e3a 2020 6973 436f dimension: isCo │ │ │ │ -000399a0: 6469 6d41 744c 6561 7374 2066 6169 6c65 dimAtLeast faile │ │ │ │ -000399b0: 642c 2063 6f6d 7075 7469 6e67 2063 6f64 d, computing cod │ │ │ │ -000399c0: 696d 2e20 2020 2020 2020 2020 2020 2020 im. │ │ │ │ -000399d0: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -000399e0: 6469 6d65 6e73 696f 6e3a 2020 7061 7274 dimension: part │ │ │ │ -000399f0: 6961 6c20 7369 6e67 756c 6172 206c 6f63 ial singular loc │ │ │ │ -00039a00: 7573 2064 696d 656e 7369 6f6e 2063 6f6d us dimension com │ │ │ │ -00039a10: 7075 7465 642c 203d 2033 2020 2020 2020 puted, = 3 │ │ │ │ -00039a20: 2020 7c0a 7c72 6567 756c 6172 496e 436f |.|regularInCo │ │ │ │ -00039a30: 6469 6d65 6e73 696f 6e3a 2020 4c6f 6f70 dimension: Loop │ │ │ │ -00039a40: 2063 6f6d 706c 6574 6564 2c20 7375 626d completed, subm │ │ │ │ -00039a50: 6174 7269 6365 7320 636f 6e73 6964 6572 atrices consider │ │ │ │ -00039a60: 6564 203d 2031 302c 2061 6e64 2063 6f6d ed = 10, and com │ │ │ │ -00039a70: 7075 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d pu|.|----------- │ │ │ │ -00039a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039ac0: 2d2d 7c0a 7c6d 2c20 5665 7262 6f73 653d --|.|m, Verbose= │ │ │ │ -00039ad0: 3e74 7275 6529 2020 2020 2020 2020 2020 >true) │ │ │ │ -00039ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039920: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ +00039930: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ +00039940: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +00039950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039970: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ +00039980: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039990: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ +000399a0: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ +000399b0: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ +000399c0: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ +000399d0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +000399e0: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ +000399f0: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ +00039a00: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ +00039a10: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ +00039a20: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039a30: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ +00039a40: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ +00039a50: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ +00039a60: 3320 2020 2020 2020 207c 0a7c 7265 6775 3 |.|regu │ │ │ │ +00039a70: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ +00039a80: 3a20 204c 6f6f 7020 636f 6d70 6c65 7465 : Loop complete │ │ │ │ +00039a90: 642c 2073 7562 6d61 7472 6963 6573 2063 d, submatrices c │ │ │ │ +00039aa0: 6f6e 7369 6465 7265 6420 3d20 3130 2c20 onsidered = 10, │ │ │ │ +00039ab0: 616e 6420 636f 6d70 757c 0a7c 2d2d 2d2d and compu|.|---- │ │ │ │ +00039ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00039b00: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6d2c 2056 ---------|.|m, V │ │ │ │ +00039b10: 6572 626f 7365 3d3e 7472 7565 2920 2020 erbose=>true) │ │ │ │ 00039b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039b60: 2020 7c0a 7c6e 6f72 732c 2077 6520 7769 |.|nors, we wi │ │ │ │ -00039b70: 6c6c 2063 6f6d 7075 7465 2075 7020 746f ll compute up to │ │ │ │ -00039b80: 2031 3020 6f66 2074 6865 6d2e 2020 2020 10 of them. │ │ │ │ +00039b50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00039bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039ba0: 2020 2020 2020 2020 207c 0a7c 6e6f 7273 |.|nors │ │ │ │ +00039bb0: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ +00039bc0: 6520 7570 2074 6f20 3130 206f 6620 7468 e up to 10 of th │ │ │ │ +00039bd0: 656d 2e20 2020 2020 2020 2020 2020 2020 em. │ │ │ │ 00039be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039bf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039c40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ca0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039c90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039ce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039d30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039d80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039dd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e30: 2020 7c0a 7c6e 7369 6465 7265 643a 2037 |.|nsidered: 7 │ │ │ │ -00039e40: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ -00039e50: 2037 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +00039e20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00039e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e70: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ +00039e80: 6572 6564 3a20 372c 2061 6e64 2063 6f6d ered: 7, and com │ │ │ │ +00039e90: 7075 7465 6420 3d20 3720 2020 2020 2020 puted = 7 │ │ │ │ 00039ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039ec0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039f10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039f60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00039fb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00039fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a010: 2020 7c0a 7c6e 7369 6465 7265 643a 2031 |.|nsidered: 1 │ │ │ │ -0003a020: 302c 2061 6e64 2063 6f6d 7075 7465 6420 0, and computed │ │ │ │ -0003a030: 3d20 3130 2020 2020 2020 2020 2020 2020 = 10 │ │ │ │ +0003a000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a050: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ +0003a060: 6572 6564 3a20 3130 2c20 616e 6420 636f ered: 10, and co │ │ │ │ +0003a070: 6d70 7574 6564 203d 2031 3020 2020 2020 mputed = 10 │ │ │ │ 0003a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003a0a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a100: 2020 7c0a 7c74 6564 203d 2031 302e 2020 |.|ted = 10. │ │ │ │ -0003a110: 7369 6e67 756c 6172 206c 6f63 7573 2064 singular locus d │ │ │ │ -0003a120: 696d 656e 7369 6f6e 2061 7070 6561 7273 imension appears │ │ │ │ -0003a130: 2074 6f20 6265 203d 2033 2020 2020 2020 to be = 3 │ │ │ │ -0003a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a150: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0003a160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a1a0: 2d2d 2b0a 0a61 6e64 206f 6e6c 7920 7261 --+..and only ra │ │ │ │ -0003a1b0: 6e64 6f6d 2073 7562 6d61 7472 6963 6573 ndom submatrices │ │ │ │ -0003a1c0: 2061 7265 2063 686f 7365 6e2e 2020 5765 are chosen. We │ │ │ │ -0003a1d0: 2064 6973 6375 7373 2073 7472 6174 6567 discuss strateg │ │ │ │ -0003a1e0: 6965 7320 666f 7220 6368 6f6f 7369 6e67 ies for choosing │ │ │ │ -0003a1f0: 0a73 7562 6d61 7472 6963 6573 206d 7563 .submatrices muc │ │ │ │ -0003a200: 6820 6d6f 7265 2067 656e 6572 616c 6c79 h more generally │ │ │ │ -0003a210: 2069 6e20 7468 6520 2a6e 6f74 6520 4661 in the *note Fa │ │ │ │ -0003a220: 7374 4d69 6e6f 7273 5374 7261 7465 6779 stMinorsStrategy │ │ │ │ -0003a230: 5475 746f 7269 616c 3a0a 4661 7374 4d69 Tutorial:.FastMi │ │ │ │ -0003a240: 6e6f 7273 5374 7261 7465 6779 5475 746f norsStrategyTuto │ │ │ │ -0003a250: 7269 616c 2c2e 2052 6567 6172 646c 6573 rial,. Regardles │ │ │ │ -0003a260: 732c 2061 6674 6572 2061 2063 6572 7461 s, after a certa │ │ │ │ -0003a270: 696e 206e 756d 6265 7220 6f66 206d 696e in number of min │ │ │ │ -0003a280: 6f72 7320 6861 7665 0a62 6565 6e20 6c6f ors have.been lo │ │ │ │ -0003a290: 6f6b 6564 2061 742c 2077 6520 7365 6520 oked at, we see │ │ │ │ -0003a2a0: 6f75 7470 7574 206c 696e 6573 206c 696b output lines lik │ │ │ │ -0003a2b0: 653a 2020 6060 4c6f 6f70 2073 7465 702c e: ``Loop step, │ │ │ │ -0003a2c0: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ -0003a2d0: 650a 6469 6d65 6e73 696f 6e2e 2020 5375 e.dimension. Su │ │ │ │ -0003a2e0: 626d 6174 7269 6365 7320 636f 6e73 6964 bmatrices consid │ │ │ │ -0003a2f0: 6572 6564 3a20 372c 2061 6e64 2063 6f6d ered: 7, and com │ │ │ │ -0003a300: 7075 7465 6420 3d20 3727 272e 2020 5765 puted = 7''. We │ │ │ │ -0003a310: 206f 6e6c 7920 636f 6d70 7574 650a 6d69 only compute.mi │ │ │ │ -0003a320: 6e6f 7273 2077 6520 6861 7665 6e27 7420 nors we haven't │ │ │ │ -0003a330: 636f 6e73 6964 6572 6564 2062 6566 6f72 considered befor │ │ │ │ -0003a340: 652e 2020 536f 2061 7320 7765 2063 6f6d e. So as we com │ │ │ │ -0003a350: 7075 7465 206d 6f72 6520 6d69 6e6f 7273 pute more minors │ │ │ │ -0003a360: 2c20 7468 6572 6520 6361 6e0a 6265 2061 , there can.be a │ │ │ │ -0003a370: 2064 6973 7469 6e63 7469 6f6e 2062 6574 distinction bet │ │ │ │ -0003a380: 7765 656e 2063 6f6e 7369 6465 7265 6420 ween considered │ │ │ │ -0003a390: 616e 6420 636f 6d70 7574 6564 2e0a 0a43 and computed...C │ │ │ │ -0003a3a0: 6f6d 7075 7469 6e67 206d 696e 6f72 7320 omputing minors │ │ │ │ -0003a3b0: 7673 2063 6f6e 7369 6465 7269 6e67 2074 vs considering t │ │ │ │ -0003a3c0: 6865 2064 696d 656e 7369 6f6e 206f 6620 he dimension of │ │ │ │ -0003a3d0: 7768 6174 2068 6173 2062 6565 6e20 636f what has been co │ │ │ │ -0003a3e0: 6d70 7574 6564 2e0a 5065 7269 6f64 6963 mputed..Periodic │ │ │ │ -0003a3f0: 616c 6c79 2077 6520 636f 6d70 7574 6520 ally we compute │ │ │ │ -0003a400: 7468 6520 636f 6469 6d65 6e73 696f 6e20 the codimension │ │ │ │ -0003a410: 6f66 2074 6865 2070 6172 7469 616c 2069 of the partial i │ │ │ │ -0003a420: 6465 616c 206f 6620 6d69 6e6f 7273 2077 deal of minors w │ │ │ │ -0003a430: 6520 6861 7665 0a63 6f6d 7075 7465 6420 e have.computed │ │ │ │ -0003a440: 736f 2066 6172 2e20 2054 6865 7265 2061 so far. There a │ │ │ │ -0003a450: 7265 2074 776f 206f 7074 696f 6e73 2074 re two options t │ │ │ │ -0003a460: 6f20 636f 6e74 726f 6c20 7468 6973 2e20 o control this. │ │ │ │ -0003a470: 2046 6972 7374 2c20 7765 2063 616e 2074 First, we can t │ │ │ │ -0003a480: 656c 6c0a 7468 6520 6675 6e63 7469 6f6e ell.the function │ │ │ │ -0003a490: 2077 6865 6e20 746f 2066 6972 7374 2063 when to first c │ │ │ │ -0003a4a0: 6f6d 7075 7465 2074 6865 2064 696d 656e ompute the dimen │ │ │ │ -0003a4b0: 7369 6f6e 206f 6620 7468 6520 776f 726b sion of the work │ │ │ │ -0003a4c0: 696e 6720 7061 7274 6961 6c20 6964 6561 ing partial idea │ │ │ │ -0003a4d0: 6c0a 6f66 206d 696e 6f72 732e 0a0a 2b2d l.of minors...+- │ │ │ │ -0003a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003a530: 3920 3a20 7469 6d65 2072 6567 756c 6172 9 : time regular │ │ │ │ -0003a540: 496e 436f 6469 6d65 6e73 696f 6e28 312c InCodimension(1, │ │ │ │ -0003a550: 2053 2f4a 2c20 4d61 784d 696e 6f72 733d S/J, MaxMinors= │ │ │ │ -0003a560: 3e31 302c 204d 696e 4d69 6e6f 7273 4675 >10, MinMinorsFu │ │ │ │ -0003a570: 6e63 7469 6f6e 203d 3e20 742d 7c0a 7c20 nction => t-|.| │ │ │ │ -0003a580: 2d2d 2075 7365 6420 302e 3632 3737 3739 -- used 0.627779 │ │ │ │ -0003a590: 7320 2863 7075 293b 2030 2e34 3432 3035 s (cpu); 0.44205 │ │ │ │ -0003a5a0: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ -0003a5b0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -0003a5c0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003a5d0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a5e0: 696f 6e3a 2072 696e 6720 6469 6d65 6e73 ion: ring dimens │ │ │ │ -0003a5f0: 696f 6e20 3d34 2c20 7468 6572 6520 6172 ion =4, there ar │ │ │ │ -0003a600: 6520 3134 3635 3132 3820 706f 7373 6962 e 1465128 possib │ │ │ │ -0003a610: 6c65 2035 2062 7920 3520 6d69 7c0a 7c72 le 5 by 5 mi|.|r │ │ │ │ -0003a620: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a630: 696f 6e3a 2041 626f 7574 2074 6f20 656e ion: About to en │ │ │ │ -0003a640: 7465 7220 6c6f 6f70 2020 2020 2020 2020 ter loop │ │ │ │ -0003a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a660: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003a670: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a680: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ -0003a690: 646f 6d4e 6f6e 5a65 726f 2020 2020 2020 domNonZero │ │ │ │ +0003a0f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a140: 2020 2020 2020 2020 207c 0a7c 7465 6420 |.|ted │ │ │ │ +0003a150: 3d20 3130 2e20 2073 696e 6775 6c61 7220 = 10. singular │ │ │ │ +0003a160: 6c6f 6375 7320 6469 6d65 6e73 696f 6e20 locus dimension │ │ │ │ +0003a170: 6170 7065 6172 7320 746f 2062 6520 3d20 appears to be = │ │ │ │ +0003a180: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0003a190: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0003a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a1e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 616e 6420 ---------+..and │ │ │ │ +0003a1f0: 6f6e 6c79 2072 616e 646f 6d20 7375 626d only random subm │ │ │ │ +0003a200: 6174 7269 6365 7320 6172 6520 6368 6f73 atrices are chos │ │ │ │ +0003a210: 656e 2e20 2057 6520 6469 7363 7573 7320 en. We discuss │ │ │ │ +0003a220: 7374 7261 7465 6769 6573 2066 6f72 2063 strategies for c │ │ │ │ +0003a230: 686f 6f73 696e 670a 7375 626d 6174 7269 hoosing.submatri │ │ │ │ +0003a240: 6365 7320 6d75 6368 206d 6f72 6520 6765 ces much more ge │ │ │ │ +0003a250: 6e65 7261 6c6c 7920 696e 2074 6865 202a nerally in the * │ │ │ │ +0003a260: 6e6f 7465 2046 6173 744d 696e 6f72 7353 note FastMinorsS │ │ │ │ +0003a270: 7472 6174 6567 7954 7574 6f72 6961 6c3a trategyTutorial: │ │ │ │ +0003a280: 0a46 6173 744d 696e 6f72 7353 7472 6174 .FastMinorsStrat │ │ │ │ +0003a290: 6567 7954 7574 6f72 6961 6c2c 2e20 5265 egyTutorial,. Re │ │ │ │ +0003a2a0: 6761 7264 6c65 7373 2c20 6166 7465 7220 gardless, after │ │ │ │ +0003a2b0: 6120 6365 7274 6169 6e20 6e75 6d62 6572 a certain number │ │ │ │ +0003a2c0: 206f 6620 6d69 6e6f 7273 2068 6176 650a of minors have. │ │ │ │ +0003a2d0: 6265 656e 206c 6f6f 6b65 6420 6174 2c20 been looked at, │ │ │ │ +0003a2e0: 7765 2073 6565 206f 7574 7075 7420 6c69 we see output li │ │ │ │ +0003a2f0: 6e65 7320 6c69 6b65 3a20 2060 604c 6f6f nes like: ``Loo │ │ │ │ +0003a300: 7020 7374 6570 2c20 6162 6f75 7420 746f p step, about to │ │ │ │ +0003a310: 2063 6f6d 7075 7465 0a64 696d 656e 7369 compute.dimensi │ │ │ │ +0003a320: 6f6e 2e20 2053 7562 6d61 7472 6963 6573 on. Submatrices │ │ │ │ +0003a330: 2063 6f6e 7369 6465 7265 643a 2037 2c20 considered: 7, │ │ │ │ +0003a340: 616e 6420 636f 6d70 7574 6564 203d 2037 and computed = 7 │ │ │ │ +0003a350: 2727 2e20 2057 6520 6f6e 6c79 2063 6f6d ''. We only com │ │ │ │ +0003a360: 7075 7465 0a6d 696e 6f72 7320 7765 2068 pute.minors we h │ │ │ │ +0003a370: 6176 656e 2774 2063 6f6e 7369 6465 7265 aven't considere │ │ │ │ +0003a380: 6420 6265 666f 7265 2e20 2053 6f20 6173 d before. So as │ │ │ │ +0003a390: 2077 6520 636f 6d70 7574 6520 6d6f 7265 we compute more │ │ │ │ +0003a3a0: 206d 696e 6f72 732c 2074 6865 7265 2063 minors, there c │ │ │ │ +0003a3b0: 616e 0a62 6520 6120 6469 7374 696e 6374 an.be a distinct │ │ │ │ +0003a3c0: 696f 6e20 6265 7477 6565 6e20 636f 6e73 ion between cons │ │ │ │ +0003a3d0: 6964 6572 6564 2061 6e64 2063 6f6d 7075 idered and compu │ │ │ │ +0003a3e0: 7465 642e 0a0a 436f 6d70 7574 696e 6720 ted...Computing │ │ │ │ +0003a3f0: 6d69 6e6f 7273 2076 7320 636f 6e73 6964 minors vs consid │ │ │ │ +0003a400: 6572 696e 6720 7468 6520 6469 6d65 6e73 ering the dimens │ │ │ │ +0003a410: 696f 6e20 6f66 2077 6861 7420 6861 7320 ion of what has │ │ │ │ +0003a420: 6265 656e 2063 6f6d 7075 7465 642e 0a50 been computed..P │ │ │ │ +0003a430: 6572 696f 6469 6361 6c6c 7920 7765 2063 eriodically we c │ │ │ │ +0003a440: 6f6d 7075 7465 2074 6865 2063 6f64 696d ompute the codim │ │ │ │ +0003a450: 656e 7369 6f6e 206f 6620 7468 6520 7061 ension of the pa │ │ │ │ +0003a460: 7274 6961 6c20 6964 6561 6c20 6f66 206d rtial ideal of m │ │ │ │ +0003a470: 696e 6f72 7320 7765 2068 6176 650a 636f inors we have.co │ │ │ │ +0003a480: 6d70 7574 6564 2073 6f20 6661 722e 2020 mputed so far. │ │ │ │ +0003a490: 5468 6572 6520 6172 6520 7477 6f20 6f70 There are two op │ │ │ │ +0003a4a0: 7469 6f6e 7320 746f 2063 6f6e 7472 6f6c tions to control │ │ │ │ +0003a4b0: 2074 6869 732e 2020 4669 7273 742c 2077 this. First, w │ │ │ │ +0003a4c0: 6520 6361 6e20 7465 6c6c 0a74 6865 2066 e can tell.the f │ │ │ │ +0003a4d0: 756e 6374 696f 6e20 7768 656e 2074 6f20 unction when to │ │ │ │ +0003a4e0: 6669 7273 7420 636f 6d70 7574 6520 7468 first compute th │ │ │ │ +0003a4f0: 6520 6469 6d65 6e73 696f 6e20 6f66 2074 e dimension of t │ │ │ │ +0003a500: 6865 2077 6f72 6b69 6e67 2070 6172 7469 he working parti │ │ │ │ +0003a510: 616c 2069 6465 616c 0a6f 6620 6d69 6e6f al ideal.of mino │ │ │ │ +0003a520: 7273 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d rs...+---------- │ │ │ │ +0003a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003a570: 2d2d 2d2b 0a7c 6939 203a 2074 696d 6520 ---+.|i9 : time │ │ │ │ +0003a580: 7265 6775 6c61 7249 6e43 6f64 696d 656e regularInCodimen │ │ │ │ +0003a590: 7369 6f6e 2831 2c20 532f 4a2c 204d 6178 sion(1, S/J, Max │ │ │ │ +0003a5a0: 4d69 6e6f 7273 3d3e 3130 2c20 4d69 6e4d Minors=>10, MinM │ │ │ │ +0003a5b0: 696e 6f72 7346 756e 6374 696f 6e20 3d3e inorsFunction => │ │ │ │ +0003a5c0: 2074 2d7c 0a7c 202d 2d20 7573 6564 2030 t-|.| -- used 0 │ │ │ │ +0003a5d0: 2e36 3631 3634 3273 2028 6370 7529 3b20 .661642s (cpu); │ │ │ │ +0003a5e0: 302e 3438 3735 3035 7320 2874 6872 6561 0.487505s (threa │ │ │ │ +0003a5f0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0003a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a610: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003a620: 6f64 696d 656e 7369 6f6e 3a20 7269 6e67 odimension: ring │ │ │ │ +0003a630: 2064 696d 656e 7369 6f6e 203d 342c 2074 dimension =4, t │ │ │ │ +0003a640: 6865 7265 2061 7265 2031 3436 3531 3238 here are 1465128 │ │ │ │ +0003a650: 2070 6f73 7369 626c 6520 3520 6279 2035 possible 5 by 5 │ │ │ │ +0003a660: 206d 697c 0a7c 7265 6775 6c61 7249 6e43 mi|.|regularInC │ │ │ │ +0003a670: 6f64 696d 656e 7369 6f6e 3a20 4162 6f75 odimension: Abou │ │ │ │ +0003a680: 7420 746f 2065 6e74 6572 206c 6f6f 7020 t to enter loop │ │ │ │ +0003a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003a6c0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a6d0: 6f72 3a20 4368 6f6f 7369 6e67 2052 616e or: Choosing Ran │ │ │ │ -0003a6e0: 646f 6d20 2020 2020 2020 2020 2020 2020 dom │ │ │ │ +0003a6b0: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a6c0: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a6d0: 696e 6720 5261 6e64 6f6d 4e6f 6e5a 6572 ing RandomNonZer │ │ │ │ +0003a6e0: 6f20 2020 2020 2020 2020 2020 2020 2020 o │ │ │ │ 0003a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a700: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003a710: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a720: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ -0003a730: 536d 616c 6c65 7374 2020 2020 2020 2020 Smallest │ │ │ │ +0003a700: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a710: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a720: 696e 6720 5261 6e64 6f6d 2020 2020 2020 ing Random │ │ │ │ +0003a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a750: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003a760: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a770: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ -0003a780: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ -0003a790: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ -0003a7a0: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ -0003a7b0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a7c0: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ -0003a7d0: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ -0003a7e0: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ -0003a7f0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003a800: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a810: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ -0003a820: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ -0003a830: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ -0003a840: 203d 2033 2020 2020 2020 2020 7c0a 7c69 = 3 |.|i │ │ │ │ -0003a850: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a860: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ -0003a870: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ -0003a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a890: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003a8a0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a8b0: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ -0003a8c0: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ +0003a750: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a760: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a770: 696e 6720 4c65 7853 6d61 6c6c 6573 7420 ing LexSmallest │ │ │ │ +0003a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a7a0: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003a7b0: 6f64 696d 656e 7369 6f6e 3a20 204c 6f6f odimension: Loo │ │ │ │ +0003a7c0: 7020 7374 6570 2c20 6162 6f75 7420 746f p step, about to │ │ │ │ +0003a7d0: 2063 6f6d 7075 7465 2064 696d 656e 7369 compute dimensi │ │ │ │ +0003a7e0: 6f6e 2e20 2053 7562 6d61 7472 6963 6573 on. Submatrices │ │ │ │ +0003a7f0: 2063 6f7c 0a7c 7265 6775 6c61 7249 6e43 co|.|regularInC │ │ │ │ +0003a800: 6f64 696d 656e 7369 6f6e 3a20 2069 7343 odimension: isC │ │ │ │ +0003a810: 6f64 696d 4174 4c65 6173 7420 6661 696c odimAtLeast fail │ │ │ │ +0003a820: 6564 2c20 636f 6d70 7574 696e 6720 636f ed, computing co │ │ │ │ +0003a830: 6469 6d2e 2020 2020 2020 2020 2020 2020 dim. │ │ │ │ +0003a840: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003a850: 6f64 696d 656e 7369 6f6e 3a20 2070 6172 odimension: par │ │ │ │ +0003a860: 7469 616c 2073 696e 6775 6c61 7220 6c6f tial singular lo │ │ │ │ +0003a870: 6375 7320 6469 6d65 6e73 696f 6e20 636f cus dimension co │ │ │ │ +0003a880: 6d70 7574 6564 2c20 3d20 3320 2020 2020 mputed, = 3 │ │ │ │ +0003a890: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a8a0: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a8b0: 696e 6720 4c65 7853 6d61 6c6c 6573 7454 ing LexSmallestT │ │ │ │ +0003a8c0: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ 0003a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a8e0: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003a8f0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003a900: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ -0003a910: 764c 6578 536d 616c 6c65 7374 2020 2020 vLexSmallest │ │ │ │ +0003a8e0: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a8f0: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a900: 696e 6720 4752 6576 4c65 7853 6d61 6c6c ing GRevLexSmall │ │ │ │ +0003a910: 6573 7454 6572 6d20 2020 2020 2020 2020 estTerm │ │ │ │ 0003a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a930: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003a940: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a950: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ -0003a960: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ -0003a970: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ -0003a980: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ -0003a990: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a9a0: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ -0003a9b0: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ -0003a9c0: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ -0003a9d0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003a9e0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003a9f0: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ -0003aa00: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ -0003aa10: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ -0003aa20: 203d 2033 2020 2020 2020 2020 7c0a 7c69 = 3 |.|i │ │ │ │ -0003aa30: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003aa40: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ -0003aa50: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ -0003aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aa70: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003aa80: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003aa90: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ -0003aaa0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ +0003a930: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003a940: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003a950: 696e 6720 4752 6576 4c65 7853 6d61 6c6c ing GRevLexSmall │ │ │ │ +0003a960: 6573 7420 2020 2020 2020 2020 2020 2020 est │ │ │ │ +0003a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a980: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003a990: 6f64 696d 656e 7369 6f6e 3a20 204c 6f6f odimension: Loo │ │ │ │ +0003a9a0: 7020 7374 6570 2c20 6162 6f75 7420 746f p step, about to │ │ │ │ +0003a9b0: 2063 6f6d 7075 7465 2064 696d 656e 7369 compute dimensi │ │ │ │ +0003a9c0: 6f6e 2e20 2053 7562 6d61 7472 6963 6573 on. Submatrices │ │ │ │ +0003a9d0: 2063 6f7c 0a7c 7265 6775 6c61 7249 6e43 co|.|regularInC │ │ │ │ +0003a9e0: 6f64 696d 656e 7369 6f6e 3a20 2069 7343 odimension: isC │ │ │ │ +0003a9f0: 6f64 696d 4174 4c65 6173 7420 6661 696c odimAtLeast fail │ │ │ │ +0003aa00: 6564 2c20 636f 6d70 7574 696e 6720 636f ed, computing co │ │ │ │ +0003aa10: 6469 6d2e 2020 2020 2020 2020 2020 2020 dim. │ │ │ │ +0003aa20: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003aa30: 6f64 696d 656e 7369 6f6e 3a20 2070 6172 odimension: par │ │ │ │ +0003aa40: 7469 616c 2073 696e 6775 6c61 7220 6c6f tial singular lo │ │ │ │ +0003aa50: 6375 7320 6469 6d65 6e73 696f 6e20 636f cus dimension co │ │ │ │ +0003aa60: 6d70 7574 6564 2c20 3d20 3320 2020 2020 mputed, = 3 │ │ │ │ +0003aa70: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003aa80: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003aa90: 696e 6720 4752 6576 4c65 7853 6d61 6c6c ing GRevLexSmall │ │ │ │ +0003aaa0: 6573 7454 6572 6d20 2020 2020 2020 2020 estTerm │ │ │ │ 0003aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aac0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003aad0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003aae0: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ -0003aaf0: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ -0003ab00: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ -0003ab10: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ -0003ab20: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003ab30: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ -0003ab40: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ -0003ab50: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ -0003ab60: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003ab70: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003ab80: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ -0003ab90: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ -0003aba0: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ -0003abb0: 203d 2033 2020 2020 2020 2020 7c0a 7c69 = 3 |.|i │ │ │ │ -0003abc0: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003abd0: 6f72 3a20 4368 6f6f 7369 6e67 204c 6578 or: Choosing Lex │ │ │ │ -0003abe0: 536d 616c 6c65 7374 5465 726d 2020 2020 SmallestTerm │ │ │ │ -0003abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac00: 2020 2020 2020 2020 2020 2020 7c0a 7c69 |.|i │ │ │ │ -0003ac10: 6e74 6572 6e61 6c43 686f 6f73 654d 696e nternalChooseMin │ │ │ │ -0003ac20: 6f72 3a20 4368 6f6f 7369 6e67 2047 5265 or: Choosing GRe │ │ │ │ -0003ac30: 764c 6578 536d 616c 6c65 7374 5465 726d vLexSmallestTerm │ │ │ │ +0003aac0: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003aad0: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003aae0: 696e 6720 4c65 7853 6d61 6c6c 6573 7454 ing LexSmallestT │ │ │ │ +0003aaf0: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ +0003ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ab10: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003ab20: 6f64 696d 656e 7369 6f6e 3a20 204c 6f6f odimension: Loo │ │ │ │ +0003ab30: 7020 7374 6570 2c20 6162 6f75 7420 746f p step, about to │ │ │ │ +0003ab40: 2063 6f6d 7075 7465 2064 696d 656e 7369 compute dimensi │ │ │ │ +0003ab50: 6f6e 2e20 2053 7562 6d61 7472 6963 6573 on. Submatrices │ │ │ │ +0003ab60: 2063 6f7c 0a7c 7265 6775 6c61 7249 6e43 co|.|regularInC │ │ │ │ +0003ab70: 6f64 696d 656e 7369 6f6e 3a20 2069 7343 odimension: isC │ │ │ │ +0003ab80: 6f64 696d 4174 4c65 6173 7420 6661 696c odimAtLeast fail │ │ │ │ +0003ab90: 6564 2c20 636f 6d70 7574 696e 6720 636f ed, computing co │ │ │ │ +0003aba0: 6469 6d2e 2020 2020 2020 2020 2020 2020 dim. │ │ │ │ +0003abb0: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003abc0: 6f64 696d 656e 7369 6f6e 3a20 2070 6172 odimension: par │ │ │ │ +0003abd0: 7469 616c 2073 696e 6775 6c61 7220 6c6f tial singular lo │ │ │ │ +0003abe0: 6375 7320 6469 6d65 6e73 696f 6e20 636f cus dimension co │ │ │ │ +0003abf0: 6d70 7574 6564 2c20 3d20 3320 2020 2020 mputed, = 3 │ │ │ │ +0003ac00: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003ac10: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003ac20: 696e 6720 4c65 7853 6d61 6c6c 6573 7454 ing LexSmallestT │ │ │ │ +0003ac30: 6572 6d20 2020 2020 2020 2020 2020 2020 erm │ │ │ │ 0003ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac50: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003ac60: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003ac70: 696f 6e3a 2020 4c6f 6f70 2073 7465 702c ion: Loop step, │ │ │ │ -0003ac80: 2061 626f 7574 2074 6f20 636f 6d70 7574 about to comput │ │ │ │ -0003ac90: 6520 6469 6d65 6e73 696f 6e2e 2020 5375 e dimension. Su │ │ │ │ -0003aca0: 626d 6174 7269 6365 7320 636f 7c0a 7c72 bmatrices co|.|r │ │ │ │ -0003acb0: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003acc0: 696f 6e3a 2020 6973 436f 6469 6d41 744c ion: isCodimAtL │ │ │ │ -0003acd0: 6561 7374 2066 6169 6c65 642c 2063 6f6d east failed, com │ │ │ │ -0003ace0: 7075 7469 6e67 2063 6f64 696d 2e20 2020 puting codim. │ │ │ │ -0003acf0: 2020 2020 2020 2020 2020 2020 7c0a 7c72 |.|r │ │ │ │ -0003ad00: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003ad10: 696f 6e3a 2020 7061 7274 6961 6c20 7369 ion: partial si │ │ │ │ -0003ad20: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ -0003ad30: 656e 7369 6f6e 2063 6f6d 7075 7465 642c ension computed, │ │ │ │ -0003ad40: 203d 2033 2020 2020 2020 2020 7c0a 7c72 = 3 |.|r │ │ │ │ -0003ad50: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -0003ad60: 696f 6e3a 2020 4c6f 6f70 2063 6f6d 706c ion: Loop compl │ │ │ │ -0003ad70: 6574 6564 2c20 7375 626d 6174 7269 6365 eted, submatrice │ │ │ │ -0003ad80: 7320 636f 6e73 6964 6572 6564 203d 2031 s considered = 1 │ │ │ │ -0003ad90: 302c 2061 6e64 2063 6f6d 7075 7c0a 7c2d 0, and compu|.|- │ │ │ │ -0003ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003adc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003add0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ade0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c3e ------------|.|> │ │ │ │ -0003adf0: 332c 2056 6572 626f 7365 3d3e 7472 7565 3, Verbose=>true │ │ │ │ -0003ae00: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0003ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ac50: 2020 207c 0a7c 696e 7465 726e 616c 4368 |.|internalCh │ │ │ │ +0003ac60: 6f6f 7365 4d69 6e6f 723a 2043 686f 6f73 ooseMinor: Choos │ │ │ │ +0003ac70: 696e 6720 4752 6576 4c65 7853 6d61 6c6c ing GRevLexSmall │ │ │ │ +0003ac80: 6573 7454 6572 6d20 2020 2020 2020 2020 estTerm │ │ │ │ +0003ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003aca0: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003acb0: 6f64 696d 656e 7369 6f6e 3a20 204c 6f6f odimension: Loo │ │ │ │ +0003acc0: 7020 7374 6570 2c20 6162 6f75 7420 746f p step, about to │ │ │ │ +0003acd0: 2063 6f6d 7075 7465 2064 696d 656e 7369 compute dimensi │ │ │ │ +0003ace0: 6f6e 2e20 2053 7562 6d61 7472 6963 6573 on. Submatrices │ │ │ │ +0003acf0: 2063 6f7c 0a7c 7265 6775 6c61 7249 6e43 co|.|regularInC │ │ │ │ +0003ad00: 6f64 696d 656e 7369 6f6e 3a20 2069 7343 odimension: isC │ │ │ │ +0003ad10: 6f64 696d 4174 4c65 6173 7420 6661 696c odimAtLeast fail │ │ │ │ +0003ad20: 6564 2c20 636f 6d70 7574 696e 6720 636f ed, computing co │ │ │ │ +0003ad30: 6469 6d2e 2020 2020 2020 2020 2020 2020 dim. │ │ │ │ +0003ad40: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003ad50: 6f64 696d 656e 7369 6f6e 3a20 2070 6172 odimension: par │ │ │ │ +0003ad60: 7469 616c 2073 696e 6775 6c61 7220 6c6f tial singular lo │ │ │ │ +0003ad70: 6375 7320 6469 6d65 6e73 696f 6e20 636f cus dimension co │ │ │ │ +0003ad80: 6d70 7574 6564 2c20 3d20 3320 2020 2020 mputed, = 3 │ │ │ │ +0003ad90: 2020 207c 0a7c 7265 6775 6c61 7249 6e43 |.|regularInC │ │ │ │ +0003ada0: 6f64 696d 656e 7369 6f6e 3a20 204c 6f6f odimension: Loo │ │ │ │ +0003adb0: 7020 636f 6d70 6c65 7465 642c 2073 7562 p completed, sub │ │ │ │ +0003adc0: 6d61 7472 6963 6573 2063 6f6e 7369 6465 matrices conside │ │ │ │ +0003add0: 7265 6420 3d20 3130 2c20 616e 6420 636f red = 10, and co │ │ │ │ +0003ade0: 6d70 757c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d mpu|.|---------- │ │ │ │ +0003adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ae30: 2d2d 2d7c 0a7c 3e33 2c20 5665 7262 6f73 ---|.|>3, Verbos │ │ │ │ +0003ae40: 653d 3e74 7275 6529 2020 2020 2020 2020 e=>true) │ │ │ │ 0003ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae80: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ -0003ae90: 6f72 732c 2077 6520 7769 6c6c 2063 6f6d ors, we will com │ │ │ │ -0003aea0: 7075 7465 2075 7020 746f 2031 3020 6f66 pute up to 10 of │ │ │ │ -0003aeb0: 2074 6865 6d2e 2020 2020 2020 2020 2020 them. │ │ │ │ +0003ae80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aed0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003aed0: 2020 207c 0a7c 6e6f 7273 2c20 7765 2077 |.|nors, we w │ │ │ │ +0003aee0: 696c 6c20 636f 6d70 7574 6520 7570 2074 ill compute up t │ │ │ │ +0003aef0: 6f20 3130 206f 6620 7468 656d 2e20 2020 o 10 of them. │ │ │ │ 0003af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003af20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003af70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003af70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003afc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b010: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ -0003b020: 7369 6465 7265 643a 2033 2c20 616e 6420 sidered: 3, and │ │ │ │ -0003b030: 636f 6d70 7574 6564 203d 2033 2020 2020 computed = 3 │ │ │ │ +0003b010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b060: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b060: 2020 207c 0a7c 6e73 6964 6572 6564 3a20 |.|nsidered: │ │ │ │ +0003b070: 332c 2061 6e64 2063 6f6d 7075 7465 6420 3, and computed │ │ │ │ +0003b080: 3d20 3320 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ 0003b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b100: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b150: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b1a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b1a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b1f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ -0003b200: 7369 6465 7265 643a 2036 2c20 616e 6420 sidered: 6, and │ │ │ │ -0003b210: 636f 6d70 7574 6564 203d 2036 2020 2020 computed = 6 │ │ │ │ +0003b1f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b240: 2020 207c 0a7c 6e73 6964 6572 6564 3a20 |.|nsidered: │ │ │ │ +0003b250: 362c 2061 6e64 2063 6f6d 7075 7465 6420 6, and computed │ │ │ │ +0003b260: 3d20 3620 2020 2020 2020 2020 2020 2020 = 6 │ │ │ │ 0003b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b290: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b2e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b2e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b330: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b380: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ -0003b390: 7369 6465 7265 643a 2038 2c20 616e 6420 sidered: 8, and │ │ │ │ -0003b3a0: 636f 6d70 7574 6564 203d 2038 2020 2020 computed = 8 │ │ │ │ +0003b380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b3d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b3d0: 2020 207c 0a7c 6e73 6964 6572 6564 3a20 |.|nsidered: │ │ │ │ +0003b3e0: 382c 2061 6e64 2063 6f6d 7075 7465 6420 8, and computed │ │ │ │ +0003b3f0: 3d20 3820 2020 2020 2020 2020 2020 2020 = 8 │ │ │ │ 0003b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b470: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b4c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b4c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b510: 2020 2020 2020 2020 2020 2020 7c0a 7c6e |.|n │ │ │ │ -0003b520: 7369 6465 7265 643a 2031 302c 2061 6e64 sidered: 10, and │ │ │ │ -0003b530: 2063 6f6d 7075 7465 6420 3d20 3130 2020 computed = 10 │ │ │ │ +0003b510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b560: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0003b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b560: 2020 207c 0a7c 6e73 6964 6572 6564 3a20 |.|nsidered: │ │ │ │ +0003b570: 3130 2c20 616e 6420 636f 6d70 7574 6564 10, and computed │ │ │ │ +0003b580: 203d 2031 3020 2020 2020 2020 2020 2020 = 10 │ │ │ │ 0003b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003b5b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b600: 2020 2020 2020 2020 2020 2020 7c0a 7c74 |.|t │ │ │ │ -0003b610: 6564 203d 2031 302e 2020 7369 6e67 756c ed = 10. singul │ │ │ │ -0003b620: 6172 206c 6f63 7573 2064 696d 656e 7369 ar locus dimensi │ │ │ │ -0003b630: 6f6e 2061 7070 6561 7273 2074 6f20 6265 on appears to be │ │ │ │ -0003b640: 203d 2033 2020 2020 2020 2020 2020 2020 = 3 │ │ │ │ -0003b650: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0003b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a4d ------------+..M │ │ │ │ -0003b6b0: 696e 4d69 6e6f 7273 4675 6e63 7469 6f6e inMinorsFunction │ │ │ │ -0003b6c0: 2e20 5765 2070 6173 7320 4d69 6e4d 696e . We pass MinMin │ │ │ │ -0003b6d0: 6f72 7346 756e 6374 696f 6e20 6120 6675 orsFunction a fu │ │ │ │ -0003b6e0: 6e63 7469 6f6e 2077 6869 6368 2073 656e nction which sen │ │ │ │ -0003b6f0: 6473 2074 6865 206d 696e 696d 756d 0a6e ds the minimum.n │ │ │ │ -0003b700: 756d 6265 7220 6f66 206d 696e 6f72 7320 umber of minors │ │ │ │ -0003b710: 6e65 6564 6564 2074 6f20 7665 7269 6679 needed to verify │ │ │ │ -0003b720: 2074 6861 7420 736f 6d65 7468 696e 6720 that something │ │ │ │ -0003b730: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ -0003b740: 6469 6d65 6e73 696f 6e20 246e 240a 2877 dimension $n$.(w │ │ │ │ -0003b750: 6869 6368 2069 7320 616c 7761 7973 2024 hich is always $ │ │ │ │ -0003b760: 6e2b 3124 2920 746f 2074 6865 206e 756d n+1$) to the num │ │ │ │ -0003b770: 6265 7220 6f66 206d 696e 6f72 7320 746f ber of minors to │ │ │ │ -0003b780: 2063 6f6d 7075 7465 2062 6566 6f72 6520 compute before │ │ │ │ -0003b790: 636f 6d70 7574 696e 6720 7468 650a 6469 computing the.di │ │ │ │ -0003b7a0: 6d65 6e73 696f 6e20 6f66 2074 6865 2070 mension of the p │ │ │ │ -0003b7b0: 6172 7469 616c 2069 6465 616c 206f 6620 artial ideal of │ │ │ │ -0003b7c0: 6d69 6e6f 7273 2066 6f72 2074 6865 2066 minors for the f │ │ │ │ -0003b7d0: 6972 7374 2074 696d 652e 2020 2059 6f75 irst time. You │ │ │ │ -0003b7e0: 2063 616e 2073 6565 2074 6861 740a 7468 can see that.th │ │ │ │ -0003b7f0: 7265 6520 6d69 6e6f 7273 2077 6572 6520 ree minors were │ │ │ │ -0003b800: 636f 6d70 7574 6564 2069 6e20 7468 6520 computed in the │ │ │ │ -0003b810: 6162 6f76 6520 6578 616d 706c 6520 6265 above example be │ │ │ │ -0003b820: 666f 7265 2077 6520 6174 7465 6d70 7420 fore we attempt │ │ │ │ -0003b830: 746f 2063 6f6d 7075 7465 0a63 6f64 696d to compute.codim │ │ │ │ -0003b840: 656e 7369 6f6e 2e0a 0a43 6f64 696d 4368 ension...CodimCh │ │ │ │ -0003b850: 6563 6b46 756e 6374 696f 6e2e 2054 6865 eckFunction. The │ │ │ │ -0003b860: 206f 7074 696f 6e20 436f 6469 6d43 6865 option CodimChe │ │ │ │ -0003b870: 636b 4675 6e63 7469 6f6e 2063 6f6e 7472 ckFunction contr │ │ │ │ -0003b880: 6f6c 7320 686f 7720 6672 6571 7565 6e74 ols how frequent │ │ │ │ -0003b890: 6c79 2074 6865 0a64 696d 656e 7369 6f6e ly the.dimension │ │ │ │ -0003b8a0: 206f 6620 7468 6520 7061 7274 6961 6c20 of the partial │ │ │ │ -0003b8b0: 6964 6561 6c20 6f66 206d 696e 6f72 7320 ideal of minors │ │ │ │ -0003b8c0: 6973 2063 6f6d 7075 7465 642e 2020 466f is computed. Fo │ │ │ │ -0003b8d0: 7220 696e 7374 616e 6365 2c20 7365 7474 r instance, sett │ │ │ │ -0003b8e0: 696e 670a 436f 6469 6d43 6865 636b 4675 ing.CodimCheckFu │ │ │ │ -0003b8f0: 6e63 7469 6f6e 203d 3e20 7420 2d3e 2074 nction => t -> t │ │ │ │ -0003b900: 2f35 2077 696c 6c20 7361 7920 6974 2073 /5 will say it s │ │ │ │ -0003b910: 686f 756c 6420 636f 6d70 7574 6520 6469 hould compute di │ │ │ │ -0003b920: 6d65 6e73 696f 6e20 6166 7465 7220 6576 mension after ev │ │ │ │ -0003b930: 6572 790a 3520 6d69 6e6f 7273 2061 7265 ery.5 minors are │ │ │ │ -0003b940: 2065 7861 6d69 6e65 642e 2020 496e 2067 examined. In g │ │ │ │ -0003b950: 656e 6572 616c 2c20 6166 7465 7220 7468 eneral, after th │ │ │ │ -0003b960: 6520 6f75 7470 7574 206f 6620 7468 6520 e output of the │ │ │ │ -0003b970: 436f 6469 6d43 6865 636b 4675 6e63 7469 CodimCheckFuncti │ │ │ │ -0003b980: 6f6e 0a69 6e63 7265 6173 6573 2062 7920 on.increases by │ │ │ │ -0003b990: 616e 2069 6e74 6567 6572 2077 6520 636f an integer we co │ │ │ │ -0003b9a0: 6d70 7574 6520 7468 6520 636f 6469 6d65 mpute the codime │ │ │ │ -0003b9b0: 6e73 696f 6e20 6167 6169 6e2e 2020 5468 nsion again. Th │ │ │ │ -0003b9c0: 6520 6465 6661 756c 7420 6675 6e63 7469 e default functi │ │ │ │ -0003b9d0: 6f6e 0a68 6173 2074 6865 2073 7061 6365 on.has the space │ │ │ │ -0003b9e0: 2062 6574 7765 656e 2063 6f6d 7075 7461 between computa │ │ │ │ -0003b9f0: 7469 6f6e 7320 6772 6f77 2065 7870 6f6e tions grow expon │ │ │ │ -0003ba00: 656e 7469 616c 6c79 2e0a 0a2b 2d2d 2d2d entially...+---- │ │ │ │ -0003ba10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ba20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ba30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ba40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ba50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ -0003ba60: 3a20 7469 6d65 2072 6567 756c 6172 496e : time regularIn │ │ │ │ -0003ba70: 436f 6469 6d65 6e73 696f 6e28 312c 2053 Codimension(1, S │ │ │ │ -0003ba80: 2f4a 2c20 4d61 784d 696e 6f72 733d 3e32 /J, MaxMinors=>2 │ │ │ │ -0003ba90: 352c 2043 6f64 696d 4368 6563 6b46 756e 5, CodimCheckFun │ │ │ │ -0003baa0: 6374 696f 6e20 3d3e 207c 0a7c 202d 2d20 ction => |.| -- │ │ │ │ -0003bab0: 7573 6564 2030 2e37 3339 3834 3473 2028 used 0.739844s ( │ │ │ │ -0003bac0: 6370 7529 3b20 302e 3530 3430 3835 7320 cpu); 0.504085s │ │ │ │ -0003bad0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -0003bae0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0003baf0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003bb00: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bb10: 3a20 7269 6e67 2064 696d 656e 7369 6f6e : ring dimension │ │ │ │ -0003bb20: 203d 342c 2074 6865 7265 2061 7265 2031 =4, there are 1 │ │ │ │ -0003bb30: 3436 3531 3238 2070 6f73 7369 626c 6520 465128 possible │ │ │ │ -0003bb40: 3520 6279 2035 206d 697c 0a7c 7265 6775 5 by 5 mi|.|regu │ │ │ │ -0003bb50: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bb60: 3a20 4162 6f75 7420 746f 2065 6e74 6572 : About to enter │ │ │ │ -0003bb70: 206c 6f6f 7020 2020 2020 2020 2020 2020 loop │ │ │ │ -0003bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb90: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bba0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bbb0: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003bbc0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003b600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b650: 2020 207c 0a7c 7465 6420 3d20 3130 2e20 |.|ted = 10. │ │ │ │ +0003b660: 2073 696e 6775 6c61 7220 6c6f 6375 7320 singular locus │ │ │ │ +0003b670: 6469 6d65 6e73 696f 6e20 6170 7065 6172 dimension appear │ │ │ │ +0003b680: 7320 746f 2062 6520 3d20 3320 2020 2020 s to be = 3 │ │ │ │ +0003b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b6a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0003b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003b6f0: 2d2d 2d2b 0a0a 4d69 6e4d 696e 6f72 7346 ---+..MinMinorsF │ │ │ │ +0003b700: 756e 6374 696f 6e2e 2057 6520 7061 7373 unction. We pass │ │ │ │ +0003b710: 204d 696e 4d69 6e6f 7273 4675 6e63 7469 MinMinorsFuncti │ │ │ │ +0003b720: 6f6e 2061 2066 756e 6374 696f 6e20 7768 on a function wh │ │ │ │ +0003b730: 6963 6820 7365 6e64 7320 7468 6520 6d69 ich sends the mi │ │ │ │ +0003b740: 6e69 6d75 6d0a 6e75 6d62 6572 206f 6620 nimum.number of │ │ │ │ +0003b750: 6d69 6e6f 7273 206e 6565 6465 6420 746f minors needed to │ │ │ │ +0003b760: 2076 6572 6966 7920 7468 6174 2073 6f6d verify that som │ │ │ │ +0003b770: 6574 6869 6e67 2069 7320 7265 6775 6c61 ething is regula │ │ │ │ +0003b780: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ +0003b790: 2024 6e24 0a28 7768 6963 6820 6973 2061 $n$.(which is a │ │ │ │ +0003b7a0: 6c77 6179 7320 246e 2b31 2429 2074 6f20 lways $n+1$) to │ │ │ │ +0003b7b0: 7468 6520 6e75 6d62 6572 206f 6620 6d69 the number of mi │ │ │ │ +0003b7c0: 6e6f 7273 2074 6f20 636f 6d70 7574 6520 nors to compute │ │ │ │ +0003b7d0: 6265 666f 7265 2063 6f6d 7075 7469 6e67 before computing │ │ │ │ +0003b7e0: 2074 6865 0a64 696d 656e 7369 6f6e 206f the.dimension o │ │ │ │ +0003b7f0: 6620 7468 6520 7061 7274 6961 6c20 6964 f the partial id │ │ │ │ +0003b800: 6561 6c20 6f66 206d 696e 6f72 7320 666f eal of minors fo │ │ │ │ +0003b810: 7220 7468 6520 6669 7273 7420 7469 6d65 r the first time │ │ │ │ +0003b820: 2e20 2020 596f 7520 6361 6e20 7365 6520 . You can see │ │ │ │ +0003b830: 7468 6174 0a74 6872 6565 206d 696e 6f72 that.three minor │ │ │ │ +0003b840: 7320 7765 7265 2063 6f6d 7075 7465 6420 s were computed │ │ │ │ +0003b850: 696e 2074 6865 2061 626f 7665 2065 7861 in the above exa │ │ │ │ +0003b860: 6d70 6c65 2062 6566 6f72 6520 7765 2061 mple before we a │ │ │ │ +0003b870: 7474 656d 7074 2074 6f20 636f 6d70 7574 ttempt to comput │ │ │ │ +0003b880: 650a 636f 6469 6d65 6e73 696f 6e2e 0a0a e.codimension... │ │ │ │ +0003b890: 436f 6469 6d43 6865 636b 4675 6e63 7469 CodimCheckFuncti │ │ │ │ +0003b8a0: 6f6e 2e20 5468 6520 6f70 7469 6f6e 2043 on. The option C │ │ │ │ +0003b8b0: 6f64 696d 4368 6563 6b46 756e 6374 696f odimCheckFunctio │ │ │ │ +0003b8c0: 6e20 636f 6e74 726f 6c73 2068 6f77 2066 n controls how f │ │ │ │ +0003b8d0: 7265 7175 656e 746c 7920 7468 650a 6469 requently the.di │ │ │ │ +0003b8e0: 6d65 6e73 696f 6e20 6f66 2074 6865 2070 mension of the p │ │ │ │ +0003b8f0: 6172 7469 616c 2069 6465 616c 206f 6620 artial ideal of │ │ │ │ +0003b900: 6d69 6e6f 7273 2069 7320 636f 6d70 7574 minors is comput │ │ │ │ +0003b910: 6564 2e20 2046 6f72 2069 6e73 7461 6e63 ed. For instanc │ │ │ │ +0003b920: 652c 2073 6574 7469 6e67 0a43 6f64 696d e, setting.Codim │ │ │ │ +0003b930: 4368 6563 6b46 756e 6374 696f 6e20 3d3e CheckFunction => │ │ │ │ +0003b940: 2074 202d 3e20 742f 3520 7769 6c6c 2073 t -> t/5 will s │ │ │ │ +0003b950: 6179 2069 7420 7368 6f75 6c64 2063 6f6d ay it should com │ │ │ │ +0003b960: 7075 7465 2064 696d 656e 7369 6f6e 2061 pute dimension a │ │ │ │ +0003b970: 6674 6572 2065 7665 7279 0a35 206d 696e fter every.5 min │ │ │ │ +0003b980: 6f72 7320 6172 6520 6578 616d 696e 6564 ors are examined │ │ │ │ +0003b990: 2e20 2049 6e20 6765 6e65 7261 6c2c 2061 . In general, a │ │ │ │ +0003b9a0: 6674 6572 2074 6865 206f 7574 7075 7420 fter the output │ │ │ │ +0003b9b0: 6f66 2074 6865 2043 6f64 696d 4368 6563 of the CodimChec │ │ │ │ +0003b9c0: 6b46 756e 6374 696f 6e0a 696e 6372 6561 kFunction.increa │ │ │ │ +0003b9d0: 7365 7320 6279 2061 6e20 696e 7465 6765 ses by an intege │ │ │ │ +0003b9e0: 7220 7765 2063 6f6d 7075 7465 2074 6865 r we compute the │ │ │ │ +0003b9f0: 2063 6f64 696d 656e 7369 6f6e 2061 6761 codimension aga │ │ │ │ +0003ba00: 696e 2e20 2054 6865 2064 6566 6175 6c74 in. The default │ │ │ │ +0003ba10: 2066 756e 6374 696f 6e0a 6861 7320 7468 function.has th │ │ │ │ +0003ba20: 6520 7370 6163 6520 6265 7477 6565 6e20 e space between │ │ │ │ +0003ba30: 636f 6d70 7574 6174 696f 6e73 2067 726f computations gro │ │ │ │ +0003ba40: 7720 6578 706f 6e65 6e74 6961 6c6c 792e w exponentially. │ │ │ │ +0003ba50: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0003ba60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ba70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ba80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ba90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003baa0: 2b0a 7c69 3130 203a 2074 696d 6520 7265 +.|i10 : time re │ │ │ │ +0003bab0: 6775 6c61 7249 6e43 6f64 696d 656e 7369 gularInCodimensi │ │ │ │ +0003bac0: 6f6e 2831 2c20 532f 4a2c 204d 6178 4d69 on(1, S/J, MaxMi │ │ │ │ +0003bad0: 6e6f 7273 3d3e 3235 2c20 436f 6469 6d43 nors=>25, CodimC │ │ │ │ +0003bae0: 6865 636b 4675 6e63 7469 6f6e 203d 3e20 heckFunction => │ │ │ │ +0003baf0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3735 |.| -- used 0.75 │ │ │ │ +0003bb00: 3439 3331 7320 2863 7075 293b 2030 2e35 4931s (cpu); 0.5 │ │ │ │ +0003bb10: 3430 3232 3273 2028 7468 7265 6164 293b 40222s (thread); │ │ │ │ +0003bb20: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +0003bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bb40: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bb50: 6d65 6e73 696f 6e3a 2072 696e 6720 6469 mension: ring di │ │ │ │ +0003bb60: 6d65 6e73 696f 6e20 3d34 2c20 7468 6572 mension =4, ther │ │ │ │ +0003bb70: 6520 6172 6520 3134 3635 3132 3820 706f e are 1465128 po │ │ │ │ +0003bb80: 7373 6962 6c65 2035 2062 7920 3520 6d69 ssible 5 by 5 mi │ │ │ │ +0003bb90: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bba0: 6d65 6e73 696f 6e3a 2041 626f 7574 2074 mension: About t │ │ │ │ +0003bbb0: 6f20 656e 7465 7220 6c6f 6f70 2020 2020 o enter loop │ │ │ │ +0003bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bbe0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bbf0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bc00: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003bc10: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003bbe0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bbf0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bc00: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003bc10: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ 0003bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc30: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003bc40: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bc50: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003bc60: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003bc70: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003bc80: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003bc90: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bca0: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003bcb0: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003bcc0: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003bcd0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003bce0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bcf0: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003bd00: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003bd10: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003bd20: 3420 2020 2020 2020 207c 0a7c 696e 7465 4 |.|inte │ │ │ │ -0003bd30: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bd40: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003bd50: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ -0003bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd70: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bd80: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bd90: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003bda0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +0003bc30: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bc40: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bc50: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003bc60: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ +0003bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bc80: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bc90: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003bca0: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003bcb0: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003bcc0: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003bcd0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bce0: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003bcf0: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003bd00: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003bd10: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003bd20: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bd30: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003bd40: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003bd50: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003bd60: 7465 642c 203d 2034 2020 2020 2020 2020 ted, = 4 │ │ │ │ +0003bd70: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bd80: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bd90: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bdc0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bdd0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bde0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ +0003bdc0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bdd0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bde0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ 0003bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003be10: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003be20: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003be30: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003be40: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003be50: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003be60: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003be70: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003be80: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003be90: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003bea0: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003beb0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003bec0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003bed0: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003bee0: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003bef0: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003bf00: 3420 2020 2020 2020 207c 0a7c 696e 7465 4 |.|inte │ │ │ │ -0003bf10: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bf20: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003bf30: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ -0003bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bf50: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bf60: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bf70: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003bf80: 6c6c 6573 7420 2020 2020 2020 2020 2020 llest │ │ │ │ +0003be10: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003be20: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003be30: 2052 616e 646f 6d20 2020 2020 2020 2020 Random │ │ │ │ +0003be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003be60: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003be70: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003be80: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003be90: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003bea0: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003beb0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bec0: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003bed0: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003bee0: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003bef0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003bf00: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003bf10: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003bf20: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003bf30: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003bf40: 7465 642c 203d 2034 2020 2020 2020 2020 ted, = 4 │ │ │ │ +0003bf50: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bf60: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bf70: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003bf80: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ 0003bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bfa0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003bfb0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003bfc0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ -0003bfd0: 4e6f 6e5a 6572 6f20 2020 2020 2020 2020 NonZero │ │ │ │ +0003bfa0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003bfb0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003bfc0: 204c 6578 536d 616c 6c65 7374 2020 2020 LexSmallest │ │ │ │ +0003bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bff0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c000: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c010: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c020: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +0003bff0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c000: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c010: 2052 616e 646f 6d4e 6f6e 5a65 726f 2020 RandomNonZero │ │ │ │ +0003c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c040: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c050: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c060: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c070: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +0003c040: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c050: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c060: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c090: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c0a0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c0b0: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003c0c0: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003c0d0: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003c0e0: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003c0f0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c100: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003c110: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003c120: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003c130: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c140: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c150: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003c160: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003c170: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003c180: 3420 2020 2020 2020 207c 0a7c 696e 7465 4 |.|inte │ │ │ │ -0003c190: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c1a0: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c1b0: 6c6c 6573 7454 6572 6d20 2020 2020 2020 llestTerm │ │ │ │ -0003c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c1d0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c1e0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c1f0: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c200: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003c090: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c0a0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c0b0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c0e0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c0f0: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003c100: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003c110: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003c120: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003c130: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c140: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003c150: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003c160: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003c170: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c180: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c190: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003c1a0: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003c1b0: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003c1c0: 7465 642c 203d 2034 2020 2020 2020 2020 ted, = 4 │ │ │ │ +0003c1d0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c1e0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c1f0: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +0003c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c220: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c230: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c240: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c250: 6c6c 6573 7420 2020 2020 2020 2020 2020 llest │ │ │ │ +0003c220: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c230: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c240: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c250: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ 0003c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c270: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c280: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c290: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c2a0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +0003c270: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c280: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c290: 204c 6578 536d 616c 6c65 7374 2020 2020 LexSmallest │ │ │ │ +0003c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c2c0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c2d0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c2e0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ -0003c2f0: 4e6f 6e5a 6572 6f20 2020 2020 2020 2020 NonZero │ │ │ │ +0003c2c0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c2d0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c2e0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c310: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c320: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c330: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003c340: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003c350: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003c360: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003c370: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c380: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003c390: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003c3a0: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003c3b0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c3c0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c3d0: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003c3e0: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003c3f0: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003c400: 3320 2020 2020 2020 207c 0a7c 696e 7465 3 |.|inte │ │ │ │ -0003c410: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c420: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c430: 6c6c 6573 7420 2020 2020 2020 2020 2020 llest │ │ │ │ -0003c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c450: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c460: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c470: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c480: 6c6c 6573 7454 6572 6d20 2020 2020 2020 llestTerm │ │ │ │ +0003c310: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c320: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c330: 2052 616e 646f 6d4e 6f6e 5a65 726f 2020 RandomNonZero │ │ │ │ +0003c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c360: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c370: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003c380: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003c390: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003c3a0: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003c3b0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c3c0: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003c3d0: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003c3e0: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003c3f0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c400: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c410: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003c420: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003c430: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003c440: 7465 642c 203d 2033 2020 2020 2020 2020 ted, = 3 │ │ │ │ +0003c450: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c460: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c470: 204c 6578 536d 616c 6c65 7374 2020 2020 LexSmallest │ │ │ │ +0003c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c4a0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c4b0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c4c0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ -0003c4d0: 4e6f 6e5a 6572 6f20 2020 2020 2020 2020 NonZero │ │ │ │ +0003c4a0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c4b0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c4c0: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +0003c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c4f0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c500: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c510: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c520: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003c4f0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c500: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c510: 2052 616e 646f 6d4e 6f6e 5a65 726f 2020 RandomNonZero │ │ │ │ +0003c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c540: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c550: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c560: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c570: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003c540: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c550: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c560: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c570: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ 0003c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c590: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c5a0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c5b0: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003c5c0: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003c5d0: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003c5e0: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003c5f0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c600: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003c610: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003c620: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003c630: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c640: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c650: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003c660: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003c670: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003c680: 3320 2020 2020 2020 207c 0a7c 696e 7465 3 |.|inte │ │ │ │ -0003c690: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c6a0: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c6b0: 6c6c 6573 7420 2020 2020 2020 2020 2020 llest │ │ │ │ -0003c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c6d0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c6e0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c6f0: 2043 686f 6f73 696e 6720 5261 6e64 6f6d Choosing Random │ │ │ │ -0003c700: 4e6f 6e5a 6572 6f20 2020 2020 2020 2020 NonZero │ │ │ │ +0003c590: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c5a0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c5b0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c5c0: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ +0003c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c5e0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c5f0: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003c600: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003c610: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003c620: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003c630: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c640: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003c650: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003c660: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003c670: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c680: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c690: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003c6a0: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003c6b0: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003c6c0: 7465 642c 203d 2033 2020 2020 2020 2020 ted, = 3 │ │ │ │ +0003c6d0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c6e0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c6f0: 204c 6578 536d 616c 6c65 7374 2020 2020 LexSmallest │ │ │ │ +0003c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c720: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c730: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c740: 2043 686f 6f73 696e 6720 4c65 7853 6d61 Choosing LexSma │ │ │ │ -0003c750: 6c6c 6573 7454 6572 6d20 2020 2020 2020 llestTerm │ │ │ │ +0003c720: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c730: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c740: 2052 616e 646f 6d4e 6f6e 5a65 726f 2020 RandomNonZero │ │ │ │ +0003c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c770: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c780: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c790: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c7a0: 7853 6d61 6c6c 6573 7420 2020 2020 2020 xSmallest │ │ │ │ +0003c770: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c780: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c790: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +0003c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c7c0: 2020 2020 2020 2020 207c 0a7c 696e 7465 |.|inte │ │ │ │ -0003c7d0: 726e 616c 4368 6f6f 7365 4d69 6e6f 723a rnalChooseMinor: │ │ │ │ -0003c7e0: 2043 686f 6f73 696e 6720 4752 6576 4c65 Choosing GRevLe │ │ │ │ -0003c7f0: 7853 6d61 6c6c 6573 7454 6572 6d20 2020 xSmallestTerm │ │ │ │ +0003c7c0: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c7d0: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c7e0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c810: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c820: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c830: 3a20 204c 6f6f 7020 7374 6570 2c20 6162 : Loop step, ab │ │ │ │ -0003c840: 6f75 7420 746f 2063 6f6d 7075 7465 2064 out to compute d │ │ │ │ -0003c850: 696d 656e 7369 6f6e 2e20 2053 7562 6d61 imension. Subma │ │ │ │ -0003c860: 7472 6963 6573 2063 6f7c 0a7c 7265 6775 trices co|.|regu │ │ │ │ -0003c870: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c880: 3a20 2069 7343 6f64 696d 4174 4c65 6173 : isCodimAtLeas │ │ │ │ -0003c890: 7420 6661 696c 6564 2c20 636f 6d70 7574 t failed, comput │ │ │ │ -0003c8a0: 696e 6720 636f 6469 6d2e 2020 2020 2020 ing codim. │ │ │ │ -0003c8b0: 2020 2020 2020 2020 207c 0a7c 7265 6775 |.|regu │ │ │ │ -0003c8c0: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c8d0: 3a20 2070 6172 7469 616c 2073 696e 6775 : partial singu │ │ │ │ -0003c8e0: 6c61 7220 6c6f 6375 7320 6469 6d65 6e73 lar locus dimens │ │ │ │ -0003c8f0: 696f 6e20 636f 6d70 7574 6564 2c20 3d20 ion computed, = │ │ │ │ -0003c900: 3320 2020 2020 2020 207c 0a7c 7265 6775 3 |.|regu │ │ │ │ -0003c910: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003c920: 3a20 204c 6f6f 7020 636f 6d70 6c65 7465 : Loop complete │ │ │ │ -0003c930: 642c 2073 7562 6d61 7472 6963 6573 2063 d, submatrices c │ │ │ │ -0003c940: 6f6e 7369 6465 7265 6420 3d20 3235 2c20 onsidered = 25, │ │ │ │ -0003c950: 616e 6420 636f 6d70 757c 0a7c 2d2d 2d2d and compu|.|---- │ │ │ │ -0003c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c9a0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 742d 3e74 ---------|.|t->t │ │ │ │ -0003c9b0: 2f35 2c20 4d69 6e4d 696e 6f72 7346 756e /5, MinMinorsFun │ │ │ │ -0003c9c0: 6374 696f 6e20 3d3e 2074 2d3e 322c 2056 ction => t->2, V │ │ │ │ -0003c9d0: 6572 626f 7365 3d3e 7472 7565 2920 2020 erbose=>true) │ │ │ │ -0003c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c9f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c810: 7c0a 7c69 6e74 6572 6e61 6c43 686f 6f73 |.|internalChoos │ │ │ │ +0003c820: 654d 696e 6f72 3a20 4368 6f6f 7369 6e67 eMinor: Choosing │ │ │ │ +0003c830: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +0003c840: 5465 726d 2020 2020 2020 2020 2020 2020 Term │ │ │ │ +0003c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c860: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c870: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2073 mension: Loop s │ │ │ │ +0003c880: 7465 702c 2061 626f 7574 2074 6f20 636f tep, about to co │ │ │ │ +0003c890: 6d70 7574 6520 6469 6d65 6e73 696f 6e2e mpute dimension. │ │ │ │ +0003c8a0: 2020 5375 626d 6174 7269 6365 7320 636f Submatrices co │ │ │ │ +0003c8b0: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c8c0: 6d65 6e73 696f 6e3a 2020 6973 436f 6469 mension: isCodi │ │ │ │ +0003c8d0: 6d41 744c 6561 7374 2066 6169 6c65 642c mAtLeast failed, │ │ │ │ +0003c8e0: 2063 6f6d 7075 7469 6e67 2063 6f64 696d computing codim │ │ │ │ +0003c8f0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ +0003c900: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c910: 6d65 6e73 696f 6e3a 2020 7061 7274 6961 mension: partia │ │ │ │ +0003c920: 6c20 7369 6e67 756c 6172 206c 6f63 7573 l singular locus │ │ │ │ +0003c930: 2064 696d 656e 7369 6f6e 2063 6f6d 7075 dimension compu │ │ │ │ +0003c940: 7465 642c 203d 2033 2020 2020 2020 2020 ted, = 3 │ │ │ │ +0003c950: 7c0a 7c72 6567 756c 6172 496e 436f 6469 |.|regularInCodi │ │ │ │ +0003c960: 6d65 6e73 696f 6e3a 2020 4c6f 6f70 2063 mension: Loop c │ │ │ │ +0003c970: 6f6d 706c 6574 6564 2c20 7375 626d 6174 ompleted, submat │ │ │ │ +0003c980: 7269 6365 7320 636f 6e73 6964 6572 6564 rices considered │ │ │ │ +0003c990: 203d 2032 352c 2061 6e64 2063 6f6d 7075 = 25, and compu │ │ │ │ +0003c9a0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +0003c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003c9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003c9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003c9f0: 7c0a 7c74 2d3e 742f 352c 204d 696e 4d69 |.|t->t/5, MinMi │ │ │ │ +0003ca00: 6e6f 7273 4675 6e63 7469 6f6e 203d 3e20 norsFunction => │ │ │ │ +0003ca10: 742d 3e32 2c20 5665 7262 6f73 653d 3e74 t->2, Verbose=>t │ │ │ │ +0003ca20: 7275 6529 2020 2020 2020 2020 2020 2020 rue) │ │ │ │ 0003ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca40: 2020 2020 2020 2020 207c 0a7c 6e6f 7273 |.|nors │ │ │ │ -0003ca50: 2c20 7765 2077 696c 6c20 636f 6d70 7574 , we will comput │ │ │ │ -0003ca60: 6520 7570 2074 6f20 3235 206f 6620 7468 e up to 25 of th │ │ │ │ -0003ca70: 656d 2e20 2020 2020 2020 2020 2020 2020 em. │ │ │ │ +0003ca40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ca90: 7c0a 7c6e 6f72 732c 2077 6520 7769 6c6c |.|nors, we will │ │ │ │ +0003caa0: 2063 6f6d 7075 7465 2075 7020 746f 2032 compute up to 2 │ │ │ │ +0003cab0: 3520 6f66 2074 6865 6d2e 2020 2020 2020 5 of them. │ │ │ │ 0003cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cae0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cb30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb80: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003cb90: 6572 6564 3a20 322c 2061 6e64 2063 6f6d ered: 2, and com │ │ │ │ -0003cba0: 7075 7465 6420 3d20 3220 2020 2020 2020 puted = 2 │ │ │ │ +0003cb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cbd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003cbd0: 7c0a 7c6e 7369 6465 7265 643a 2032 2c20 |.|nsidered: 2, │ │ │ │ +0003cbe0: 616e 6420 636f 6d70 7574 6564 203d 2032 and computed = 2 │ │ │ │ 0003cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cc20: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cc70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ccc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ccc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cd10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cd10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cd60: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003cd70: 6572 6564 3a20 352c 2061 6e64 2063 6f6d ered: 5, and com │ │ │ │ -0003cd80: 7075 7465 6420 3d20 3520 2020 2020 2020 puted = 5 │ │ │ │ +0003cd60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cdb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003cdb0: 7c0a 7c6e 7369 6465 7265 643a 2035 2c20 |.|nsidered: 5, │ │ │ │ +0003cdc0: 616e 6420 636f 6d70 7574 6564 203d 2035 and computed = 5 │ │ │ │ 0003cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ce00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ce00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ce50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003ce50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cea0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cef0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cef0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cf40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cf40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cf90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003cf90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cfe0: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003cff0: 6572 6564 3a20 3130 2c20 616e 6420 636f ered: 10, and co │ │ │ │ -0003d000: 6d70 7574 6564 203d 2031 3020 2020 2020 mputed = 10 │ │ │ │ +0003cfe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d030: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d030: 7c0a 7c6e 7369 6465 7265 643a 2031 302c |.|nsidered: 10, │ │ │ │ +0003d040: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ +0003d050: 3130 2020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ 0003d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d080: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d080: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d0d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d0d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d120: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d170: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d1c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d1c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d210: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d260: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003d270: 6572 6564 3a20 3135 2c20 616e 6420 636f ered: 15, and co │ │ │ │ -0003d280: 6d70 7574 6564 203d 2031 3520 2020 2020 mputed = 15 │ │ │ │ +0003d260: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d2b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d2b0: 7c0a 7c6e 7369 6465 7265 643a 2031 352c |.|nsidered: 15, │ │ │ │ +0003d2c0: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ +0003d2d0: 3135 2020 2020 2020 2020 2020 2020 2020 15 │ │ │ │ 0003d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d300: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d3a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d3a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d3f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d3f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d440: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d440: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d490: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d4e0: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003d4f0: 6572 6564 3a20 3230 2c20 616e 6420 636f ered: 20, and co │ │ │ │ -0003d500: 6d70 7574 6564 203d 2031 3820 2020 2020 mputed = 18 │ │ │ │ +0003d4e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d530: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d530: 7c0a 7c6e 7369 6465 7265 643a 2032 302c |.|nsidered: 20, │ │ │ │ +0003d540: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ +0003d550: 3138 2020 2020 2020 2020 2020 2020 2020 18 │ │ │ │ 0003d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d580: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d580: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d5d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d5d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d620: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d620: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d670: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d670: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d6c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d6c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d710: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d760: 2020 2020 2020 2020 207c 0a7c 6e73 6964 |.|nsid │ │ │ │ -0003d770: 6572 6564 3a20 3235 2c20 616e 6420 636f ered: 25, and co │ │ │ │ -0003d780: 6d70 7574 6564 203d 2032 3320 2020 2020 mputed = 23 │ │ │ │ +0003d760: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0003d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d7b0: 7c0a 7c6e 7369 6465 7265 643a 2032 352c |.|nsidered: 25, │ │ │ │ +0003d7c0: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ +0003d7d0: 3233 2020 2020 2020 2020 2020 2020 2020 23 │ │ │ │ 0003d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d800: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0003d800: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d850: 2020 2020 2020 2020 207c 0a7c 7465 6420 |.|ted │ │ │ │ -0003d860: 3d20 3233 2e20 2073 696e 6775 6c61 7220 = 23. singular │ │ │ │ -0003d870: 6c6f 6375 7320 6469 6d65 6e73 696f 6e20 locus dimension │ │ │ │ -0003d880: 6170 7065 6172 7320 746f 2062 6520 3d20 appears to be = │ │ │ │ -0003d890: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0003d8a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0003d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 6973 436f ---------+..isCo │ │ │ │ -0003d900: 6469 6d41 744c 6561 7374 2061 6e64 2064 dimAtLeast and d │ │ │ │ -0003d910: 696d 2e20 2057 6520 7365 6520 7468 6520 im. We see the │ │ │ │ -0003d920: 6c69 6e65 7320 6162 6f75 7420 7468 6520 lines about the │ │ │ │ -0003d930: 6060 6973 436f 6469 6d41 744c 6561 7374 ``isCodimAtLeast │ │ │ │ -0003d940: 2066 6169 6c65 6427 272e 0a54 6869 7320 failed''..This │ │ │ │ -0003d950: 6d65 616e 7320 7468 6174 2069 7343 6f64 means that isCod │ │ │ │ -0003d960: 696d 4174 4c65 6173 7420 7761 7320 6e6f imAtLeast was no │ │ │ │ -0003d970: 7420 656e 6f75 6768 206f 6e20 6974 7320 t enough on its │ │ │ │ -0003d980: 6f77 6e20 746f 2076 6572 6966 7920 7468 own to verify th │ │ │ │ -0003d990: 6174 206f 7572 0a72 696e 6720 6973 2072 at our.ring is r │ │ │ │ -0003d9a0: 6567 756c 6172 2069 6e20 636f 6469 6d65 egular in codime │ │ │ │ -0003d9b0: 6e73 696f 6e20 312e 2020 4166 7465 7220 nsion 1. After │ │ │ │ -0003d9c0: 7468 6973 2c20 6060 7061 7274 6961 6c20 this, ``partial │ │ │ │ -0003d9d0: 7369 6e67 756c 6172 206c 6f63 7573 0a64 singular locus.d │ │ │ │ -0003d9e0: 696d 656e 7369 6f6e 2063 6f6d 7075 7465 imension compute │ │ │ │ -0003d9f0: 6427 2720 696e 6469 6361 7465 7320 7765 d'' indicates we │ │ │ │ -0003da00: 2064 6964 2061 2063 6f6d 706c 6574 6520 did a complete │ │ │ │ -0003da10: 6469 6d65 6e73 696f 6e20 636f 6d70 7574 dimension comput │ │ │ │ -0003da20: 6174 696f 6e20 6f66 2074 6865 0a70 6172 ation of the.par │ │ │ │ -0003da30: 7469 616c 2069 6465 616c 2064 6566 696e tial ideal defin │ │ │ │ -0003da40: 696e 6720 7468 6520 7369 6e67 756c 6172 ing the singular │ │ │ │ -0003da50: 206c 6f63 7573 2e20 2048 6f77 2069 7343 locus. How isC │ │ │ │ -0003da60: 6f64 696d 4174 4c65 6173 7420 6973 2063 odimAtLeast is c │ │ │ │ -0003da70: 616c 6c65 6420 6361 6e20 6265 0a63 6f6e alled can be.con │ │ │ │ -0003da80: 7472 6f6c 6c65 6420 7669 6120 7468 6520 trolled via the │ │ │ │ -0003da90: 6f70 7469 6f6e 7320 5350 6169 7273 4675 options SPairsFu │ │ │ │ -0003daa0: 6e63 7469 6f6e 2061 6e64 2050 6169 724c nction and PairL │ │ │ │ -0003dab0: 696d 6974 2c20 7768 6963 6820 6172 6520 imit, which are │ │ │ │ -0003dac0: 7369 6d70 6c79 0a70 6173 7365 6420 746f simply.passed to │ │ │ │ -0003dad0: 202a 6e6f 7465 2069 7343 6f64 696d 4174 *note isCodimAt │ │ │ │ -0003dae0: 4c65 6173 743a 2069 7343 6f64 696d 4174 Least: isCodimAt │ │ │ │ -0003daf0: 4c65 6173 742c 2e20 2059 6f75 2063 616e Least,. You can │ │ │ │ -0003db00: 2066 6f72 6365 2074 6865 2066 756e 6374 force the funct │ │ │ │ -0003db10: 696f 6e20 746f 0a6f 6e6c 7920 7573 6520 ion to.only use │ │ │ │ -0003db20: 6973 436f 6469 6d41 744c 6561 7374 2061 isCodimAtLeast a │ │ │ │ -0003db30: 6e64 206e 6f74 2063 616c 6c20 6469 6d65 nd not call dime │ │ │ │ -0003db40: 6e73 696f 6e20 6279 2073 6574 7469 6e67 nsion by setting │ │ │ │ -0003db50: 2055 7365 4f6e 6c79 4661 7374 436f 6469 UseOnlyFastCodi │ │ │ │ -0003db60: 6d20 3d3e 0a74 7275 652e 0a0a 2b2d 2d2d m =>.true...+--- │ │ │ │ -0003db70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -0003dbc0: 203a 2074 696d 6520 7265 6775 6c61 7249 : time regularI │ │ │ │ -0003dbd0: 6e43 6f64 696d 656e 7369 6f6e 2831 2c20 nCodimension(1, │ │ │ │ -0003dbe0: 532f 4a2c 204d 6178 4d69 6e6f 7273 3d3e S/J, MaxMinors=> │ │ │ │ -0003dbf0: 3235 2c20 5573 654f 6e6c 7946 6173 7443 25, UseOnlyFastC │ │ │ │ -0003dc00: 6f64 696d 203d 3e20 7472 7c0a 7c20 2d2d odim => tr|.| -- │ │ │ │ -0003dc10: 2075 7365 6420 302e 3438 3230 3737 7320 used 0.482077s │ │ │ │ -0003dc20: 2863 7075 293b 2030 2e33 3134 3130 3773 (cpu); 0.314107s │ │ │ │ -0003dc30: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -0003dc40: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ -0003dc50: 2020 2020 2020 2020 2020 7c0a 7c72 6567 |.|reg │ │ │ │ -0003dc60: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003dc70: 6e3a 2072 696e 6720 6469 6d65 6e73 696f n: ring dimensio │ │ │ │ -0003dc80: 6e20 3d34 2c20 7468 6572 6520 6172 6520 n =4, there are │ │ │ │ -0003dc90: 3134 3635 3132 3820 706f 7373 6962 6c65 1465128 possible │ │ │ │ -0003dca0: 2035 2062 7920 3520 6d69 7c0a 7c72 6567 5 by 5 mi|.|reg │ │ │ │ -0003dcb0: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003dcc0: 6e3a 2041 626f 7574 2074 6f20 656e 7465 n: About to ente │ │ │ │ -0003dcd0: 7220 6c6f 6f70 2020 2020 2020 2020 2020 r loop │ │ │ │ -0003dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dcf0: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003dd00: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003dd10: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003dd20: 6578 536d 616c 6c65 7374 2020 2020 2020 exSmallest │ │ │ │ +0003d850: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d8a0: 7c0a 7c74 6564 203d 2032 332e 2020 7369 |.|ted = 23. si │ │ │ │ +0003d8b0: 6e67 756c 6172 206c 6f63 7573 2064 696d ngular locus dim │ │ │ │ +0003d8c0: 656e 7369 6f6e 2061 7070 6561 7273 2074 ension appears t │ │ │ │ +0003d8d0: 6f20 6265 203d 2033 2020 2020 2020 2020 o be = 3 │ │ │ │ +0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d8f0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003d940: 2b0a 0a69 7343 6f64 696d 4174 4c65 6173 +..isCodimAtLeas │ │ │ │ +0003d950: 7420 616e 6420 6469 6d2e 2020 5765 2073 t and dim. We s │ │ │ │ +0003d960: 6565 2074 6865 206c 696e 6573 2061 626f ee the lines abo │ │ │ │ +0003d970: 7574 2074 6865 2060 6069 7343 6f64 696d ut the ``isCodim │ │ │ │ +0003d980: 4174 4c65 6173 7420 6661 696c 6564 2727 AtLeast failed'' │ │ │ │ +0003d990: 2e0a 5468 6973 206d 6561 6e73 2074 6861 ..This means tha │ │ │ │ +0003d9a0: 7420 6973 436f 6469 6d41 744c 6561 7374 t isCodimAtLeast │ │ │ │ +0003d9b0: 2077 6173 206e 6f74 2065 6e6f 7567 6820 was not enough │ │ │ │ +0003d9c0: 6f6e 2069 7473 206f 776e 2074 6f20 7665 on its own to ve │ │ │ │ +0003d9d0: 7269 6679 2074 6861 7420 6f75 720a 7269 rify that our.ri │ │ │ │ +0003d9e0: 6e67 2069 7320 7265 6775 6c61 7220 696e ng is regular in │ │ │ │ +0003d9f0: 2063 6f64 696d 656e 7369 6f6e 2031 2e20 codimension 1. │ │ │ │ +0003da00: 2041 6674 6572 2074 6869 732c 2060 6070 After this, ``p │ │ │ │ +0003da10: 6172 7469 616c 2073 696e 6775 6c61 7220 artial singular │ │ │ │ +0003da20: 6c6f 6375 730a 6469 6d65 6e73 696f 6e20 locus.dimension │ │ │ │ +0003da30: 636f 6d70 7574 6564 2727 2069 6e64 6963 computed'' indic │ │ │ │ +0003da40: 6174 6573 2077 6520 6469 6420 6120 636f ates we did a co │ │ │ │ +0003da50: 6d70 6c65 7465 2064 696d 656e 7369 6f6e mplete dimension │ │ │ │ +0003da60: 2063 6f6d 7075 7461 7469 6f6e 206f 6620 computation of │ │ │ │ +0003da70: 7468 650a 7061 7274 6961 6c20 6964 6561 the.partial idea │ │ │ │ +0003da80: 6c20 6465 6669 6e69 6e67 2074 6865 2073 l defining the s │ │ │ │ +0003da90: 696e 6775 6c61 7220 6c6f 6375 732e 2020 ingular locus. │ │ │ │ +0003daa0: 486f 7720 6973 436f 6469 6d41 744c 6561 How isCodimAtLea │ │ │ │ +0003dab0: 7374 2069 7320 6361 6c6c 6564 2063 616e st is called can │ │ │ │ +0003dac0: 2062 650a 636f 6e74 726f 6c6c 6564 2076 be.controlled v │ │ │ │ +0003dad0: 6961 2074 6865 206f 7074 696f 6e73 2053 ia the options S │ │ │ │ +0003dae0: 5061 6972 7346 756e 6374 696f 6e20 616e PairsFunction an │ │ │ │ +0003daf0: 6420 5061 6972 4c69 6d69 742c 2077 6869 d PairLimit, whi │ │ │ │ +0003db00: 6368 2061 7265 2073 696d 706c 790a 7061 ch are simply.pa │ │ │ │ +0003db10: 7373 6564 2074 6f20 2a6e 6f74 6520 6973 ssed to *note is │ │ │ │ +0003db20: 436f 6469 6d41 744c 6561 7374 3a20 6973 CodimAtLeast: is │ │ │ │ +0003db30: 436f 6469 6d41 744c 6561 7374 2c2e 2020 CodimAtLeast,. │ │ │ │ +0003db40: 596f 7520 6361 6e20 666f 7263 6520 7468 You can force th │ │ │ │ +0003db50: 6520 6675 6e63 7469 6f6e 2074 6f0a 6f6e e function to.on │ │ │ │ +0003db60: 6c79 2075 7365 2069 7343 6f64 696d 4174 ly use isCodimAt │ │ │ │ +0003db70: 4c65 6173 7420 616e 6420 6e6f 7420 6361 Least and not ca │ │ │ │ +0003db80: 6c6c 2064 696d 656e 7369 6f6e 2062 7920 ll dimension by │ │ │ │ +0003db90: 7365 7474 696e 6720 5573 654f 6e6c 7946 setting UseOnlyF │ │ │ │ +0003dba0: 6173 7443 6f64 696d 203d 3e0a 7472 7565 astCodim =>.true │ │ │ │ +0003dbb0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0003dbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003dbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003dbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003dbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003dc00: 2d2b 0a7c 6931 3120 3a20 7469 6d65 2072 -+.|i11 : time r │ │ │ │ +0003dc10: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +0003dc20: 696f 6e28 312c 2053 2f4a 2c20 4d61 784d ion(1, S/J, MaxM │ │ │ │ +0003dc30: 696e 6f72 733d 3e32 352c 2055 7365 4f6e inors=>25, UseOn │ │ │ │ +0003dc40: 6c79 4661 7374 436f 6469 6d20 3d3e 2074 lyFastCodim => t │ │ │ │ +0003dc50: 727c 0a7c 202d 2d20 7573 6564 2030 2e34 r|.| -- used 0.4 │ │ │ │ +0003dc60: 3933 3333 3673 2028 6370 7529 3b20 302e 93336s (cpu); 0. │ │ │ │ +0003dc70: 3332 3735 3336 7320 2874 6872 6561 6429 327536s (thread) │ │ │ │ +0003dc80: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +0003dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003dca0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003dcb0: 696d 656e 7369 6f6e 3a20 7269 6e67 2064 imension: ring d │ │ │ │ +0003dcc0: 696d 656e 7369 6f6e 203d 342c 2074 6865 imension =4, the │ │ │ │ +0003dcd0: 7265 2061 7265 2031 3436 3531 3238 2070 re are 1465128 p │ │ │ │ +0003dce0: 6f73 7369 626c 6520 3520 6279 2035 206d ossible 5 by 5 m │ │ │ │ +0003dcf0: 697c 0a7c 7265 6775 6c61 7249 6e43 6f64 i|.|regularInCod │ │ │ │ +0003dd00: 696d 656e 7369 6f6e 3a20 4162 6f75 7420 imension: About │ │ │ │ +0003dd10: 746f 2065 6e74 6572 206c 6f6f 7020 2020 to enter loop │ │ │ │ +0003dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd40: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003dd50: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003dd60: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003dd70: 616c 6c65 7374 2020 2020 2020 2020 2020 allest │ │ │ │ +0003dd40: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003dd50: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003dd60: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003dd70: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0003dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dd90: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003dda0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003ddb0: 3a20 4368 6f6f 7369 6e67 2052 616e 646f : Choosing Rando │ │ │ │ -0003ddc0: 6d4e 6f6e 5a65 726f 2020 2020 2020 2020 mNonZero │ │ │ │ +0003dd90: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003dda0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003ddb0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +0003ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dde0: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003ddf0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003de00: 3a20 4368 6f6f 7369 6e67 2052 616e 646f : Choosing Rando │ │ │ │ -0003de10: 6d4e 6f6e 5a65 726f 2020 2020 2020 2020 mNonZero │ │ │ │ +0003dde0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003ddf0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003de00: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +0003de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de30: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003de40: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003de50: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003de60: 6578 536d 616c 6c65 7374 5465 726d 2020 exSmallestTerm │ │ │ │ +0003de30: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003de40: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003de50: 6720 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 g RandomNonZero │ │ │ │ +0003de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de80: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003de90: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003dea0: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003deb0: 616c 6c65 7374 2020 2020 2020 2020 2020 allest │ │ │ │ +0003de80: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003de90: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003dea0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003deb0: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ 0003dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ded0: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003dee0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003def0: 3a20 4368 6f6f 7369 6e67 2052 616e 646f : Choosing Rando │ │ │ │ -0003df00: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +0003ded0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003dee0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003def0: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +0003df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df20: 2020 2020 2020 2020 2020 7c0a 7c72 6567 |.|reg │ │ │ │ -0003df30: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003df40: 6e3a 2020 4c6f 6f70 2073 7465 702c 2061 n: Loop step, a │ │ │ │ -0003df50: 626f 7574 2074 6f20 636f 6d70 7574 6520 bout to compute │ │ │ │ -0003df60: 6469 6d65 6e73 696f 6e2e 2020 5375 626d dimension. Subm │ │ │ │ -0003df70: 6174 7269 6365 7320 636f 7c0a 7c72 6567 atrices co|.|reg │ │ │ │ -0003df80: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003df90: 6e3a 2020 7061 7274 6961 6c20 7369 6e67 n: partial sing │ │ │ │ -0003dfa0: 756c 6172 206c 6f63 7573 2064 696d 656e ular locus dimen │ │ │ │ -0003dfb0: 7369 6f6e 2063 6f6d 7075 7465 642c 203d sion computed, = │ │ │ │ -0003dfc0: 2034 2020 2020 2020 2020 7c0a 7c69 6e74 4 |.|int │ │ │ │ -0003dfd0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003dfe0: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003dff0: 616c 6c65 7374 2020 2020 2020 2020 2020 allest │ │ │ │ -0003e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e010: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e020: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e030: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003e040: 6578 536d 616c 6c65 7374 5465 726d 2020 exSmallestTerm │ │ │ │ +0003df20: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003df30: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003df40: 6720 5261 6e64 6f6d 2020 2020 2020 2020 g Random │ │ │ │ +0003df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003df70: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003df80: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ +0003df90: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ +0003dfa0: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ +0003dfb0: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ +0003dfc0: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ +0003dfd0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ +0003dfe0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ +0003dff0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ +0003e000: 7574 6564 2c20 3d20 3420 2020 2020 2020 uted, = 4 │ │ │ │ +0003e010: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e020: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e030: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +0003e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e060: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e070: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e080: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003e090: 6578 536d 616c 6c65 7374 2020 2020 2020 exSmallest │ │ │ │ +0003e060: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e070: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e080: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003e090: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ 0003e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e0b0: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e0c0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e0d0: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003e0e0: 6578 536d 616c 6c65 7374 2020 2020 2020 exSmallest │ │ │ │ +0003e0b0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e0c0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e0d0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003e0e0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0003e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e100: 2020 2020 2020 2020 2020 7c0a 7c72 6567 |.|reg │ │ │ │ -0003e110: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e120: 6e3a 2020 4c6f 6f70 2073 7465 702c 2061 n: Loop step, a │ │ │ │ -0003e130: 626f 7574 2074 6f20 636f 6d70 7574 6520 bout to compute │ │ │ │ -0003e140: 6469 6d65 6e73 696f 6e2e 2020 5375 626d dimension. Subm │ │ │ │ -0003e150: 6174 7269 6365 7320 636f 7c0a 7c72 6567 atrices co|.|reg │ │ │ │ -0003e160: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e170: 6e3a 2020 7061 7274 6961 6c20 7369 6e67 n: partial sing │ │ │ │ -0003e180: 756c 6172 206c 6f63 7573 2064 696d 656e ular locus dimen │ │ │ │ -0003e190: 7369 6f6e 2063 6f6d 7075 7465 642c 203d sion computed, = │ │ │ │ -0003e1a0: 2034 2020 2020 2020 2020 7c0a 7c69 6e74 4 |.|int │ │ │ │ -0003e1b0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e1c0: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003e1d0: 616c 6c65 7374 5465 726d 2020 2020 2020 allestTerm │ │ │ │ -0003e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e1f0: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e200: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e210: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003e220: 616c 6c65 7374 2020 2020 2020 2020 2020 allest │ │ │ │ +0003e100: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e110: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e120: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003e130: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +0003e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e150: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003e160: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ +0003e170: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ +0003e180: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ +0003e190: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ +0003e1a0: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ +0003e1b0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ +0003e1c0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ +0003e1d0: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ +0003e1e0: 7574 6564 2c20 3d20 3420 2020 2020 2020 uted, = 4 │ │ │ │ +0003e1f0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e200: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e210: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ +0003e220: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ 0003e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e240: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e250: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e260: 3a20 4368 6f6f 7369 6e67 2047 5265 764c : Choosing GRevL │ │ │ │ -0003e270: 6578 536d 616c 6c65 7374 5465 726d 2020 exSmallestTerm │ │ │ │ +0003e240: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e250: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e260: 6720 4c65 7853 6d61 6c6c 6573 7420 2020 g LexSmallest │ │ │ │ +0003e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e290: 2020 2020 2020 2020 2020 7c0a 7c69 6e74 |.|int │ │ │ │ -0003e2a0: 6572 6e61 6c43 686f 6f73 654d 696e 6f72 ernalChooseMinor │ │ │ │ -0003e2b0: 3a20 4368 6f6f 7369 6e67 204c 6578 536d : Choosing LexSm │ │ │ │ -0003e2c0: 616c 6c65 7374 5465 726d 2020 2020 2020 allestTerm │ │ │ │ +0003e290: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e2a0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e2b0: 6720 4752 6576 4c65 7853 6d61 6c6c 6573 g GRevLexSmalles │ │ │ │ +0003e2c0: 7454 6572 6d20 2020 2020 2020 2020 2020 tTerm │ │ │ │ 0003e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e2e0: 2020 2020 2020 2020 2020 7c0a 7c72 6567 |.|reg │ │ │ │ -0003e2f0: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e300: 6e3a 2020 4c6f 6f70 2073 7465 702c 2061 n: Loop step, a │ │ │ │ -0003e310: 626f 7574 2074 6f20 636f 6d70 7574 6520 bout to compute │ │ │ │ -0003e320: 6469 6d65 6e73 696f 6e2e 2020 5375 626d dimension. Subm │ │ │ │ -0003e330: 6174 7269 6365 7320 636f 7c0a 7c72 6567 atrices co|.|reg │ │ │ │ -0003e340: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e350: 6e3a 2020 7369 6e67 756c 6172 4c6f 6375 n: singularLocu │ │ │ │ -0003e360: 7320 6469 6d65 6e73 696f 6e20 7665 7269 s dimension veri │ │ │ │ -0003e370: 6669 6564 2062 7920 6973 436f 6469 6d41 fied by isCodimA │ │ │ │ -0003e380: 744c 6561 7374 2020 2020 7c0a 7c72 6567 tLeast |.|reg │ │ │ │ -0003e390: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e3a0: 6e3a 2020 7061 7274 6961 6c20 7369 6e67 n: partial sing │ │ │ │ -0003e3b0: 756c 6172 206c 6f63 7573 2064 696d 656e ular locus dimen │ │ │ │ -0003e3c0: 7369 6f6e 2063 6f6d 7075 7465 642c 203d sion computed, = │ │ │ │ -0003e3d0: 2032 2020 2020 2020 2020 7c0a 7c72 6567 2 |.|reg │ │ │ │ -0003e3e0: 756c 6172 496e 436f 6469 6d65 6e73 696f ularInCodimensio │ │ │ │ -0003e3f0: 6e3a 2020 4c6f 6f70 2063 6f6d 706c 6574 n: Loop complet │ │ │ │ -0003e400: 6564 2c20 7375 626d 6174 7269 6365 7320 ed, submatrices │ │ │ │ -0003e410: 636f 6e73 6964 6572 6564 203d 2031 352c considered = 15, │ │ │ │ -0003e420: 2061 6e64 2063 6f6d 7075 7c0a 7c20 2020 and compu|.| │ │ │ │ -0003e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e470: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0003e480: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0003e2e0: 207c 0a7c 696e 7465 726e 616c 4368 6f6f |.|internalChoo │ │ │ │ +0003e2f0: 7365 4d69 6e6f 723a 2043 686f 6f73 696e seMinor: Choosin │ │ │ │ +0003e300: 6720 4c65 7853 6d61 6c6c 6573 7454 6572 g LexSmallestTer │ │ │ │ +0003e310: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +0003e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e330: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003e340: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ +0003e350: 7374 6570 2c20 6162 6f75 7420 746f 2063 step, about to c │ │ │ │ +0003e360: 6f6d 7075 7465 2064 696d 656e 7369 6f6e ompute dimension │ │ │ │ +0003e370: 2e20 2053 7562 6d61 7472 6963 6573 2063 . Submatrices c │ │ │ │ +0003e380: 6f7c 0a7c 7265 6775 6c61 7249 6e43 6f64 o|.|regularInCod │ │ │ │ +0003e390: 696d 656e 7369 6f6e 3a20 2073 696e 6775 imension: singu │ │ │ │ +0003e3a0: 6c61 724c 6f63 7573 2064 696d 656e 7369 larLocus dimensi │ │ │ │ +0003e3b0: 6f6e 2076 6572 6966 6965 6420 6279 2069 on verified by i │ │ │ │ +0003e3c0: 7343 6f64 696d 4174 4c65 6173 7420 2020 sCodimAtLeast │ │ │ │ +0003e3d0: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003e3e0: 696d 656e 7369 6f6e 3a20 2070 6172 7469 imension: parti │ │ │ │ +0003e3f0: 616c 2073 696e 6775 6c61 7220 6c6f 6375 al singular locu │ │ │ │ +0003e400: 7320 6469 6d65 6e73 696f 6e20 636f 6d70 s dimension comp │ │ │ │ +0003e410: 7574 6564 2c20 3d20 3220 2020 2020 2020 uted, = 2 │ │ │ │ +0003e420: 207c 0a7c 7265 6775 6c61 7249 6e43 6f64 |.|regularInCod │ │ │ │ +0003e430: 696d 656e 7369 6f6e 3a20 204c 6f6f 7020 imension: Loop │ │ │ │ +0003e440: 636f 6d70 6c65 7465 642c 2073 7562 6d61 completed, subma │ │ │ │ +0003e450: 7472 6963 6573 2063 6f6e 7369 6465 7265 trices considere │ │ │ │ +0003e460: 6420 3d20 3135 2c20 616e 6420 636f 6d70 d = 15, and comp │ │ │ │ +0003e470: 757c 0a7c 2020 2020 2020 2020 2020 2020 u|.| │ │ │ │ +0003e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e4c0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ -0003e4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e510: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c75 652c ----------|.|ue, │ │ │ │ -0003e520: 2056 6572 626f 7365 3d3e 7472 7565 2920 Verbose=>true) │ │ │ │ -0003e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e560: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e4c0: 207c 0a7c 6f31 3120 3d20 7472 7565 2020 |.|o11 = true │ │ │ │ +0003e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e510: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003e540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003e550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003e560: 2d7c 0a7c 7565 2c20 5665 7262 6f73 653d -|.|ue, Verbose= │ │ │ │ +0003e570: 3e74 7275 6529 2020 2020 2020 2020 2020 >true) │ │ │ │ 0003e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e5b0: 2020 2020 2020 2020 2020 7c0a 7c6e 6f72 |.|nor │ │ │ │ -0003e5c0: 732c 2077 6520 7769 6c6c 2063 6f6d 7075 s, we will compu │ │ │ │ -0003e5d0: 7465 2075 7020 746f 2032 3520 6f66 2074 te up to 25 of t │ │ │ │ -0003e5e0: 6865 6d2e 2020 2020 2020 2020 2020 2020 hem. │ │ │ │ +0003e5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e600: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e600: 207c 0a7c 6e6f 7273 2c20 7765 2077 696c |.|nors, we wil │ │ │ │ +0003e610: 6c20 636f 6d70 7574 6520 7570 2074 6f20 l compute up to │ │ │ │ +0003e620: 3235 206f 6620 7468 656d 2e20 2020 2020 25 of them. │ │ │ │ 0003e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e650: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e6a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e6f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e790: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e7e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e7e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e830: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e880: 2020 2020 2020 2020 2020 7c0a 7c6e 7369 |.|nsi │ │ │ │ -0003e890: 6465 7265 643a 2037 2c20 616e 6420 636f dered: 7, and co │ │ │ │ -0003e8a0: 6d70 7574 6564 203d 2037 2020 2020 2020 mputed = 7 │ │ │ │ +0003e880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e8d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e8d0: 207c 0a7c 6e73 6964 6572 6564 3a20 372c |.|nsidered: 7, │ │ │ │ +0003e8e0: 2061 6e64 2063 6f6d 7075 7465 6420 3d20 and computed = │ │ │ │ +0003e8f0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 0003e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e970: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e9c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003e9c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003ea10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea60: 2020 2020 2020 2020 2020 7c0a 7c6e 7369 |.|nsi │ │ │ │ -0003ea70: 6465 7265 643a 2031 312c 2061 6e64 2063 dered: 11, and c │ │ │ │ -0003ea80: 6f6d 7075 7465 6420 3d20 3130 2020 2020 omputed = 10 │ │ │ │ +0003ea60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eab0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003eab0: 207c 0a7c 6e73 6964 6572 6564 3a20 3131 |.|nsidered: 11 │ │ │ │ +0003eac0: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ +0003ead0: 2031 3020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ 0003eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003eb00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eb50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003eb50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003eba0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003eba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ebf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003ebf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec40: 2020 2020 2020 2020 2020 7c0a 7c6e 7369 |.|nsi │ │ │ │ -0003ec50: 6465 7265 643a 2031 352c 2061 6e64 2063 dered: 15, and c │ │ │ │ -0003ec60: 6f6d 7075 7465 6420 3d20 3133 2020 2020 omputed = 13 │ │ │ │ +0003ec40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ec90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0003eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ec90: 207c 0a7c 6e73 6964 6572 6564 3a20 3135 |.|nsidered: 15 │ │ │ │ +0003eca0: 2c20 616e 6420 636f 6d70 7574 6564 203d , and computed = │ │ │ │ +0003ecb0: 2031 3320 2020 2020 2020 2020 2020 2020 13 │ │ │ │ 0003ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ece0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003ece0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0003ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ed30: 2020 2020 2020 2020 2020 7c0a 7c74 6564 |.|ted │ │ │ │ -0003ed40: 203d 2031 332e 2020 7369 6e67 756c 6172 = 13. singular │ │ │ │ -0003ed50: 206c 6f63 7573 2064 696d 656e 7369 6f6e locus dimension │ │ │ │ -0003ed60: 2061 7070 6561 7273 2074 6f20 6265 203d appears to be = │ │ │ │ -0003ed70: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003ed80: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0003ed90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6869 ----------+..Thi │ │ │ │ -0003ede0: 7320 6361 6e20 6265 2075 7365 6675 6c20 s can be useful │ │ │ │ -0003edf0: 6966 2074 6865 2066 756e 6374 696f 6e20 if the function │ │ │ │ -0003ee00: 6973 2068 616e 6769 6e67 2077 6865 6e20 is hanging when │ │ │ │ -0003ee10: 7472 7969 6e67 2074 6f20 636f 6d70 7574 trying to comput │ │ │ │ -0003ee20: 6520 7468 650a 6469 6d65 6e73 696f 6e2c e the.dimension, │ │ │ │ -0003ee30: 2062 7574 2079 6f75 206d 6179 2077 6973 but you may wis │ │ │ │ -0003ee40: 6820 696e 6372 6561 7365 2050 6169 724c h increase PairL │ │ │ │ -0003ee50: 696d 6974 2e0a 0a53 756d 6d61 7279 2e20 imit...Summary. │ │ │ │ -0003ee60: 2049 6620 796f 7520 6578 7065 6374 2074 If you expect t │ │ │ │ -0003ee70: 6861 7420 6669 6e64 696e 6720 6120 7375 hat finding a su │ │ │ │ -0003ee80: 626d 6174 7269 7820 6f72 2063 6f6d 7075 bmatrix or compu │ │ │ │ -0003ee90: 7469 6e67 2061 206d 696e 6f72 2069 730a ting a minor is. │ │ │ │ -0003eea0: 7265 6c61 7469 7665 6c79 2063 6f73 746c relatively costl │ │ │ │ -0003eeb0: 7920 6672 6f6d 2061 2074 696d 6520 7065 y from a time pe │ │ │ │ -0003eec0: 7273 7065 6374 6976 652c 2074 6865 6e20 rspective, then │ │ │ │ -0003eed0: 6974 206d 616b 6573 2073 656e 7365 2074 it makes sense t │ │ │ │ -0003eee0: 6f20 636f 6d70 7574 6520 7468 650a 636f o compute the.co │ │ │ │ -0003eef0: 6469 6d65 6e73 696f 6e20 6d6f 7265 2066 dimension more f │ │ │ │ -0003ef00: 7265 7175 656e 746c 792e 2020 4966 2063 requently. If c │ │ │ │ -0003ef10: 6f6d 7075 7469 6e67 2074 6865 2063 6f64 omputing the cod │ │ │ │ -0003ef20: 696d 656e 7369 6f6e 2069 7320 7265 6c61 imension is rela │ │ │ │ -0003ef30: 7469 7665 6c79 2063 6f73 746c 790a 7765 tively costly.we │ │ │ │ -0003ef40: 2072 6563 6f6d 6d65 6e64 2063 6f6d 7075 recommend compu │ │ │ │ -0003ef50: 7469 6e67 2074 6865 2063 6f64 696d 656e ting the codimen │ │ │ │ -0003ef60: 7369 6f6e 206c 6573 7320 6672 6571 7565 sion less freque │ │ │ │ -0003ef70: 6e74 6c79 2c20 6f72 2075 7369 6e67 2074 ntly, or using t │ │ │ │ -0003ef80: 6865 0a55 7365 4f6e 6c79 4661 7374 436f he.UseOnlyFastCo │ │ │ │ -0003ef90: 6469 6d20 3d3e 2074 7275 6520 7769 7468 dim => true with │ │ │ │ -0003efa0: 2061 2068 6967 6820 5061 6972 4c69 6d69 a high PairLimi │ │ │ │ -0003efb0: 742e 2020 466f 7220 6578 616d 706c 652c t. For example, │ │ │ │ -0003efc0: 2069 6620 7573 696e 670a 5374 7261 7465 if using.Strate │ │ │ │ -0003efd0: 6779 506f 696e 7473 2c20 7468 656e 2063 gyPoints, then c │ │ │ │ -0003efe0: 686f 6f73 696e 6720 6120 7375 626d 6174 hoosing a submat │ │ │ │ -0003eff0: 7269 7820 6361 6e20 6265 2071 7569 7465 rix can be quite │ │ │ │ -0003f000: 2073 6c6f 772c 2068 6f77 6576 6572 2065 slow, however e │ │ │ │ -0003f010: 6163 680a 7375 626d 6174 7269 7820 6973 ach.submatrix is │ │ │ │ -0003f020: 2076 6572 7920 6060 7661 6c75 6162 6c65 very ``valuable │ │ │ │ -0003f030: 2727 2c20 696e 2074 6861 7420 6164 6469 '', in that addi │ │ │ │ -0003f040: 6e67 2069 7420 746f 2074 6865 2069 6465 ng it to the ide │ │ │ │ -0003f050: 616c 206f 6620 6d69 6e6f 7273 2073 6f20 al of minors so │ │ │ │ -0003f060: 6661 720a 6973 2071 7569 7465 206c 696b far.is quite lik │ │ │ │ -0003f070: 656c 7920 746f 2072 6564 7563 6520 7468 ely to reduce th │ │ │ │ -0003f080: 6520 6469 6d65 6e73 696f 6e20 6f66 2074 e dimension of t │ │ │ │ -0003f090: 6865 2073 696e 6775 6c61 7220 6c6f 6375 he singular locu │ │ │ │ -0003f0a0: 732e 0a0a 4f6e 6520 6d61 7920 616c 736f s...One may also │ │ │ │ -0003f0b0: 2063 6861 6e67 6520 686f 7720 6d69 6e6f change how mino │ │ │ │ -0003f0c0: 7273 2028 6465 7465 726d 696e 616e 7473 rs (determinants │ │ │ │ -0003f0d0: 206f 6620 7468 6520 4a61 636f 6269 616e of the Jacobian │ │ │ │ -0003f0e0: 2073 7562 6d61 7472 6978 2920 6172 650a submatrix) are. │ │ │ │ -0003f0f0: 636f 6d70 7574 6564 2062 7920 7573 696e computed by usin │ │ │ │ -0003f100: 6720 7468 6520 2a6e 6f74 6520 4465 7453 g the *note DetS │ │ │ │ -0003f110: 7472 6174 6567 793a 2044 6574 5374 7261 trategy: DetStra │ │ │ │ -0003f120: 7465 6779 2c20 6f70 7469 6f6e 2e0a 0a53 tegy, option...S │ │ │ │ -0003f130: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0003f140: 0a0a 2020 2a20 2a6e 6f74 6520 7265 6775 .. * *note regu │ │ │ │ -0003f150: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003f160: 3a20 7265 6775 6c61 7249 6e43 6f64 696d : regularInCodim │ │ │ │ -0003f170: 656e 7369 6f6e 2c20 2d2d 2061 7474 656d ension, -- attem │ │ │ │ -0003f180: 7074 7320 746f 2073 686f 7720 7468 6174 pts to show that │ │ │ │ -0003f190: 0a20 2020 2074 6865 2072 696e 6720 6973 . the ring is │ │ │ │ -0003f1a0: 2072 6567 756c 6172 2069 6e20 636f 6469 regular in codi │ │ │ │ -0003f1b0: 6d65 6e73 696f 6e20 6e0a 2020 2a20 2a6e mension n. * *n │ │ │ │ -0003f1c0: 6f74 6520 4661 7374 4d69 6e6f 7273 5374 ote FastMinorsSt │ │ │ │ -0003f1d0: 7261 7465 6779 5475 746f 7269 616c 3a20 rategyTutorial: │ │ │ │ -0003f1e0: 4661 7374 4d69 6e6f 7273 5374 7261 7465 FastMinorsStrate │ │ │ │ -0003f1f0: 6779 5475 746f 7269 616c 2c20 2d2d 2048 gyTutorial, -- H │ │ │ │ -0003f200: 6f77 2074 6f20 7573 650a 2020 2020 616e ow to use. an │ │ │ │ -0003f210: 6420 636f 6e73 7472 7563 7420 7374 7261 d construct stra │ │ │ │ -0003f220: 7465 6769 6573 2066 6f72 2073 656c 6563 tegies for selec │ │ │ │ -0003f230: 7469 6e67 2073 7562 6d61 7472 6963 6573 ting submatrices │ │ │ │ -0003f240: 2069 6e20 7661 7269 6f75 7320 6675 6e63 in various func │ │ │ │ -0003f250: 7469 6f6e 730a 2020 2a20 2a6e 6f74 6520 tions. * *note │ │ │ │ -0003f260: 4465 7453 7472 6174 6567 793a 2044 6574 DetStrategy: Det │ │ │ │ -0003f270: 5374 7261 7465 6779 2c20 2d2d 2044 6574 Strategy, -- Det │ │ │ │ -0003f280: 5374 7261 7465 6779 2069 7320 6120 7374 Strategy is a st │ │ │ │ -0003f290: 7261 7465 6779 2066 6f72 2061 6c6c 6f77 rategy for allow │ │ │ │ -0003f2a0: 696e 670a 2020 2020 7468 6520 7573 6572 ing. the user │ │ │ │ -0003f2b0: 2074 6f20 6368 6f6f 7365 2068 6f77 2064 to choose how d │ │ │ │ -0003f2c0: 6574 6572 6d69 6e61 6e74 7320 286f 7220 eterminants (or │ │ │ │ -0003f2d0: 7261 6e6b 292c 2069 7320 636f 6d70 7574 rank), is comput │ │ │ │ -0003f2e0: 6564 0a0a 466f 7220 7468 6520 7072 6f67 ed..For the prog │ │ │ │ -0003f2f0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0003f300: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0003f310: 626a 6563 7420 2a6e 6f74 6520 5265 6775 bject *note Regu │ │ │ │ -0003f320: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -0003f330: 5475 746f 7269 616c 3a20 5265 6775 6c61 Tutorial: Regula │ │ │ │ -0003f340: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ -0003f350: 746f 7269 616c 2c20 6973 0a61 202a 6e6f torial, is.a *no │ │ │ │ -0003f360: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ -0003f370: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ -0003f380: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -0003f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f3d0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0003f3e0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0003f3f0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0003f400: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0003f410: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0003f420: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0003f430: 2f70 6163 6b61 6765 732f 4661 7374 4d69 /packages/FastMi │ │ │ │ -0003f440: 6e6f 7273 2e0a 6d32 3a31 3538 383a 302e nors..m2:1588:0. │ │ │ │ -0003f450: 0a1f 0a46 696c 653a 2046 6173 744d 696e ...File: FastMin │ │ │ │ -0003f460: 6f72 732e 696e 666f 2c20 4e6f 6465 3a20 ors.info, Node: │ │ │ │ -0003f470: 7265 6f72 6465 7250 6f6c 796e 6f6d 6961 reorderPolynomia │ │ │ │ -0003f480: 6c52 696e 672c 204e 6578 743a 2053 7472 lRing, Next: Str │ │ │ │ -0003f490: 6174 6567 7944 6566 6175 6c74 2c20 5072 ategyDefault, Pr │ │ │ │ -0003f4a0: 6576 3a20 5265 6775 6c61 7249 6e43 6f64 ev: RegularInCod │ │ │ │ -0003f4b0: 696d 656e 7369 6f6e 5475 746f 7269 616c imensionTutorial │ │ │ │ -0003f4c0: 2c20 5570 3a20 546f 700a 0a72 656f 7264 , Up: Top..reord │ │ │ │ -0003f4d0: 6572 506f 6c79 6e6f 6d69 616c 5269 6e67 erPolynomialRing │ │ │ │ -0003f4e0: 202d 2d20 7072 6f64 7563 6573 2061 6e20 -- produces an │ │ │ │ -0003f4f0: 6973 6f6d 6f72 7068 6963 2070 6f6c 796e isomorphic polyn │ │ │ │ -0003f500: 6f6d 6961 6c20 7269 6e67 2077 6974 6820 omial ring with │ │ │ │ -0003f510: 6120 6469 6666 6572 656e 742c 2072 616e a different, ran │ │ │ │ -0003f520: 646f 6d69 7a65 642c 206d 6f6e 6f6d 6961 domized, monomia │ │ │ │ -0003f530: 6c20 6f72 6465 720a 2a2a 2a2a 2a2a 2a2a l order.******** │ │ │ │ -0003f540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f550: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f560: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003ed30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed80: 207c 0a7c 7465 6420 3d20 3133 2e20 2073 |.|ted = 13. s │ │ │ │ +0003ed90: 696e 6775 6c61 7220 6c6f 6375 7320 6469 ingular locus di │ │ │ │ +0003eda0: 6d65 6e73 696f 6e20 6170 7065 6172 7320 mension appears │ │ │ │ +0003edb0: 746f 2062 6520 3d20 3220 2020 2020 2020 to be = 2 │ │ │ │ +0003edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003edd0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0003ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ee00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ee10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003ee20: 2d2b 0a0a 5468 6973 2063 616e 2062 6520 -+..This can be │ │ │ │ +0003ee30: 7573 6566 756c 2069 6620 7468 6520 6675 useful if the fu │ │ │ │ +0003ee40: 6e63 7469 6f6e 2069 7320 6861 6e67 696e nction is hangin │ │ │ │ +0003ee50: 6720 7768 656e 2074 7279 696e 6720 746f g when trying to │ │ │ │ +0003ee60: 2063 6f6d 7075 7465 2074 6865 0a64 696d compute the.dim │ │ │ │ +0003ee70: 656e 7369 6f6e 2c20 6275 7420 796f 7520 ension, but you │ │ │ │ +0003ee80: 6d61 7920 7769 7368 2069 6e63 7265 6173 may wish increas │ │ │ │ +0003ee90: 6520 5061 6972 4c69 6d69 742e 0a0a 5375 e PairLimit...Su │ │ │ │ +0003eea0: 6d6d 6172 792e 2020 4966 2079 6f75 2065 mmary. If you e │ │ │ │ +0003eeb0: 7870 6563 7420 7468 6174 2066 696e 6469 xpect that findi │ │ │ │ +0003eec0: 6e67 2061 2073 7562 6d61 7472 6978 206f ng a submatrix o │ │ │ │ +0003eed0: 7220 636f 6d70 7574 696e 6720 6120 6d69 r computing a mi │ │ │ │ +0003eee0: 6e6f 7220 6973 0a72 656c 6174 6976 656c nor is.relativel │ │ │ │ +0003eef0: 7920 636f 7374 6c79 2066 726f 6d20 6120 y costly from a │ │ │ │ +0003ef00: 7469 6d65 2070 6572 7370 6563 7469 7665 time perspective │ │ │ │ +0003ef10: 2c20 7468 656e 2069 7420 6d61 6b65 7320 , then it makes │ │ │ │ +0003ef20: 7365 6e73 6520 746f 2063 6f6d 7075 7465 sense to compute │ │ │ │ +0003ef30: 2074 6865 0a63 6f64 696d 656e 7369 6f6e the.codimension │ │ │ │ +0003ef40: 206d 6f72 6520 6672 6571 7565 6e74 6c79 more frequently │ │ │ │ +0003ef50: 2e20 2049 6620 636f 6d70 7574 696e 6720 . If computing │ │ │ │ +0003ef60: 7468 6520 636f 6469 6d65 6e73 696f 6e20 the codimension │ │ │ │ +0003ef70: 6973 2072 656c 6174 6976 656c 7920 636f is relatively co │ │ │ │ +0003ef80: 7374 6c79 0a77 6520 7265 636f 6d6d 656e stly.we recommen │ │ │ │ +0003ef90: 6420 636f 6d70 7574 696e 6720 7468 6520 d computing the │ │ │ │ +0003efa0: 636f 6469 6d65 6e73 696f 6e20 6c65 7373 codimension less │ │ │ │ +0003efb0: 2066 7265 7175 656e 746c 792c 206f 7220 frequently, or │ │ │ │ +0003efc0: 7573 696e 6720 7468 650a 5573 654f 6e6c using the.UseOnl │ │ │ │ +0003efd0: 7946 6173 7443 6f64 696d 203d 3e20 7472 yFastCodim => tr │ │ │ │ +0003efe0: 7565 2077 6974 6820 6120 6869 6768 2050 ue with a high P │ │ │ │ +0003eff0: 6169 724c 696d 6974 2e20 2046 6f72 2065 airLimit. For e │ │ │ │ +0003f000: 7861 6d70 6c65 2c20 6966 2075 7369 6e67 xample, if using │ │ │ │ +0003f010: 0a53 7472 6174 6567 7950 6f69 6e74 732c .StrategyPoints, │ │ │ │ +0003f020: 2074 6865 6e20 6368 6f6f 7369 6e67 2061 then choosing a │ │ │ │ +0003f030: 2073 7562 6d61 7472 6978 2063 616e 2062 submatrix can b │ │ │ │ +0003f040: 6520 7175 6974 6520 736c 6f77 2c20 686f e quite slow, ho │ │ │ │ +0003f050: 7765 7665 7220 6561 6368 0a73 7562 6d61 wever each.subma │ │ │ │ +0003f060: 7472 6978 2069 7320 7665 7279 2060 6076 trix is very ``v │ │ │ │ +0003f070: 616c 7561 626c 6527 272c 2069 6e20 7468 aluable'', in th │ │ │ │ +0003f080: 6174 2061 6464 696e 6720 6974 2074 6f20 at adding it to │ │ │ │ +0003f090: 7468 6520 6964 6561 6c20 6f66 206d 696e the ideal of min │ │ │ │ +0003f0a0: 6f72 7320 736f 2066 6172 0a69 7320 7175 ors so far.is qu │ │ │ │ +0003f0b0: 6974 6520 6c69 6b65 6c79 2074 6f20 7265 ite likely to re │ │ │ │ +0003f0c0: 6475 6365 2074 6865 2064 696d 656e 7369 duce the dimensi │ │ │ │ +0003f0d0: 6f6e 206f 6620 7468 6520 7369 6e67 756c on of the singul │ │ │ │ +0003f0e0: 6172 206c 6f63 7573 2e0a 0a4f 6e65 206d ar locus...One m │ │ │ │ +0003f0f0: 6179 2061 6c73 6f20 6368 616e 6765 2068 ay also change h │ │ │ │ +0003f100: 6f77 206d 696e 6f72 7320 2864 6574 6572 ow minors (deter │ │ │ │ +0003f110: 6d69 6e61 6e74 7320 6f66 2074 6865 204a minants of the J │ │ │ │ +0003f120: 6163 6f62 6961 6e20 7375 626d 6174 7269 acobian submatri │ │ │ │ +0003f130: 7829 2061 7265 0a63 6f6d 7075 7465 6420 x) are.computed │ │ │ │ +0003f140: 6279 2075 7369 6e67 2074 6865 202a 6e6f by using the *no │ │ │ │ +0003f150: 7465 2044 6574 5374 7261 7465 6779 3a20 te DetStrategy: │ │ │ │ +0003f160: 4465 7453 7472 6174 6567 792c 206f 7074 DetStrategy, opt │ │ │ │ +0003f170: 696f 6e2e 0a0a 5365 6520 616c 736f 0a3d ion...See also.= │ │ │ │ +0003f180: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0003f190: 7465 2072 6567 756c 6172 496e 436f 6469 te regularInCodi │ │ │ │ +0003f1a0: 6d65 6e73 696f 6e3a 2072 6567 756c 6172 mension: regular │ │ │ │ +0003f1b0: 496e 436f 6469 6d65 6e73 696f 6e2c 202d InCodimension, - │ │ │ │ +0003f1c0: 2d20 6174 7465 6d70 7473 2074 6f20 7368 - attempts to sh │ │ │ │ +0003f1d0: 6f77 2074 6861 740a 2020 2020 7468 6520 ow that. the │ │ │ │ +0003f1e0: 7269 6e67 2069 7320 7265 6775 6c61 7220 ring is regular │ │ │ │ +0003f1f0: 696e 2063 6f64 696d 656e 7369 6f6e 206e in codimension n │ │ │ │ +0003f200: 0a20 202a 202a 6e6f 7465 2046 6173 744d . * *note FastM │ │ │ │ +0003f210: 696e 6f72 7353 7472 6174 6567 7954 7574 inorsStrategyTut │ │ │ │ +0003f220: 6f72 6961 6c3a 2046 6173 744d 696e 6f72 orial: FastMinor │ │ │ │ +0003f230: 7353 7472 6174 6567 7954 7574 6f72 6961 sStrategyTutoria │ │ │ │ +0003f240: 6c2c 202d 2d20 486f 7720 746f 2075 7365 l, -- How to use │ │ │ │ +0003f250: 0a20 2020 2061 6e64 2063 6f6e 7374 7275 . and constru │ │ │ │ +0003f260: 6374 2073 7472 6174 6567 6965 7320 666f ct strategies fo │ │ │ │ +0003f270: 7220 7365 6c65 6374 696e 6720 7375 626d r selecting subm │ │ │ │ +0003f280: 6174 7269 6365 7320 696e 2076 6172 696f atrices in vario │ │ │ │ +0003f290: 7573 2066 756e 6374 696f 6e73 0a20 202a us functions. * │ │ │ │ +0003f2a0: 202a 6e6f 7465 2044 6574 5374 7261 7465 *note DetStrate │ │ │ │ +0003f2b0: 6779 3a20 4465 7453 7472 6174 6567 792c gy: DetStrategy, │ │ │ │ +0003f2c0: 202d 2d20 4465 7453 7472 6174 6567 7920 -- DetStrategy │ │ │ │ +0003f2d0: 6973 2061 2073 7472 6174 6567 7920 666f is a strategy fo │ │ │ │ +0003f2e0: 7220 616c 6c6f 7769 6e67 0a20 2020 2074 r allowing. t │ │ │ │ +0003f2f0: 6865 2075 7365 7220 746f 2063 686f 6f73 he user to choos │ │ │ │ +0003f300: 6520 686f 7720 6465 7465 726d 696e 616e e how determinan │ │ │ │ +0003f310: 7473 2028 6f72 2072 616e 6b29 2c20 6973 ts (or rank), is │ │ │ │ +0003f320: 2063 6f6d 7075 7465 640a 0a46 6f72 2074 computed..For t │ │ │ │ +0003f330: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0003f340: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0003f350: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0003f360: 7465 2052 6567 756c 6172 496e 436f 6469 te RegularInCodi │ │ │ │ +0003f370: 6d65 6e73 696f 6e54 7574 6f72 6961 6c3a mensionTutorial: │ │ │ │ +0003f380: 2052 6567 756c 6172 496e 436f 6469 6d65 RegularInCodime │ │ │ │ +0003f390: 6e73 696f 6e54 7574 6f72 6961 6c2c 2069 nsionTutorial, i │ │ │ │ +0003f3a0: 730a 6120 2a6e 6f74 6520 7379 6d62 6f6c s.a *note symbol │ │ │ │ +0003f3b0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0003f3c0: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ +0003f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f410: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0003f420: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0003f430: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0003f440: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0003f450: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0003f460: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0003f470: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0003f480: 2f46 6173 744d 696e 6f72 732e 0a6d 323a /FastMinors..m2: │ │ │ │ +0003f490: 3135 3838 3a30 2e0a 1f0a 4669 6c65 3a20 1588:0....File: │ │ │ │ +0003f4a0: 4661 7374 4d69 6e6f 7273 2e69 6e66 6f2c FastMinors.info, │ │ │ │ +0003f4b0: 204e 6f64 653a 2072 656f 7264 6572 506f Node: reorderPo │ │ │ │ +0003f4c0: 6c79 6e6f 6d69 616c 5269 6e67 2c20 4e65 lynomialRing, Ne │ │ │ │ +0003f4d0: 7874 3a20 5374 7261 7465 6779 4465 6661 xt: StrategyDefa │ │ │ │ +0003f4e0: 756c 742c 2050 7265 763a 2052 6567 756c ult, Prev: Regul │ │ │ │ +0003f4f0: 6172 496e 436f 6469 6d65 6e73 696f 6e54 arInCodimensionT │ │ │ │ +0003f500: 7574 6f72 6961 6c2c 2055 703a 2054 6f70 utorial, Up: Top │ │ │ │ +0003f510: 0a0a 7265 6f72 6465 7250 6f6c 796e 6f6d ..reorderPolynom │ │ │ │ +0003f520: 6961 6c52 696e 6720 2d2d 2070 726f 6475 ialRing -- produ │ │ │ │ +0003f530: 6365 7320 616e 2069 736f 6d6f 7270 6869 ces an isomorphi │ │ │ │ +0003f540: 6320 706f 6c79 6e6f 6d69 616c 2072 696e c polynomial rin │ │ │ │ +0003f550: 6720 7769 7468 2061 2064 6966 6665 7265 g with a differe │ │ │ │ +0003f560: 6e74 2c20 7261 6e64 6f6d 697a 6564 2c20 nt, randomized, │ │ │ │ +0003f570: 6d6f 6e6f 6d69 616c 206f 7264 6572 0a2a monomial order.* │ │ │ │ 0003f580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0003f590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003f5a0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -0003f5b0: 200a 2020 2020 2020 2020 5231 203d 2072 . R1 = r │ │ │ │ -0003f5c0: 656f 7264 6572 506f 6c79 6e6f 6d69 616c eorderPolynomial │ │ │ │ -0003f5d0: 5269 6e67 286f 7264 6572 5479 7065 2c20 Ring(orderType, │ │ │ │ -0003f5e0: 5229 0a20 202a 2049 6e70 7574 733a 0a20 R). * Inputs:. │ │ │ │ -0003f5f0: 2020 2020 202a 2052 2c20 6120 2a6e 6f74 * R, a *not │ │ │ │ -0003f600: 6520 7269 6e67 3a20 284d 6163 6175 6c61 e ring: (Macaula │ │ │ │ -0003f610: 7932 446f 6329 5269 6e67 2c2c 2061 2070 y2Doc)Ring,, a p │ │ │ │ -0003f620: 6f6c 796e 6f6d 6961 6c20 7269 6e67 0a20 olynomial ring. │ │ │ │ -0003f630: 2020 2020 202a 206f 7264 6572 5479 7065 * orderType │ │ │ │ -0003f640: 2c20 6120 2a6e 6f74 6520 7379 6d62 6f6c , a *note symbol │ │ │ │ -0003f650: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0003f660: 5379 6d62 6f6c 2c2c 2061 2076 616c 6964 Symbol,, a valid │ │ │ │ -0003f670: 206d 6f6e 6f6d 6961 6c0a 2020 2020 2020 monomial. │ │ │ │ -0003f680: 2020 6f72 6465 722c 2073 7563 6820 6173 order, such as │ │ │ │ -0003f690: 2047 5265 764c 6578 0a20 202a 204f 7574 GRevLex. * Out │ │ │ │ -0003f6a0: 7075 7473 3a0a 2020 2020 2020 2a20 532c puts:. * S, │ │ │ │ -0003f6b0: 2061 202a 6e6f 7465 2072 696e 673a 2028 a *note ring: ( │ │ │ │ -0003f6c0: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ -0003f6d0: 672c 2c20 6120 706f 6c79 6e6f 6d69 616c g,, a polynomial │ │ │ │ -0003f6e0: 2072 696e 6720 7769 7468 2061 206e 6577 ring with a new │ │ │ │ -0003f6f0: 0a20 2020 2020 2020 2072 616e 646f 6d20 . random │ │ │ │ -0003f700: 6d6f 6e6f 6d69 616c 206f 7264 6572 0a0a monomial order.. │ │ │ │ -0003f710: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0003f720: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6675 =======..This fu │ │ │ │ -0003f730: 6e63 7469 6f6e 2074 616b 6573 2061 2070 nction takes a p │ │ │ │ -0003f740: 6f6c 796e 6f6d 6961 6c20 7269 6e67 2061 olynomial ring a │ │ │ │ -0003f750: 6e64 2070 726f 6475 6365 7320 6120 6e65 nd produces a ne │ │ │ │ -0003f760: 7720 706f 6c79 6e6f 6d69 616c 2072 696e w polynomial rin │ │ │ │ -0003f770: 6720 7769 7468 0a4d 6f6e 6f6d 6961 6c4f g with.MonomialO │ │ │ │ -0003f780: 7264 6572 206f 6620 7479 7065 206f 7264 rder of type ord │ │ │ │ -0003f790: 6572 5479 7065 2e20 5468 6520 6f72 6465 erType. The orde │ │ │ │ -0003f7a0: 7220 6f66 2074 6865 2076 6172 6961 626c r of the variabl │ │ │ │ -0003f7b0: 6573 2069 7320 7261 6e64 6f6d 697a 6564 es is randomized │ │ │ │ -0003f7c0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -0003f7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0003f7f0: 7c69 3120 3a20 5220 3d20 5151 5b78 2c79 |i1 : R = QQ[x,y │ │ │ │ -0003f800: 2c7a 2c77 5d3b 2020 2020 2020 2020 2020 ,z,w]; │ │ │ │ -0003f810: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003f5a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003f5b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003f5c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003f5d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003f5e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0003f5f0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0003f600: 2052 3120 3d20 7265 6f72 6465 7250 6f6c R1 = reorderPol │ │ │ │ +0003f610: 796e 6f6d 6961 6c52 696e 6728 6f72 6465 ynomialRing(orde │ │ │ │ +0003f620: 7254 7970 652c 2052 290a 2020 2a20 496e rType, R). * In │ │ │ │ +0003f630: 7075 7473 3a0a 2020 2020 2020 2a20 522c puts:. * R, │ │ │ │ +0003f640: 2061 202a 6e6f 7465 2072 696e 673a 2028 a *note ring: ( │ │ │ │ +0003f650: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ +0003f660: 672c 2c20 6120 706f 6c79 6e6f 6d69 616c g,, a polynomial │ │ │ │ +0003f670: 2072 696e 670a 2020 2020 2020 2a20 6f72 ring. * or │ │ │ │ +0003f680: 6465 7254 7970 652c 2061 202a 6e6f 7465 derType, a *note │ │ │ │ +0003f690: 2073 796d 626f 6c3a 2028 4d61 6361 756c symbol: (Macaul │ │ │ │ +0003f6a0: 6179 3244 6f63 2953 796d 626f 6c2c 2c20 ay2Doc)Symbol,, │ │ │ │ +0003f6b0: 6120 7661 6c69 6420 6d6f 6e6f 6d69 616c a valid monomial │ │ │ │ +0003f6c0: 0a20 2020 2020 2020 206f 7264 6572 2c20 . order, │ │ │ │ +0003f6d0: 7375 6368 2061 7320 4752 6576 4c65 780a such as GRevLex. │ │ │ │ +0003f6e0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0003f6f0: 2020 202a 2053 2c20 6120 2a6e 6f74 6520 * S, a *note │ │ │ │ +0003f700: 7269 6e67 3a20 284d 6163 6175 6c61 7932 ring: (Macaulay2 │ │ │ │ +0003f710: 446f 6329 5269 6e67 2c2c 2061 2070 6f6c Doc)Ring,, a pol │ │ │ │ +0003f720: 796e 6f6d 6961 6c20 7269 6e67 2077 6974 ynomial ring wit │ │ │ │ +0003f730: 6820 6120 6e65 770a 2020 2020 2020 2020 h a new. │ │ │ │ +0003f740: 7261 6e64 6f6d 206d 6f6e 6f6d 6961 6c20 random monomial │ │ │ │ +0003f750: 6f72 6465 720a 0a44 6573 6372 6970 7469 order..Descripti │ │ │ │ +0003f760: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0003f770: 5468 6973 2066 756e 6374 696f 6e20 7461 This function ta │ │ │ │ +0003f780: 6b65 7320 6120 706f 6c79 6e6f 6d69 616c kes a polynomial │ │ │ │ +0003f790: 2072 696e 6720 616e 6420 7072 6f64 7563 ring and produc │ │ │ │ +0003f7a0: 6573 2061 206e 6577 2070 6f6c 796e 6f6d es a new polynom │ │ │ │ +0003f7b0: 6961 6c20 7269 6e67 2077 6974 680a 4d6f ial ring with.Mo │ │ │ │ +0003f7c0: 6e6f 6d69 616c 4f72 6465 7220 6f66 2074 nomialOrder of t │ │ │ │ +0003f7d0: 7970 6520 6f72 6465 7254 7970 652e 2054 ype orderType. T │ │ │ │ +0003f7e0: 6865 206f 7264 6572 206f 6620 7468 6520 he order of the │ │ │ │ +0003f7f0: 7661 7269 6162 6c65 7320 6973 2072 616e variables is ran │ │ │ │ +0003f800: 646f 6d69 7a65 642e 0a0a 2b2d 2d2d 2d2d domized...+----- │ │ │ │ +0003f810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f840: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -0003f850: 7820 3e20 7920 616e 6420 7920 3e20 7a20 x > y and y > z │ │ │ │ -0003f860: 616e 6420 7a20 3e20 7720 2020 2020 2020 and z > w │ │ │ │ -0003f870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0003f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8a0: 2020 7c0a 7c6f 3220 3d20 7472 7565 2020 |.|o2 = true │ │ │ │ -0003f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f8c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003f8d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0003f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0003f900: 3320 3a20 7573 6520 7265 6f72 6465 7250 3 : use reorderP │ │ │ │ -0003f910: 6f6c 796e 6f6d 6961 6c52 696e 6728 4752 olynomialRing(GR │ │ │ │ -0003f920: 6576 4c65 782c 2052 297c 0a7c 2020 2020 evLex, R)|.| │ │ │ │ -0003f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f950: 2020 2020 2020 7c0a 7c6f 3320 3d20 5151 |.|o3 = QQ │ │ │ │ -0003f960: 5b7a 2c20 772e 2e79 5d20 2020 2020 2020 [z, w..y] │ │ │ │ -0003f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f9b0: 7c0a 7c6f 3320 3a20 506f 6c79 6e6f 6d69 |.|o3 : Polynomi │ │ │ │ -0003f9c0: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ -0003f9d0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0003f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0003fa10: 3a20 7820 3e20 7920 2020 2020 2020 2020 : x > y │ │ │ │ -0003fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0003fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa60: 2020 2020 7c0a 7c6f 3420 3d20 7472 7565 |.|o4 = true │ │ │ │ -0003fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fa90: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0003faa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0003fac0: 7c69 3520 3a20 7920 3e20 7a20 2020 2020 |i5 : y > z │ │ │ │ -0003fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0003faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb10: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -0003fb20: 6661 6c73 6520 2020 2020 2020 2020 2020 false │ │ │ │ -0003fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb40: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0003fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fb70: 2d2d 2b0a 7c69 3620 3a20 7a20 3e20 7720 --+.|i6 : z > w │ │ │ │ -0003fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fb90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0003fba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0003fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fbc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0003fbd0: 3620 3d20 7472 7565 2020 2020 2020 2020 6 = true │ │ │ │ -0003fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fbf0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0003fc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fc20: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ -0003fc30: 2075 7365 2072 656f 7264 6572 506f 6c79 use reorderPoly │ │ │ │ -0003fc40: 6e6f 6d69 616c 5269 6e67 3a0a 3d3d 3d3d nomialRing:.==== │ │ │ │ -0003fc50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0003fc60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0003fc70: 2020 2a20 2272 656f 7264 6572 506f 6c79 * "reorderPoly │ │ │ │ -0003fc80: 6e6f 6d69 616c 5269 6e67 2853 796d 626f nomialRing(Symbo │ │ │ │ -0003fc90: 6c2c 5269 6e67 2922 0a0a 466f 7220 7468 l,Ring)"..For th │ │ │ │ -0003fca0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0003fcb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0003fcc0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0003fcd0: 6520 7265 6f72 6465 7250 6f6c 796e 6f6d e reorderPolynom │ │ │ │ -0003fce0: 6961 6c52 696e 673a 2072 656f 7264 6572 ialRing: reorder │ │ │ │ -0003fcf0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2c20 PolynomialRing, │ │ │ │ -0003fd00: 6973 2061 202a 6e6f 7465 0a6d 6574 686f is a *note.metho │ │ │ │ -0003fd10: 6420 6675 6e63 7469 6f6e 2077 6974 6820 d function with │ │ │ │ -0003fd20: 6f70 7469 6f6e 733a 2028 4d61 6361 756c options: (Macaul │ │ │ │ -0003fd30: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -0003fd40: 6374 696f 6e57 6974 684f 7074 696f 6e73 ctionWithOptions │ │ │ │ -0003fd50: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -0003fd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fda0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0003fdb0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0003fdc0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0003fdd0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0003fde0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0003fdf0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0003fe00: 322f 7061 636b 6167 6573 2f46 6173 744d 2/packages/FastM │ │ │ │ -0003fe10: 696e 6f72 732e 0a6d 323a 3231 3638 3a30 inors..m2:2168:0 │ │ │ │ -0003fe20: 2e0a 1f0a 4669 6c65 3a20 4661 7374 4d69 ....File: FastMi │ │ │ │ -0003fe30: 6e6f 7273 2e69 6e66 6f2c 204e 6f64 653a nors.info, Node: │ │ │ │ -0003fe40: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ -0003fe50: 2c20 5072 6576 3a20 7265 6f72 6465 7250 , Prev: reorderP │ │ │ │ -0003fe60: 6f6c 796e 6f6d 6961 6c52 696e 672c 2055 olynomialRing, U │ │ │ │ -0003fe70: 703a 2054 6f70 0a0a 5374 7261 7465 6779 p: Top..Strategy │ │ │ │ -0003fe80: 4465 6661 756c 7420 2d2d 2073 7472 6174 Default -- strat │ │ │ │ -0003fe90: 6567 6965 7320 666f 7220 6368 6f6f 7369 egies for choosi │ │ │ │ -0003fea0: 6e67 2073 7562 6d61 7472 6963 6573 0a2a ng submatrices.* │ │ │ │ -0003feb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003fec0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003fed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0003fee0: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -0003fef0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0003ff00: 4d61 6e79 206f 6620 7468 6520 636f 7265 Many of the core │ │ │ │ -0003ff10: 2066 756e 6374 696f 6e73 206f 6620 7468 functions of th │ │ │ │ -0003ff20: 6973 2070 6163 6b61 6765 2061 6c6c 6f77 is package allow │ │ │ │ -0003ff30: 2074 6865 2075 7365 7220 746f 2066 696e the user to fin │ │ │ │ -0003ff40: 6520 7475 6e65 2074 6865 0a73 7472 6174 e tune the.strat │ │ │ │ -0003ff50: 6567 7920 7573 6564 2066 6f72 2073 656c egy used for sel │ │ │ │ -0003ff60: 6563 7469 6e67 2073 7562 6d61 7472 6963 ecting submatric │ │ │ │ -0003ff70: 6573 2e20 2044 6966 6665 7265 6e74 2073 es. Different s │ │ │ │ -0003ff80: 7472 6174 6567 6965 7320 7969 656c 6420 trategies yield │ │ │ │ -0003ff90: 6d61 726b 6564 6c79 0a64 6966 6665 7265 markedly.differe │ │ │ │ -0003ffa0: 6e74 2070 6572 666f 726d 616e 6365 206f nt performance o │ │ │ │ -0003ffb0: 7220 7265 7375 6c74 7320 6f6e 2076 6172 r results on var │ │ │ │ -0003ffc0: 696f 7573 2065 7861 6d70 6c65 732e 2054 ious examples. T │ │ │ │ -0003ffd0: 6865 7365 2061 7265 2063 6f6e 7472 6f6c hese are control │ │ │ │ -0003ffe0: 6c65 6420 6279 0a73 7065 6369 6679 696e led by.specifyin │ │ │ │ -0003fff0: 6720 6120 2053 7472 6174 6567 7920 3d3e g a Strategy => │ │ │ │ -00040000: 2020 6f70 7469 6f6e 2c20 706f 696e 7469 option, pointi │ │ │ │ -00040010: 6e67 2074 6f20 6120 2048 6173 6854 6162 ng to a HashTab │ │ │ │ -00040020: 6c65 7768 6963 6820 7370 6563 6966 6965 lewhich specifie │ │ │ │ -00040030: 730a 7365 7665 7261 6c20 7374 7261 7465 s.several strate │ │ │ │ -00040040: 6769 6573 2073 686f 756c 6420 6265 2075 gies should be u │ │ │ │ -00040050: 7365 6420 7369 6d75 6c74 616e 656f 7573 sed simultaneous │ │ │ │ -00040060: 6c79 2c20 6f72 2074 6f20 6120 7379 6d62 ly, or to a symb │ │ │ │ -00040070: 6f6c 2073 6179 696e 6720 7765 0a73 686f ol saying we.sho │ │ │ │ -00040080: 756c 6420 7573 6520 6f6e 6c79 2061 2073 uld use only a s │ │ │ │ -00040090: 696e 676c 6520 7374 7261 7465 6779 2e20 ingle strategy. │ │ │ │ -000400a0: 2046 6f72 2061 206d 6f72 6520 6465 7461 For a more deta │ │ │ │ -000400b0: 696c 6564 206c 6f6f 6b20 6174 2074 6869 iled look at thi │ │ │ │ -000400c0: 7320 696e 2061 6e0a 6578 616d 706c 6520 s in an.example │ │ │ │ -000400d0: 706c 6561 7365 2073 6565 202a 6e6f 7465 please see *note │ │ │ │ -000400e0: 2046 6173 744d 696e 6f72 7353 7472 6174 FastMinorsStrat │ │ │ │ -000400f0: 6567 7954 7574 6f72 6961 6c3a 0a46 6173 egyTutorial:.Fas │ │ │ │ -00040100: 744d 696e 6f72 7353 7472 6174 6567 7954 tMinorsStrategyT │ │ │ │ -00040110: 7574 6f72 6961 6c2c 4265 666f 7265 2064 utorial,Before d │ │ │ │ -00040120: 6573 6372 6962 696e 6720 7468 6520 6176 escribing the av │ │ │ │ -00040130: 6169 6c61 626c 6520 7374 7261 7465 6769 ailable strategi │ │ │ │ -00040140: 6573 2c20 7765 2062 6567 696e 0a62 7920 es, we begin.by │ │ │ │ -00040150: 726f 7567 686c 7920 6f75 746c 696e 696e roughly outlinin │ │ │ │ -00040160: 6720 7468 6520 6469 6666 6572 656e 7420 g the different │ │ │ │ -00040170: 6170 7072 6f61 6368 6573 2e0a 2020 2a20 approaches.. * │ │ │ │ -00040180: 4865 7572 6973 7469 6320 7375 626d 6174 Heuristic submat │ │ │ │ -00040190: 7269 7820 7365 6c65 6374 696f 6e3a 2049 rix selection: I │ │ │ │ -000401a0: 6e20 7468 6973 2063 6173 652c 2061 2073 n this case, a s │ │ │ │ -000401b0: 7562 6d61 7472 6978 2069 7320 6368 6f73 ubmatrix is chos │ │ │ │ -000401c0: 656e 2076 6961 2061 0a20 2020 2067 7265 en via a. gre │ │ │ │ -000401d0: 6564 7920 616c 676f 7269 7468 6d2c 206c edy algorithm, l │ │ │ │ -000401e0: 6f6f 6b69 6e67 2066 6f72 2061 2073 7562 ooking for a sub │ │ │ │ -000401f0: 6d61 7472 6978 2077 6974 6820 736d 616c matrix with smal │ │ │ │ -00040200: 6c65 7374 2028 6f72 206c 6172 6765 7374 lest (or largest │ │ │ │ -00040210: 2920 6465 6772 6565 0a20 2020 2077 6974 ) degree. wit │ │ │ │ -00040220: 6820 7265 7370 6563 7420 746f 2061 2072 h respect to a r │ │ │ │ -00040230: 616e 646f 6d20 6d6f 6e6f 6d69 616c 206f andom monomial o │ │ │ │ -00040240: 7264 6572 2e0a 2020 2a20 5375 626d 6174 rder.. * Submat │ │ │ │ -00040250: 7269 7820 7365 6c65 6374 696f 6e20 7669 rix selection vi │ │ │ │ -00040260: 6120 7261 7469 6f6e 616c 2061 6e64 2067 a rational and g │ │ │ │ -00040270: 656f 6d65 7472 6963 2070 6f69 6e74 733a eometric points: │ │ │ │ -00040280: 2048 6572 6520 6120 7261 7469 6f6e 616c Here a rational │ │ │ │ -00040290: 206f 720a 2020 2020 6765 6f6d 6574 7269 or. geometri │ │ │ │ -000402a0: 6320 706f 696e 7420 6973 2066 6f75 6e64 c point is found │ │ │ │ -000402b0: 2077 6865 7265 2061 2067 6976 656e 2069 where a given i │ │ │ │ -000402c0: 6465 616c 2076 616e 6973 6865 732e 2020 deal vanishes. │ │ │ │ -000402d0: 5468 6174 2070 6f69 6e74 2069 730a 2020 That point is. │ │ │ │ -000402e0: 2020 706c 7567 6765 6420 696e 746f 2074 plugged into t │ │ │ │ -000402f0: 6865 206d 6174 7269 7820 616e 6420 6120 he matrix and a │ │ │ │ -00040300: 7375 626d 6174 7269 7820 6f66 2066 756c submatrix of ful │ │ │ │ -00040310: 6c20 7261 6e6b 2069 7320 6964 656e 7469 l rank is identi │ │ │ │ -00040320: 6669 6564 2e20 2020 5468 6973 0a20 2020 fied. This. │ │ │ │ -00040330: 2061 7070 726f 6163 6820 6375 7272 656e approach curren │ │ │ │ -00040340: 746c 7920 6f6e 6c79 2077 6f72 6b73 206f tly only works o │ │ │ │ -00040350: 7665 7220 6120 6669 6e69 7465 2066 6965 ver a finite fie │ │ │ │ -00040360: 6c64 2061 6e64 2069 7320 6163 636f 6d70 ld and is accomp │ │ │ │ -00040370: 6c69 7368 6564 2077 6974 680a 2020 2020 lished with. │ │ │ │ -00040380: 7468 6520 6865 6c70 206f 6620 7468 6520 the help of the │ │ │ │ -00040390: 7061 636b 6167 6520 2a6e 6f74 6520 5261 package *note Ra │ │ │ │ -000403a0: 6e64 6f6d 506f 696e 7473 3a20 2852 616e ndomPoints: (Ran │ │ │ │ -000403b0: 646f 6d50 6f69 6e74 7329 546f 702c 2e0a domPoints)Top,.. │ │ │ │ -000403c0: 2020 2a20 5261 6e64 6f6d 2073 7562 6d61 * Random subma │ │ │ │ -000403d0: 7472 6978 2073 656c 6563 7469 6f6e 3a20 trix selection: │ │ │ │ -000403e0: 5468 6973 2065 6974 6865 7220 6368 6f6f This either choo │ │ │ │ -000403f0: 7365 7320 6120 636f 6d70 6c65 7465 6c79 ses a completely │ │ │ │ -00040400: 2072 616e 646f 6d0a 2020 2020 7375 626d random. subm │ │ │ │ -00040410: 6174 7269 782c 206f 7220 6120 7375 626d atrix, or a subm │ │ │ │ -00040420: 6174 7269 7820 7768 6963 6820 6861 7320 atrix which has │ │ │ │ -00040430: 6e6f 207a 6572 6f20 636f 6c75 6d6e 7320 no zero columns │ │ │ │ -00040440: 6f72 2072 6f77 732e 0a54 6865 7265 2077 or rows..There w │ │ │ │ -00040450: 6520 6869 6768 6c69 6768 7420 6669 7665 e highlight five │ │ │ │ -00040460: 2070 7265 2d70 726f 6772 616d 6d65 6420 pre-programmed │ │ │ │ -00040470: 7374 7261 7465 6769 6573 2070 726f 7669 strategies provi │ │ │ │ -00040480: 6465 6420 746f 2074 6865 2075 7365 722e ded to the user. │ │ │ │ -00040490: 0a20 202a 2053 7472 6174 6567 7944 6566 . * StrategyDef │ │ │ │ -000404a0: 6175 6c74 3a20 7468 6973 2075 7365 7320 ault: this uses │ │ │ │ -000404b0: 6120 6d69 7820 6f66 2068 6575 7269 7374 a mix of heurist │ │ │ │ -000404c0: 6963 7320 616e 6420 7261 6e64 6f6d 2073 ics and random s │ │ │ │ -000404d0: 7562 6d61 7472 6963 6573 2e0a 2020 2a20 ubmatrices.. * │ │ │ │ -000404e0: 5374 7261 7465 6779 5261 6e64 6f6d 3a20 StrategyRandom: │ │ │ │ -000404f0: 7468 6973 2075 7365 7320 7075 7265 6c79 this uses purely │ │ │ │ -00040500: 2072 616e 646f 6d20 7375 626d 6174 7269 random submatri │ │ │ │ -00040510: 6365 732e 0a20 202a 2053 7472 6174 6567 ces.. * Strateg │ │ │ │ -00040520: 7944 6566 6175 6c74 4e6f 6e52 616e 646f yDefaultNonRando │ │ │ │ -00040530: 6d3a 2074 6869 7320 7573 6573 2061 206d m: this uses a m │ │ │ │ -00040540: 6978 206f 6620 6865 7572 6973 7469 6373 ix of heuristics │ │ │ │ -00040550: 2062 7574 206e 6f20 7261 6e64 6f6d 0a20 but no random. │ │ │ │ -00040560: 2020 2073 7562 6d61 7472 6963 6573 2e0a submatrices.. │ │ │ │ -00040570: 2020 2a20 5374 7261 7465 6779 506f 696e * StrategyPoin │ │ │ │ -00040580: 7473 3a20 7468 6973 206f 6e6c 7920 7573 ts: this only us │ │ │ │ -00040590: 6573 2072 6174 696f 6e61 6c20 2f20 6765 es rational / ge │ │ │ │ -000405a0: 6f6d 6574 7269 6320 706f 696e 7473 2074 ometric points t │ │ │ │ -000405b0: 6f20 6669 6e64 0a20 2020 2073 7562 6d61 o find. subma │ │ │ │ -000405c0: 7472 6963 6573 2e0a 2020 2a20 5374 7261 trices.. * Stra │ │ │ │ -000405d0: 7465 6779 4465 6661 756c 7457 6974 6850 tegyDefaultWithP │ │ │ │ -000405e0: 6f69 6e74 733a 2074 6869 7320 7573 6573 oints: this uses │ │ │ │ -000405f0: 2061 206d 6978 206f 6620 6865 7572 6973 a mix of heuris │ │ │ │ -00040600: 7469 6373 2061 6e64 2073 7562 6d61 7472 tics and submatr │ │ │ │ -00040610: 6963 6573 0a20 2020 2063 686f 7365 6e20 ices. chosen │ │ │ │ -00040620: 7769 7468 2072 6174 696f 6e61 6c20 616e with rational an │ │ │ │ -00040630: 6420 6765 6f6d 6574 7269 6320 706f 696e d geometric poin │ │ │ │ -00040640: 7473 2e0a 4265 6c6f 7720 7468 6520 6465 ts..Below the de │ │ │ │ -00040650: 7461 696c 7320 6f66 2068 6f77 2074 6865 tails of how the │ │ │ │ -00040660: 7365 2073 7472 6174 6567 6965 7320 6172 se strategies ar │ │ │ │ -00040670: 6520 636f 6e73 7472 7563 7465 6420 7769 e constructed wi │ │ │ │ -00040680: 6c6c 2062 6520 6465 7461 696c 6564 0a62 ll be detailed.b │ │ │ │ -00040690: 656c 6f77 2e20 2042 7574 2066 6972 7374 elow. But first │ │ │ │ -000406a0: 2c20 7765 2070 726f 7669 6465 2061 6e20 , we provide an │ │ │ │ -000406b0: 6578 616d 706c 6520 7368 6f77 696e 6720 example showing │ │ │ │ -000406c0: 7468 6174 2074 6865 7365 2073 7472 6174 that these strat │ │ │ │ -000406d0: 6567 6965 7320 6361 6e0a 7065 7266 6f72 egies can.perfor │ │ │ │ -000406e0: 6d20 7175 6974 6520 6469 6666 6572 656e m quite differen │ │ │ │ -000406f0: 746c 792e 2020 5468 6520 666f 6c6c 6f77 tly. The follow │ │ │ │ -00040700: 696e 6720 6973 2074 6865 2063 6f6e 6520 ing is the cone │ │ │ │ -00040710: 6f76 6572 2074 6865 2070 726f 6475 6374 over the product │ │ │ │ -00040720: 206f 6620 7477 6f0a 656c 6c69 7074 6963 of two.elliptic │ │ │ │ -00040730: 2063 7572 7665 732e 2020 5765 2076 6572 curves. We ver │ │ │ │ -00040740: 6966 7920 7468 6174 2074 6869 7320 7269 ify that this ri │ │ │ │ -00040750: 6e67 2069 7320 7265 6775 6c61 7220 696e ng is regular in │ │ │ │ -00040760: 2063 6f64 696d 656e 7369 6f6e 2031 2075 codimension 1 u │ │ │ │ -00040770: 7369 6e67 0a64 6966 6665 7265 6e74 2073 sing.different s │ │ │ │ -00040780: 7472 6174 6567 6965 732e 2020 4573 7365 trategies. Esse │ │ │ │ -00040790: 6e74 6961 6c6c 792c 206d 696e 6f72 7320 ntially, minors │ │ │ │ -000407a0: 6172 6520 636f 6d70 7574 6564 2075 6e74 are computed unt │ │ │ │ -000407b0: 696c 2069 7420 6973 2076 6572 6966 6965 il it is verifie │ │ │ │ -000407c0: 640a 7468 6174 2074 6865 2072 696e 6720 d.that the ring │ │ │ │ -000407d0: 6973 2072 6567 756c 6172 2069 6e20 636f is regular in co │ │ │ │ -000407e0: 6469 6d65 6e73 696f 6e20 312e 0a2b 2d2d dimension 1..+-- │ │ │ │ -000407f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00040840: 203a 2054 3d5a 5a2f 375b 612e 2e69 5d2f : T=ZZ/7[a..i]/ │ │ │ │ -00040850: 6964 6561 6c28 662a 682d 652a 692c 632a ideal(f*h-e*i,c* │ │ │ │ -00040860: 682d 622a 692c 662a 672d 642a 692c 652a h-b*i,f*g-d*i,e* │ │ │ │ -00040870: 672d 642a 682c 632a 672d 612a 692c 622a g-d*h,c*g-a*i,b* │ │ │ │ -00040880: 672d 612a 682c 632a 652d 627c 0a7c 2d2d g-a*h,c*e-b|.|-- │ │ │ │ -00040890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000408a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000408b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000408c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000408d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a66 -----------|.|*f │ │ │ │ -000408e0: 2c63 2a64 2d61 2a66 2c62 2a64 2d61 2a65 ,c*d-a*f,b*d-a*e │ │ │ │ -000408f0: 2c67 5e33 2d68 5e32 2a69 2d67 2a69 5e32 ,g^3-h^2*i-g*i^2 │ │ │ │ -00040900: 2c64 2a67 5e32 2d65 2a68 2a69 2d64 2a69 ,d*g^2-e*h*i-d*i │ │ │ │ -00040910: 5e32 2c61 2a67 5e32 2d62 2a68 2a69 2d61 ^2,a*g^2-b*h*i-a │ │ │ │ -00040920: 2a69 5e32 2c64 5e32 2a67 2d7c 0a7c 2d2d *i^2,d^2*g-|.|-- │ │ │ │ -00040930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 655e -----------|.|e^ │ │ │ │ -00040980: 322a 692d 642a 662a 692c 612a 642a 672d 2*i-d*f*i,a*d*g- │ │ │ │ -00040990: 622a 652a 692d 612a 662a 692c 615e 322a b*e*i-a*f*i,a^2* │ │ │ │ -000409a0: 672d 625e 322a 692d 612a 632a 692c 645e g-b^2*i-a*c*i,d^ │ │ │ │ -000409b0: 332d 655e 322a 662d 642a 665e 322c 612a 3-e^2*f-d*f^2,a* │ │ │ │ -000409c0: 645e 322d 622a 652a 662d 617c 0a7c 2d2d d^2-b*e*f-a|.|-- │ │ │ │ -000409d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000409e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000409f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a66 -----------|.|*f │ │ │ │ -00040a20: 5e32 2c61 5e32 2a64 2d62 5e32 2a66 2d61 ^2,a^2*d-b^2*f-a │ │ │ │ -00040a30: 2a63 2a66 2c63 5e33 2b66 5e33 2d69 5e33 *c*f,c^3+f^3-i^3 │ │ │ │ -00040a40: 2c62 2a63 5e32 2b65 2a66 5e32 2d68 2a69 ,b*c^2+e*f^2-h*i │ │ │ │ -00040a50: 5e32 2c61 2a63 5e32 2b64 2a66 5e32 2d67 ^2,a*c^2+d*f^2-g │ │ │ │ -00040a60: 2a69 5e32 2c62 5e32 2a63 2b7c 0a7c 2d2d *i^2,b^2*c+|.|-- │ │ │ │ -00040a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 655e -----------|.|e^ │ │ │ │ -00040ac0: 322a 662d 685e 322a 692c 612a 622a 632b 2*f-h^2*i,a*b*c+ │ │ │ │ -00040ad0: 642a 652a 662d 672a 682a 692c 615e 322a d*e*f-g*h*i,a^2* │ │ │ │ -00040ae0: 632b 645e 322a 662d 675e 322a 692c 625e c+d^2*f-g^2*i,b^ │ │ │ │ -00040af0: 332b 655e 332d 685e 332c 612a 625e 322b 3+e^3-h^3,a*b^2+ │ │ │ │ -00040b00: 642a 655e 322d 672a 685e 327c 0a7c 2d2d d*e^2-g*h^2|.|-- │ │ │ │ -00040b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2c61 -----------|.|,a │ │ │ │ -00040b60: 5e32 2a62 2b64 5e32 2a65 2d67 5e32 2a68 ^2*b+d^2*e-g^2*h │ │ │ │ -00040b70: 2c61 5e33 2b65 5e32 2a66 2b64 2a66 5e32 ,a^3+e^2*f+d*f^2 │ │ │ │ -00040b80: 2d68 5e32 2a69 2d67 2a69 5e32 293b 2020 -h^2*i-g*i^2); │ │ │ │ -00040b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ba0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00040bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00040c00: 203a 2065 6c61 7073 6564 5469 6d65 2072 : elapsedTime r │ │ │ │ -00040c10: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ -00040c20: 696f 6e28 312c 2054 2c20 5374 7261 7465 ion(1, T, Strate │ │ │ │ -00040c30: 6779 3d3e 5374 7261 7465 6779 4465 6661 gy=>StrategyDefa │ │ │ │ -00040c40: 756c 7429 2020 2020 2020 207c 0a7c 202d ult) |.| - │ │ │ │ -00040c50: 2d20 312e 3733 3132 3773 2065 6c61 7073 - 1.73127s elaps │ │ │ │ -00040c60: 6564 2020 2020 2020 2020 2020 2020 2020 ed │ │ │ │ -00040c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040c90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00040ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f830: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +0003f840: 2051 515b 782c 792c 7a2c 775d 3b20 2020 QQ[x,y,z,w]; │ │ │ │ +0003f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f860: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0003f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0003f890: 0a7c 6932 203a 2078 203e 2079 2061 6e64 .|i2 : x > y and │ │ │ │ +0003f8a0: 2079 203e 207a 2061 6e64 207a 203e 2077 y > z and z > w │ │ │ │ +0003f8b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0003f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f8e0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ +0003f8f0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +0003f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f910: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0003f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003f940: 2d2d 2d2b 0a7c 6933 203a 2075 7365 2072 ---+.|i3 : use r │ │ │ │ +0003f950: 656f 7264 6572 506f 6c79 6e6f 6d69 616c eorderPolynomial │ │ │ │ +0003f960: 5269 6e67 2847 5265 764c 6578 2c20 5229 Ring(GRevLex, R) │ │ │ │ +0003f970: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f990: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0003f9a0: 6f33 203d 2051 515b 7a2c 2077 2e2e 795d o3 = QQ[z, w..y] │ │ │ │ +0003f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f9c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0003f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003f9f0: 2020 2020 2020 207c 0a7c 6f33 203a 2050 |.|o3 : P │ │ │ │ +0003fa00: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +0003fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fa20: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0003fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fa50: 2d2b 0a7c 6934 203a 2078 203e 2079 2020 -+.|i4 : x > y │ │ │ │ +0003fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fa70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0003fa80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0003fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003faa0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0003fab0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +0003fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fad0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0003fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fb00: 2d2d 2d2d 2d2b 0a7c 6935 203a 2079 203e -----+.|i5 : y > │ │ │ │ +0003fb10: 207a 2020 2020 2020 2020 2020 2020 2020 z │ │ │ │ +0003fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fb30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fb50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0003fb60: 0a7c 6f35 203d 2066 616c 7365 2020 2020 .|o5 = false │ │ │ │ +0003fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fb80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0003fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fbb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +0003fbc0: 207a 203e 2077 2020 2020 2020 2020 2020 z > w │ │ │ │ +0003fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fbe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0003fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc10: 2020 207c 0a7c 6f36 203d 2074 7275 6520 |.|o6 = true │ │ │ │ +0003fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003fc40: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0003fc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0003fc70: 5761 7973 2074 6f20 7573 6520 7265 6f72 Ways to use reor │ │ │ │ +0003fc80: 6465 7250 6f6c 796e 6f6d 6961 6c52 696e derPolynomialRin │ │ │ │ +0003fc90: 673a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d g:.============= │ │ │ │ +0003fca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0003fcb0: 3d3d 3d3d 3d0a 0a20 202a 2022 7265 6f72 =====.. * "reor │ │ │ │ +0003fcc0: 6465 7250 6f6c 796e 6f6d 6961 6c52 696e derPolynomialRin │ │ │ │ +0003fcd0: 6728 5379 6d62 6f6c 2c52 696e 6729 220a g(Symbol,Ring)". │ │ │ │ +0003fce0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0003fcf0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0003fd00: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0003fd10: 6374 202a 6e6f 7465 2072 656f 7264 6572 ct *note reorder │ │ │ │ +0003fd20: 506f 6c79 6e6f 6d69 616c 5269 6e67 3a20 PolynomialRing: │ │ │ │ +0003fd30: 7265 6f72 6465 7250 6f6c 796e 6f6d 6961 reorderPolynomia │ │ │ │ +0003fd40: 6c52 696e 672c 2069 7320 6120 2a6e 6f74 lRing, is a *not │ │ │ │ +0003fd50: 650a 6d65 7468 6f64 2066 756e 6374 696f e.method functio │ │ │ │ +0003fd60: 6e20 7769 7468 206f 7074 696f 6e73 3a20 n with options: │ │ │ │ +0003fd70: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0003fd80: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +0003fd90: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +0003fda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0003fde0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0003fdf0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0003fe00: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0003fe10: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0003fe20: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0003fe30: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0003fe40: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0003fe50: 732f 4661 7374 4d69 6e6f 7273 2e0a 6d32 s/FastMinors..m2 │ │ │ │ +0003fe60: 3a32 3136 383a 302e 0a1f 0a46 696c 653a :2168:0....File: │ │ │ │ +0003fe70: 2046 6173 744d 696e 6f72 732e 696e 666f FastMinors.info │ │ │ │ +0003fe80: 2c20 4e6f 6465 3a20 5374 7261 7465 6779 , Node: Strategy │ │ │ │ +0003fe90: 4465 6661 756c 742c 2050 7265 763a 2072 Default, Prev: r │ │ │ │ +0003fea0: 656f 7264 6572 506f 6c79 6e6f 6d69 616c eorderPolynomial │ │ │ │ +0003feb0: 5269 6e67 2c20 5570 3a20 546f 700a 0a53 Ring, Up: Top..S │ │ │ │ +0003fec0: 7472 6174 6567 7944 6566 6175 6c74 202d trategyDefault - │ │ │ │ +0003fed0: 2d20 7374 7261 7465 6769 6573 2066 6f72 - strategies for │ │ │ │ +0003fee0: 2063 686f 6f73 696e 6720 7375 626d 6174 choosing submat │ │ │ │ +0003fef0: 7269 6365 730a 2a2a 2a2a 2a2a 2a2a 2a2a rices.********** │ │ │ │ +0003ff00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003ff10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0003ff20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ +0003ff30: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0003ff40: 3d3d 3d3d 3d0a 0a4d 616e 7920 6f66 2074 =====..Many of t │ │ │ │ +0003ff50: 6865 2063 6f72 6520 6675 6e63 7469 6f6e he core function │ │ │ │ +0003ff60: 7320 6f66 2074 6869 7320 7061 636b 6167 s of this packag │ │ │ │ +0003ff70: 6520 616c 6c6f 7720 7468 6520 7573 6572 e allow the user │ │ │ │ +0003ff80: 2074 6f20 6669 6e65 2074 756e 6520 7468 to fine tune th │ │ │ │ +0003ff90: 650a 7374 7261 7465 6779 2075 7365 6420 e.strategy used │ │ │ │ +0003ffa0: 666f 7220 7365 6c65 6374 696e 6720 7375 for selecting su │ │ │ │ +0003ffb0: 626d 6174 7269 6365 732e 2020 4469 6666 bmatrices. Diff │ │ │ │ +0003ffc0: 6572 656e 7420 7374 7261 7465 6769 6573 erent strategies │ │ │ │ +0003ffd0: 2079 6965 6c64 206d 6172 6b65 646c 790a yield markedly. │ │ │ │ +0003ffe0: 6469 6666 6572 656e 7420 7065 7266 6f72 different perfor │ │ │ │ +0003fff0: 6d61 6e63 6520 6f72 2072 6573 756c 7473 mance or results │ │ │ │ +00040000: 206f 6e20 7661 7269 6f75 7320 6578 616d on various exam │ │ │ │ +00040010: 706c 6573 2e20 5468 6573 6520 6172 6520 ples. These are │ │ │ │ +00040020: 636f 6e74 726f 6c6c 6564 2062 790a 7370 controlled by.sp │ │ │ │ +00040030: 6563 6966 7969 6e67 2061 2020 5374 7261 ecifying a Stra │ │ │ │ +00040040: 7465 6779 203d 3e20 206f 7074 696f 6e2c tegy => option, │ │ │ │ +00040050: 2070 6f69 6e74 696e 6720 746f 2061 2020 pointing to a │ │ │ │ +00040060: 4861 7368 5461 626c 6577 6869 6368 2073 HashTablewhich s │ │ │ │ +00040070: 7065 6369 6669 6573 0a73 6576 6572 616c pecifies.several │ │ │ │ +00040080: 2073 7472 6174 6567 6965 7320 7368 6f75 strategies shou │ │ │ │ +00040090: 6c64 2062 6520 7573 6564 2073 696d 756c ld be used simul │ │ │ │ +000400a0: 7461 6e65 6f75 736c 792c 206f 7220 746f taneously, or to │ │ │ │ +000400b0: 2061 2073 796d 626f 6c20 7361 7969 6e67 a symbol saying │ │ │ │ +000400c0: 2077 650a 7368 6f75 6c64 2075 7365 206f we.should use o │ │ │ │ +000400d0: 6e6c 7920 6120 7369 6e67 6c65 2073 7472 nly a single str │ │ │ │ +000400e0: 6174 6567 792e 2020 466f 7220 6120 6d6f ategy. For a mo │ │ │ │ +000400f0: 7265 2064 6574 6169 6c65 6420 6c6f 6f6b re detailed look │ │ │ │ +00040100: 2061 7420 7468 6973 2069 6e20 616e 0a65 at this in an.e │ │ │ │ +00040110: 7861 6d70 6c65 2070 6c65 6173 6520 7365 xample please se │ │ │ │ +00040120: 6520 2a6e 6f74 6520 4661 7374 4d69 6e6f e *note FastMino │ │ │ │ +00040130: 7273 5374 7261 7465 6779 5475 746f 7269 rsStrategyTutori │ │ │ │ +00040140: 616c 3a0a 4661 7374 4d69 6e6f 7273 5374 al:.FastMinorsSt │ │ │ │ +00040150: 7261 7465 6779 5475 746f 7269 616c 2c42 rategyTutorial,B │ │ │ │ +00040160: 6566 6f72 6520 6465 7363 7269 6269 6e67 efore describing │ │ │ │ +00040170: 2074 6865 2061 7661 696c 6162 6c65 2073 the available s │ │ │ │ +00040180: 7472 6174 6567 6965 732c 2077 6520 6265 trategies, we be │ │ │ │ +00040190: 6769 6e0a 6279 2072 6f75 6768 6c79 206f gin.by roughly o │ │ │ │ +000401a0: 7574 6c69 6e69 6e67 2074 6865 2064 6966 utlining the dif │ │ │ │ +000401b0: 6665 7265 6e74 2061 7070 726f 6163 6865 ferent approache │ │ │ │ +000401c0: 732e 0a20 202a 2048 6575 7269 7374 6963 s.. * Heuristic │ │ │ │ +000401d0: 2073 7562 6d61 7472 6978 2073 656c 6563 submatrix selec │ │ │ │ +000401e0: 7469 6f6e 3a20 496e 2074 6869 7320 6361 tion: In this ca │ │ │ │ +000401f0: 7365 2c20 6120 7375 626d 6174 7269 7820 se, a submatrix │ │ │ │ +00040200: 6973 2063 686f 7365 6e20 7669 6120 610a is chosen via a. │ │ │ │ +00040210: 2020 2020 6772 6565 6479 2061 6c67 6f72 greedy algor │ │ │ │ +00040220: 6974 686d 2c20 6c6f 6f6b 696e 6720 666f ithm, looking fo │ │ │ │ +00040230: 7220 6120 7375 626d 6174 7269 7820 7769 r a submatrix wi │ │ │ │ +00040240: 7468 2073 6d61 6c6c 6573 7420 286f 7220 th smallest (or │ │ │ │ +00040250: 6c61 7267 6573 7429 2064 6567 7265 650a largest) degree. │ │ │ │ +00040260: 2020 2020 7769 7468 2072 6573 7065 6374 with respect │ │ │ │ +00040270: 2074 6f20 6120 7261 6e64 6f6d 206d 6f6e to a random mon │ │ │ │ +00040280: 6f6d 6961 6c20 6f72 6465 722e 0a20 202a omial order.. * │ │ │ │ +00040290: 2053 7562 6d61 7472 6978 2073 656c 6563 Submatrix selec │ │ │ │ +000402a0: 7469 6f6e 2076 6961 2072 6174 696f 6e61 tion via rationa │ │ │ │ +000402b0: 6c20 616e 6420 6765 6f6d 6574 7269 6320 l and geometric │ │ │ │ +000402c0: 706f 696e 7473 3a20 4865 7265 2061 2072 points: Here a r │ │ │ │ +000402d0: 6174 696f 6e61 6c20 6f72 0a20 2020 2067 ational or. g │ │ │ │ +000402e0: 656f 6d65 7472 6963 2070 6f69 6e74 2069 eometric point i │ │ │ │ +000402f0: 7320 666f 756e 6420 7768 6572 6520 6120 s found where a │ │ │ │ +00040300: 6769 7665 6e20 6964 6561 6c20 7661 6e69 given ideal vani │ │ │ │ +00040310: 7368 6573 2e20 2054 6861 7420 706f 696e shes. That poin │ │ │ │ +00040320: 7420 6973 0a20 2020 2070 6c75 6767 6564 t is. plugged │ │ │ │ +00040330: 2069 6e74 6f20 7468 6520 6d61 7472 6978 into the matrix │ │ │ │ +00040340: 2061 6e64 2061 2073 7562 6d61 7472 6978 and a submatrix │ │ │ │ +00040350: 206f 6620 6675 6c6c 2072 616e 6b20 6973 of full rank is │ │ │ │ +00040360: 2069 6465 6e74 6966 6965 642e 2020 2054 identified. T │ │ │ │ +00040370: 6869 730a 2020 2020 6170 7072 6f61 6368 his. approach │ │ │ │ +00040380: 2063 7572 7265 6e74 6c79 206f 6e6c 7920 currently only │ │ │ │ +00040390: 776f 726b 7320 6f76 6572 2061 2066 696e works over a fin │ │ │ │ +000403a0: 6974 6520 6669 656c 6420 616e 6420 6973 ite field and is │ │ │ │ +000403b0: 2061 6363 6f6d 706c 6973 6865 6420 7769 accomplished wi │ │ │ │ +000403c0: 7468 0a20 2020 2074 6865 2068 656c 7020 th. the help │ │ │ │ +000403d0: 6f66 2074 6865 2070 6163 6b61 6765 202a of the package * │ │ │ │ +000403e0: 6e6f 7465 2052 616e 646f 6d50 6f69 6e74 note RandomPoint │ │ │ │ +000403f0: 733a 2028 5261 6e64 6f6d 506f 696e 7473 s: (RandomPoints │ │ │ │ +00040400: 2954 6f70 2c2e 0a20 202a 2052 616e 646f )Top,.. * Rando │ │ │ │ +00040410: 6d20 7375 626d 6174 7269 7820 7365 6c65 m submatrix sele │ │ │ │ +00040420: 6374 696f 6e3a 2054 6869 7320 6569 7468 ction: This eith │ │ │ │ +00040430: 6572 2063 686f 6f73 6573 2061 2063 6f6d er chooses a com │ │ │ │ +00040440: 706c 6574 656c 7920 7261 6e64 6f6d 0a20 pletely random. │ │ │ │ +00040450: 2020 2073 7562 6d61 7472 6978 2c20 6f72 submatrix, or │ │ │ │ +00040460: 2061 2073 7562 6d61 7472 6978 2077 6869 a submatrix whi │ │ │ │ +00040470: 6368 2068 6173 206e 6f20 7a65 726f 2063 ch has no zero c │ │ │ │ +00040480: 6f6c 756d 6e73 206f 7220 726f 7773 2e0a olumns or rows.. │ │ │ │ +00040490: 5468 6572 6520 7765 2068 6967 686c 6967 There we highlig │ │ │ │ +000404a0: 6874 2066 6976 6520 7072 652d 7072 6f67 ht five pre-prog │ │ │ │ +000404b0: 7261 6d6d 6564 2073 7472 6174 6567 6965 rammed strategie │ │ │ │ +000404c0: 7320 7072 6f76 6964 6564 2074 6f20 7468 s provided to th │ │ │ │ +000404d0: 6520 7573 6572 2e0a 2020 2a20 5374 7261 e user.. * Stra │ │ │ │ +000404e0: 7465 6779 4465 6661 756c 743a 2074 6869 tegyDefault: thi │ │ │ │ +000404f0: 7320 7573 6573 2061 206d 6978 206f 6620 s uses a mix of │ │ │ │ +00040500: 6865 7572 6973 7469 6373 2061 6e64 2072 heuristics and r │ │ │ │ +00040510: 616e 646f 6d20 7375 626d 6174 7269 6365 andom submatrice │ │ │ │ +00040520: 732e 0a20 202a 2053 7472 6174 6567 7952 s.. * StrategyR │ │ │ │ +00040530: 616e 646f 6d3a 2074 6869 7320 7573 6573 andom: this uses │ │ │ │ +00040540: 2070 7572 656c 7920 7261 6e64 6f6d 2073 purely random s │ │ │ │ +00040550: 7562 6d61 7472 6963 6573 2e0a 2020 2a20 ubmatrices.. * │ │ │ │ +00040560: 5374 7261 7465 6779 4465 6661 756c 744e StrategyDefaultN │ │ │ │ +00040570: 6f6e 5261 6e64 6f6d 3a20 7468 6973 2075 onRandom: this u │ │ │ │ +00040580: 7365 7320 6120 6d69 7820 6f66 2068 6575 ses a mix of heu │ │ │ │ +00040590: 7269 7374 6963 7320 6275 7420 6e6f 2072 ristics but no r │ │ │ │ +000405a0: 616e 646f 6d0a 2020 2020 7375 626d 6174 andom. submat │ │ │ │ +000405b0: 7269 6365 732e 0a20 202a 2053 7472 6174 rices.. * Strat │ │ │ │ +000405c0: 6567 7950 6f69 6e74 733a 2074 6869 7320 egyPoints: this │ │ │ │ +000405d0: 6f6e 6c79 2075 7365 7320 7261 7469 6f6e only uses ration │ │ │ │ +000405e0: 616c 202f 2067 656f 6d65 7472 6963 2070 al / geometric p │ │ │ │ +000405f0: 6f69 6e74 7320 746f 2066 696e 640a 2020 oints to find. │ │ │ │ +00040600: 2020 7375 626d 6174 7269 6365 732e 0a20 submatrices.. │ │ │ │ +00040610: 202a 2053 7472 6174 6567 7944 6566 6175 * StrategyDefau │ │ │ │ +00040620: 6c74 5769 7468 506f 696e 7473 3a20 7468 ltWithPoints: th │ │ │ │ +00040630: 6973 2075 7365 7320 6120 6d69 7820 6f66 is uses a mix of │ │ │ │ +00040640: 2068 6575 7269 7374 6963 7320 616e 6420 heuristics and │ │ │ │ +00040650: 7375 626d 6174 7269 6365 730a 2020 2020 submatrices. │ │ │ │ +00040660: 6368 6f73 656e 2077 6974 6820 7261 7469 chosen with rati │ │ │ │ +00040670: 6f6e 616c 2061 6e64 2067 656f 6d65 7472 onal and geometr │ │ │ │ +00040680: 6963 2070 6f69 6e74 732e 0a42 656c 6f77 ic points..Below │ │ │ │ +00040690: 2074 6865 2064 6574 6169 6c73 206f 6620 the details of │ │ │ │ +000406a0: 686f 7720 7468 6573 6520 7374 7261 7465 how these strate │ │ │ │ +000406b0: 6769 6573 2061 7265 2063 6f6e 7374 7275 gies are constru │ │ │ │ +000406c0: 6374 6564 2077 696c 6c20 6265 2064 6574 cted will be det │ │ │ │ +000406d0: 6169 6c65 640a 6265 6c6f 772e 2020 4275 ailed.below. Bu │ │ │ │ +000406e0: 7420 6669 7273 742c 2077 6520 7072 6f76 t first, we prov │ │ │ │ +000406f0: 6964 6520 616e 2065 7861 6d70 6c65 2073 ide an example s │ │ │ │ +00040700: 686f 7769 6e67 2074 6861 7420 7468 6573 howing that thes │ │ │ │ +00040710: 6520 7374 7261 7465 6769 6573 2063 616e e strategies can │ │ │ │ +00040720: 0a70 6572 666f 726d 2071 7569 7465 2064 .perform quite d │ │ │ │ +00040730: 6966 6665 7265 6e74 6c79 2e20 2054 6865 ifferently. The │ │ │ │ +00040740: 2066 6f6c 6c6f 7769 6e67 2069 7320 7468 following is th │ │ │ │ +00040750: 6520 636f 6e65 206f 7665 7220 7468 6520 e cone over the │ │ │ │ +00040760: 7072 6f64 7563 7420 6f66 2074 776f 0a65 product of two.e │ │ │ │ +00040770: 6c6c 6970 7469 6320 6375 7276 6573 2e20 lliptic curves. │ │ │ │ +00040780: 2057 6520 7665 7269 6679 2074 6861 7420 We verify that │ │ │ │ +00040790: 7468 6973 2072 696e 6720 6973 2072 6567 this ring is reg │ │ │ │ +000407a0: 756c 6172 2069 6e20 636f 6469 6d65 6e73 ular in codimens │ │ │ │ +000407b0: 696f 6e20 3120 7573 696e 670a 6469 6666 ion 1 using.diff │ │ │ │ +000407c0: 6572 656e 7420 7374 7261 7465 6769 6573 erent strategies │ │ │ │ +000407d0: 2e20 2045 7373 656e 7469 616c 6c79 2c20 . Essentially, │ │ │ │ +000407e0: 6d69 6e6f 7273 2061 7265 2063 6f6d 7075 minors are compu │ │ │ │ +000407f0: 7465 6420 756e 7469 6c20 6974 2069 7320 ted until it is │ │ │ │ +00040800: 7665 7269 6669 6564 0a74 6861 7420 7468 verified.that th │ │ │ │ +00040810: 6520 7269 6e67 2069 7320 7265 6775 6c61 e ring is regula │ │ │ │ +00040820: 7220 696e 2063 6f64 696d 656e 7369 6f6e r in codimension │ │ │ │ +00040830: 2031 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 1..+----------- │ │ │ │ +00040840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040880: 2d2d 2b0a 7c69 3120 3a20 543d 5a5a 2f37 --+.|i1 : T=ZZ/7 │ │ │ │ +00040890: 5b61 2e2e 695d 2f69 6465 616c 2866 2a68 [a..i]/ideal(f*h │ │ │ │ +000408a0: 2d65 2a69 2c63 2a68 2d62 2a69 2c66 2a67 -e*i,c*h-b*i,f*g │ │ │ │ +000408b0: 2d64 2a69 2c65 2a67 2d64 2a68 2c63 2a67 -d*i,e*g-d*h,c*g │ │ │ │ +000408c0: 2d61 2a69 2c62 2a67 2d61 2a68 2c63 2a65 -a*i,b*g-a*h,c*e │ │ │ │ +000408d0: 2d62 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d -b|.|----------- │ │ │ │ +000408e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000408f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040920: 2d2d 7c0a 7c2a 662c 632a 642d 612a 662c --|.|*f,c*d-a*f, │ │ │ │ +00040930: 622a 642d 612a 652c 675e 332d 685e 322a b*d-a*e,g^3-h^2* │ │ │ │ +00040940: 692d 672a 695e 322c 642a 675e 322d 652a i-g*i^2,d*g^2-e* │ │ │ │ +00040950: 682a 692d 642a 695e 322c 612a 675e 322d h*i-d*i^2,a*g^2- │ │ │ │ +00040960: 622a 682a 692d 612a 695e 322c 645e 322a b*h*i-a*i^2,d^2* │ │ │ │ +00040970: 672d 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d g-|.|----------- │ │ │ │ +00040980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000409a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000409b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000409c0: 2d2d 7c0a 7c65 5e32 2a69 2d64 2a66 2a69 --|.|e^2*i-d*f*i │ │ │ │ +000409d0: 2c61 2a64 2a67 2d62 2a65 2a69 2d61 2a66 ,a*d*g-b*e*i-a*f │ │ │ │ +000409e0: 2a69 2c61 5e32 2a67 2d62 5e32 2a69 2d61 *i,a^2*g-b^2*i-a │ │ │ │ +000409f0: 2a63 2a69 2c64 5e33 2d65 5e32 2a66 2d64 *c*i,d^3-e^2*f-d │ │ │ │ +00040a00: 2a66 5e32 2c61 2a64 5e32 2d62 2a65 2a66 *f^2,a*d^2-b*e*f │ │ │ │ +00040a10: 2d61 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d -a|.|----------- │ │ │ │ +00040a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040a60: 2d2d 7c0a 7c2a 665e 322c 615e 322a 642d --|.|*f^2,a^2*d- │ │ │ │ +00040a70: 625e 322a 662d 612a 632a 662c 635e 332b b^2*f-a*c*f,c^3+ │ │ │ │ +00040a80: 665e 332d 695e 332c 622a 635e 322b 652a f^3-i^3,b*c^2+e* │ │ │ │ +00040a90: 665e 322d 682a 695e 322c 612a 635e 322b f^2-h*i^2,a*c^2+ │ │ │ │ +00040aa0: 642a 665e 322d 672a 695e 322c 625e 322a d*f^2-g*i^2,b^2* │ │ │ │ +00040ab0: 632b 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d c+|.|----------- │ │ │ │ +00040ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040b00: 2d2d 7c0a 7c65 5e32 2a66 2d68 5e32 2a69 --|.|e^2*f-h^2*i │ │ │ │ +00040b10: 2c61 2a62 2a63 2b64 2a65 2a66 2d67 2a68 ,a*b*c+d*e*f-g*h │ │ │ │ +00040b20: 2a69 2c61 5e32 2a63 2b64 5e32 2a66 2d67 *i,a^2*c+d^2*f-g │ │ │ │ +00040b30: 5e32 2a69 2c62 5e33 2b65 5e33 2d68 5e33 ^2*i,b^3+e^3-h^3 │ │ │ │ +00040b40: 2c61 2a62 5e32 2b64 2a65 5e32 2d67 2a68 ,a*b^2+d*e^2-g*h │ │ │ │ +00040b50: 5e32 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d ^2|.|----------- │ │ │ │ +00040b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040ba0: 2d2d 7c0a 7c2c 615e 322a 622b 645e 322a --|.|,a^2*b+d^2* │ │ │ │ +00040bb0: 652d 675e 322a 682c 615e 332b 655e 322a e-g^2*h,a^3+e^2* │ │ │ │ +00040bc0: 662b 642a 665e 322d 685e 322a 692d 672a f+d*f^2-h^2*i-g* │ │ │ │ +00040bd0: 695e 3229 3b20 2020 2020 2020 2020 2020 i^2); │ │ │ │ +00040be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040bf0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00040c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040c40: 2d2d 2b0a 7c69 3220 3a20 656c 6170 7365 --+.|i2 : elapse │ │ │ │ +00040c50: 6454 696d 6520 7265 6775 6c61 7249 6e43 dTime regularInC │ │ │ │ +00040c60: 6f64 696d 656e 7369 6f6e 2831 2c20 542c odimension(1, T, │ │ │ │ +00040c70: 2053 7472 6174 6567 793d 3e53 7472 6174 Strategy=>Strat │ │ │ │ +00040c80: 6567 7944 6566 6175 6c74 2920 2020 2020 egyDefault) │ │ │ │ +00040c90: 2020 7c0a 7c20 2d2d 2031 2e34 3436 3433 |.| -- 1.44643 │ │ │ │ +00040ca0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 00040cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ce0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00040cf0: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00040ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00040d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a49 6e20 -----------+.In │ │ │ │ -00040d90: 7468 6973 2070 6172 7469 6375 6c61 7220 this particular │ │ │ │ -00040da0: 6578 616d 706c 652c 206f 6e20 6f6e 6520 example, on one │ │ │ │ -00040db0: 6d61 6368 696e 652c 2077 6520 6c69 7374 machine, we list │ │ │ │ -00040dc0: 2061 7665 7261 6765 2074 696d 6520 746f average time to │ │ │ │ -00040dd0: 2063 6f6d 706c 6574 696f 6e0a 6f66 2065 completion.of e │ │ │ │ -00040de0: 6163 6820 6f66 2074 6865 2061 626f 7665 ach of the above │ │ │ │ -00040df0: 2073 7472 6174 6567 6965 7320 6166 7465 strategies afte │ │ │ │ -00040e00: 7220 3130 3020 7275 6e73 2e0a 2020 2a20 r 100 runs.. * │ │ │ │ -00040e10: 5374 7261 7465 6779 4465 6661 756c 743a StrategyDefault: │ │ │ │ -00040e20: 2031 2e36 3520 7365 636f 6e64 730a 2020 1.65 seconds. │ │ │ │ -00040e30: 2a20 5374 7261 7465 6779 5261 6e64 6f6d * StrategyRandom │ │ │ │ -00040e40: 3a20 382e 3332 2073 6563 6f6e 6473 0a20 : 8.32 seconds. │ │ │ │ -00040e50: 202a 2053 7472 6174 6567 7944 6566 6175 * StrategyDefau │ │ │ │ -00040e60: 6c74 4e6f 6e52 616e 646f 6d3a 2030 2e39 ltNonRandom: 0.9 │ │ │ │ -00040e70: 3920 7365 636f 6e64 730a 2020 2a20 5374 9 seconds. * St │ │ │ │ -00040e80: 7261 7465 6779 506f 696e 7473 3a20 332e rategyPoints: 3. │ │ │ │ -00040e90: 3237 2073 6563 6f6e 6473 0a20 202a 2053 27 seconds. * S │ │ │ │ -00040ea0: 7472 6174 6567 7944 6566 6175 6c74 5769 trategyDefaultWi │ │ │ │ -00040eb0: 7468 506f 696e 7473 3a20 332e 3337 0a52 thPoints: 3.37.R │ │ │ │ -00040ec0: 6f75 6768 6c79 2073 7065 616b 696e 672c oughly speaking, │ │ │ │ -00040ed0: 2068 6575 7269 7374 6963 7320 7465 6e64 heuristics tend │ │ │ │ -00040ee0: 2074 6f20 7072 6f76 6964 6520 6d6f 7265 to provide more │ │ │ │ -00040ef0: 2069 6e66 6f72 6d61 7469 6f6e 2074 6861 information tha │ │ │ │ -00040f00: 6e20 7261 6e64 6f6d 0a73 7562 6d61 7472 n random.submatr │ │ │ │ -00040f10: 6963 6573 2061 6e64 2073 6f20 7468 6579 ices and so they │ │ │ │ -00040f20: 2077 6f72 6b20 6d75 6368 2066 6173 7465 work much faste │ │ │ │ -00040f30: 7220 7369 6e63 6520 7468 6579 2063 6f6e r since they con │ │ │ │ -00040f40: 7369 6465 7220 6661 7220 6665 7765 720a sider far fewer. │ │ │ │ -00040f50: 7375 626d 6174 7269 6365 732e 2020 4672 submatrices. Fr │ │ │ │ -00040f60: 6571 7565 6e74 6c79 2061 6c73 6f2c 2063 equently also, c │ │ │ │ -00040f70: 6f6d 7075 7469 6e67 2072 616e 646f 6d20 omputing random │ │ │ │ -00040f80: 6f72 2072 6174 696f 6e61 6c20 706f 696e or rational poin │ │ │ │ -00040f90: 7473 2064 6f65 7320 6861 7665 0a61 6476 ts does have.adv │ │ │ │ -00040fa0: 616e 7461 6765 7320 6173 2074 7970 6963 antages as typic │ │ │ │ -00040fb0: 616c 6c79 2066 6577 6572 2073 7469 6c6c ally fewer still │ │ │ │ -00040fc0: 206d 696e 6f72 7320 6172 6520 6e65 6564 minors are need │ │ │ │ -00040fd0: 6564 2028 6865 6e63 6520 6966 2063 6f6d ed (hence if com │ │ │ │ -00040fe0: 7075 7469 6e67 0a6d 696e 6f72 7320 6973 puting.minors is │ │ │ │ -00040ff0: 2073 6c6f 7720 5374 7261 7465 6779 506f slow StrategyPo │ │ │ │ -00041000: 696e 7473 2069 7320 6120 676f 6f64 2063 ints is a good c │ │ │ │ -00041010: 686f 6963 6529 2e20 2048 6f77 6576 6572 hoice). However │ │ │ │ -00041020: 2c20 736f 6d65 7469 6d65 7320 7468 6174 , sometimes that │ │ │ │ -00041030: 0a6e 6f6e 2d74 7269 7669 616c 2070 6f69 .non-trivial poi │ │ │ │ -00041040: 6e74 2063 6f6d 7075 7461 7469 6f6e 2077 nt computation w │ │ │ │ -00041050: 696c 6c20 6265 636f 6d65 2073 7475 636b ill become stuck │ │ │ │ -00041060: 2028 696e 2074 6865 2061 626f 7665 2065 (in the above e │ │ │ │ -00041070: 7861 6d70 6c65 2c20 7468 650a 6d65 6469 xample, the.medi │ │ │ │ -00041080: 616e 2074 696d 6520 666f 7220 5374 7261 an time for Stra │ │ │ │ -00041090: 7465 6779 506f 696e 7473 2061 6e64 2053 tegyPoints and S │ │ │ │ -000410a0: 7472 6174 6567 7944 6566 6175 6c74 5769 trategyDefaultWi │ │ │ │ -000410b0: 7468 506f 696e 7473 2077 6173 2063 6c6f thPoints was clo │ │ │ │ -000410c0: 7365 2074 6f20 312e 350a 7365 636f 6e64 se to 1.5.second │ │ │ │ -000410d0: 732c 2062 7574 2061 2063 6f75 706c 6520 s, but a couple │ │ │ │ -000410e0: 7275 6e73 2069 6e20 6561 6368 2063 6173 runs in each cas │ │ │ │ -000410f0: 6520 7765 7265 206f 7264 6572 7320 6f66 e were orders of │ │ │ │ -00041100: 206d 6167 6e69 7475 6465 2073 6c6f 7765 magnitude slowe │ │ │ │ -00041110: 7229 2e0a 0a43 7573 746f 6d20 5374 7261 r)...Custom Stra │ │ │ │ -00041120: 7465 6769 6573 0a54 6865 2075 7365 7220 tegies.The user │ │ │ │ -00041130: 6361 6e20 6372 6561 7465 2074 6865 6972 can create their │ │ │ │ -00041140: 206f 776e 2073 7472 6174 6567 6965 7320 own strategies │ │ │ │ -00041150: 6173 2077 656c 6c2c 2061 7320 7765 206e as well, as we n │ │ │ │ -00041160: 6f77 2065 7870 6c61 696e 2e20 2049 6e0a ow explain. In. │ │ │ │ -00041170: 7061 7274 6963 756c 6172 2c20 7468 6520 particular, the │ │ │ │ -00041180: 7573 6572 2063 616e 2065 7665 6e20 6375 user can even cu │ │ │ │ -00041190: 7374 6f6d 697a 6520 7468 6520 6865 7572 stomize the heur │ │ │ │ -000411a0: 6973 7469 6373 2075 7365 642e 2020 5365 istics used. Se │ │ │ │ -000411b0: 6520 6265 6c6f 7720 666f 7220 686f 770a e below for how. │ │ │ │ -000411c0: 746f 2065 6173 696c 7920 7573 6520 6f6e to easily use on │ │ │ │ -000411d0: 6c79 2061 2073 696e 676c 6520 6865 7572 ly a single heur │ │ │ │ -000411e0: 6973 7469 632e 2054 6f20 6375 7374 6f6d istic. To custom │ │ │ │ -000411f0: 2073 7472 6174 6567 7920 6973 2073 7065 strategy is spe │ │ │ │ -00041200: 6369 6669 6564 2062 7920 610a 4861 7368 cified by a.Hash │ │ │ │ -00041210: 5461 626c 6520 7768 6963 6820 6d75 7374 Table which must │ │ │ │ -00041220: 2068 6176 6520 7468 6520 666f 6c6c 6f77 have the follow │ │ │ │ -00041230: 696e 6720 6b65 7973 2e0a 2020 2a20 4752 ing keys.. * GR │ │ │ │ -00041240: 6576 4c65 784c 6172 6765 7374 3a20 7472 evLexLargest: tr │ │ │ │ -00041250: 7920 746f 2066 696e 6420 7375 626d 6174 y to find submat │ │ │ │ -00041260: 7269 6365 7320 7768 6572 6520 6561 6368 rices where each │ │ │ │ -00041270: 2072 6f77 2061 6e64 2063 6f6c 756d 6e20 row and column │ │ │ │ -00041280: 6861 7320 610a 2020 2020 6c61 7267 6520 has a. large │ │ │ │ -00041290: 656e 7472 7920 7769 7468 2072 6573 7065 entry with respe │ │ │ │ -000412a0: 6374 2074 6f20 6120 7261 6e64 6f6d 2047 ct to a random G │ │ │ │ -000412b0: 5265 764c 6578 6f72 6465 722e 0a20 202a RevLexorder.. * │ │ │ │ -000412c0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ -000412d0: 3a20 7472 7920 746f 2066 696e 6420 7375 : try to find su │ │ │ │ -000412e0: 626d 6174 7269 6365 7320 7768 6572 6520 bmatrices where │ │ │ │ -000412f0: 6561 6368 2072 6f77 2061 6e64 2063 6f6c each row and col │ │ │ │ -00041300: 756d 6e20 6861 7320 610a 2020 2020 736d umn has a. sm │ │ │ │ -00041310: 616c 6c20 656e 7472 7920 7769 7468 2072 all entry with r │ │ │ │ -00041320: 6573 7065 6374 2074 6f20 6120 7261 6e64 espect to a rand │ │ │ │ -00041330: 6f6d 2047 5265 764c 6578 6f72 6465 722e om GRevLexorder. │ │ │ │ -00041340: 0a20 202a 2047 5265 764c 6578 536d 616c . * GRevLexSmal │ │ │ │ -00041350: 6c65 7374 5465 726d 3a20 6669 6e64 2073 lestTerm: find s │ │ │ │ -00041360: 7562 6d61 7472 6963 6573 2077 6865 7265 ubmatrices where │ │ │ │ -00041370: 2065 6163 6820 726f 7720 616e 6420 636f each row and co │ │ │ │ -00041380: 6c75 6d6e 2068 6173 2061 6e0a 2020 2020 lumn has an. │ │ │ │ -00041390: 656e 7472 7920 7769 7468 2061 2073 6d61 entry with a sma │ │ │ │ -000413a0: 6c6c 2074 6572 6d20 7769 7468 2072 6573 ll term with res │ │ │ │ -000413b0: 7065 6374 2074 6f20 6120 7261 6e64 6f6d pect to a random │ │ │ │ -000413c0: 2047 5265 764c 6578 6f72 6465 722e 0a20 GRevLexorder.. │ │ │ │ -000413d0: 202a 204c 6578 4c61 7267 6573 743a 2074 * LexLargest: t │ │ │ │ -000413e0: 7279 2074 6f20 6669 6e64 2073 7562 6d61 ry to find subma │ │ │ │ -000413f0: 7472 6963 6573 2077 6865 7265 2065 6163 trices where eac │ │ │ │ -00041400: 6820 726f 7720 616e 6420 636f 6c75 6d6e h row and column │ │ │ │ -00041410: 2068 6173 2061 206c 6172 6765 0a20 2020 has a large. │ │ │ │ -00041420: 2065 6e74 7279 2077 6974 6820 7265 7370 entry with resp │ │ │ │ -00041430: 6563 7420 746f 2061 2072 616e 646f 6d20 ect to a random │ │ │ │ -00041440: 4c65 786f 7264 6572 2e0a 2020 2a20 4c65 Lexorder.. * Le │ │ │ │ -00041450: 7853 6d61 6c6c 6573 743a 2074 7279 2074 xSmallest: try t │ │ │ │ -00041460: 6f20 6669 6e64 2073 7562 6d61 7472 6963 o find submatric │ │ │ │ -00041470: 6573 2077 6865 7265 2065 6163 6820 726f es where each ro │ │ │ │ -00041480: 7720 616e 6420 636f 6c75 6d6e 2068 6173 w and column has │ │ │ │ -00041490: 2061 2073 6d61 6c6c 0a20 2020 2065 6e74 a small. ent │ │ │ │ -000414a0: 7279 2077 6974 6820 7265 7370 6563 7420 ry with respect │ │ │ │ -000414b0: 746f 2061 2072 616e 646f 6d20 4c65 786f to a random Lexo │ │ │ │ -000414c0: 7264 6572 2e0a 2020 2a20 4c65 7853 6d61 rder.. * LexSma │ │ │ │ -000414d0: 6c6c 6573 7454 6572 6d3a 2066 696e 6420 llestTerm: find │ │ │ │ -000414e0: 7375 626d 6174 7269 6365 7320 7768 6572 submatrices wher │ │ │ │ -000414f0: 6520 6561 6368 2072 6f77 2061 6e64 2063 e each row and c │ │ │ │ -00041500: 6f6c 756d 6e20 6861 7320 616e 2065 6e74 olumn has an ent │ │ │ │ -00041510: 7279 0a20 2020 2077 6974 6820 6120 736d ry. with a sm │ │ │ │ -00041520: 616c 6c20 7465 726d 2077 6974 6820 7265 all term with re │ │ │ │ -00041530: 7370 6563 7420 746f 2061 2072 616e 646f spect to a rando │ │ │ │ -00041540: 6d20 4c65 786f 7264 6572 2e0a 2020 2a20 m Lexorder.. * │ │ │ │ -00041550: 5261 6e64 6f6d 3a20 6669 6e64 2072 616e Random: find ran │ │ │ │ -00041560: 646f 6d20 7375 626d 6174 7269 6365 7320 dom submatrices │ │ │ │ -00041570: 0a20 202a 2052 616e 646f 6d4e 6f6e 7a65 . * RandomNonze │ │ │ │ -00041580: 726f 3a20 6669 6e64 2072 616e 646f 6d20 ro: find random │ │ │ │ -00041590: 7375 626d 6174 7269 6365 7320 7468 6174 submatrices that │ │ │ │ -000415a0: 2068 6176 6520 6e6f 6e7a 6572 6f20 726f have nonzero ro │ │ │ │ -000415b0: 7773 2061 6e64 2063 6f6c 756d 6e73 0a20 ws and columns. │ │ │ │ -000415c0: 202a 2050 6f69 6e74 733a 2066 696e 6420 * Points: find │ │ │ │ -000415d0: 7375 626d 6174 7269 6365 7320 7468 6174 submatrices that │ │ │ │ -000415e0: 2061 7265 206e 6f74 2073 696e 6775 6c61 are not singula │ │ │ │ -000415f0: 7220 6174 2074 6865 2067 6976 656e 2069 r at the given i │ │ │ │ -00041600: 6465 616c 2062 790a 2020 2020 6669 6e64 deal by. find │ │ │ │ -00041610: 696e 6720 6120 706f 696e 7420 7768 6572 ing a point wher │ │ │ │ -00041620: 6520 7468 6174 2069 6465 616c 2076 616e e that ideal van │ │ │ │ -00041630: 6973 6865 732c 2061 6e64 2065 7661 6c75 ishes, and evalu │ │ │ │ -00041640: 6174 696e 6720 7468 6520 6d61 7472 6978 ating the matrix │ │ │ │ -00041650: 2061 740a 2020 2020 7468 6174 2070 6f69 at. that poi │ │ │ │ -00041660: 6e74 2028 7669 6120 7468 6520 7061 636b nt (via the pack │ │ │ │ -00041670: 6167 6520 2a6e 6f74 6520 5261 6e64 6f6d age *note Random │ │ │ │ -00041680: 506f 696e 7473 3a20 2852 616e 646f 6d50 Points: (RandomP │ │ │ │ -00041690: 6f69 6e74 7329 546f 702c 292e 2020 4966 oints)Top,). If │ │ │ │ -000416a0: 0a20 2020 2077 6f72 6b69 6e67 206f 7665 . working ove │ │ │ │ -000416b0: 7220 6120 6368 6172 6163 7465 7269 7374 r a characterist │ │ │ │ -000416c0: 6963 207a 6572 6f20 6669 656c 642c 2074 ic zero field, t │ │ │ │ -000416d0: 6869 7320 7769 6c6c 2073 656c 6563 7420 his will select │ │ │ │ -000416e0: 7261 6e64 6f6d 0a20 2020 2073 7562 6d61 random. subma │ │ │ │ -000416f0: 7472 6963 6573 2e20 2054 6f20 6163 6365 trices. To acce │ │ │ │ -00041700: 7373 206f 7074 696f 6e73 2066 6f72 2074 ss options for t │ │ │ │ -00041710: 6861 7420 7061 636b 6167 652c 2073 6574 hat package, set │ │ │ │ -00041720: 2074 6865 202a 6e6f 7465 0a20 2020 2050 the *note. P │ │ │ │ -00041730: 6f69 6e74 4f70 7469 6f6e 733a 2050 6f69 ointOptions: Poi │ │ │ │ -00041740: 6e74 4f70 7469 6f6e 732c 206f 7074 696f ntOptions, optio │ │ │ │ -00041750: 6e2e 0a46 6f72 2065 7861 6d70 6c65 3a0a n..For example:. │ │ │ │ -00041760: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00041770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00041790: 3320 3a20 7065 656b 2053 7472 6174 6567 3 : peek Strateg │ │ │ │ -000417a0: 7944 6566 6175 6c74 2020 2020 2020 2020 yDefault │ │ │ │ -000417b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000417c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000417d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000417e0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -000417f0: 4f70 7469 6f6e 5461 626c 657b 4752 6576 OptionTable{GRev │ │ │ │ -00041800: 4c65 784c 6172 6765 7374 203d 3e20 3020 LexLargest => 0 │ │ │ │ -00041810: 2020 2020 207d 7c0a 7c20 2020 2020 2020 }|.| │ │ │ │ -00041820: 2020 2020 2020 2020 2020 4752 6576 4c65 GRevLe │ │ │ │ -00041830: 7853 6d61 6c6c 6573 7420 3d3e 2031 3620 xSmallest => 16 │ │ │ │ -00041840: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00041850: 2020 2020 2020 2020 4752 6576 4c65 7853 GRevLexS │ │ │ │ -00041860: 6d61 6c6c 6573 7454 6572 6d20 3d3e 2031 mallestTerm => 1 │ │ │ │ -00041870: 3620 7c0a 7c20 2020 2020 2020 2020 2020 6 |.| │ │ │ │ -00041880: 2020 2020 2020 4c65 784c 6172 6765 7374 LexLargest │ │ │ │ -00041890: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ -000418a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000418b0: 2020 2020 4c65 7853 6d61 6c6c 6573 7420 LexSmallest │ │ │ │ -000418c0: 3d3e 2031 3620 2020 2020 2020 2020 7c0a => 16 |. │ │ │ │ -000418d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000418e0: 2020 4c65 7853 6d61 6c6c 6573 7454 6572 LexSmallestTer │ │ │ │ -000418f0: 6d20 3d3e 2031 3620 2020 2020 7c0a 7c20 m => 16 |.| │ │ │ │ -00041900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041910: 506f 696e 7473 203d 3e20 3020 2020 2020 Points => 0 │ │ │ │ -00041920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00041930: 2020 2020 2020 2020 2020 2020 2020 5261 Ra │ │ │ │ -00041940: 6e64 6f6d 203d 3e20 3136 2020 2020 2020 ndom => 16 │ │ │ │ -00041950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00041960: 2020 2020 2020 2020 2020 2020 5261 6e64 Rand │ │ │ │ -00041970: 6f6d 4e6f 6e7a 6572 6f20 3d3e 2031 3620 omNonzero => 16 │ │ │ │ -00041980: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00041990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000419a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000419b0: 2d2d 2d2d 2b0a 4561 6368 2073 7563 6820 ----+.Each such │ │ │ │ -000419c0: 6b65 7920 7368 6f75 6c64 2070 6f69 6e74 key should point │ │ │ │ -000419d0: 2074 6f20 616e 2069 6e74 6567 6572 2e20 to an integer. │ │ │ │ -000419e0: 2054 6865 206c 6172 6765 7220 7468 6520 The larger the │ │ │ │ -000419f0: 696e 7465 6765 722c 2074 6865 206d 6f72 integer, the mor │ │ │ │ -00041a00: 650a 6c69 6b65 6c79 2074 6861 7420 7375 e.likely that su │ │ │ │ -00041a10: 6368 2061 206d 696e 6f72 2077 696c 6c20 ch a minor will │ │ │ │ -00041a20: 6265 2063 686f 7365 6e2e 0a0a 4675 6e63 be chosen...Func │ │ │ │ -00041a30: 7469 6f6e 7320 7375 6368 2061 7320 2a6e tions such as *n │ │ │ │ -00041a40: 6f74 6520 6368 6f6f 7365 476f 6f64 4d69 ote chooseGoodMi │ │ │ │ -00041a50: 6e6f 7273 3a20 6368 6f6f 7365 476f 6f64 nors: chooseGood │ │ │ │ -00041a60: 4d69 6e6f 7273 2c20 7769 6c6c 2073 656c Minors, will sel │ │ │ │ -00041a70: 6563 7420 610a 6e75 6d62 6572 206f 6620 ect a.number of │ │ │ │ -00041a80: 7261 6e64 6f6d 2073 7562 6d61 7472 6963 random submatric │ │ │ │ -00041a90: 6573 2062 6173 6564 206f 6e20 7468 6520 es based on the │ │ │ │ -00041aa0: 7661 6c75 6573 206f 6620 7468 6f73 6520 values of those │ │ │ │ -00041ab0: 6b65 7973 2e20 2046 6f72 2065 7861 6d70 keys. For examp │ │ │ │ -00041ac0: 6c65 2c0a 6966 204c 6578 536d 616c 6c65 le,.if LexSmalle │ │ │ │ -00041ad0: 7374 2061 6e64 204c 6578 4c61 7267 6573 st and LexLarges │ │ │ │ -00041ae0: 7420 6172 6520 7365 7420 746f 2035 3020 t are set to 50 │ │ │ │ -00041af0: 6170 7072 6f78 696d 6174 656c 7920 7468 approximately th │ │ │ │ -00041b00: 6520 7375 626d 6174 7269 6373 2077 696c e submatrics wil │ │ │ │ -00041b10: 6c0a 6265 2073 6d61 6c6c 6573 7420 7769 l.be smallest wi │ │ │ │ -00041b20: 7468 2072 6573 7065 6374 2074 6f20 4c65 th respect to Le │ │ │ │ -00041b30: 7820 616e 6420 7468 6520 6f74 6865 7220 x and the other │ │ │ │ -00041b40: 6861 6c66 2077 696c 6c20 6265 206c 6172 half will be lar │ │ │ │ -00041b50: 6765 7374 2077 6974 6820 7265 7370 6563 gest with respec │ │ │ │ -00041b60: 740a 746f 204c 6578 2e54 6865 2076 616c t.to Lex.The val │ │ │ │ -00041b70: 7565 7320 646f 206e 6f74 206e 6565 6420 ues do not need │ │ │ │ -00041b80: 746f 2061 6464 2075 7020 746f 2031 3030 to add up to 100 │ │ │ │ -00041b90: 2e0a 0a54 6865 2068 6575 7269 7374 6963 ...The heuristic │ │ │ │ -00041ba0: 2066 756e 6374 696f 6e73 2061 6c6c 2077 functions all w │ │ │ │ -00041bb0: 6f72 6b20 6279 2066 696e 6469 6e67 2074 ork by finding t │ │ │ │ -00041bc0: 6865 206f 7074 696d 616c 2065 6e74 7279 he optimal entry │ │ │ │ -00041bd0: 2077 6974 6820 7265 7370 6563 7420 746f with respect to │ │ │ │ -00041be0: 0a74 6865 2067 6976 656e 2073 7472 6174 .the given strat │ │ │ │ -00041bf0: 6567 792c 2072 656d 6f76 696e 6720 7468 egy, removing th │ │ │ │ -00041c00: 6174 2072 6f77 2061 6e64 2063 6f6c 756d at row and colum │ │ │ │ -00041c10: 6e2c 2061 6e64 2074 6865 6e20 6368 6f6f n, and then choo │ │ │ │ -00041c20: 7369 6e67 2074 6865 206e 6578 740a 6f70 sing the next.op │ │ │ │ -00041c30: 7469 6d61 6c20 656e 7472 792e 2020 5468 timal entry. Th │ │ │ │ -00041c40: 6973 2069 7320 646f 6e65 2075 6e74 696c is is done until │ │ │ │ -00041c50: 2061 2073 7562 6d61 7472 6978 206f 6620 a submatrix of │ │ │ │ -00041c60: 7468 6520 6465 7369 7265 6420 7369 7a65 the desired size │ │ │ │ -00041c70: 2068 6173 2062 6565 6e0a 666f 756e 642e has been.found. │ │ │ │ -00041c80: 0a0a 496e 2073 6f6d 6520 6675 6e63 7469 ..In some functi │ │ │ │ -00041c90: 6f6e 732c 2074 6865 2047 5265 764c 6578 ons, the GRevLex │ │ │ │ -00041ca0: 2076 6572 7369 6f6e 7320 6f66 2074 6869 versions of thi │ │ │ │ -00041cb0: 7320 7374 7261 7465 6779 2077 696c 6c20 s strategy will │ │ │ │ -00041cc0: 6d6f 6469 6679 2074 6865 0a77 6f72 6b69 modify the.worki │ │ │ │ -00041cd0: 6e67 206d 6174 7269 7820 696e 2061 206c ng matrix in a l │ │ │ │ -00041ce0: 6f6f 702c 2072 6570 6561 7465 646c 7920 oop, repeatedly │ │ │ │ -00041cf0: 6c6f 7765 7269 6e67 2f72 6169 7369 6e67 lowering/raising │ │ │ │ -00041d00: 2074 6865 2064 6567 7265 6520 6f66 2065 the degree of e │ │ │ │ -00041d10: 6c65 6d65 6e74 7373 6f0a 6173 2074 6f20 lementsso.as to │ │ │ │ -00041d20: 656e 7375 7265 2074 6861 7420 6469 6666 ensure that diff │ │ │ │ -00041d30: 6572 656e 7420 6368 6f69 6365 7320 6172 erent choices ar │ │ │ │ -00041d40: 6520 6d61 6465 2e0a 0a57 6520 6272 6965 e made...We brie │ │ │ │ -00041d50: 666c 7920 7375 6d6d 6172 697a 6520 7468 fly summarize th │ │ │ │ -00041d60: 6520 5374 7261 7465 6769 6573 2070 726f e Strategies pro │ │ │ │ -00041d70: 7669 6465 6420 746f 2074 6865 2075 7365 vided to the use │ │ │ │ -00041d80: 7220 6279 2064 6566 6175 6c74 2028 736f r by default (so │ │ │ │ -00041d90: 6d65 206f 660a 7768 6963 6820 7765 2068 me of.which we h │ │ │ │ -00041da0: 6176 6520 7365 656e 2069 6e20 6163 7469 ave seen in acti │ │ │ │ -00041db0: 6f6e 2061 626f 7665 290a 2020 2a20 5374 on above). * St │ │ │ │ -00041dc0: 7261 7465 6779 4465 6661 756c 743a 2031 rategyDefault: 1 │ │ │ │ -00041dd0: 3625 206f 6620 7468 6520 6d61 7472 6963 6% of the matric │ │ │ │ -00041de0: 6573 2061 7265 204c 6578 536d 616c 6c65 es are LexSmalle │ │ │ │ -00041df0: 7374 2c20 4c65 7853 6d61 6c6c 6573 7454 st, LexSmallestT │ │ │ │ -00041e00: 6572 6d2c 0a20 2020 2047 5265 764c 6578 erm,. GRevLex │ │ │ │ -00041e10: 536d 616c 6c65 7374 2c20 4752 6576 4c65 Smallest, GRevLe │ │ │ │ -00041e20: 784c 6172 6765 7374 2c20 5261 6e64 6f6d xLargest, Random │ │ │ │ -00041e30: 2c20 616e 6420 5261 6e64 6f6d 4e6f 6e5a , and RandomNonZ │ │ │ │ -00041e40: 6572 6f20 6561 6368 0a20 202a 2053 7472 ero each. * Str │ │ │ │ -00041e50: 6174 6567 7944 6566 6175 6c74 4e6f 6e52 ategyDefaultNonR │ │ │ │ -00041e60: 616e 646f 6d3a 2032 3525 206f 6620 7468 andom: 25% of th │ │ │ │ -00041e70: 6520 6d61 7472 6963 6573 2061 7265 204c e matrices are L │ │ │ │ -00041e80: 6578 536d 616c 6c65 7374 2c0a 2020 2020 exSmallest,. │ │ │ │ -00041e90: 4c65 7853 6d61 6c6c 6573 7454 6572 6d2c LexSmallestTerm, │ │ │ │ -00041ea0: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ -00041eb0: 2061 6e64 2c20 4752 6576 4c65 784c 6172 and, GRevLexLar │ │ │ │ -00041ec0: 6765 7374 2065 6163 680a 2020 2a20 5374 gest each. * St │ │ │ │ -00041ed0: 7261 7465 6779 4c65 7853 6d61 6c6c 6573 rategyLexSmalles │ │ │ │ -00041ee0: 743a 2035 3025 206f 6620 7468 6520 6d61 t: 50% of the ma │ │ │ │ -00041ef0: 7472 6963 6573 2061 7265 204c 6578 536d trices are LexSm │ │ │ │ -00041f00: 616c 6c65 7374 2061 6e64 2035 3025 2061 allest and 50% a │ │ │ │ -00041f10: 7265 0a20 2020 204c 6578 536d 616c 6c65 re. LexSmalle │ │ │ │ -00041f20: 7374 5465 726d 0a20 202a 2053 7472 6174 stTerm. * Strat │ │ │ │ -00041f30: 6567 7947 5265 764c 6578 536d 616c 6c65 egyGRevLexSmalle │ │ │ │ -00041f40: 7374 3a20 3530 2520 6f66 2074 6865 206d st: 50% of the m │ │ │ │ -00041f50: 6174 7269 6365 7320 6172 6520 4752 6576 atrices are GRev │ │ │ │ -00041f60: 4c65 7853 6d61 6c6c 6573 7420 616e 6420 LexSmallest and │ │ │ │ -00041f70: 3530 250a 2020 2020 6172 6520 4752 6576 50%. are GRev │ │ │ │ -00041f80: 4c65 784c 6172 6765 7374 0a20 202a 2053 LexLargest. * S │ │ │ │ -00041f90: 7472 6174 6567 7952 616e 646f 6d3a 2063 trategyRandom: c │ │ │ │ -00041fa0: 686f 6f73 6573 2031 3030 2520 7261 6e64 hooses 100% rand │ │ │ │ -00041fb0: 6f6d 2073 7562 6d61 7472 6963 6573 2e0a om submatrices.. │ │ │ │ -00041fc0: 2020 2a20 5374 7261 7465 6779 506f 696e * StrategyPoin │ │ │ │ -00041fd0: 7473 3a20 6368 6f6f 7365 2061 6c6c 2073 ts: choose all s │ │ │ │ -00041fe0: 7562 6d61 7472 6963 6573 2076 6961 2050 ubmatrices via P │ │ │ │ -00041ff0: 6f69 6e74 732e 0a20 202a 2053 7472 6174 oints.. * Strat │ │ │ │ -00042000: 6567 7944 6566 6175 6c74 5769 7468 506f egyDefaultWithPo │ │ │ │ -00042010: 696e 7473 3a20 6c69 6b65 2053 7472 6174 ints: like Strat │ │ │ │ -00042020: 6567 7944 6566 6175 6c74 2062 7574 2072 egyDefault but r │ │ │ │ -00042030: 6570 6c61 6365 7320 7468 6520 5261 6e64 eplaces the Rand │ │ │ │ -00042040: 6f6d 2061 6e64 0a20 2020 2052 616e 646f om and. Rando │ │ │ │ -00042050: 6d4e 6f6e 5a65 726f 2073 7562 6d61 7472 mNonZero submatr │ │ │ │ -00042060: 6963 6573 2061 7320 7769 7468 206d 6174 ices as with mat │ │ │ │ -00042070: 7269 6365 7320 6368 6f73 656e 2061 7320 rices chosen as │ │ │ │ -00042080: 696e 2050 6f69 6e74 732e 0a41 6464 6974 in Points..Addit │ │ │ │ -00042090: 696f 6e61 6c6c 792c 2061 204d 7574 6162 ionally, a Mutab │ │ │ │ -000420a0: 6c65 4861 7368 5461 626c 6520 6e61 6d65 leHashTable name │ │ │ │ -000420b0: 6420 5374 7261 7465 6779 4375 7272 656e d StrategyCurren │ │ │ │ -000420c0: 7420 6973 2061 6c73 6f20 6578 706f 7274 t is also export │ │ │ │ -000420d0: 6564 2e20 2049 740a 6265 6769 6e73 2061 ed. It.begins a │ │ │ │ -000420e0: 7320 7468 6520 6465 6661 756c 7420 7374 s the default st │ │ │ │ -000420f0: 7261 7465 6779 2c20 6275 7420 7468 6520 rategy, but the │ │ │ │ -00042100: 7573 6572 2063 616e 206d 6f64 6966 7920 user can modify │ │ │ │ -00042110: 6974 2e0a 0a55 7369 6e67 2061 2073 696e it...Using a sin │ │ │ │ -00042120: 676c 6520 6865 7572 6973 7469 6320 2041 gle heuristic A │ │ │ │ -00042130: 6c74 6572 6e61 7469 7665 6c79 2c20 6966 lternatively, if │ │ │ │ -00042140: 2074 6865 2075 7365 7220 6f6e 6c79 2077 the user only w │ │ │ │ -00042150: 616e 7473 2074 6f20 7573 6520 7361 790a ants to use say. │ │ │ │ -00042160: 4c65 7853 6d61 6c6c 6573 7454 6572 6d20 LexSmallestTerm │ │ │ │ -00042170: 7468 6579 2063 616e 2073 6574 2c20 5374 they can set, St │ │ │ │ -00042180: 7261 7465 6779 2074 6f20 706f 696e 7420 rategy to point │ │ │ │ -00042190: 746f 2074 6861 7420 7379 6d62 6f6c 2c20 to that symbol, │ │ │ │ -000421a0: 696e 7374 6561 6420 6f66 2061 0a63 7265 instead of a.cre │ │ │ │ -000421b0: 6174 696e 6720 6120 6375 7374 6f6d 2073 ating a custom s │ │ │ │ -000421c0: 7472 6174 6567 7920 4861 7368 5461 626c trategy HashTabl │ │ │ │ -000421d0: 652e 2020 466f 7220 6578 616d 706c 653a e. For example: │ │ │ │ -000421e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -000421f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042220: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00042230: 656c 6170 7365 6454 696d 6520 7265 6775 elapsedTime regu │ │ │ │ -00042240: 6c61 7249 6e43 6f64 696d 656e 7369 6f6e larInCodimension │ │ │ │ -00042250: 2831 2c20 542c 2053 7472 6174 6567 793d (1, T, Strategy= │ │ │ │ -00042260: 3e4c 6578 536d 616c 6c65 7374 5465 726d >LexSmallestTerm │ │ │ │ -00042270: 297c 0a7c 202d 2d20 312e 3139 3036 3473 )|.| -- 1.19064s │ │ │ │ -00042280: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ -00042290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000422b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000422c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040d30: 2020 7c0a 7c6f 3220 3d20 7472 7565 2020 |.|o2 = true │ │ │ │ +00040d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040d80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00040d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00040dd0: 2d2d 2b0a 496e 2074 6869 7320 7061 7274 --+.In this part │ │ │ │ +00040de0: 6963 756c 6172 2065 7861 6d70 6c65 2c20 icular example, │ │ │ │ +00040df0: 6f6e 206f 6e65 206d 6163 6869 6e65 2c20 on one machine, │ │ │ │ +00040e00: 7765 206c 6973 7420 6176 6572 6167 6520 we list average │ │ │ │ +00040e10: 7469 6d65 2074 6f20 636f 6d70 6c65 7469 time to completi │ │ │ │ +00040e20: 6f6e 0a6f 6620 6561 6368 206f 6620 7468 on.of each of th │ │ │ │ +00040e30: 6520 6162 6f76 6520 7374 7261 7465 6769 e above strategi │ │ │ │ +00040e40: 6573 2061 6674 6572 2031 3030 2072 756e es after 100 run │ │ │ │ +00040e50: 732e 0a20 202a 2053 7472 6174 6567 7944 s.. * StrategyD │ │ │ │ +00040e60: 6566 6175 6c74 3a20 312e 3635 2073 6563 efault: 1.65 sec │ │ │ │ +00040e70: 6f6e 6473 0a20 202a 2053 7472 6174 6567 onds. * Strateg │ │ │ │ +00040e80: 7952 616e 646f 6d3a 2038 2e33 3220 7365 yRandom: 8.32 se │ │ │ │ +00040e90: 636f 6e64 730a 2020 2a20 5374 7261 7465 conds. * Strate │ │ │ │ +00040ea0: 6779 4465 6661 756c 744e 6f6e 5261 6e64 gyDefaultNonRand │ │ │ │ +00040eb0: 6f6d 3a20 302e 3939 2073 6563 6f6e 6473 om: 0.99 seconds │ │ │ │ +00040ec0: 0a20 202a 2053 7472 6174 6567 7950 6f69 . * StrategyPoi │ │ │ │ +00040ed0: 6e74 733a 2033 2e32 3720 7365 636f 6e64 nts: 3.27 second │ │ │ │ +00040ee0: 730a 2020 2a20 5374 7261 7465 6779 4465 s. * StrategyDe │ │ │ │ +00040ef0: 6661 756c 7457 6974 6850 6f69 6e74 733a faultWithPoints: │ │ │ │ +00040f00: 2033 2e33 370a 526f 7567 686c 7920 7370 3.37.Roughly sp │ │ │ │ +00040f10: 6561 6b69 6e67 2c20 6865 7572 6973 7469 eaking, heuristi │ │ │ │ +00040f20: 6373 2074 656e 6420 746f 2070 726f 7669 cs tend to provi │ │ │ │ +00040f30: 6465 206d 6f72 6520 696e 666f 726d 6174 de more informat │ │ │ │ +00040f40: 696f 6e20 7468 616e 2072 616e 646f 6d0a ion than random. │ │ │ │ +00040f50: 7375 626d 6174 7269 6365 7320 616e 6420 submatrices and │ │ │ │ +00040f60: 736f 2074 6865 7920 776f 726b 206d 7563 so they work muc │ │ │ │ +00040f70: 6820 6661 7374 6572 2073 696e 6365 2074 h faster since t │ │ │ │ +00040f80: 6865 7920 636f 6e73 6964 6572 2066 6172 hey consider far │ │ │ │ +00040f90: 2066 6577 6572 0a73 7562 6d61 7472 6963 fewer.submatric │ │ │ │ +00040fa0: 6573 2e20 2046 7265 7175 656e 746c 7920 es. Frequently │ │ │ │ +00040fb0: 616c 736f 2c20 636f 6d70 7574 696e 6720 also, computing │ │ │ │ +00040fc0: 7261 6e64 6f6d 206f 7220 7261 7469 6f6e random or ration │ │ │ │ +00040fd0: 616c 2070 6f69 6e74 7320 646f 6573 2068 al points does h │ │ │ │ +00040fe0: 6176 650a 6164 7661 6e74 6167 6573 2061 ave.advantages a │ │ │ │ +00040ff0: 7320 7479 7069 6361 6c6c 7920 6665 7765 s typically fewe │ │ │ │ +00041000: 7220 7374 696c 6c20 6d69 6e6f 7273 2061 r still minors a │ │ │ │ +00041010: 7265 206e 6565 6465 6420 2868 656e 6365 re needed (hence │ │ │ │ +00041020: 2069 6620 636f 6d70 7574 696e 670a 6d69 if computing.mi │ │ │ │ +00041030: 6e6f 7273 2069 7320 736c 6f77 2053 7472 nors is slow Str │ │ │ │ +00041040: 6174 6567 7950 6f69 6e74 7320 6973 2061 ategyPoints is a │ │ │ │ +00041050: 2067 6f6f 6420 6368 6f69 6365 292e 2020 good choice). │ │ │ │ +00041060: 486f 7765 7665 722c 2073 6f6d 6574 696d However, sometim │ │ │ │ +00041070: 6573 2074 6861 740a 6e6f 6e2d 7472 6976 es that.non-triv │ │ │ │ +00041080: 6961 6c20 706f 696e 7420 636f 6d70 7574 ial point comput │ │ │ │ +00041090: 6174 696f 6e20 7769 6c6c 2062 6563 6f6d ation will becom │ │ │ │ +000410a0: 6520 7374 7563 6b20 2869 6e20 7468 6520 e stuck (in the │ │ │ │ +000410b0: 6162 6f76 6520 6578 616d 706c 652c 2074 above example, t │ │ │ │ +000410c0: 6865 0a6d 6564 6961 6e20 7469 6d65 2066 he.median time f │ │ │ │ +000410d0: 6f72 2053 7472 6174 6567 7950 6f69 6e74 or StrategyPoint │ │ │ │ +000410e0: 7320 616e 6420 5374 7261 7465 6779 4465 s and StrategyDe │ │ │ │ +000410f0: 6661 756c 7457 6974 6850 6f69 6e74 7320 faultWithPoints │ │ │ │ +00041100: 7761 7320 636c 6f73 6520 746f 2031 2e35 was close to 1.5 │ │ │ │ +00041110: 0a73 6563 6f6e 6473 2c20 6275 7420 6120 .seconds, but a │ │ │ │ +00041120: 636f 7570 6c65 2072 756e 7320 696e 2065 couple runs in e │ │ │ │ +00041130: 6163 6820 6361 7365 2077 6572 6520 6f72 ach case were or │ │ │ │ +00041140: 6465 7273 206f 6620 6d61 676e 6974 7564 ders of magnitud │ │ │ │ +00041150: 6520 736c 6f77 6572 292e 0a0a 4375 7374 e slower)...Cust │ │ │ │ +00041160: 6f6d 2053 7472 6174 6567 6965 730a 5468 om Strategies.Th │ │ │ │ +00041170: 6520 7573 6572 2063 616e 2063 7265 6174 e user can creat │ │ │ │ +00041180: 6520 7468 6569 7220 6f77 6e20 7374 7261 e their own stra │ │ │ │ +00041190: 7465 6769 6573 2061 7320 7765 6c6c 2c20 tegies as well, │ │ │ │ +000411a0: 6173 2077 6520 6e6f 7720 6578 706c 6169 as we now explai │ │ │ │ +000411b0: 6e2e 2020 496e 0a70 6172 7469 6375 6c61 n. In.particula │ │ │ │ +000411c0: 722c 2074 6865 2075 7365 7220 6361 6e20 r, the user can │ │ │ │ +000411d0: 6576 656e 2063 7573 746f 6d69 7a65 2074 even customize t │ │ │ │ +000411e0: 6865 2068 6575 7269 7374 6963 7320 7573 he heuristics us │ │ │ │ +000411f0: 6564 2e20 2053 6565 2062 656c 6f77 2066 ed. See below f │ │ │ │ +00041200: 6f72 2068 6f77 0a74 6f20 6561 7369 6c79 or how.to easily │ │ │ │ +00041210: 2075 7365 206f 6e6c 7920 6120 7369 6e67 use only a sing │ │ │ │ +00041220: 6c65 2068 6575 7269 7374 6963 2e20 546f le heuristic. To │ │ │ │ +00041230: 2063 7573 746f 6d20 7374 7261 7465 6779 custom strategy │ │ │ │ +00041240: 2069 7320 7370 6563 6966 6965 6420 6279 is specified by │ │ │ │ +00041250: 2061 0a48 6173 6854 6162 6c65 2077 6869 a.HashTable whi │ │ │ │ +00041260: 6368 206d 7573 7420 6861 7665 2074 6865 ch must have the │ │ │ │ +00041270: 2066 6f6c 6c6f 7769 6e67 206b 6579 732e following keys. │ │ │ │ +00041280: 0a20 202a 2047 5265 764c 6578 4c61 7267 . * GRevLexLarg │ │ │ │ +00041290: 6573 743a 2074 7279 2074 6f20 6669 6e64 est: try to find │ │ │ │ +000412a0: 2073 7562 6d61 7472 6963 6573 2077 6865 submatrices whe │ │ │ │ +000412b0: 7265 2065 6163 6820 726f 7720 616e 6420 re each row and │ │ │ │ +000412c0: 636f 6c75 6d6e 2068 6173 2061 0a20 2020 column has a. │ │ │ │ +000412d0: 206c 6172 6765 2065 6e74 7279 2077 6974 large entry wit │ │ │ │ +000412e0: 6820 7265 7370 6563 7420 746f 2061 2072 h respect to a r │ │ │ │ +000412f0: 616e 646f 6d20 4752 6576 4c65 786f 7264 andom GRevLexord │ │ │ │ +00041300: 6572 2e0a 2020 2a20 4752 6576 4c65 7853 er.. * GRevLexS │ │ │ │ +00041310: 6d61 6c6c 6573 743a 2074 7279 2074 6f20 mallest: try to │ │ │ │ +00041320: 6669 6e64 2073 7562 6d61 7472 6963 6573 find submatrices │ │ │ │ +00041330: 2077 6865 7265 2065 6163 6820 726f 7720 where each row │ │ │ │ +00041340: 616e 6420 636f 6c75 6d6e 2068 6173 2061 and column has a │ │ │ │ +00041350: 0a20 2020 2073 6d61 6c6c 2065 6e74 7279 . small entry │ │ │ │ +00041360: 2077 6974 6820 7265 7370 6563 7420 746f with respect to │ │ │ │ +00041370: 2061 2072 616e 646f 6d20 4752 6576 4c65 a random GRevLe │ │ │ │ +00041380: 786f 7264 6572 2e0a 2020 2a20 4752 6576 xorder.. * GRev │ │ │ │ +00041390: 4c65 7853 6d61 6c6c 6573 7454 6572 6d3a LexSmallestTerm: │ │ │ │ +000413a0: 2066 696e 6420 7375 626d 6174 7269 6365 find submatrice │ │ │ │ +000413b0: 7320 7768 6572 6520 6561 6368 2072 6f77 s where each row │ │ │ │ +000413c0: 2061 6e64 2063 6f6c 756d 6e20 6861 7320 and column has │ │ │ │ +000413d0: 616e 0a20 2020 2065 6e74 7279 2077 6974 an. entry wit │ │ │ │ +000413e0: 6820 6120 736d 616c 6c20 7465 726d 2077 h a small term w │ │ │ │ +000413f0: 6974 6820 7265 7370 6563 7420 746f 2061 ith respect to a │ │ │ │ +00041400: 2072 616e 646f 6d20 4752 6576 4c65 786f random GRevLexo │ │ │ │ +00041410: 7264 6572 2e0a 2020 2a20 4c65 784c 6172 rder.. * LexLar │ │ │ │ +00041420: 6765 7374 3a20 7472 7920 746f 2066 696e gest: try to fin │ │ │ │ +00041430: 6420 7375 626d 6174 7269 6365 7320 7768 d submatrices wh │ │ │ │ +00041440: 6572 6520 6561 6368 2072 6f77 2061 6e64 ere each row and │ │ │ │ +00041450: 2063 6f6c 756d 6e20 6861 7320 6120 6c61 column has a la │ │ │ │ +00041460: 7267 650a 2020 2020 656e 7472 7920 7769 rge. entry wi │ │ │ │ +00041470: 7468 2072 6573 7065 6374 2074 6f20 6120 th respect to a │ │ │ │ +00041480: 7261 6e64 6f6d 204c 6578 6f72 6465 722e random Lexorder. │ │ │ │ +00041490: 0a20 202a 204c 6578 536d 616c 6c65 7374 . * LexSmallest │ │ │ │ +000414a0: 3a20 7472 7920 746f 2066 696e 6420 7375 : try to find su │ │ │ │ +000414b0: 626d 6174 7269 6365 7320 7768 6572 6520 bmatrices where │ │ │ │ +000414c0: 6561 6368 2072 6f77 2061 6e64 2063 6f6c each row and col │ │ │ │ +000414d0: 756d 6e20 6861 7320 6120 736d 616c 6c0a umn has a small. │ │ │ │ +000414e0: 2020 2020 656e 7472 7920 7769 7468 2072 entry with r │ │ │ │ +000414f0: 6573 7065 6374 2074 6f20 6120 7261 6e64 espect to a rand │ │ │ │ +00041500: 6f6d 204c 6578 6f72 6465 722e 0a20 202a om Lexorder.. * │ │ │ │ +00041510: 204c 6578 536d 616c 6c65 7374 5465 726d LexSmallestTerm │ │ │ │ +00041520: 3a20 6669 6e64 2073 7562 6d61 7472 6963 : find submatric │ │ │ │ +00041530: 6573 2077 6865 7265 2065 6163 6820 726f es where each ro │ │ │ │ +00041540: 7720 616e 6420 636f 6c75 6d6e 2068 6173 w and column has │ │ │ │ +00041550: 2061 6e20 656e 7472 790a 2020 2020 7769 an entry. wi │ │ │ │ +00041560: 7468 2061 2073 6d61 6c6c 2074 6572 6d20 th a small term │ │ │ │ +00041570: 7769 7468 2072 6573 7065 6374 2074 6f20 with respect to │ │ │ │ +00041580: 6120 7261 6e64 6f6d 204c 6578 6f72 6465 a random Lexorde │ │ │ │ +00041590: 722e 0a20 202a 2052 616e 646f 6d3a 2066 r.. * Random: f │ │ │ │ +000415a0: 696e 6420 7261 6e64 6f6d 2073 7562 6d61 ind random subma │ │ │ │ +000415b0: 7472 6963 6573 200a 2020 2a20 5261 6e64 trices . * Rand │ │ │ │ +000415c0: 6f6d 4e6f 6e7a 6572 6f3a 2066 696e 6420 omNonzero: find │ │ │ │ +000415d0: 7261 6e64 6f6d 2073 7562 6d61 7472 6963 random submatric │ │ │ │ +000415e0: 6573 2074 6861 7420 6861 7665 206e 6f6e es that have non │ │ │ │ +000415f0: 7a65 726f 2072 6f77 7320 616e 6420 636f zero rows and co │ │ │ │ +00041600: 6c75 6d6e 730a 2020 2a20 506f 696e 7473 lumns. * Points │ │ │ │ +00041610: 3a20 6669 6e64 2073 7562 6d61 7472 6963 : find submatric │ │ │ │ +00041620: 6573 2074 6861 7420 6172 6520 6e6f 7420 es that are not │ │ │ │ +00041630: 7369 6e67 756c 6172 2061 7420 7468 6520 singular at the │ │ │ │ +00041640: 6769 7665 6e20 6964 6561 6c20 6279 0a20 given ideal by. │ │ │ │ +00041650: 2020 2066 696e 6469 6e67 2061 2070 6f69 finding a poi │ │ │ │ +00041660: 6e74 2077 6865 7265 2074 6861 7420 6964 nt where that id │ │ │ │ +00041670: 6561 6c20 7661 6e69 7368 6573 2c20 616e eal vanishes, an │ │ │ │ +00041680: 6420 6576 616c 7561 7469 6e67 2074 6865 d evaluating the │ │ │ │ +00041690: 206d 6174 7269 7820 6174 0a20 2020 2074 matrix at. t │ │ │ │ +000416a0: 6861 7420 706f 696e 7420 2876 6961 2074 hat point (via t │ │ │ │ +000416b0: 6865 2070 6163 6b61 6765 202a 6e6f 7465 he package *note │ │ │ │ +000416c0: 2052 616e 646f 6d50 6f69 6e74 733a 2028 RandomPoints: ( │ │ │ │ +000416d0: 5261 6e64 6f6d 506f 696e 7473 2954 6f70 RandomPoints)Top │ │ │ │ +000416e0: 2c29 2e20 2049 660a 2020 2020 776f 726b ,). If. work │ │ │ │ +000416f0: 696e 6720 6f76 6572 2061 2063 6861 7261 ing over a chara │ │ │ │ +00041700: 6374 6572 6973 7469 6320 7a65 726f 2066 cteristic zero f │ │ │ │ +00041710: 6965 6c64 2c20 7468 6973 2077 696c 6c20 ield, this will │ │ │ │ +00041720: 7365 6c65 6374 2072 616e 646f 6d0a 2020 select random. │ │ │ │ +00041730: 2020 7375 626d 6174 7269 6365 732e 2020 submatrices. │ │ │ │ +00041740: 546f 2061 6363 6573 7320 6f70 7469 6f6e To access option │ │ │ │ +00041750: 7320 666f 7220 7468 6174 2070 6163 6b61 s for that packa │ │ │ │ +00041760: 6765 2c20 7365 7420 7468 6520 2a6e 6f74 ge, set the *not │ │ │ │ +00041770: 650a 2020 2020 506f 696e 744f 7074 696f e. PointOptio │ │ │ │ +00041780: 6e73 3a20 506f 696e 744f 7074 696f 6e73 ns: PointOptions │ │ │ │ +00041790: 2c20 6f70 7469 6f6e 2e0a 466f 7220 6578 , option..For ex │ │ │ │ +000417a0: 616d 706c 653a 0a2b 2d2d 2d2d 2d2d 2d2d ample:.+-------- │ │ │ │ +000417b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000417c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000417d0: 2d2d 2d2b 0a7c 6933 203a 2070 6565 6b20 ---+.|i3 : peek │ │ │ │ +000417e0: 5374 7261 7465 6779 4465 6661 756c 7420 StrategyDefault │ │ │ │ +000417f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041800: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00041830: 0a7c 6f33 203d 204f 7074 696f 6e54 6162 .|o3 = OptionTab │ │ │ │ +00041840: 6c65 7b47 5265 764c 6578 4c61 7267 6573 le{GRevLexLarges │ │ │ │ +00041850: 7420 3d3e 2030 2020 2020 2020 7d7c 0a7c t => 0 }|.| │ │ │ │ +00041860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041870: 2047 5265 764c 6578 536d 616c 6c65 7374 GRevLexSmallest │ │ │ │ +00041880: 203d 3e20 3136 2020 2020 207c 0a7c 2020 => 16 |.| │ │ │ │ +00041890: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ +000418a0: 5265 764c 6578 536d 616c 6c65 7374 5465 RevLexSmallestTe │ │ │ │ +000418b0: 726d 203d 3e20 3136 207c 0a7c 2020 2020 rm => 16 |.| │ │ │ │ +000418c0: 2020 2020 2020 2020 2020 2020 204c 6578 Lex │ │ │ │ +000418d0: 4c61 7267 6573 7420 3d3e 2030 2020 2020 Largest => 0 │ │ │ │ +000418e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000418f0: 2020 2020 2020 2020 2020 204c 6578 536d LexSm │ │ │ │ +00041900: 616c 6c65 7374 203d 3e20 3136 2020 2020 allest => 16 │ │ │ │ +00041910: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00041920: 2020 2020 2020 2020 204c 6578 536d 616c LexSmal │ │ │ │ +00041930: 6c65 7374 5465 726d 203d 3e20 3136 2020 lestTerm => 16 │ │ │ │ +00041940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041950: 2020 2020 2020 2050 6f69 6e74 7320 3d3e Points => │ │ │ │ +00041960: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00041970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00041980: 2020 2020 2052 616e 646f 6d20 3d3e 2031 Random => 1 │ │ │ │ +00041990: 3620 2020 2020 2020 2020 2020 2020 207c 6 | │ │ │ │ +000419a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000419b0: 2020 2052 616e 646f 6d4e 6f6e 7a65 726f RandomNonzero │ │ │ │ +000419c0: 203d 3e20 3136 2020 2020 2020 207c 0a2b => 16 |.+ │ │ │ │ +000419d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000419e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000419f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a45 6163 -----------+.Eac │ │ │ │ +00041a00: 6820 7375 6368 206b 6579 2073 686f 756c h such key shoul │ │ │ │ +00041a10: 6420 706f 696e 7420 746f 2061 6e20 696e d point to an in │ │ │ │ +00041a20: 7465 6765 722e 2020 5468 6520 6c61 7267 teger. The larg │ │ │ │ +00041a30: 6572 2074 6865 2069 6e74 6567 6572 2c20 er the integer, │ │ │ │ +00041a40: 7468 6520 6d6f 7265 0a6c 696b 656c 7920 the more.likely │ │ │ │ +00041a50: 7468 6174 2073 7563 6820 6120 6d69 6e6f that such a mino │ │ │ │ +00041a60: 7220 7769 6c6c 2062 6520 6368 6f73 656e r will be chosen │ │ │ │ +00041a70: 2e0a 0a46 756e 6374 696f 6e73 2073 7563 ...Functions suc │ │ │ │ +00041a80: 6820 6173 202a 6e6f 7465 2063 686f 6f73 h as *note choos │ │ │ │ +00041a90: 6547 6f6f 644d 696e 6f72 733a 2063 686f eGoodMinors: cho │ │ │ │ +00041aa0: 6f73 6547 6f6f 644d 696e 6f72 732c 2077 oseGoodMinors, w │ │ │ │ +00041ab0: 696c 6c20 7365 6c65 6374 2061 0a6e 756d ill select a.num │ │ │ │ +00041ac0: 6265 7220 6f66 2072 616e 646f 6d20 7375 ber of random su │ │ │ │ +00041ad0: 626d 6174 7269 6365 7320 6261 7365 6420 bmatrices based │ │ │ │ +00041ae0: 6f6e 2074 6865 2076 616c 7565 7320 6f66 on the values of │ │ │ │ +00041af0: 2074 686f 7365 206b 6579 732e 2020 466f those keys. Fo │ │ │ │ +00041b00: 7220 6578 616d 706c 652c 0a69 6620 4c65 r example,.if Le │ │ │ │ +00041b10: 7853 6d61 6c6c 6573 7420 616e 6420 4c65 xSmallest and Le │ │ │ │ +00041b20: 784c 6172 6765 7374 2061 7265 2073 6574 xLargest are set │ │ │ │ +00041b30: 2074 6f20 3530 2061 7070 726f 7869 6d61 to 50 approxima │ │ │ │ +00041b40: 7465 6c79 2074 6865 2073 7562 6d61 7472 tely the submatr │ │ │ │ +00041b50: 6963 7320 7769 6c6c 0a62 6520 736d 616c ics will.be smal │ │ │ │ +00041b60: 6c65 7374 2077 6974 6820 7265 7370 6563 lest with respec │ │ │ │ +00041b70: 7420 746f 204c 6578 2061 6e64 2074 6865 t to Lex and the │ │ │ │ +00041b80: 206f 7468 6572 2068 616c 6620 7769 6c6c other half will │ │ │ │ +00041b90: 2062 6520 6c61 7267 6573 7420 7769 7468 be largest with │ │ │ │ +00041ba0: 2072 6573 7065 6374 0a74 6f20 4c65 782e respect.to Lex. │ │ │ │ +00041bb0: 5468 6520 7661 6c75 6573 2064 6f20 6e6f The values do no │ │ │ │ +00041bc0: 7420 6e65 6564 2074 6f20 6164 6420 7570 t need to add up │ │ │ │ +00041bd0: 2074 6f20 3130 302e 0a0a 5468 6520 6865 to 100...The he │ │ │ │ +00041be0: 7572 6973 7469 6320 6675 6e63 7469 6f6e uristic function │ │ │ │ +00041bf0: 7320 616c 6c20 776f 726b 2062 7920 6669 s all work by fi │ │ │ │ +00041c00: 6e64 696e 6720 7468 6520 6f70 7469 6d61 nding the optima │ │ │ │ +00041c10: 6c20 656e 7472 7920 7769 7468 2072 6573 l entry with res │ │ │ │ +00041c20: 7065 6374 2074 6f0a 7468 6520 6769 7665 pect to.the give │ │ │ │ +00041c30: 6e20 7374 7261 7465 6779 2c20 7265 6d6f n strategy, remo │ │ │ │ +00041c40: 7669 6e67 2074 6861 7420 726f 7720 616e ving that row an │ │ │ │ +00041c50: 6420 636f 6c75 6d6e 2c20 616e 6420 7468 d column, and th │ │ │ │ +00041c60: 656e 2063 686f 6f73 696e 6720 7468 6520 en choosing the │ │ │ │ +00041c70: 6e65 7874 0a6f 7074 696d 616c 2065 6e74 next.optimal ent │ │ │ │ +00041c80: 7279 2e20 2054 6869 7320 6973 2064 6f6e ry. This is don │ │ │ │ +00041c90: 6520 756e 7469 6c20 6120 7375 626d 6174 e until a submat │ │ │ │ +00041ca0: 7269 7820 6f66 2074 6865 2064 6573 6972 rix of the desir │ │ │ │ +00041cb0: 6564 2073 697a 6520 6861 7320 6265 656e ed size has been │ │ │ │ +00041cc0: 0a66 6f75 6e64 2e0a 0a49 6e20 736f 6d65 .found...In some │ │ │ │ +00041cd0: 2066 756e 6374 696f 6e73 2c20 7468 6520 functions, the │ │ │ │ +00041ce0: 4752 6576 4c65 7820 7665 7273 696f 6e73 GRevLex versions │ │ │ │ +00041cf0: 206f 6620 7468 6973 2073 7472 6174 6567 of this strateg │ │ │ │ +00041d00: 7920 7769 6c6c 206d 6f64 6966 7920 7468 y will modify th │ │ │ │ +00041d10: 650a 776f 726b 696e 6720 6d61 7472 6978 e.working matrix │ │ │ │ +00041d20: 2069 6e20 6120 6c6f 6f70 2c20 7265 7065 in a loop, repe │ │ │ │ +00041d30: 6174 6564 6c79 206c 6f77 6572 696e 672f atedly lowering/ │ │ │ │ +00041d40: 7261 6973 696e 6720 7468 6520 6465 6772 raising the degr │ │ │ │ +00041d50: 6565 206f 6620 656c 656d 656e 7473 736f ee of elementsso │ │ │ │ +00041d60: 0a61 7320 746f 2065 6e73 7572 6520 7468 .as to ensure th │ │ │ │ +00041d70: 6174 2064 6966 6665 7265 6e74 2063 686f at different cho │ │ │ │ +00041d80: 6963 6573 2061 7265 206d 6164 652e 0a0a ices are made... │ │ │ │ +00041d90: 5765 2062 7269 6566 6c79 2073 756d 6d61 We briefly summa │ │ │ │ +00041da0: 7269 7a65 2074 6865 2053 7472 6174 6567 rize the Strateg │ │ │ │ +00041db0: 6965 7320 7072 6f76 6964 6564 2074 6f20 ies provided to │ │ │ │ +00041dc0: 7468 6520 7573 6572 2062 7920 6465 6661 the user by defa │ │ │ │ +00041dd0: 756c 7420 2873 6f6d 6520 6f66 0a77 6869 ult (some of.whi │ │ │ │ +00041de0: 6368 2077 6520 6861 7665 2073 6565 6e20 ch we have seen │ │ │ │ +00041df0: 696e 2061 6374 696f 6e20 6162 6f76 6529 in action above) │ │ │ │ +00041e00: 0a20 202a 2053 7472 6174 6567 7944 6566 . * StrategyDef │ │ │ │ +00041e10: 6175 6c74 3a20 3136 2520 6f66 2074 6865 ault: 16% of the │ │ │ │ +00041e20: 206d 6174 7269 6365 7320 6172 6520 4c65 matrices are Le │ │ │ │ +00041e30: 7853 6d61 6c6c 6573 742c 204c 6578 536d xSmallest, LexSm │ │ │ │ +00041e40: 616c 6c65 7374 5465 726d 2c0a 2020 2020 allestTerm,. │ │ │ │ +00041e50: 4752 6576 4c65 7853 6d61 6c6c 6573 742c GRevLexSmallest, │ │ │ │ +00041e60: 2047 5265 764c 6578 4c61 7267 6573 742c GRevLexLargest, │ │ │ │ +00041e70: 2052 616e 646f 6d2c 2061 6e64 2052 616e Random, and Ran │ │ │ │ +00041e80: 646f 6d4e 6f6e 5a65 726f 2065 6163 680a domNonZero each. │ │ │ │ +00041e90: 2020 2a20 5374 7261 7465 6779 4465 6661 * StrategyDefa │ │ │ │ +00041ea0: 756c 744e 6f6e 5261 6e64 6f6d 3a20 3235 ultNonRandom: 25 │ │ │ │ +00041eb0: 2520 6f66 2074 6865 206d 6174 7269 6365 % of the matrice │ │ │ │ +00041ec0: 7320 6172 6520 4c65 7853 6d61 6c6c 6573 s are LexSmalles │ │ │ │ +00041ed0: 742c 0a20 2020 204c 6578 536d 616c 6c65 t,. LexSmalle │ │ │ │ +00041ee0: 7374 5465 726d 2c20 4752 6576 4c65 7853 stTerm, GRevLexS │ │ │ │ +00041ef0: 6d61 6c6c 6573 7420 616e 642c 2047 5265 mallest and, GRe │ │ │ │ +00041f00: 764c 6578 4c61 7267 6573 7420 6561 6368 vLexLargest each │ │ │ │ +00041f10: 0a20 202a 2053 7472 6174 6567 794c 6578 . * StrategyLex │ │ │ │ +00041f20: 536d 616c 6c65 7374 3a20 3530 2520 6f66 Smallest: 50% of │ │ │ │ +00041f30: 2074 6865 206d 6174 7269 6365 7320 6172 the matrices ar │ │ │ │ +00041f40: 6520 4c65 7853 6d61 6c6c 6573 7420 616e e LexSmallest an │ │ │ │ +00041f50: 6420 3530 2520 6172 650a 2020 2020 4c65 d 50% are. Le │ │ │ │ +00041f60: 7853 6d61 6c6c 6573 7454 6572 6d0a 2020 xSmallestTerm. │ │ │ │ +00041f70: 2a20 5374 7261 7465 6779 4752 6576 4c65 * StrategyGRevLe │ │ │ │ +00041f80: 7853 6d61 6c6c 6573 743a 2035 3025 206f xSmallest: 50% o │ │ │ │ +00041f90: 6620 7468 6520 6d61 7472 6963 6573 2061 f the matrices a │ │ │ │ +00041fa0: 7265 2047 5265 764c 6578 536d 616c 6c65 re GRevLexSmalle │ │ │ │ +00041fb0: 7374 2061 6e64 2035 3025 0a20 2020 2061 st and 50%. a │ │ │ │ +00041fc0: 7265 2047 5265 764c 6578 4c61 7267 6573 re GRevLexLarges │ │ │ │ +00041fd0: 740a 2020 2a20 5374 7261 7465 6779 5261 t. * StrategyRa │ │ │ │ +00041fe0: 6e64 6f6d 3a20 6368 6f6f 7365 7320 3130 ndom: chooses 10 │ │ │ │ +00041ff0: 3025 2072 616e 646f 6d20 7375 626d 6174 0% random submat │ │ │ │ +00042000: 7269 6365 732e 0a20 202a 2053 7472 6174 rices.. * Strat │ │ │ │ +00042010: 6567 7950 6f69 6e74 733a 2063 686f 6f73 egyPoints: choos │ │ │ │ +00042020: 6520 616c 6c20 7375 626d 6174 7269 6365 e all submatrice │ │ │ │ +00042030: 7320 7669 6120 506f 696e 7473 2e0a 2020 s via Points.. │ │ │ │ +00042040: 2a20 5374 7261 7465 6779 4465 6661 756c * StrategyDefaul │ │ │ │ +00042050: 7457 6974 6850 6f69 6e74 733a 206c 696b tWithPoints: lik │ │ │ │ +00042060: 6520 5374 7261 7465 6779 4465 6661 756c e StrategyDefaul │ │ │ │ +00042070: 7420 6275 7420 7265 706c 6163 6573 2074 t but replaces t │ │ │ │ +00042080: 6865 2052 616e 646f 6d20 616e 640a 2020 he Random and. │ │ │ │ +00042090: 2020 5261 6e64 6f6d 4e6f 6e5a 6572 6f20 RandomNonZero │ │ │ │ +000420a0: 7375 626d 6174 7269 6365 7320 6173 2077 submatrices as w │ │ │ │ +000420b0: 6974 6820 6d61 7472 6963 6573 2063 686f ith matrices cho │ │ │ │ +000420c0: 7365 6e20 6173 2069 6e20 506f 696e 7473 sen as in Points │ │ │ │ +000420d0: 2e0a 4164 6469 7469 6f6e 616c 6c79 2c20 ..Additionally, │ │ │ │ +000420e0: 6120 4d75 7461 626c 6548 6173 6854 6162 a MutableHashTab │ │ │ │ +000420f0: 6c65 206e 616d 6564 2053 7472 6174 6567 le named Strateg │ │ │ │ +00042100: 7943 7572 7265 6e74 2069 7320 616c 736f yCurrent is also │ │ │ │ +00042110: 2065 7870 6f72 7465 642e 2020 4974 0a62 exported. It.b │ │ │ │ +00042120: 6567 696e 7320 6173 2074 6865 2064 6566 egins as the def │ │ │ │ +00042130: 6175 6c74 2073 7472 6174 6567 792c 2062 ault strategy, b │ │ │ │ +00042140: 7574 2074 6865 2075 7365 7220 6361 6e20 ut the user can │ │ │ │ +00042150: 6d6f 6469 6679 2069 742e 0a0a 5573 696e modify it...Usin │ │ │ │ +00042160: 6720 6120 7369 6e67 6c65 2068 6575 7269 g a single heuri │ │ │ │ +00042170: 7374 6963 2020 416c 7465 726e 6174 6976 stic Alternativ │ │ │ │ +00042180: 656c 792c 2069 6620 7468 6520 7573 6572 ely, if the user │ │ │ │ +00042190: 206f 6e6c 7920 7761 6e74 7320 746f 2075 only wants to u │ │ │ │ +000421a0: 7365 2073 6179 0a4c 6578 536d 616c 6c65 se say.LexSmalle │ │ │ │ +000421b0: 7374 5465 726d 2074 6865 7920 6361 6e20 stTerm they can │ │ │ │ +000421c0: 7365 742c 2053 7472 6174 6567 7920 746f set, Strategy to │ │ │ │ +000421d0: 2070 6f69 6e74 2074 6f20 7468 6174 2073 point to that s │ │ │ │ +000421e0: 796d 626f 6c2c 2069 6e73 7465 6164 206f ymbol, instead o │ │ │ │ +000421f0: 6620 610a 6372 6561 7469 6e67 2061 2063 f a.creating a c │ │ │ │ +00042200: 7573 746f 6d20 7374 7261 7465 6779 2048 ustom strategy H │ │ │ │ +00042210: 6173 6854 6162 6c65 2e20 2046 6f72 2065 ashTable. For e │ │ │ │ +00042220: 7861 6d70 6c65 3a0a 2b2d 2d2d 2d2d 2d2d xample:.+------- │ │ │ │ +00042230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00042240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00042250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00042260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00042270: 0a7c 6934 203a 2065 6c61 7073 6564 5469 .|i4 : elapsedTi │ │ │ │ +00042280: 6d65 2072 6567 756c 6172 496e 436f 6469 me regularInCodi │ │ │ │ +00042290: 6d65 6e73 696f 6e28 312c 2054 2c20 5374 mension(1, T, St │ │ │ │ +000422a0: 7261 7465 6779 3d3e 4c65 7853 6d61 6c6c rategy=>LexSmall │ │ │ │ +000422b0: 6573 7454 6572 6d29 7c0a 7c20 2d2d 202e estTerm)|.| -- . │ │ │ │ +000422c0: 3836 3030 3533 7320 656c 6170 7365 6420 860053s elapsed │ │ │ │ 000422d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000422f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042300: 2020 207c 0a7c 6f34 203d 2074 7275 6520 |.|o4 = true │ │ │ │ +00042300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00042310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042340: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00042350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042390: 2d2d 2d2d 2d2b 0a0a 466f 7220 7468 6520 -----+..For the │ │ │ │ -000423a0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -000423b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -000423c0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -000423d0: 5374 7261 7465 6779 4465 6661 756c 743a StrategyDefault: │ │ │ │ -000423e0: 2053 7472 6174 6567 7944 6566 6175 6c74 StrategyDefault │ │ │ │ -000423f0: 2c20 6973 2061 6e20 2a6e 6f74 6520 6f70 , is an *note op │ │ │ │ -00042400: 7469 6f6e 2074 6162 6c65 3a0a 284d 6163 tion table:.(Mac │ │ │ │ -00042410: 6175 6c61 7932 446f 6329 4f70 7469 6f6e aulay2Doc)Option │ │ │ │ -00042420: 5461 626c 652c 2e0a 0a2d 2d2d 2d2d 2d2d Table,...------- │ │ │ │ -00042430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042470: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00042480: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00042490: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -000424a0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -000424b0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -000424c0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -000424d0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -000424e0: 4661 7374 4d69 6e6f 7273 2e0a 6d32 3a31 FastMinors..m2:1 │ │ │ │ -000424f0: 3939 333a 302e 0a1f 0a54 6167 2054 6162 993:0....Tag Tab │ │ │ │ -00042500: 6c65 3a0a 4e6f 6465 3a20 546f 707f 3233 le:.Node: Top.23 │ │ │ │ -00042510: 380a 4e6f 6465 3a20 6368 6f6f 7365 476f 8.Node: chooseGo │ │ │ │ -00042520: 6f64 4d69 6e6f 7273 7f31 3432 3836 0a4e odMinors.14286.N │ │ │ │ -00042530: 6f64 653a 2063 686f 6f73 6552 616e 646f ode: chooseRando │ │ │ │ -00042540: 6d53 7562 6d61 7472 6978 7f31 3837 3230 mSubmatrix.18720 │ │ │ │ -00042550: 0a4e 6f64 653a 2063 686f 6f73 6553 7562 .Node: chooseSub │ │ │ │ -00042560: 6d61 7472 6978 4c61 7267 6573 7444 6567 matrixLargestDeg │ │ │ │ -00042570: 7265 657f 3230 3733 330a 4e6f 6465 3a20 ree.20733.Node: │ │ │ │ -00042580: 6368 6f6f 7365 5375 626d 6174 7269 7853 chooseSubmatrixS │ │ │ │ -00042590: 6d61 6c6c 6573 7444 6567 7265 657f 3233 mallestDegree.23 │ │ │ │ -000425a0: 3431 300a 4e6f 6465 3a20 4465 7453 7472 410.Node: DetStr │ │ │ │ -000425b0: 6174 6567 797f 3236 3031 390a 4e6f 6465 ategy.26019.Node │ │ │ │ -000425c0: 3a20 4661 7374 4d69 6e6f 7273 5374 7261 : FastMinorsStra │ │ │ │ -000425d0: 7465 6779 5475 746f 7269 616c 7f32 3739 tegyTutorial.279 │ │ │ │ -000425e0: 3639 0a4e 6f64 653a 2067 6574 5375 626d 69.Node: getSubm │ │ │ │ -000425f0: 6174 7269 784f 6652 616e 6b7f 3930 3439 atrixOfRank.9049 │ │ │ │ -00042600: 370a 4e6f 6465 3a20 6973 436f 6469 6d41 7.Node: isCodimA │ │ │ │ -00042610: 744c 6561 7374 7f39 3632 3035 0a4e 6f64 tLeast.96205.Nod │ │ │ │ -00042620: 653a 2069 7344 696d 4174 4d6f 7374 7f31 e: isDimAtMost.1 │ │ │ │ -00042630: 3034 3434 360a 4e6f 6465 3a20 6973 5261 04446.Node: isRa │ │ │ │ -00042640: 6e6b 4174 4c65 6173 747f 3130 3630 3731 nkAtLeast.106071 │ │ │ │ -00042650: 0a4e 6f64 653a 2069 7352 616e 6b41 744c .Node: isRankAtL │ │ │ │ -00042660: 6561 7374 5f6c 705f 7064 5f70 645f 7064 east_lp_pd_pd_pd │ │ │ │ -00042670: 5f63 6d54 6872 6561 6473 3d3e 5f70 645f _cmThreads=>_pd_ │ │ │ │ -00042680: 7064 5f70 645f 7270 7f31 3130 3438 320a pd_pd_rp.110482. │ │ │ │ -00042690: 4e6f 6465 3a20 4d61 784d 696e 6f72 737f Node: MaxMinors. │ │ │ │ -000426a0: 3131 3230 3237 0a4e 6f64 653a 204d 696e 112027.Node: Min │ │ │ │ -000426b0: 4469 6d65 6e73 696f 6e7f 3131 3336 3039 Dimension.113609 │ │ │ │ -000426c0: 0a4e 6f64 653a 204d 6f64 756c 7573 7f31 .Node: Modulus.1 │ │ │ │ -000426d0: 3134 3630 330a 4e6f 6465 3a20 506f 696e 14603.Node: Poin │ │ │ │ -000426e0: 744f 7074 696f 6e73 7f31 3135 3632 350a tOptions.115625. │ │ │ │ -000426f0: 4e6f 6465 3a20 7072 6f6a 4469 6d7f 3131 Node: projDim.11 │ │ │ │ -00042700: 3936 3939 0a4e 6f64 653a 2072 6563 7572 9699.Node: recur │ │ │ │ -00042710: 7369 7665 4d69 6e6f 7273 7f31 3235 3133 siveMinors.12513 │ │ │ │ -00042720: 320a 4e6f 6465 3a20 7265 6775 6c61 7249 2.Node: regularI │ │ │ │ -00042730: 6e43 6f64 696d 656e 7369 6f6e 7f31 3238 nCodimension.128 │ │ │ │ -00042740: 3337 390a 4e6f 6465 3a20 5265 6775 6c61 379.Node: Regula │ │ │ │ -00042750: 7249 6e43 6f64 696d 656e 7369 6f6e 5475 rInCodimensionTu │ │ │ │ -00042760: 746f 7269 616c 7f32 3134 3338 340a 4e6f torial.214384.No │ │ │ │ -00042770: 6465 3a20 7265 6f72 6465 7250 6f6c 796e de: reorderPolyn │ │ │ │ -00042780: 6f6d 6961 6c52 696e 677f 3235 3931 3533 omialRing.259153 │ │ │ │ -00042790: 0a4e 6f64 653a 2053 7472 6174 6567 7944 .Node: StrategyD │ │ │ │ -000427a0: 6566 6175 6c74 7f32 3631 3636 360a 1f0a efault.261666... │ │ │ │ -000427b0: 456e 6420 5461 6720 5461 626c 650a End Tag Table. │ │ │ │ +00042340: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00042350: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ +00042360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042390: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000423a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000423b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000423c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000423d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ +000423e0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +000423f0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00042400: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00042410: 202a 6e6f 7465 2053 7472 6174 6567 7944 *note StrategyD │ │ │ │ +00042420: 6566 6175 6c74 3a20 5374 7261 7465 6779 efault: Strategy │ │ │ │ +00042430: 4465 6661 756c 742c 2069 7320 616e 202a Default, is an * │ │ │ │ +00042440: 6e6f 7465 206f 7074 696f 6e20 7461 626c note option tabl │ │ │ │ +00042450: 653a 0a28 4d61 6361 756c 6179 3244 6f63 e:.(Macaulay2Doc │ │ │ │ +00042460: 294f 7074 696f 6e54 6162 6c65 2c2e 0a0a )OptionTable,... │ │ │ │ +00042470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00042480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00042490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000424a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000424b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +000424c0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000424d0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +000424e0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +000424f0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00042500: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00042510: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00042520: 636b 6167 6573 2f46 6173 744d 696e 6f72 ckages/FastMinor │ │ │ │ +00042530: 732e 0a6d 323a 3139 3933 3a30 2e0a 1f0a s..m2:1993:0.... │ │ │ │ +00042540: 5461 6720 5461 626c 653a 0a4e 6f64 653a Tag Table:.Node: │ │ │ │ +00042550: 2054 6f70 7f32 3338 0a4e 6f64 653a 2063 Top.238.Node: c │ │ │ │ +00042560: 686f 6f73 6547 6f6f 644d 696e 6f72 737f hooseGoodMinors. │ │ │ │ +00042570: 3134 3238 360a 4e6f 6465 3a20 6368 6f6f 14286.Node: choo │ │ │ │ +00042580: 7365 5261 6e64 6f6d 5375 626d 6174 7269 seRandomSubmatri │ │ │ │ +00042590: 787f 3138 3732 300a 4e6f 6465 3a20 6368 x.18720.Node: ch │ │ │ │ +000425a0: 6f6f 7365 5375 626d 6174 7269 784c 6172 ooseSubmatrixLar │ │ │ │ +000425b0: 6765 7374 4465 6772 6565 7f32 3037 3333 gestDegree.20733 │ │ │ │ +000425c0: 0a4e 6f64 653a 2063 686f 6f73 6553 7562 .Node: chooseSub │ │ │ │ +000425d0: 6d61 7472 6978 536d 616c 6c65 7374 4465 matrixSmallestDe │ │ │ │ +000425e0: 6772 6565 7f32 3334 3130 0a4e 6f64 653a gree.23410.Node: │ │ │ │ +000425f0: 2044 6574 5374 7261 7465 6779 7f32 3630 DetStrategy.260 │ │ │ │ +00042600: 3139 0a4e 6f64 653a 2046 6173 744d 696e 19.Node: FastMin │ │ │ │ +00042610: 6f72 7353 7472 6174 6567 7954 7574 6f72 orsStrategyTutor │ │ │ │ +00042620: 6961 6c7f 3237 3936 390a 4e6f 6465 3a20 ial.27969.Node: │ │ │ │ +00042630: 6765 7453 7562 6d61 7472 6978 4f66 5261 getSubmatrixOfRa │ │ │ │ +00042640: 6e6b 7f39 3035 3737 0a4e 6f64 653a 2069 nk.90577.Node: i │ │ │ │ +00042650: 7343 6f64 696d 4174 4c65 6173 747f 3936 sCodimAtLeast.96 │ │ │ │ +00042660: 3238 350a 4e6f 6465 3a20 6973 4469 6d41 285.Node: isDimA │ │ │ │ +00042670: 744d 6f73 747f 3130 3435 3236 0a4e 6f64 tMost.104526.Nod │ │ │ │ +00042680: 653a 2069 7352 616e 6b41 744c 6561 7374 e: isRankAtLeast │ │ │ │ +00042690: 7f31 3036 3135 310a 4e6f 6465 3a20 6973 .106151.Node: is │ │ │ │ +000426a0: 5261 6e6b 4174 4c65 6173 745f 6c70 5f70 RankAtLeast_lp_p │ │ │ │ +000426b0: 645f 7064 5f70 645f 636d 5468 7265 6164 d_pd_pd_cmThread │ │ │ │ +000426c0: 733d 3e5f 7064 5f70 645f 7064 5f72 707f s=>_pd_pd_pd_rp. │ │ │ │ +000426d0: 3131 3035 3632 0a4e 6f64 653a 204d 6178 110562.Node: Max │ │ │ │ +000426e0: 4d69 6e6f 7273 7f31 3132 3130 370a 4e6f Minors.112107.No │ │ │ │ +000426f0: 6465 3a20 4d69 6e44 696d 656e 7369 6f6e de: MinDimension │ │ │ │ +00042700: 7f31 3133 3638 390a 4e6f 6465 3a20 4d6f .113689.Node: Mo │ │ │ │ +00042710: 6475 6c75 737f 3131 3436 3833 0a4e 6f64 dulus.114683.Nod │ │ │ │ +00042720: 653a 2050 6f69 6e74 4f70 7469 6f6e 737f e: PointOptions. │ │ │ │ +00042730: 3131 3537 3035 0a4e 6f64 653a 2070 726f 115705.Node: pro │ │ │ │ +00042740: 6a44 696d 7f31 3139 3737 390a 4e6f 6465 jDim.119779.Node │ │ │ │ +00042750: 3a20 7265 6375 7273 6976 654d 696e 6f72 : recursiveMinor │ │ │ │ +00042760: 737f 3132 3532 3132 0a4e 6f64 653a 2072 s.125212.Node: r │ │ │ │ +00042770: 6567 756c 6172 496e 436f 6469 6d65 6e73 egularInCodimens │ │ │ │ +00042780: 696f 6e7f 3132 3834 3539 0a4e 6f64 653a ion.128459.Node: │ │ │ │ +00042790: 2052 6567 756c 6172 496e 436f 6469 6d65 RegularInCodime │ │ │ │ +000427a0: 6e73 696f 6e54 7574 6f72 6961 6c7f 3231 nsionTutorial.21 │ │ │ │ +000427b0: 3434 3634 0a4e 6f64 653a 2072 656f 7264 4464.Node: reord │ │ │ │ +000427c0: 6572 506f 6c79 6e6f 6d69 616c 5269 6e67 erPolynomialRing │ │ │ │ +000427d0: 7f32 3539 3232 340a 4e6f 6465 3a20 5374 .259224.Node: St │ │ │ │ +000427e0: 7261 7465 6779 4465 6661 756c 747f 3236 rategyDefault.26 │ │ │ │ +000427f0: 3137 3337 0a1f 0a45 6e64 2054 6167 2054 1737...End Tag T │ │ │ │ +00042800: 6162 6c65 0a able. │ │ ├── ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ ├── FiniteFittingIdeals.info │ │ │ │ @@ -1017,17 +1017,17 @@ │ │ │ │ 00003f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00003fa0: 0a7c 6931 3520 3a20 7469 6d65 2049 3d63 .|i15 : time I=c │ │ │ │ 00003fb0: 6f31 4669 7474 696e 6728 4b33 2920 2020 o1Fitting(K3) │ │ │ │ 00003fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003fe0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00003ff0: 2075 7365 6420 302e 3030 3238 3236 3135 used 0.00282615 │ │ │ │ -00004000: 7320 2863 7075 293b 2030 2e30 3032 3832 s (cpu); 0.00282 │ │ │ │ -00004010: 3235 3673 2028 7468 7265 6164 293b 2030 256s (thread); 0 │ │ │ │ +00003ff0: 2075 7365 6420 302e 3030 3238 3835 3632 used 0.00288562 │ │ │ │ +00004000: 7320 2863 7075 293b 2030 2e30 3032 3838 s (cpu); 0.00288 │ │ │ │ +00004010: 3231 3873 2028 7468 7265 6164 293b 2030 218s (thread); 0 │ │ │ │ 00004020: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00004030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00004040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004080: 7c0a 7c6f 3135 203d 2069 6465 616c 2028 |.|o15 = ideal ( │ │ │ │ @@ -1055,17 +1055,17 @@ │ │ │ │ 000041e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000041f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 -------+.|i16 : │ │ │ │ 00004200: 7469 6d65 204a 3d66 6974 7469 6e67 4964 time J=fittingId │ │ │ │ 00004210: 6561 6c28 322d 312c 636f 6b65 7220 4b33 eal(2-1,coker K3 │ │ │ │ 00004220: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ 00004230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004240: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00004250: 3030 3633 3134 3338 7320 2863 7075 293b 00631438s (cpu); │ │ │ │ -00004260: 2030 2e30 3036 3331 3333 3173 2028 7468 0.00631331s (th │ │ │ │ -00004270: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00004250: 3030 3635 3234 3634 7320 2863 7075 293b 00652464s (cpu); │ │ │ │ +00004260: 2030 2e30 3036 3532 3936 7320 2874 6872 0.0065296s (thr │ │ │ │ +00004270: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00004280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000042d0: 2020 2020 2020 2020 7c0a 7c6f 3136 203a |.|o16 : │ │ │ │ 000042e0: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ ├── ./usr/share/info/ForeignFunctions.info.gz │ │ │ ├── ForeignFunctions.info │ │ │ │ @@ -3504,16 +3504,16 @@ │ │ │ │ 0000daf0: 2078 203d 206d 616c 6c6f 6320 3820 2020 x = malloc 8 │ │ │ │ 0000db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0000db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000db60: 7c0a 7c6f 3137 203d 2030 7837 6634 3433 |.|o17 = 0x7f443 │ │ │ │ -0000db70: 6330 3661 3466 3020 2020 2020 2020 2020 c06a4f0 │ │ │ │ +0000db60: 7c0a 7c6f 3137 203d 2030 7837 6639 6664 |.|o17 = 0x7f9fd │ │ │ │ +0000db70: 3430 3661 3466 3020 2020 2020 2020 2020 406a4f0 │ │ │ │ 0000db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000db90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000dbd0: 2020 2020 2020 2020 7c0a 7c6f 3137 203a |.|o17 : │ │ │ │ 0000dbe0: 2046 6f72 6569 676e 4f62 6a65 6374 206f ForeignObject o │ │ │ │ @@ -3638,15 +3638,15 @@ │ │ │ │ 0000e350: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ 0000e360: 7065 656b 206d 7066 7220 2020 2020 2020 peek mpfr │ │ │ │ 0000e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e3a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000e3b0: 7c6f 3220 3d20 5368 6172 6564 4c69 6272 |o2 = SharedLibr │ │ │ │ -0000e3c0: 6172 797b 3078 3766 3766 3266 3665 3435 ary{0x7f7f2f6e45 │ │ │ │ +0000e3c0: 6172 797b 3078 3766 3434 3236 3837 3335 ary{0x7f44268735 │ │ │ │ 0000e3d0: 3530 2c20 6d70 6672 7d7c 0a2b 2d2d 2d2d 50, mpfr}|.+---- │ │ │ │ 0000e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e400: 2d2d 2d2d 2b0a 2a20 4d65 6e75 3a0a 0a2a ----+.* Menu:..* │ │ │ │ 0000e410: 206f 7065 6e53 6861 7265 644c 6962 7261 openSharedLibra │ │ │ │ 0000e420: 7279 3a3a 2020 2020 2020 2020 2020 206f ry:: o │ │ │ │ 0000e430: 7065 6e20 6120 7368 6172 6564 206c 6962 pen a shared lib │ │ │ │ @@ -5393,29 +5393,29 @@ │ │ │ │ 00015100: 6520 706f 696e 7465 722e 0a0a 2b2d 2d2d e pointer...+--- │ │ │ │ 00015110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015130: 6931 203a 2070 7472 203d 2061 6464 7265 i1 : ptr = addre │ │ │ │ 00015140: 7373 2069 6e74 2030 2020 2020 2020 2020 ss int 0 │ │ │ │ 00015150: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015170: 2020 207c 0a7c 6f31 203d 2030 7837 6637 |.|o1 = 0x7f7 │ │ │ │ -00015180: 6631 6636 3965 3730 3020 2020 2020 2020 f1f69e700 │ │ │ │ +00015170: 2020 207c 0a7c 6f31 203d 2030 7837 6634 |.|o1 = 0x7f4 │ │ │ │ +00015180: 3431 3531 3638 3666 3020 2020 2020 2020 4151686f0 │ │ │ │ 00015190: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000151b0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ 000151c0: 2050 6f69 6e74 6572 2020 2020 2020 2020 Pointer │ │ │ │ 000151d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000151f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00015200: 0a7c 6932 203a 2076 6f69 6473 7461 7220 .|i2 : voidstar │ │ │ │ 00015210: 7074 7220 2020 2020 2020 2020 2020 2020 ptr │ │ │ │ 00015220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015240: 2020 2020 207c 0a7c 6f32 203d 2030 7837 |.|o2 = 0x7 │ │ │ │ -00015250: 6637 6631 6636 3965 3730 3020 2020 2020 f7f1f69e700 │ │ │ │ +00015250: 6634 3431 3531 3638 3666 3020 2020 2020 f44151686f0 │ │ │ │ 00015260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00015270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015280: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ 00015290: 203a 2046 6f72 6569 676e 4f62 6a65 6374 : ForeignObject │ │ │ │ 000152a0: 206f 6620 7479 7065 2076 6f69 642a 7c0a of type void*|. │ │ │ │ 000152b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000152c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5496,16 +5496,16 @@ │ │ │ │ 00015770: 7970 6520 696e 7433 327c 0a2b 2d2d 2d2d ype int32|.+---- │ │ │ │ 00015780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 000157a0: 3220 3a20 7074 7220 3d20 6164 6472 6573 2 : ptr = addres │ │ │ │ 000157b0: 7320 7820 2020 2020 2020 2020 2020 207c s x | │ │ │ │ 000157c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000157d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157e0: 2020 7c0a 7c6f 3220 3d20 3078 3766 3766 |.|o2 = 0x7f7f │ │ │ │ -000157f0: 3238 3532 3638 6330 2020 2020 2020 2020 285268c0 │ │ │ │ +000157e0: 2020 7c0a 7c6f 3220 3d20 3078 3766 3434 |.|o2 = 0x7f44 │ │ │ │ +000157f0: 3132 3962 6362 3230 2020 2020 2020 2020 129bcb20 │ │ │ │ 00015800: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00015810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015820: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ 00015830: 506f 696e 7465 7220 2020 2020 2020 2020 Pointer │ │ │ │ 00015840: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00015850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ @@ -5646,16 +5646,16 @@ │ │ │ │ 000160d0: 696e 7465 7273 2e0a 0a2b 2d2d 2d2d 2d2d inters...+------ │ │ │ │ 000160e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00016100: 203a 2070 7472 203d 2076 6f69 6473 7461 : ptr = voidsta │ │ │ │ 00016110: 7220 6164 6472 6573 7320 696e 7420 357c r address int 5| │ │ │ │ 00016120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00016130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016140: 2020 207c 0a7c 6f31 203d 2030 7837 6637 |.|o1 = 0x7f7 │ │ │ │ -00016150: 6632 3835 3461 6137 3020 2020 2020 2020 f2854aa70 │ │ │ │ +00016140: 2020 207c 0a7c 6f31 203d 2030 7837 6634 |.|o1 = 0x7f4 │ │ │ │ +00016150: 3431 3261 3033 6236 3020 2020 2020 2020 412a03b60 │ │ │ │ 00016160: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00016170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016180: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ 00016190: 203a 2046 6f72 6569 676e 4f62 6a65 6374 : ForeignObject │ │ │ │ 000161a0: 206f 6620 7479 7065 2076 6f69 642a 207c of type void* | │ │ │ │ 000161b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000161c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5744,15 +5744,15 @@ │ │ │ │ 000166f0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00016700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016710: 2d2d 2d2d 2b0a 7c69 3120 3a20 7074 7220 ----+.|i1 : ptr │ │ │ │ 00016720: 3d20 6765 744d 656d 6f72 7920 3820 2020 = getMemory 8 │ │ │ │ 00016730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00016740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016750: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -00016760: 3d20 3078 3766 3766 3262 3039 3332 3430 = 0x7f7f2b093240 │ │ │ │ +00016760: 3d20 3078 3766 3434 3231 3363 3134 3930 = 0x7f44213c1490 │ │ │ │ 00016770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000167a0: 7c0a 7c6f 3120 3a20 466f 7265 6967 6e4f |.|o1 : ForeignO │ │ │ │ 000167b0: 626a 6563 7420 6f66 2074 7970 6520 766f bject of type vo │ │ │ │ 000167c0: 6964 2a7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d id*|.+---------- │ │ │ │ 000167d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5767,16 +5767,16 @@ │ │ │ │ 00016860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00016880: 7c69 3220 3a20 7074 7220 3d20 6765 744d |i2 : ptr = getM │ │ │ │ 00016890: 656d 6f72 7928 382c 2041 746f 6d69 6320 emory(8, Atomic │ │ │ │ 000168a0: 3d3e 2074 7275 6529 7c0a 7c20 2020 2020 => true)|.| │ │ │ │ 000168b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000168c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000168d0: 2020 7c0a 7c6f 3220 3d20 3078 3766 3766 |.|o2 = 0x7f7f │ │ │ │ -000168e0: 3238 3532 3630 6130 2020 2020 2020 2020 285260a0 │ │ │ │ +000168d0: 2020 7c0a 7c6f 3220 3d20 3078 3766 3434 |.|o2 = 0x7f44 │ │ │ │ +000168e0: 3132 3962 6332 3330 2020 2020 2020 2020 129bc230 │ │ │ │ 000168f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00016900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016920: 2020 2020 2020 7c0a 7c6f 3220 3a20 466f |.|o2 : Fo │ │ │ │ 00016930: 7265 6967 6e4f 626a 6563 7420 6f66 2074 reignObject of t │ │ │ │ 00016940: 7970 6520 766f 6964 2a20 2020 2020 2020 ype void* │ │ │ │ 00016950: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ @@ -5795,16 +5795,16 @@ │ │ │ │ 00016a20: 6361 6c6c 792e 0a0a 2b2d 2d2d 2d2d 2d2d cally...+------- │ │ │ │ 00016a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016a40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 00016a50: 2070 7472 203d 2067 6574 4d65 6d6f 7279 ptr = getMemory │ │ │ │ 00016a60: 2069 6e74 2020 2020 2020 2020 7c0a 7c20 int |.| │ │ │ │ 00016a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016a90: 0a7c 6f33 203d 2030 7837 6637 6632 3835 .|o3 = 0x7f7f285 │ │ │ │ -00016aa0: 3461 6663 3020 2020 2020 2020 2020 2020 4afc0 │ │ │ │ +00016a90: 0a7c 6f33 203d 2030 7837 6634 3431 3239 .|o3 = 0x7f44129 │ │ │ │ +00016aa0: 6263 3132 3020 2020 2020 2020 2020 2020 bc120 │ │ │ │ 00016ab0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00016ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ad0: 2020 2020 207c 0a7c 6f33 203a 2046 6f72 |.|o3 : For │ │ │ │ 00016ae0: 6569 676e 4f62 6a65 6374 206f 6620 7479 eignObject of ty │ │ │ │ 00016af0: 7065 2076 6f69 642a 7c0a 2b2d 2d2d 2d2d pe void*|.+----- │ │ │ │ 00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ @@ -5965,18 +5965,18 @@ │ │ │ │ 000174c0: 7320 696e 7420 312c 2061 6464 7265 7373 s int 1, address │ │ │ │ 000174d0: 2069 6e74 2032 7d20 2020 2020 2020 2020 int 2} │ │ │ │ 000174e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017530: 0a7c 6f33 203d 207b 3078 3766 3766 3238 .|o3 = {0x7f7f28 │ │ │ │ -00017540: 3534 6130 3330 2c20 3078 3766 3766 3238 54a030, 0x7f7f28 │ │ │ │ -00017550: 3534 6130 3230 2c20 3078 3766 3766 3238 54a020, 0x7f7f28 │ │ │ │ -00017560: 3534 6130 3130 7d20 2020 2020 2020 2020 54a010} │ │ │ │ +00017530: 0a7c 6f33 203d 207b 3078 3766 3434 3132 .|o3 = {0x7f4412 │ │ │ │ +00017540: 6130 3330 6130 2c20 3078 3766 3434 3132 a030a0, 0x7f4412 │ │ │ │ +00017550: 6130 3330 3930 2c20 3078 3766 3434 3132 a03090, 0x7f4412 │ │ │ │ +00017560: 6130 3330 3830 7d20 2020 2020 2020 2020 a03080} │ │ │ │ 00017570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000175c0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ 000175d0: 2046 6f72 6569 676e 4f62 6a65 6374 206f ForeignObject o │ │ │ │ @@ -6431,17 +6431,17 @@ │ │ │ │ 000191e0: 7373 2069 6e74 2030 2c20 6164 6472 6573 ss int 0, addres │ │ │ │ 000191f0: 7320 696e 7420 312c 2061 6464 7265 7373 s int 1, address │ │ │ │ 00019200: 2069 6e74 2032 7d7c 0a7c 2020 2020 2020 int 2}|.| │ │ │ │ 00019210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019240: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -00019250: 207b 3078 3766 3766 3238 3536 3765 3230 {0x7f7f28567e20 │ │ │ │ -00019260: 2c20 3078 3766 3766 3238 3536 3765 3130 , 0x7f7f28567e10 │ │ │ │ -00019270: 2c20 3078 3766 3766 3238 3536 3765 3030 , 0x7f7f28567e00 │ │ │ │ +00019250: 207b 3078 3766 3434 3132 6134 6265 6530 {0x7f4412a4bee0 │ │ │ │ +00019260: 2c20 3078 3766 3434 3132 6134 6265 6430 , 0x7f4412a4bed0 │ │ │ │ +00019270: 2c20 3078 3766 3434 3132 6134 6265 6330 , 0x7f4412a4bec0 │ │ │ │ 00019280: 7d20 2020 2020 2020 2020 207c 0a7c 2020 } |.| │ │ │ │ 00019290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000192a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000192b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000192c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 000192d0: 6f32 203a 2046 6f72 6569 676e 4f62 6a65 o2 : ForeignObje │ │ │ │ 000192e0: 6374 206f 6620 7479 7065 2076 6f69 642a ct of type void* │ │ │ │ @@ -7909,15 +7909,15 @@ │ │ │ │ 0001ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0001eea0: 7c6f 3220 3d20 4861 7368 5461 626c 657b |o2 = HashTable{ │ │ │ │ -0001eeb0: 2262 6172 2220 3d3e 2036 2e39 3235 3938 "bar" => 6.92598 │ │ │ │ +0001eeb0: 2262 6172 2220 3d3e 2036 2e39 3133 3436 "bar" => 6.91346 │ │ │ │ 0001eec0: 652d 3331 307d 2020 2020 2020 2020 2020 e-310} │ │ │ │ 0001eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eee0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001eef0: 2020 2020 2020 2020 2020 2020 2020 2266 "f │ │ │ │ 0001ef00: 6f6f 2220 3d3e 2032 3720 2020 2020 2020 oo" => 27 │ │ │ │ 0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8160,26 +8160,26 @@ │ │ │ │ 0001fdf0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7065 ------+.|i2 : pe │ │ │ │ 0001fe00: 656b 2078 2020 2020 2020 2020 2020 2020 ek x │ │ │ │ 0001fe10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0001fe20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fe40: 2020 2020 2020 7c0a 7c6f 3220 3d20 696e |.|o2 = in │ │ │ │ 0001fe50: 7433 327b 4164 6472 6573 7320 3d3e 2030 t32{Address => 0 │ │ │ │ -0001fe60: 7837 6637 6632 3835 3236 3566 307d 7c0a x7f7f285265f0}|. │ │ │ │ +0001fe60: 7837 6634 3431 3239 6263 3536 307d 7c0a x7f44129bc560}|. │ │ │ │ 0001fe70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0001fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fe90: 2d2d 2d2d 2d2d 2b0a 0a54 6f20 6765 7420 ------+..To get │ │ │ │ 0001fea0: 7468 6973 2c20 7573 6520 2a6e 6f74 6520 this, use *note │ │ │ │ 0001feb0: 6164 6472 6573 733a 2061 6464 7265 7373 address: address │ │ │ │ 0001fec0: 2c2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...+----------- │ │ │ │ 0001fed0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 0001fee0: 6164 6472 6573 7320 7820 2020 2020 7c0a address x |. │ │ │ │ 0001fef0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001ff00: 2020 2020 7c0a 7c6f 3320 3d20 3078 3766 |.|o3 = 0x7f │ │ │ │ -0001ff10: 3766 3238 3532 3635 6630 7c0a 7c20 2020 7f285265f0|.| │ │ │ │ +0001ff10: 3434 3132 3962 6335 3630 7c0a 7c20 2020 44129bc560|.| │ │ │ │ 0001ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff30: 7c0a 7c6f 3320 3a20 506f 696e 7465 7220 |.|o3 : Pointer │ │ │ │ 0001ff40: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001ff50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a55 ------------+..U │ │ │ │ 0001ff60: 7365 202a 6e6f 7465 2063 6c61 7373 3a20 se *note class: │ │ │ │ 0001ff70: 284d 6163 6175 6c61 7932 446f 6329 636c (Macaulay2Doc)cl │ │ │ │ 0001ff80: 6173 732c 2074 6f20 6465 7465 726d 696e ass, to determin │ │ │ │ @@ -8881,29 +8881,29 @@ │ │ │ │ 00022b00: 626a 6563 7473 2e0a 0a2b 2d2d 2d2d 2d2d bjects...+------ │ │ │ │ 00022b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ 00022b30: 3a20 7820 3d20 766f 6964 7374 6172 2061 : x = voidstar a │ │ │ │ 00022b40: 6464 7265 7373 2069 6e74 2035 207c 0a7c ddress int 5 |.| │ │ │ │ 00022b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b70: 7c0a 7c6f 3520 3d20 3078 3766 3766 3238 |.|o5 = 0x7f7f28 │ │ │ │ -00022b80: 3534 6164 3230 2020 2020 2020 2020 2020 54ad20 │ │ │ │ +00022b70: 7c0a 7c6f 3520 3d20 3078 3766 3434 3132 |.|o5 = 0x7f4412 │ │ │ │ +00022b80: 6130 3362 6230 2020 2020 2020 2020 2020 a03bb0 │ │ │ │ 00022b90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022bb0: 2020 2020 2020 7c0a 7c6f 3520 3a20 466f |.|o5 : Fo │ │ │ │ 00022bc0: 7265 6967 6e4f 626a 6563 7420 6f66 2074 reignObject of t │ │ │ │ 00022bd0: 7970 6520 766f 6964 2a7c 0a2b 2d2d 2d2d ype void*|.+---- │ │ │ │ 00022be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00022c00: 3620 3a20 7661 6c75 6520 7820 2020 2020 6 : value x │ │ │ │ 00022c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00022c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c40: 2020 7c0a 7c6f 3620 3d20 3078 3766 3766 |.|o6 = 0x7f7f │ │ │ │ -00022c50: 3238 3534 6164 3230 2020 2020 2020 2020 2854ad20 │ │ │ │ +00022c40: 2020 7c0a 7c6f 3620 3d20 3078 3766 3434 |.|o6 = 0x7f44 │ │ │ │ +00022c50: 3132 6130 3362 6230 2020 2020 2020 2020 12a03bb0 │ │ │ │ 00022c60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c80: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ 00022c90: 506f 696e 7465 7220 2020 2020 2020 2020 Pointer │ │ │ │ 00022ca0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00022cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ @@ -9430,50 +9430,50 @@ │ │ │ │ 00024d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024d60: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2063 -------+.|i5 : c │ │ │ │ 00024d70: 6f6c 6c65 6374 4761 7262 6167 6528 2920 ollectGarbage() │ │ │ │ 00024d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024da0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00024db0: 6672 6565 696e 6720 6d65 6d6f 7279 2061 freeing memory a │ │ │ │ -00024dc0: 7420 3078 3766 3766 3134 3037 6639 3130 t 0x7f7f1407f910 │ │ │ │ +00024dc0: 7420 3078 3766 3433 6663 3037 6632 3530 t 0x7f43fc07f250 │ │ │ │ 00024dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024df0: 2020 207c 0a7c 6672 6565 696e 6720 6d65 |.|freeing me │ │ │ │ -00024e00: 6d6f 7279 2061 7420 3078 3766 3766 3134 mory at 0x7f7f14 │ │ │ │ +00024e00: 6d6f 7279 2061 7420 3078 3766 3433 6663 mory at 0x7f43fc │ │ │ │ 00024e10: 3037 6639 3330 2020 2020 2020 2020 2020 07f930 │ │ │ │ 00024e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e30: 2020 2020 2020 2020 207c 0a7c 6672 6565 |.|free │ │ │ │ 00024e40: 696e 6720 6d65 6d6f 7279 2061 7420 3078 ing memory at 0x │ │ │ │ -00024e50: 3766 3766 3134 3037 6639 3530 2020 2020 7f7f1407f950 │ │ │ │ +00024e50: 3766 3433 6663 3037 6638 6630 2020 2020 7f43fc07f8f0 │ │ │ │ 00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00024e80: 0a7c 6672 6565 696e 6720 6d65 6d6f 7279 .|freeing memory │ │ │ │ -00024e90: 2061 7420 3078 3766 3766 3134 3037 6639 at 0x7f7f1407f9 │ │ │ │ -00024ea0: 3930 2020 2020 2020 2020 2020 2020 2020 90 │ │ │ │ +00024e90: 2061 7420 3078 3766 3433 6663 3037 6632 at 0x7f43fc07f2 │ │ │ │ +00024ea0: 3330 2020 2020 2020 2020 2020 2020 2020 30 │ │ │ │ 00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ec0: 2020 2020 207c 0a7c 6672 6565 696e 6720 |.|freeing │ │ │ │ -00024ed0: 6d65 6d6f 7279 2061 7420 3078 3766 3766 memory at 0x7f7f │ │ │ │ -00024ee0: 3134 3037 6632 3530 2020 2020 2020 2020 1407f250 │ │ │ │ +00024ed0: 6d65 6d6f 7279 2061 7420 3078 3766 3433 memory at 0x7f43 │ │ │ │ +00024ee0: 6663 3037 6639 3930 2020 2020 2020 2020 fc07f990 │ │ │ │ 00024ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f00: 2020 2020 2020 2020 2020 207c 0a7c 6672 |.|fr │ │ │ │ 00024f10: 6565 696e 6720 6d65 6d6f 7279 2061 7420 eeing memory at │ │ │ │ -00024f20: 3078 3766 3766 3134 3037 6632 3330 2020 0x7f7f1407f230 │ │ │ │ +00024f20: 3078 3766 3433 6663 3037 6639 3730 2020 0x7f43fc07f970 │ │ │ │ 00024f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f50: 207c 0a7c 6672 6565 696e 6720 6d65 6d6f |.|freeing memo │ │ │ │ -00024f60: 7279 2061 7420 3078 3766 3766 3134 3037 ry at 0x7f7f1407 │ │ │ │ +00024f60: 7279 2061 7420 3078 3766 3433 6663 3037 ry at 0x7f43fc07 │ │ │ │ 00024f70: 6639 6230 2020 2020 2020 2020 2020 2020 f9b0 │ │ │ │ 00024f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f90: 2020 2020 2020 207c 0a7c 6672 6565 696e |.|freein │ │ │ │ 00024fa0: 6720 6d65 6d6f 7279 2061 7420 3078 3766 g memory at 0x7f │ │ │ │ -00024fb0: 3766 3134 3037 6639 3730 2020 2020 2020 7f1407f970 │ │ │ │ +00024fb0: 3433 6663 3037 6639 3130 2020 2020 2020 43fc07f910 │ │ │ │ 00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00024fe0: 6672 6565 696e 6720 6d65 6d6f 7279 2061 freeing memory a │ │ │ │ -00024ff0: 7420 3078 3766 3766 3134 3037 6638 6630 t 0x7f7f1407f8f0 │ │ │ │ +00024ff0: 7420 3078 3766 3433 6663 3037 6639 3530 t 0x7f43fc07f950 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025020: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00025030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025060: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ @@ -9547,49 +9547,49 @@ │ │ │ │ 000254a0: 2d2d 2d2b 0a7c 6932 203a 2070 6565 6b20 ---+.|i2 : peek │ │ │ │ 000254b0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 000254c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000254d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254f0: 2020 207c 0a7c 6f32 203d 2069 6e74 3332 |.|o2 = int32 │ │ │ │ 00025500: 7b41 6464 7265 7373 203d 3e20 3078 3766 {Address => 0x7f │ │ │ │ -00025510: 3766 3238 3532 3634 6630 7d7c 0a2b 2d2d 7f285264f0}|.+-- │ │ │ │ +00025510: 3434 3132 3962 6335 6130 7d7c 0a2b 2d2d 44129bc5a0}|.+-- │ │ │ │ 00025520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025540: 2d2d 2d2b 0a0a 5468 6573 6520 706f 696e ---+..These poin │ │ │ │ 00025550: 7465 7273 2063 616e 2062 6520 6163 6365 ters can be acce │ │ │ │ 00025560: 7373 6564 2075 7369 6e67 202a 6e6f 7465 ssed using *note │ │ │ │ 00025570: 2061 6464 7265 7373 3a20 6164 6472 6573 address: addres │ │ │ │ 00025580: 732c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d s,...+---------- │ │ │ │ 00025590: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ 000255a0: 3a20 7074 7220 3d20 6164 6472 6573 7320 : ptr = address │ │ │ │ 000255b0: 787c 0a7c 2020 2020 2020 2020 2020 2020 x|.| │ │ │ │ 000255c0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -000255d0: 3078 3766 3766 3238 3532 3634 6630 207c 0x7f7f285264f0 | │ │ │ │ +000255d0: 3078 3766 3434 3132 3962 6335 6130 207c 0x7f44129bc5a0 | │ │ │ │ 000255e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000255f0: 2020 2020 2020 7c0a 7c6f 3320 3a20 506f |.|o3 : Po │ │ │ │ 00025600: 696e 7465 7220 2020 2020 2020 207c 0a2b inter |.+ │ │ │ │ 00025610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025620: 2d2d 2d2d 2b0a 0a53 696d 706c 6520 6172 ----+..Simple ar │ │ │ │ 00025630: 6974 686d 6574 6963 2063 616e 2062 6520 ithmetic can be │ │ │ │ 00025640: 7065 7266 6f72 6d65 6420 6f6e 2070 6f69 performed on poi │ │ │ │ 00025650: 6e74 6572 732e 0a0a 2b2d 2d2d 2d2d 2d2d nters...+------- │ │ │ │ 00025660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00025670: 3420 3a20 7074 7220 2b20 3520 2020 2020 4 : ptr + 5 │ │ │ │ 00025680: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025690: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -000256a0: 3078 3766 3766 3238 3532 3634 6635 7c0a 0x7f7f285264f5|. │ │ │ │ +000256a0: 3078 3766 3434 3132 3962 6335 6135 7c0a 0x7f44129bc5a5|. │ │ │ │ 000256b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000256c0: 2020 2020 7c0a 7c6f 3420 3a20 506f 696e |.|o4 : Poin │ │ │ │ 000256d0: 7465 7220 2020 2020 2020 7c0a 2b2d 2d2d ter |.+--- │ │ │ │ 000256e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000256f0: 2b0a 7c69 3520 3a20 7074 7220 2d20 3320 +.|i5 : ptr - 3 │ │ │ │ 00025700: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00025710: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00025720: 3520 3d20 3078 3766 3766 3238 3532 3634 5 = 0x7f7f285264 │ │ │ │ -00025730: 6564 7c0a 7c20 2020 2020 2020 2020 2020 ed|.| │ │ │ │ +00025720: 3520 3d20 3078 3766 3434 3132 3962 6335 5 = 0x7f44129bc5 │ │ │ │ +00025730: 3964 7c0a 7c20 2020 2020 2020 2020 2020 9d|.| │ │ │ │ 00025740: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ 00025750: 506f 696e 7465 7220 2020 2020 2020 7c0a Pointer |. │ │ │ │ 00025760: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00025770: 2d2d 2d2d 2b0a 2a20 4d65 6e75 3a0a 0a2a ----+.* Menu:..* │ │ │ │ 00025780: 206e 756c 6c50 6f69 6e74 6572 3a3a 2020 nullPointer:: │ │ │ │ 00025790: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ 000257a0: 6865 206e 756c 6c20 706f 696e 7465 720a he null pointer. │ │ │ │ @@ -9758,15 +9758,15 @@ │ │ │ │ 000261d0: 740a 7573 6564 2062 7920 6c69 6266 6669 t.used by libffi │ │ │ │ 000261e0: 2074 6f20 6964 656e 7469 6679 2074 6865 to identify the │ │ │ │ 000261f0: 2074 7970 652e 0a0a 2b2d 2d2d 2d2d 2d2d type...+------- │ │ │ │ 00026200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00026210: 3120 3a20 6164 6472 6573 7320 696e 7420 1 : address int │ │ │ │ 00026220: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026230: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -00026240: 3078 3536 3363 3139 3537 3562 3430 7c0a 0x563c19575b40|. │ │ │ │ +00026240: 3078 3535 6134 3362 6333 3762 3430 7c0a 0x55a43bc37b40|. │ │ │ │ 00026250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00026260: 2020 2020 7c0a 7c6f 3120 3a20 506f 696e |.|o1 : Poin │ │ │ │ 00026270: 7465 7220 2020 2020 2020 7c0a 2b2d 2d2d ter |.+--- │ │ │ │ 00026280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026290: 2b0a 0a49 6620 7820 6973 2061 2066 6f72 +..If x is a for │ │ │ │ 000262a0: 6569 676e 206f 626a 6563 742c 2074 6865 eign object, the │ │ │ │ 000262b0: 6e20 7468 6973 2072 6574 7572 6e73 2074 n this returns t │ │ │ │ @@ -9775,16 +9775,16 @@ │ │ │ │ 000262e0: 6861 7665 7320 6c69 6b65 2074 6865 2026 haves like the & │ │ │ │ 000262f0: 2022 6164 6472 6573 732d 6f66 2220 6f70 "address-of" op │ │ │ │ 00026300: 6572 6174 6f72 2069 6e20 432e 0a0a 2b2d erator in C...+- │ │ │ │ 00026310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026320: 2d2d 2b0a 7c69 3220 3a20 6164 6472 6573 --+.|i2 : addres │ │ │ │ 00026330: 7320 696e 7420 3520 7c0a 7c20 2020 2020 s int 5 |.| │ │ │ │ 00026340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00026350: 7c6f 3220 3d20 3078 3766 3766 3238 3532 |o2 = 0x7f7f2852 │ │ │ │ -00026360: 3661 3230 7c0a 7c20 2020 2020 2020 2020 6a20|.| │ │ │ │ +00026350: 7c6f 3220 3d20 3078 3766 3434 3132 3962 |o2 = 0x7f44129b │ │ │ │ +00026360: 6339 3930 7c0a 7c20 2020 2020 2020 2020 c990|.| │ │ │ │ 00026370: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ 00026380: 3a20 506f 696e 7465 7220 2020 2020 2020 : Pointer │ │ │ │ 00026390: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000263a0: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ 000263b0: 2075 7365 2061 6464 7265 7373 3a0a 3d3d use address:.== │ │ │ │ 000263c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 000263d0: 3d3d 0a0a 2020 2a20 2261 6464 7265 7373 ==.. * "address │ │ │ │ @@ -9866,16 +9866,16 @@ │ │ │ │ 00026890: 7970 6520 696e 7433 327c 0a2b 2d2d 2d2d ype int32|.+---- │ │ │ │ 000268a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000268b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 000268c0: 3220 3a20 7074 7220 3d20 6164 6472 6573 2 : ptr = addres │ │ │ │ 000268d0: 7320 7820 2020 2020 2020 2020 2020 207c s x | │ │ │ │ 000268e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026900: 2020 7c0a 7c6f 3220 3d20 3078 3766 3766 |.|o2 = 0x7f7f │ │ │ │ -00026910: 3238 3532 3663 6130 2020 2020 2020 2020 28526ca0 │ │ │ │ +00026900: 2020 7c0a 7c6f 3220 3d20 3078 3766 3434 |.|o2 = 0x7f44 │ │ │ │ +00026910: 3132 3962 6337 3330 2020 2020 2020 2020 129bc730 │ │ │ │ 00026920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00026930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026940: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ 00026950: 506f 696e 7465 7220 2020 2020 2020 2020 Pointer │ │ │ │ 00026960: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00026970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ ├── ./usr/share/info/FourTiTwo.info.gz │ │ │ ├── FourTiTwo.info │ │ │ │ @@ -838,25 +838,25 @@ │ │ │ │ 00003450: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00003460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003470: 2d2d 2d2d 2b0a 7c69 3220 3a20 7320 3d20 ----+.|i2 : s = │ │ │ │ 00003480: 7465 6d70 6f72 6172 7946 696c 654e 616d temporaryFileNam │ │ │ │ 00003490: 6528 2920 2020 2020 207c 0a7c 2020 2020 e() |.| │ │ │ │ 000034a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000034c0: 7c6f 3220 3d20 2f74 6d70 2f4d 322d 3135 |o2 = /tmp/M2-15 │ │ │ │ -000034d0: 3933 352d 302f 3020 2020 2020 2020 2020 935-0/0 │ │ │ │ +000034c0: 7c6f 3220 3d20 2f74 6d70 2f4d 322d 3230 |o2 = /tmp/M2-20 │ │ │ │ +000034d0: 3935 352d 302f 3020 2020 2020 2020 2020 955-0/0 │ │ │ │ 000034e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 000034f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003500: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 00003510: 4620 3d20 6f70 656e 4f75 7428 7329 2020 F = openOut(s) │ │ │ │ 00003520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00003530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003550: 2020 7c0a 7c6f 3320 3d20 2f74 6d70 2f4d |.|o3 = /tmp/M │ │ │ │ -00003560: 322d 3135 3933 352d 302f 3020 2020 2020 2-15935-0/0 │ │ │ │ +00003560: 322d 3230 3935 352d 302f 3020 2020 2020 2-20955-0/0 │ │ │ │ 00003570: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00003580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003590: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 000035a0: 3320 3a20 4669 6c65 2020 2020 2020 2020 3 : File │ │ │ │ 000035b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000035c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000035d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -866,15 +866,15 @@ │ │ │ │ 00003610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003630: 2b0a 7c69 3520 3a20 636c 6f73 6528 4629 +.|i5 : close(F) │ │ │ │ 00003640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003650: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00003660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003670: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00003680: 3d20 2f74 6d70 2f4d 322d 3135 3933 352d = /tmp/M2-15935- │ │ │ │ +00003680: 3d20 2f74 6d70 2f4d 322d 3230 3935 352d = /tmp/M2-20955- │ │ │ │ 00003690: 302f 3020 2020 2020 2020 2020 2020 207c 0/0 | │ │ │ │ 000036a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000036b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036c0: 2020 2020 7c0a 7c6f 3520 3a20 4669 6c65 |.|o5 : File │ │ │ │ 000036d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000036e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000036f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ ├── FrobeniusThresholds.info │ │ │ │ @@ -2692,16 +2692,16 @@ │ │ │ │ 0000a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a850: 2d2d 2d2d 2d2b 0a7c 6932 3720 3a20 7469 -----+.|i27 : ti │ │ │ │ 0000a860: 6d65 206e 756d 6572 6963 2066 7074 2866 me numeric fpt(f │ │ │ │ 0000a870: 2c20 4465 7074 684f 6653 6561 7263 6820 , DepthOfSearch │ │ │ │ 0000a880: 3d3e 2033 2c20 4669 6e61 6c41 7474 656d => 3, FinalAttem │ │ │ │ 0000a890: 7074 203d 3e20 7472 7565 297c 0a7c 202d pt => true)|.| - │ │ │ │ -0000a8a0: 2d20 7573 6564 2032 2e32 3135 3532 7320 - used 2.21552s │ │ │ │ -0000a8b0: 2863 7075 293b 2031 2e32 3633 3132 7320 (cpu); 1.26312s │ │ │ │ +0000a8a0: 2d20 7573 6564 2032 2e34 3130 3039 7320 - used 2.41009s │ │ │ │ +0000a8b0: 2863 7075 293b 2031 2e34 3230 3634 7320 (cpu); 1.42064s │ │ │ │ 0000a8c0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0000a8d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0000a8e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a920: 2020 2020 2020 207c 0a7c 6f32 3720 3d20 |.|o27 = │ │ │ │ @@ -2723,16 +2723,16 @@ │ │ │ │ 0000aa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000aa40: 0a7c 6932 3820 3a20 7469 6d65 2066 7074 .|i28 : time fpt │ │ │ │ 0000aa50: 2866 2c20 4465 7074 684f 6653 6561 7263 (f, DepthOfSearc │ │ │ │ 0000aa60: 6820 3d3e 2033 2c20 4174 7465 6d70 7473 h => 3, Attempts │ │ │ │ 0000aa70: 203d 3e20 3729 2020 2020 2020 2020 2020 => 7) │ │ │ │ 0000aa80: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0000aa90: 2031 2e33 3430 3332 7320 2863 7075 293b 1.34032s (cpu); │ │ │ │ -0000aaa0: 2030 2e38 3139 3233 3873 2028 7468 7265 0.819238s (thre │ │ │ │ +0000aa90: 2031 2e33 3830 3639 7320 2863 7075 293b 1.38069s (cpu); │ │ │ │ +0000aaa0: 2030 2e38 3532 3238 3573 2028 7468 7265 0.852285s (thre │ │ │ │ 0000aab0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 0000aac0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ab10: 207c 0a7c 2020 2020 2020 3120 2020 2020 |.| 1 │ │ │ │ @@ -2762,16 +2762,16 @@ │ │ │ │ 0000ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000acb0: 2d2d 2d2d 2d2b 0a7c 6932 3920 3a20 7469 -----+.|i29 : ti │ │ │ │ 0000acc0: 6d65 2066 7074 2866 2c20 4465 7074 684f me fpt(f, DepthO │ │ │ │ 0000acd0: 6653 6561 7263 6820 3d3e 2034 2920 2020 fSearch => 4) │ │ │ │ 0000ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000acf0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0000ad00: 2d20 7573 6564 2031 2e30 3937 3739 7320 - used 1.09779s │ │ │ │ -0000ad10: 2863 7075 293b 2030 2e36 3937 3039 3373 (cpu); 0.697093s │ │ │ │ +0000ad00: 2d20 7573 6564 2031 2e31 3234 3733 7320 - used 1.12473s │ │ │ │ +0000ad10: 2863 7075 293b 2030 2e36 3836 3036 3273 (cpu); 0.686062s │ │ │ │ 0000ad20: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 0000ad30: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ 0000ad40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ad80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ @@ -3670,17 +3670,17 @@ │ │ │ │ 0000e550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e580: 2b0a 7c69 3135 203a 2074 696d 6520 6672 +.|i15 : time fr │ │ │ │ 0000e590: 6f62 656e 6975 734e 7528 332c 2066 2920 obeniusNu(3, f) │ │ │ │ 0000e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e5b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000e5c0: 7c20 2d2d 2075 7365 6420 302e 3030 3339 | -- used 0.0039 │ │ │ │ -0000e5d0: 3939 3537 7320 2863 7075 293b 2030 2e30 9957s (cpu); 0.0 │ │ │ │ -0000e5e0: 3034 3134 3439 3973 2028 7468 7265 6164 0414499s (thread │ │ │ │ +0000e5c0: 7c20 2d2d 2075 7365 6420 302e 3030 3430 | -- used 0.0040 │ │ │ │ +0000e5d0: 3435 3035 7320 2863 7075 293b 2030 2e30 4505s (cpu); 0.0 │ │ │ │ +0000e5e0: 3035 3439 3736 3873 2028 7468 7265 6164 0549768s (thread │ │ │ │ 0000e5f0: 293b 2030 7320 2867 6329 2020 7c0a 7c20 ); 0s (gc) |.| │ │ │ │ 0000e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e630: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ 0000e640: 203d 2033 3735 3620 2020 2020 2020 2020 = 3756 │ │ │ │ 0000e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -3690,17 +3690,17 @@ │ │ │ │ 0000e690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e6b0: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2074 ------+.|i16 : t │ │ │ │ 0000e6c0: 696d 6520 6672 6f62 656e 6975 734e 7528 ime frobeniusNu( │ │ │ │ 0000e6d0: 332c 2066 2c20 5573 6553 7065 6369 616c 3, f, UseSpecial │ │ │ │ 0000e6e0: 416c 676f 7269 7468 6d73 203d 3e20 6661 Algorithms => fa │ │ │ │ 0000e6f0: 6c73 6529 7c0a 7c20 2d2d 2075 7365 6420 lse)|.| -- used │ │ │ │ -0000e700: 302e 3531 3230 3337 7320 2863 7075 293b 0.512037s (cpu); │ │ │ │ -0000e710: 2030 2e33 3439 3839 3173 2028 7468 7265 0.349891s (thre │ │ │ │ -0000e720: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +0000e700: 302e 3530 3533 3237 7320 2863 7075 293b 0.505327s (cpu); │ │ │ │ +0000e710: 2030 2e33 3031 3734 7320 2874 6872 6561 0.30174s (threa │ │ │ │ +0000e720: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000e730: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e770: 7c0a 7c6f 3136 203d 2033 3735 3620 2020 |.|o16 = 3756 │ │ │ │ 0000e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -3805,18 +3805,18 @@ │ │ │ │ 0000edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ede0: 2b0a 7c69 3139 203a 2074 696d 6520 6672 +.|i19 : time fr │ │ │ │ 0000edf0: 6f62 656e 6975 734e 7528 342c 2066 2920 obeniusNu(4, f) │ │ │ │ 0000ee00: 2d2d 2043 6f6e 7461 696e 6d65 6e74 5465 -- ContainmentTe │ │ │ │ 0000ee10: 7374 2069 7320 7365 7420 746f 2046 726f st is set to Fro │ │ │ │ 0000ee20: 6265 6e69 7573 526f 6f74 2c20 6279 2020 beniusRoot, by │ │ │ │ -0000ee30: 7c0a 7c20 2d2d 2075 7365 6420 302e 3330 |.| -- used 0.30 │ │ │ │ -0000ee40: 3236 3739 7320 2863 7075 293b 2030 2e32 2679s (cpu); 0.2 │ │ │ │ -0000ee50: 3030 3137 3373 2028 7468 7265 6164 293b 00173s (thread); │ │ │ │ -0000ee60: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +0000ee30: 7c0a 7c20 2d2d 2075 7365 6420 302e 3335 |.| -- used 0.35 │ │ │ │ +0000ee40: 3937 3936 7320 2863 7075 293b 2030 2e32 9796s (cpu); 0.2 │ │ │ │ +0000ee50: 3233 3135 7320 2874 6872 6561 6429 3b20 2315s (thread); │ │ │ │ +0000ee60: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ee80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000eed0: 7c0a 7c6f 3139 203d 2034 3939 2020 2020 |.|o19 = 499 │ │ │ │ @@ -3840,18 +3840,18 @@ │ │ │ │ 0000eff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f010: 2b0a 7c69 3230 203a 2074 696d 6520 6672 +.|i20 : time fr │ │ │ │ 0000f020: 6f62 656e 6975 734e 7528 342c 2066 2c20 obeniusNu(4, f, │ │ │ │ 0000f030: 436f 6e74 6169 6e6d 656e 7454 6573 7420 ContainmentTest │ │ │ │ 0000f040: 3d3e 2053 7461 6e64 6172 6450 6f77 6572 => StandardPower │ │ │ │ 0000f050: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0000f060: 7c0a 7c20 2d2d 2075 7365 6420 312e 3536 |.| -- used 1.56 │ │ │ │ -0000f070: 3234 3873 2028 6370 7529 3b20 312e 3230 248s (cpu); 1.20 │ │ │ │ -0000f080: 3538 3373 2028 7468 7265 6164 293b 2030 583s (thread); 0 │ │ │ │ -0000f090: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0000f060: 7c0a 7c20 2d2d 2075 7365 6420 312e 3431 |.| -- used 1.41 │ │ │ │ +0000f070: 3736 7320 2863 7075 293b 2031 2e32 3030 76s (cpu); 1.200 │ │ │ │ +0000f080: 3139 7320 2874 6872 6561 6429 3b20 3073 19s (thread); 0s │ │ │ │ +0000f090: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f100: 7c0a 7c6f 3230 203d 2034 3939 2020 2020 |.|o20 = 499 │ │ │ │ @@ -4015,17 +4015,17 @@ │ │ │ │ 0000fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000fb00: 0a7c 6932 3720 3a20 7469 6d65 2066 726f .|i27 : time fro │ │ │ │ 0000fb10: 6265 6e69 7573 4e75 2835 2c20 6629 202d beniusNu(5, f) - │ │ │ │ 0000fb20: 2d20 7573 6573 2062 696e 6172 7920 7365 - uses binary se │ │ │ │ 0000fb30: 6172 6368 2028 6465 6661 756c 7429 2020 arch (default) │ │ │ │ 0000fb40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000fb50: 0a7c 202d 2d20 7573 6564 2031 2e30 3239 .| -- used 1.029 │ │ │ │ -0000fb60: 3634 7320 2863 7075 293b 2030 2e36 3333 64s (cpu); 0.633 │ │ │ │ -0000fb70: 3138 3873 2028 7468 7265 6164 293b 2030 188s (thread); 0 │ │ │ │ +0000fb50: 0a7c 202d 2d20 7573 6564 2031 2e32 3736 .| -- used 1.276 │ │ │ │ +0000fb60: 3239 7320 2863 7075 293b 2030 2e37 3333 29s (cpu); 0.733 │ │ │ │ +0000fb70: 3737 3473 2028 7468 7265 6164 293b 2030 774s (thread); 0 │ │ │ │ 0000fb80: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0000fb90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000fba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4040,18 +4040,18 @@ │ │ │ │ 0000fc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000fc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000fc90: 0a7c 6932 3820 3a20 7469 6d65 2066 726f .|i28 : time fro │ │ │ │ 0000fca0: 6265 6e69 7573 4e75 2835 2c20 662c 2053 beniusNu(5, f, S │ │ │ │ 0000fcb0: 6561 7263 6820 3d3e 204c 696e 6561 7229 earch => Linear) │ │ │ │ 0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000fce0: 0a7c 202d 2d20 7573 6564 2031 2e35 3332 .| -- used 1.532 │ │ │ │ -0000fcf0: 3939 7320 2863 7075 293b 2030 2e38 3939 99s (cpu); 0.899 │ │ │ │ -0000fd00: 3133 3373 2028 7468 7265 6164 293b 2030 133s (thread); 0 │ │ │ │ -0000fd10: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0000fce0: 0a7c 202d 2d20 7573 6564 2031 2e38 3437 .| -- used 1.847 │ │ │ │ +0000fcf0: 3238 7320 2863 7075 293b 2031 2e30 3735 28s (cpu); 1.075 │ │ │ │ +0000fd00: 3439 7320 2874 6872 6561 6429 3b20 3073 49s (thread); 0s │ │ │ │ +0000fd10: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000fd20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000fd30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000fd80: 0a7c 6f32 3820 3d20 3131 3234 2020 2020 .|o28 = 1124 │ │ │ │ @@ -4085,17 +4085,17 @@ │ │ │ │ 0000ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ff50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000ff60: 0a7c 6933 3020 3a20 7469 6d65 2066 726f .|i30 : time fro │ │ │ │ 0000ff70: 6265 6e69 7573 4e75 2832 2c20 4d2c 204d beniusNu(2, M, M │ │ │ │ 0000ff80: 5e32 2920 2d2d 2075 7365 7320 6269 6e61 ^2) -- uses bina │ │ │ │ 0000ff90: 7279 2073 6561 7263 6820 2864 6566 6175 ry search (defau │ │ │ │ 0000ffa0: 6c74 2920 2020 2020 2020 2020 2020 207c lt) | │ │ │ │ -0000ffb0: 0a7c 202d 2d20 7573 6564 2032 2e31 3534 .| -- used 2.154 │ │ │ │ -0000ffc0: 3236 7320 2863 7075 293b 2031 2e37 3938 26s (cpu); 1.798 │ │ │ │ -0000ffd0: 3231 7320 2874 6872 6561 6429 3b20 3073 21s (thread); 0s │ │ │ │ +0000ffb0: 0a7c 202d 2d20 7573 6564 2031 2e37 3431 .| -- used 1.741 │ │ │ │ +0000ffc0: 3631 7320 2863 7075 293b 2031 2e34 3335 61s (cpu); 1.435 │ │ │ │ +0000ffd0: 3036 7320 2874 6872 6561 6429 3b20 3073 06s (thread); 0s │ │ │ │ 0000ffe0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000fff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00010000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00010010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4110,18 +4110,18 @@ │ │ │ │ 000100d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000100e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 000100f0: 0a7c 6933 3120 3a20 7469 6d65 2066 726f .|i31 : time fro │ │ │ │ 00010100: 6265 6e69 7573 4e75 2832 2c20 4d2c 204d beniusNu(2, M, M │ │ │ │ 00010110: 5e32 2c20 5365 6172 6368 203d 3e20 4c69 ^2, Search => Li │ │ │ │ 00010120: 6e65 6172 2920 2d2d 2062 7574 206c 696e near) -- but lin │ │ │ │ 00010130: 6561 7220 7365 6172 6368 2067 6574 737c ear search gets| │ │ │ │ -00010140: 0a7c 202d 2d20 7573 6564 2030 2e36 3932 .| -- used 0.692 │ │ │ │ -00010150: 3037 3573 2028 6370 7529 3b20 302e 3537 075s (cpu); 0.57 │ │ │ │ -00010160: 3136 3973 2028 7468 7265 6164 293b 2030 169s (thread); 0 │ │ │ │ -00010170: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00010140: 0a7c 202d 2d20 7573 6564 2030 2e35 3533 .| -- used 0.553 │ │ │ │ +00010150: 3436 3973 2028 6370 7529 3b20 302e 3439 469s (cpu); 0.49 │ │ │ │ +00010160: 3234 3832 7320 2874 6872 6561 6429 3b20 2482s (thread); │ │ │ │ +00010170: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00010180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00010190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000101a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000101e0: 0a7c 6f33 3120 3d20 3937 2020 2020 2020 .|o31 = 97 │ │ ├── ./usr/share/info/GKMVarieties.info.gz │ │ │ ├── GKMVarieties.info │ │ │ │ @@ -17563,18 +17563,18 @@ │ │ │ │ 000449a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000449b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000449c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3720 ---------+.|i27 │ │ │ │ 000449d0: 3a20 7469 6d65 2043 203d 206f 7262 6974 : time C = orbit │ │ │ │ 000449e0: 436c 6f73 7572 6528 582c 4d61 7429 2020 Closure(X,Mat) │ │ │ │ 000449f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a00: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00044a10: 7573 6564 2030 2e35 3935 3737 3673 2028 used 0.595776s ( │ │ │ │ -00044a20: 6370 7529 3b20 302e 3335 3935 3435 7320 cpu); 0.359545s │ │ │ │ -00044a30: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -00044a40: 2920 2020 2020 2020 207c 0a7c 2020 2020 ) |.| │ │ │ │ +00044a10: 7573 6564 2032 2e30 3133 3638 7320 2863 used 2.01368s (c │ │ │ │ +00044a20: 7075 293b 2030 2e35 3336 3939 3473 2028 pu); 0.536994s ( │ │ │ │ +00044a30: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00044a40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00044a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044a80: 2020 2020 2020 2020 207c 0a7c 6f32 3720 |.|o27 │ │ │ │ 00044a90: 3d20 616e 2022 6571 7569 7661 7269 616e = an "equivarian │ │ │ │ 00044aa0: 7420 4b2d 636c 6173 7322 206f 6e20 6120 t K-class" on a │ │ │ │ 00044ab0: 474b 4d20 7661 7269 6574 7920 2020 2020 GKM variety │ │ │ │ @@ -17591,16 +17591,16 @@ │ │ │ │ 00044b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044b80: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3820 ---------+.|i28 │ │ │ │ 00044b90: 3a20 7469 6d65 2043 203d 206f 7262 6974 : time C = orbit │ │ │ │ 00044ba0: 436c 6f73 7572 6528 582c 4d61 742c 2052 Closure(X,Mat, R │ │ │ │ 00044bb0: 5245 464d 6574 686f 6420 3d3e 2074 7275 REFMethod => tru │ │ │ │ 00044bc0: 6529 2020 2020 2020 207c 0a7c 202d 2d20 e) |.| -- │ │ │ │ -00044bd0: 7573 6564 2031 2e38 3031 3037 7320 2863 used 1.80107s (c │ │ │ │ -00044be0: 7075 293b 2031 2e30 3336 3537 7320 2874 pu); 1.03657s (t │ │ │ │ +00044bd0: 7573 6564 2033 2e32 3232 3035 7320 2863 used 3.22205s (c │ │ │ │ +00044be0: 7075 293b 2031 2e30 3430 3634 7320 2874 pu); 1.04064s (t │ │ │ │ 00044bf0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00044c00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00044c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044c40: 2020 2020 2020 2020 207c 0a7c 6f32 3820 |.|o28 │ │ │ │ 00044c50: 3d20 616e 2022 6571 7569 7661 7269 616e = an "equivarian │ │ ├── ./usr/share/info/Graphs.info.gz │ │ │ ├── Graphs.info │ │ │ │ @@ -18078,16 +18078,16 @@ │ │ │ │ 000469d0: 7973 2048 2020 2020 2020 2020 2020 2020 ys H │ │ │ │ 000469e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000469f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00046a00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00046a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a30: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00046a40: 7b6d 6170 2c20 6e65 7744 6967 7261 7068 {map, newDigraph │ │ │ │ -00046a50: 2c20 6469 6772 6170 687d 2020 2020 2020 , digraph} │ │ │ │ +00046a40: 7b6d 6170 2c20 6469 6772 6170 682c 206e {map, digraph, n │ │ │ │ +00046a50: 6577 4469 6772 6170 687d 2020 2020 2020 ewDigraph} │ │ │ │ 00046a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046aa0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ 00046ab0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 00046ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/GroebnerStrata.info.gz │ │ │ ├── GroebnerStrata.info │ │ │ │ @@ -8737,28 +8737,28 @@ │ │ │ │ 00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022210: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022260: 2020 2020 2020 7c0a 7c6f 3134 203d 207c |.|o14 = | │ │ │ │ -00022270: 2034 3220 3920 3339 2039 2033 3420 3720 42 9 39 9 34 7 │ │ │ │ -00022280: 2d31 3220 2d31 3720 2d32 3920 2d33 3520 -12 -17 -29 -35 │ │ │ │ -00022290: 3530 2032 2031 3320 3139 202d 3434 2035 50 2 13 19 -44 5 │ │ │ │ -000222a0: 3020 3220 2d32 3920 3135 2032 202d 3237 0 2 -29 15 2 -27 │ │ │ │ -000222b0: 2032 3120 2020 7c0a 7c20 2020 2020 202d 21 |.| - │ │ │ │ +00022270: 202d 3620 3438 2034 3420 2d32 3320 2d32 -6 48 44 -23 -2 │ │ │ │ +00022280: 202d 3131 202d 3335 202d 3236 2032 3720 -11 -35 -26 27 │ │ │ │ +00022290: 2d34 3320 3438 2032 3720 3135 202d 3232 -43 48 27 15 -22 │ │ │ │ +000222a0: 2032 3520 2d31 3620 3334 202d 3239 2034 25 -16 34 -29 4 │ │ │ │ +000222b0: 3620 2d32 3020 7c0a 7c20 2020 2020 202d 6 -20 |.| - │ │ │ │ 000222c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000222d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000222e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000222f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022300: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 202d ------|.| - │ │ │ │ -00022310: 3336 202d 3239 202d 3339 202d 3130 2032 36 -29 -39 -10 2 │ │ │ │ -00022320: 3420 2d31 3620 3139 202d 3239 2033 3920 4 -16 19 -29 39 │ │ │ │ -00022330: 2d33 3820 2d32 3220 2d38 202d 3330 202d -38 -22 -8 -30 - │ │ │ │ -00022340: 3234 207c 2020 2020 2020 2020 2020 2020 24 | │ │ │ │ +00022300: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2034 ------|.| 4 │ │ │ │ +00022310: 3020 3231 202d 3330 202d 3338 202d 3139 0 21 -30 -38 -19 │ │ │ │ +00022320: 202d 3820 2d33 3620 3339 2031 3920 2d32 -8 -36 39 19 -2 │ │ │ │ +00022330: 3920 2d31 3620 2d32 3920 2d31 3020 3139 9 -16 -29 -10 19 │ │ │ │ +00022340: 2032 3420 2d32 3420 7c20 2020 2020 2020 24 -24 | │ │ │ │ 00022350: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000223b0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ @@ -8782,28 +8782,28 @@ │ │ │ │ 000224d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000224e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000224f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022530: 2020 2020 2020 7c0a 7c6f 3135 203d 207c |.|o15 = | │ │ │ │ -00022540: 2033 3020 3130 2034 3320 3230 202d 3339 30 10 43 20 -39 │ │ │ │ -00022550: 2032 3320 2d33 3020 3430 202d 3334 2032 23 -30 40 -34 2 │ │ │ │ -00022560: 3220 3436 202d 3235 2032 3120 2d31 3820 2 46 -25 21 -18 │ │ │ │ -00022570: 2d33 3520 2d31 2032 3120 2d33 3920 2d34 -35 -1 21 -39 -4 │ │ │ │ -00022580: 3520 3136 2020 7c0a 7c20 2020 2020 202d 5 16 |.| - │ │ │ │ +00022540: 202d 3438 202d 3436 2031 3620 3137 202d -48 -46 16 17 - │ │ │ │ +00022550: 3120 2d34 3320 3135 202d 3120 3132 202d 1 -43 15 -1 12 - │ │ │ │ +00022560: 3138 202d 3620 2d32 3820 3134 202d 3238 18 -6 -28 14 -28 │ │ │ │ +00022570: 202d 3920 3332 202d 3232 202d 3339 2036 -9 32 -22 -39 6 │ │ │ │ +00022580: 202d 3437 2020 7c0a 7c20 2020 2020 202d -47 |.| - │ │ │ │ 00022590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 202d ------|.| - │ │ │ │ -000225e0: 3335 202d 3520 3139 202d 3437 202d 3230 35 -5 19 -47 -20 │ │ │ │ -000225f0: 202d 3133 2033 3420 3333 202d 3238 202d -13 34 33 -28 - │ │ │ │ -00022600: 3433 2032 3220 3220 3020 2d31 3520 2d34 43 22 2 0 -15 -4 │ │ │ │ -00022610: 3720 3338 207c 2020 2020 2020 2020 2020 7 38 | │ │ │ │ +000225d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2032 ------|.| 2 │ │ │ │ +000225e0: 3820 2d33 3720 2d34 3720 3338 202d 3136 8 -37 -47 38 -16 │ │ │ │ +000225f0: 202d 3135 2033 3420 3237 202d 3133 202d -15 34 27 -13 - │ │ │ │ +00022600: 3433 2032 3220 3136 2030 202d 3138 2031 43 22 16 0 -18 1 │ │ │ │ +00022610: 3920 3220 7c20 2020 2020 2020 2020 2020 9 2 | │ │ │ │ 00022620: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022670: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022680: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ @@ -8830,79 +8830,79 @@ │ │ │ │ 000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022810: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00022820: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00022830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022840: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00022840: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00022850: 2020 2020 2020 7c0a 7c6f 3136 203d 2069 |.|o16 = i │ │ │ │ -00022860: 6465 616c 2028 6120 202d 2034 3462 2a63 deal (a - 44b*c │ │ │ │ -00022870: 202d 2033 3563 2020 2b20 3261 2a64 202b - 35c + 2a*d + │ │ │ │ -00022880: 2037 622a 6420 2b20 3339 632a 6420 2b20 7b*d + 39c*d + │ │ │ │ -00022890: 3432 6420 2c20 612a 6220 2d20 3339 622a 42d , a*b - 39b* │ │ │ │ -000228a0: 6320 2b20 2020 7c0a 7c20 2020 2020 202d c + |.| - │ │ │ │ +00022860: 6465 616c 2028 6120 202b 2032 3562 2a63 deal (a + 25b*c │ │ │ │ +00022870: 202d 2034 3363 2020 2b20 3237 612a 6420 - 43c + 27a*d │ │ │ │ +00022880: 2d20 3131 622a 6420 2b20 3434 632a 6420 - 11b*d + 44c*d │ │ │ │ +00022890: 2d20 3664 202c 2061 2a62 202d 2031 3962 - 6d , a*b - 19b │ │ │ │ +000228a0: 2a63 202b 2020 7c0a 7c20 2020 2020 202d *c + |.| - │ │ │ │ 000228b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000228f0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00022900: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00022910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022920: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00022920: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00022930: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00022940: 2020 2020 2020 7c0a 7c20 2020 2020 2031 |.| 1 │ │ │ │ -00022950: 3563 2020 2d20 3237 612a 6420 2b20 3133 5c - 27a*d + 13 │ │ │ │ -00022960: 622a 6420 2d20 3239 632a 6420 2b20 3964 b*d - 29c*d + 9d │ │ │ │ -00022970: 202c 2061 2a63 202d 2033 3862 2a63 202d , a*c - 38b*c - │ │ │ │ -00022980: 2031 3063 2020 2d20 3136 612a 6420 2b20 10c - 16a*d + │ │ │ │ -00022990: 3262 2a64 202b 7c0a 7c20 2020 2020 202d 2b*d +|.| - │ │ │ │ +00022940: 2020 2020 2020 7c0a 7c20 2020 2020 2034 |.| 4 │ │ │ │ +00022950: 3663 2020 2b20 3430 612a 6420 2b20 3135 6c + 40a*d + 15 │ │ │ │ +00022960: 622a 6420 2b20 3237 632a 6420 2b20 3438 b*d + 27c*d + 48 │ │ │ │ +00022970: 6420 2c20 612a 6320 2d20 3239 622a 6320 d , a*c - 29b*c │ │ │ │ +00022980: 2d20 3863 2020 2b20 3339 612a 6420 2d20 - 8c + 39a*d - │ │ │ │ +00022990: 3230 622a 6420 7c0a 7c20 2020 2020 202d 20b*d |.| - │ │ │ │ 000229a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000229b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000229c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000229d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000229e0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -000229f0: 2020 2020 2020 2020 2020 3220 2020 3220 2 2 │ │ │ │ -00022a00: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000229f0: 2020 2020 2020 2020 2020 2032 2020 2032 2 2 │ │ │ │ +00022a00: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a20: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00022a30: 2020 3220 2020 7c0a 7c20 2020 2020 2031 2 |.| 1 │ │ │ │ -00022a40: 3963 2a64 202b 2033 3464 202c 2062 2020 9c*d + 34d , b │ │ │ │ -00022a50: 2d20 3330 622a 6320 2b20 3139 6320 202d - 30b*c + 19c - │ │ │ │ -00022a60: 2032 3261 2a64 202b 2032 3162 2a64 202b 22a*d + 21b*d + │ │ │ │ -00022a70: 2035 3063 2a64 202d 2031 3264 202c 2062 50c*d - 12d , b │ │ │ │ -00022a80: 2a63 2020 2d20 7c0a 7c20 2020 2020 202d *c - |.| - │ │ │ │ +00022a20: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00022a30: 2020 2032 2020 7c0a 7c20 2020 2020 202d 2 |.| - │ │ │ │ +00022a40: 2032 3263 2a64 202d 2032 6420 2c20 6220 22c*d - 2d , b │ │ │ │ +00022a50: 202b 2032 3462 2a63 202b 2031 3963 2020 + 24b*c + 19c │ │ │ │ +00022a60: 2d20 3130 612a 6420 2b20 3231 622a 6420 - 10a*d + 21b*d │ │ │ │ +00022a70: 2d20 3136 632a 6420 2d20 3335 6420 2c20 - 16c*d - 35d , │ │ │ │ +00022a80: 622a 6320 202d 7c0a 7c20 2020 2020 202d b*c -|.| - │ │ │ │ 00022a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ad0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00022ae0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00022af0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -00022b00: 2020 2020 2020 2032 2020 2020 2033 2020 2 3 │ │ │ │ -00022b10: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00022b20: 2020 3220 2020 7c0a 7c20 2020 2020 2032 2 |.| 2 │ │ │ │ -00022b30: 3962 2a63 2a64 202d 2033 3663 2064 202b 9b*c*d - 36c d + │ │ │ │ -00022b40: 2032 3461 2a64 2020 2b20 3262 2a64 2020 24a*d + 2b*d │ │ │ │ -00022b50: 2b20 3530 632a 6420 202b 2039 6420 2c20 + 50c*d + 9d , │ │ │ │ -00022b60: 6320 202d 2032 3462 2a63 2a64 202b 2033 c - 24b*c*d + 3 │ │ │ │ -00022b70: 3963 2064 202d 7c0a 7c20 2020 2020 202d 9c d -|.| - │ │ │ │ +00022af0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +00022b00: 2020 2020 2020 2020 3220 2020 2020 2033 2 3 │ │ │ │ +00022b10: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00022b20: 2020 2020 3220 7c0a 7c20 2020 2020 2032 2 |.| 2 │ │ │ │ +00022b30: 3962 2a63 2a64 202d 2033 3063 2064 202d 9b*c*d - 30c d - │ │ │ │ +00022b40: 2033 3661 2a64 2020 2b20 3334 622a 6420 36a*d + 34b*d │ │ │ │ +00022b50: 202b 2034 3863 2a64 2020 2d20 3233 6420 + 48c*d - 23d │ │ │ │ +00022b60: 2c20 6320 202d 2032 3462 2a63 2a64 202d , c - 24b*c*d - │ │ │ │ +00022b70: 2031 3663 2064 7c0a 7c20 2020 2020 202d 16c d|.| - │ │ │ │ 00022b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022bc0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -00022bd0: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00022be0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ +00022bd0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ +00022be0: 2020 2020 2020 2020 3220 2020 2020 2033 2 3 │ │ │ │ 00022bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c10: 2020 2020 2020 7c0a 7c20 2020 2020 2038 |.| 8 │ │ │ │ -00022c20: 612a 6420 202d 2032 3962 2a64 2020 2d20 a*d - 29b*d - │ │ │ │ -00022c30: 3239 632a 6420 202d 2031 3764 2029 2020 29c*d - 17d ) │ │ │ │ -00022c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c10: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00022c20: 2031 3961 2a64 2020 2d20 3338 622a 6420 19a*d - 38b*d │ │ │ │ +00022c30: 202d 2032 3963 2a64 2020 2d20 3236 6420 - 29c*d - 26d │ │ │ │ +00022c40: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cb0: 2020 2020 2020 7c0a 7c6f 3136 203a 2049 |.|o16 : I │ │ │ │ @@ -8973,80 +8973,80 @@ │ │ │ │ 000230c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000230d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023110: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00023120: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00023130: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00023130: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00023140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023150: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00023150: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00023160: 2020 2020 2020 7c0a 7c6f 3138 203d 2069 |.|o18 = i │ │ │ │ -00023170: 6465 616c 2028 6120 202d 2033 3562 2a63 deal (a - 35b*c │ │ │ │ -00023180: 202b 2032 3263 2020 2d20 3235 612a 6420 + 22c - 25a*d │ │ │ │ -00023190: 2b20 3233 622a 6420 2b20 3433 632a 6420 + 23b*d + 43c*d │ │ │ │ -000231a0: 2b20 3330 6420 2c20 612a 6220 2d20 3230 + 30d , a*b - 20 │ │ │ │ -000231b0: 622a 6320 2d20 7c0a 7c20 2020 2020 202d b*c - |.| - │ │ │ │ +00023170: 6465 616c 2028 6120 202d 2039 622a 6320 deal (a - 9b*c │ │ │ │ +00023180: 2d20 3138 6320 202d 2032 3861 2a64 202d - 18c - 28a*d - │ │ │ │ +00023190: 2034 3362 2a64 202b 2031 3663 2a64 202d 43b*d + 16c*d - │ │ │ │ +000231a0: 2034 3864 202c 2061 2a62 202d 2031 3662 48d , a*b - 16b │ │ │ │ +000231b0: 2a63 202b 2020 7c0a 7c20 2020 2020 202d *c + |.| - │ │ │ │ 000231c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023200: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -00023210: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00023210: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00023220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023230: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00023230: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00023240: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00023250: 2020 2020 2020 7c0a 7c20 2020 2020 2034 |.| 4 │ │ │ │ -00023260: 3563 2020 2d20 3335 612a 6420 2b20 3231 5c - 35a*d + 21 │ │ │ │ -00023270: 622a 6420 2d20 3334 632a 6420 2b20 3130 b*d - 34c*d + 10 │ │ │ │ -00023280: 6420 2c20 612a 6320 2b20 3262 2a63 202d d , a*c + 2b*c - │ │ │ │ -00023290: 2031 3363 2020 2b20 3333 612a 6420 2b20 13c + 33a*d + │ │ │ │ -000232a0: 3136 622a 6420 7c0a 7c20 2020 2020 202d 16b*d |.| - │ │ │ │ +00023250: 2020 2020 2020 7c0a 7c20 2020 2020 2036 |.| 6 │ │ │ │ +00023260: 6320 202b 2032 3861 2a64 202b 2031 3462 c + 28a*d + 14b │ │ │ │ +00023270: 2a64 202b 2031 3263 2a64 202d 2034 3664 *d + 12c*d - 46d │ │ │ │ +00023280: 202c 2061 2a63 202b 2031 3662 2a63 202d , a*c + 16b*c - │ │ │ │ +00023290: 2031 3563 2020 2b20 3237 612a 6420 2d20 15c + 27a*d - │ │ │ │ +000232a0: 3437 622a 6420 7c0a 7c20 2020 2020 202d 47b*d |.| - │ │ │ │ 000232b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000232c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000232d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000232e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000232f0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -00023300: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00023310: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00023300: 2020 2020 2020 2020 2020 3220 2020 3220 2 2 │ │ │ │ +00023310: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 00023320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023330: 2020 2032 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +00023330: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ 00023340: 2020 2020 2020 7c0a 7c20 2020 2020 202d |.| - │ │ │ │ -00023350: 2031 3863 2a64 202d 2033 3964 202c 2062 18c*d - 39d , b │ │ │ │ -00023360: 2020 2d20 3437 622a 6320 2d20 3238 6320 - 47b*c - 28c │ │ │ │ -00023370: 202d 2035 622a 6420 2d20 632a 6420 2d20 - 5b*d - c*d - │ │ │ │ -00023380: 3330 6420 2c20 622a 6320 202d 2034 3362 30d , b*c - 43b │ │ │ │ -00023390: 2a63 2a64 202b 7c0a 7c20 2020 2020 202d *c*d +|.| - │ │ │ │ +00023350: 2032 3863 2a64 202d 2064 202c 2062 2020 28c*d - d , b │ │ │ │ +00023360: 2b20 3139 622a 6320 2d20 3133 6320 202d + 19b*c - 13c - │ │ │ │ +00023370: 2033 3762 2a64 202b 2033 3263 2a64 202b 37b*d + 32c*d + │ │ │ │ +00023380: 2031 3564 202c 2062 2a63 2020 2d20 3433 15d , b*c - 43 │ │ │ │ +00023390: 622a 632a 6420 7c0a 7c20 2020 2020 202d b*c*d |.| - │ │ │ │ 000233a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000233b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000233c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000233d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000233e0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -000233f0: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00023400: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -00023410: 2020 2020 2033 2020 2033 2020 2020 2020 3 3 │ │ │ │ +000233f0: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ +00023400: 2020 2020 2020 2032 2020 2020 2020 2032 2 2 │ │ │ │ +00023410: 2020 2020 2020 3320 2020 3320 2020 2020 3 3 │ │ │ │ 00023420: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00023430: 2020 2020 3220 7c0a 7c20 2020 2020 2031 2 |.| 1 │ │ │ │ -00023440: 3963 2064 202b 2033 3461 2a64 2020 2b20 9c d + 34a*d + │ │ │ │ -00023450: 3231 622a 6420 202b 2034 3663 2a64 2020 21b*d + 46c*d │ │ │ │ -00023460: 2b20 3230 6420 2c20 6320 202b 2033 3862 + 20d , c + 38b │ │ │ │ +00023430: 2020 2020 3220 7c0a 7c20 2020 2020 202d 2 |.| - │ │ │ │ +00023440: 2034 3763 2064 202b 2033 3461 2a64 2020 47c d + 34a*d │ │ │ │ +00023450: 2d20 3232 622a 6420 202d 2036 632a 6420 - 22b*d - 6c*d │ │ │ │ +00023460: 202b 2031 3764 202c 2063 2020 2b20 3262 + 17d , c + 2b │ │ │ │ 00023470: 2a63 2a64 202b 2032 3263 2064 202d 2031 *c*d + 22c d - 1 │ │ │ │ -00023480: 3561 2a64 2020 7c0a 7c20 2020 2020 202d 5a*d |.| - │ │ │ │ +00023480: 3861 2a64 2020 7c0a 7c20 2020 2020 202d 8a*d |.| - │ │ │ │ 00023490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000234d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 000234e0: 2020 2020 2020 3220 2020 2020 2020 2032 2 2 │ │ │ │ -000234f0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +000234f0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 00023500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023520: 2020 2020 2020 7c0a 7c20 2020 2020 202d |.| - │ │ │ │ -00023530: 2034 3762 2a64 2020 2d20 3339 632a 6420 47b*d - 39c*d │ │ │ │ -00023540: 202b 2034 3064 2029 2020 2020 2020 2020 + 40d ) │ │ │ │ +00023520: 2020 2020 2020 7c0a 7c20 2020 2020 202b |.| + │ │ │ │ +00023530: 2033 3862 2a64 2020 2d20 3339 632a 6420 38b*d - 39c*d │ │ │ │ +00023540: 202d 2064 2029 2020 2020 2020 2020 2020 - d ) │ │ │ │ 00023550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023570: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000235b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9127,3605 +9127,3615 @@ │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00023aa0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ad0: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ -00023ae0: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ -00023af0: 7c69 6465 616c 2028 6320 2d20 3133 642c |ideal (c - 13d, │ │ │ │ -00023b00: 2062 202b 2033 3264 2c20 6120 2b20 3336 b + 32d, a + 36 │ │ │ │ +00023ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ae0: 2d2d 2d2d 2d2d 2d7c 0a7c 6f32 3020 3d20 -------|.|o20 = │ │ │ │ +00023af0: 7c69 6465 616c 2028 6320 2b20 3339 642c |ideal (c + 39d, │ │ │ │ +00023b00: 2062 202b 2032 3764 2c20 6120 2d20 3138 b + 27d, a - 18 │ │ │ │ 00023b10: 6429 2020 2020 2020 2020 2020 2020 2020 d) │ │ │ │ -00023b20: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ +00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00023b40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00023b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b70: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ -00023b80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023b90: 7c69 6465 616c 2028 6320 2d20 3136 642c |ideal (c - 16d, │ │ │ │ -00023ba0: 2062 202b 2064 2c20 6120 2b20 3136 6429 b + d, a + 16d) │ │ │ │ -00023bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bc0: 2020 2020 2020 207c 2020 2020 2020 2020 | │ │ │ │ -00023bd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023be0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00023bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023c10: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ -00023c20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023c30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c50: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00023c60: 2020 3220 2020 207c 2020 2020 2020 2020 2 | │ │ │ │ -00023c70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023c80: 7c69 6465 616c 2028 6220 2d20 3663 202b |ideal (b - 6c + │ │ │ │ -00023c90: 2033 3364 2c20 6120 2d20 3336 6320 2b20 33d, a - 36c + │ │ │ │ -00023ca0: 3264 2c20 6320 202b 2034 3363 2a64 202d 2d, c + 43c*d - │ │ │ │ -00023cb0: 2064 2029 2020 207c 2020 2020 2020 2020 d ) | │ │ │ │ -00023cc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023cd0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023b80: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00023b90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00023ba0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00023bb0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023bd0: 2020 3220 2020 337c 0a7c 2020 2020 2020 2 3|.| │ │ │ │ +00023be0: 7c69 6465 616c 2028 6120 2d20 3239 6220 |ideal (a - 29b │ │ │ │ +00023bf0: 2d20 3863 202d 2031 3364 2c20 6220 202b - 8c - 13d, b + │ │ │ │ +00023c00: 2032 3462 2a63 202b 2031 3963 2020 2b20 24b*c + 19c + │ │ │ │ +00023c10: 3334 622a 6420 2b20 3563 2a64 202b 2033 34b*d + 5c*d + 3 │ │ │ │ +00023c20: 3764 202c 2063 207c 0a7c 2020 2020 2020 7d , c |.| │ │ │ │ +00023c30: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00023c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c70: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ +00023c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023cc0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ +00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023d00: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ -00023d10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023d20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00023d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023d10: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00023d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00023d50: 2020 2020 2032 207c 2020 2020 2020 2020 2 | │ │ │ │ -00023d60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023d70: 7c69 6465 616c 2028 6220 2b20 3239 6320 |ideal (b + 29c │ │ │ │ -00023d80: 2b20 3764 2c20 6120 2d20 3139 6320 2b20 + 7d, a - 19c + │ │ │ │ -00023d90: 3234 642c 2063 2020 2d20 3230 632a 6420 24d, c - 20c*d │ │ │ │ -00023da0: 2d20 3330 6420 297c 2020 2020 2020 2020 - 30d )| │ │ │ │ -00023db0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023dc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00023dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023df0: 2d2d 2d2d 2d2d 2d2b 2020 2020 2020 2020 -------+ │ │ │ │ -00023e00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00023e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e50: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ -00023e60: 6e65 744c 6973 7420 6465 636f 6d70 6f73 netList decompos │ │ │ │ -00023e70: 6520 4632 2020 2020 2020 2020 2020 2020 e F2 │ │ │ │ -00023e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ea0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00023f00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00023f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023f40: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d60: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00023d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023db0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00023dc0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00023dd0: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00023de0: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ +00023df0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00023e00: 2020 2020 3220 207c 0a7c 202d 2032 3462 2 |.| - 24b │ │ │ │ +00023e10: 2a63 2a64 202d 2031 3663 2064 202b 2038 *c*d - 16c d + 8 │ │ │ │ +00023e20: 622a 6420 202b 2032 3263 2a64 2020 2b20 b*d + 22c*d + │ │ │ │ +00023e30: 3139 6420 2c20 622a 6320 202d 2032 3962 19d , b*c - 29b │ │ │ │ +00023e40: 2a63 2a64 202d 2033 3063 2064 202d 2033 *c*d - 30c d - 3 │ │ │ │ +00023e50: 3863 2a64 2020 2b7c 0a7c 2d2d 2d2d 2d2d 8c*d +|.|------ │ │ │ │ +00023e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ea0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ +00023eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ef0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ +00023f00: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ +00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00023f50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00023f60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f80: 2020 2020 2020 2032 2020 2032 2020 2020 2 2 │ │ │ │ -00023f90: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ -00023fa0: 7c69 6465 616c 2028 612a 6320 2b20 3262 |ideal (a*c + 2b │ │ │ │ -00023fb0: 2a63 202d 2031 3363 2020 2b20 3333 612a *c - 13c + 33a* │ │ │ │ -00023fc0: 6420 2b20 3136 622a 6420 2d20 3138 632a d + 16b*d - 18c* │ │ │ │ -00023fd0: 6420 2d20 3339 6420 2c20 6220 202d 2034 d - 39d , b - 4 │ │ │ │ -00023fe0: 3762 2a63 202d 207c 0a7c 2020 2020 2020 7b*c - |.| │ │ │ │ -00023ff0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00024000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024030: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -00024040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024080: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -00024090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000240a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000240b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000240c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000240d0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2032 2020 -------|.| 2 │ │ │ │ -000240e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00024100: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00024110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024120: 2020 2020 3220 207c 0a7c 3238 6320 202d 2 |.|28c - │ │ │ │ -00024130: 2035 622a 6420 2d20 632a 6420 2d20 3330 5b*d - c*d - 30 │ │ │ │ -00024140: 6420 2c20 612a 6220 2d20 3230 622a 6320 d , a*b - 20b*c │ │ │ │ -00024150: 2d20 3435 6320 202d 2033 3561 2a64 202b - 45c - 35a*d + │ │ │ │ -00024160: 2032 3162 2a64 202d 2033 3463 2a64 202b 21b*d - 34c*d + │ │ │ │ -00024170: 2031 3064 202c 207c 0a7c 2d2d 2d2d 2d2d 10d , |.|------ │ │ │ │ -00024180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000241a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000241b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000241c0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -000241d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f90: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00023fa0: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ +00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fe0: 2020 2020 2020 207c 0a7c 2020 2020 3320 |.| 3 │ │ │ │ +00023ff0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024030: 2020 2020 2020 207c 0a7c 2031 3464 2029 |.| 14d ) │ │ │ │ +00024040: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00024050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024080: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00024090: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ +000240a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000240b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000240c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000240d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000240e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000240f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024120: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 -------+.|i21 : │ │ │ │ +00024130: 6e65 744c 6973 7420 6465 636f 6d70 6f73 netList decompos │ │ │ │ +00024140: 6520 4632 2020 2020 2020 2020 2020 2020 e F2 │ │ │ │ +00024150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024170: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000241a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000241b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000241c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000241d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000241e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000241f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024210: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -00024220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024260: 2d2d 2d2d 2d2d 2d7c 0a7c 2032 2020 2020 -------|.| 2 │ │ │ │ -00024270: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00024280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024290: 2020 2020 2020 2020 2032 2020 2033 2020 2 3 │ │ │ │ -000242a0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000242b0: 2020 2020 2020 207c 0a7c 6120 202d 2033 |.|a - 3 │ │ │ │ -000242c0: 3562 2a63 202b 2032 3263 2020 2d20 3235 5b*c + 22c - 25 │ │ │ │ -000242d0: 612a 6420 2b20 3233 622a 6420 2b20 3433 a*d + 23b*d + 43 │ │ │ │ -000242e0: 632a 6420 2b20 3330 6420 2c20 6320 202b c*d + 30d , c + │ │ │ │ -000242f0: 2033 3862 2a63 2a64 202b 2032 3263 2064 38b*c*d + 22c d │ │ │ │ -00024300: 202d 2031 3561 2a7c 0a7c 2d2d 2d2d 2d2d - 15a*|.|------ │ │ │ │ -00024310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024200: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +00024210: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ +00024220: 7c69 6465 616c 2028 6320 2d20 3332 642c |ideal (c - 32d, │ │ │ │ +00024230: 2062 202d 2035 642c 2061 202d 2032 3964 b - 5d, a - 29d │ │ │ │ +00024240: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00024250: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +00024260: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024270: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000242a0: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +000242b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000242c0: 7c69 6465 616c 2028 6320 2b20 3433 642c |ideal (c + 43d, │ │ │ │ +000242d0: 2062 202d 2034 3764 2c20 6120 2d20 3237 b - 47d, a - 27 │ │ │ │ +000242e0: 6429 2020 2020 2020 2020 2020 2020 2020 d) │ │ │ │ +000242f0: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +00024300: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024310: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00024320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024350: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -00024360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000243a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -000243b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024340: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +00024350: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024360: 7c69 6465 616c 2028 6320 2b20 3234 642c |ideal (c + 24d, │ │ │ │ +00024370: 2062 202d 2034 3964 2c20 6129 2020 2020 b - 49d, a) │ │ │ │ +00024380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024390: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +000243a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000243b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000243c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000243d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000243e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000243f0: 2d2d 2d2d 2d2d 2d7c 0a7c 2032 2020 2020 -------|.| 2 │ │ │ │ -00024400: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -00024410: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00024420: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00024430: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -00024440: 2020 2020 2020 207c 0a7c 6420 202d 2034 |.|d - 4 │ │ │ │ -00024450: 3762 2a64 2020 2d20 3339 632a 6420 202b 7b*d - 39c*d + │ │ │ │ -00024460: 2034 3064 202c 2062 2a63 2020 2d20 3433 40d , b*c - 43 │ │ │ │ -00024470: 622a 632a 6420 2b20 3139 6320 6420 2b20 b*c*d + 19c d + │ │ │ │ -00024480: 3334 612a 6420 202b 2032 3162 2a64 2020 34a*d + 21b*d │ │ │ │ -00024490: 2b20 3436 632a 647c 0a7c 2d2d 2d2d 2d2d + 46c*d|.|------ │ │ │ │ -000244a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244e0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -000244f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024530: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ -00024540: 2d2d 2d2b 2020 2020 2020 2020 2020 2020 ---+ │ │ │ │ -00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024580: 2020 2020 2020 207c 0a7c 3220 2020 2020 |.|2 │ │ │ │ -00024590: 2033 207c 2020 2020 2020 2020 2020 2020 3 | │ │ │ │ -000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245d0: 2020 2020 2020 207c 0a7c 2020 2b20 3230 |.| + 20 │ │ │ │ -000245e0: 6420 297c 2020 2020 2020 2020 2020 2020 d )| │ │ │ │ -000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024620: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ -00024630: 2d2d 2d2b 2020 2020 2020 2020 2020 2020 ---+ │ │ │ │ -00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024670: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00024680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000246a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000246b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000246c0: 2d2d 2d2d 2d2d 2d2b 0a0a 5765 2063 616e -------+..We can │ │ │ │ -000246d0: 2064 6574 6572 6d69 6e65 2077 6861 7420 determine what │ │ │ │ -000246e0: 7468 6573 6520 7265 7072 6573 656e 742e these represent. │ │ │ │ -000246f0: 2020 4f6e 6520 7368 6f75 6c64 2062 6520 One should be │ │ │ │ -00024700: 6120 7365 7420 6f66 2036 2070 6f69 6e74 a set of 6 point │ │ │ │ -00024710: 732c 2077 6865 7265 0a35 206c 6965 206f s, where.5 lie o │ │ │ │ -00024720: 6e20 6120 706c 616e 652e 2020 5468 6520 n a plane. The │ │ │ │ -00024730: 6f74 6865 7220 7368 6f75 6c64 2062 6520 other should be │ │ │ │ -00024740: 3620 706f 696e 7473 2077 6974 6820 3320 6 points with 3 │ │ │ │ -00024750: 706f 696e 7473 206f 6e20 6f6e 6520 6c69 points on one li │ │ │ │ -00024760: 6e65 2c20 616e 640a 7468 6520 6f74 6865 ne, and.the othe │ │ │ │ -00024770: 7220 3320 706f 696e 7473 206f 6e20 6120 r 3 points on a │ │ │ │ -00024780: 736b 6577 206c 696e 652e 0a0a 5365 6520 skew line...See │ │ │ │ -00024790: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -000247a0: 202a 202a 6e6f 7465 2072 616e 646f 6d50 * *note randomP │ │ │ │ -000247b0: 6f69 6e74 4f6e 5261 7469 6f6e 616c 5661 ointOnRationalVa │ │ │ │ -000247c0: 7269 6574 793a 0a20 2020 2072 616e 646f riety:. rando │ │ │ │ -000247d0: 6d50 6f69 6e74 4f6e 5261 7469 6f6e 616c mPointOnRational │ │ │ │ -000247e0: 5661 7269 6574 795f 6c70 4964 6561 6c5f Variety_lpIdeal_ │ │ │ │ -000247f0: 7270 2c20 2d2d 2066 696e 6420 6120 7261 rp, -- find a ra │ │ │ │ -00024800: 6e64 6f6d 2070 6f69 6e74 206f 6e20 610a ndom point on a. │ │ │ │ -00024810: 2020 2020 7661 7269 6574 7920 7468 6174 variety that │ │ │ │ -00024820: 2063 616e 2062 6520 6465 7465 6374 6564 can be detected │ │ │ │ -00024830: 2074 6f20 6265 2072 6174 696f 6e61 6c0a to be rational. │ │ │ │ -00024840: 0a57 6179 7320 746f 2075 7365 206e 6f6e .Ways to use non │ │ │ │ -00024850: 6d69 6e69 6d61 6c4d 6170 733a 0a3d 3d3d minimalMaps:.=== │ │ │ │ -00024860: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00024870: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226e ========.. * "n │ │ │ │ -00024880: 6f6e 6d69 6e69 6d61 6c4d 6170 7328 4964 onminimalMaps(Id │ │ │ │ -00024890: 6561 6c29 220a 0a46 6f72 2074 6865 2070 eal)"..For the p │ │ │ │ -000248a0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -000248b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -000248c0: 6520 6f62 6a65 6374 202a 6e6f 7465 206e e object *note n │ │ │ │ -000248d0: 6f6e 6d69 6e69 6d61 6c4d 6170 733a 206e onminimalMaps: n │ │ │ │ -000248e0: 6f6e 6d69 6e69 6d61 6c4d 6170 732c 2069 onminimalMaps, i │ │ │ │ -000248f0: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -00024900: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -00024910: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -00024920: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ -00024930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024970: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00024980: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00024990: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -000249a0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -000249b0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -000249c0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -000249d0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -000249e0: 732f 0a47 726f 6562 6e65 7253 7472 6174 s/.GroebnerStrat │ │ │ │ -000249f0: 612e 6d32 3a31 3031 323a 302e 0a1f 0a46 a.m2:1012:0....F │ │ │ │ -00024a00: 696c 653a 2047 726f 6562 6e65 7253 7472 ile: GroebnerStr │ │ │ │ -00024a10: 6174 612e 696e 666f 2c20 4e6f 6465 3a20 ata.info, Node: │ │ │ │ -00024a20: 7261 6e64 6f6d 506f 696e 744f 6e52 6174 randomPointOnRat │ │ │ │ -00024a30: 696f 6e61 6c56 6172 6965 7479 5f6c 7049 ionalVariety_lpI │ │ │ │ -00024a40: 6465 616c 5f72 702c 204e 6578 743a 2072 deal_rp, Next: r │ │ │ │ -00024a50: 616e 646f 6d50 6f69 6e74 734f 6e52 6174 andomPointsOnRat │ │ │ │ -00024a60: 696f 6e61 6c56 6172 6965 7479 5f6c 7049 ionalVariety_lpI │ │ │ │ -00024a70: 6465 616c 5f63 6d5a 5a5f 7270 2c20 5072 deal_cmZZ_rp, Pr │ │ │ │ -00024a80: 6576 3a20 6e6f 6e6d 696e 696d 616c 4d61 ev: nonminimalMa │ │ │ │ -00024a90: 7073 2c20 5570 3a20 546f 700a 0a72 616e ps, Up: Top..ran │ │ │ │ -00024aa0: 646f 6d50 6f69 6e74 4f6e 5261 7469 6f6e domPointOnRation │ │ │ │ -00024ab0: 616c 5661 7269 6574 7928 4964 6561 6c29 alVariety(Ideal) │ │ │ │ -00024ac0: 202d 2d20 6669 6e64 2061 2072 616e 646f -- find a rando │ │ │ │ -00024ad0: 6d20 706f 696e 7420 6f6e 2061 2076 6172 m point on a var │ │ │ │ -00024ae0: 6965 7479 2074 6861 7420 6361 6e20 6265 iety that can be │ │ │ │ -00024af0: 2064 6574 6563 7465 6420 746f 2062 6520 detected to be │ │ │ │ -00024b00: 7261 7469 6f6e 616c 0a2a 2a2a 2a2a 2a2a rational.******* │ │ │ │ -00024b10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00024b70: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ -00024b80: 6f6e 3a20 2a6e 6f74 6520 7261 6e64 6f6d on: *note random │ │ │ │ -00024b90: 506f 696e 744f 6e52 6174 696f 6e61 6c56 PointOnRationalV │ │ │ │ -00024ba0: 6172 6965 7479 3a0a 2020 2020 7261 6e64 ariety:. rand │ │ │ │ -00024bb0: 6f6d 506f 696e 744f 6e52 6174 696f 6e61 omPointOnRationa │ │ │ │ -00024bc0: 6c56 6172 6965 7479 5f6c 7049 6465 616c lVariety_lpIdeal │ │ │ │ -00024bd0: 5f72 702c 0a20 202a 2055 7361 6765 3a20 _rp,. * Usage: │ │ │ │ -00024be0: 0a20 2020 2020 2020 2072 616e 646f 6d50 . randomP │ │ │ │ -00024bf0: 6f69 6e74 4f6e 5261 7469 6f6e 616c 5661 ointOnRationalVa │ │ │ │ -00024c00: 7269 6574 7920 490a 2020 2020 2020 2020 riety I. │ │ │ │ -00024c10: 7261 6e64 6f6d 506f 696e 744f 6e52 6174 randomPointOnRat │ │ │ │ -00024c20: 696f 6e61 6c56 6172 6965 7479 0a20 202a ionalVariety. * │ │ │ │ -00024c30: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00024c40: 2049 2c20 616e 202a 6e6f 7465 2069 6465 I, an *note ide │ │ │ │ -00024c50: 616c 3a20 284d 6163 6175 6c61 7932 446f al: (Macaulay2Do │ │ │ │ -00024c60: 6329 4964 6561 6c2c 2c20 416e 2069 6465 c)Ideal,, An ide │ │ │ │ -00024c70: 616c 2069 6e20 6120 706f 6c79 6e6f 6d69 al in a polynomi │ │ │ │ -00024c80: 616c 2072 696e 670a 2020 2020 2020 2020 al ring. │ │ │ │ -00024c90: 2453 2420 6f76 6572 2061 2066 6965 6c64 $S$ over a field │ │ │ │ -00024ca0: 2c20 7768 6963 6820 6465 6669 6e65 7320 , which defines │ │ │ │ -00024cb0: 6120 7072 696d 6520 6964 6561 6c0a 2020 a prime ideal. │ │ │ │ -00024cc0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -00024cd0: 202a 2061 202a 6e6f 7465 206d 6174 7269 * a *note matri │ │ │ │ -00024ce0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ -00024cf0: 294d 6174 7269 782c 2c20 4120 6f6e 6520 )Matrix,, A one │ │ │ │ -00024d00: 726f 7720 6d61 7472 6978 206f 7665 7220 row matrix over │ │ │ │ -00024d10: 7468 6520 6261 7365 0a20 2020 2020 2020 the base. │ │ │ │ -00024d20: 2066 6965 6c64 206f 6620 2453 242c 2072 field of $S$, r │ │ │ │ -00024d30: 6570 7265 7365 6e74 696e 6720 6120 7261 epresenting a ra │ │ │ │ -00024d40: 6e64 6f6d 6c79 2063 686f 7365 6e20 706f ndomly chosen po │ │ │ │ -00024d50: 696e 7420 6f6e 2074 6865 207a 6572 6f20 int on the zero │ │ │ │ -00024d60: 6c6f 6375 7320 6f66 0a20 2020 2020 2020 locus of. │ │ │ │ -00024d70: 2024 4924 2e20 206e 756c 6c20 6973 2072 $I$. null is r │ │ │ │ -00024d80: 6574 7572 6e65 6420 696e 2074 6865 2063 eturned in the c │ │ │ │ -00024d90: 6173 6520 7768 656e 2074 6865 2072 6f75 ase when the rou │ │ │ │ -00024da0: 7469 6e65 2063 616e 6e6f 7420 6465 7465 tine cannot dete │ │ │ │ -00024db0: 726d 696e 6520 6966 0a20 2020 2020 2020 rmine if. │ │ │ │ -00024dc0: 2074 6865 2076 6172 6965 7479 2069 7320 the variety is │ │ │ │ -00024dd0: 7261 7469 6f6e 616c 2061 6e64 2069 7272 rational and irr │ │ │ │ -00024de0: 6564 7563 6962 6c65 2e0a 0a44 6573 6372 educible...Descr │ │ │ │ -00024df0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00024e00: 3d3d 0a0a 4173 2061 2066 6972 7374 2065 ==..As a first e │ │ │ │ -00024e10: 7861 6d70 6c65 2c20 7765 2066 696e 6420 xample, we find │ │ │ │ -00024e20: 6120 7261 6e64 6f6d 2070 6f69 6e74 206f a random point o │ │ │ │ -00024e30: 6e20 7468 6520 5665 726f 6e65 7365 2073 n the Veronese s │ │ │ │ -00024e40: 7572 6661 6365 2069 6e20 245c 5050 5e35 urface in $\PP^5 │ │ │ │ -00024e50: 242e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d $...+----------- │ │ │ │ -00024e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024ea0: 2d2d 2b0a 7c69 3120 3a20 6b6b 203d 205a --+.|i1 : kk = Z │ │ │ │ -00024eb0: 5a2f 3130 313b 2020 2020 2020 2020 2020 Z/101; │ │ │ │ -00024ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ef0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00024f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f40: 2d2d 2b0a 7c69 3220 3a20 5320 3d20 6b6b --+.|i2 : S = kk │ │ │ │ -00024f50: 5b61 2e2e 665d 3b20 2020 2020 2020 2020 [a..f]; │ │ │ │ +000243e0: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +000243f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024400: 7c69 6465 616c 2028 6320 2b20 3134 642c |ideal (c + 14d, │ │ │ │ +00024410: 2062 202b 2033 3164 2c20 6120 2d20 3136 b + 31d, a - 16 │ │ │ │ +00024420: 6429 2020 2020 2020 2020 2020 2020 2020 d) │ │ │ │ +00024430: 2020 2020 2020 2020 7c20 2020 2020 2020 | │ │ │ │ +00024440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024450: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024480: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +00024490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000244a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000244d0: 2020 2020 2020 3220 7c20 2020 2020 2020 2 | │ │ │ │ +000244e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000244f0: 7c69 6465 616c 2028 6220 2b20 3131 6320 |ideal (b + 11c │ │ │ │ +00024500: 2b20 3232 642c 2061 202b 2031 3163 202b + 22d, a + 11c + │ │ │ │ +00024510: 2034 3264 2c20 6320 202d 2034 3363 2a64 42d, c - 43c*d │ │ │ │ +00024520: 202b 2033 3164 2029 7c20 2020 2020 2020 + 31d )| │ │ │ │ +00024530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00024540: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00024550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024570: 2d2d 2d2d 2d2d 2d2d 2b20 2020 2020 2020 --------+ │ │ │ │ +00024580: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00024590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245d0: 2d2d 2d2d 2d2d 2d2b 0a0a 5765 2063 616e -------+..We can │ │ │ │ +000245e0: 2064 6574 6572 6d69 6e65 2077 6861 7420 determine what │ │ │ │ +000245f0: 7468 6573 6520 7265 7072 6573 656e 742e these represent. │ │ │ │ +00024600: 2020 4f6e 6520 7368 6f75 6c64 2062 6520 One should be │ │ │ │ +00024610: 6120 7365 7420 6f66 2036 2070 6f69 6e74 a set of 6 point │ │ │ │ +00024620: 732c 2077 6865 7265 0a35 206c 6965 206f s, where.5 lie o │ │ │ │ +00024630: 6e20 6120 706c 616e 652e 2020 5468 6520 n a plane. The │ │ │ │ +00024640: 6f74 6865 7220 7368 6f75 6c64 2062 6520 other should be │ │ │ │ +00024650: 3620 706f 696e 7473 2077 6974 6820 3320 6 points with 3 │ │ │ │ +00024660: 706f 696e 7473 206f 6e20 6f6e 6520 6c69 points on one li │ │ │ │ +00024670: 6e65 2c20 616e 640a 7468 6520 6f74 6865 ne, and.the othe │ │ │ │ +00024680: 7220 3320 706f 696e 7473 206f 6e20 6120 r 3 points on a │ │ │ │ +00024690: 736b 6577 206c 696e 652e 0a0a 5365 6520 skew line...See │ │ │ │ +000246a0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +000246b0: 202a 202a 6e6f 7465 2072 616e 646f 6d50 * *note randomP │ │ │ │ +000246c0: 6f69 6e74 4f6e 5261 7469 6f6e 616c 5661 ointOnRationalVa │ │ │ │ +000246d0: 7269 6574 793a 0a20 2020 2072 616e 646f riety:. rando │ │ │ │ +000246e0: 6d50 6f69 6e74 4f6e 5261 7469 6f6e 616c mPointOnRational │ │ │ │ +000246f0: 5661 7269 6574 795f 6c70 4964 6561 6c5f Variety_lpIdeal_ │ │ │ │ +00024700: 7270 2c20 2d2d 2066 696e 6420 6120 7261 rp, -- find a ra │ │ │ │ +00024710: 6e64 6f6d 2070 6f69 6e74 206f 6e20 610a ndom point on a. │ │ │ │ +00024720: 2020 2020 7661 7269 6574 7920 7468 6174 variety that │ │ │ │ +00024730: 2063 616e 2062 6520 6465 7465 6374 6564 can be detected │ │ │ │ +00024740: 2074 6f20 6265 2072 6174 696f 6e61 6c0a to be rational. │ │ │ │ +00024750: 0a57 6179 7320 746f 2075 7365 206e 6f6e .Ways to use non │ │ │ │ +00024760: 6d69 6e69 6d61 6c4d 6170 733a 0a3d 3d3d minimalMaps:.=== │ │ │ │ +00024770: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00024780: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 226e ========.. * "n │ │ │ │ +00024790: 6f6e 6d69 6e69 6d61 6c4d 6170 7328 4964 onminimalMaps(Id │ │ │ │ +000247a0: 6561 6c29 220a 0a46 6f72 2074 6865 2070 eal)"..For the p │ │ │ │ +000247b0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +000247c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +000247d0: 6520 6f62 6a65 6374 202a 6e6f 7465 206e e object *note n │ │ │ │ +000247e0: 6f6e 6d69 6e69 6d61 6c4d 6170 733a 206e onminimalMaps: n │ │ │ │ +000247f0: 6f6e 6d69 6e69 6d61 6c4d 6170 732c 2069 onminimalMaps, i │ │ │ │ +00024800: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +00024810: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ +00024820: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +00024830: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +00024840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024880: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +00024890: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000248a0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000248b0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +000248c0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +000248d0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +000248e0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +000248f0: 732f 0a47 726f 6562 6e65 7253 7472 6174 s/.GroebnerStrat │ │ │ │ +00024900: 612e 6d32 3a31 3031 323a 302e 0a1f 0a46 a.m2:1012:0....F │ │ │ │ +00024910: 696c 653a 2047 726f 6562 6e65 7253 7472 ile: GroebnerStr │ │ │ │ +00024920: 6174 612e 696e 666f 2c20 4e6f 6465 3a20 ata.info, Node: │ │ │ │ +00024930: 7261 6e64 6f6d 506f 696e 744f 6e52 6174 randomPointOnRat │ │ │ │ +00024940: 696f 6e61 6c56 6172 6965 7479 5f6c 7049 ionalVariety_lpI │ │ │ │ +00024950: 6465 616c 5f72 702c 204e 6578 743a 2072 deal_rp, Next: r │ │ │ │ +00024960: 616e 646f 6d50 6f69 6e74 734f 6e52 6174 andomPointsOnRat │ │ │ │ +00024970: 696f 6e61 6c56 6172 6965 7479 5f6c 7049 ionalVariety_lpI │ │ │ │ +00024980: 6465 616c 5f63 6d5a 5a5f 7270 2c20 5072 deal_cmZZ_rp, Pr │ │ │ │ +00024990: 6576 3a20 6e6f 6e6d 696e 696d 616c 4d61 ev: nonminimalMa │ │ │ │ +000249a0: 7073 2c20 5570 3a20 546f 700a 0a72 616e ps, Up: Top..ran │ │ │ │ +000249b0: 646f 6d50 6f69 6e74 4f6e 5261 7469 6f6e domPointOnRation │ │ │ │ +000249c0: 616c 5661 7269 6574 7928 4964 6561 6c29 alVariety(Ideal) │ │ │ │ +000249d0: 202d 2d20 6669 6e64 2061 2072 616e 646f -- find a rando │ │ │ │ +000249e0: 6d20 706f 696e 7420 6f6e 2061 2076 6172 m point on a var │ │ │ │ +000249f0: 6965 7479 2074 6861 7420 6361 6e20 6265 iety that can be │ │ │ │ +00024a00: 2064 6574 6563 7465 6420 746f 2062 6520 detected to be │ │ │ │ +00024a10: 7261 7469 6f6e 616c 0a2a 2a2a 2a2a 2a2a rational.******* │ │ │ │ +00024a20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00024a80: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +00024a90: 6f6e 3a20 2a6e 6f74 6520 7261 6e64 6f6d on: *note random │ │ │ │ +00024aa0: 506f 696e 744f 6e52 6174 696f 6e61 6c56 PointOnRationalV │ │ │ │ +00024ab0: 6172 6965 7479 3a0a 2020 2020 7261 6e64 ariety:. rand │ │ │ │ +00024ac0: 6f6d 506f 696e 744f 6e52 6174 696f 6e61 omPointOnRationa │ │ │ │ +00024ad0: 6c56 6172 6965 7479 5f6c 7049 6465 616c lVariety_lpIdeal │ │ │ │ +00024ae0: 5f72 702c 0a20 202a 2055 7361 6765 3a20 _rp,. * Usage: │ │ │ │ +00024af0: 0a20 2020 2020 2020 2072 616e 646f 6d50 . randomP │ │ │ │ +00024b00: 6f69 6e74 4f6e 5261 7469 6f6e 616c 5661 ointOnRationalVa │ │ │ │ +00024b10: 7269 6574 7920 490a 2020 2020 2020 2020 riety I. │ │ │ │ +00024b20: 7261 6e64 6f6d 506f 696e 744f 6e52 6174 randomPointOnRat │ │ │ │ +00024b30: 696f 6e61 6c56 6172 6965 7479 0a20 202a ionalVariety. * │ │ │ │ +00024b40: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00024b50: 2049 2c20 616e 202a 6e6f 7465 2069 6465 I, an *note ide │ │ │ │ +00024b60: 616c 3a20 284d 6163 6175 6c61 7932 446f al: (Macaulay2Do │ │ │ │ +00024b70: 6329 4964 6561 6c2c 2c20 416e 2069 6465 c)Ideal,, An ide │ │ │ │ +00024b80: 616c 2069 6e20 6120 706f 6c79 6e6f 6d69 al in a polynomi │ │ │ │ +00024b90: 616c 2072 696e 670a 2020 2020 2020 2020 al ring. │ │ │ │ +00024ba0: 2453 2420 6f76 6572 2061 2066 6965 6c64 $S$ over a field │ │ │ │ +00024bb0: 2c20 7768 6963 6820 6465 6669 6e65 7320 , which defines │ │ │ │ +00024bc0: 6120 7072 696d 6520 6964 6561 6c0a 2020 a prime ideal. │ │ │ │ +00024bd0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00024be0: 202a 2061 202a 6e6f 7465 206d 6174 7269 * a *note matri │ │ │ │ +00024bf0: 783a 2028 4d61 6361 756c 6179 3244 6f63 x: (Macaulay2Doc │ │ │ │ +00024c00: 294d 6174 7269 782c 2c20 4120 6f6e 6520 )Matrix,, A one │ │ │ │ +00024c10: 726f 7720 6d61 7472 6978 206f 7665 7220 row matrix over │ │ │ │ +00024c20: 7468 6520 6261 7365 0a20 2020 2020 2020 the base. │ │ │ │ +00024c30: 2066 6965 6c64 206f 6620 2453 242c 2072 field of $S$, r │ │ │ │ +00024c40: 6570 7265 7365 6e74 696e 6720 6120 7261 epresenting a ra │ │ │ │ +00024c50: 6e64 6f6d 6c79 2063 686f 7365 6e20 706f ndomly chosen po │ │ │ │ +00024c60: 696e 7420 6f6e 2074 6865 207a 6572 6f20 int on the zero │ │ │ │ +00024c70: 6c6f 6375 7320 6f66 0a20 2020 2020 2020 locus of. │ │ │ │ +00024c80: 2024 4924 2e20 206e 756c 6c20 6973 2072 $I$. null is r │ │ │ │ +00024c90: 6574 7572 6e65 6420 696e 2074 6865 2063 eturned in the c │ │ │ │ +00024ca0: 6173 6520 7768 656e 2074 6865 2072 6f75 ase when the rou │ │ │ │ +00024cb0: 7469 6e65 2063 616e 6e6f 7420 6465 7465 tine cannot dete │ │ │ │ +00024cc0: 726d 696e 6520 6966 0a20 2020 2020 2020 rmine if. │ │ │ │ +00024cd0: 2074 6865 2076 6172 6965 7479 2069 7320 the variety is │ │ │ │ +00024ce0: 7261 7469 6f6e 616c 2061 6e64 2069 7272 rational and irr │ │ │ │ +00024cf0: 6564 7563 6962 6c65 2e0a 0a44 6573 6372 educible...Descr │ │ │ │ +00024d00: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00024d10: 3d3d 0a0a 4173 2061 2066 6972 7374 2065 ==..As a first e │ │ │ │ +00024d20: 7861 6d70 6c65 2c20 7765 2066 696e 6420 xample, we find │ │ │ │ +00024d30: 6120 7261 6e64 6f6d 2070 6f69 6e74 206f a random point o │ │ │ │ +00024d40: 6e20 7468 6520 5665 726f 6e65 7365 2073 n the Veronese s │ │ │ │ +00024d50: 7572 6661 6365 2069 6e20 245c 5050 5e35 urface in $\PP^5 │ │ │ │ +00024d60: 242e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d $...+----------- │ │ │ │ +00024d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024db0: 2d2d 2b0a 7c69 3120 3a20 6b6b 203d 205a --+.|i1 : kk = Z │ │ │ │ +00024dc0: 5a2f 3130 313b 2020 2020 2020 2020 2020 Z/101; │ │ │ │ +00024dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00024e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024e50: 2d2d 2b0a 7c69 3220 3a20 5320 3d20 6b6b --+.|i2 : S = kk │ │ │ │ +00024e60: 5b61 2e2e 665d 3b20 2020 2020 2020 2020 [a..f]; │ │ │ │ +00024e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ea0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00024eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024ef0: 2d2d 2b0a 7c69 3320 3a20 4920 3d20 6d69 --+.|i3 : I = mi │ │ │ │ +00024f00: 6e6f 7273 2832 2c20 6765 6e65 7269 6353 nors(2, genericS │ │ │ │ +00024f10: 796d 6d65 7472 6963 4d61 7472 6978 2853 ymmetricMatrix(S │ │ │ │ +00024f20: 2c20 3329 2920 2020 2020 2020 2020 2020 , 3)) │ │ │ │ +00024f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024f40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fe0: 2d2d 2b0a 7c69 3320 3a20 4920 3d20 6d69 --+.|i3 : I = mi │ │ │ │ -00024ff0: 6e6f 7273 2832 2c20 6765 6e65 7269 6353 nors(2, genericS │ │ │ │ -00025000: 796d 6d65 7472 6963 4d61 7472 6978 2853 ymmetricMatrix(S │ │ │ │ -00025010: 2c20 3329 2920 2020 2020 2020 2020 2020 , 3)) │ │ │ │ -00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025090: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00024f90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024fa0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00024fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fd0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00024fe0: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ +00024ff0: 282d 2062 2020 2b20 612a 642c 202d 2062 (- b + a*d, - b │ │ │ │ +00025000: 2a63 202b 2061 2a65 2c20 2d20 632a 6420 *c + a*e, - c*d │ │ │ │ +00025010: 2b20 622a 652c 202d 2062 2a63 202b 2061 + b*e, - b*c + a │ │ │ │ +00025020: 2a65 2c20 2d20 6320 202b 2061 2a66 2c20 *e, - c + a*f, │ │ │ │ +00025030: 2d20 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d - |.| ------ │ │ │ │ +00025040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025080: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000250d0: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ -000250e0: 282d 2062 2020 2b20 612a 642c 202d 2062 (- b + a*d, - b │ │ │ │ -000250f0: 2a63 202b 2061 2a65 2c20 2d20 632a 6420 *c + a*e, - c*d │ │ │ │ -00025100: 2b20 622a 652c 202d 2062 2a63 202b 2061 + b*e, - b*c + a │ │ │ │ -00025110: 2a65 2c20 2d20 6320 202b 2061 2a66 2c20 *e, - c + a*f, │ │ │ │ -00025120: 2d20 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d - |.| ------ │ │ │ │ -00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025170: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250d0: 2020 7c0a 7c20 2020 2020 632a 6520 2b20 |.| c*e + │ │ │ │ +000250e0: 622a 662c 202d 2063 2a64 202b 2062 2a65 b*f, - c*d + b*e │ │ │ │ +000250f0: 2c20 2d20 632a 6520 2b20 622a 662c 202d , - c*e + b*f, - │ │ │ │ +00025100: 2065 2020 2b20 642a 6629 2020 2020 2020 e + d*f) │ │ │ │ +00025110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025120: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025170: 2020 7c0a 7c6f 3320 3a20 4964 6561 6c20 |.|o3 : Ideal │ │ │ │ +00025180: 6f66 2053 2020 2020 2020 2020 2020 2020 of S │ │ │ │ 00025190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251a0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251c0: 2020 7c0a 7c20 2020 2020 632a 6520 2b20 |.| c*e + │ │ │ │ -000251d0: 622a 662c 202d 2063 2a64 202b 2062 2a65 b*f, - c*d + b*e │ │ │ │ -000251e0: 2c20 2d20 632a 6520 2b20 622a 662c 202d , - c*e + b*f, - │ │ │ │ -000251f0: 2065 2020 2b20 642a 6629 2020 2020 2020 e + d*f) │ │ │ │ -00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000251c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000251d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000251e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000251f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025210: 2d2d 2b0a 7c69 3420 3a20 7074 203d 2072 --+.|i4 : pt = r │ │ │ │ +00025220: 616e 646f 6d50 6f69 6e74 4f6e 5261 7469 andomPointOnRati │ │ │ │ +00025230: 6f6e 616c 5661 7269 6574 7920 4920 2020 onalVariety I │ │ │ │ 00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025260: 2020 7c0a 7c6f 3320 3a20 4964 6561 6c20 |.|o3 : Ideal │ │ │ │ -00025270: 6f66 2053 2020 2020 2020 2020 2020 2020 of S │ │ │ │ +00025260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -000252c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000252d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000252e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000252f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025300: 2d2d 2b0a 7c69 3420 3a20 7074 203d 2072 --+.|i4 : pt = r │ │ │ │ -00025310: 616e 646f 6d50 6f69 6e74 4f6e 5261 7469 andomPointOnRati │ │ │ │ -00025320: 6f6e 616c 5661 7269 6574 7920 4920 2020 onalVariety I │ │ │ │ +000252b0: 2020 7c0a 7c6f 3420 3d20 7c20 3120 3439 |.|o4 = | 1 49 │ │ │ │ +000252c0: 2032 3420 2d32 3320 2d33 3620 2d33 3020 24 -23 -36 -30 │ │ │ │ +000252d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000252e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025360: 2020 2031 2020 2020 2020 2036 2020 2020 1 6 │ │ │ │ 00025370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253a0: 2020 7c0a 7c6f 3420 3d20 7c20 3120 3439 |.|o4 = | 1 49 │ │ │ │ -000253b0: 2032 3420 2d32 3320 2d33 3620 2d33 3020 24 -23 -36 -30 │ │ │ │ -000253c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000253a0: 2020 7c0a 7c6f 3420 3a20 4d61 7472 6978 |.|o4 : Matrix │ │ │ │ +000253b0: 206b 6b20 203c 2d2d 206b 6b20 2020 2020 kk <-- kk │ │ │ │ +000253c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025450: 2020 2031 2020 2020 2020 2036 2020 2020 1 6 │ │ │ │ +000253f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00025400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025440: 2d2d 2b0a 7c69 3520 3a20 7375 6228 492c --+.|i5 : sub(I, │ │ │ │ +00025450: 2070 7429 203d 3d20 3020 2020 2020 2020 pt) == 0 │ │ │ │ 00025460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025490: 2020 7c0a 7c6f 3420 3a20 4d61 7472 6978 |.|o4 : Matrix │ │ │ │ -000254a0: 206b 6b20 203c 2d2d 206b 6b20 2020 2020 kk <-- kk │ │ │ │ +00025490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -000254f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025530: 2d2d 2b0a 7c69 3520 3a20 7375 6228 492c --+.|i5 : sub(I, │ │ │ │ -00025540: 2070 7429 203d 3d20 3020 2020 2020 2020 pt) == 0 │ │ │ │ -00025550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025580: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255d0: 2020 7c0a 7c6f 3520 3d20 7472 7565 2020 |.|o5 = true │ │ │ │ -000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000254e0: 2020 7c0a 7c6f 3520 3d20 7472 7565 2020 |.|o5 = true │ │ │ │ +000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025530: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00025540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025580: 2d2d 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d --+.+----------- │ │ │ │ +00025590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255d0: 2d2d 2b0a 7c69 3620 3a20 5320 3d20 6b6b --+.|i6 : S = kk │ │ │ │ +000255e0: 5b61 2e2e 645d 3b20 2020 2020 2020 2020 [a..d]; │ │ │ │ 000255f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025620: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00025630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025670: 2d2d 2b0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d --+.+----------- │ │ │ │ -00025680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000256a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000256b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000256c0: 2d2d 2b0a 7c69 3620 3a20 5320 3d20 6b6b --+.|i6 : S = kk │ │ │ │ -000256d0: 5b61 2e2e 645d 3b20 2020 2020 2020 2020 [a..d]; │ │ │ │ +00025670: 2d2d 2b0a 7c69 3720 3a20 4620 3d20 6772 --+.|i7 : F = gr │ │ │ │ +00025680: 6f65 626e 6572 4661 6d69 6c79 2069 6465 oebnerFamily ide │ │ │ │ +00025690: 616c 2261 322c 6162 2c61 632c 6232 2220 al"a2,ab,ac,b2" │ │ │ │ +000256a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000256b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000256c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025710: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025760: 2d2d 2b0a 7c69 3720 3a20 4620 3d20 6772 --+.|i7 : F = gr │ │ │ │ -00025770: 6f65 626e 6572 4661 6d69 6c79 2069 6465 oebnerFamily ide │ │ │ │ -00025780: 616c 2261 322c 6162 2c61 632c 6232 2220 al"a2,ab,ac,b2" │ │ │ │ -00025790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025710: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025720: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025730: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00025740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025750: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025760: 2020 7c0a 7c6f 3720 3d20 6964 6561 6c20 |.|o7 = ideal │ │ │ │ +00025770: 2861 2020 2b20 7420 622a 6320 2b20 7420 (a + t b*c + t │ │ │ │ +00025780: 612a 6420 2b20 7420 6320 202b 2074 2062 a*d + t c + t b │ │ │ │ +00025790: 2a64 202b 2074 2063 2a64 202b 2074 2064 *d + t c*d + t d │ │ │ │ +000257a0: 202c 2061 2a62 202b 2074 2062 2a63 202b , a*b + t b*c + │ │ │ │ 000257b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025800: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025810: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00025820: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00025830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025840: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00025850: 2020 7c0a 7c6f 3720 3d20 6964 6561 6c20 |.|o7 = ideal │ │ │ │ -00025860: 2861 2020 2b20 7420 622a 6320 2b20 7420 (a + t b*c + t │ │ │ │ -00025870: 612a 6420 2b20 7420 6320 202b 2074 2062 a*d + t c + t b │ │ │ │ -00025880: 2a64 202b 2074 2063 2a64 202b 2074 2064 *d + t c*d + t d │ │ │ │ -00025890: 202c 2061 2a62 202b 2074 2062 2a63 202b , a*b + t b*c + │ │ │ │ -000258a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000258b0: 2020 2020 2020 2031 2020 2020 2020 2033 1 3 │ │ │ │ -000258c0: 2020 2020 2020 2032 2020 2020 2020 3420 2 4 │ │ │ │ -000258d0: 2020 2020 2020 3520 2020 2020 2020 3620 5 6 │ │ │ │ -000258e0: 2020 2020 2020 2020 2020 3720 2020 2020 7 │ │ │ │ -000258f0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025940: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00025950: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025960: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00025970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025980: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00025990: 2020 7c0a 7c20 2020 2020 7420 612a 6420 |.| t a*d │ │ │ │ -000259a0: 2b20 7420 6320 202b 2074 2020 622a 6420 + t c + t b*d │ │ │ │ -000259b0: 2b20 7420 2063 2a64 202b 2074 2020 6420 + t c*d + t d │ │ │ │ -000259c0: 2c20 612a 6320 2b20 7420 2062 2a63 202b , a*c + t b*c + │ │ │ │ -000259d0: 2074 2020 612a 6420 2b20 7420 2063 2020 t a*d + t c │ │ │ │ -000259e0: 2b20 7c0a 7c20 2020 2020 2039 2020 2020 + |.| 9 │ │ │ │ -000259f0: 2020 2038 2020 2020 2020 3130 2020 2020 8 10 │ │ │ │ -00025a00: 2020 2031 3120 2020 2020 2020 3132 2020 11 12 │ │ │ │ -00025a10: 2020 2020 2020 2020 2031 3320 2020 2020 13 │ │ │ │ -00025a20: 2020 3135 2020 2020 2020 2031 3420 2020 15 14 │ │ │ │ -00025a30: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00025a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025a80: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025aa0: 3220 2020 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00025ab0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00025ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ad0: 2020 7c0a 7c20 2020 2020 7420 2062 2a64 |.| t b*d │ │ │ │ -00025ae0: 202b 2074 2020 632a 6420 2b20 7420 2064 + t c*d + t d │ │ │ │ -00025af0: 202c 2062 2020 2b20 7420 2062 2a63 202b , b + t b*c + │ │ │ │ -00025b00: 2074 2020 612a 6420 2b20 7420 2063 2020 t a*d + t c │ │ │ │ -00025b10: 2b20 7420 2062 2a64 202b 2074 2020 632a + t b*d + t c* │ │ │ │ -00025b20: 6420 7c0a 7c20 2020 2020 2031 3620 2020 d |.| 16 │ │ │ │ -00025b30: 2020 2020 3137 2020 2020 2020 2031 3820 17 18 │ │ │ │ -00025b40: 2020 2020 2020 2020 2031 3920 2020 2020 19 │ │ │ │ -00025b50: 2020 3231 2020 2020 2020 2032 3020 2020 21 20 │ │ │ │ -00025b60: 2020 2032 3220 2020 2020 2020 3233 2020 22 23 │ │ │ │ -00025b70: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00025b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025bc0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00025bd0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000257c0: 2020 2020 2020 2031 2020 2020 2020 2033 1 3 │ │ │ │ +000257d0: 2020 2020 2020 2032 2020 2020 2020 3420 2 4 │ │ │ │ +000257e0: 2020 2020 2020 3520 2020 2020 2020 3620 5 6 │ │ │ │ +000257f0: 2020 2020 2020 2020 2020 3720 2020 2020 7 │ │ │ │ +00025800: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00025810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025850: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00025860: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00025870: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00025880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025890: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000258a0: 2020 7c0a 7c20 2020 2020 7420 612a 6420 |.| t a*d │ │ │ │ +000258b0: 2b20 7420 6320 202b 2074 2020 622a 6420 + t c + t b*d │ │ │ │ +000258c0: 2b20 7420 2063 2a64 202b 2074 2020 6420 + t c*d + t d │ │ │ │ +000258d0: 2c20 612a 6320 2b20 7420 2062 2a63 202b , a*c + t b*c + │ │ │ │ +000258e0: 2074 2020 612a 6420 2b20 7420 2063 2020 t a*d + t c │ │ │ │ +000258f0: 2b20 7c0a 7c20 2020 2020 2039 2020 2020 + |.| 9 │ │ │ │ +00025900: 2020 2038 2020 2020 2020 3130 2020 2020 8 10 │ │ │ │ +00025910: 2020 2031 3120 2020 2020 2020 3132 2020 11 12 │ │ │ │ +00025920: 2020 2020 2020 2020 2031 3320 2020 2020 13 │ │ │ │ +00025930: 2020 3135 2020 2020 2020 2031 3420 2020 15 14 │ │ │ │ +00025940: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00025950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025990: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259b0: 3220 2020 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +000259c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000259d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000259e0: 2020 7c0a 7c20 2020 2020 7420 2062 2a64 |.| t b*d │ │ │ │ +000259f0: 202b 2074 2020 632a 6420 2b20 7420 2064 + t c*d + t d │ │ │ │ +00025a00: 202c 2062 2020 2b20 7420 2062 2a63 202b , b + t b*c + │ │ │ │ +00025a10: 2074 2020 612a 6420 2b20 7420 2063 2020 t a*d + t c │ │ │ │ +00025a20: 2b20 7420 2062 2a64 202b 2074 2020 632a + t b*d + t c* │ │ │ │ +00025a30: 6420 7c0a 7c20 2020 2020 2031 3620 2020 d |.| 16 │ │ │ │ +00025a40: 2020 2020 3137 2020 2020 2020 2031 3820 17 18 │ │ │ │ +00025a50: 2020 2020 2020 2020 2031 3920 2020 2020 19 │ │ │ │ +00025a60: 2020 3231 2020 2020 2020 2032 3020 2020 21 20 │ │ │ │ +00025a70: 2020 2032 3220 2020 2020 2020 3233 2020 22 23 │ │ │ │ +00025a80: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00025a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025ad0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00025ae0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b20: 2020 7c0a 7c20 2020 2020 2b20 7420 2064 |.| + t d │ │ │ │ +00025b30: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00025b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b70: 2020 7c0a 7c20 2020 2020 2020 2032 3420 |.| 24 │ │ │ │ +00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025bc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c10: 2020 7c0a 7c20 2020 2020 2b20 7420 2064 |.| + t d │ │ │ │ -00025c20: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00025c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c60: 2020 7c0a 7c20 2020 2020 2020 2032 3420 |.| 24 │ │ │ │ -00025c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d00: 2020 7c0a 7c6f 3720 3a20 4964 6561 6c20 |.|o7 : Ideal │ │ │ │ -00025d10: 6f66 206b 6b5b 7420 2c20 7420 2c20 7420 of kk[t , t , t │ │ │ │ -00025d20: 202c 2074 202c 2074 202c 2074 2020 2c20 , t , t , t , │ │ │ │ -00025d30: 7420 202c 2074 2020 2c20 7420 2c20 7420 t , t , t , t │ │ │ │ -00025d40: 2c20 7420 2c20 7420 202c 2074 2020 2c20 , t , t , t , │ │ │ │ -00025d50: 7420 7c0a 7c20 2020 2020 2020 2020 2020 t |.| │ │ │ │ -00025d60: 2020 2020 2020 2036 2020 2035 2020 2031 6 5 1 │ │ │ │ -00025d70: 3220 2020 3220 2020 3420 2020 3131 2020 2 2 4 11 │ │ │ │ -00025d80: 2031 3820 2020 3234 2020 2031 2020 2033 18 24 1 3 │ │ │ │ -00025d90: 2020 2038 2020 2031 3020 2020 3137 2020 8 10 17 │ │ │ │ -00025da0: 2032 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2|.|----------- │ │ │ │ +00025c10: 2020 7c0a 7c6f 3720 3a20 4964 6561 6c20 |.|o7 : Ideal │ │ │ │ +00025c20: 6f66 206b 6b5b 7420 2c20 7420 2c20 7420 of kk[t , t , t │ │ │ │ +00025c30: 202c 2074 202c 2074 202c 2074 2020 2c20 , t , t , t , │ │ │ │ +00025c40: 7420 202c 2074 2020 2c20 7420 2c20 7420 t , t , t , t │ │ │ │ +00025c50: 2c20 7420 2c20 7420 202c 2074 2020 2c20 , t , t , t , │ │ │ │ +00025c60: 7420 7c0a 7c20 2020 2020 2020 2020 2020 t |.| │ │ │ │ +00025c70: 2020 2020 2020 2036 2020 2035 2020 2031 6 5 1 │ │ │ │ +00025c80: 3220 2020 3220 2020 3420 2020 3131 2020 2 2 4 11 │ │ │ │ +00025c90: 2031 3820 2020 3234 2020 2031 2020 2033 18 24 1 3 │ │ │ │ +00025ca0: 2020 2038 2020 2031 3020 2020 3137 2020 8 10 17 │ │ │ │ +00025cb0: 2032 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2|.|----------- │ │ │ │ +00025cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025d00: 2d2d 7c0a 7c20 2c20 7420 2c20 7420 2c20 --|.| , t , t , │ │ │ │ +00025d10: 7420 202c 2074 2020 2c20 7420 202c 2074 t , t , t , t │ │ │ │ +00025d20: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ +00025d30: 202c 2074 2020 5d5b 612e 2e64 5d20 2020 , t ][a..d] │ │ │ │ +00025d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d50: 2020 7c0a 7c33 2020 2037 2020 2039 2020 |.|3 7 9 │ │ │ │ +00025d60: 2031 3420 2020 3136 2020 2032 3020 2020 14 16 20 │ │ │ │ +00025d70: 3232 2020 2031 3320 2020 3135 2020 2031 22 13 15 1 │ │ │ │ +00025d80: 3920 2020 3231 2020 2020 2020 2020 2020 9 21 │ │ │ │ +00025d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025da0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00025db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025df0: 2d2d 7c0a 7c20 2c20 7420 2c20 7420 2c20 --|.| , t , t , │ │ │ │ -00025e00: 7420 202c 2074 2020 2c20 7420 202c 2074 t , t , t , t │ │ │ │ -00025e10: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ -00025e20: 202c 2074 2020 5d5b 612e 2e64 5d20 2020 , t ][a..d] │ │ │ │ +00025df0: 2d2d 2b0a 7c69 3820 3a20 4a20 3d20 6772 --+.|i8 : J = gr │ │ │ │ +00025e00: 6f65 626e 6572 5374 7261 7475 6d20 4620 oebnerStratum F │ │ │ │ +00025e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e40: 2020 7c0a 7c33 2020 2037 2020 2039 2020 |.|3 7 9 │ │ │ │ -00025e50: 2031 3420 2020 3136 2020 2032 3020 2020 14 16 20 │ │ │ │ -00025e60: 3232 2020 2031 3320 2020 3135 2020 2031 22 13 15 1 │ │ │ │ -00025e70: 3920 2020 3231 2020 2020 2020 2020 2020 9 21 │ │ │ │ +00025e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00025ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025ee0: 2d2d 2b0a 7c69 3820 3a20 4a20 3d20 6772 --+.|i8 : J = gr │ │ │ │ -00025ef0: 6f65 626e 6572 5374 7261 7475 6d20 4620 oebnerStratum F │ │ │ │ -00025f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025e90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ee0: 2020 7c0a 7c6f 3820 3d20 6964 6561 6c20 |.|o8 = ideal │ │ │ │ +00025ef0: 282d 2074 2020 2b20 7420 2020 2d20 7420 (- t + t - t │ │ │ │ +00025f00: 2074 2020 2c20 2d20 7420 202d 2074 2020 t , - t - t │ │ │ │ +00025f10: 7420 202c 202d 2074 2020 202b 2074 2020 t , - t + t │ │ │ │ +00025f20: 202b 2074 2074 2020 202d 2074 2020 7420 + t t - t t │ │ │ │ 00025f30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00025f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fd0: 2020 7c0a 7c6f 3820 3d20 6964 6561 6c20 |.|o8 = ideal │ │ │ │ -00025fe0: 282d 2074 2020 2b20 7420 2020 2d20 7420 (- t + t - t │ │ │ │ -00025ff0: 2074 2020 2c20 2d20 7420 202d 2074 2020 t , - t - t │ │ │ │ -00026000: 7420 202c 202d 2074 2020 202b 2074 2020 t , - t + t │ │ │ │ -00026010: 202b 2074 2074 2020 202d 2074 2020 7420 + t t - t t │ │ │ │ -00026020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00026030: 2020 2020 3720 2020 2031 3420 2020 2031 7 14 1 │ │ │ │ -00026040: 3320 3139 2020 2020 2038 2020 2020 3230 3 19 8 20 │ │ │ │ -00026050: 2031 3320 2020 2020 3130 2020 2020 3137 13 10 17 │ │ │ │ -00026060: 2020 2020 3920 3133 2020 2020 3232 2031 9 13 22 1 │ │ │ │ -00026070: 3320 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3 |.| ------ │ │ │ │ -00026080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000260c0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -000260d0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000260e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026110: 2020 7c0a 7c20 2020 2020 2d20 7420 7420 |.| - t t │ │ │ │ -00026120: 2020 2d20 7420 2074 2020 202b 2074 2020 - t t + t │ │ │ │ -00026130: 7420 202c 202d 2074 2020 7420 2020 2b20 t , - t t + │ │ │ │ -00026140: 7420 2074 2020 7420 202c 202d 2074 2020 t t t , - t │ │ │ │ -00026150: 202b 2074 2074 2020 202d 2074 2020 7420 + t t - t t │ │ │ │ -00026160: 2020 7c0a 7c20 2020 2020 2020 2037 2031 |.| 7 1 │ │ │ │ -00026170: 3520 2020 2031 3620 3139 2020 2020 3133 5 16 19 13 │ │ │ │ -00026180: 2032 3120 2020 2020 3136 2032 3120 2020 21 16 21 │ │ │ │ -00026190: 2031 3320 3135 2032 3120 2020 2020 3131 13 15 21 11 │ │ │ │ -000261a0: 2020 2020 3920 3134 2020 2020 3136 2032 9 14 16 2 │ │ │ │ -000261b0: 3020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 0 |.| ------ │ │ │ │ -000261c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000261d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000261e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000261f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026200: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026250: 2020 7c0a 7c20 2020 2020 2d20 7420 2074 |.| - t t │ │ │ │ -00026260: 2020 202d 2074 2074 2020 202b 2074 2020 - t t + t │ │ │ │ -00026270: 7420 2074 2020 2c20 7420 2020 2b20 7420 t t , t + t │ │ │ │ -00026280: 7420 2020 2d20 7420 2074 2020 202d 2074 t - t t - t │ │ │ │ -00026290: 2020 7420 2020 2b20 7420 2074 2020 7420 t + t t t │ │ │ │ -000262a0: 202c 7c0a 7c20 2020 2020 2020 2032 3320 ,|.| 23 │ │ │ │ -000262b0: 3133 2020 2020 3820 3135 2020 2020 3134 13 8 15 14 │ │ │ │ -000262c0: 2031 3320 3231 2020 2031 3820 2020 2039 13 21 18 9 │ │ │ │ -000262d0: 2031 3620 2020 2031 3620 3232 2020 2020 16 16 22 │ │ │ │ -000262e0: 3130 2031 3520 2020 2031 3620 3133 2032 10 15 16 13 2 │ │ │ │ -000262f0: 3120 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 1 |.| ------ │ │ │ │ -00026300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026340: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026390: 2020 7c0a 7c20 2020 2020 2d20 7420 2020 |.| - t │ │ │ │ -000263a0: 2b20 7420 2074 2020 2d20 7420 2074 2020 + t t - t t │ │ │ │ -000263b0: 202d 2074 2020 7420 2020 2d20 7420 2074 - t t - t t │ │ │ │ -000263c0: 2020 202b 2074 2020 7420 2074 2020 2c20 + t t t , │ │ │ │ -000263d0: 7420 2074 2020 2d20 7420 2074 2020 202d t t - t t - │ │ │ │ -000263e0: 2020 7c0a 7c20 2020 2020 2020 2031 3220 |.| 12 │ │ │ │ -000263f0: 2020 2031 3720 3920 2020 2032 3320 3136 17 9 23 16 │ │ │ │ -00026400: 2020 2020 3234 2031 3320 2020 2031 3120 24 13 11 │ │ │ │ -00026410: 3135 2020 2020 3137 2031 3320 3231 2020 15 17 13 21 │ │ │ │ -00026420: 2031 3820 3920 2020 2032 3420 3136 2020 18 9 24 16 │ │ │ │ -00026430: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026480: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264b0: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -000264c0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000264d0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -000264e0: 202b 2074 2020 7420 2074 2020 2c20 2d20 + t t t , - │ │ │ │ -000264f0: 7420 202d 2032 7420 2074 2020 202b 2074 t - 2t t + t │ │ │ │ -00026500: 2020 7420 202c 202d 2074 2020 2d20 7420 t , - t - t │ │ │ │ -00026510: 2020 2b20 7420 2074 2020 2c20 2d20 7420 + t t , - t │ │ │ │ -00026520: 202d 7c0a 7c20 2020 2020 2031 3220 3135 -|.| 12 15 │ │ │ │ -00026530: 2020 2020 3138 2031 3320 3231 2020 2020 18 13 21 │ │ │ │ -00026540: 2031 2020 2020 2031 3420 3133 2020 2020 1 14 13 │ │ │ │ -00026550: 3133 2031 3920 2020 2020 3220 2020 2031 13 19 2 1 │ │ │ │ -00026560: 3420 2020 2032 3020 3133 2020 2020 2034 4 20 13 4 │ │ │ │ -00026570: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000265c0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026610: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -00026620: 2d20 7420 2074 2020 202b 2074 2074 2020 - t t + t t │ │ │ │ -00026630: 202d 2032 7420 2074 2020 202b 2074 2020 - 2t t + t │ │ │ │ -00026640: 7420 2020 2d20 7420 7420 2020 2b20 7420 t - t t + t │ │ │ │ -00026650: 7420 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ -00026660: 2020 7c0a 7c20 2020 2020 2037 2031 3620 |.| 7 16 │ │ │ │ -00026670: 2020 2031 3420 3136 2020 2020 3320 3133 14 16 3 13 │ │ │ │ -00026680: 2020 2020 2031 3720 3133 2020 2020 3232 17 13 22 │ │ │ │ -00026690: 2031 3320 2020 2031 2031 3520 2020 2037 13 1 15 7 │ │ │ │ -000266a0: 2031 3320 3135 2020 2020 3134 2031 3320 13 15 14 13 │ │ │ │ -000266b0: 3135 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 15|.| ------ │ │ │ │ -000266c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000266d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000266e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000266f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026700: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026710: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -00026720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026740: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00026750: 2020 7c0a 7c20 2020 2020 2b20 7420 2074 |.| + t t │ │ │ │ -00026760: 2020 7420 2020 2d20 7420 2074 2020 2c20 t - t t , │ │ │ │ -00026770: 7420 2020 2d20 7420 7420 2020 2d20 7420 t - t t - t │ │ │ │ -00026780: 2074 2020 202b 2074 2074 2020 7420 2020 t + t t t │ │ │ │ -00026790: 2b20 7420 2074 2020 202b 2020 2020 2020 + t t + │ │ │ │ -000267a0: 2020 7c0a 7c20 2020 2020 2020 2031 3620 |.| 16 │ │ │ │ -000267b0: 3133 2031 3920 2020 2031 3320 3231 2020 13 19 13 21 │ │ │ │ -000267c0: 2031 3820 2020 2039 2031 3620 2020 2031 18 9 16 1 │ │ │ │ -000267d0: 3720 3135 2020 2020 3920 3133 2031 3520 7 15 9 13 15 │ │ │ │ -000267e0: 2020 2031 3420 3135 2020 2020 2020 2020 14 15 │ │ │ │ -000267f0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026840: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026850: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00026860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026890: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -000268a0: 7420 2020 2d20 7420 2074 2020 7420 202c t - t t t , │ │ │ │ -000268b0: 202d 2074 2020 2b20 7420 7420 2020 2d20 - t + t t - │ │ │ │ -000268c0: 3274 2020 7420 2020 2d20 7420 7420 2020 2t t - t t │ │ │ │ -000268d0: 2b20 7420 2074 2020 7420 2020 2b20 2020 + t t t + │ │ │ │ -000268e0: 2020 7c0a 7c20 2020 2020 2031 3620 3133 |.| 16 13 │ │ │ │ -000268f0: 2032 3120 2020 2031 3320 3135 2032 3120 21 13 15 21 │ │ │ │ -00026900: 2020 2020 3520 2020 2033 2031 3420 2020 5 3 14 │ │ │ │ -00026910: 2020 3137 2031 3420 2020 2038 2031 3620 17 14 8 16 │ │ │ │ -00026920: 2020 2031 3620 3230 2031 3320 2020 2020 16 20 13 │ │ │ │ -00026930: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026980: 2d2d 7c0a 7c20 2020 2020 2020 2020 3220 --|.| 2 │ │ │ │ -00026990: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000269a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269b0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000269c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269d0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -000269e0: 202d 2074 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ -000269f0: 2020 2b20 7420 7420 2074 2020 202d 2074 + t t t - t │ │ │ │ -00026a00: 2020 7420 2074 2020 2c20 7420 7420 2020 t t , t t │ │ │ │ -00026a10: 2d20 7420 2074 2020 202d 2074 2020 7420 - t t - t t │ │ │ │ -00026a20: 2020 7c0a 7c20 2020 2020 2032 3320 3133 |.| 23 13 │ │ │ │ -00026a30: 2020 2020 3220 3135 2020 2020 3134 2031 2 15 14 1 │ │ │ │ -00026a40: 3520 2020 2038 2031 3320 3135 2020 2020 5 8 13 15 │ │ │ │ -00026a50: 3134 2031 3320 3231 2020 2033 2031 3620 14 13 21 3 16 │ │ │ │ -00026a60: 2020 2031 3020 3136 2020 2020 3137 2031 10 16 17 1 │ │ │ │ -00026a70: 3620 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 6 |.| ------ │ │ │ │ -00026a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ac0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00026b10: 2020 7c0a 7c20 2020 2020 2d20 7420 2074 |.| - t t │ │ │ │ -00026b20: 2020 202b 2074 2020 7420 2074 2020 202d + t t t - │ │ │ │ -00026b30: 2074 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ -00026b40: 2020 202b 2074 2020 7420 2074 2020 202d + t t t - │ │ │ │ -00026b50: 2074 2020 7420 2074 2020 2c20 2d20 7420 t t t , - t │ │ │ │ -00026b60: 202b 7c0a 7c20 2020 2020 2020 2031 3820 +|.| 18 │ │ │ │ -00026b70: 3133 2020 2020 3136 2032 3220 3133 2020 13 16 22 13 │ │ │ │ -00026b80: 2020 3420 3135 2020 2020 3134 2031 3620 4 15 14 16 │ │ │ │ -00026b90: 3135 2020 2020 3130 2031 3320 3135 2020 15 10 13 15 │ │ │ │ -00026ba0: 2020 3136 2031 3320 3231 2020 2020 2036 16 13 21 6 │ │ │ │ -00026bb0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026c00: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026c10: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c30: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00026c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c50: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -00026c60: 2d20 7420 2020 2d20 7420 2074 2020 202d - t - t t - │ │ │ │ -00026c70: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ -00026c80: 7420 2020 2b20 7420 2074 2020 202d 2074 t + t t - t │ │ │ │ -00026c90: 2074 2020 202b 2074 2020 7420 2074 2020 t + t t t │ │ │ │ -00026ca0: 202b 7c0a 7c20 2020 2020 2033 2031 3720 +|.| 3 17 │ │ │ │ -00026cb0: 2020 2031 3720 2020 2031 3820 3134 2020 17 18 14 │ │ │ │ -00026cc0: 2020 3131 2031 3620 2020 2032 3320 3136 11 16 23 16 │ │ │ │ -00026cd0: 2031 3320 2020 2032 3420 3133 2020 2020 13 24 13 │ │ │ │ -00026ce0: 3520 3135 2020 2020 3137 2031 3420 3135 5 15 17 14 15 │ │ │ │ -00026cf0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026d40: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026d50: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00026d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d90: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00026da0: 7420 2020 2d20 7420 2074 2020 7420 202c t - t t t , │ │ │ │ -00026db0: 2074 2020 7420 202d 2074 2020 7420 2020 t t - t t │ │ │ │ -00026dc0: 2d20 7420 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ -00026dd0: 2074 2020 202d 2074 2074 2020 202b 2020 t - t t + │ │ │ │ -00026de0: 2020 7c0a 7c20 2020 2020 2031 3120 3133 |.| 11 13 │ │ │ │ -00026df0: 2031 3520 2020 2031 3720 3133 2032 3120 15 17 13 21 │ │ │ │ -00026e00: 2020 3138 2033 2020 2020 3138 2031 3720 18 3 18 17 │ │ │ │ -00026e10: 2020 2031 3220 3136 2020 2020 3234 2031 12 16 24 1 │ │ │ │ -00026e20: 3620 3133 2020 2020 3620 3135 2020 2020 6 13 6 15 │ │ │ │ -00026e30: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e80: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00026e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ea0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00026eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ed0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00026ee0: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ -00026ef0: 2d20 7420 2074 2020 7420 202c 202d 2074 - t t t , - t │ │ │ │ -00026f00: 2020 2d20 7420 2074 2020 202b 2074 2074 - t t + t t │ │ │ │ -00026f10: 2020 202d 2074 2020 7420 2020 2b20 2020 - t t + │ │ │ │ -00026f20: 2020 7c0a 7c20 2020 2020 2031 3820 3134 |.| 18 14 │ │ │ │ -00026f30: 2031 3520 2020 2031 3220 3133 2031 3520 15 12 13 15 │ │ │ │ -00026f40: 2020 2031 3820 3133 2032 3120 2020 2020 18 13 21 │ │ │ │ -00026f50: 3820 2020 2032 3020 3133 2020 2020 3720 8 20 13 7 │ │ │ │ -00026f60: 3139 2020 2020 3134 2031 3920 2020 2020 19 14 19 │ │ │ │ -00026f70: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00026f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026fc0: 2d2d 7c0a 7c20 2020 2020 2020 2020 3220 --|.| 2 │ │ │ │ -00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027010: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027020: 2c20 7420 7420 2020 2d20 7420 2074 2020 , t t - t t │ │ │ │ -00027030: 202b 2074 2020 7420 2074 2020 2c20 2d20 + t t t , - │ │ │ │ -00027040: 7420 2020 2b20 7420 7420 202d 2074 2020 t + t t - t │ │ │ │ -00027050: 7420 2020 2d20 7420 2074 2020 202b 2020 t - t t + │ │ │ │ -00027060: 2020 7c0a 7c20 2020 2020 2031 3320 3139 |.| 13 19 │ │ │ │ -00027070: 2020 2037 2032 3020 2020 2031 3420 3230 7 20 14 20 │ │ │ │ -00027080: 2020 2020 3230 2031 3320 3139 2020 2020 20 13 19 │ │ │ │ -00027090: 2031 3120 2020 2037 2039 2020 2020 3136 11 7 9 16 │ │ │ │ -000270a0: 2032 3020 2020 2032 3320 3133 2020 2020 20 23 13 │ │ │ │ -000270b0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -000270c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000270d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000270e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000270f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027100: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027140: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00027150: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027160: 7420 2020 2b20 7420 2074 2020 202d 2074 t + t t - t │ │ │ │ -00027170: 2020 7420 2020 2b20 7420 2074 2020 7420 t + t t t │ │ │ │ -00027180: 2020 2b20 7420 7420 2074 2020 202b 2074 + t t t + t │ │ │ │ -00027190: 2020 7420 2020 2d20 7420 7420 2020 2d20 t - t t - │ │ │ │ -000271a0: 2020 7c0a 7c20 2020 2020 2032 3020 3133 |.| 20 13 │ │ │ │ -000271b0: 2031 3520 2020 2031 3020 3139 2020 2020 15 10 19 │ │ │ │ -000271c0: 3137 2031 3920 2020 2032 3220 3133 2031 17 19 22 13 1 │ │ │ │ -000271d0: 3920 2020 2037 2031 3520 3139 2020 2020 9 7 15 19 │ │ │ │ -000271e0: 3136 2031 3920 2020 2031 2032 3120 2020 16 19 1 21 │ │ │ │ -000271f0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027240: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027250: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00027260: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00027270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027280: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00027290: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ -000272a0: 2020 202d 2074 2020 7420 2074 2020 2c20 - t t t , │ │ │ │ -000272b0: 7420 2020 2b20 7420 202d 2074 2074 2020 t + t - t t │ │ │ │ -000272c0: 202d 2074 2020 7420 2020 2b20 7420 2074 - t t + t t │ │ │ │ -000272d0: 2020 202b 2074 2074 2020 7420 2020 2d20 + t t t - │ │ │ │ -000272e0: 2020 7c0a 7c20 2020 2020 2037 2031 3320 |.| 7 13 │ │ │ │ -000272f0: 3231 2020 2020 3133 2031 3920 3231 2020 21 13 19 21 │ │ │ │ -00027300: 2032 3420 2020 2039 2020 2020 3920 3232 24 9 9 22 │ │ │ │ -00027310: 2020 2020 3233 2031 3520 2020 2032 3020 23 15 20 │ │ │ │ -00027320: 3135 2020 2020 3920 3135 2031 3920 2020 15 9 15 19 │ │ │ │ -00027330: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027380: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273d0: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -000273e0: 2b20 7420 2074 2020 202d 2074 2074 2020 + t t - t t │ │ │ │ -000273f0: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ -00027400: 2d20 7420 2074 2020 7420 2074 2020 2c20 - t t t t , │ │ │ │ -00027410: 7420 2074 2020 2b20 7420 7420 202d 2020 t t + t t - │ │ │ │ -00027420: 2020 7c0a 7c20 2020 2020 2033 2032 3120 |.| 3 21 │ │ │ │ -00027430: 2020 2031 3020 3231 2020 2020 3720 3135 10 21 7 15 │ │ │ │ -00027440: 2032 3120 2020 2031 3620 3139 2032 3120 21 16 19 21 │ │ │ │ -00027450: 2020 2031 3320 3135 2031 3920 3231 2020 13 15 19 21 │ │ │ │ -00027460: 2032 3320 3720 2020 2038 2039 2020 2020 23 7 8 9 │ │ │ │ -00027470: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000274a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000274b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000274c0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027510: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027520: 202b 2074 2020 7420 2020 2d20 7420 2074 + t t - t t │ │ │ │ -00027530: 2020 202d 2074 2074 2020 202b 2074 2020 - t t + t │ │ │ │ -00027540: 7420 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ -00027550: 2020 202b 2074 2020 7420 2074 2020 202b + t t t + │ │ │ │ -00027560: 2020 7c0a 7c20 2020 2020 2032 3320 3134 |.| 23 14 │ │ │ │ -00027570: 2020 2020 3130 2032 3020 2020 2031 3720 10 20 17 │ │ │ │ -00027580: 3230 2020 2020 3820 3232 2020 2020 3134 20 8 22 14 │ │ │ │ -00027590: 2032 3020 3135 2020 2020 3136 2032 3020 20 15 16 20 │ │ │ │ -000275a0: 3139 2020 2020 3233 2031 3320 3139 2020 19 23 13 19 │ │ │ │ -000275b0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -000275c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027600: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027650: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ -00027660: 2020 202d 2074 2074 2020 202d 2074 2074 - t t - t t │ │ │ │ -00027670: 2020 7420 2020 2d20 7420 2074 2020 7420 t - t t t │ │ │ │ -00027680: 2074 2020 2c20 2d20 7420 2020 2b20 7420 t , - t + t │ │ │ │ -00027690: 2074 2020 2d20 7420 2074 2020 202b 2020 t - t t + │ │ │ │ -000276a0: 2020 7c0a 7c20 2020 2020 2038 2031 3520 |.| 8 15 │ │ │ │ -000276b0: 3139 2020 2020 3220 3231 2020 2020 3720 19 2 21 7 │ │ │ │ -000276c0: 3134 2032 3120 2020 2031 3420 3133 2031 14 21 14 13 1 │ │ │ │ -000276d0: 3920 3231 2020 2020 2031 3220 2020 2031 9 21 12 1 │ │ │ │ -000276e0: 3020 3920 2020 2032 3320 3136 2020 2020 0 9 23 16 │ │ │ │ -000276f0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027740: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027790: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -000277a0: 7420 2020 2d20 7420 2074 2020 202b 2074 t - t t + t │ │ │ │ -000277b0: 2020 7420 2074 2020 202b 2074 2020 7420 t t + t t │ │ │ │ -000277c0: 2074 2020 202d 2074 2074 2020 202d 2074 t - t t - t │ │ │ │ -000277d0: 2074 2020 7420 2020 2d20 2020 2020 2020 t t - │ │ │ │ -000277e0: 2020 7c0a 7c20 2020 2020 2031 3620 3230 |.| 16 20 │ │ │ │ -000277f0: 2031 3520 2020 2031 3820 3139 2020 2020 15 18 19 │ │ │ │ -00027800: 3136 2032 3220 3139 2020 2020 3130 2031 16 22 19 10 1 │ │ │ │ -00027810: 3520 3139 2020 2020 3420 3231 2020 2020 5 19 4 21 │ │ │ │ -00027820: 3720 3136 2032 3120 2020 2020 2020 2020 7 16 21 │ │ │ │ -00027830: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027880: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278d0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -000278e0: 7420 2074 2020 2c20 7420 2074 2020 202d t t , t t - │ │ │ │ -000278f0: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ -00027900: 2b20 7420 2074 2020 2d20 7420 2074 2020 + t t - t t │ │ │ │ -00027910: 202d 2074 2020 7420 2020 2b20 2020 2020 - t t + │ │ │ │ -00027920: 2020 7c0a 7c20 2020 2020 2031 3620 3133 |.| 16 13 │ │ │ │ -00027930: 2031 3920 3231 2020 2031 3020 3233 2020 19 21 10 23 │ │ │ │ -00027940: 2020 3137 2032 3320 2020 2032 3420 3720 17 23 24 7 │ │ │ │ -00027950: 2020 2031 3120 3920 2020 2031 3820 3230 11 9 18 20 │ │ │ │ -00027960: 2020 2020 3131 2032 3220 2020 2020 2020 11 22 │ │ │ │ -00027970: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279c0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -000279d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000279e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000279f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a10: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027a20: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ -00027a30: 2b20 7420 2074 2020 7420 2020 2b20 7420 + t t t + t │ │ │ │ -00027a40: 2074 2020 7420 2020 2d20 7420 7420 2020 t t - t t │ │ │ │ -00027a50: 2d20 7420 2074 2074 2020 202d 2020 2020 - t t t - │ │ │ │ -00027a60: 2020 7c0a 7c20 2020 2020 2031 3720 3230 |.| 17 20 │ │ │ │ -00027a70: 2031 3520 2020 2032 3320 3136 2031 3920 15 23 16 19 │ │ │ │ -00027a80: 2020 2032 3420 3133 2031 3920 2020 2031 24 13 19 1 │ │ │ │ -00027a90: 3120 3135 2031 3920 2020 2035 2032 3120 1 15 19 5 21 │ │ │ │ -00027aa0: 2020 2031 3720 3720 3231 2020 2020 2020 17 7 21 │ │ │ │ -00027ab0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b00: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027b50: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027b60: 7420 2074 2020 2c20 7420 2074 2020 202d t t , t t - │ │ │ │ -00027b70: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ -00027b80: 2d20 7420 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ -00027b90: 2074 2020 202b 2074 2020 7420 2074 2020 t + t t t │ │ │ │ -00027ba0: 202b 7c0a 7c20 2020 2020 2031 3720 3133 +|.| 17 13 │ │ │ │ -00027bb0: 2031 3920 3231 2020 2032 3420 3130 2020 19 21 24 10 │ │ │ │ -00027bc0: 2020 3138 2032 3320 2020 2031 3220 3920 18 23 12 9 │ │ │ │ -00027bd0: 2020 2031 3220 3232 2020 2020 3138 2032 12 22 18 2 │ │ │ │ -00027be0: 3020 3135 2020 2020 3234 2031 3620 3139 0 15 24 16 19 │ │ │ │ -00027bf0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c40: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027c90: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027ca0: 7420 2020 2d20 7420 7420 2020 2d20 7420 t - t t - t │ │ │ │ -00027cb0: 2074 2074 2020 202d 2074 2020 7420 2074 t t - t t t │ │ │ │ -00027cc0: 2020 7420 202c 202d 2074 2020 2d20 7420 t , - t - t │ │ │ │ -00027cd0: 7420 2020 2d20 7420 7420 2020 2b20 2020 t - t t + │ │ │ │ -00027ce0: 2020 7c0a 7c20 2020 2020 2031 3220 3135 |.| 12 15 │ │ │ │ -00027cf0: 2031 3920 2020 2036 2032 3120 2020 2031 19 6 21 1 │ │ │ │ -00027d00: 3820 3720 3231 2020 2020 3138 2031 3320 8 7 21 18 13 │ │ │ │ -00027d10: 3139 2032 3120 2020 2020 3220 2020 2037 19 21 2 7 │ │ │ │ -00027d20: 2031 3420 2020 2038 2031 3320 2020 2020 14 8 13 │ │ │ │ -00027d30: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d80: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027dd0: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -00027de0: 2b20 7420 7420 2074 2020 2c20 2d20 7420 + t t t , - t │ │ │ │ -00027df0: 7420 2020 2b20 7420 7420 2020 2b20 7420 t + t t + t │ │ │ │ -00027e00: 7420 2074 2020 2c20 2d20 7420 202b 2074 t t , - t + t │ │ │ │ -00027e10: 2074 2020 2d20 7420 2074 2020 2d20 2020 t - t t - │ │ │ │ -00027e20: 2020 7c0a 7c20 2020 2020 2031 2031 3920 |.| 1 19 │ │ │ │ -00027e30: 2020 2037 2031 3320 3139 2020 2020 2038 7 13 19 8 │ │ │ │ -00027e40: 2031 3420 2020 2031 2032 3020 2020 2037 14 1 20 7 │ │ │ │ -00027e50: 2032 3020 3133 2020 2020 2035 2020 2020 20 13 5 │ │ │ │ -00027e60: 3320 3720 2020 2031 3020 3720 2020 2020 3 7 10 7 │ │ │ │ -00027e70: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ec0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00027ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ef0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00027f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027f10: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ -00027f20: 2d20 7420 7420 202d 2074 2074 2020 202b - t t - t t + │ │ │ │ -00027f30: 2074 2074 2020 202d 2074 2020 7420 2020 t t - t t │ │ │ │ -00027f40: 2b20 7420 7420 2074 2020 202b 2074 2074 + t t t + t t │ │ │ │ -00027f50: 2020 202b 2074 2074 2020 7420 2020 2b20 + t t t + │ │ │ │ -00027f60: 2020 7c0a 7c20 2020 2020 2031 3720 3720 |.| 17 7 │ │ │ │ -00027f70: 2020 2031 2039 2020 2020 3820 3136 2020 1 9 8 16 │ │ │ │ -00027f80: 2020 3120 3232 2020 2020 3131 2031 3320 1 22 11 13 │ │ │ │ -00027f90: 2020 2037 2032 3220 3133 2020 2020 3720 7 22 13 7 │ │ │ │ -00027fa0: 3135 2020 2020 3820 3133 2031 3520 2020 15 8 13 15 │ │ │ │ -00027fb0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00027fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028000: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00028010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028020: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00028030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028050: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -00028060: 2b20 7420 7420 2074 2020 202d 2074 2074 + t t t - t t │ │ │ │ -00028070: 2020 7420 2020 2d20 7420 7420 2074 2020 t - t t t │ │ │ │ -00028080: 2c20 7420 2020 2d20 7420 2074 2020 2d20 , t - t t - │ │ │ │ -00028090: 7420 2074 2020 202b 2074 2074 2074 2020 t t + t t t │ │ │ │ -000280a0: 202b 7c0a 7c20 2020 2020 2034 2031 3920 +|.| 4 19 │ │ │ │ -000280b0: 2020 2037 2031 3620 3139 2020 2020 3120 7 16 19 1 │ │ │ │ -000280c0: 3133 2032 3120 2020 2037 2031 3320 3231 13 21 7 13 21 │ │ │ │ -000280d0: 2020 2031 3220 2020 2031 3020 3920 2020 12 10 9 │ │ │ │ -000280e0: 2031 3120 3135 2020 2020 3720 3920 3135 11 15 7 9 15 │ │ │ │ -000280f0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00028100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028140: 2d2d 7c0a 7c20 2020 2020 2020 2032 2020 --|.| 2 │ │ │ │ -00028150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028190: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ -000281a0: 2b20 7420 7420 2020 2b20 7420 7420 2074 + t t + t t t │ │ │ │ -000281b0: 2020 202d 2074 2074 2020 7420 2020 2d20 - t t t - │ │ │ │ -000281c0: 7420 7420 2074 2020 7420 202c 2074 2074 t t t t , t t │ │ │ │ -000281d0: 2020 2d20 7420 7420 2020 2d20 7420 7420 - t t - t t │ │ │ │ -000281e0: 2020 7c0a 7c20 2020 2020 2038 2031 3520 |.| 8 15 │ │ │ │ -000281f0: 2020 2034 2032 3120 2020 2037 2031 3620 4 21 7 16 │ │ │ │ -00028200: 3231 2020 2020 3120 3135 2032 3120 2020 21 1 15 21 │ │ │ │ -00028210: 2037 2031 3320 3135 2032 3120 2020 3320 7 13 15 21 3 │ │ │ │ -00028220: 3820 2020 2038 2031 3020 2020 2038 2031 8 8 10 8 1 │ │ │ │ -00028230: 3720 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 7 |.| ------ │ │ │ │ -00028240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028280: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -00028290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000282d0: 2020 7c0a 7c20 2020 2020 2b20 7420 7420 |.| + t t │ │ │ │ -000282e0: 2020 2d20 7420 7420 202d 2074 2020 7420 - t t - t t │ │ │ │ -000282f0: 2020 2b20 7420 7420 2020 2b20 7420 7420 + t t + t t │ │ │ │ -00028300: 2074 2020 202b 2074 2020 7420 7420 2020 t + t t t │ │ │ │ -00028310: 2b20 7420 7420 7420 2020 2b20 2020 2020 + t t t + │ │ │ │ -00028320: 2020 7c0a 7c20 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ -00028330: 3320 2020 2032 2039 2020 2020 3131 2031 3 2 9 11 1 │ │ │ │ -00028340: 3420 2020 2034 2032 3020 2020 2037 2031 4 4 20 7 1 │ │ │ │ -00028350: 3620 3230 2020 2020 3233 2037 2031 3320 6 20 23 7 13 │ │ │ │ -00028360: 2020 2038 2037 2031 3520 2020 2020 2020 8 7 15 │ │ │ │ -00028370: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ -00028380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283c0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ -000283d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000283f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00028400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028410: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ -00028420: 2020 202d 2074 2074 2020 7420 2020 2d20 - t t t - │ │ │ │ -00028430: 7420 7420 2074 2020 7420 202c 202d 2074 t t t t , - t │ │ │ │ -00028440: 2020 2b20 7420 7420 2020 2d20 7420 2020 + t t - t │ │ │ │ -00028450: 2d20 7420 2074 2020 2d20 7420 7420 202d - t t - t t - │ │ │ │ -00028460: 2020 7c0a 7c20 2020 2020 2038 2031 3420 |.| 8 14 │ │ │ │ -00028470: 3135 2020 2020 3120 3134 2032 3120 2020 15 1 14 21 │ │ │ │ -00028480: 2037 2031 3420 3133 2032 3120 2020 2020 7 14 13 21 │ │ │ │ -00028490: 3620 2020 2033 2031 3020 2020 2031 3020 6 3 10 10 │ │ │ │ -000284a0: 2020 2031 3820 3720 2020 2034 2039 2020 18 7 4 9 │ │ │ │ +00025f40: 2020 2020 3720 2020 2031 3420 2020 2031 7 14 1 │ │ │ │ +00025f50: 3320 3139 2020 2020 2038 2020 2020 3230 3 19 8 20 │ │ │ │ +00025f60: 2031 3320 2020 2020 3130 2020 2020 3137 13 10 17 │ │ │ │ +00025f70: 2020 2020 3920 3133 2020 2020 3232 2031 9 13 22 1 │ │ │ │ +00025f80: 3320 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3 |.| ------ │ │ │ │ +00025f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025fd0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00025fe0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00025ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026020: 2020 7c0a 7c20 2020 2020 2d20 7420 7420 |.| - t t │ │ │ │ +00026030: 2020 2d20 7420 2074 2020 202b 2074 2020 - t t + t │ │ │ │ +00026040: 7420 202c 202d 2074 2020 7420 2020 2b20 t , - t t + │ │ │ │ +00026050: 7420 2074 2020 7420 202c 202d 2074 2020 t t t , - t │ │ │ │ +00026060: 202b 2074 2074 2020 202d 2074 2020 7420 + t t - t t │ │ │ │ +00026070: 2020 7c0a 7c20 2020 2020 2020 2037 2031 |.| 7 1 │ │ │ │ +00026080: 3520 2020 2031 3620 3139 2020 2020 3133 5 16 19 13 │ │ │ │ +00026090: 2032 3120 2020 2020 3136 2032 3120 2020 21 16 21 │ │ │ │ +000260a0: 2031 3320 3135 2032 3120 2020 2020 3131 13 15 21 11 │ │ │ │ +000260b0: 2020 2020 3920 3134 2020 2020 3136 2032 9 14 16 2 │ │ │ │ +000260c0: 3020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 0 |.| ------ │ │ │ │ +000260d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000260e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000260f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026110: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026160: 2020 7c0a 7c20 2020 2020 2d20 7420 2074 |.| - t t │ │ │ │ +00026170: 2020 202d 2074 2074 2020 202b 2074 2020 - t t + t │ │ │ │ +00026180: 7420 2074 2020 2c20 7420 2020 2b20 7420 t t , t + t │ │ │ │ +00026190: 7420 2020 2d20 7420 2074 2020 202d 2074 t - t t - t │ │ │ │ +000261a0: 2020 7420 2020 2b20 7420 2074 2020 7420 t + t t t │ │ │ │ +000261b0: 202c 7c0a 7c20 2020 2020 2020 2032 3320 ,|.| 23 │ │ │ │ +000261c0: 3133 2020 2020 3820 3135 2020 2020 3134 13 8 15 14 │ │ │ │ +000261d0: 2031 3320 3231 2020 2031 3820 2020 2039 13 21 18 9 │ │ │ │ +000261e0: 2031 3620 2020 2031 3620 3232 2020 2020 16 16 22 │ │ │ │ +000261f0: 3130 2031 3520 2020 2031 3620 3133 2032 10 15 16 13 2 │ │ │ │ +00026200: 3120 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 1 |.| ------ │ │ │ │ +00026210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026250: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000262a0: 2020 7c0a 7c20 2020 2020 2d20 7420 2020 |.| - t │ │ │ │ +000262b0: 2b20 7420 2074 2020 2d20 7420 2074 2020 + t t - t t │ │ │ │ +000262c0: 202d 2074 2020 7420 2020 2d20 7420 2074 - t t - t t │ │ │ │ +000262d0: 2020 202b 2074 2020 7420 2074 2020 2c20 + t t t , │ │ │ │ +000262e0: 7420 2074 2020 2d20 7420 2074 2020 202d t t - t t - │ │ │ │ +000262f0: 2020 7c0a 7c20 2020 2020 2020 2031 3220 |.| 12 │ │ │ │ +00026300: 2020 2031 3720 3920 2020 2032 3320 3136 17 9 23 16 │ │ │ │ +00026310: 2020 2020 3234 2031 3320 2020 2031 3120 24 13 11 │ │ │ │ +00026320: 3135 2020 2020 3137 2031 3320 3231 2020 15 17 13 21 │ │ │ │ +00026330: 2031 3820 3920 2020 2032 3420 3136 2020 18 9 24 16 │ │ │ │ +00026340: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026390: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000263a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000263b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000263c0: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +000263d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000263e0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +000263f0: 202b 2074 2020 7420 2074 2020 2c20 2d20 + t t t , - │ │ │ │ +00026400: 7420 202d 2032 7420 2074 2020 202b 2074 t - 2t t + t │ │ │ │ +00026410: 2020 7420 202c 202d 2074 2020 2d20 7420 t , - t - t │ │ │ │ +00026420: 2020 2b20 7420 2074 2020 2c20 2d20 7420 + t t , - t │ │ │ │ +00026430: 202d 7c0a 7c20 2020 2020 2031 3220 3135 -|.| 12 15 │ │ │ │ +00026440: 2020 2020 3138 2031 3320 3231 2020 2020 18 13 21 │ │ │ │ +00026450: 2031 2020 2020 2031 3420 3133 2020 2020 1 14 13 │ │ │ │ +00026460: 3133 2031 3920 2020 2020 3220 2020 2031 13 19 2 1 │ │ │ │ +00026470: 3420 2020 2032 3020 3133 2020 2020 2034 4 20 13 4 │ │ │ │ +00026480: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000264a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000264b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000264c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000264d0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000264f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026500: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026520: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +00026530: 2d20 7420 2074 2020 202b 2074 2074 2020 - t t + t t │ │ │ │ +00026540: 202d 2032 7420 2074 2020 202b 2074 2020 - 2t t + t │ │ │ │ +00026550: 7420 2020 2d20 7420 7420 2020 2b20 7420 t - t t + t │ │ │ │ +00026560: 7420 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ +00026570: 2020 7c0a 7c20 2020 2020 2037 2031 3620 |.| 7 16 │ │ │ │ +00026580: 2020 2031 3420 3136 2020 2020 3320 3133 14 16 3 13 │ │ │ │ +00026590: 2020 2020 2031 3720 3133 2020 2020 3232 17 13 22 │ │ │ │ +000265a0: 2031 3320 2020 2031 2031 3520 2020 2037 13 1 15 7 │ │ │ │ +000265b0: 2031 3320 3135 2020 2020 3134 2031 3320 13 15 14 13 │ │ │ │ +000265c0: 3135 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 15|.| ------ │ │ │ │ +000265d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026610: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026620: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +00026630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026650: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00026660: 2020 7c0a 7c20 2020 2020 2b20 7420 2074 |.| + t t │ │ │ │ +00026670: 2020 7420 2020 2d20 7420 2074 2020 2c20 t - t t , │ │ │ │ +00026680: 7420 2020 2d20 7420 7420 2020 2d20 7420 t - t t - t │ │ │ │ +00026690: 2074 2020 202b 2074 2074 2020 7420 2020 t + t t t │ │ │ │ +000266a0: 2b20 7420 2074 2020 202b 2020 2020 2020 + t t + │ │ │ │ +000266b0: 2020 7c0a 7c20 2020 2020 2020 2031 3620 |.| 16 │ │ │ │ +000266c0: 3133 2031 3920 2020 2031 3320 3231 2020 13 19 13 21 │ │ │ │ +000266d0: 2031 3820 2020 2039 2031 3620 2020 2031 18 9 16 1 │ │ │ │ +000266e0: 3720 3135 2020 2020 3920 3133 2031 3520 7 15 9 13 15 │ │ │ │ +000266f0: 2020 2031 3420 3135 2020 2020 2020 2020 14 15 │ │ │ │ +00026700: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026750: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026760: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00026770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000267a0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +000267b0: 7420 2020 2d20 7420 2074 2020 7420 202c t - t t t , │ │ │ │ +000267c0: 202d 2074 2020 2b20 7420 7420 2020 2d20 - t + t t - │ │ │ │ +000267d0: 3274 2020 7420 2020 2d20 7420 7420 2020 2t t - t t │ │ │ │ +000267e0: 2b20 7420 2074 2020 7420 2020 2b20 2020 + t t t + │ │ │ │ +000267f0: 2020 7c0a 7c20 2020 2020 2031 3620 3133 |.| 16 13 │ │ │ │ +00026800: 2032 3120 2020 2031 3320 3135 2032 3120 21 13 15 21 │ │ │ │ +00026810: 2020 2020 3520 2020 2033 2031 3420 2020 5 3 14 │ │ │ │ +00026820: 2020 3137 2031 3420 2020 2038 2031 3620 17 14 8 16 │ │ │ │ +00026830: 2020 2031 3620 3230 2031 3320 2020 2020 16 20 13 │ │ │ │ +00026840: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026890: 2d2d 7c0a 7c20 2020 2020 2020 2020 3220 --|.| 2 │ │ │ │ +000268a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000268b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268c0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000268d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268e0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +000268f0: 202d 2074 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ +00026900: 2020 2b20 7420 7420 2074 2020 202d 2074 + t t t - t │ │ │ │ +00026910: 2020 7420 2074 2020 2c20 7420 7420 2020 t t , t t │ │ │ │ +00026920: 2d20 7420 2074 2020 202d 2074 2020 7420 - t t - t t │ │ │ │ +00026930: 2020 7c0a 7c20 2020 2020 2032 3320 3133 |.| 23 13 │ │ │ │ +00026940: 2020 2020 3220 3135 2020 2020 3134 2031 2 15 14 1 │ │ │ │ +00026950: 3520 2020 2038 2031 3320 3135 2020 2020 5 8 13 15 │ │ │ │ +00026960: 3134 2031 3320 3231 2020 2033 2031 3620 14 13 21 3 16 │ │ │ │ +00026970: 2020 2031 3020 3136 2020 2020 3137 2031 10 16 17 1 │ │ │ │ +00026980: 3620 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 6 |.| ------ │ │ │ │ +00026990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000269a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000269b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000269c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000269d0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a10: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00026a20: 2020 7c0a 7c20 2020 2020 2d20 7420 2074 |.| - t t │ │ │ │ +00026a30: 2020 202b 2074 2020 7420 2074 2020 202d + t t t - │ │ │ │ +00026a40: 2074 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ +00026a50: 2020 202b 2074 2020 7420 2074 2020 202d + t t t - │ │ │ │ +00026a60: 2074 2020 7420 2074 2020 2c20 2d20 7420 t t t , - t │ │ │ │ +00026a70: 202b 7c0a 7c20 2020 2020 2020 2031 3820 +|.| 18 │ │ │ │ +00026a80: 3133 2020 2020 3136 2032 3220 3133 2020 13 16 22 13 │ │ │ │ +00026a90: 2020 3420 3135 2020 2020 3134 2031 3620 4 15 14 16 │ │ │ │ +00026aa0: 3135 2020 2020 3130 2031 3320 3135 2020 15 10 13 15 │ │ │ │ +00026ab0: 2020 3136 2031 3320 3231 2020 2020 2036 16 13 21 6 │ │ │ │ +00026ac0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026b10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026b20: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b40: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b60: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +00026b70: 2d20 7420 2020 2d20 7420 2074 2020 202d - t - t t - │ │ │ │ +00026b80: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ +00026b90: 7420 2020 2b20 7420 2074 2020 202d 2074 t + t t - t │ │ │ │ +00026ba0: 2074 2020 202b 2074 2020 7420 2074 2020 t + t t t │ │ │ │ +00026bb0: 202b 7c0a 7c20 2020 2020 2033 2031 3720 +|.| 3 17 │ │ │ │ +00026bc0: 2020 2031 3720 2020 2031 3820 3134 2020 17 18 14 │ │ │ │ +00026bd0: 2020 3131 2031 3620 2020 2032 3320 3136 11 16 23 16 │ │ │ │ +00026be0: 2031 3320 2020 2032 3420 3133 2020 2020 13 24 13 │ │ │ │ +00026bf0: 3520 3135 2020 2020 3137 2031 3420 3135 5 15 17 14 15 │ │ │ │ +00026c00: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026c50: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026c60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00026c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ca0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00026cb0: 7420 2020 2d20 7420 2074 2020 7420 202c t - t t t , │ │ │ │ +00026cc0: 2074 2020 7420 202d 2074 2020 7420 2020 t t - t t │ │ │ │ +00026cd0: 2d20 7420 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ +00026ce0: 2074 2020 202d 2074 2074 2020 202b 2020 t - t t + │ │ │ │ +00026cf0: 2020 7c0a 7c20 2020 2020 2031 3120 3133 |.| 11 13 │ │ │ │ +00026d00: 2031 3520 2020 2031 3720 3133 2032 3120 15 17 13 21 │ │ │ │ +00026d10: 2020 3138 2033 2020 2020 3138 2031 3720 18 3 18 17 │ │ │ │ +00026d20: 2020 2031 3220 3136 2020 2020 3234 2031 12 16 24 1 │ │ │ │ +00026d30: 3620 3133 2020 2020 3620 3135 2020 2020 6 13 6 15 │ │ │ │ +00026d40: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026d90: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00026da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026db0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026de0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00026df0: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ +00026e00: 2d20 7420 2074 2020 7420 202c 202d 2074 - t t t , - t │ │ │ │ +00026e10: 2020 2d20 7420 2074 2020 202b 2074 2074 - t t + t t │ │ │ │ +00026e20: 2020 202d 2074 2020 7420 2020 2b20 2020 - t t + │ │ │ │ +00026e30: 2020 7c0a 7c20 2020 2020 2031 3820 3134 |.| 18 14 │ │ │ │ +00026e40: 2031 3520 2020 2031 3220 3133 2031 3520 15 12 13 15 │ │ │ │ +00026e50: 2020 2031 3820 3133 2032 3120 2020 2020 18 13 21 │ │ │ │ +00026e60: 3820 2020 2032 3020 3133 2020 2020 3720 8 20 13 7 │ │ │ │ +00026e70: 3139 2020 2020 3134 2031 3920 2020 2020 19 14 19 │ │ │ │ +00026e80: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ed0: 2d2d 7c0a 7c20 2020 2020 2020 2020 3220 --|.| 2 │ │ │ │ +00026ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f20: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00026f30: 2c20 7420 7420 2020 2d20 7420 2074 2020 , t t - t t │ │ │ │ +00026f40: 202b 2074 2020 7420 2074 2020 2c20 2d20 + t t t , - │ │ │ │ +00026f50: 7420 2020 2b20 7420 7420 202d 2074 2020 t + t t - t │ │ │ │ +00026f60: 7420 2020 2d20 7420 2074 2020 202b 2020 t - t t + │ │ │ │ +00026f70: 2020 7c0a 7c20 2020 2020 2031 3320 3139 |.| 13 19 │ │ │ │ +00026f80: 2020 2037 2032 3020 2020 2031 3420 3230 7 20 14 20 │ │ │ │ +00026f90: 2020 2020 3230 2031 3320 3139 2020 2020 20 13 19 │ │ │ │ +00026fa0: 2031 3120 2020 2037 2039 2020 2020 3136 11 7 9 16 │ │ │ │ +00026fb0: 2032 3020 2020 2032 3320 3133 2020 2020 20 23 13 │ │ │ │ +00026fc0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00026fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027010: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027050: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00027060: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027070: 7420 2020 2b20 7420 2074 2020 202d 2074 t + t t - t │ │ │ │ +00027080: 2020 7420 2020 2b20 7420 2074 2020 7420 t + t t t │ │ │ │ +00027090: 2020 2b20 7420 7420 2074 2020 202b 2074 + t t t + t │ │ │ │ +000270a0: 2020 7420 2020 2d20 7420 7420 2020 2d20 t - t t - │ │ │ │ +000270b0: 2020 7c0a 7c20 2020 2020 2032 3020 3133 |.| 20 13 │ │ │ │ +000270c0: 2031 3520 2020 2031 3020 3139 2020 2020 15 10 19 │ │ │ │ +000270d0: 3137 2031 3920 2020 2032 3220 3133 2031 17 19 22 13 1 │ │ │ │ +000270e0: 3920 2020 2037 2031 3520 3139 2020 2020 9 7 15 19 │ │ │ │ +000270f0: 3136 2031 3920 2020 2031 2032 3120 2020 16 19 1 21 │ │ │ │ +00027100: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027150: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027160: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00027170: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00027180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027190: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000271a0: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ +000271b0: 2020 202d 2074 2020 7420 2074 2020 2c20 - t t t , │ │ │ │ +000271c0: 7420 2020 2b20 7420 202d 2074 2074 2020 t + t - t t │ │ │ │ +000271d0: 202d 2074 2020 7420 2020 2b20 7420 2074 - t t + t t │ │ │ │ +000271e0: 2020 202b 2074 2074 2020 7420 2020 2d20 + t t t - │ │ │ │ +000271f0: 2020 7c0a 7c20 2020 2020 2037 2031 3320 |.| 7 13 │ │ │ │ +00027200: 3231 2020 2020 3133 2031 3920 3231 2020 21 13 19 21 │ │ │ │ +00027210: 2032 3420 2020 2039 2020 2020 3920 3232 24 9 9 22 │ │ │ │ +00027220: 2020 2020 3233 2031 3520 2020 2032 3020 23 15 20 │ │ │ │ +00027230: 3135 2020 2020 3920 3135 2031 3920 2020 15 9 15 19 │ │ │ │ +00027240: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027290: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000272a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272e0: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +000272f0: 2b20 7420 2074 2020 202d 2074 2074 2020 + t t - t t │ │ │ │ +00027300: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ +00027310: 2d20 7420 2074 2020 7420 2074 2020 2c20 - t t t t , │ │ │ │ +00027320: 7420 2074 2020 2b20 7420 7420 202d 2020 t t + t t - │ │ │ │ +00027330: 2020 7c0a 7c20 2020 2020 2033 2032 3120 |.| 3 21 │ │ │ │ +00027340: 2020 2031 3020 3231 2020 2020 3720 3135 10 21 7 15 │ │ │ │ +00027350: 2032 3120 2020 2031 3620 3139 2032 3120 21 16 19 21 │ │ │ │ +00027360: 2020 2031 3320 3135 2031 3920 3231 2020 13 15 19 21 │ │ │ │ +00027370: 2032 3320 3720 2020 2038 2039 2020 2020 23 7 8 9 │ │ │ │ +00027380: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273d0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000273e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000273f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027420: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027430: 202b 2074 2020 7420 2020 2d20 7420 2074 + t t - t t │ │ │ │ +00027440: 2020 202d 2074 2074 2020 202b 2074 2020 - t t + t │ │ │ │ +00027450: 7420 2074 2020 202b 2074 2020 7420 2074 t t + t t t │ │ │ │ +00027460: 2020 202b 2074 2020 7420 2074 2020 202b + t t t + │ │ │ │ +00027470: 2020 7c0a 7c20 2020 2020 2032 3320 3134 |.| 23 14 │ │ │ │ +00027480: 2020 2020 3130 2032 3020 2020 2031 3720 10 20 17 │ │ │ │ +00027490: 3230 2020 2020 3820 3232 2020 2020 3134 20 8 22 14 │ │ │ │ +000274a0: 2032 3020 3135 2020 2020 3136 2032 3020 20 15 16 20 │ │ │ │ +000274b0: 3139 2020 2020 3233 2031 3320 3139 2020 19 23 13 19 │ │ │ │ +000274c0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +000274d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000274e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000274f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027510: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027560: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ +00027570: 2020 202d 2074 2074 2020 202d 2074 2074 - t t - t t │ │ │ │ +00027580: 2020 7420 2020 2d20 7420 2074 2020 7420 t - t t t │ │ │ │ +00027590: 2074 2020 2c20 2d20 7420 2020 2b20 7420 t , - t + t │ │ │ │ +000275a0: 2074 2020 2d20 7420 2074 2020 202b 2020 t - t t + │ │ │ │ +000275b0: 2020 7c0a 7c20 2020 2020 2038 2031 3520 |.| 8 15 │ │ │ │ +000275c0: 3139 2020 2020 3220 3231 2020 2020 3720 19 2 21 7 │ │ │ │ +000275d0: 3134 2032 3120 2020 2031 3420 3133 2031 14 21 14 13 1 │ │ │ │ +000275e0: 3920 3231 2020 2020 2031 3220 2020 2031 9 21 12 1 │ │ │ │ +000275f0: 3020 3920 2020 2032 3320 3136 2020 2020 0 9 23 16 │ │ │ │ +00027600: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027650: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276a0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +000276b0: 7420 2020 2d20 7420 2074 2020 202b 2074 t - t t + t │ │ │ │ +000276c0: 2020 7420 2074 2020 202b 2074 2020 7420 t t + t t │ │ │ │ +000276d0: 2074 2020 202d 2074 2074 2020 202d 2074 t - t t - t │ │ │ │ +000276e0: 2074 2020 7420 2020 2d20 2020 2020 2020 t t - │ │ │ │ +000276f0: 2020 7c0a 7c20 2020 2020 2031 3620 3230 |.| 16 20 │ │ │ │ +00027700: 2031 3520 2020 2031 3820 3139 2020 2020 15 18 19 │ │ │ │ +00027710: 3136 2032 3220 3139 2020 2020 3130 2031 16 22 19 10 1 │ │ │ │ +00027720: 3520 3139 2020 2020 3420 3231 2020 2020 5 19 4 21 │ │ │ │ +00027730: 3720 3136 2032 3120 2020 2020 2020 2020 7 16 21 │ │ │ │ +00027740: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027790: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277e0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +000277f0: 7420 2074 2020 2c20 7420 2074 2020 202d t t , t t - │ │ │ │ +00027800: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ +00027810: 2b20 7420 2074 2020 2d20 7420 2074 2020 + t t - t t │ │ │ │ +00027820: 202d 2074 2020 7420 2020 2b20 2020 2020 - t t + │ │ │ │ +00027830: 2020 7c0a 7c20 2020 2020 2031 3620 3133 |.| 16 13 │ │ │ │ +00027840: 2031 3920 3231 2020 2031 3020 3233 2020 19 21 10 23 │ │ │ │ +00027850: 2020 3137 2032 3320 2020 2032 3420 3720 17 23 24 7 │ │ │ │ +00027860: 2020 2031 3120 3920 2020 2031 3820 3230 11 9 18 20 │ │ │ │ +00027870: 2020 2020 3131 2032 3220 2020 2020 2020 11 22 │ │ │ │ +00027880: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000278a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000278b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000278c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000278d0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027920: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027930: 7420 2020 2b20 7420 2074 2020 7420 2020 t + t t t │ │ │ │ +00027940: 2b20 7420 2074 2020 7420 2020 2b20 7420 + t t t + t │ │ │ │ +00027950: 2074 2020 7420 2020 2d20 7420 7420 2020 t t - t t │ │ │ │ +00027960: 2d20 7420 2074 2074 2020 202d 2020 2020 - t t t - │ │ │ │ +00027970: 2020 7c0a 7c20 2020 2020 2031 3720 3230 |.| 17 20 │ │ │ │ +00027980: 2031 3520 2020 2032 3320 3136 2031 3920 15 23 16 19 │ │ │ │ +00027990: 2020 2032 3420 3133 2031 3920 2020 2031 24 13 19 1 │ │ │ │ +000279a0: 3120 3135 2031 3920 2020 2035 2032 3120 1 15 19 5 21 │ │ │ │ +000279b0: 2020 2031 3720 3720 3231 2020 2020 2020 17 7 21 │ │ │ │ +000279c0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +000279d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000279e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000279f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027a10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a60: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027a70: 7420 2074 2020 2c20 7420 2074 2020 202d t t , t t - │ │ │ │ +00027a80: 2074 2020 7420 2020 2b20 7420 2074 2020 t t + t t │ │ │ │ +00027a90: 2d20 7420 2074 2020 202b 2074 2020 7420 - t t + t t │ │ │ │ +00027aa0: 2074 2020 202b 2074 2020 7420 2074 2020 t + t t t │ │ │ │ +00027ab0: 202b 7c0a 7c20 2020 2020 2031 3720 3133 +|.| 17 13 │ │ │ │ +00027ac0: 2031 3920 3231 2020 2032 3420 3130 2020 19 21 24 10 │ │ │ │ +00027ad0: 2020 3138 2032 3320 2020 2031 3220 3920 18 23 12 9 │ │ │ │ +00027ae0: 2020 2031 3220 3232 2020 2020 3138 2032 12 22 18 2 │ │ │ │ +00027af0: 3020 3135 2020 2020 3234 2031 3620 3139 0 15 24 16 19 │ │ │ │ +00027b00: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027b50: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027ba0: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027bb0: 7420 2020 2d20 7420 7420 2020 2d20 7420 t - t t - t │ │ │ │ +00027bc0: 2074 2074 2020 202d 2074 2020 7420 2074 t t - t t t │ │ │ │ +00027bd0: 2020 7420 202c 202d 2074 2020 2d20 7420 t , - t - t │ │ │ │ +00027be0: 7420 2020 2d20 7420 7420 2020 2b20 2020 t - t t + │ │ │ │ +00027bf0: 2020 7c0a 7c20 2020 2020 2031 3220 3135 |.| 12 15 │ │ │ │ +00027c00: 2031 3920 2020 2036 2032 3120 2020 2031 19 6 21 1 │ │ │ │ +00027c10: 3820 3720 3231 2020 2020 3138 2031 3320 8 7 21 18 13 │ │ │ │ +00027c20: 3139 2032 3120 2020 2020 3220 2020 2037 19 21 2 7 │ │ │ │ +00027c30: 2031 3420 2020 2038 2031 3320 2020 2020 14 8 13 │ │ │ │ +00027c40: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027c90: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027ce0: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +00027cf0: 2b20 7420 7420 2074 2020 2c20 2d20 7420 + t t t , - t │ │ │ │ +00027d00: 7420 2020 2b20 7420 7420 2020 2b20 7420 t + t t + t │ │ │ │ +00027d10: 7420 2074 2020 2c20 2d20 7420 202b 2074 t t , - t + t │ │ │ │ +00027d20: 2074 2020 2d20 7420 2074 2020 2d20 2020 t - t t - │ │ │ │ +00027d30: 2020 7c0a 7c20 2020 2020 2031 2031 3920 |.| 1 19 │ │ │ │ +00027d40: 2020 2037 2031 3320 3139 2020 2020 2038 7 13 19 8 │ │ │ │ +00027d50: 2031 3420 2020 2031 2032 3020 2020 2037 14 1 20 7 │ │ │ │ +00027d60: 2032 3020 3133 2020 2020 2035 2020 2020 20 13 5 │ │ │ │ +00027d70: 3320 3720 2020 2031 3020 3720 2020 2020 3 7 10 7 │ │ │ │ +00027d80: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027dd0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e00: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00027e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027e20: 2020 7c0a 7c20 2020 2020 7420 2074 2020 |.| t t │ │ │ │ +00027e30: 2d20 7420 7420 202d 2074 2074 2020 202b - t t - t t + │ │ │ │ +00027e40: 2074 2074 2020 202d 2074 2020 7420 2020 t t - t t │ │ │ │ +00027e50: 2b20 7420 7420 2074 2020 202b 2074 2074 + t t t + t t │ │ │ │ +00027e60: 2020 202b 2074 2074 2020 7420 2020 2b20 + t t t + │ │ │ │ +00027e70: 2020 7c0a 7c20 2020 2020 2031 3720 3720 |.| 17 7 │ │ │ │ +00027e80: 2020 2031 2039 2020 2020 3820 3136 2020 1 9 8 16 │ │ │ │ +00027e90: 2020 3120 3232 2020 2020 3131 2031 3320 1 22 11 13 │ │ │ │ +00027ea0: 2020 2037 2032 3220 3133 2020 2020 3720 7 22 13 7 │ │ │ │ +00027eb0: 3135 2020 2020 3820 3133 2031 3520 2020 15 8 13 15 │ │ │ │ +00027ec0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00027ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027f10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00027f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f30: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00027f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027f60: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +00027f70: 2b20 7420 7420 2074 2020 202d 2074 2074 + t t t - t t │ │ │ │ +00027f80: 2020 7420 2020 2d20 7420 7420 2074 2020 t - t t t │ │ │ │ +00027f90: 2c20 7420 2020 2d20 7420 2074 2020 2d20 , t - t t - │ │ │ │ +00027fa0: 7420 2074 2020 202b 2074 2074 2074 2020 t t + t t t │ │ │ │ +00027fb0: 202b 7c0a 7c20 2020 2020 2034 2031 3920 +|.| 4 19 │ │ │ │ +00027fc0: 2020 2037 2031 3620 3139 2020 2020 3120 7 16 19 1 │ │ │ │ +00027fd0: 3133 2032 3120 2020 2037 2031 3320 3231 13 21 7 13 21 │ │ │ │ +00027fe0: 2020 2031 3220 2020 2031 3020 3920 2020 12 10 9 │ │ │ │ +00027ff0: 2031 3120 3135 2020 2020 3720 3920 3135 11 15 7 9 15 │ │ │ │ +00028000: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00028010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028050: 2d2d 7c0a 7c20 2020 2020 2020 2032 2020 --|.| 2 │ │ │ │ +00028060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000280a0: 2020 7c0a 7c20 2020 2020 7420 7420 2020 |.| t t │ │ │ │ +000280b0: 2b20 7420 7420 2020 2b20 7420 7420 2074 + t t + t t t │ │ │ │ +000280c0: 2020 202d 2074 2074 2020 7420 2020 2d20 - t t t - │ │ │ │ +000280d0: 7420 7420 2074 2020 7420 202c 2074 2074 t t t t , t t │ │ │ │ +000280e0: 2020 2d20 7420 7420 2020 2d20 7420 7420 - t t - t t │ │ │ │ +000280f0: 2020 7c0a 7c20 2020 2020 2038 2031 3520 |.| 8 15 │ │ │ │ +00028100: 2020 2034 2032 3120 2020 2037 2031 3620 4 21 7 16 │ │ │ │ +00028110: 3231 2020 2020 3120 3135 2032 3120 2020 21 1 15 21 │ │ │ │ +00028120: 2037 2031 3320 3135 2032 3120 2020 3320 7 13 15 21 3 │ │ │ │ +00028130: 3820 2020 2038 2031 3020 2020 2038 2031 8 8 10 8 1 │ │ │ │ +00028140: 3720 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 7 |.| ------ │ │ │ │ +00028150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028190: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000281a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000281b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000281c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000281d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000281e0: 2020 7c0a 7c20 2020 2020 2b20 7420 7420 |.| + t t │ │ │ │ +000281f0: 2020 2d20 7420 7420 202d 2074 2020 7420 - t t - t t │ │ │ │ +00028200: 2020 2b20 7420 7420 2020 2b20 7420 7420 + t t + t t │ │ │ │ +00028210: 2074 2020 202b 2074 2020 7420 7420 2020 t + t t t │ │ │ │ +00028220: 2b20 7420 7420 7420 2020 2b20 2020 2020 + t t t + │ │ │ │ +00028230: 2020 7c0a 7c20 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ +00028240: 3320 2020 2032 2039 2020 2020 3131 2031 3 2 9 11 1 │ │ │ │ +00028250: 3420 2020 2034 2032 3020 2020 2037 2031 4 4 20 7 1 │ │ │ │ +00028260: 3620 3230 2020 2020 3233 2037 2031 3320 6 20 23 7 13 │ │ │ │ +00028270: 2020 2038 2037 2031 3520 2020 2020 2020 8 7 15 │ │ │ │ +00028280: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00028290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000282a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000282b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000282c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000282d0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +000282e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000282f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028300: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00028310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028320: 2020 7c0a 7c20 2020 2020 7420 7420 2074 |.| t t t │ │ │ │ +00028330: 2020 202d 2074 2074 2020 7420 2020 2d20 - t t t - │ │ │ │ +00028340: 7420 7420 2074 2020 7420 202c 202d 2074 t t t t , - t │ │ │ │ +00028350: 2020 2b20 7420 7420 2020 2d20 7420 2020 + t t - t │ │ │ │ +00028360: 2d20 7420 2074 2020 2d20 7420 7420 202d - t t - t t - │ │ │ │ +00028370: 2020 7c0a 7c20 2020 2020 2038 2031 3420 |.| 8 14 │ │ │ │ +00028380: 3135 2020 2020 3120 3134 2032 3120 2020 15 1 14 21 │ │ │ │ +00028390: 2037 2031 3420 3133 2032 3120 2020 2020 7 14 13 21 │ │ │ │ +000283a0: 3620 2020 2033 2031 3020 2020 2031 3020 6 3 10 10 │ │ │ │ +000283b0: 2020 2031 3820 3720 2020 2034 2039 2020 18 7 4 9 │ │ │ │ +000283c0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +000283d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000283e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000283f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028410: 2d2d 7c0a 7c20 2020 2020 7420 2074 2020 --|.| t t │ │ │ │ +00028420: 202b 2074 2074 2020 202b 2074 2074 2020 + t t + t t │ │ │ │ +00028430: 7420 2020 2b20 7420 2074 2074 2020 202b t + t t t + │ │ │ │ +00028440: 2074 2074 2020 7420 2020 2d20 7420 7420 t t t - t t │ │ │ │ +00028450: 2074 2020 202d 2020 2020 2020 2020 2020 t - │ │ │ │ +00028460: 2020 7c0a 7c20 2020 2020 2031 3120 3136 |.| 11 16 │ │ │ │ +00028470: 2020 2020 3420 3232 2020 2020 3720 3136 4 22 7 16 │ │ │ │ +00028480: 2032 3220 2020 2031 3020 3720 3135 2020 22 10 7 15 │ │ │ │ +00028490: 2020 3820 3136 2031 3520 2020 2031 2031 8 16 15 1 1 │ │ │ │ +000284a0: 3620 3231 2020 2020 2020 2020 2020 2020 6 21 │ │ │ │ 000284b0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000284c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000284f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028500: 2d2d 7c0a 7c20 2020 2020 7420 2074 2020 --|.| t t │ │ │ │ -00028510: 202b 2074 2074 2020 202b 2074 2074 2020 + t t + t t │ │ │ │ -00028520: 7420 2020 2b20 7420 2074 2074 2020 202b t + t t t + │ │ │ │ -00028530: 2074 2074 2020 7420 2020 2d20 7420 7420 t t t - t t │ │ │ │ -00028540: 2074 2020 202d 2020 2020 2020 2020 2020 t - │ │ │ │ -00028550: 2020 7c0a 7c20 2020 2020 2031 3120 3136 |.| 11 16 │ │ │ │ -00028560: 2020 2020 3420 3232 2020 2020 3720 3136 4 22 7 16 │ │ │ │ -00028570: 2032 3220 2020 2031 3020 3720 3135 2020 22 10 7 15 │ │ │ │ -00028580: 2020 3820 3136 2031 3520 2020 2031 2031 8 16 15 1 1 │ │ │ │ -00028590: 3620 3231 2020 2020 2020 2020 2020 2020 6 21 │ │ │ │ +00028500: 2d2d 7c0a 7c20 2020 2020 7420 7420 2074 --|.| t t t │ │ │ │ +00028510: 2020 7420 202c 2074 2020 7420 202b 2074 t , t t + t │ │ │ │ +00028520: 2020 7420 202d 2074 2020 7420 202d 2074 t - t t - t │ │ │ │ +00028530: 2020 7420 2020 2d20 7420 2074 2020 202b t - t t + │ │ │ │ +00028540: 2074 2074 2020 202d 2074 2074 2020 2b20 t t - t t + │ │ │ │ +00028550: 2020 7c0a 7c20 2020 2020 2037 2031 3620 |.| 7 16 │ │ │ │ +00028560: 3133 2032 3120 2020 3234 2031 2020 2020 13 21 24 1 │ │ │ │ +00028570: 3131 2033 2020 2020 3138 2038 2020 2020 11 3 18 8 │ │ │ │ +00028580: 3131 2031 3020 2020 2031 3120 3137 2020 11 10 11 17 │ │ │ │ +00028590: 2020 3420 3233 2020 2020 3520 3920 2020 4 23 5 9 │ │ │ │ 000285a0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000285b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285f0: 2d2d 7c0a 7c20 2020 2020 7420 7420 2074 --|.| t t t │ │ │ │ -00028600: 2020 7420 202c 2074 2020 7420 202b 2074 t , t t + t │ │ │ │ -00028610: 2020 7420 202d 2074 2020 7420 202d 2074 t - t t - t │ │ │ │ -00028620: 2020 7420 2020 2d20 7420 2074 2020 202b t - t t + │ │ │ │ -00028630: 2074 2074 2020 202d 2074 2074 2020 2b20 t t - t t + │ │ │ │ -00028640: 2020 7c0a 7c20 2020 2020 2037 2031 3620 |.| 7 16 │ │ │ │ -00028650: 3133 2032 3120 2020 3234 2031 2020 2020 13 21 24 1 │ │ │ │ -00028660: 3131 2033 2020 2020 3138 2038 2020 2020 11 3 18 8 │ │ │ │ -00028670: 3131 2031 3020 2020 2031 3120 3137 2020 11 10 11 17 │ │ │ │ -00028680: 2020 3420 3233 2020 2020 3520 3920 2020 4 23 5 9 │ │ │ │ +000285f0: 2d2d 7c0a 7c20 2020 2020 7420 2074 2074 --|.| t t t │ │ │ │ +00028600: 2020 202b 2074 2020 7420 7420 2020 2b20 + t t t + │ │ │ │ +00028610: 7420 7420 2074 2020 202b 2074 2020 7420 t t t + t t │ │ │ │ +00028620: 7420 2020 2d20 7420 7420 2074 2020 202d t - t t t - │ │ │ │ +00028630: 2074 2020 7420 7420 2074 2020 2c20 2d20 t t t t , - │ │ │ │ +00028640: 2020 7c0a 7c20 2020 2020 2032 3320 3720 |.| 23 7 │ │ │ │ +00028650: 3136 2020 2020 3234 2037 2031 3320 2020 16 24 7 13 │ │ │ │ +00028660: 2038 2031 3720 3135 2020 2020 3131 2037 8 17 15 11 7 │ │ │ │ +00028670: 2031 3520 2020 2031 2031 3720 3231 2020 15 1 17 21 │ │ │ │ +00028680: 2020 3137 2037 2031 3320 3231 2020 2020 17 7 13 21 │ │ │ │ 00028690: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 000286a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000286b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000286c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000286d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000286e0: 2d2d 7c0a 7c20 2020 2020 7420 2074 2074 --|.| t t t │ │ │ │ -000286f0: 2020 202b 2074 2020 7420 7420 2020 2b20 + t t t + │ │ │ │ -00028700: 7420 7420 2074 2020 202b 2074 2020 7420 t t t + t t │ │ │ │ -00028710: 7420 2020 2d20 7420 7420 2074 2020 202d t - t t t - │ │ │ │ -00028720: 2074 2020 7420 7420 2074 2020 2c20 2d20 t t t t , - │ │ │ │ -00028730: 2020 7c0a 7c20 2020 2020 2032 3320 3720 |.| 23 7 │ │ │ │ -00028740: 3136 2020 2020 3234 2037 2031 3320 2020 16 24 7 13 │ │ │ │ -00028750: 2038 2031 3720 3135 2020 2020 3131 2037 8 17 15 11 7 │ │ │ │ -00028760: 2031 3520 2020 2031 2031 3720 3231 2020 15 1 17 21 │ │ │ │ -00028770: 2020 3137 2037 2031 3320 3231 2020 2020 17 7 13 21 │ │ │ │ -00028780: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +000286e0: 2d2d 7c0a 7c20 2020 2020 7420 2074 2020 --|.| t t │ │ │ │ +000286f0: 202b 2074 2074 2020 202b 2074 2020 7420 + t t + t t │ │ │ │ +00028700: 202d 2074 2020 7420 2020 2d20 7420 7420 - t t - t t │ │ │ │ +00028710: 202b 2074 2020 7420 7420 2020 2b20 7420 + t t t + t │ │ │ │ +00028720: 2074 2074 2020 202b 2074 2020 7420 7420 t t + t t t │ │ │ │ +00028730: 2020 7c0a 7c20 2020 2020 2031 3120 3138 |.| 11 18 │ │ │ │ +00028740: 2020 2020 3420 3234 2020 2020 3132 2033 4 24 12 3 │ │ │ │ +00028750: 2020 2020 3132 2031 3020 2020 2036 2039 12 10 6 9 │ │ │ │ +00028760: 2020 2020 3234 2037 2031 3620 2020 2031 24 7 16 1 │ │ │ │ +00028770: 3820 3820 3135 2020 2020 3132 2037 2031 8 8 15 12 7 1 │ │ │ │ +00028780: 3520 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 5 |.| ------ │ │ │ │ 00028790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000287a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000287b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000287c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000287d0: 2d2d 7c0a 7c20 2020 2020 7420 2074 2020 --|.| t t │ │ │ │ -000287e0: 202b 2074 2074 2020 202b 2074 2020 7420 + t t + t t │ │ │ │ -000287f0: 202d 2074 2020 7420 2020 2d20 7420 7420 - t t - t t │ │ │ │ -00028800: 202b 2074 2020 7420 7420 2020 2b20 7420 + t t t + t │ │ │ │ -00028810: 2074 2074 2020 202b 2074 2020 7420 7420 t t + t t t │ │ │ │ -00028820: 2020 7c0a 7c20 2020 2020 2031 3120 3138 |.| 11 18 │ │ │ │ -00028830: 2020 2020 3420 3234 2020 2020 3132 2033 4 24 12 3 │ │ │ │ -00028840: 2020 2020 3132 2031 3020 2020 2036 2039 12 10 6 9 │ │ │ │ -00028850: 2020 2020 3234 2037 2031 3620 2020 2031 24 7 16 1 │ │ │ │ -00028860: 3820 3820 3135 2020 2020 3132 2037 2031 8 8 15 12 7 1 │ │ │ │ -00028870: 3520 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 5 |.| ------ │ │ │ │ -00028880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000288a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000288b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000288c0: 2d2d 7c0a 7c20 2020 2020 2d20 7420 2074 --|.| - t t │ │ │ │ -000288d0: 2074 2020 202d 2074 2020 7420 7420 2074 t - t t t t │ │ │ │ -000288e0: 2020 2920 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000288f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028910: 2020 7c0a 7c20 2020 2020 2020 2031 3820 |.| 18 │ │ │ │ -00028920: 3120 3231 2020 2020 3138 2037 2031 3320 1 21 18 7 13 │ │ │ │ -00028930: 3231 2020 2020 2020 2020 2020 2020 2020 21 │ │ │ │ -00028940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289b0: 2020 7c0a 7c6f 3820 3a20 4964 6561 6c20 |.|o8 : Ideal │ │ │ │ -000289c0: 6f66 206b 6b5b 7420 2c20 7420 2c20 7420 of kk[t , t , t │ │ │ │ -000289d0: 202c 2074 202c 2074 202c 2074 2020 2c20 , t , t , t , │ │ │ │ -000289e0: 7420 202c 2074 2020 2c20 7420 2c20 7420 t , t , t , t │ │ │ │ -000289f0: 2c20 7420 2c20 7420 202c 2074 2020 2c20 , t , t , t , │ │ │ │ -00028a00: 7420 7c0a 7c20 2020 2020 2020 2020 2020 t |.| │ │ │ │ -00028a10: 2020 2020 2020 2036 2020 2035 2020 2031 6 5 1 │ │ │ │ -00028a20: 3220 2020 3220 2020 3420 2020 3131 2020 2 2 4 11 │ │ │ │ -00028a30: 2031 3820 2020 3234 2020 2031 2020 2033 18 24 1 3 │ │ │ │ -00028a40: 2020 2038 2020 2031 3020 2020 3137 2020 8 10 17 │ │ │ │ -00028a50: 2032 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2|.|----------- │ │ │ │ +000287d0: 2d2d 7c0a 7c20 2020 2020 2d20 7420 2074 --|.| - t t │ │ │ │ +000287e0: 2074 2020 202d 2074 2020 7420 7420 2074 t - t t t t │ │ │ │ +000287f0: 2020 2920 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028820: 2020 7c0a 7c20 2020 2020 2020 2031 3820 |.| 18 │ │ │ │ +00028830: 3120 3231 2020 2020 3138 2037 2031 3320 1 21 18 7 13 │ │ │ │ +00028840: 3231 2020 2020 2020 2020 2020 2020 2020 21 │ │ │ │ +00028850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028870: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000288b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000288c0: 2020 7c0a 7c6f 3820 3a20 4964 6561 6c20 |.|o8 : Ideal │ │ │ │ +000288d0: 6f66 206b 6b5b 7420 2c20 7420 2c20 7420 of kk[t , t , t │ │ │ │ +000288e0: 202c 2074 202c 2074 202c 2074 2020 2c20 , t , t , t , │ │ │ │ +000288f0: 7420 202c 2074 2020 2c20 7420 2c20 7420 t , t , t , t │ │ │ │ +00028900: 2c20 7420 2c20 7420 202c 2074 2020 2c20 , t , t , t , │ │ │ │ +00028910: 7420 7c0a 7c20 2020 2020 2020 2020 2020 t |.| │ │ │ │ +00028920: 2020 2020 2020 2036 2020 2035 2020 2031 6 5 1 │ │ │ │ +00028930: 3220 2020 3220 2020 3420 2020 3131 2020 2 2 4 11 │ │ │ │ +00028940: 2031 3820 2020 3234 2020 2031 2020 2033 18 24 1 3 │ │ │ │ +00028950: 2020 2038 2020 2031 3020 2020 3137 2020 8 10 17 │ │ │ │ +00028960: 2032 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2|.|----------- │ │ │ │ +00028970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000289a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000289b0: 2d2d 7c0a 7c20 2c20 7420 2c20 7420 2c20 --|.| , t , t , │ │ │ │ +000289c0: 7420 202c 2074 2020 2c20 7420 202c 2074 t , t , t , t │ │ │ │ +000289d0: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ +000289e0: 202c 2074 2020 5d20 2020 2020 2020 2020 , t ] │ │ │ │ +000289f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a00: 2020 7c0a 7c33 2020 2037 2020 2039 2020 |.|3 7 9 │ │ │ │ +00028a10: 2031 3420 2020 3136 2020 2032 3020 2020 14 16 20 │ │ │ │ +00028a20: 3232 2020 2031 3320 2020 3135 2020 2031 22 13 15 1 │ │ │ │ +00028a30: 3920 2020 3231 2020 2020 2020 2020 2020 9 21 │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028a50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00028a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028aa0: 2d2d 7c0a 7c20 2c20 7420 2c20 7420 2c20 --|.| , t , t , │ │ │ │ -00028ab0: 7420 202c 2074 2020 2c20 7420 202c 2074 t , t , t , t │ │ │ │ -00028ac0: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ -00028ad0: 202c 2074 2020 5d20 2020 2020 2020 2020 , t ] │ │ │ │ +00028aa0: 2d2d 2b0a 7c69 3920 3a20 636f 6d70 734a --+.|i9 : compsJ │ │ │ │ +00028ab0: 203d 2064 6563 6f6d 706f 7365 204a 3b20 = decompose J; │ │ │ │ +00028ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028af0: 2020 7c0a 7c33 2020 2037 2020 2039 2020 |.|3 7 9 │ │ │ │ -00028b00: 2031 3420 2020 3136 2020 2032 3020 2020 14 16 20 │ │ │ │ -00028b10: 3232 2020 2031 3320 2020 3135 2020 2031 22 13 15 1 │ │ │ │ -00028b20: 3920 2020 3231 2020 2020 2020 2020 2020 9 21 │ │ │ │ -00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b90: 2d2d 2b0a 7c69 3920 3a20 636f 6d70 734a --+.|i9 : compsJ │ │ │ │ -00028ba0: 203d 2064 6563 6f6d 706f 7365 204a 3b20 = decompose J; │ │ │ │ -00028bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028be0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028c30: 2d2d 2b0a 7c69 3130 203a 2063 6f6d 7073 --+.|i10 : comps │ │ │ │ -00028c40: 4a20 3d20 636f 6d70 734a 2f74 7269 6d3b J = compsJ/trim; │ │ │ │ +00028af0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028b40: 2d2d 2b0a 7c69 3130 203a 2063 6f6d 7073 --+.|i10 : comps │ │ │ │ +00028b50: 4a20 3d20 636f 6d70 734a 2f74 7269 6d3b J = compsJ/trim; │ │ │ │ +00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028be0: 2d2d 2b0a 7c69 3131 203a 2023 636f 6d70 --+.|i11 : #comp │ │ │ │ +00028bf0: 734a 203d 3d20 3220 2020 2020 2020 2020 sJ == 2 │ │ │ │ +00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028cd0: 2d2d 2b0a 7c69 3131 203a 2023 636f 6d70 --+.|i11 : #comp │ │ │ │ -00028ce0: 734a 203d 3d20 3220 2020 2020 2020 2020 sJ == 2 │ │ │ │ -00028cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028c80: 2020 7c0a 7c6f 3131 203d 2074 7275 6520 |.|o11 = true │ │ │ │ +00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028cd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028d20: 2d2d 2b0a 7c69 3132 203a 2063 6f6d 7073 --+.|i12 : comps │ │ │ │ +00028d30: 4a2f 6469 6d20 2020 2020 2020 2020 2020 J/dim │ │ │ │ 00028d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d70: 2020 7c0a 7c6f 3131 203d 2074 7275 6520 |.|o11 = true │ │ │ │ +00028d70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00028d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028dc0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028e10: 2d2d 2b0a 7c69 3132 203a 2063 6f6d 7073 --+.|i12 : comps │ │ │ │ -00028e20: 4a2f 6469 6d20 2020 2020 2020 2020 2020 J/dim │ │ │ │ +00028dc0: 2020 7c0a 7c6f 3132 203d 207b 3131 2c20 |.|o12 = {11, │ │ │ │ +00028dd0: 387d 2020 2020 2020 2020 2020 2020 2020 8} │ │ │ │ +00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028e60: 2020 7c0a 7c6f 3132 203a 204c 6973 7420 |.|o12 : List │ │ │ │ 00028e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028eb0: 2020 7c0a 7c6f 3132 203d 207b 3131 2c20 |.|o12 = {11, │ │ │ │ -00028ec0: 387d 2020 2020 2020 2020 2020 2020 2020 8} │ │ │ │ -00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f50: 2020 7c0a 7c6f 3132 203a 204c 6973 7420 |.|o12 : List │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fa0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ff0: 2d2d 2b0a 0a54 6865 7265 2061 7265 2032 --+..There are 2 │ │ │ │ -00029000: 2063 6f6d 706f 6e65 6e74 732e 2020 5765 components. We │ │ │ │ -00029010: 2061 7474 656d 7074 2074 6f20 6669 6e64 attempt to find │ │ │ │ -00029020: 2061 2070 6f69 6e74 206f 6e20 7468 6520 a point on the │ │ │ │ -00029030: 6669 7273 7420 636f 6d70 6f6e 656e 740a first component. │ │ │ │ -00029040: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00029050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00029090: 0a7c 6931 3320 3a20 7074 3120 3d20 7261 .|i13 : pt1 = ra │ │ │ │ -000290a0: 6e64 6f6d 506f 696e 744f 6e52 6174 696f ndomPointOnRatio │ │ │ │ -000290b0: 6e61 6c56 6172 6965 7479 2063 6f6d 7073 nalVariety comps │ │ │ │ -000290c0: 4a5f 3020 2020 2020 2020 2020 2020 2020 J_0 │ │ │ │ -000290d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000290e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000290f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028eb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f00: 2d2d 2b0a 0a54 6865 7265 2061 7265 2032 --+..There are 2 │ │ │ │ +00028f10: 2063 6f6d 706f 6e65 6e74 732e 2020 5765 components. We │ │ │ │ +00028f20: 2061 7474 656d 7074 2074 6f20 6669 6e64 attempt to find │ │ │ │ +00028f30: 2061 2070 6f69 6e74 206f 6e20 7468 6520 a point on the │ │ │ │ +00028f40: 6669 7273 7420 636f 6d70 6f6e 656e 740a first component. │ │ │ │ +00028f50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00028f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00028fa0: 0a7c 6931 3320 3a20 7074 3120 3d20 7261 .|i13 : pt1 = ra │ │ │ │ +00028fb0: 6e64 6f6d 506f 696e 744f 6e52 6174 696f ndomPointOnRatio │ │ │ │ +00028fc0: 6e61 6c56 6172 6965 7479 2063 6f6d 7073 nalVariety comps │ │ │ │ +00028fd0: 4a5f 3020 2020 2020 2020 2020 2020 2020 J_0 │ │ │ │ +00028fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029040: 0a7c 6f31 3320 3d20 7c20 3133 2034 3820 .|o13 = | 13 48 │ │ │ │ +00029050: 3433 2032 3320 3431 2033 3620 2d34 202d 43 23 41 36 -4 - │ │ │ │ +00029060: 3132 202d 3330 202d 3136 202d 3333 202d 12 -30 -16 -33 - │ │ │ │ +00029070: 3336 2031 3920 3139 2033 3020 2d31 3020 36 19 19 30 -10 │ │ │ │ +00029080: 2d33 3820 3332 202d 3239 202d 3820 207c -38 32 -29 -8 | │ │ │ │ +00029090: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +000290a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000290b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000290c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000290d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000290e0: 0a7c 2020 2020 2020 2d32 3920 2d32 3220 .| -29 -22 │ │ │ │ +000290f0: 2d32 3920 2d32 3420 7c20 2020 2020 2020 -29 -24 | │ │ │ │ 00029100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029130: 0a7c 6f31 3320 3d20 7c20 3530 2031 3520 .|o13 = | 50 15 │ │ │ │ -00029140: 3436 202d 3333 2032 202d 3433 202d 3436 46 -33 2 -43 -46 │ │ │ │ -00029150: 2038 2033 3320 3139 202d 3220 2d31 3820 8 33 19 -2 -18 │ │ │ │ -00029160: 2d38 202d 3232 2034 3320 2d32 3920 3139 -8 -22 43 -29 19 │ │ │ │ -00029170: 2033 202d 3136 202d 3239 202d 3338 207c 3 -16 -29 -38 | │ │ │ │ -00029180: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ -00029190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000291a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000291b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000291c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000291d0: 0a7c 2020 2020 2020 2d32 3420 2d31 3020 .| -24 -10 │ │ │ │ -000291e0: 2d32 3920 7c20 2020 2020 2020 2020 2020 -29 | │ │ │ │ +00029130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029190: 2031 2020 2020 2020 2032 3420 2020 2020 1 24 │ │ │ │ +000291a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000291b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000291c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000291d0: 0a7c 6f31 3320 3a20 4d61 7472 6978 206b .|o13 : Matrix k │ │ │ │ +000291e0: 6b20 203c 2d2d 206b 6b20 2020 2020 2020 k <-- kk │ │ │ │ 000291f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029280: 2031 2020 2020 2020 2032 3420 2020 2020 1 24 │ │ │ │ -00029290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029220: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029270: 0a7c 6931 3420 3a20 4631 203d 2073 7562 .|i14 : F1 = sub │ │ │ │ +00029280: 2846 2c20 2876 6172 7320 5329 7c70 7431 (F, (vars S)|pt1 │ │ │ │ +00029290: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000292a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000292c0: 0a7c 6f31 3320 3a20 4d61 7472 6978 206b .|o13 : Matrix k │ │ │ │ -000292d0: 6b20 203c 2d2d 206b 6b20 2020 2020 2020 k <-- kk │ │ │ │ +000292c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000292d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029310: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00029320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00029360: 0a7c 6931 3420 3a20 4631 203d 2073 7562 .|i14 : F1 = sub │ │ │ │ -00029370: 2846 2c20 2876 6172 7320 5329 7c70 7431 (F, (vars S)|pt1 │ │ │ │ -00029380: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00029390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000293b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000293c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029400: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029410: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -00029420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029430: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00029310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029320: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00029330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029340: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00029350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029360: 0a7c 6f31 3420 3d20 6964 6561 6c20 2861 .|o14 = ideal (a │ │ │ │ +00029370: 2020 2d20 3330 622a 6320 2b20 3233 6320 - 30b*c + 23c │ │ │ │ +00029380: 202d 2031 3661 2a64 202b 2034 3162 2a64 - 16a*d + 41b*d │ │ │ │ +00029390: 202b 2034 3863 2a64 202b 2031 3364 202c + 48c*d + 13d , │ │ │ │ +000293a0: 2061 2a62 202b 2033 3062 2a63 202d 207c a*b + 30b*c - | │ │ │ │ +000293b0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +000293c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000293f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00029400: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +00029410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029420: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00029430: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 00029440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029450: 0a7c 6f31 3420 3d20 6964 6561 6c20 2861 .|o14 = ideal (a │ │ │ │ -00029460: 2020 2b20 3333 622a 6320 2d20 3333 6320 + 33b*c - 33c │ │ │ │ -00029470: 202b 2031 3961 2a64 202b 2032 622a 6420 + 19a*d + 2b*d │ │ │ │ -00029480: 2b20 3135 632a 6420 2b20 3530 6420 2c20 + 15c*d + 50d , │ │ │ │ -00029490: 612a 6220 2b20 3433 622a 6320 2d20 207c a*b + 43b*c - | │ │ │ │ +00029450: 0a7c 2020 2020 2020 3333 6320 202d 2031 .| 33c - 1 │ │ │ │ +00029460: 3061 2a64 202d 2033 3662 2a64 202b 2033 0a*d - 36b*d + 3 │ │ │ │ +00029470: 3663 2a64 202b 2034 3364 202c 2061 2a63 6c*d + 43d , a*c │ │ │ │ +00029480: 202d 2032 3962 2a63 202d 2033 3863 2020 - 29b*c - 38c │ │ │ │ +00029490: 2d20 3232 612a 6420 2b20 3332 622a 647c - 22a*d + 32b*d| │ │ │ │ 000294a0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ 000294b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000294c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000294d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000294e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000294f0: 0a7c 2020 2020 2020 2020 3220 2020 2020 .| 2 │ │ │ │ -00029500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029510: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00029520: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00029530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029540: 0a7c 2020 2020 2020 3263 2020 2d20 3239 .| 2c - 29 │ │ │ │ -00029550: 612a 6420 2d20 3138 622a 6420 2d20 3433 a*d - 18b*d - 43 │ │ │ │ -00029560: 632a 6420 2b20 3436 6420 2c20 612a 6320 c*d + 46d , a*c │ │ │ │ -00029570: 2d20 3338 622a 6320 2b20 3139 6320 202d - 38b*c + 19c - │ │ │ │ -00029580: 2032 3461 2a64 202b 2033 622a 6420 2d7c 24a*d + 3b*d -| │ │ │ │ -00029590: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ -000295a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000295b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000295c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000295d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000295e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000295f0: 2020 3220 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ -00029600: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000294f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029500: 2020 2020 3220 2020 3220 2020 2020 2020 2 2 │ │ │ │ +00029510: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00029520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029530: 2020 2020 2032 2020 2020 2020 2020 207c 2 | │ │ │ │ +00029540: 0a7c 2020 2020 2020 2b20 3139 632a 6420 .| + 19c*d │ │ │ │ +00029550: 2d20 3464 202c 2062 2020 2d20 3239 622a - 4d , b - 29b* │ │ │ │ +00029560: 6320 2d20 3239 6320 202d 2032 3461 2a64 c - 29c - 24a*d │ │ │ │ +00029570: 202d 2038 622a 6420 2b20 3139 632a 6420 - 8b*d + 19c*d │ │ │ │ +00029580: 2d20 3132 6420 2920 2020 2020 2020 207c - 12d ) | │ │ │ │ +00029590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000295a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000295d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000295e0: 0a7c 6f31 3420 3a20 4964 6561 6c20 6f66 .|o14 : Ideal of │ │ │ │ +000295f0: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00029600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029620: 2020 2032 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ -00029630: 0a7c 2020 2020 2020 3863 2a64 202d 2034 .| 8c*d - 4 │ │ │ │ -00029640: 3664 202c 2062 2020 2d20 3130 622a 6320 6d , b - 10b*c │ │ │ │ -00029650: 2d20 3136 6320 202d 2032 3961 2a64 202d - 16c - 29a*d - │ │ │ │ -00029660: 2032 3962 2a64 202d 2032 3263 2a64 202b 29b*d - 22c*d + │ │ │ │ -00029670: 2038 6420 2920 2020 2020 2020 2020 207c 8d ) | │ │ │ │ -00029680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029630: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029680: 0a7c 6931 3520 3a20 6465 636f 6d70 6f73 .|i15 : decompos │ │ │ │ +00029690: 6520 4631 2020 2020 2020 2020 2020 2020 e F1 │ │ │ │ 000296a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000296d0: 0a7c 6f31 3420 3a20 4964 6561 6c20 6f66 .|o14 : Ideal of │ │ │ │ -000296e0: 2053 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +000296d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000296e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029720: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00029730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00029770: 0a7c 6931 3520 3a20 6465 636f 6d70 6f73 .|i15 : decompos │ │ │ │ -00029780: 6520 4631 2020 2020 2020 2020 2020 2020 e F1 │ │ │ │ -00029790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000297c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000297d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029830: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00029840: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00029850: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ -00029860: 0a7c 6f31 3520 3d20 7b69 6465 616c 2028 .|o15 = {ideal ( │ │ │ │ -00029870: 6120 2d20 3338 6220 2b20 3139 6320 2b20 a - 38b + 19c + │ │ │ │ -00029880: 3434 642c 2062 2020 2d20 3130 622a 6320 44d, b - 10b*c │ │ │ │ -00029890: 2d20 3136 6320 202d 2032 3062 2a64 202b - 16c - 20b*d + │ │ │ │ -000298a0: 2032 3463 2a64 202d 2032 3964 2029 2c7c 24c*d - 29d ),| │ │ │ │ -000298b0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ -000298c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000298d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000298e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000298f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00029900: 0a7c 2020 2020 2020 6964 6561 6c20 2863 .| ideal (c │ │ │ │ -00029910: 202d 2032 3464 2c20 6220 2d20 3338 642c - 24d, b - 38d, │ │ │ │ -00029920: 2061 202b 2031 3564 297d 2020 2020 2020 a + 15d)} │ │ │ │ -00029930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00029950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00029960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000299a0: 0a7c 6f31 3520 3a20 4c69 7374 2020 2020 .|o15 : List │ │ │ │ -000299b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000299f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00029a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00029a40: 0a0a 5765 2061 7474 656d 7074 2074 6f20 ..We attempt to │ │ │ │ -00029a50: 6669 6e64 2061 2070 6f69 6e74 206f 6e20 find a point on │ │ │ │ -00029a60: 7468 6520 7365 636f 6e64 2063 6f6d 706f the second compo │ │ │ │ -00029a70: 6e65 6e74 2069 6e20 7061 7261 6d65 7465 nent in paramete │ │ │ │ -00029a80: 7220 7370 6163 652c 2061 6e64 2069 7473 r space, and its │ │ │ │ -00029a90: 0a63 6f72 7265 7370 6f6e 6469 6e67 2069 .corresponding i │ │ │ │ -00029aa0: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ -00029ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029af0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 7074 -----+.|i16 : pt │ │ │ │ -00029b00: 3220 3d20 7261 6e64 6f6d 506f 696e 744f 2 = randomPointO │ │ │ │ -00029b10: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ -00029b20: 2063 6f6d 7073 4a5f 3120 2020 2020 2020 compsJ_1 │ │ │ │ -00029b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029740: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00029750: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00029760: 2020 2020 2020 2020 2020 3220 2020 207c 2 | │ │ │ │ +00029770: 0a7c 6f31 3520 3d20 7b69 6465 616c 2028 .|o15 = {ideal ( │ │ │ │ +00029780: 6120 2d20 3239 6220 2d20 3338 6320 2d20 a - 29b - 38c - │ │ │ │ +00029790: 3964 2c20 6220 202d 2032 3962 2a63 202d 9d, b - 29b*c - │ │ │ │ +000297a0: 2032 3963 2020 2b20 3362 2a64 202b 2031 29c + 3b*d + 1 │ │ │ │ +000297b0: 3663 2a64 202d 2032 3664 2029 2c20 207c 6c*d - 26d ), | │ │ │ │ +000297c0: 0a7c 2020 2020 2020 2d2d 2d2d 2d2d 2d2d .| -------- │ │ │ │ +000297d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000297e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000297f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00029810: 0a7c 2020 2020 2020 6964 6561 6c20 2863 .| ideal (c │ │ │ │ +00029820: 202d 2032 3264 2c20 6220 2d20 3231 642c - 22d, b - 21d, │ │ │ │ +00029830: 2061 202b 2038 6429 7d20 2020 2020 2020 a + 8d)} │ │ │ │ +00029840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000298b0: 0a7c 6f31 3520 3a20 4c69 7374 2020 2020 .|o15 : List │ │ │ │ +000298c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000298f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029900: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00029910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00029950: 0a0a 5765 2061 7474 656d 7074 2074 6f20 ..We attempt to │ │ │ │ +00029960: 6669 6e64 2061 2070 6f69 6e74 206f 6e20 find a point on │ │ │ │ +00029970: 7468 6520 7365 636f 6e64 2063 6f6d 706f the second compo │ │ │ │ +00029980: 6e65 6e74 2069 6e20 7061 7261 6d65 7465 nent in paramete │ │ │ │ +00029990: 7220 7370 6163 652c 2061 6e64 2069 7473 r space, and its │ │ │ │ +000299a0: 0a63 6f72 7265 7370 6f6e 6469 6e67 2069 .corresponding i │ │ │ │ +000299b0: 6465 616c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d deal...+-------- │ │ │ │ +000299c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000299d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000299e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000299f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029a00: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 7074 -----+.|i16 : pt │ │ │ │ +00029a10: 3220 3d20 7261 6e64 6f6d 506f 696e 744f 2 = randomPointO │ │ │ │ +00029a20: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ +00029a30: 2063 6f6d 7073 4a5f 3120 2020 2020 2020 compsJ_1 │ │ │ │ +00029a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029a50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029aa0: 2020 2020 207c 0a7c 6f31 3620 3d20 7c20 |.|o16 = | │ │ │ │ +00029ab0: 3436 202d 3220 3136 202d 3230 202d 3120 46 -2 16 -20 -1 │ │ │ │ +00029ac0: 2d33 3020 2d34 3320 2d34 3120 3137 202d -30 -43 -41 17 - │ │ │ │ +00029ad0: 3420 2d31 3620 2d32 3920 2d33 3920 3430 4 -16 -29 -39 40 │ │ │ │ +00029ae0: 2034 3920 2d33 3920 2d31 3820 2d31 3320 49 -39 -18 -13 │ │ │ │ +00029af0: 2d34 3720 207c 0a7c 2020 2020 2020 2d2d -47 |.| -- │ │ │ │ +00029b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b40: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3334 -----|.| 34 │ │ │ │ +00029b50: 2031 3920 3231 2033 3920 3020 7c20 2020 19 21 39 0 | │ │ │ │ 00029b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b90: 2020 2020 207c 0a7c 6f31 3620 3d20 7c20 |.|o16 = | │ │ │ │ -00029ba0: 2d31 3420 3430 202d 3520 3236 202d 3438 -14 40 -5 26 -48 │ │ │ │ -00029bb0: 202d 3236 202d 3335 2034 3120 2d38 202d -26 -35 41 -8 - │ │ │ │ -00029bc0: 3135 202d 3338 2033 3120 2d31 3320 3239 15 -38 31 -13 29 │ │ │ │ -00029bd0: 2032 3120 3136 2033 3920 3231 202d 3138 21 16 39 21 -18 │ │ │ │ -00029be0: 2031 3920 207c 0a7c 2020 2020 2020 2d2d 19 |.| -- │ │ │ │ -00029bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c30: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2d34 -----|.| -4 │ │ │ │ -00029c40: 3720 2d33 3920 3334 2030 207c 2020 2020 7 -39 34 0 | │ │ │ │ +00029b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029be0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029bf0: 2020 2020 2020 2031 2020 2020 2020 2032 1 2 │ │ │ │ +00029c00: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00029c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c30: 2020 2020 207c 0a7c 6f31 3620 3a20 4d61 |.|o16 : Ma │ │ │ │ +00029c40: 7472 6978 206b 6b20 203c 2d2d 206b 6b20 trix kk <-- kk │ │ │ │ 00029c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029ce0: 2020 2020 2020 2031 2020 2020 2020 2032 1 2 │ │ │ │ -00029cf0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00029c80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00029c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029cd0: 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 4632 -----+.|i17 : F2 │ │ │ │ +00029ce0: 203d 2073 7562 2846 2c20 2876 6172 7320 = sub(F, (vars │ │ │ │ +00029cf0: 5329 7c70 7432 2920 2020 2020 2020 2020 S)|pt2) │ │ │ │ 00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d20: 2020 2020 207c 0a7c 6f31 3620 3a20 4d61 |.|o16 : Ma │ │ │ │ -00029d30: 7472 6978 206b 6b20 203c 2d2d 206b 6b20 trix kk <-- kk │ │ │ │ +00029d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029dc0: 2d2d 2d2d 2d2b 0a7c 6931 3720 3a20 4632 -----+.|i17 : F2 │ │ │ │ -00029dd0: 203d 2073 7562 2846 2c20 2876 6172 7320 = sub(F, (vars │ │ │ │ -00029de0: 5329 7c70 7432 2920 2020 2020 2020 2020 S)|pt2) │ │ │ │ -00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029e70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00029e80: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00029e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ea0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00029eb0: 2020 2020 207c 0a7c 6f31 3720 3d20 6964 |.|o17 = id │ │ │ │ -00029ec0: 6561 6c20 2861 2020 2d20 3862 2a63 202b eal (a - 8b*c + │ │ │ │ -00029ed0: 2032 3663 2020 2d20 3135 612a 6420 2d20 26c - 15a*d - │ │ │ │ -00029ee0: 3438 622a 6420 2b20 3430 632a 6420 2d20 48b*d + 40c*d - │ │ │ │ -00029ef0: 3134 6420 2c20 612a 6220 2b20 3231 622a 14d , a*b + 21b* │ │ │ │ -00029f00: 6320 2d20 207c 0a7c 2020 2020 2020 2d2d c - |.| -- │ │ │ │ +00029d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029d80: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00029d90: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029db0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00029dc0: 2020 2020 327c 0a7c 6f31 3720 3d20 6964 2|.|o17 = id │ │ │ │ +00029dd0: 6561 6c20 2861 2020 2b20 3137 622a 6320 eal (a + 17b*c │ │ │ │ +00029de0: 2d20 3230 6320 202d 2034 612a 6420 2d20 - 20c - 4a*d - │ │ │ │ +00029df0: 622a 6420 2d20 3263 2a64 202b 2034 3664 b*d - 2c*d + 46d │ │ │ │ +00029e00: 202c 2061 2a62 202b 2034 3962 2a63 202d , a*b + 49b*c - │ │ │ │ +00029e10: 2031 3663 207c 0a7c 2020 2020 2020 2d2d 16c |.| -- │ │ │ │ +00029e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029e60: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +00029e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029e80: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00029e90: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00029ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029eb0: 2020 2020 207c 0a7c 2020 2020 2020 2d20 |.| - │ │ │ │ +00029ec0: 3339 612a 6420 2d20 3239 622a 6420 2d20 39a*d - 29b*d - │ │ │ │ +00029ed0: 3330 632a 6420 2b20 3136 6420 2c20 612a 30c*d + 16d , a* │ │ │ │ +00029ee0: 6320 2b20 3139 622a 6320 2d20 3138 6320 c + 19b*c - 18c │ │ │ │ +00029ef0: 202b 2032 3161 2a64 202d 2031 3362 2a64 + 21a*d - 13b*d │ │ │ │ +00029f00: 202d 2020 207c 0a7c 2020 2020 2020 2d2d - |.| -- │ │ │ │ 00029f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029f50: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00029f60: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00029f70: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00029f60: 2020 2020 2020 2020 2032 2020 2032 2020 2 2 │ │ │ │ +00029f70: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 00029f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f90: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00029fa0: 2020 2020 207c 0a7c 2020 2020 2020 3338 |.| 38 │ │ │ │ -00029fb0: 6320 202b 2031 3661 2a64 202b 2033 3162 c + 16a*d + 31b │ │ │ │ -00029fc0: 2a64 202d 2032 3663 2a64 202d 2035 6420 *d - 26c*d - 5d │ │ │ │ -00029fd0: 2c20 612a 6320 2d20 3437 622a 6320 2b20 , a*c - 47b*c + │ │ │ │ -00029fe0: 3339 6320 202d 2033 3961 2a64 202b 2032 39c - 39a*d + 2 │ │ │ │ -00029ff0: 3162 2a64 207c 0a7c 2020 2020 2020 2d2d 1b*d |.| -- │ │ │ │ -0002a000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a040: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0002a050: 2020 2020 2020 2020 2020 2032 2020 2032 2 2 │ │ │ │ -0002a060: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00029fa0: 2020 2020 207c 0a7c 2020 2020 2020 3339 |.| 39 │ │ │ │ +00029fb0: 632a 6420 2d20 3433 6420 2c20 6220 202b c*d - 43d , b + │ │ │ │ +00029fc0: 2033 3962 2a63 202d 2034 3763 2020 2b20 39b*c - 47c + │ │ │ │ +00029fd0: 3334 622a 6420 2b20 3430 632a 6420 2d20 34b*d + 40c*d - │ │ │ │ +00029fe0: 3431 6420 2920 2020 2020 2020 2020 2020 41d ) │ │ │ │ +00029ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a040: 2020 2020 207c 0a7c 6f31 3720 3a20 4964 |.|o17 : Id │ │ │ │ +0002a050: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ +0002a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a080: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0002a090: 2020 2020 207c 0a7c 2020 2020 2020 2d20 |.| - │ │ │ │ -0002a0a0: 3133 632a 6420 2d20 3335 6420 2c20 6220 13c*d - 35d , b │ │ │ │ -0002a0b0: 202b 2033 3462 2a63 202d 2031 3863 2020 + 34b*c - 18c │ │ │ │ -0002a0c0: 2b20 3139 622a 6420 2b20 3239 632a 6420 + 19b*d + 29c*d │ │ │ │ -0002a0d0: 2b20 3431 6420 2920 2020 2020 2020 2020 + 41d ) │ │ │ │ -0002a0e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a090: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a0e0: 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 6465 -----+.|i18 : de │ │ │ │ +0002a0f0: 636f 6d70 6f73 6520 4632 2020 2020 2020 compose F2 │ │ │ │ 0002a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a130: 2020 2020 207c 0a7c 6f31 3720 3a20 4964 |.|o17 : Id │ │ │ │ -0002a140: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ +0002a130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a180: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1d0: 2d2d 2d2d 2d2b 0a7c 6931 3820 3a20 6465 -----+.|i18 : de │ │ │ │ -0002a1e0: 636f 6d70 6f73 6520 4632 2020 2020 2020 compose F2 │ │ │ │ -0002a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a270: 2020 2020 207c 0a7c 6f31 3820 3d20 7b69 |.|o18 = {i │ │ │ │ -0002a280: 6465 616c 2028 6220 2b20 3139 6320 2d20 deal (b + 19c - │ │ │ │ -0002a290: 3138 642c 2061 202b 2032 3363 202b 2034 18d, a + 23c + 4 │ │ │ │ -0002a2a0: 3364 292c 2069 6465 616c 2028 6220 2b20 3d), ideal (b + │ │ │ │ -0002a2b0: 3135 6320 2b20 3337 642c 2061 202b 2033 15c + 37d, a + 3 │ │ │ │ -0002a2c0: 3763 202b 207c 0a7c 2020 2020 2020 2d2d 7c + |.| -- │ │ │ │ -0002a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a310: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3236 -----|.| 26 │ │ │ │ -0002a320: 6429 7d20 2020 2020 2020 2020 2020 2020 d)} │ │ │ │ -0002a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a1a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0002a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a1c0: 2020 2020 2020 3220 2020 3220 2020 2020 2 2 │ │ │ │ +0002a1d0: 2020 2020 207c 0a7c 6f31 3820 3d20 7b69 |.|o18 = {i │ │ │ │ +0002a1e0: 6465 616c 2028 612a 6320 2b20 3139 622a deal (a*c + 19b* │ │ │ │ +0002a1f0: 6320 2d20 3138 6320 202b 2032 3161 2a64 c - 18c + 21a*d │ │ │ │ +0002a200: 202d 2031 3362 2a64 202d 2033 3963 2a64 - 13b*d - 39c*d │ │ │ │ +0002a210: 202d 2034 3364 202c 2062 2020 2b20 3339 - 43d , b + 39 │ │ │ │ +0002a220: 622a 6320 2d7c 0a7c 2020 2020 2020 2d2d b*c -|.| -- │ │ │ │ +0002a230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a270: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +0002a280: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a290: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0002a2a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0002a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a2c0: 2020 2020 207c 0a7c 2020 2020 2020 3437 |.| 47 │ │ │ │ +0002a2d0: 6320 202b 2033 3462 2a64 202b 2034 3063 c + 34b*d + 40c │ │ │ │ +0002a2e0: 2a64 202d 2034 3164 202c 2061 2a62 202b *d - 41d , a*b + │ │ │ │ +0002a2f0: 2034 3962 2a63 202d 2031 3663 2020 2d20 49b*c - 16c - │ │ │ │ +0002a300: 3339 612a 6420 2d20 3239 622a 6420 2d20 39a*d - 29b*d - │ │ │ │ +0002a310: 3330 632a 647c 0a7c 2020 2020 2020 2d2d 30c*d|.| -- │ │ │ │ +0002a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a360: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +0002a370: 2020 2032 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +0002a380: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0002a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3b0: 2020 2020 207c 0a7c 6f31 3820 3a20 4c69 |.|o18 : Li │ │ │ │ -0002a3c0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ -0002a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a400: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a450: 2d2d 2d2d 2d2b 0a0a 4974 2074 7572 6e73 -----+..It turns │ │ │ │ -0002a460: 206f 7574 2074 6861 7420 7468 6973 2069 out that this i │ │ │ │ -0002a470: 7320 7468 6520 6964 6561 6c20 6f66 2032 s the ideal of 2 │ │ │ │ -0002a480: 2073 6b65 7720 6c69 6e65 732c 206a 7573 skew lines, jus │ │ │ │ -0002a490: 7420 6e6f 7420 6465 6669 6e65 6420 6f76 t not defined ov │ │ │ │ -0002a4a0: 6572 2074 6869 730a 6669 656c 642e 0a0a er this.field... │ │ │ │ -0002a4b0: 4361 7665 6174 0a3d 3d3d 3d3d 3d0a 0a54 Caveat.======..T │ │ │ │ -0002a4c0: 6869 7320 726f 7574 696e 6520 6578 7065 his routine expe │ │ │ │ -0002a4d0: 6374 7320 7468 6520 696e 7075 7420 746f cts the input to │ │ │ │ -0002a4e0: 2072 6570 7265 7365 6e74 2061 6e20 6972 represent an ir │ │ │ │ -0002a4f0: 7265 6475 6369 626c 6520 7661 7269 6574 reducible variet │ │ │ │ -0002a500: 790a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d y..See also.==== │ │ │ │ -0002a510: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0002a520: 7261 6e64 6f6d 506f 696e 7473 4f6e 5261 randomPointsOnRa │ │ │ │ -0002a530: 7469 6f6e 616c 5661 7269 6574 793a 0a20 tionalVariety:. │ │ │ │ -0002a540: 2020 2072 616e 646f 6d50 6f69 6e74 734f randomPointsO │ │ │ │ -0002a550: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ -0002a560: 5f6c 7049 6465 616c 5f63 6d5a 5a5f 7270 _lpIdeal_cmZZ_rp │ │ │ │ -0002a570: 2c20 2d2d 2066 696e 6420 7261 6e64 6f6d , -- find random │ │ │ │ -0002a580: 2070 6f69 6e74 7320 6f6e 2061 0a20 2020 points on a. │ │ │ │ -0002a590: 2076 6172 6965 7479 2074 6861 7420 6361 variety that ca │ │ │ │ -0002a5a0: 6e20 6265 2064 6574 6563 7465 6420 746f n be detected to │ │ │ │ -0002a5b0: 2062 6520 7261 7469 6f6e 616c 0a0a 5761 be rational..Wa │ │ │ │ -0002a5c0: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ -0002a5d0: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ -0002a5e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0002a5f0: 0a20 202a 202a 6e6f 7465 2072 616e 646f . * *note rando │ │ │ │ -0002a600: 6d50 6f69 6e74 4f6e 5261 7469 6f6e 616c mPointOnRational │ │ │ │ -0002a610: 5661 7269 6574 7928 4964 6561 6c29 3a0a Variety(Ideal):. │ │ │ │ -0002a620: 2020 2020 7261 6e64 6f6d 506f 696e 744f randomPointO │ │ │ │ -0002a630: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ -0002a640: 5f6c 7049 6465 616c 5f72 702c 202d 2d20 _lpIdeal_rp, -- │ │ │ │ -0002a650: 6669 6e64 2061 2072 616e 646f 6d20 706f find a random po │ │ │ │ -0002a660: 696e 7420 6f6e 2061 0a20 2020 2076 6172 int on a. var │ │ │ │ -0002a670: 6965 7479 2074 6861 7420 6361 6e20 6265 iety that can be │ │ │ │ -0002a680: 2064 6574 6563 7465 6420 746f 2062 6520 detected to be │ │ │ │ -0002a690: 7261 7469 6f6e 616c 0a2d 2d2d 2d2d 2d2d rational.------- │ │ │ │ -0002a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a6e0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0002a6f0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0002a700: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0002a710: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0002a720: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0002a730: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0002a740: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0002a750: 0a47 726f 6562 6e65 7253 7472 6174 612e .GroebnerStrata. │ │ │ │ -0002a760: 6d32 3a39 3339 3a30 2e0a 1f0a 4669 6c65 m2:939:0....File │ │ │ │ -0002a770: 3a20 4772 6f65 626e 6572 5374 7261 7461 : GroebnerStrata │ │ │ │ -0002a780: 2e69 6e66 6f2c 204e 6f64 653a 2072 616e .info, Node: ran │ │ │ │ -0002a790: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ -0002a7a0: 6e61 6c56 6172 6965 7479 5f6c 7049 6465 nalVariety_lpIde │ │ │ │ -0002a7b0: 616c 5f63 6d5a 5a5f 7270 2c20 4e65 7874 al_cmZZ_rp, Next │ │ │ │ -0002a7c0: 3a20 736d 616c 6c65 724d 6f6e 6f6d 6961 : smallerMonomia │ │ │ │ -0002a7d0: 6c73 2c20 5072 6576 3a20 7261 6e64 6f6d ls, Prev: random │ │ │ │ -0002a7e0: 506f 696e 744f 6e52 6174 696f 6e61 6c56 PointOnRationalV │ │ │ │ -0002a7f0: 6172 6965 7479 5f6c 7049 6465 616c 5f72 ariety_lpIdeal_r │ │ │ │ -0002a800: 702c 2055 703a 2054 6f70 0a0a 7261 6e64 p, Up: Top..rand │ │ │ │ -0002a810: 6f6d 506f 696e 7473 4f6e 5261 7469 6f6e omPointsOnRation │ │ │ │ -0002a820: 616c 5661 7269 6574 7928 4964 6561 6c2c alVariety(Ideal, │ │ │ │ -0002a830: 5a5a 2920 2d2d 2066 696e 6420 7261 6e64 ZZ) -- find rand │ │ │ │ -0002a840: 6f6d 2070 6f69 6e74 7320 6f6e 2061 2076 om points on a v │ │ │ │ -0002a850: 6172 6965 7479 2074 6861 7420 6361 6e20 ariety that can │ │ │ │ -0002a860: 6265 2064 6574 6563 7465 6420 746f 2062 be detected to b │ │ │ │ -0002a870: 6520 7261 7469 6f6e 616c 0a2a 2a2a 2a2a e rational.***** │ │ │ │ -0002a880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002a8e0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ -0002a8f0: 756e 6374 696f 6e3a 202a 6e6f 7465 2072 unction: *note r │ │ │ │ -0002a900: 616e 646f 6d50 6f69 6e74 734f 6e52 6174 andomPointsOnRat │ │ │ │ -0002a910: 696f 6e61 6c56 6172 6965 7479 3a0a 2020 ionalVariety:. │ │ │ │ -0002a920: 2020 7261 6e64 6f6d 506f 696e 7473 4f6e randomPointsOn │ │ │ │ -0002a930: 5261 7469 6f6e 616c 5661 7269 6574 795f RationalVariety_ │ │ │ │ -0002a940: 6c70 4964 6561 6c5f 636d 5a5a 5f72 702c lpIdeal_cmZZ_rp, │ │ │ │ -0002a950: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0002a960: 2020 2020 2072 616e 646f 6d50 6f69 6e74 randomPoint │ │ │ │ -0002a970: 734f 6e52 6174 696f 6e61 6c56 6172 6965 sOnRationalVarie │ │ │ │ -0002a980: 7479 2849 2c20 6e29 0a20 2020 2020 2020 ty(I, n). │ │ │ │ -0002a990: 2072 616e 646f 6d50 6f69 6e74 4f6e 5261 randomPointOnRa │ │ │ │ -0002a9a0: 7469 6f6e 616c 5661 7269 6574 790a 2020 tionalVariety. │ │ │ │ -0002a9b0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0002a9c0: 2a20 492c 2061 6e20 2a6e 6f74 6520 6964 * I, an *note id │ │ │ │ -0002a9d0: 6561 6c3a 2028 4d61 6361 756c 6179 3244 eal: (Macaulay2D │ │ │ │ -0002a9e0: 6f63 2949 6465 616c 2c2c 2041 6e20 6964 oc)Ideal,, An id │ │ │ │ -0002a9f0: 6561 6c20 696e 2061 2070 6f6c 796e 6f6d eal in a polynom │ │ │ │ -0002aa00: 6961 6c20 7269 6e67 0a20 2020 2020 2020 ial ring. │ │ │ │ -0002aa10: 2024 5324 206f 7665 7220 6120 6669 656c $S$ over a fiel │ │ │ │ -0002aa20: 642c 2077 6869 6368 2064 6566 696e 6573 d, which defines │ │ │ │ -0002aa30: 2061 2070 7269 6d65 2069 6465 616c 0a20 a prime ideal. │ │ │ │ -0002aa40: 2020 2020 202a 206e 2c20 616e 202a 6e6f * n, an *no │ │ │ │ -0002aa50: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ -0002aa60: 6175 6c61 7932 446f 6329 5a5a 2c2c 2054 aulay2Doc)ZZ,, T │ │ │ │ -0002aa70: 6865 206e 756d 6265 7220 6f66 2070 6f69 he number of poi │ │ │ │ -0002aa80: 6e74 7320 746f 0a20 2020 2020 2020 2067 nts to. g │ │ │ │ -0002aa90: 656e 6572 6174 650a 2020 2a20 4f75 7470 enerate. * Outp │ │ │ │ -0002aaa0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -0002aab0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -0002aac0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -0002aad0: 4120 6c69 7374 206f 6620 246e 2420 6f6e A list of $n$ on │ │ │ │ -0002aae0: 6520 726f 7720 6d61 7472 6963 6573 206f e row matrices o │ │ │ │ -0002aaf0: 7665 720a 2020 2020 2020 2020 7468 6520 ver. the │ │ │ │ -0002ab00: 6261 7365 2066 6965 6c64 206f 6620 2453 base field of $S │ │ │ │ -0002ab10: 242c 2074 6861 7420 6172 6520 7261 6e64 $, that are rand │ │ │ │ -0002ab20: 6f6d 6c79 2063 686f 7365 6e20 706f 696e omly chosen poin │ │ │ │ -0002ab30: 7473 206f 6e20 2449 242e 2020 6e75 6c6c ts on $I$. null │ │ │ │ -0002ab40: 2069 730a 2020 2020 2020 2020 7265 7475 is. retu │ │ │ │ -0002ab50: 726e 6564 2069 6e20 7468 6520 6361 7365 rned in the case │ │ │ │ -0002ab60: 2077 6865 6e20 7468 6520 726f 7574 696e when the routin │ │ │ │ -0002ab70: 6520 6361 6e6e 6f74 2064 6574 6572 6d69 e cannot determi │ │ │ │ -0002ab80: 6e65 2069 6620 7468 6520 7661 7269 6574 ne if the variet │ │ │ │ -0002ab90: 790a 2020 2020 2020 2020 6973 2072 6174 y. is rat │ │ │ │ -0002aba0: 696f 6e61 6c20 616e 6420 6972 7265 6475 ional and irredu │ │ │ │ -0002abb0: 6369 626c 652e 0a0a 4465 7363 7269 7074 cible...Descript │ │ │ │ -0002abc0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0002abd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002ac20: 0a7c 6931 203a 206b 6b20 3d20 5a5a 2f31 .|i1 : kk = ZZ/1 │ │ │ │ -0002ac30: 3031 3b20 2020 2020 2020 2020 2020 2020 01; │ │ │ │ -0002ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a3a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a3b0: 2020 2020 207c 0a7c 2020 2020 2020 2b20 |.| + │ │ │ │ +0002a3c0: 3136 6420 2c20 6120 202b 2031 3762 2a63 16d , a + 17b*c │ │ │ │ +0002a3d0: 202d 2032 3063 2020 2d20 3461 2a64 202d - 20c - 4a*d - │ │ │ │ +0002a3e0: 2062 2a64 202d 2032 632a 6420 2b20 3436 b*d - 2c*d + 46 │ │ │ │ +0002a3f0: 6420 297d 2020 2020 2020 2020 2020 2020 d )} │ │ │ │ +0002a400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a450: 2020 2020 207c 0a7c 6f31 3820 3a20 4c69 |.|o18 : Li │ │ │ │ +0002a460: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4f0: 2d2d 2d2d 2d2b 0a0a 4974 2074 7572 6e73 -----+..It turns │ │ │ │ +0002a500: 206f 7574 2074 6861 7420 7468 6973 2069 out that this i │ │ │ │ +0002a510: 7320 7468 6520 6964 6561 6c20 6f66 2032 s the ideal of 2 │ │ │ │ +0002a520: 2073 6b65 7720 6c69 6e65 732c 206a 7573 skew lines, jus │ │ │ │ +0002a530: 7420 6e6f 7420 6465 6669 6e65 6420 6f76 t not defined ov │ │ │ │ +0002a540: 6572 2074 6869 730a 6669 656c 642e 0a0a er this.field... │ │ │ │ +0002a550: 4361 7665 6174 0a3d 3d3d 3d3d 3d0a 0a54 Caveat.======..T │ │ │ │ +0002a560: 6869 7320 726f 7574 696e 6520 6578 7065 his routine expe │ │ │ │ +0002a570: 6374 7320 7468 6520 696e 7075 7420 746f cts the input to │ │ │ │ +0002a580: 2072 6570 7265 7365 6e74 2061 6e20 6972 represent an ir │ │ │ │ +0002a590: 7265 6475 6369 626c 6520 7661 7269 6574 reducible variet │ │ │ │ +0002a5a0: 790a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d y..See also.==== │ │ │ │ +0002a5b0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0002a5c0: 7261 6e64 6f6d 506f 696e 7473 4f6e 5261 randomPointsOnRa │ │ │ │ +0002a5d0: 7469 6f6e 616c 5661 7269 6574 793a 0a20 tionalVariety:. │ │ │ │ +0002a5e0: 2020 2072 616e 646f 6d50 6f69 6e74 734f randomPointsO │ │ │ │ +0002a5f0: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ +0002a600: 5f6c 7049 6465 616c 5f63 6d5a 5a5f 7270 _lpIdeal_cmZZ_rp │ │ │ │ +0002a610: 2c20 2d2d 2066 696e 6420 7261 6e64 6f6d , -- find random │ │ │ │ +0002a620: 2070 6f69 6e74 7320 6f6e 2061 0a20 2020 points on a. │ │ │ │ +0002a630: 2076 6172 6965 7479 2074 6861 7420 6361 variety that ca │ │ │ │ +0002a640: 6e20 6265 2064 6574 6563 7465 6420 746f n be detected to │ │ │ │ +0002a650: 2062 6520 7261 7469 6f6e 616c 0a0a 5761 be rational..Wa │ │ │ │ +0002a660: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ +0002a670: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ +0002a680: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002a690: 0a20 202a 202a 6e6f 7465 2072 616e 646f . * *note rando │ │ │ │ +0002a6a0: 6d50 6f69 6e74 4f6e 5261 7469 6f6e 616c mPointOnRational │ │ │ │ +0002a6b0: 5661 7269 6574 7928 4964 6561 6c29 3a0a Variety(Ideal):. │ │ │ │ +0002a6c0: 2020 2020 7261 6e64 6f6d 506f 696e 744f randomPointO │ │ │ │ +0002a6d0: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ +0002a6e0: 5f6c 7049 6465 616c 5f72 702c 202d 2d20 _lpIdeal_rp, -- │ │ │ │ +0002a6f0: 6669 6e64 2061 2072 616e 646f 6d20 706f find a random po │ │ │ │ +0002a700: 696e 7420 6f6e 2061 0a20 2020 2076 6172 int on a. var │ │ │ │ +0002a710: 6965 7479 2074 6861 7420 6361 6e20 6265 iety that can be │ │ │ │ +0002a720: 2064 6574 6563 7465 6420 746f 2062 6520 detected to be │ │ │ │ +0002a730: 7261 7469 6f6e 616c 0a2d 2d2d 2d2d 2d2d rational.------- │ │ │ │ +0002a740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a780: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0002a790: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0002a7a0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0002a7b0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0002a7c0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0002a7d0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0002a7e0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0002a7f0: 0a47 726f 6562 6e65 7253 7472 6174 612e .GroebnerStrata. │ │ │ │ +0002a800: 6d32 3a39 3339 3a30 2e0a 1f0a 4669 6c65 m2:939:0....File │ │ │ │ +0002a810: 3a20 4772 6f65 626e 6572 5374 7261 7461 : GroebnerStrata │ │ │ │ +0002a820: 2e69 6e66 6f2c 204e 6f64 653a 2072 616e .info, Node: ran │ │ │ │ +0002a830: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ +0002a840: 6e61 6c56 6172 6965 7479 5f6c 7049 6465 nalVariety_lpIde │ │ │ │ +0002a850: 616c 5f63 6d5a 5a5f 7270 2c20 4e65 7874 al_cmZZ_rp, Next │ │ │ │ +0002a860: 3a20 736d 616c 6c65 724d 6f6e 6f6d 6961 : smallerMonomia │ │ │ │ +0002a870: 6c73 2c20 5072 6576 3a20 7261 6e64 6f6d ls, Prev: random │ │ │ │ +0002a880: 506f 696e 744f 6e52 6174 696f 6e61 6c56 PointOnRationalV │ │ │ │ +0002a890: 6172 6965 7479 5f6c 7049 6465 616c 5f72 ariety_lpIdeal_r │ │ │ │ +0002a8a0: 702c 2055 703a 2054 6f70 0a0a 7261 6e64 p, Up: Top..rand │ │ │ │ +0002a8b0: 6f6d 506f 696e 7473 4f6e 5261 7469 6f6e omPointsOnRation │ │ │ │ +0002a8c0: 616c 5661 7269 6574 7928 4964 6561 6c2c alVariety(Ideal, │ │ │ │ +0002a8d0: 5a5a 2920 2d2d 2066 696e 6420 7261 6e64 ZZ) -- find rand │ │ │ │ +0002a8e0: 6f6d 2070 6f69 6e74 7320 6f6e 2061 2076 om points on a v │ │ │ │ +0002a8f0: 6172 6965 7479 2074 6861 7420 6361 6e20 ariety that can │ │ │ │ +0002a900: 6265 2064 6574 6563 7465 6420 746f 2062 be detected to b │ │ │ │ +0002a910: 6520 7261 7469 6f6e 616c 0a2a 2a2a 2a2a e rational.***** │ │ │ │ +0002a920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a960: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a970: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002a980: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ +0002a990: 756e 6374 696f 6e3a 202a 6e6f 7465 2072 unction: *note r │ │ │ │ +0002a9a0: 616e 646f 6d50 6f69 6e74 734f 6e52 6174 andomPointsOnRat │ │ │ │ +0002a9b0: 696f 6e61 6c56 6172 6965 7479 3a0a 2020 ionalVariety:. │ │ │ │ +0002a9c0: 2020 7261 6e64 6f6d 506f 696e 7473 4f6e randomPointsOn │ │ │ │ +0002a9d0: 5261 7469 6f6e 616c 5661 7269 6574 795f RationalVariety_ │ │ │ │ +0002a9e0: 6c70 4964 6561 6c5f 636d 5a5a 5f72 702c lpIdeal_cmZZ_rp, │ │ │ │ +0002a9f0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0002aa00: 2020 2020 2072 616e 646f 6d50 6f69 6e74 randomPoint │ │ │ │ +0002aa10: 734f 6e52 6174 696f 6e61 6c56 6172 6965 sOnRationalVarie │ │ │ │ +0002aa20: 7479 2849 2c20 6e29 0a20 2020 2020 2020 ty(I, n). │ │ │ │ +0002aa30: 2072 616e 646f 6d50 6f69 6e74 4f6e 5261 randomPointOnRa │ │ │ │ +0002aa40: 7469 6f6e 616c 5661 7269 6574 790a 2020 tionalVariety. │ │ │ │ +0002aa50: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +0002aa60: 2a20 492c 2061 6e20 2a6e 6f74 6520 6964 * I, an *note id │ │ │ │ +0002aa70: 6561 6c3a 2028 4d61 6361 756c 6179 3244 eal: (Macaulay2D │ │ │ │ +0002aa80: 6f63 2949 6465 616c 2c2c 2041 6e20 6964 oc)Ideal,, An id │ │ │ │ +0002aa90: 6561 6c20 696e 2061 2070 6f6c 796e 6f6d eal in a polynom │ │ │ │ +0002aaa0: 6961 6c20 7269 6e67 0a20 2020 2020 2020 ial ring. │ │ │ │ +0002aab0: 2024 5324 206f 7665 7220 6120 6669 656c $S$ over a fiel │ │ │ │ +0002aac0: 642c 2077 6869 6368 2064 6566 696e 6573 d, which defines │ │ │ │ +0002aad0: 2061 2070 7269 6d65 2069 6465 616c 0a20 a prime ideal. │ │ │ │ +0002aae0: 2020 2020 202a 206e 2c20 616e 202a 6e6f * n, an *no │ │ │ │ +0002aaf0: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +0002ab00: 6175 6c61 7932 446f 6329 5a5a 2c2c 2054 aulay2Doc)ZZ,, T │ │ │ │ +0002ab10: 6865 206e 756d 6265 7220 6f66 2070 6f69 he number of poi │ │ │ │ +0002ab20: 6e74 7320 746f 0a20 2020 2020 2020 2067 nts to. g │ │ │ │ +0002ab30: 656e 6572 6174 650a 2020 2a20 4f75 7470 enerate. * Outp │ │ │ │ +0002ab40: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0002ab50: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +0002ab60: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +0002ab70: 4120 6c69 7374 206f 6620 246e 2420 6f6e A list of $n$ on │ │ │ │ +0002ab80: 6520 726f 7720 6d61 7472 6963 6573 206f e row matrices o │ │ │ │ +0002ab90: 7665 720a 2020 2020 2020 2020 7468 6520 ver. the │ │ │ │ +0002aba0: 6261 7365 2066 6965 6c64 206f 6620 2453 base field of $S │ │ │ │ +0002abb0: 242c 2074 6861 7420 6172 6520 7261 6e64 $, that are rand │ │ │ │ +0002abc0: 6f6d 6c79 2063 686f 7365 6e20 706f 696e omly chosen poin │ │ │ │ +0002abd0: 7473 206f 6e20 2449 242e 2020 6e75 6c6c ts on $I$. null │ │ │ │ +0002abe0: 2069 730a 2020 2020 2020 2020 7265 7475 is. retu │ │ │ │ +0002abf0: 726e 6564 2069 6e20 7468 6520 6361 7365 rned in the case │ │ │ │ +0002ac00: 2077 6865 6e20 7468 6520 726f 7574 696e when the routin │ │ │ │ +0002ac10: 6520 6361 6e6e 6f74 2064 6574 6572 6d69 e cannot determi │ │ │ │ +0002ac20: 6e65 2069 6620 7468 6520 7661 7269 6574 ne if the variet │ │ │ │ +0002ac30: 790a 2020 2020 2020 2020 6973 2072 6174 y. is rat │ │ │ │ +0002ac40: 696f 6e61 6c20 616e 6420 6972 7265 6475 ional and irredu │ │ │ │ +0002ac50: 6369 626c 652e 0a0a 4465 7363 7269 7074 cible...Descript │ │ │ │ +0002ac60: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ 0002ac70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002acc0: 0a7c 6932 203a 2053 203d 206b 6b5b 612e .|i2 : S = kk[a. │ │ │ │ -0002acd0: 2e66 5d3b 2020 2020 2020 2020 2020 2020 .f]; │ │ │ │ +0002acc0: 0a7c 6931 203a 206b 6b20 3d20 5a5a 2f31 .|i1 : kk = ZZ/1 │ │ │ │ +0002acd0: 3031 3b20 2020 2020 2020 2020 2020 2020 01; │ │ │ │ 0002ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002ad10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002ad20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002ad60: 0a7c 6933 203a 2049 203d 206d 696e 6f72 .|i3 : I = minor │ │ │ │ -0002ad70: 7328 322c 2067 656e 6572 6963 5379 6d6d s(2, genericSymm │ │ │ │ -0002ad80: 6574 7269 634d 6174 7269 7828 532c 2033 etricMatrix(S, 3 │ │ │ │ -0002ad90: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +0002ad60: 0a7c 6932 203a 2053 203d 206b 6b5b 612e .|i2 : S = kk[a. │ │ │ │ +0002ad70: 2e66 5d3b 2020 2020 2020 2020 2020 2020 .f]; │ │ │ │ +0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ada0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002adb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ae00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002ae10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae40: 2020 2020 3220 2020 2020 2020 2020 207c 2 | │ │ │ │ -0002ae50: 0a7c 6f33 203d 2069 6465 616c 2028 2d20 .|o3 = ideal (- │ │ │ │ -0002ae60: 6220 202b 2061 2a64 2c20 2d20 622a 6320 b + a*d, - b*c │ │ │ │ -0002ae70: 2b20 612a 652c 202d 2063 2a64 202b 2062 + a*e, - c*d + b │ │ │ │ -0002ae80: 2a65 2c20 2d20 622a 6320 2b20 612a 652c *e, - b*c + a*e, │ │ │ │ -0002ae90: 202d 2063 2020 2b20 612a 662c 202d 207c - c + a*f, - | │ │ │ │ -0002aea0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -0002aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002aef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002af40: 0a7c 2020 2020 2063 2a65 202b 2062 2a66 .| c*e + b*f │ │ │ │ -0002af50: 2c20 2d20 632a 6420 2b20 622a 652c 202d , - c*d + b*e, - │ │ │ │ -0002af60: 2063 2a65 202b 2062 2a66 2c20 2d20 6520 c*e + b*f, - e │ │ │ │ -0002af70: 202b 2064 2a66 2920 2020 2020 2020 2020 + d*f) │ │ │ │ -0002af80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002adb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002adc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002add0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ade0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002ae00: 0a7c 6933 203a 2049 203d 206d 696e 6f72 .|i3 : I = minor │ │ │ │ +0002ae10: 7328 322c 2067 656e 6572 6963 5379 6d6d s(2, genericSymm │ │ │ │ +0002ae20: 6574 7269 634d 6174 7269 7828 532c 2033 etricMatrix(S, 3 │ │ │ │ +0002ae30: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +0002ae40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ae50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002aea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002aeb0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aee0: 2020 2020 3220 2020 2020 2020 2020 207c 2 | │ │ │ │ +0002aef0: 0a7c 6f33 203d 2069 6465 616c 2028 2d20 .|o3 = ideal (- │ │ │ │ +0002af00: 6220 202b 2061 2a64 2c20 2d20 622a 6320 b + a*d, - b*c │ │ │ │ +0002af10: 2b20 612a 652c 202d 2063 2a64 202b 2062 + a*e, - c*d + b │ │ │ │ +0002af20: 2a65 2c20 2d20 622a 6320 2b20 612a 652c *e, - b*c + a*e, │ │ │ │ +0002af30: 202d 2063 2020 2b20 612a 662c 202d 207c - c + a*f, - | │ │ │ │ +0002af40: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +0002af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 0002af90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afb0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002afe0: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -0002aff0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afe0: 0a7c 2020 2020 2063 2a65 202b 2062 2a66 .| c*e + b*f │ │ │ │ +0002aff0: 2c20 2d20 632a 6420 2b20 622a 652c 202d , - c*d + b*e, - │ │ │ │ +0002b000: 2063 2a65 202b 2062 2a66 2c20 2d20 6520 c*e + b*f, - e │ │ │ │ +0002b010: 202b 2064 2a66 2920 2020 2020 2020 2020 + d*f) │ │ │ │ 0002b020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b030: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002b040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b080: 0a7c 6934 203a 2070 7473 203d 2072 616e .|i4 : pts = ran │ │ │ │ -0002b090: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ -0002b0a0: 6e61 6c56 6172 6965 7479 2849 2c20 3429 nalVariety(I, 4) │ │ │ │ +0002b030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b080: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ +0002b090: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +0002b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b0d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b120: 0a7c 6f34 203d 207b 7c20 2d32 3520 3230 .|o4 = {| -25 20 │ │ │ │ -0002b130: 202d 3330 202d 3136 2032 3420 2d33 3620 -30 -16 24 -36 │ │ │ │ -0002b140: 7c2c 207c 2031 3920 2d32 3920 3139 2032 |, | 19 -29 19 2 │ │ │ │ -0002b150: 3320 2d32 3920 3139 207c 2c20 7c20 2d34 3 -29 19 |, | -4 │ │ │ │ -0002b160: 3420 3436 202d 3820 3720 2d31 3020 207c 4 46 -8 7 -10 | │ │ │ │ -0002b170: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -0002b180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002b1c0: 0a7c 2020 2020 202d 3239 207c 2c20 7c20 .| -29 |, | │ │ │ │ -0002b1d0: 3820 3431 202d 3234 2034 3620 2d32 3220 8 41 -24 46 -22 │ │ │ │ -0002b1e0: 2d32 3920 7c7d 2020 2020 2020 2020 2020 -29 |} │ │ │ │ -0002b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b260: 0a7c 6f34 203a 204c 6973 7420 2020 2020 .|o4 : List │ │ │ │ -0002b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b0d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002b120: 0a7c 6934 203a 2070 7473 203d 2072 616e .|i4 : pts = ran │ │ │ │ +0002b130: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ +0002b140: 6e61 6c56 6172 6965 7479 2849 2c20 3429 nalVariety(I, 4) │ │ │ │ +0002b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b1b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b1c0: 0a7c 6f34 203d 207b 7c20 2d32 3520 3230 .|o4 = {| -25 20 │ │ │ │ +0002b1d0: 202d 3330 202d 3136 2032 3420 2d33 3620 -30 -16 24 -36 │ │ │ │ +0002b1e0: 7c2c 207c 2031 3920 2d32 3920 3139 2032 |, | 19 -29 19 2 │ │ │ │ +0002b1f0: 3320 2d32 3920 3139 207c 2c20 7c20 2d34 3 -29 19 |, | -4 │ │ │ │ +0002b200: 3420 3436 202d 3820 3720 2d31 3020 207c 4 46 -8 7 -10 | │ │ │ │ +0002b210: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +0002b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002b260: 0a7c 2020 2020 202d 3239 207c 2c20 7c20 .| -29 |, | │ │ │ │ +0002b270: 3820 3431 202d 3234 2034 3620 2d32 3220 8 41 -24 46 -22 │ │ │ │ +0002b280: 2d32 3920 7c7d 2020 2020 2020 2020 2020 -29 |} │ │ │ │ 0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b2b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002b2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b300: 0a7c 6935 203a 2066 6f72 2070 2069 6e20 .|i5 : for p in │ │ │ │ -0002b310: 7074 7320 6c69 7374 2073 7562 2849 2c20 pts list sub(I, │ │ │ │ -0002b320: 7029 203d 3d20 3020 2020 2020 2020 2020 p) == 0 │ │ │ │ +0002b2b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b2f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b300: 0a7c 6f34 203a 204c 6973 7420 2020 2020 .|o4 : List │ │ │ │ +0002b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b3a0: 0a7c 6f35 203d 207b 7472 7565 2c20 7472 .|o5 = {true, tr │ │ │ │ -0002b3b0: 7565 2c20 7472 7565 2c20 7472 7565 7d20 ue, true, true} │ │ │ │ -0002b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b350: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002b360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002b3a0: 0a7c 6935 203a 2066 6f72 2070 2069 6e20 .|i5 : for p in │ │ │ │ +0002b3b0: 7074 7320 6c69 7374 2073 7562 2849 2c20 pts list sub(I, │ │ │ │ +0002b3c0: 7029 203d 3d20 3020 2020 2020 2020 2020 p) == 0 │ │ │ │ 0002b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002b3f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b440: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ -0002b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b440: 0a7c 6f35 203d 207b 7472 7565 2c20 7472 .|o5 = {true, tr │ │ │ │ +0002b450: 7565 2c20 7472 7565 2c20 7472 7565 7d20 ue, true, true} │ │ │ │ 0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b490: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002b4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b4e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002b4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b530: 0a7c 6936 203a 2053 203d 206b 6b5b 612e .|i6 : S = kk[a. │ │ │ │ -0002b540: 2e64 5d3b 2020 2020 2020 2020 2020 2020 .d]; │ │ │ │ -0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b4e0: 0a7c 6f35 203a 204c 6973 7420 2020 2020 .|o5 : List │ │ │ │ +0002b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b530: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0002b580: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002b590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002b5d0: 0a7c 6937 203a 2046 203d 2067 726f 6562 .|i7 : F = groeb │ │ │ │ -0002b5e0: 6e65 7246 616d 696c 7920 6964 6561 6c22 nerFamily ideal" │ │ │ │ -0002b5f0: 6132 2c61 622c 6163 2c62 3222 2020 2020 a2,ab,ac,b2" │ │ │ │ +0002b5d0: 0a7c 6936 203a 2053 203d 206b 6b5b 612e .|i6 : S = kk[a. │ │ │ │ +0002b5e0: 2e64 5d3b 2020 2020 2020 2020 2020 2020 .d]; │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b670: 0a7c 2020 2020 2020 2020 2020 2020 2032 .| 2 │ │ │ │ -0002b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b690: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0002b6a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0002b620: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002b670: 0a7c 6937 203a 2046 203d 2067 726f 6562 .|i7 : F = groeb │ │ │ │ +0002b680: 6e65 7246 616d 696c 7920 6964 6561 6c22 nerFamily ideal" │ │ │ │ +0002b690: 6132 2c61 622c 6163 2c62 3222 2020 2020 a2,ab,ac,b2" │ │ │ │ +0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b6c0: 0a7c 6f37 203d 2069 6465 616c 2028 6120 .|o7 = ideal (a │ │ │ │ -0002b6d0: 202b 2074 2062 2a63 202b 2074 2061 2a64 + t b*c + t a*d │ │ │ │ -0002b6e0: 202b 2074 2063 2020 2b20 7420 622a 6420 + t c + t b*d │ │ │ │ -0002b6f0: 2b20 7420 632a 6420 2b20 7420 6420 2c20 + t c*d + t d , │ │ │ │ -0002b700: 612a 6220 2b20 7420 622a 6320 2b20 207c a*b + t b*c + | │ │ │ │ -0002b710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b720: 2020 2020 3120 2020 2020 2020 3320 2020 1 3 │ │ │ │ -0002b730: 2020 2020 3220 2020 2020 2034 2020 2020 2 4 │ │ │ │ -0002b740: 2020 2035 2020 2020 2020 2036 2020 2020 5 6 │ │ │ │ -0002b750: 2020 2020 2020 2037 2020 2020 2020 207c 7 | │ │ │ │ -0002b760: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -0002b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002b6c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b710: 0a7c 2020 2020 2020 2020 2020 2020 2032 .| 2 │ │ │ │ +0002b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b730: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0002b740: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0002b750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b760: 0a7c 6f37 203d 2069 6465 616c 2028 6120 .|o7 = ideal (a │ │ │ │ +0002b770: 202b 2074 2062 2a63 202b 2074 2061 2a64 + t b*c + t a*d │ │ │ │ +0002b780: 202b 2074 2063 2020 2b20 7420 622a 6420 + t c + t b*d │ │ │ │ +0002b790: 2b20 7420 632a 6420 2b20 7420 6420 2c20 + t c*d + t d , │ │ │ │ +0002b7a0: 612a 6220 2b20 7420 622a 6320 2b20 207c a*b + t b*c + | │ │ │ │ 0002b7b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b7c0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b7d0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0002b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7f0: 2020 2020 2020 2020 2020 2032 2020 207c 2 | │ │ │ │ -0002b800: 0a7c 2020 2020 2074 2061 2a64 202b 2074 .| t a*d + t │ │ │ │ -0002b810: 2063 2020 2b20 7420 2062 2a64 202b 2074 c + t b*d + t │ │ │ │ -0002b820: 2020 632a 6420 2b20 7420 2064 202c 2061 c*d + t d , a │ │ │ │ -0002b830: 2a63 202b 2074 2020 622a 6320 2b20 7420 *c + t b*c + t │ │ │ │ -0002b840: 2061 2a64 202b 2074 2020 6320 202b 207c a*d + t c + | │ │ │ │ -0002b850: 0a7c 2020 2020 2020 3920 2020 2020 2020 .| 9 │ │ │ │ -0002b860: 3820 2020 2020 2031 3020 2020 2020 2020 8 10 │ │ │ │ -0002b870: 3131 2020 2020 2020 2031 3220 2020 2020 11 12 │ │ │ │ -0002b880: 2020 2020 2020 3133 2020 2020 2020 2031 13 1 │ │ │ │ -0002b890: 3520 2020 2020 2020 3134 2020 2020 207c 5 14 | │ │ │ │ -0002b8a0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -0002b8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002b8f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002b900: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0002b910: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b920: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0002b930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b940: 0a7c 2020 2020 2074 2020 622a 6420 2b20 .| t b*d + │ │ │ │ -0002b950: 7420 2063 2a64 202b 2074 2020 6420 2c20 t c*d + t d , │ │ │ │ -0002b960: 6220 202b 2074 2020 622a 6320 2b20 7420 b + t b*c + t │ │ │ │ -0002b970: 2061 2a64 202b 2074 2020 6320 202b 2074 a*d + t c + t │ │ │ │ -0002b980: 2020 622a 6420 2b20 7420 2063 2a64 207c b*d + t c*d | │ │ │ │ -0002b990: 0a7c 2020 2020 2020 3136 2020 2020 2020 .| 16 │ │ │ │ -0002b9a0: 2031 3720 2020 2020 2020 3138 2020 2020 17 18 │ │ │ │ -0002b9b0: 2020 2020 2020 3139 2020 2020 2020 2032 19 2 │ │ │ │ -0002b9c0: 3120 2020 2020 2020 3230 2020 2020 2020 1 20 │ │ │ │ -0002b9d0: 3232 2020 2020 2020 2032 3320 2020 207c 22 23 | │ │ │ │ -0002b9e0: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -0002b9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ba00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ba10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ba20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002ba30: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ -0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ba80: 0a7c 2020 2020 202b 2074 2020 6420 2920 .| + t d ) │ │ │ │ -0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bad0: 0a7c 2020 2020 2020 2020 3234 2020 2020 .| 24 │ │ │ │ +0002b7c0: 2020 2020 3120 2020 2020 2020 3320 2020 1 3 │ │ │ │ +0002b7d0: 2020 2020 3220 2020 2020 2034 2020 2020 2 4 │ │ │ │ +0002b7e0: 2020 2035 2020 2020 2020 2036 2020 2020 5 6 │ │ │ │ +0002b7f0: 2020 2020 2020 2037 2020 2020 2020 207c 7 | │ │ │ │ +0002b800: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +0002b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002b850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b860: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b870: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0002b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b890: 2020 2020 2020 2020 2020 2032 2020 207c 2 | │ │ │ │ +0002b8a0: 0a7c 2020 2020 2074 2061 2a64 202b 2074 .| t a*d + t │ │ │ │ +0002b8b0: 2063 2020 2b20 7420 2062 2a64 202b 2074 c + t b*d + t │ │ │ │ +0002b8c0: 2020 632a 6420 2b20 7420 2064 202c 2061 c*d + t d , a │ │ │ │ +0002b8d0: 2a63 202b 2074 2020 622a 6320 2b20 7420 *c + t b*c + t │ │ │ │ +0002b8e0: 2061 2a64 202b 2074 2020 6320 202b 207c a*d + t c + | │ │ │ │ +0002b8f0: 0a7c 2020 2020 2020 3920 2020 2020 2020 .| 9 │ │ │ │ +0002b900: 3820 2020 2020 2031 3020 2020 2020 2020 8 10 │ │ │ │ +0002b910: 3131 2020 2020 2020 2031 3220 2020 2020 11 12 │ │ │ │ +0002b920: 2020 2020 2020 3133 2020 2020 2020 2031 13 1 │ │ │ │ +0002b930: 3520 2020 2020 2020 3134 2020 2020 207c 5 14 | │ │ │ │ +0002b940: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +0002b950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002b9a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0002b9b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b9c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002b9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b9e0: 0a7c 2020 2020 2074 2020 622a 6420 2b20 .| t b*d + │ │ │ │ +0002b9f0: 7420 2063 2a64 202b 2074 2020 6420 2c20 t c*d + t d , │ │ │ │ +0002ba00: 6220 202b 2074 2020 622a 6320 2b20 7420 b + t b*c + t │ │ │ │ +0002ba10: 2061 2a64 202b 2074 2020 6320 202b 2074 a*d + t c + t │ │ │ │ +0002ba20: 2020 622a 6420 2b20 7420 2063 2a64 207c b*d + t c*d | │ │ │ │ +0002ba30: 0a7c 2020 2020 2020 3136 2020 2020 2020 .| 16 │ │ │ │ +0002ba40: 2031 3720 2020 2020 2020 3138 2020 2020 17 18 │ │ │ │ +0002ba50: 2020 2020 2020 3139 2020 2020 2020 2032 19 2 │ │ │ │ +0002ba60: 3120 2020 2020 2020 3230 2020 2020 2020 1 20 │ │ │ │ +0002ba70: 3232 2020 2020 2020 2032 3320 2020 207c 22 23 | │ │ │ │ +0002ba80: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +0002ba90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002baa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002bad0: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ 0002bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bb20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002bb20: 0a7c 2020 2020 202b 2074 2020 6420 2920 .| + t d ) │ │ │ │ 0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bb70: 0a7c 6f37 203a 2049 6465 616c 206f 6620 .|o7 : Ideal of │ │ │ │ -0002bb80: 6b6b 5b74 202c 2074 202c 2074 2020 2c20 kk[t , t , t , │ │ │ │ -0002bb90: 7420 2c20 7420 2c20 7420 202c 2074 2020 t , t , t , t │ │ │ │ -0002bba0: 2c20 7420 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -0002bbb0: 202c 2074 2020 2c20 7420 202c 2074 207c , t , t , t | │ │ │ │ +0002bb70: 0a7c 2020 2020 2020 2020 3234 2020 2020 .| 24 │ │ │ │ +0002bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002bbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002bbd0: 2020 2020 3620 2020 3520 2020 3132 2020 6 5 12 │ │ │ │ -0002bbe0: 2032 2020 2034 2020 2031 3120 2020 3138 2 4 11 18 │ │ │ │ -0002bbf0: 2020 2032 3420 2020 3120 2020 3320 2020 24 1 3 │ │ │ │ -0002bc00: 3820 2020 3130 2020 2031 3720 2020 327c 8 10 17 2| │ │ │ │ -0002bc10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -0002bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002bc60: 0a7c 202c 2074 202c 2074 202c 2074 2020 .| , t , t , t │ │ │ │ -0002bc70: 2c20 7420 202c 2074 2020 2c20 7420 202c , t , t , t , │ │ │ │ -0002bc80: 2074 2020 2c20 7420 202c 2074 2020 2c20 t , t , t , │ │ │ │ -0002bc90: 7420 205d 5b61 2e2e 645d 2020 2020 2020 t ][a..d] │ │ │ │ -0002bca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bcb0: 0a7c 3320 2020 3720 2020 3920 2020 3134 .|3 7 9 14 │ │ │ │ -0002bcc0: 2020 2031 3620 2020 3230 2020 2032 3220 16 20 22 │ │ │ │ -0002bcd0: 2020 3133 2020 2031 3520 2020 3139 2020 13 15 19 │ │ │ │ -0002bce0: 2032 3120 2020 2020 2020 2020 2020 2020 21 │ │ │ │ -0002bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bd00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002bd50: 0a7c 6938 203a 204a 203d 2067 726f 6562 .|i8 : J = groeb │ │ │ │ -0002bd60: 6e65 7253 7472 6174 756d 2046 3b20 2020 nerStratum F; │ │ │ │ -0002bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bc10: 0a7c 6f37 203a 2049 6465 616c 206f 6620 .|o7 : Ideal of │ │ │ │ +0002bc20: 6b6b 5b74 202c 2074 202c 2074 2020 2c20 kk[t , t , t , │ │ │ │ +0002bc30: 7420 2c20 7420 2c20 7420 202c 2074 2020 t , t , t , t │ │ │ │ +0002bc40: 2c20 7420 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ +0002bc50: 202c 2074 2020 2c20 7420 202c 2074 207c , t , t , t | │ │ │ │ +0002bc60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002bc70: 2020 2020 3620 2020 3520 2020 3132 2020 6 5 12 │ │ │ │ +0002bc80: 2032 2020 2034 2020 2031 3120 2020 3138 2 4 11 18 │ │ │ │ +0002bc90: 2020 2032 3420 2020 3120 2020 3320 2020 24 1 3 │ │ │ │ +0002bca0: 3820 2020 3130 2020 2031 3720 2020 327c 8 10 17 2| │ │ │ │ +0002bcb0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0002bcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002bd00: 0a7c 202c 2074 202c 2074 202c 2074 2020 .| , t , t , t │ │ │ │ +0002bd10: 2c20 7420 202c 2074 2020 2c20 7420 202c , t , t , t , │ │ │ │ +0002bd20: 2074 2020 2c20 7420 202c 2074 2020 2c20 t , t , t , │ │ │ │ +0002bd30: 7420 205d 5b61 2e2e 645d 2020 2020 2020 t ][a..d] │ │ │ │ +0002bd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bd50: 0a7c 3320 2020 3720 2020 3920 2020 3134 .|3 7 9 14 │ │ │ │ +0002bd60: 2020 2031 3620 2020 3230 2020 2032 3220 16 20 22 │ │ │ │ +0002bd70: 2020 3133 2020 2031 3520 2020 3139 2020 13 15 19 │ │ │ │ +0002bd80: 2032 3120 2020 2020 2020 2020 2020 2020 21 │ │ │ │ 0002bd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bda0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bde0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bdf0: 0a7c 6f38 203a 2049 6465 616c 206f 6620 .|o8 : Ideal of │ │ │ │ -0002be00: 6b6b 5b74 202c 2074 202c 2074 2020 2c20 kk[t , t , t , │ │ │ │ -0002be10: 7420 2c20 7420 2c20 7420 202c 2074 2020 t , t , t , t │ │ │ │ -0002be20: 2c20 7420 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ -0002be30: 202c 2074 2020 2c20 7420 202c 2020 207c , t , t , | │ │ │ │ +0002bda0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002bdf0: 0a7c 6938 203a 204a 203d 2067 726f 6562 .|i8 : J = groeb │ │ │ │ +0002be00: 6e65 7253 7472 6174 756d 2046 3b20 2020 nerStratum F; │ │ │ │ +0002be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002be40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002be50: 2020 2020 3620 2020 3520 2020 3132 2020 6 5 12 │ │ │ │ -0002be60: 2032 2020 2034 2020 2031 3120 2020 3138 2 4 11 18 │ │ │ │ -0002be70: 2020 2032 3420 2020 3120 2020 3320 2020 24 1 3 │ │ │ │ -0002be80: 3820 2020 3130 2020 2031 3720 2020 207c 8 10 17 | │ │ │ │ -0002be90: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -0002bea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002beb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0002bee0: 0a7c 7420 202c 2074 202c 2074 202c 2074 .|t , t , t , t │ │ │ │ -0002bef0: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ -0002bf00: 202c 2074 2020 2c20 7420 202c 2074 2020 , t , t , t │ │ │ │ -0002bf10: 2c20 7420 205d 2020 2020 2020 2020 2020 , t ] │ │ │ │ -0002bf20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bf30: 0a7c 2032 3320 2020 3720 2020 3920 2020 .| 23 7 9 │ │ │ │ -0002bf40: 3134 2020 2031 3620 2020 3230 2020 2032 14 16 20 2 │ │ │ │ -0002bf50: 3220 2020 3133 2020 2031 3520 2020 3139 2 13 15 19 │ │ │ │ -0002bf60: 2020 2032 3120 2020 2020 2020 2020 2020 21 │ │ │ │ -0002bf70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002bf80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002bf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002bfd0: 0a7c 6939 203a 2063 6f6d 7073 4a20 3d20 .|i9 : compsJ = │ │ │ │ -0002bfe0: 6465 636f 6d70 6f73 6520 4a3b 2020 2020 decompose J; │ │ │ │ -0002bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002be80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002be90: 0a7c 6f38 203a 2049 6465 616c 206f 6620 .|o8 : Ideal of │ │ │ │ +0002bea0: 6b6b 5b74 202c 2074 202c 2074 2020 2c20 kk[t , t , t , │ │ │ │ +0002beb0: 7420 2c20 7420 2c20 7420 202c 2074 2020 t , t , t , t │ │ │ │ +0002bec0: 2c20 7420 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ +0002bed0: 202c 2074 2020 2c20 7420 202c 2020 207c , t , t , | │ │ │ │ +0002bee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002bef0: 2020 2020 3620 2020 3520 2020 3132 2020 6 5 12 │ │ │ │ +0002bf00: 2032 2020 2034 2020 2031 3120 2020 3138 2 4 11 18 │ │ │ │ +0002bf10: 2020 2032 3420 2020 3120 2020 3320 2020 24 1 3 │ │ │ │ +0002bf20: 3820 2020 3130 2020 2031 3720 2020 207c 8 10 17 | │ │ │ │ +0002bf30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +0002bf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002bf80: 0a7c 7420 202c 2074 202c 2074 202c 2074 .|t , t , t , t │ │ │ │ +0002bf90: 2020 2c20 7420 202c 2074 2020 2c20 7420 , t , t , t │ │ │ │ +0002bfa0: 202c 2074 2020 2c20 7420 202c 2074 2020 , t , t , t │ │ │ │ +0002bfb0: 2c20 7420 205d 2020 2020 2020 2020 2020 , t ] │ │ │ │ +0002bfc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bfd0: 0a7c 2032 3320 2020 3720 2020 3920 2020 .| 23 7 9 │ │ │ │ +0002bfe0: 3134 2020 2031 3620 2020 3230 2020 2032 14 16 20 2 │ │ │ │ +0002bff0: 3220 2020 3133 2020 2031 3520 2020 3139 2 13 15 19 │ │ │ │ +0002c000: 2020 2032 3120 2020 2020 2020 2020 2020 21 │ │ │ │ 0002c010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002c020: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c070: 0a7c 6931 3020 3a20 636f 6d70 734a 203d .|i10 : compsJ = │ │ │ │ -0002c080: 2063 6f6d 7073 4a2f 7472 696d 3b20 2020 compsJ/trim; │ │ │ │ +0002c070: 0a7c 6939 203a 2063 6f6d 7073 4a20 3d20 .|i9 : compsJ = │ │ │ │ +0002c080: 6465 636f 6d70 6f73 6520 4a3b 2020 2020 decompose J; │ │ │ │ 0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002c0c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002c0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c110: 0a7c 6931 3120 3a20 2363 6f6d 7073 4a20 .|i11 : #compsJ │ │ │ │ -0002c120: 3d3d 2032 2020 2020 2020 2020 2020 2020 == 2 │ │ │ │ +0002c110: 0a7c 6931 3020 3a20 636f 6d70 734a 203d .|i10 : compsJ = │ │ │ │ +0002c120: 2063 6f6d 7073 4a2f 7472 696d 3b20 2020 compsJ/trim; │ │ │ │ 0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c1b0: 0a7c 6f31 3120 3d20 7472 7565 2020 2020 .|o11 = true │ │ │ │ -0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c160: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002c1b0: 0a7c 6931 3120 3a20 2363 6f6d 7073 4a20 .|i11 : #compsJ │ │ │ │ +0002c1c0: 3d3d 2032 2020 2020 2020 2020 2020 2020 == 2 │ │ │ │ 0002c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c200: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c250: 0a7c 6931 3220 3a20 636f 6d70 734a 2f64 .|i12 : compsJ/d │ │ │ │ -0002c260: 696d 2020 2020 2020 2020 2020 2020 2020 im │ │ │ │ +0002c200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c250: 0a7c 6f31 3120 3d20 7472 7565 2020 2020 .|o11 = true │ │ │ │ +0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c2a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0002c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c2f0: 0a7c 6f31 3220 3d20 7b31 312c 2038 7d20 .|o12 = {11, 8} │ │ │ │ -0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002c2f0: 0a7c 6931 3220 3a20 636f 6d70 734a 2f64 .|i12 : compsJ/d │ │ │ │ +0002c300: 696d 2020 2020 2020 2020 2020 2020 2020 im │ │ │ │ 0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002c340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c390: 0a7c 6f31 3220 3a20 4c69 7374 2020 2020 .|o12 : List │ │ │ │ +0002c390: 0a7c 6f31 3220 3d20 7b31 312c 2038 7d20 .|o12 = {11, 8} │ │ │ │ 0002c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c3e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0002c3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c430: 0a0a 5468 6572 6520 6172 6520 3220 636f ..There are 2 co │ │ │ │ -0002c440: 6d70 6f6e 656e 7473 2e20 2057 6520 6174 mponents. We at │ │ │ │ -0002c450: 7465 6d70 7420 746f 2066 696e 6420 706f tempt to find po │ │ │ │ -0002c460: 696e 7473 206f 6e20 6561 6368 206f 6620 ints on each of │ │ │ │ -0002c470: 7468 6573 6520 7477 6f0a 636f 6d70 6f6e these two.compon │ │ │ │ -0002c480: 656e 7473 2e20 5765 2061 7265 2073 7563 ents. We are suc │ │ │ │ -0002c490: 6365 7373 6675 6c2e 2020 5468 6973 2069 cessful. This i │ │ │ │ -0002c4a0: 6e64 6963 6174 6573 2074 6861 7420 7468 ndicates that th │ │ │ │ -0002c4b0: 6520 636f 7272 6573 706f 6e64 696e 6720 e corresponding │ │ │ │ -0002c4c0: 7661 7269 6574 6965 730a 6172 6520 626f varieties.are bo │ │ │ │ -0002c4d0: 7468 2072 6174 696f 6e61 6c2e 2041 6c73 th rational. Als │ │ │ │ -0002c4e0: 6f2c 2069 6620 7765 2063 616e 2066 696e o, if we can fin │ │ │ │ -0002c4f0: 6420 6f6e 6520 706f 696e 742c 2077 6520 d one point, we │ │ │ │ -0002c500: 6361 6e20 6669 6e64 2061 7320 6d61 6e79 can find as many │ │ │ │ -0002c510: 2061 7320 7765 0a77 616e 742e 0a0a 2b2d as we.want...+- │ │ │ │ -0002c520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002c570: 3133 203a 206e 6574 4c69 7374 2072 616e 13 : netList ran │ │ │ │ -0002c580: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ -0002c590: 6e61 6c56 6172 6965 7479 2863 6f6d 7073 nalVariety(comps │ │ │ │ -0002c5a0: 4a5f 302c 2031 3029 2020 2020 2020 2020 J_0, 10) │ │ │ │ -0002c5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c600: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002c610: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ -0002c620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6f ------------|.|o │ │ │ │ -0002c660: 3133 203d 207c 7c20 3239 202d 3430 2031 13 = || 29 -40 1 │ │ │ │ -0002c670: 3520 2d34 3920 3320 2d31 3320 2d36 202d 5 -49 3 -13 -6 - │ │ │ │ -0002c680: 3339 2032 2033 3920 3437 2031 3520 3139 39 2 39 47 15 19 │ │ │ │ -0002c690: 202d 3437 202d 3436 202d 3339 202d 3136 -47 -46 -39 -16 │ │ │ │ -0002c6a0: 2033 3220 2d34 3320 3334 202d 7c0a 7c20 32 -43 34 -|.| │ │ │ │ +0002c3e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c430: 0a7c 6f31 3220 3a20 4c69 7374 2020 2020 .|o12 : List │ │ │ │ +0002c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c480: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002c4d0: 0a0a 5468 6572 6520 6172 6520 3220 636f ..There are 2 co │ │ │ │ +0002c4e0: 6d70 6f6e 656e 7473 2e20 2057 6520 6174 mponents. We at │ │ │ │ +0002c4f0: 7465 6d70 7420 746f 2066 696e 6420 706f tempt to find po │ │ │ │ +0002c500: 696e 7473 206f 6e20 6561 6368 206f 6620 ints on each of │ │ │ │ +0002c510: 7468 6573 6520 7477 6f0a 636f 6d70 6f6e these two.compon │ │ │ │ +0002c520: 656e 7473 2e20 5765 2061 7265 2073 7563 ents. We are suc │ │ │ │ +0002c530: 6365 7373 6675 6c2e 2020 5468 6973 2069 cessful. This i │ │ │ │ +0002c540: 6e64 6963 6174 6573 2074 6861 7420 7468 ndicates that th │ │ │ │ +0002c550: 6520 636f 7272 6573 706f 6e64 696e 6720 e corresponding │ │ │ │ +0002c560: 7661 7269 6574 6965 730a 6172 6520 626f varieties.are bo │ │ │ │ +0002c570: 7468 2072 6174 696f 6e61 6c2e 2041 6c73 th rational. Als │ │ │ │ +0002c580: 6f2c 2069 6620 7765 2063 616e 2066 696e o, if we can fin │ │ │ │ +0002c590: 6420 6f6e 6520 706f 696e 742c 2077 6520 d one point, we │ │ │ │ +0002c5a0: 6361 6e20 6669 6e64 2061 7320 6d61 6e79 can find as many │ │ │ │ +0002c5b0: 2061 7320 7765 0a77 616e 742e 0a0a 2b2d as we.want...+- │ │ │ │ +0002c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002c610: 3133 203a 206e 6574 4c69 7374 2072 616e 13 : netList ran │ │ │ │ +0002c620: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ +0002c630: 6e61 6c56 6172 6965 7479 2863 6f6d 7073 nalVariety(comps │ │ │ │ +0002c640: 4a5f 302c 2031 3029 2020 2020 2020 2020 J_0, 10) │ │ │ │ +0002c650: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002c6b0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002c700: 2020 2020 207c 7c20 3337 202d 3720 2d32 || 37 -7 -2 │ │ │ │ -0002c710: 3420 3820 2d32 3620 3338 2039 202d 3331 4 8 -26 38 9 -31 │ │ │ │ -0002c720: 2032 3420 2d34 3720 2d33 3420 3132 2031 24 -47 -34 12 1 │ │ │ │ -0002c730: 3620 3232 202d 3232 2034 3520 2d32 3820 6 22 -22 45 -28 │ │ │ │ -0002c740: 3136 202d 3437 2032 202d 3438 7c0a 7c20 16 -47 2 -48|.| │ │ │ │ +0002c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6f ------------|.|o │ │ │ │ +0002c700: 3133 203d 207c 7c20 3133 2031 3520 3320 13 = || 13 15 3 │ │ │ │ +0002c710: 3336 2032 2034 3820 3434 202d 3335 202d 36 2 48 44 -35 - │ │ │ │ +0002c720: 3334 2033 3920 3520 2d33 3220 3334 2031 34 39 5 -32 34 1 │ │ │ │ +0002c730: 3920 2d34 3220 2d34 3720 2d31 3620 2d33 9 -42 -47 -16 -3 │ │ │ │ +0002c740: 3420 2d33 3920 2d31 3320 2d31 7c0a 7c20 4 -39 -13 -1|.| │ │ │ │ 0002c750: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002c7a0: 2020 2020 207c 7c20 3620 3120 2d33 3120 || 6 1 -31 │ │ │ │ -0002c7b0: 2d37 2034 3420 3820 2d35 3020 3234 202d -7 44 8 -50 24 - │ │ │ │ -0002c7c0: 3438 202d 3136 2032 3320 3233 202d 3233 48 -16 23 23 -23 │ │ │ │ -0002c7d0: 2033 3920 2d35 2034 3320 3139 202d 3135 39 -5 43 19 -15 │ │ │ │ -0002c7e0: 2034 3820 3135 202d 3131 202d 7c0a 7c20 48 15 -11 -|.| │ │ │ │ +0002c7a0: 2020 2020 207c 7c20 2d34 3320 3438 2031 || -43 48 1 │ │ │ │ +0002c7b0: 3420 3239 202d 3437 202d 3130 2034 3720 4 29 -47 -10 47 │ │ │ │ +0002c7c0: 3232 2038 202d 3437 2031 3520 2d32 3620 22 8 -47 15 -26 │ │ │ │ +0002c7d0: 3220 3136 202d 3439 2032 3220 2d32 3820 2 16 -49 22 -28 │ │ │ │ +0002c7e0: 2d31 3820 3435 202d 3438 202d 7c0a 7c20 -18 45 -48 -|.| │ │ │ │ 0002c7f0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002c840: 2020 2020 207c 7c20 2d34 3120 2d34 3920 || -41 -49 │ │ │ │ -0002c850: 3620 2d31 3620 2d31 3220 3331 2032 3320 6 -16 -12 31 23 │ │ │ │ -0002c860: 3620 2d37 2031 3120 3320 2d34 3220 3430 6 -7 11 3 -42 40 │ │ │ │ -0002c870: 2031 3120 2d32 3820 3436 2033 3520 2d32 11 -28 46 35 -2 │ │ │ │ -0002c880: 3820 2d33 2033 3320 3120 2d32 7c0a 7c20 8 -3 33 1 -2|.| │ │ │ │ +0002c840: 2020 2020 207c 7c20 2d33 2034 3520 3432 || -3 45 42 │ │ │ │ +0002c850: 2034 3720 2d35 3020 3136 202d 3330 2032 47 -50 16 -30 2 │ │ │ │ +0002c860: 3820 3433 202d 3136 2032 3420 3139 2031 8 43 -16 24 19 1 │ │ │ │ +0002c870: 3520 2d32 3320 3337 2033 3920 3139 202d 5 -23 37 39 19 - │ │ │ │ +0002c880: 3820 3433 202d 3131 202d 3137 7c0a 7c20 8 43 -11 -17|.| │ │ │ │ 0002c890: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002c8e0: 2020 2020 207c 7c20 2d31 3120 2d32 3720 || -11 -27 │ │ │ │ -0002c8f0: 2d34 2034 3020 2d33 3420 3620 3434 202d -4 40 -34 6 44 - │ │ │ │ -0002c900: 3220 3139 202d 3233 202d 3239 2032 3120 2 19 -23 -29 21 │ │ │ │ -0002c910: 3239 202d 3437 202d 3337 2031 3520 2d34 29 -47 -37 15 -4 │ │ │ │ -0002c920: 3720 2d32 3420 2d31 3020 3220 7c0a 7c20 7 -24 -10 2 |.| │ │ │ │ +0002c8e0: 2020 2020 207c 7c20 2d34 3920 3720 3332 || -49 7 32 │ │ │ │ +0002c8f0: 202d 3620 2d33 3020 2d34 3120 2d31 3020 -6 -30 -41 -10 │ │ │ │ +0002c900: 3220 3434 2031 3120 2d32 3520 3420 3333 2 44 11 -25 4 33 │ │ │ │ +0002c910: 2034 3020 2d31 3920 3131 2033 3520 2d31 40 -19 11 35 -1 │ │ │ │ +0002c920: 3720 3436 2031 202d 3238 202d 7c0a 7c20 7 46 1 -28 -|.| │ │ │ │ 0002c930: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002c980: 2020 2020 207c 7c20 2d35 3020 3432 2032 || -50 42 2 │ │ │ │ -0002c990: 3020 2d33 3020 2d34 3620 2d34 3820 2d35 0 -30 -46 -48 -5 │ │ │ │ -0002c9a0: 2034 3020 2d34 3720 3339 2031 3320 3437 40 -47 39 13 47 │ │ │ │ -0002c9b0: 2033 3220 2d39 2034 3120 2d33 3220 2d31 32 -9 41 -32 -1 │ │ │ │ -0002c9c0: 3820 3235 202d 3330 202d 3232 7c0a 7c20 8 25 -30 -22|.| │ │ │ │ +0002c980: 2020 2020 207c 7c20 3335 202d 3438 202d || 35 -48 - │ │ │ │ +0002c990: 3220 3435 202d 3335 2032 3920 3334 2031 2 45 -35 29 34 1 │ │ │ │ +0002c9a0: 3220 2d33 3220 2d32 3320 3530 2032 2032 2 -32 -23 50 2 2 │ │ │ │ +0002c9b0: 2032 3920 2d33 202d 3437 202d 3437 202d 29 -3 -47 -47 - │ │ │ │ +0002c9c0: 3334 2031 3520 2d31 3320 2d33 7c0a 7c20 34 15 -13 -3|.| │ │ │ │ 0002c9d0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002ca20: 2020 2020 207c 7c20 3530 2032 3220 2d33 || 50 22 -3 │ │ │ │ -0002ca30: 3020 3320 2d34 3320 2d32 3920 2d33 3320 0 3 -43 -29 -33 │ │ │ │ -0002ca40: 2d31 3820 3620 3339 202d 3239 2032 3420 -18 6 39 -29 24 │ │ │ │ -0002ca50: 2d34 3920 2d33 3320 2d31 3520 2d31 3920 -49 -33 -15 -19 │ │ │ │ -0002ca60: 2d31 3520 2d33 3720 3434 2033 7c0a 7c20 -15 -37 44 3|.| │ │ │ │ +0002ca20: 2020 2020 207c 7c20 3437 2038 202d 3134 || 47 8 -14 │ │ │ │ +0002ca30: 2036 202d 3120 2d31 3320 2d37 2031 3620 6 -1 -13 -7 16 │ │ │ │ +0002ca40: 2d32 3020 3339 202d 3334 202d 3232 202d -20 39 -34 -22 - │ │ │ │ +0002ca50: 3232 2033 3220 3137 202d 3920 2d31 3820 22 32 17 -9 -18 │ │ │ │ +0002ca60: 2d36 202d 3332 2032 3420 2d32 7c0a 7c20 -6 -32 24 -2|.| │ │ │ │ 0002ca70: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002cac0: 2020 2020 207c 7c20 2d39 2033 3120 2d33 || -9 31 -3 │ │ │ │ -0002cad0: 3720 2d34 3220 2d37 202d 3820 2d31 3120 7 -42 -7 -8 -11 │ │ │ │ -0002cae0: 2d32 3120 3132 2039 2031 3320 2d39 2031 -21 12 9 13 -9 1 │ │ │ │ -0002caf0: 3320 2d32 3620 3131 2032 3220 3336 2033 3 -26 11 22 36 3 │ │ │ │ -0002cb00: 3420 2d38 2034 202d 3131 202d 7c0a 7c20 4 -8 4 -11 -|.| │ │ │ │ +0002cac0: 2020 2020 207c 7c20 2d32 202d 3336 202d || -2 -36 - │ │ │ │ +0002cad0: 3339 2034 3120 2d36 2033 3420 2d31 3020 39 41 -6 34 -10 │ │ │ │ +0002cae0: 3432 2035 2033 3920 3230 2033 3320 3333 42 5 39 20 33 33 │ │ │ │ +0002caf0: 202d 3439 202d 3135 202d 3333 202d 3135 -49 -15 -33 -15 │ │ │ │ +0002cb00: 2034 3120 2d31 3920 2d32 3020 7c0a 7c20 41 -19 -20 |.| │ │ │ │ 0002cb10: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002cb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002cb60: 2020 2020 207c 7c20 3437 2031 3420 2d31 || 47 14 -1 │ │ │ │ -0002cb70: 3120 2d31 3620 2d32 3020 2d34 3020 3432 1 -16 -20 -40 42 │ │ │ │ -0002cb80: 2035 202d 3220 3336 2038 202d 3435 202d 5 -2 36 8 -45 - │ │ │ │ -0002cb90: 3330 2034 3120 2d32 3620 3136 202d 3820 30 41 -26 16 -8 │ │ │ │ -0002cba0: 2d33 3420 3335 202d 3232 202d 7c0a 7c20 -34 35 -22 -|.| │ │ │ │ +0002cb60: 2020 2020 207c 7c20 2d33 3020 3337 202d || -30 37 - │ │ │ │ +0002cb70: 3920 3136 202d 3336 2031 3920 2d31 3320 9 16 -36 19 -13 │ │ │ │ +0002cb80: 2d31 3420 2d31 3920 3920 2d33 3320 3520 -14 -19 9 -33 5 │ │ │ │ +0002cb90: 3420 3133 2034 3420 2d32 3620 3336 202d 4 13 44 -26 36 - │ │ │ │ +0002cba0: 3132 2032 3220 2d31 3120 2d34 7c0a 7c20 12 22 -11 -4|.| │ │ │ │ 0002cbb0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002cc00: 2020 2020 207c 7c20 3233 202d 3820 2d33 || 23 -8 -3 │ │ │ │ -0002cc10: 202d 3137 2033 3820 3020 3131 202d 3333 -17 38 0 11 -33 │ │ │ │ -0002cc20: 202d 3720 3620 2d33 3120 2d34 202d 3331 -7 6 -31 -4 -31 │ │ │ │ -0002cc30: 2032 3520 3620 2d32 202d 3335 202d 3131 25 6 -2 -35 -11 │ │ │ │ -0002cc40: 202d 3133 2033 202d 3439 202d 7c0a 7c20 -13 3 -49 -|.| │ │ │ │ +0002cc00: 2020 2020 207c 7c20 3237 2034 3120 3332 || 27 41 32 │ │ │ │ +0002cc10: 202d 3434 2034 3020 2d32 3020 3431 2033 -44 40 -20 41 3 │ │ │ │ +0002cc20: 3320 3238 2033 3620 3434 2033 3120 2d32 3 28 36 44 31 -2 │ │ │ │ +0002cc30: 3220 2d33 3020 3920 3431 202d 3820 3330 2 -30 9 41 -8 30 │ │ │ │ +0002cc40: 2031 3620 2d36 202d 3238 2033 7c0a 7c20 16 -6 -28 3|.| │ │ │ │ 0002cc50: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002cc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ -0002cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ccc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ -0002ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd30: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -0002cd40: 3320 2d31 3820 3231 202d 3338 207c 207c 3 -18 21 -38 | | │ │ │ │ -0002cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd80: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002cd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0002cca0: 2020 2020 207c 7c20 3337 202d 3220 3137 || 37 -2 17 │ │ │ │ +0002ccb0: 202d 3432 202d 3432 202d 3132 2031 3820 -42 -42 -12 18 │ │ │ │ +0002ccc0: 2d33 3120 3333 2036 2031 3920 2d33 3120 -31 33 6 19 -31 │ │ │ │ +0002ccd0: 3320 2d33 3120 2d31 3120 3235 202d 3335 3 -31 -11 25 -35 │ │ │ │ +0002cce0: 2032 3820 2d32 202d 3439 202d 7c0a 7c20 28 -2 -49 -|.| │ │ │ │ +0002ccf0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ +0002cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ +0002cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ +0002cd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002cde0: 2d33 3420 3338 202d 3135 207c 2020 207c -34 38 -15 | | │ │ │ │ +0002cdd0: 2020 2020 2020 2020 2020 2020 7c0a 7c38 |.|8 │ │ │ │ +0002cde0: 202d 3433 2032 3120 2d33 3820 7c20 7c20 -43 21 -38 | | │ │ │ │ 0002cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce20: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce70: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -0002ce80: 3720 3720 3437 207c 2020 2020 2020 207c 7 7 47 | | │ │ │ │ +0002ce70: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ +0002ce80: 3420 2d34 3720 3338 202d 3135 207c 7c20 4 -47 38 -15 || │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cec0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002ced0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002ced0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf10: 2020 2020 2020 2020 2020 2020 7c0a 7c38 |.|8 │ │ │ │ -0002cf20: 202d 3338 2033 3620 7c20 2020 2020 207c -38 36 | | │ │ │ │ +0002cf10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002cf20: 3438 2037 2034 3720 7c20 2020 2020 7c20 48 7 47 | | │ │ │ │ 0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf60: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002cf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002cf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfb0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002cfc0: 3133 202d 3337 202d 3720 3232 207c 207c 13 -37 -7 22 | | │ │ │ │ +0002cfb0: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ +0002cfc0: 202d 3338 2033 3620 7c20 2020 2020 7c20 -38 36 | | │ │ │ │ 0002cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d000: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d050: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002d060: 3234 202d 3230 2032 3720 3330 207c 207c 24 -20 27 30 | | │ │ │ │ +0002d050: 2020 2020 2020 2020 2020 2020 7c0a 7c37 |.|7 │ │ │ │ +0002d060: 202d 3130 202d 3720 3232 207c 2020 7c20 -10 -7 22 | | │ │ │ │ 0002d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0a0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0f0: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0002d100: 202d 3230 2031 3720 3020 2d34 3820 7c7c -20 17 0 -48 || │ │ │ │ +0002d0f0: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ +0002d100: 202d 3330 2032 3720 3330 207c 2020 7c20 -30 27 30 | | │ │ │ │ 0002d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d140: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d190: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0002d1a0: 3920 2d33 3920 2d33 3920 7c20 2020 207c 9 -39 -39 | | │ │ │ │ +0002d190: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ +0002d1a0: 3720 3434 2030 202d 3438 207c 2020 7c20 7 44 0 -48 | | │ │ │ │ 0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1e0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d230: 2020 2020 2020 2020 2020 2020 7c0a 7c36 |.|6 │ │ │ │ -0002d240: 202d 3238 202d 3320 3433 207c 2020 207c -28 -3 43 | | │ │ │ │ +0002d230: 2020 2020 2020 2020 2020 2020 7c0a 7c39 |.|9 │ │ │ │ +0002d240: 202d 3820 2d33 3920 2d33 3920 7c20 7c20 -8 -39 -39 | | │ │ │ │ 0002d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d280: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d2d0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0002d2e0: 3120 3430 202d 3920 7c20 2020 2020 207c 1 40 -9 | | │ │ │ │ +0002d2d0: 2020 2020 2020 2020 2020 2020 7c0a 7c35 |.|5 │ │ │ │ +0002d2e0: 202d 3320 3433 207c 2020 2020 2020 7c20 -3 43 | | │ │ │ │ 0002d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d320: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002d330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ 0002d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d370: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0002d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002d3d0: 3134 203a 206e 6574 4c69 7374 2072 616e 14 : netList ran │ │ │ │ -0002d3e0: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ -0002d3f0: 6e61 6c56 6172 6965 7479 2863 6f6d 7073 nalVariety(comps │ │ │ │ -0002d400: 4a5f 312c 2031 3029 2020 2020 2020 2020 J_1, 10) │ │ │ │ -0002d410: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002d470: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ -0002d480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6f ------------|.|o │ │ │ │ -0002d4c0: 3134 203d 207c 7c20 3338 202d 3331 2034 14 = || 38 -31 4 │ │ │ │ -0002d4d0: 3920 3339 2034 2034 3620 2d32 3920 2d35 9 39 4 46 -29 -5 │ │ │ │ -0002d4e0: 202d 3339 202d 3430 2031 3420 2d31 3120 -39 -40 14 -11 │ │ │ │ -0002d4f0: 2d33 3120 3436 2034 3320 2d32 3620 3420 -31 46 43 -26 4 │ │ │ │ -0002d500: 3330 202d 3335 2032 3720 2d34 7c0a 7c20 30 -35 27 -4|.| │ │ │ │ +0002d370: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ +0002d380: 3120 2d31 3320 3430 202d 3920 7c20 7c20 1 -13 40 -9 | | │ │ │ │ +0002d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d3c0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002d3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ +0002d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d410: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002d420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002d470: 3134 203a 206e 6574 4c69 7374 2072 616e 14 : netList ran │ │ │ │ +0002d480: 646f 6d50 6f69 6e74 734f 6e52 6174 696f domPointsOnRatio │ │ │ │ +0002d490: 6e61 6c56 6172 6965 7479 2863 6f6d 7073 nalVariety(comps │ │ │ │ +0002d4a0: 4a5f 312c 2031 3029 2020 2020 2020 2020 J_1, 10) │ │ │ │ +0002d4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0002d510: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d560: 2020 2020 207c 7c20 2d31 202d 3520 2d31 || -1 -5 -1 │ │ │ │ -0002d570: 3020 2d31 3020 2d31 3120 3432 2036 2034 0 -10 -11 42 6 4 │ │ │ │ -0002d580: 3620 2d34 2034 3720 3432 202d 3430 2034 6 -4 47 42 -40 4 │ │ │ │ -0002d590: 3720 2d32 3720 2d32 3020 3439 202d 3339 7 -27 -20 49 -39 │ │ │ │ -0002d5a0: 202d 3331 202d 3337 202d 3239 7c0a 7c20 -31 -37 -29|.| │ │ │ │ +0002d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6f ------------|.|o │ │ │ │ +0002d560: 3134 203d 207c 7c20 2d34 3120 2d31 202d 14 = || -41 -1 - │ │ │ │ +0002d570: 3438 2032 3520 3430 2034 2033 3520 3136 48 25 40 4 35 16 │ │ │ │ +0002d580: 2032 3620 2d34 3120 2d32 3820 2d31 3620 26 -41 -28 -16 │ │ │ │ +0002d590: 3237 202d 3134 202d 3339 2034 2034 2033 27 -14 -39 4 4 3 │ │ │ │ +0002d5a0: 3020 2d34 3020 3337 202d 3331 7c0a 7c20 0 -40 37 -31|.| │ │ │ │ 0002d5b0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d600: 2020 2020 207c 7c20 3239 2031 3820 3230 || 29 18 20 │ │ │ │ -0002d610: 2031 2031 3820 3236 202d 3331 202d 3435 1 18 26 -31 -45 │ │ │ │ -0002d620: 202d 3231 2031 3020 3232 202d 3330 2031 -21 10 22 -30 1 │ │ │ │ -0002d630: 3020 3332 202d 3331 202d 3231 202d 3439 0 32 -31 -21 -49 │ │ │ │ -0002d640: 2032 3820 2d32 3220 3436 2031 7c0a 7c20 28 -22 46 1|.| │ │ │ │ +0002d600: 2020 2020 207c 7c20 2d31 2031 3920 2d33 || -1 19 -3 │ │ │ │ +0002d610: 2031 3220 3530 2033 2034 2032 3520 3438 12 50 3 4 25 48 │ │ │ │ +0002d620: 2035 3020 3334 202d 3620 2d32 3920 3620 50 34 -6 -29 6 │ │ │ │ +0002d630: 2d35 2033 3620 2d33 3920 2d33 3120 2d34 -5 36 -39 -31 -4 │ │ │ │ +0002d640: 3820 3330 2034 3720 2d33 3720 7c0a 7c20 8 30 47 -37 |.| │ │ │ │ 0002d650: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d6a0: 2020 2020 207c 7c20 2d31 3720 3320 3137 || -17 3 17 │ │ │ │ -0002d6b0: 202d 3920 2d33 3620 2d34 3520 3439 2033 -9 -36 -45 49 3 │ │ │ │ -0002d6c0: 3020 2d34 3520 3234 202d 3238 2034 3120 0 -45 24 -28 41 │ │ │ │ -0002d6d0: 3820 2d34 202d 3236 202d 3238 2037 2033 8 -4 -26 -28 7 3 │ │ │ │ -0002d6e0: 3020 2d34 3120 2d31 3720 2d31 7c0a 7c20 0 -41 -17 -1|.| │ │ │ │ +0002d6a0: 2020 2020 207c 7c20 2d32 3720 2d33 202d || -27 -3 - │ │ │ │ +0002d6b0: 3430 2032 3220 3237 2033 202d 3238 202d 40 22 27 3 -28 - │ │ │ │ +0002d6c0: 3431 202d 3132 202d 3334 202d 3130 2034 41 -12 -34 -10 4 │ │ │ │ +0002d6d0: 3020 3436 2032 3920 3330 2032 3420 2d34 0 46 29 30 24 -4 │ │ │ │ +0002d6e0: 3920 3238 2031 2034 3020 3130 7c0a 7c20 9 28 1 40 10|.| │ │ │ │ 0002d6f0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d740: 2020 2020 207c 7c20 3337 2033 3320 2d34 || 37 33 -4 │ │ │ │ -0002d750: 3720 2d32 3020 2d34 3920 3435 2032 3920 7 -20 -49 45 29 │ │ │ │ -0002d760: 3139 2034 3120 3133 202d 3338 2034 3420 19 41 13 -38 44 │ │ │ │ -0002d770: 3233 2034 3020 2d34 3820 3435 2038 202d 23 40 -48 45 8 - │ │ │ │ -0002d780: 3239 2034 3220 2d34 3620 3439 7c0a 7c20 29 42 -46 49|.| │ │ │ │ +0002d740: 2020 2020 207c 7c20 2d32 3620 2d36 2032 || -26 -6 2 │ │ │ │ +0002d750: 3420 3238 202d 3237 2032 3620 3334 2034 4 28 -27 26 34 4 │ │ │ │ +0002d760: 3720 3133 2035 3020 3320 2d34 3220 2d31 7 13 50 3 -42 -1 │ │ │ │ +0002d770: 3720 3520 3420 2d33 3520 3720 3330 202d 7 5 4 -35 7 30 - │ │ │ │ +0002d780: 3133 2033 2038 202d 3431 2031 7c0a 7c20 13 3 8 -41 1|.| │ │ │ │ 0002d790: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d7e0: 2020 2020 207c 7c20 2d39 202d 3320 2d32 || -9 -3 -2 │ │ │ │ -0002d7f0: 3620 3133 2033 3520 3439 202d 3820 3439 6 13 35 49 -8 49 │ │ │ │ -0002d800: 202d 3430 2031 3320 2d32 3020 3920 3237 -40 13 -20 9 27 │ │ │ │ -0002d810: 2035 202d 3820 2d31 3520 2d32 3820 3135 5 -8 -15 -28 15 │ │ │ │ -0002d820: 202d 3138 202d 3136 202d 3436 7c0a 7c20 -18 -16 -46|.| │ │ │ │ +0002d7e0: 2020 2020 207c 7c20 3439 202d 3720 3438 || 49 -7 48 │ │ │ │ +0002d7f0: 2031 2034 3820 3235 2032 3520 2d31 3020 1 48 25 25 -10 │ │ │ │ +0002d800: 3439 2033 3620 2d31 3620 3335 202d 3436 49 36 -16 35 -46 │ │ │ │ +0002d810: 202d 3520 3235 202d 3333 2038 202d 3239 -5 25 -33 8 -29 │ │ │ │ +0002d820: 2034 3920 2d31 3820 3233 2034 7c0a 7c20 49 -18 23 4|.| │ │ │ │ 0002d830: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d880: 2020 2020 207c 7c20 3238 2033 3220 3020 || 28 32 0 │ │ │ │ -0002d890: 3020 2d31 3720 2d34 3420 3235 2034 3220 0 -17 -44 25 42 │ │ │ │ -0002d8a0: 3720 2d33 3520 3239 202d 3137 2031 3920 7 -35 29 -17 19 │ │ │ │ -0002d8b0: 3820 2d39 202d 3236 202d 3231 2032 3320 8 -9 -26 -21 23 │ │ │ │ -0002d8c0: 3230 202d 3233 2034 3420 2d33 7c0a 7c20 20 -23 44 -3|.| │ │ │ │ +0002d880: 2020 2020 207c 7c20 2d33 3520 3238 202d || -35 28 - │ │ │ │ +0002d890: 3620 3232 2035 3020 2d34 3920 3220 2d35 6 22 50 -49 2 -5 │ │ │ │ +0002d8a0: 202d 3131 202d 3339 2033 3020 3237 202d -11 -39 30 27 - │ │ │ │ +0002d8b0: 3136 2033 3420 2d39 202d 3334 202d 3238 16 34 -9 -34 -28 │ │ │ │ +0002d8c0: 2031 3520 2d34 3620 3132 2032 7c0a 7c20 15 -46 12 2|.| │ │ │ │ 0002d8d0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d920: 2020 2020 207c 7c20 2d33 3020 2d32 3920 || -30 -29 │ │ │ │ -0002d930: 3237 2031 3420 3137 2033 3920 3333 2031 27 14 17 39 33 1 │ │ │ │ -0002d940: 3520 2d33 3520 3530 202d 3530 2034 3520 5 -35 50 -50 45 │ │ │ │ -0002d950: 2d33 3320 3133 2032 3420 2d34 3420 3020 -33 13 24 -44 0 │ │ │ │ -0002d960: 2d34 3720 2d39 2034 3720 2d32 7c0a 7c20 -47 -9 47 -2|.| │ │ │ │ +0002d920: 2020 2020 207c 7c20 2d34 3920 2d34 3420 || -49 -44 │ │ │ │ +0002d930: 2d31 3620 2d31 3020 3438 2031 3820 3232 -16 -10 48 18 22 │ │ │ │ +0002d940: 2033 3320 2d33 3520 2d34 3820 2d32 3820 33 -35 -48 -28 │ │ │ │ +0002d950: 2d38 202d 3233 202d 3438 202d 3235 202d -8 -23 -48 -25 - │ │ │ │ +0002d960: 3320 2d32 3120 3233 2034 3420 7c0a 7c20 3 -21 23 44 |.| │ │ │ │ 0002d970: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002d9c0: 2020 2020 207c 7c20 3720 2d31 3220 3432 || 7 -12 42 │ │ │ │ -0002d9d0: 202d 3239 2033 3020 3120 3320 2d32 3820 -29 30 1 3 -28 │ │ │ │ -0002d9e0: 2d37 2033 3620 2d32 3620 2d34 3020 3432 -7 36 -26 -40 42 │ │ │ │ -0002d9f0: 2033 3820 2d32 3020 2d32 3320 3238 202d 38 -20 -23 28 - │ │ │ │ -0002da00: 3239 202d 3238 2035 202d 3337 7c0a 7c20 29 -28 5 -37|.| │ │ │ │ +0002d9c0: 2020 2020 207c 7c20 2d33 3320 2d31 3420 || -33 -14 │ │ │ │ +0002d9d0: 2d31 3820 3130 2032 202d 3433 202d 3236 -18 10 2 -43 -26 │ │ │ │ +0002d9e0: 2034 3520 3130 2031 3920 2d31 3520 3235 45 10 19 -15 25 │ │ │ │ +0002d9f0: 2034 3720 3920 2d31 3520 2d32 3220 3020 47 9 -15 -22 0 │ │ │ │ +0002da00: 2d34 3720 2d32 3820 3620 2d33 7c0a 7c20 -47 -28 6 -3|.| │ │ │ │ 0002da10: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002da60: 2020 2020 207c 7c20 3238 202d 3130 2031 || 28 -10 1 │ │ │ │ -0002da70: 3320 2d33 3920 2d32 3020 3131 2031 3320 3 -39 -20 11 13 │ │ │ │ -0002da80: 2d31 3320 2d33 3720 3820 2d33 3620 2d32 -13 -37 8 -36 -2 │ │ │ │ -0002da90: 3920 2d32 3920 3137 2032 3420 2d35 3020 9 -29 17 24 -50 │ │ │ │ -0002daa0: 3434 2033 3020 2d31 3320 3232 7c0a 7c20 44 30 -13 22|.| │ │ │ │ +0002da60: 2020 2020 207c 7c20 3230 202d 3237 202d || 20 -27 - │ │ │ │ +0002da70: 3137 2032 202d 3437 202d 3233 2031 3320 17 2 -47 -23 13 │ │ │ │ +0002da80: 3430 202d 3139 202d 3133 2033 3920 2d32 40 -19 -13 39 -2 │ │ │ │ +0002da90: 3320 3520 2d33 2034 3720 2d36 2032 3820 3 5 -3 47 -6 28 │ │ │ │ +0002daa0: 2d32 3920 2d33 3720 2d33 3320 7c0a 7c20 -29 -37 -33 |.| │ │ │ │ 0002dab0: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ 0002dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002daf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ -0002db00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002db40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ -0002db50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db90: 2020 2020 2020 2020 2020 2020 7c0a 7c30 |.|0 │ │ │ │ -0002dba0: 2033 3720 2d34 3720 3020 7c20 2020 7c20 37 -47 0 | | │ │ │ │ -0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002dbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002daf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0002db00: 2020 2020 207c 7c20 3139 2031 3020 2d31 || 19 10 -1 │ │ │ │ +0002db10: 3020 3437 2034 3120 3230 202d 3433 202d 0 47 41 20 -43 - │ │ │ │ +0002db20: 3334 202d 3433 2032 2034 3420 3239 2032 34 -43 2 44 29 2 │ │ │ │ +0002db30: 3220 3335 202d 3432 2031 3620 3434 2033 2 35 -42 16 44 3 │ │ │ │ +0002db40: 3020 3520 2d32 3020 2d32 3920 7c0a 7c20 0 5 -20 -29 |.| │ │ │ │ +0002db50: 2020 2020 202b 2d2d 2d2d 2d2d 2d2d 2d2d +---------- │ │ │ │ +0002db60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002db70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002db90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ +0002dba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d ------------|.|- │ │ │ │ +0002dbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc00: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002dc40: 2d34 3820 3330 202d 3438 2030 207c 7c20 -48 30 -48 0 || │ │ │ │ -0002dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc40: 2d33 3520 2d34 3720 3020 7c20 2020 2020 -35 -47 0 | │ │ │ │ +0002dc50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc80: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dca0: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002dce0: 3430 202d 3138 2030 207c 2020 2020 7c20 40 -18 0 | | │ │ │ │ -0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcd0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002dce0: 3438 2030 207c 2020 2020 2020 2020 2020 48 0 | │ │ │ │ +0002dcf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd20: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002dd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dd40: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd70: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0002dd80: 2033 2031 3320 3020 7c20 2020 2020 7c20 3 13 0 | | │ │ │ │ -0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002dd80: 2d32 3220 2d31 3820 3020 7c20 2020 2020 -22 -18 0 | │ │ │ │ +0002dd90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddc0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dde0: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002de20: 2d31 3820 3330 2030 207c 2020 2020 7c20 -18 30 0 | | │ │ │ │ -0002de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de10: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ +0002de20: 2030 207c 2020 2020 2020 2020 2020 2020 0 | │ │ │ │ +0002de30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de60: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de80: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002deb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002dec0: 3132 2031 3820 3020 7c20 2020 2020 7c20 12 18 0 | | │ │ │ │ -0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002deb0: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ +0002dec0: 2033 3020 3020 7c20 2020 2020 2020 2020 30 0 | │ │ │ │ +0002ded0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df00: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002df10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002df20: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df50: 2020 2020 2020 2020 2020 2020 7c0a 7c39 |.|9 │ │ │ │ -0002df60: 202d 3337 2030 207c 2020 2020 2020 7c20 -37 0 | | │ │ │ │ -0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df50: 2020 2020 2020 2020 2020 2020 7c0a 7c37 |.|7 │ │ │ │ +0002df60: 202d 3138 2031 3820 3020 7c20 2020 2020 -18 18 0 | │ │ │ │ +0002df70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfa0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dfc0: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dff0: 2020 2020 2020 2020 2020 2020 7c0a 7c38 |.|8 │ │ │ │ -0002e000: 2036 202d 3238 2030 207c 2020 2020 7c20 6 -28 0 | | │ │ │ │ -0002e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dff0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002e000: 3339 2031 3920 3230 202d 3337 2030 207c 39 19 20 -37 0 | │ │ │ │ +0002e010: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e040: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e060: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002e0a0: 2d33 3320 3236 2030 207c 2020 2020 7c20 -33 26 0 | | │ │ │ │ -0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e090: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ +0002e0a0: 202d 3920 2d32 3820 3020 7c20 2020 2020 -9 -28 0 | │ │ │ │ +0002e0b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0e0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002e0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e100: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e130: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002e140: 3520 2d32 3020 3420 3020 7c20 2020 7c20 5 -20 4 0 | | │ │ │ │ -0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e130: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ +0002e140: 3220 2d32 3820 3236 2030 207c 2020 2020 2 -28 26 0 | │ │ │ │ +0002e150: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0002e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e180: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0002e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b20 --------------+ │ │ │ │ -0002e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1a0: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ 0002e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0002e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ -0002e230: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 5468 aveat.======..Th │ │ │ │ -0002e240: 6973 2072 6f75 7469 6e65 2065 7870 6563 is routine expec │ │ │ │ -0002e250: 7473 2074 6865 2069 6e70 7574 2074 6f20 ts the input to │ │ │ │ -0002e260: 7265 7072 6573 656e 7420 616e 2069 7272 represent an irr │ │ │ │ -0002e270: 6564 7563 6962 6c65 2076 6172 6965 7479 educible variety │ │ │ │ -0002e280: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0002e290: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2072 ===.. * *note r │ │ │ │ -0002e2a0: 616e 646f 6d50 6f69 6e74 4f6e 5261 7469 andomPointOnRati │ │ │ │ -0002e2b0: 6f6e 616c 5661 7269 6574 7928 4964 6561 onalVariety(Idea │ │ │ │ -0002e2c0: 6c29 3a0a 2020 2020 7261 6e64 6f6d 506f l):. randomPo │ │ │ │ -0002e2d0: 696e 744f 6e52 6174 696f 6e61 6c56 6172 intOnRationalVar │ │ │ │ -0002e2e0: 6965 7479 5f6c 7049 6465 616c 5f72 702c iety_lpIdeal_rp, │ │ │ │ -0002e2f0: 202d 2d20 6669 6e64 2061 2072 616e 646f -- find a rando │ │ │ │ -0002e300: 6d20 706f 696e 7420 6f6e 2061 0a20 2020 m point on a. │ │ │ │ -0002e310: 2076 6172 6965 7479 2074 6861 7420 6361 variety that ca │ │ │ │ -0002e320: 6e20 6265 2064 6574 6563 7465 6420 746f n be detected to │ │ │ │ -0002e330: 2062 6520 7261 7469 6f6e 616c 0a0a 5761 be rational..Wa │ │ │ │ -0002e340: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ -0002e350: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ -0002e360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0002e370: 0a20 202a 202a 6e6f 7465 2072 616e 646f . * *note rando │ │ │ │ -0002e380: 6d50 6f69 6e74 734f 6e52 6174 696f 6e61 mPointsOnRationa │ │ │ │ -0002e390: 6c56 6172 6965 7479 2849 6465 616c 2c5a lVariety(Ideal,Z │ │ │ │ -0002e3a0: 5a29 3a0a 2020 2020 7261 6e64 6f6d 506f Z):. randomPo │ │ │ │ -0002e3b0: 696e 7473 4f6e 5261 7469 6f6e 616c 5661 intsOnRationalVa │ │ │ │ -0002e3c0: 7269 6574 795f 6c70 4964 6561 6c5f 636d riety_lpIdeal_cm │ │ │ │ -0002e3d0: 5a5a 5f72 702c 202d 2d20 6669 6e64 2072 ZZ_rp, -- find r │ │ │ │ -0002e3e0: 616e 646f 6d20 706f 696e 7473 206f 6e20 andom points on │ │ │ │ -0002e3f0: 610a 2020 2020 7661 7269 6574 7920 7468 a. variety th │ │ │ │ -0002e400: 6174 2063 616e 2062 6520 6465 7465 6374 at can be detect │ │ │ │ -0002e410: 6564 2074 6f20 6265 2072 6174 696f 6e61 ed to be rationa │ │ │ │ -0002e420: 6c0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d l.-------------- │ │ │ │ -0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e470: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0002e480: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0002e490: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0002e4a0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0002e4b0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0002e4c0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0002e4d0: 7061 636b 6167 6573 2f0a 4772 6f65 626e packages/.Groebn │ │ │ │ -0002e4e0: 6572 5374 7261 7461 2e6d 323a 3838 333a erStrata.m2:883: │ │ │ │ -0002e4f0: 302e 0a1f 0a46 696c 653a 2047 726f 6562 0....File: Groeb │ │ │ │ -0002e500: 6e65 7253 7472 6174 612e 696e 666f 2c20 nerStrata.info, │ │ │ │ -0002e510: 4e6f 6465 3a20 736d 616c 6c65 724d 6f6e Node: smallerMon │ │ │ │ -0002e520: 6f6d 6961 6c73 2c20 4e65 7874 3a20 7374 omials, Next: st │ │ │ │ -0002e530: 616e 6461 7264 4d6f 6e6f 6d69 616c 732c andardMonomials, │ │ │ │ -0002e540: 2050 7265 763a 2072 616e 646f 6d50 6f69 Prev: randomPoi │ │ │ │ -0002e550: 6e74 734f 6e52 6174 696f 6e61 6c56 6172 ntsOnRationalVar │ │ │ │ -0002e560: 6965 7479 5f6c 7049 6465 616c 5f63 6d5a iety_lpIdeal_cmZ │ │ │ │ -0002e570: 5a5f 7270 2c20 5570 3a20 546f 700a 0a73 Z_rp, Up: Top..s │ │ │ │ -0002e580: 6d61 6c6c 6572 4d6f 6e6f 6d69 616c 7320 mallerMonomials │ │ │ │ -0002e590: 2d2d 2072 6574 7572 6e73 2074 6865 2073 -- returns the s │ │ │ │ -0002e5a0: 7461 6e64 6172 6420 6d6f 6e6f 6d69 616c tandard monomial │ │ │ │ -0002e5b0: 7320 736d 616c 6c65 7220 6275 7420 6f66 s smaller but of │ │ │ │ -0002e5c0: 2074 6865 2073 616d 6520 6465 6772 6565 the same degree │ │ │ │ -0002e5d0: 2061 7320 6769 7665 6e20 6d6f 6e6f 6d69 as given monomi │ │ │ │ -0002e5e0: 616c 2873 290a 2a2a 2a2a 2a2a 2a2a 2a2a al(s).********** │ │ │ │ -0002e5f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002e600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002e610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002e620: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002e630: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002e640: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -0002e650: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0002e660: 2020 4c20 3d20 736d 616c 6c65 724d 6f6e L = smallerMon │ │ │ │ -0002e670: 6f6d 6961 6c73 204d 0a20 2020 2020 2020 omials M. │ │ │ │ -0002e680: 204c 203d 2073 6d61 6c6c 6572 4d6f 6e6f L = smallerMono │ │ │ │ -0002e690: 6d69 616c 7328 4d2c 206d 290a 2020 2a20 mials(M, m). * │ │ │ │ -0002e6a0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0002e6b0: 4d2c 2061 6e20 2a6e 6f74 6520 6964 6561 M, an *note idea │ │ │ │ -0002e6c0: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ -0002e6d0: 2949 6465 616c 2c2c 2024 4d24 2073 686f )Ideal,, $M$ sho │ │ │ │ -0002e6e0: 756c 6420 6265 2061 206d 6f6e 6f6d 6961 uld be a monomia │ │ │ │ -0002e6f0: 6c20 6964 6561 6c0a 2020 2020 2020 2020 l ideal. │ │ │ │ -0002e700: 2861 6e20 6964 6561 6c20 6765 6e65 7261 (an ideal genera │ │ │ │ -0002e710: 7465 6420 6279 206d 6f6e 6f6d 6961 6c73 ted by monomials │ │ │ │ -0002e720: 290a 2020 2020 2020 2a20 6d2c 2061 202a ). * m, a * │ │ │ │ -0002e730: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ -0002e740: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -0002e750: 2952 696e 6745 6c65 6d65 6e74 2c2c 206f )RingElement,, o │ │ │ │ -0002e760: 7074 696f 6e61 6c2c 0a20 202a 204f 7574 ptional,. * Out │ │ │ │ -0002e770: 7075 7473 3a0a 2020 2020 2020 2a20 4c2c puts:. * L, │ │ │ │ -0002e780: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ -0002e790: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ -0002e7a0: 742c 2c20 6120 6c69 7374 206f 6620 6c69 t,, a list of li │ │ │ │ -0002e7b0: 7374 733a 2066 6f72 2065 6163 680a 2020 sts: for each. │ │ │ │ -0002e7c0: 2020 2020 2020 6765 6e65 7261 746f 7220 generator │ │ │ │ -0002e7d0: 246d 2420 6f66 2024 4d24 2c20 7468 6520 $m$ of $M$, the │ │ │ │ -0002e7e0: 6c69 7374 206f 6620 616c 6c20 6d6f 6e6f list of all mono │ │ │ │ -0002e7f0: 6d69 616c 7320 6f66 2074 6865 2073 616d mials of the sam │ │ │ │ -0002e800: 6520 6465 6772 6565 2061 730a 2020 2020 e degree as. │ │ │ │ -0002e810: 2020 2020 246d 242c 206e 6f74 2069 6e20 $m$, not in │ │ │ │ -0002e820: 7468 6520 6d6f 6e6f 6d69 616c 2069 6465 the monomial ide │ │ │ │ -0002e830: 616c 2061 6e64 2073 6d61 6c6c 6572 2074 al and smaller t │ │ │ │ -0002e840: 6861 6e20 7468 6174 2067 656e 6572 6174 han that generat │ │ │ │ -0002e850: 6f72 2069 6e20 7468 650a 2020 2020 2020 or in the. │ │ │ │ -0002e860: 2020 7465 726d 206f 7264 6572 206f 6620 term order of │ │ │ │ -0002e870: 7468 6520 616d 6269 656e 7420 7269 6e67 the ambient ring │ │ │ │ -0002e880: 2e20 2049 6620 696e 7374 6561 6420 246d . If instead $m │ │ │ │ -0002e890: 2420 6973 2067 6976 656e 2c20 7468 6520 $ is given, the │ │ │ │ -0002e8a0: 6c69 7374 206f 660a 2020 2020 2020 2020 list of. │ │ │ │ -0002e8b0: 7468 6520 7374 616e 6461 7264 206d 6f6e the standard mon │ │ │ │ -0002e8c0: 6f6d 6961 6c73 206f 6620 7468 6520 7361 omials of the sa │ │ │ │ -0002e8d0: 6d65 2064 6567 7265 652c 2073 6d61 6c6c me degree, small │ │ │ │ -0002e8e0: 6572 2074 6861 6e20 246d 242c 2069 730a er than $m$, is. │ │ │ │ -0002e8f0: 2020 2020 2020 2020 7265 7475 726e 6564 returned │ │ │ │ -0002e900: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ -0002e910: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 496e 7075 ==========..Inpu │ │ │ │ -0002e920: 7474 696e 6720 616e 2069 6465 616c 2024 tting an ideal $ │ │ │ │ -0002e930: 4d24 2072 6574 7572 6e73 2074 6865 2073 M$ returns the s │ │ │ │ -0002e940: 6d61 6c6c 6572 206d 6f6e 6f6d 6961 6c73 maller monomials │ │ │ │ -0002e950: 206f 6620 6561 6368 206f 6620 7468 6520 of each of the │ │ │ │ -0002e960: 6769 7665 6e0a 6765 6e65 7261 746f 7273 given.generators │ │ │ │ -0002e970: 206f 6620 7468 6520 6964 6561 6c2e 0a0a of the ideal... │ │ │ │ -0002e980: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002e990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002e9d0: 7c69 3120 3a20 5220 3d20 5a5a 2f33 3230 |i1 : R = ZZ/320 │ │ │ │ -0002e9e0: 3033 5b61 2e2e 645d 3b20 2020 2020 2020 03[a..d]; │ │ │ │ -0002e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002e1d0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002e1e0: 3133 2034 2030 207c 2020 2020 2020 2020 13 4 0 | │ │ │ │ +0002e1f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e220: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0002e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e240: 2b20 2020 2020 2020 2020 2020 2020 2020 + │ │ │ │ +0002e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e270: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ +0002e2d0: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 5468 aveat.======..Th │ │ │ │ +0002e2e0: 6973 2072 6f75 7469 6e65 2065 7870 6563 is routine expec │ │ │ │ +0002e2f0: 7473 2074 6865 2069 6e70 7574 2074 6f20 ts the input to │ │ │ │ +0002e300: 7265 7072 6573 656e 7420 616e 2069 7272 represent an irr │ │ │ │ +0002e310: 6564 7563 6962 6c65 2076 6172 6965 7479 educible variety │ │ │ │ +0002e320: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0002e330: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2072 ===.. * *note r │ │ │ │ +0002e340: 616e 646f 6d50 6f69 6e74 4f6e 5261 7469 andomPointOnRati │ │ │ │ +0002e350: 6f6e 616c 5661 7269 6574 7928 4964 6561 onalVariety(Idea │ │ │ │ +0002e360: 6c29 3a0a 2020 2020 7261 6e64 6f6d 506f l):. randomPo │ │ │ │ +0002e370: 696e 744f 6e52 6174 696f 6e61 6c56 6172 intOnRationalVar │ │ │ │ +0002e380: 6965 7479 5f6c 7049 6465 616c 5f72 702c iety_lpIdeal_rp, │ │ │ │ +0002e390: 202d 2d20 6669 6e64 2061 2072 616e 646f -- find a rando │ │ │ │ +0002e3a0: 6d20 706f 696e 7420 6f6e 2061 0a20 2020 m point on a. │ │ │ │ +0002e3b0: 2076 6172 6965 7479 2074 6861 7420 6361 variety that ca │ │ │ │ +0002e3c0: 6e20 6265 2064 6574 6563 7465 6420 746f n be detected to │ │ │ │ +0002e3d0: 2062 6520 7261 7469 6f6e 616c 0a0a 5761 be rational..Wa │ │ │ │ +0002e3e0: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ +0002e3f0: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ +0002e400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002e410: 0a20 202a 202a 6e6f 7465 2072 616e 646f . * *note rando │ │ │ │ +0002e420: 6d50 6f69 6e74 734f 6e52 6174 696f 6e61 mPointsOnRationa │ │ │ │ +0002e430: 6c56 6172 6965 7479 2849 6465 616c 2c5a lVariety(Ideal,Z │ │ │ │ +0002e440: 5a29 3a0a 2020 2020 7261 6e64 6f6d 506f Z):. randomPo │ │ │ │ +0002e450: 696e 7473 4f6e 5261 7469 6f6e 616c 5661 intsOnRationalVa │ │ │ │ +0002e460: 7269 6574 795f 6c70 4964 6561 6c5f 636d riety_lpIdeal_cm │ │ │ │ +0002e470: 5a5a 5f72 702c 202d 2d20 6669 6e64 2072 ZZ_rp, -- find r │ │ │ │ +0002e480: 616e 646f 6d20 706f 696e 7473 206f 6e20 andom points on │ │ │ │ +0002e490: 610a 2020 2020 7661 7269 6574 7920 7468 a. variety th │ │ │ │ +0002e4a0: 6174 2063 616e 2062 6520 6465 7465 6374 at can be detect │ │ │ │ +0002e4b0: 6564 2074 6f20 6265 2072 6174 696f 6e61 ed to be rationa │ │ │ │ +0002e4c0: 6c0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d l.-------------- │ │ │ │ +0002e4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e510: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0002e520: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0002e530: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0002e540: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0002e550: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0002e560: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0002e570: 7061 636b 6167 6573 2f0a 4772 6f65 626e packages/.Groebn │ │ │ │ +0002e580: 6572 5374 7261 7461 2e6d 323a 3838 333a erStrata.m2:883: │ │ │ │ +0002e590: 302e 0a1f 0a46 696c 653a 2047 726f 6562 0....File: Groeb │ │ │ │ +0002e5a0: 6e65 7253 7472 6174 612e 696e 666f 2c20 nerStrata.info, │ │ │ │ +0002e5b0: 4e6f 6465 3a20 736d 616c 6c65 724d 6f6e Node: smallerMon │ │ │ │ +0002e5c0: 6f6d 6961 6c73 2c20 4e65 7874 3a20 7374 omials, Next: st │ │ │ │ +0002e5d0: 616e 6461 7264 4d6f 6e6f 6d69 616c 732c andardMonomials, │ │ │ │ +0002e5e0: 2050 7265 763a 2072 616e 646f 6d50 6f69 Prev: randomPoi │ │ │ │ +0002e5f0: 6e74 734f 6e52 6174 696f 6e61 6c56 6172 ntsOnRationalVar │ │ │ │ +0002e600: 6965 7479 5f6c 7049 6465 616c 5f63 6d5a iety_lpIdeal_cmZ │ │ │ │ +0002e610: 5a5f 7270 2c20 5570 3a20 546f 700a 0a73 Z_rp, Up: Top..s │ │ │ │ +0002e620: 6d61 6c6c 6572 4d6f 6e6f 6d69 616c 7320 mallerMonomials │ │ │ │ +0002e630: 2d2d 2072 6574 7572 6e73 2074 6865 2073 -- returns the s │ │ │ │ +0002e640: 7461 6e64 6172 6420 6d6f 6e6f 6d69 616c tandard monomial │ │ │ │ +0002e650: 7320 736d 616c 6c65 7220 6275 7420 6f66 s smaller but of │ │ │ │ +0002e660: 2074 6865 2073 616d 6520 6465 6772 6565 the same degree │ │ │ │ +0002e670: 2061 7320 6769 7665 6e20 6d6f 6e6f 6d69 as given monomi │ │ │ │ +0002e680: 616c 2873 290a 2a2a 2a2a 2a2a 2a2a 2a2a al(s).********** │ │ │ │ +0002e690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002e6a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002e6b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002e6c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002e6d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002e6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +0002e6f0: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +0002e700: 2020 4c20 3d20 736d 616c 6c65 724d 6f6e L = smallerMon │ │ │ │ +0002e710: 6f6d 6961 6c73 204d 0a20 2020 2020 2020 omials M. │ │ │ │ +0002e720: 204c 203d 2073 6d61 6c6c 6572 4d6f 6e6f L = smallerMono │ │ │ │ +0002e730: 6d69 616c 7328 4d2c 206d 290a 2020 2a20 mials(M, m). * │ │ │ │ +0002e740: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0002e750: 4d2c 2061 6e20 2a6e 6f74 6520 6964 6561 M, an *note idea │ │ │ │ +0002e760: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0002e770: 2949 6465 616c 2c2c 2024 4d24 2073 686f )Ideal,, $M$ sho │ │ │ │ +0002e780: 756c 6420 6265 2061 206d 6f6e 6f6d 6961 uld be a monomia │ │ │ │ +0002e790: 6c20 6964 6561 6c0a 2020 2020 2020 2020 l ideal. │ │ │ │ +0002e7a0: 2861 6e20 6964 6561 6c20 6765 6e65 7261 (an ideal genera │ │ │ │ +0002e7b0: 7465 6420 6279 206d 6f6e 6f6d 6961 6c73 ted by monomials │ │ │ │ +0002e7c0: 290a 2020 2020 2020 2a20 6d2c 2061 202a ). * m, a * │ │ │ │ +0002e7d0: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ +0002e7e0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +0002e7f0: 2952 696e 6745 6c65 6d65 6e74 2c2c 206f )RingElement,, o │ │ │ │ +0002e800: 7074 696f 6e61 6c2c 0a20 202a 204f 7574 ptional,. * Out │ │ │ │ +0002e810: 7075 7473 3a0a 2020 2020 2020 2a20 4c2c puts:. * L, │ │ │ │ +0002e820: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +0002e830: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +0002e840: 742c 2c20 6120 6c69 7374 206f 6620 6c69 t,, a list of li │ │ │ │ +0002e850: 7374 733a 2066 6f72 2065 6163 680a 2020 sts: for each. │ │ │ │ +0002e860: 2020 2020 2020 6765 6e65 7261 746f 7220 generator │ │ │ │ +0002e870: 246d 2420 6f66 2024 4d24 2c20 7468 6520 $m$ of $M$, the │ │ │ │ +0002e880: 6c69 7374 206f 6620 616c 6c20 6d6f 6e6f list of all mono │ │ │ │ +0002e890: 6d69 616c 7320 6f66 2074 6865 2073 616d mials of the sam │ │ │ │ +0002e8a0: 6520 6465 6772 6565 2061 730a 2020 2020 e degree as. │ │ │ │ +0002e8b0: 2020 2020 246d 242c 206e 6f74 2069 6e20 $m$, not in │ │ │ │ +0002e8c0: 7468 6520 6d6f 6e6f 6d69 616c 2069 6465 the monomial ide │ │ │ │ +0002e8d0: 616c 2061 6e64 2073 6d61 6c6c 6572 2074 al and smaller t │ │ │ │ +0002e8e0: 6861 6e20 7468 6174 2067 656e 6572 6174 han that generat │ │ │ │ +0002e8f0: 6f72 2069 6e20 7468 650a 2020 2020 2020 or in the. │ │ │ │ +0002e900: 2020 7465 726d 206f 7264 6572 206f 6620 term order of │ │ │ │ +0002e910: 7468 6520 616d 6269 656e 7420 7269 6e67 the ambient ring │ │ │ │ +0002e920: 2e20 2049 6620 696e 7374 6561 6420 246d . If instead $m │ │ │ │ +0002e930: 2420 6973 2067 6976 656e 2c20 7468 6520 $ is given, the │ │ │ │ +0002e940: 6c69 7374 206f 660a 2020 2020 2020 2020 list of. │ │ │ │ +0002e950: 7468 6520 7374 616e 6461 7264 206d 6f6e the standard mon │ │ │ │ +0002e960: 6f6d 6961 6c73 206f 6620 7468 6520 7361 omials of the sa │ │ │ │ +0002e970: 6d65 2064 6567 7265 652c 2073 6d61 6c6c me degree, small │ │ │ │ +0002e980: 6572 2074 6861 6e20 246d 242c 2069 730a er than $m$, is. │ │ │ │ +0002e990: 2020 2020 2020 2020 7265 7475 726e 6564 returned │ │ │ │ +0002e9a0: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ +0002e9b0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 496e 7075 ==========..Inpu │ │ │ │ +0002e9c0: 7474 696e 6720 616e 2069 6465 616c 2024 tting an ideal $ │ │ │ │ +0002e9d0: 4d24 2072 6574 7572 6e73 2074 6865 2073 M$ returns the s │ │ │ │ +0002e9e0: 6d61 6c6c 6572 206d 6f6e 6f6d 6961 6c73 maller monomials │ │ │ │ +0002e9f0: 206f 6620 6561 6368 206f 6620 7468 6520 of each of the │ │ │ │ +0002ea00: 6769 7665 6e0a 6765 6e65 7261 746f 7273 given.generators │ │ │ │ +0002ea10: 206f 6620 7468 6520 6964 6561 6c2e 0a0a of the ideal... │ │ │ │ 0002ea20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0002ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002ea70: 7c69 3220 3a20 4d20 3d20 6964 6561 6c20 |i2 : M = ideal │ │ │ │ -0002ea80: 2861 5e32 2c20 625e 322c 2061 2a62 2a63 (a^2, b^2, a*b*c │ │ │ │ -0002ea90: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +0002ea70: 7c69 3120 3a20 5220 3d20 5a5a 2f33 3230 |i1 : R = ZZ/320 │ │ │ │ +0002ea80: 3033 5b61 2e2e 645d 3b20 2020 2020 2020 03[a..d]; │ │ │ │ +0002ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002eac0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002eb10: 7c6f 3220 3a20 4964 6561 6c20 6f66 2052 |o2 : Ideal of R │ │ │ │ -0002eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eac0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002ead0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002eb10: 7c69 3220 3a20 4d20 3d20 6964 6561 6c20 |i2 : M = ideal │ │ │ │ +0002eb20: 2861 5e32 2c20 625e 322c 2061 2a62 2a63 (a^2, b^2, a*b*c │ │ │ │ +0002eb30: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ 0002eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002eb60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002ebb0: 7c69 3320 3a20 4c31 203d 2073 6d61 6c6c |i3 : L1 = small │ │ │ │ -0002ebc0: 6572 4d6f 6e6f 6d69 616c 7320 4d20 2020 erMonomials M │ │ │ │ +0002eb60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ebb0: 7c6f 3220 3a20 4964 6561 6c20 6f66 2052 |o2 : Ideal of R │ │ │ │ +0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ec00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ec50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002ec60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0002ec70: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0002ec80: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002ec00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002ec10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002ec50: 7c69 3320 3a20 4c31 203d 2073 6d61 6c6c |i3 : L1 = small │ │ │ │ +0002ec60: 6572 4d6f 6e6f 6d69 616c 7320 4d20 2020 erMonomials M │ │ │ │ +0002ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002eca0: 7c6f 3320 3d20 7b7b 612a 622c 2061 2a63 |o3 = {{a*b, a*c │ │ │ │ -0002ecb0: 2c20 622a 632c 2063 202c 2061 2a64 2c20 , b*c, c , a*d, │ │ │ │ -0002ecc0: 622a 642c 2063 2a64 2c20 6420 7d2c 207b b*d, c*d, d }, { │ │ │ │ -0002ecd0: 612a 632c 2062 2a63 2c20 6320 2c20 612a a*c, b*c, c , a* │ │ │ │ -0002ece0: 642c 2062 2a64 2c20 632a 642c 2020 7c0a d, b*d, c*d, |. │ │ │ │ -0002ecf0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ -0002ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ed10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ed20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ed30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0002ed40: 7c20 2020 2020 2032 2020 2020 2020 2032 | 2 2 │ │ │ │ -0002ed50: 2020 2020 2032 2020 2033 2020 2020 2020 2 3 │ │ │ │ -0002ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed70: 2020 3220 2020 2020 2032 2020 2020 2032 2 2 2 │ │ │ │ -0002ed80: 2020 2020 2032 2020 2033 2020 2020 7c0a 2 3 |. │ │ │ │ -0002ed90: 7c20 2020 2020 6420 7d2c 207b 612a 6320 | d }, {a*c │ │ │ │ -0002eda0: 2c20 622a 6320 2c20 6320 2c20 612a 622a , b*c , c , a*b* │ │ │ │ -0002edb0: 642c 2061 2a63 2a64 2c20 622a 632a 642c d, a*c*d, b*c*d, │ │ │ │ -0002edc0: 2063 2064 2c20 612a 6420 2c20 622a 6420 c d, a*d , b*d │ │ │ │ -0002edd0: 2c20 632a 6420 2c20 6420 7d7d 2020 7c0a , c*d , d }} |. │ │ │ │ -0002ede0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eca0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ece0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ecf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002ed00: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0002ed10: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002ed20: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002ed30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002ed40: 7c6f 3320 3d20 7b7b 612a 622c 2061 2a63 |o3 = {{a*b, a*c │ │ │ │ +0002ed50: 2c20 622a 632c 2063 202c 2061 2a64 2c20 , b*c, c , a*d, │ │ │ │ +0002ed60: 622a 642c 2063 2a64 2c20 6420 7d2c 207b b*d, c*d, d }, { │ │ │ │ +0002ed70: 612a 632c 2062 2a63 2c20 6320 2c20 612a a*c, b*c, c , a* │ │ │ │ +0002ed80: 642c 2062 2a64 2c20 632a 642c 2020 7c0a d, b*d, c*d, |. │ │ │ │ +0002ed90: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0002eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +0002ede0: 7c20 2020 2020 2032 2020 2020 2020 2032 | 2 2 │ │ │ │ +0002edf0: 2020 2020 2032 2020 2033 2020 2020 2020 2 3 │ │ │ │ 0002ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ee30: 7c6f 3320 3a20 4c69 7374 2020 2020 2020 |o3 : List │ │ │ │ -0002ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ee80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002eed0: 7c69 3420 3a20 736d 616c 6c65 724d 6f6e |i4 : smallerMon │ │ │ │ -0002eee0: 6f6d 6961 6c73 284d 2c20 625e 3229 2020 omials(M, b^2) │ │ │ │ +0002ee10: 2020 3220 2020 2020 2032 2020 2020 2032 2 2 2 │ │ │ │ +0002ee20: 2020 2020 2032 2020 2033 2020 2020 7c0a 2 3 |. │ │ │ │ +0002ee30: 7c20 2020 2020 6420 7d2c 207b 612a 6320 | d }, {a*c │ │ │ │ +0002ee40: 2c20 622a 6320 2c20 6320 2c20 612a 622a , b*c , c , a*b* │ │ │ │ +0002ee50: 642c 2061 2a63 2a64 2c20 622a 632a 642c d, a*c*d, b*c*d, │ │ │ │ +0002ee60: 2063 2064 2c20 612a 6420 2c20 622a 6420 c d, a*d , b*d │ │ │ │ +0002ee70: 2c20 632a 6420 2c20 6420 7d7d 2020 7c0a , c*d , d }} |. │ │ │ │ +0002ee80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002eed0: 7c6f 3320 3a20 4c69 7374 2020 2020 2020 |o3 : List │ │ │ │ +0002eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ef20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ef70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002ef80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002ef90: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ef20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ef50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ef60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002ef70: 7c69 3420 3a20 736d 616c 6c65 724d 6f6e |i4 : smallerMon │ │ │ │ +0002ef80: 6f6d 6961 6c73 284d 2c20 625e 3229 2020 omials(M, b^2) │ │ │ │ +0002ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002efc0: 7c6f 3420 3d20 7b61 2a63 2c20 622a 632c |o4 = {a*c, b*c, │ │ │ │ -0002efd0: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ -0002efe0: 2a64 2c20 6420 7d20 2020 2020 2020 2020 *d, d } │ │ │ │ +0002efc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0002f010: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f020: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002f030: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 0002f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f060: 7c6f 3420 3a20 4c69 7374 2020 2020 2020 |o4 : List │ │ │ │ -0002f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f060: 7c6f 3420 3d20 7b61 2a63 2c20 622a 632c |o4 = {a*c, b*c, │ │ │ │ +0002f070: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ +0002f080: 2a64 2c20 6420 7d20 2020 2020 2020 2020 *d, d } │ │ │ │ 0002f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002f0b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002f0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0002f100: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0002f110: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7461 ==.. * *note ta │ │ │ │ -0002f120: 696c 4d6f 6e6f 6d69 616c 733a 2074 6169 ilMonomials: tai │ │ │ │ -0002f130: 6c4d 6f6e 6f6d 6961 6c73 2c20 2d2d 2066 lMonomials, -- f │ │ │ │ -0002f140: 696e 6420 7461 696c 206d 6f6e 6f6d 6961 ind tail monomia │ │ │ │ -0002f150: 6c73 0a20 202a 202a 6e6f 7465 2073 7461 ls. * *note sta │ │ │ │ -0002f160: 6e64 6172 644d 6f6e 6f6d 6961 6c73 3a20 ndardMonomials: │ │ │ │ -0002f170: 7374 616e 6461 7264 4d6f 6e6f 6d69 616c standardMonomial │ │ │ │ -0002f180: 732c 202d 2d20 636f 6d70 7574 6573 2073 s, -- computes s │ │ │ │ -0002f190: 7461 6e64 6172 6420 6d6f 6e6f 6d69 616c tandard monomial │ │ │ │ -0002f1a0: 730a 0a57 6179 7320 746f 2075 7365 2073 s..Ways to use s │ │ │ │ -0002f1b0: 6d61 6c6c 6572 4d6f 6e6f 6d69 616c 733a mallerMonomials: │ │ │ │ -0002f1c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0002f1d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0002f1e0: 2020 2a20 2273 6d61 6c6c 6572 4d6f 6e6f * "smallerMono │ │ │ │ -0002f1f0: 6d69 616c 7328 4964 6561 6c29 220a 2020 mials(Ideal)". │ │ │ │ -0002f200: 2a20 2273 6d61 6c6c 6572 4d6f 6e6f 6d69 * "smallerMonomi │ │ │ │ -0002f210: 616c 7328 4964 6561 6c2c 5269 6e67 456c als(Ideal,RingEl │ │ │ │ -0002f220: 656d 656e 7429 220a 0a46 6f72 2074 6865 ement)"..For the │ │ │ │ -0002f230: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -0002f240: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0002f250: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -0002f260: 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 616c smallerMonomial │ │ │ │ -0002f270: 733a 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 s: smallerMonomi │ │ │ │ -0002f280: 616c 732c 2069 7320 6120 2a6e 6f74 6520 als, is a *note │ │ │ │ -0002f290: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ -0002f2a0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ -0002f2b0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -0002f2c0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -0002f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f310: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -0002f320: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -0002f330: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -0002f340: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -0002f350: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -0002f360: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -0002f370: 6163 6b61 6765 732f 0a47 726f 6562 6e65 ackages/.Groebne │ │ │ │ -0002f380: 7253 7472 6174 612e 6d32 3a35 3234 3a30 rStrata.m2:524:0 │ │ │ │ -0002f390: 2e0a 1f0a 4669 6c65 3a20 4772 6f65 626e ....File: Groebn │ │ │ │ -0002f3a0: 6572 5374 7261 7461 2e69 6e66 6f2c 204e erStrata.info, N │ │ │ │ -0002f3b0: 6f64 653a 2073 7461 6e64 6172 644d 6f6e ode: standardMon │ │ │ │ -0002f3c0: 6f6d 6961 6c73 2c20 4e65 7874 3a20 7461 omials, Next: ta │ │ │ │ -0002f3d0: 696c 4d6f 6e6f 6d69 616c 732c 2050 7265 ilMonomials, Pre │ │ │ │ -0002f3e0: 763a 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 v: smallerMonomi │ │ │ │ -0002f3f0: 616c 732c 2055 703a 2054 6f70 0a0a 7374 als, Up: Top..st │ │ │ │ -0002f400: 616e 6461 7264 4d6f 6e6f 6d69 616c 7320 andardMonomials │ │ │ │ -0002f410: 2d2d 2063 6f6d 7075 7465 7320 7374 616e -- computes stan │ │ │ │ -0002f420: 6461 7264 206d 6f6e 6f6d 6961 6c73 0a2a dard monomials.* │ │ │ │ -0002f430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002f450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0002f460: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0002f470: 2020 2020 204c 203d 2073 7461 6e64 6172 L = standar │ │ │ │ -0002f480: 644d 6f6e 6f6d 6961 6c73 204d 0a20 2020 dMonomials M. │ │ │ │ -0002f490: 2020 2020 204c 203d 2073 7461 6e64 6172 L = standar │ │ │ │ -0002f4a0: 644d 6f6e 6f6d 6961 6c73 2864 2c20 4d29 dMonomials(d, M) │ │ │ │ -0002f4b0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -0002f4c0: 2020 202a 204d 2c20 616e 202a 6e6f 7465 * M, an *note │ │ │ │ -0002f4d0: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ -0002f4e0: 7932 446f 6329 4964 6561 6c2c 2c20 4d20 y2Doc)Ideal,, M │ │ │ │ -0002f4f0: 7368 6f75 6c64 2062 6520 6120 6d6f 6e6f should be a mono │ │ │ │ -0002f500: 6d69 616c 2069 6465 616c 0a20 2020 2020 mial ideal. │ │ │ │ -0002f510: 202a 2064 2c20 6120 2a6e 6f74 6520 6c69 * d, a *note li │ │ │ │ -0002f520: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ -0002f530: 6329 4c69 7374 2c2c 2061 2064 6567 7265 c)List,, a degre │ │ │ │ -0002f540: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ -0002f550: 2020 2020 202a 204c 2c20 6120 2a6e 6f74 * L, a *not │ │ │ │ -0002f560: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ -0002f570: 7932 446f 6329 4c69 7374 2c2c 204c 2069 y2Doc)List,, L i │ │ │ │ -0002f580: 7320 6120 6c69 7374 206f 6620 6c69 7374 s a list of list │ │ │ │ -0002f590: 7320 6f66 2073 7461 6e64 6172 640a 2020 s of standard. │ │ │ │ -0002f5a0: 2020 2020 2020 6d6f 6e6f 6d69 616c 7320 monomials │ │ │ │ -0002f5b0: 666f 7220 7468 6520 6964 6561 6c20 244d for the ideal $M │ │ │ │ -0002f5c0: 242c 206f 6e65 2066 6f72 2065 6163 6820 $, one for each │ │ │ │ -0002f5d0: 6765 6e65 7261 746f 7220 6f66 2024 4d24 generator of $M$ │ │ │ │ -0002f5e0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0002f5f0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 206d 6f6e =========..A mon │ │ │ │ -0002f600: 6f6d 6961 6c20 246d 2420 6973 2073 7461 omial $m$ is sta │ │ │ │ -0002f610: 6e64 6172 6420 7769 7468 2072 6573 7065 ndard with respe │ │ │ │ -0002f620: 6374 2074 6f20 6120 6d6f 6e6f 6d69 616c ct to a monomial │ │ │ │ -0002f630: 2069 6465 616c 2024 4d24 2061 6e64 2061 ideal $M$ and a │ │ │ │ -0002f640: 2067 656e 6572 6174 6f72 0a24 6724 206f generator.$g$ o │ │ │ │ -0002f650: 6620 244d 2420 6966 2024 6d24 2069 7320 f $M$ if $m$ is │ │ │ │ -0002f660: 6f66 2074 6865 2073 616d 6520 6465 6772 of the same degr │ │ │ │ -0002f670: 6565 2061 7320 2467 2420 6275 7420 6973 ee as $g$ but is │ │ │ │ -0002f680: 206e 6f74 2061 6e20 656c 656d 656e 7420 not an element │ │ │ │ -0002f690: 6f66 2024 4d24 2e0a 0a49 6e70 7574 7469 of $M$...Inputti │ │ │ │ -0002f6a0: 6e67 2061 6e20 6964 6561 6c20 244d 2420 ng an ideal $M$ │ │ │ │ -0002f6b0: 7265 7475 726e 7320 7468 6520 7374 616e returns the stan │ │ │ │ -0002f6c0: 6461 7264 206d 6f6e 6f6d 6961 6c73 206f dard monomials o │ │ │ │ -0002f6d0: 6620 6561 6368 206f 6620 7468 6520 6769 f each of the gi │ │ │ │ -0002f6e0: 7665 6e0a 6765 6e65 7261 746f 7273 206f ven.generators o │ │ │ │ -0002f6f0: 6620 7468 6520 6964 6561 6c2e 0a0a 2b2d f the ideal...+- │ │ │ │ -0002f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002f750: 3120 3a20 5220 3d20 5a5a 2f33 3230 3033 1 : R = ZZ/32003 │ │ │ │ -0002f760: 5b61 2e2e 645d 3b20 2020 2020 2020 2020 [a..d]; │ │ │ │ -0002f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f790: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002f0b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0002f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002f100: 7c6f 3420 3a20 4c69 7374 2020 2020 2020 |o4 : List │ │ │ │ +0002f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002f150: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0002f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0002f1a0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0002f1b0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7461 ==.. * *note ta │ │ │ │ +0002f1c0: 696c 4d6f 6e6f 6d69 616c 733a 2074 6169 ilMonomials: tai │ │ │ │ +0002f1d0: 6c4d 6f6e 6f6d 6961 6c73 2c20 2d2d 2066 lMonomials, -- f │ │ │ │ +0002f1e0: 696e 6420 7461 696c 206d 6f6e 6f6d 6961 ind tail monomia │ │ │ │ +0002f1f0: 6c73 0a20 202a 202a 6e6f 7465 2073 7461 ls. * *note sta │ │ │ │ +0002f200: 6e64 6172 644d 6f6e 6f6d 6961 6c73 3a20 ndardMonomials: │ │ │ │ +0002f210: 7374 616e 6461 7264 4d6f 6e6f 6d69 616c standardMonomial │ │ │ │ +0002f220: 732c 202d 2d20 636f 6d70 7574 6573 2073 s, -- computes s │ │ │ │ +0002f230: 7461 6e64 6172 6420 6d6f 6e6f 6d69 616c tandard monomial │ │ │ │ +0002f240: 730a 0a57 6179 7320 746f 2075 7365 2073 s..Ways to use s │ │ │ │ +0002f250: 6d61 6c6c 6572 4d6f 6e6f 6d69 616c 733a mallerMonomials: │ │ │ │ +0002f260: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0002f270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0002f280: 2020 2a20 2273 6d61 6c6c 6572 4d6f 6e6f * "smallerMono │ │ │ │ +0002f290: 6d69 616c 7328 4964 6561 6c29 220a 2020 mials(Ideal)". │ │ │ │ +0002f2a0: 2a20 2273 6d61 6c6c 6572 4d6f 6e6f 6d69 * "smallerMonomi │ │ │ │ +0002f2b0: 616c 7328 4964 6561 6c2c 5269 6e67 456c als(Ideal,RingEl │ │ │ │ +0002f2c0: 656d 656e 7429 220a 0a46 6f72 2074 6865 ement)"..For the │ │ │ │ +0002f2d0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0002f2e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0002f2f0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0002f300: 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 616c smallerMonomial │ │ │ │ +0002f310: 733a 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 s: smallerMonomi │ │ │ │ +0002f320: 616c 732c 2069 7320 6120 2a6e 6f74 6520 als, is a *note │ │ │ │ +0002f330: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +0002f340: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +0002f350: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +0002f360: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +0002f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3b0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0002f3c0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0002f3d0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0002f3e0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0002f3f0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0002f400: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0002f410: 6163 6b61 6765 732f 0a47 726f 6562 6e65 ackages/.Groebne │ │ │ │ +0002f420: 7253 7472 6174 612e 6d32 3a35 3234 3a30 rStrata.m2:524:0 │ │ │ │ +0002f430: 2e0a 1f0a 4669 6c65 3a20 4772 6f65 626e ....File: Groebn │ │ │ │ +0002f440: 6572 5374 7261 7461 2e69 6e66 6f2c 204e erStrata.info, N │ │ │ │ +0002f450: 6f64 653a 2073 7461 6e64 6172 644d 6f6e ode: standardMon │ │ │ │ +0002f460: 6f6d 6961 6c73 2c20 4e65 7874 3a20 7461 omials, Next: ta │ │ │ │ +0002f470: 696c 4d6f 6e6f 6d69 616c 732c 2050 7265 ilMonomials, Pre │ │ │ │ +0002f480: 763a 2073 6d61 6c6c 6572 4d6f 6e6f 6d69 v: smallerMonomi │ │ │ │ +0002f490: 616c 732c 2055 703a 2054 6f70 0a0a 7374 als, Up: Top..st │ │ │ │ +0002f4a0: 616e 6461 7264 4d6f 6e6f 6d69 616c 7320 andardMonomials │ │ │ │ +0002f4b0: 2d2d 2063 6f6d 7075 7465 7320 7374 616e -- computes stan │ │ │ │ +0002f4c0: 6461 7264 206d 6f6e 6f6d 6961 6c73 0a2a dard monomials.* │ │ │ │ +0002f4d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002f4e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002f4f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0002f500: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0002f510: 2020 2020 204c 203d 2073 7461 6e64 6172 L = standar │ │ │ │ +0002f520: 644d 6f6e 6f6d 6961 6c73 204d 0a20 2020 dMonomials M. │ │ │ │ +0002f530: 2020 2020 204c 203d 2073 7461 6e64 6172 L = standar │ │ │ │ +0002f540: 644d 6f6e 6f6d 6961 6c73 2864 2c20 4d29 dMonomials(d, M) │ │ │ │ +0002f550: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0002f560: 2020 202a 204d 2c20 616e 202a 6e6f 7465 * M, an *note │ │ │ │ +0002f570: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ +0002f580: 7932 446f 6329 4964 6561 6c2c 2c20 4d20 y2Doc)Ideal,, M │ │ │ │ +0002f590: 7368 6f75 6c64 2062 6520 6120 6d6f 6e6f should be a mono │ │ │ │ +0002f5a0: 6d69 616c 2069 6465 616c 0a20 2020 2020 mial ideal. │ │ │ │ +0002f5b0: 202a 2064 2c20 6120 2a6e 6f74 6520 6c69 * d, a *note li │ │ │ │ +0002f5c0: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +0002f5d0: 6329 4c69 7374 2c2c 2061 2064 6567 7265 c)List,, a degre │ │ │ │ +0002f5e0: 650a 2020 2a20 4f75 7470 7574 733a 0a20 e. * Outputs:. │ │ │ │ +0002f5f0: 2020 2020 202a 204c 2c20 6120 2a6e 6f74 * L, a *not │ │ │ │ +0002f600: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +0002f610: 7932 446f 6329 4c69 7374 2c2c 204c 2069 y2Doc)List,, L i │ │ │ │ +0002f620: 7320 6120 6c69 7374 206f 6620 6c69 7374 s a list of list │ │ │ │ +0002f630: 7320 6f66 2073 7461 6e64 6172 640a 2020 s of standard. │ │ │ │ +0002f640: 2020 2020 2020 6d6f 6e6f 6d69 616c 7320 monomials │ │ │ │ +0002f650: 666f 7220 7468 6520 6964 6561 6c20 244d for the ideal $M │ │ │ │ +0002f660: 242c 206f 6e65 2066 6f72 2065 6163 6820 $, one for each │ │ │ │ +0002f670: 6765 6e65 7261 746f 7220 6f66 2024 4d24 generator of $M$ │ │ │ │ +0002f680: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0002f690: 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 206d 6f6e =========..A mon │ │ │ │ +0002f6a0: 6f6d 6961 6c20 246d 2420 6973 2073 7461 omial $m$ is sta │ │ │ │ +0002f6b0: 6e64 6172 6420 7769 7468 2072 6573 7065 ndard with respe │ │ │ │ +0002f6c0: 6374 2074 6f20 6120 6d6f 6e6f 6d69 616c ct to a monomial │ │ │ │ +0002f6d0: 2069 6465 616c 2024 4d24 2061 6e64 2061 ideal $M$ and a │ │ │ │ +0002f6e0: 2067 656e 6572 6174 6f72 0a24 6724 206f generator.$g$ o │ │ │ │ +0002f6f0: 6620 244d 2420 6966 2024 6d24 2069 7320 f $M$ if $m$ is │ │ │ │ +0002f700: 6f66 2074 6865 2073 616d 6520 6465 6772 of the same degr │ │ │ │ +0002f710: 6565 2061 7320 2467 2420 6275 7420 6973 ee as $g$ but is │ │ │ │ +0002f720: 206e 6f74 2061 6e20 656c 656d 656e 7420 not an element │ │ │ │ +0002f730: 6f66 2024 4d24 2e0a 0a49 6e70 7574 7469 of $M$...Inputti │ │ │ │ +0002f740: 6e67 2061 6e20 6964 6561 6c20 244d 2420 ng an ideal $M$ │ │ │ │ +0002f750: 7265 7475 726e 7320 7468 6520 7374 616e returns the stan │ │ │ │ +0002f760: 6461 7264 206d 6f6e 6f6d 6961 6c73 206f dard monomials o │ │ │ │ +0002f770: 6620 6561 6368 206f 6620 7468 6520 6769 f each of the gi │ │ │ │ +0002f780: 7665 6e0a 6765 6e65 7261 746f 7273 206f ven.generators o │ │ │ │ +0002f790: 6620 7468 6520 6964 6561 6c2e 0a0a 2b2d f the ideal...+- │ │ │ │ 0002f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002f7f0: 3220 3a20 4d20 3d20 6964 6561 6c20 2861 2 : M = ideal (a │ │ │ │ -0002f800: 5e32 2c20 612a 622c 2062 5e33 2c20 612a ^2, a*b, b^3, a* │ │ │ │ -0002f810: 6329 3b20 2020 2020 2020 2020 2020 2020 c); │ │ │ │ +0002f7f0: 3120 3a20 5220 3d20 5a5a 2f33 3230 3033 1 : R = ZZ/32003 │ │ │ │ +0002f800: 5b61 2e2e 645d 3b20 2020 2020 2020 2020 [a..d]; │ │ │ │ +0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f880: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002f890: 3220 3a20 4964 6561 6c20 6f66 2052 2020 2 : Ideal of R │ │ │ │ -0002f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f830: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002f890: 3220 3a20 4d20 3d20 6964 6561 6c20 2861 2 : M = ideal (a │ │ │ │ +0002f8a0: 5e32 2c20 612a 622c 2062 5e33 2c20 612a ^2, a*b, b^3, a* │ │ │ │ +0002f8b0: 6329 3b20 2020 2020 2020 2020 2020 2020 c); │ │ │ │ 0002f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0002f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002f930: 3320 3a20 4c31 203d 2073 7461 6e64 6172 3 : L1 = standar │ │ │ │ -0002f940: 644d 6f6e 6f6d 6961 6c73 204d 2020 2020 dMonomials M │ │ │ │ +0002f8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f920: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002f930: 3220 3a20 4964 6561 6c20 6f66 2052 2020 2 : Ideal of R │ │ │ │ +0002f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f970: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f9c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002f9d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002f9e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002f9f0: 2020 2032 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -0002fa00: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002fa10: 2020 2020 2032 2020 2020 2020 7c0a 7c6f 2 |.|o │ │ │ │ -0002fa20: 3320 3d20 7b7b 6220 2c20 622a 632c 2063 3 = {{b , b*c, c │ │ │ │ -0002fa30: 202c 2061 2a64 2c20 622a 642c 2063 2a64 , a*d, b*d, c*d │ │ │ │ -0002fa40: 2c20 6420 7d2c 207b 6220 2c20 622a 632c , d }, {b , b*c, │ │ │ │ -0002fa50: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ -0002fa60: 2a64 2c20 6420 7d2c 2020 2020 7c0a 7c20 *d, d }, |.| │ │ │ │ -0002fa70: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ -0002fa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002faa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002fac0: 2020 2020 2020 3220 2020 2020 2032 2020 2 2 │ │ │ │ -0002fad0: 2033 2020 2032 2020 2020 2020 2020 2020 3 2 │ │ │ │ -0002fae0: 2032 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ -0002faf0: 2020 2020 3220 2020 3320 2020 2020 3220 2 3 2 │ │ │ │ -0002fb00: 2020 2020 2020 2032 2020 2020 7c0a 7c20 2 |.| │ │ │ │ -0002fb10: 2020 2020 7b62 2063 2c20 622a 6320 2c20 {b c, b*c , │ │ │ │ -0002fb20: 6320 2c20 6220 642c 2062 2a63 2a64 2c20 c , b d, b*c*d, │ │ │ │ -0002fb30: 6320 642c 2061 2a64 202c 2062 2a64 202c c d, a*d , b*d , │ │ │ │ -0002fb40: 2063 2a64 202c 2064 207d 2c20 7b62 202c c*d , d }, {b , │ │ │ │ -0002fb50: 2062 2a63 2c20 6320 2c20 2020 7c0a 7c20 b*c, c , |.| │ │ │ │ -0002fb60: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ -0002fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0002fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbc0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002fc00: 2020 2020 612a 642c 2062 2a64 2c20 632a a*d, b*d, c* │ │ │ │ -0002fc10: 642c 2064 207d 7d20 2020 2020 2020 2020 d, d }} │ │ │ │ -0002fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002f970: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002f9d0: 3320 3a20 4c31 203d 2073 7461 6e64 6172 3 : L1 = standar │ │ │ │ +0002f9e0: 644d 6f6e 6f6d 6961 6c73 204d 2020 2020 dMonomials M │ │ │ │ +0002f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fa60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002fa70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0002fa80: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002fa90: 2020 2032 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ +0002faa0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002fab0: 2020 2020 2032 2020 2020 2020 7c0a 7c6f 2 |.|o │ │ │ │ +0002fac0: 3320 3d20 7b7b 6220 2c20 622a 632c 2063 3 = {{b , b*c, c │ │ │ │ +0002fad0: 202c 2061 2a64 2c20 622a 642c 2063 2a64 , a*d, b*d, c*d │ │ │ │ +0002fae0: 2c20 6420 7d2c 207b 6220 2c20 622a 632c , d }, {b , b*c, │ │ │ │ +0002faf0: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ +0002fb00: 2a64 2c20 6420 7d2c 2020 2020 7c0a 7c20 *d, d }, |.| │ │ │ │ +0002fb10: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ +0002fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0002fb60: 2020 2020 2020 3220 2020 2020 2032 2020 2 2 │ │ │ │ +0002fb70: 2033 2020 2032 2020 2020 2020 2020 2020 3 2 │ │ │ │ +0002fb80: 2032 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ +0002fb90: 2020 2020 3220 2020 3320 2020 2020 3220 2 3 2 │ │ │ │ +0002fba0: 2020 2020 2020 2032 2020 2020 7c0a 7c20 2 |.| │ │ │ │ +0002fbb0: 2020 2020 7b62 2063 2c20 622a 6320 2c20 {b c, b*c , │ │ │ │ +0002fbc0: 6320 2c20 6220 642c 2062 2a63 2a64 2c20 c , b d, b*c*d, │ │ │ │ +0002fbd0: 6320 642c 2061 2a64 202c 2062 2a64 202c c d, a*d , b*d , │ │ │ │ +0002fbe0: 2063 2a64 202c 2064 207d 2c20 7b62 202c c*d , d }, {b , │ │ │ │ +0002fbf0: 2062 2a63 2c20 6320 2c20 2020 7c0a 7c20 b*c, c , |.| │ │ │ │ +0002fc00: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ +0002fc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ 0002fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fc60: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0002fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002fca0: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ -0002fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fc90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002fca0: 2020 2020 612a 642c 2062 2a64 2c20 632a a*d, b*d, c* │ │ │ │ +0002fcb0: 642c 2064 207d 7d20 2020 2020 2020 2020 d, d }} │ │ │ │ 0002fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fce0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0002fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0002fd40: 3420 3a20 7374 616e 6461 7264 4d6f 6e6f 4 : standardMono │ │ │ │ -0002fd50: 6d69 616c 7328 7b33 7d2c 204d 2920 2020 mials({3}, M) │ │ │ │ +0002fce0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fd30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002fd40: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ +0002fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fdd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002fde0: 2020 2020 2020 3220 2020 2020 2032 2020 2 2 │ │ │ │ -0002fdf0: 2033 2020 2032 2020 2020 2020 2020 2020 3 2 │ │ │ │ -0002fe00: 2032 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ -0002fe10: 2020 2020 3220 2020 3320 2020 2020 2020 2 3 │ │ │ │ -0002fe20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002fe30: 3420 3d20 7b62 2063 2c20 622a 6320 2c20 4 = {b c, b*c , │ │ │ │ -0002fe40: 6320 2c20 6220 642c 2062 2a63 2a64 2c20 c , b d, b*c*d, │ │ │ │ -0002fe50: 6320 642c 2061 2a64 202c 2062 2a64 202c c d, a*d , b*d , │ │ │ │ -0002fe60: 2063 2a64 202c 2064 207d 2020 2020 2020 c*d , d } │ │ │ │ +0002fd80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002fd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002fdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002fde0: 3420 3a20 7374 616e 6461 7264 4d6f 6e6f 4 : standardMono │ │ │ │ +0002fdf0: 6d69 616c 7328 7b33 7d2c 204d 2920 2020 mials({3}, M) │ │ │ │ +0002fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fe70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0002fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fe80: 2020 2020 2020 3220 2020 2020 2032 2020 2 2 │ │ │ │ +0002fe90: 2033 2020 2032 2020 2020 2020 2020 2020 3 2 │ │ │ │ +0002fea0: 2032 2020 2020 2020 3220 2020 2020 3220 2 2 2 │ │ │ │ +0002feb0: 2020 2020 3220 2020 3320 2020 2020 2020 2 3 │ │ │ │ 0002fec0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002fed0: 3420 3a20 4c69 7374 2020 2020 2020 2020 4 : List │ │ │ │ -0002fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0002ff20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ff60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 ------------+..I │ │ │ │ -0002ff70: 6e70 7574 7469 6e67 2061 6e20 696e 7465 nputting an inte │ │ │ │ -0002ff80: 6765 7220 2464 2420 286f 7220 6465 6772 ger $d$ (or degr │ │ │ │ -0002ff90: 6565 2024 6424 2920 616e 6420 616e 2069 ee $d$) and an i │ │ │ │ -0002ffa0: 6465 616c 2067 6976 6573 2074 6865 2073 deal gives the s │ │ │ │ -0002ffb0: 7461 6e64 6172 640a 6d6f 6e6f 6d69 616c tandard.monomial │ │ │ │ -0002ffc0: 7320 666f 7220 7468 6520 7370 6563 6966 s for the specif │ │ │ │ -0002ffd0: 6965 6420 6964 6561 6c20 696e 2064 6567 ied ideal in deg │ │ │ │ -0002ffe0: 7265 6520 2464 242e 0a0a 2b2d 2d2d 2d2d ree $d$...+----- │ │ │ │ +0002fed0: 3420 3d20 7b62 2063 2c20 622a 6320 2c20 4 = {b c, b*c , │ │ │ │ +0002fee0: 6320 2c20 6220 642c 2062 2a63 2a64 2c20 c , b d, b*c*d, │ │ │ │ +0002fef0: 6320 642c 2061 2a64 202c 2062 2a64 202c c d, a*d , b*d , │ │ │ │ +0002ff00: 2063 2a64 202c 2064 207d 2020 2020 2020 c*d , d } │ │ │ │ +0002ff10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ff60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002ff70: 3420 3a20 4c69 7374 2020 2020 2020 2020 4 : List │ │ │ │ +0002ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ffb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0002ffc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ffd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030010: 2b0a 7c69 3520 3a20 7374 616e 6461 7264 +.|i5 : standard │ │ │ │ -00030020: 4d6f 6e6f 6d69 616c 7328 322c 204d 2920 Monomials(2, M) │ │ │ │ -00030030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00030040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030060: 7c0a 7c20 2020 2020 2020 3220 2020 2020 |.| 2 │ │ │ │ -00030070: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00030080: 2020 2020 2020 3220 7c0a 7c6f 3520 3d20 2 |.|o5 = │ │ │ │ -00030090: 7b62 202c 2062 2a63 2c20 6320 2c20 612a {b , b*c, c , a* │ │ │ │ -000300a0: 642c 2062 2a64 2c20 632a 642c 2064 207d d, b*d, c*d, d } │ │ │ │ -000300b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000300c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000300d0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -000300e0: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00030000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 ------------+..I │ │ │ │ +00030010: 6e70 7574 7469 6e67 2061 6e20 696e 7465 nputting an inte │ │ │ │ +00030020: 6765 7220 2464 2420 286f 7220 6465 6772 ger $d$ (or degr │ │ │ │ +00030030: 6565 2024 6424 2920 616e 6420 616e 2069 ee $d$) and an i │ │ │ │ +00030040: 6465 616c 2067 6976 6573 2074 6865 2073 deal gives the s │ │ │ │ +00030050: 7461 6e64 6172 640a 6d6f 6e6f 6d69 616c tandard.monomial │ │ │ │ +00030060: 7320 666f 7220 7468 6520 7370 6563 6966 s for the specif │ │ │ │ +00030070: 6965 6420 6964 6561 6c20 696e 2064 6567 ied ideal in deg │ │ │ │ +00030080: 7265 6520 2464 242e 0a0a 2b2d 2d2d 2d2d ree $d$...+----- │ │ │ │ +00030090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000300a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000300b0: 2b0a 7c69 3520 3a20 7374 616e 6461 7264 +.|i5 : standard │ │ │ │ +000300c0: 4d6f 6e6f 6d69 616c 7328 322c 204d 2920 Monomials(2, M) │ │ │ │ +000300d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000300e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000300f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030100: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00030110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030120: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00030130: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00030140: 2a20 2a6e 6f74 6520 7461 696c 4d6f 6e6f * *note tailMono │ │ │ │ -00030150: 6d69 616c 733a 2074 6169 6c4d 6f6e 6f6d mials: tailMonom │ │ │ │ -00030160: 6961 6c73 2c20 2d2d 2066 696e 6420 7461 ials, -- find ta │ │ │ │ -00030170: 696c 206d 6f6e 6f6d 6961 6c73 0a20 202a il monomials. * │ │ │ │ -00030180: 202a 6e6f 7465 2073 6d61 6c6c 6572 4d6f *note smallerMo │ │ │ │ -00030190: 6e6f 6d69 616c 733a 2073 6d61 6c6c 6572 nomials: smaller │ │ │ │ -000301a0: 4d6f 6e6f 6d69 616c 732c 202d 2d20 7265 Monomials, -- re │ │ │ │ -000301b0: 7475 726e 7320 7468 6520 7374 616e 6461 turns the standa │ │ │ │ -000301c0: 7264 206d 6f6e 6f6d 6961 6c73 0a20 2020 rd monomials. │ │ │ │ -000301d0: 2073 6d61 6c6c 6572 2062 7574 206f 6620 smaller but of │ │ │ │ -000301e0: 7468 6520 7361 6d65 2064 6567 7265 6520 the same degree │ │ │ │ -000301f0: 6173 2067 6976 656e 206d 6f6e 6f6d 6961 as given monomia │ │ │ │ -00030200: 6c28 7329 0a0a 5761 7973 2074 6f20 7573 l(s)..Ways to us │ │ │ │ -00030210: 6520 7374 616e 6461 7264 4d6f 6e6f 6d69 e standardMonomi │ │ │ │ -00030220: 616c 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d als:.=========== │ │ │ │ -00030230: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00030240: 3d3d 3d0a 0a20 202a 2022 7374 616e 6461 ===.. * "standa │ │ │ │ -00030250: 7264 4d6f 6e6f 6d69 616c 7328 4964 6561 rdMonomials(Idea │ │ │ │ -00030260: 6c29 220a 2020 2a20 2273 7461 6e64 6172 l)". * "standar │ │ │ │ -00030270: 644d 6f6e 6f6d 6961 6c73 284c 6973 742c dMonomials(List, │ │ │ │ -00030280: 4964 6561 6c29 220a 2020 2a20 2273 7461 Ideal)". * "sta │ │ │ │ -00030290: 6e64 6172 644d 6f6e 6f6d 6961 6c73 285a ndardMonomials(Z │ │ │ │ -000302a0: 5a2c 4964 6561 6c29 220a 0a46 6f72 2074 Z,Ideal)"..For t │ │ │ │ -000302b0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -000302c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000302d0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -000302e0: 7465 2073 7461 6e64 6172 644d 6f6e 6f6d te standardMonom │ │ │ │ -000302f0: 6961 6c73 3a20 7374 616e 6461 7264 4d6f ials: standardMo │ │ │ │ -00030300: 6e6f 6d69 616c 732c 2069 7320 6120 2a6e nomials, is a *n │ │ │ │ -00030310: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ -00030320: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -00030330: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00030340: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -00030350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030390: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -000303a0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -000303b0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -000303c0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -000303d0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -000303e0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -000303f0: 7932 2f70 6163 6b61 6765 732f 0a47 726f y2/packages/.Gro │ │ │ │ -00030400: 6562 6e65 7253 7472 6174 612e 6d32 3a34 ebnerStrata.m2:4 │ │ │ │ -00030410: 3838 3a30 2e0a 1f0a 4669 6c65 3a20 4772 88:0....File: Gr │ │ │ │ -00030420: 6f65 626e 6572 5374 7261 7461 2e69 6e66 oebnerStrata.inf │ │ │ │ -00030430: 6f2c 204e 6f64 653a 2074 6169 6c4d 6f6e o, Node: tailMon │ │ │ │ -00030440: 6f6d 6961 6c73 2c20 5072 6576 3a20 7374 omials, Prev: st │ │ │ │ -00030450: 616e 6461 7264 4d6f 6e6f 6d69 616c 732c andardMonomials, │ │ │ │ -00030460: 2055 703a 2054 6f70 0a0a 7461 696c 4d6f Up: Top..tailMo │ │ │ │ -00030470: 6e6f 6d69 616c 7320 2d2d 2066 696e 6420 nomials -- find │ │ │ │ -00030480: 7461 696c 206d 6f6e 6f6d 6961 6c73 0a2a tail monomials.* │ │ │ │ -00030490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000304a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000304b0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -000304c0: 0a20 2020 2020 2020 204c 203d 2074 6169 . L = tai │ │ │ │ -000304d0: 6c4d 6f6e 6f6d 6961 6c73 204d 0a20 2020 lMonomials M. │ │ │ │ -000304e0: 2020 2020 204c 203d 2074 6169 6c4d 6f6e L = tailMon │ │ │ │ -000304f0: 6f6d 6961 6c73 284d 2c20 6d29 0a20 202a omials(M, m). * │ │ │ │ -00030500: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00030510: 204d 2c20 616e 202a 6e6f 7465 2069 6465 M, an *note ide │ │ │ │ -00030520: 616c 3a20 284d 6163 6175 6c61 7932 446f al: (Macaulay2Do │ │ │ │ -00030530: 6329 4964 6561 6c2c 2c20 244d 2420 7368 c)Ideal,, $M$ sh │ │ │ │ -00030540: 6f75 6c64 2062 6520 6120 6d6f 6e6f 6d69 ould be a monomi │ │ │ │ -00030550: 616c 2069 6465 616c 0a20 2020 2020 2020 al ideal. │ │ │ │ -00030560: 2028 616e 2069 6465 616c 2067 656e 6572 (an ideal gener │ │ │ │ -00030570: 6174 6564 2062 7920 6d6f 6e6f 6d69 616c ated by monomial │ │ │ │ -00030580: 7329 0a20 2020 2020 202a 206d 2c20 6120 s). * m, a │ │ │ │ -00030590: 2a6e 6f74 6520 7269 6e67 2065 6c65 6d65 *note ring eleme │ │ │ │ -000305a0: 6e74 3a20 284d 6163 6175 6c61 7932 446f nt: (Macaulay2Do │ │ │ │ -000305b0: 6329 5269 6e67 456c 656d 656e 742c 2c20 c)RingElement,, │ │ │ │ -000305c0: 6f70 7469 6f6e 616c 2c20 6f6e 6c79 0a20 optional, only. │ │ │ │ -000305d0: 2020 2020 2020 2072 6574 7572 6e20 6120 return a │ │ │ │ -000305e0: 7369 6e67 6c65 206c 6973 7420 6f66 2074 single list of t │ │ │ │ -000305f0: 6865 2074 6169 6c20 6d6f 6e6f 6d69 616c he tail monomial │ │ │ │ -00030600: 7320 666f 7220 7468 6973 206d 6f6e 6f6d s for this monom │ │ │ │ -00030610: 6961 6c0a 2020 2a20 2a6e 6f74 6520 4f70 ial. * *note Op │ │ │ │ -00030620: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00030630: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00030640: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00030650: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00030660: 732c 3a0a 2020 2020 2020 2a20 416c 6c53 s,:. * AllS │ │ │ │ -00030670: 7461 6e64 6172 6420 3d3e 2061 202a 6e6f tandard => a *no │ │ │ │ -00030680: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ -00030690: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000306a0: 426f 6f6c 6561 6e2c 2c20 6465 6661 756c Boolean,, defaul │ │ │ │ -000306b0: 740a 2020 2020 2020 2020 7661 6c75 6520 t. value │ │ │ │ -000306c0: 6661 6c73 652c 2077 6869 6368 206d 6f6e false, which mon │ │ │ │ -000306d0: 6f6d 6961 6c73 2073 686f 756c 6420 6265 omials should be │ │ │ │ -000306e0: 2063 6f6e 7369 6465 7265 6420 7461 696c considered tail │ │ │ │ -000306f0: 206d 6f6e 6f6d 6961 6c73 206f 6620 610a monomials of a. │ │ │ │ -00030700: 2020 2020 2020 2020 6d6f 6e6f 6d69 616c monomial │ │ │ │ -00030710: 2024 6d24 3a20 6569 7468 6572 2061 6c6c $m$: either all │ │ │ │ -00030720: 2073 7461 6e64 6172 6420 6d6f 6e6f 6d69 standard monomi │ │ │ │ -00030730: 616c 7320 6f66 2061 2067 6976 656e 2064 als of a given d │ │ │ │ -00030740: 6567 7265 652c 206f 7220 616c 6c0a 2020 egree, or all. │ │ │ │ -00030750: 2020 2020 2020 6d6f 6e6f 6d69 616c 7320 monomials │ │ │ │ -00030760: 736d 616c 6c65 7220 7468 616e 2024 6d24 smaller than $m$ │ │ │ │ -00030770: 2069 6e20 7468 6520 6769 7665 6e20 7465 in the given te │ │ │ │ -00030780: 726d 206f 7264 6572 2028 6275 7420 7374 rm order (but st │ │ │ │ -00030790: 696c 6c20 6f66 2074 6865 0a20 2020 2020 ill of the. │ │ │ │ -000307a0: 2020 2073 616d 6520 6465 6772 6565 290a same degree). │ │ │ │ -000307b0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -000307c0: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ -000307d0: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ -000307e0: 446f 6329 4c69 7374 2c2c 2061 206c 6973 Doc)List,, a lis │ │ │ │ -000307f0: 7420 6f66 206c 6973 7473 3a20 666f 7220 t of lists: for │ │ │ │ -00030800: 6561 6368 0a20 2020 2020 2020 2067 656e each. gen │ │ │ │ -00030810: 6572 6174 6f72 2024 6d24 206f 6620 244d erator $m$ of $M │ │ │ │ -00030820: 242c 2074 6865 206c 6973 7420 6f66 2061 $, the list of a │ │ │ │ -00030830: 6c6c 2074 6169 6c20 6d6f 6e6f 6d69 616c ll tail monomial │ │ │ │ -00030840: 7320 4966 2069 6e73 7465 6164 2024 6d24 s If instead $m$ │ │ │ │ -00030850: 2069 730a 2020 2020 2020 2020 6769 7665 is. give │ │ │ │ -00030860: 6e2c 2074 6865 206c 6973 7420 6f66 2074 n, the list of t │ │ │ │ -00030870: 6865 2074 6169 6c20 6d6f 6e6f 6d69 616c he tail monomial │ │ │ │ -00030880: 7320 6f66 2024 6d24 2069 7320 7265 7475 s of $m$ is retu │ │ │ │ -00030890: 726e 6564 0a0a 4465 7363 7269 7074 696f rned..Descriptio │ │ │ │ -000308a0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 n.===========..I │ │ │ │ -000308b0: 6e70 7574 7469 6e67 2061 6e20 6964 6561 nputting an idea │ │ │ │ -000308c0: 6c20 244d 2420 6765 6e65 7261 7465 6420 l $M$ generated │ │ │ │ -000308d0: 6279 206d 6f6e 6f6d 6961 6c73 2072 6574 by monomials ret │ │ │ │ -000308e0: 7572 6e73 2061 206c 6973 7420 6f66 206c urns a list of l │ │ │ │ -000308f0: 6973 7473 206f 6620 7461 696c 0a6d 6f6e ists of tail.mon │ │ │ │ -00030900: 6f6d 6961 6c73 2066 6f72 2065 6163 6820 omials for each │ │ │ │ -00030910: 6765 6e65 7261 746f 7220 6f66 2024 4d24 generator of $M$ │ │ │ │ -00030920: 2028 696e 2074 6865 2073 616d 6520 6f72 (in the same or │ │ │ │ -00030930: 6465 7229 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d der)...+-------- │ │ │ │ -00030940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030980: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -00030990: 205a 5a2f 3332 3030 335b 612e 2e64 5d3b ZZ/32003[a..d]; │ │ │ │ -000309a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00030100: 7c0a 7c20 2020 2020 2020 3220 2020 2020 |.| 2 │ │ │ │ +00030110: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00030120: 2020 2020 2020 3220 7c0a 7c6f 3520 3d20 2 |.|o5 = │ │ │ │ +00030130: 7b62 202c 2062 2a63 2c20 6320 2c20 612a {b , b*c, c , a* │ │ │ │ +00030140: 642c 2062 2a64 2c20 632a 642c 2064 207d d, b*d, c*d, d } │ │ │ │ +00030150: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00030160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030170: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ +00030180: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ +00030190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000301a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000301b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000301c0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +000301d0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +000301e0: 2a20 2a6e 6f74 6520 7461 696c 4d6f 6e6f * *note tailMono │ │ │ │ +000301f0: 6d69 616c 733a 2074 6169 6c4d 6f6e 6f6d mials: tailMonom │ │ │ │ +00030200: 6961 6c73 2c20 2d2d 2066 696e 6420 7461 ials, -- find ta │ │ │ │ +00030210: 696c 206d 6f6e 6f6d 6961 6c73 0a20 202a il monomials. * │ │ │ │ +00030220: 202a 6e6f 7465 2073 6d61 6c6c 6572 4d6f *note smallerMo │ │ │ │ +00030230: 6e6f 6d69 616c 733a 2073 6d61 6c6c 6572 nomials: smaller │ │ │ │ +00030240: 4d6f 6e6f 6d69 616c 732c 202d 2d20 7265 Monomials, -- re │ │ │ │ +00030250: 7475 726e 7320 7468 6520 7374 616e 6461 turns the standa │ │ │ │ +00030260: 7264 206d 6f6e 6f6d 6961 6c73 0a20 2020 rd monomials. │ │ │ │ +00030270: 2073 6d61 6c6c 6572 2062 7574 206f 6620 smaller but of │ │ │ │ +00030280: 7468 6520 7361 6d65 2064 6567 7265 6520 the same degree │ │ │ │ +00030290: 6173 2067 6976 656e 206d 6f6e 6f6d 6961 as given monomia │ │ │ │ +000302a0: 6c28 7329 0a0a 5761 7973 2074 6f20 7573 l(s)..Ways to us │ │ │ │ +000302b0: 6520 7374 616e 6461 7264 4d6f 6e6f 6d69 e standardMonomi │ │ │ │ +000302c0: 616c 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d als:.=========== │ │ │ │ +000302d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000302e0: 3d3d 3d0a 0a20 202a 2022 7374 616e 6461 ===.. * "standa │ │ │ │ +000302f0: 7264 4d6f 6e6f 6d69 616c 7328 4964 6561 rdMonomials(Idea │ │ │ │ +00030300: 6c29 220a 2020 2a20 2273 7461 6e64 6172 l)". * "standar │ │ │ │ +00030310: 644d 6f6e 6f6d 6961 6c73 284c 6973 742c dMonomials(List, │ │ │ │ +00030320: 4964 6561 6c29 220a 2020 2a20 2273 7461 Ideal)". * "sta │ │ │ │ +00030330: 6e64 6172 644d 6f6e 6f6d 6961 6c73 285a ndardMonomials(Z │ │ │ │ +00030340: 5a2c 4964 6561 6c29 220a 0a46 6f72 2074 Z,Ideal)"..For t │ │ │ │ +00030350: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00030360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00030370: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00030380: 7465 2073 7461 6e64 6172 644d 6f6e 6f6d te standardMonom │ │ │ │ +00030390: 6961 6c73 3a20 7374 616e 6461 7264 4d6f ials: standardMo │ │ │ │ +000303a0: 6e6f 6d69 616c 732c 2069 7320 6120 2a6e nomials, is a *n │ │ │ │ +000303b0: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ +000303c0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +000303d0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +000303e0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +000303f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030430: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00030440: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00030450: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00030460: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00030470: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00030480: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00030490: 7932 2f70 6163 6b61 6765 732f 0a47 726f y2/packages/.Gro │ │ │ │ +000304a0: 6562 6e65 7253 7472 6174 612e 6d32 3a34 ebnerStrata.m2:4 │ │ │ │ +000304b0: 3838 3a30 2e0a 1f0a 4669 6c65 3a20 4772 88:0....File: Gr │ │ │ │ +000304c0: 6f65 626e 6572 5374 7261 7461 2e69 6e66 oebnerStrata.inf │ │ │ │ +000304d0: 6f2c 204e 6f64 653a 2074 6169 6c4d 6f6e o, Node: tailMon │ │ │ │ +000304e0: 6f6d 6961 6c73 2c20 5072 6576 3a20 7374 omials, Prev: st │ │ │ │ +000304f0: 616e 6461 7264 4d6f 6e6f 6d69 616c 732c andardMonomials, │ │ │ │ +00030500: 2055 703a 2054 6f70 0a0a 7461 696c 4d6f Up: Top..tailMo │ │ │ │ +00030510: 6e6f 6d69 616c 7320 2d2d 2066 696e 6420 nomials -- find │ │ │ │ +00030520: 7461 696c 206d 6f6e 6f6d 6961 6c73 0a2a tail monomials.* │ │ │ │ +00030530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00030540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00030550: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00030560: 0a20 2020 2020 2020 204c 203d 2074 6169 . L = tai │ │ │ │ +00030570: 6c4d 6f6e 6f6d 6961 6c73 204d 0a20 2020 lMonomials M. │ │ │ │ +00030580: 2020 2020 204c 203d 2074 6169 6c4d 6f6e L = tailMon │ │ │ │ +00030590: 6f6d 6961 6c73 284d 2c20 6d29 0a20 202a omials(M, m). * │ │ │ │ +000305a0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +000305b0: 204d 2c20 616e 202a 6e6f 7465 2069 6465 M, an *note ide │ │ │ │ +000305c0: 616c 3a20 284d 6163 6175 6c61 7932 446f al: (Macaulay2Do │ │ │ │ +000305d0: 6329 4964 6561 6c2c 2c20 244d 2420 7368 c)Ideal,, $M$ sh │ │ │ │ +000305e0: 6f75 6c64 2062 6520 6120 6d6f 6e6f 6d69 ould be a monomi │ │ │ │ +000305f0: 616c 2069 6465 616c 0a20 2020 2020 2020 al ideal. │ │ │ │ +00030600: 2028 616e 2069 6465 616c 2067 656e 6572 (an ideal gener │ │ │ │ +00030610: 6174 6564 2062 7920 6d6f 6e6f 6d69 616c ated by monomial │ │ │ │ +00030620: 7329 0a20 2020 2020 202a 206d 2c20 6120 s). * m, a │ │ │ │ +00030630: 2a6e 6f74 6520 7269 6e67 2065 6c65 6d65 *note ring eleme │ │ │ │ +00030640: 6e74 3a20 284d 6163 6175 6c61 7932 446f nt: (Macaulay2Do │ │ │ │ +00030650: 6329 5269 6e67 456c 656d 656e 742c 2c20 c)RingElement,, │ │ │ │ +00030660: 6f70 7469 6f6e 616c 2c20 6f6e 6c79 0a20 optional, only. │ │ │ │ +00030670: 2020 2020 2020 2072 6574 7572 6e20 6120 return a │ │ │ │ +00030680: 7369 6e67 6c65 206c 6973 7420 6f66 2074 single list of t │ │ │ │ +00030690: 6865 2074 6169 6c20 6d6f 6e6f 6d69 616c he tail monomial │ │ │ │ +000306a0: 7320 666f 7220 7468 6973 206d 6f6e 6f6d s for this monom │ │ │ │ +000306b0: 6961 6c0a 2020 2a20 2a6e 6f74 6520 4f70 ial. * *note Op │ │ │ │ +000306c0: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +000306d0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +000306e0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +000306f0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00030700: 732c 3a0a 2020 2020 2020 2a20 416c 6c53 s,:. * AllS │ │ │ │ +00030710: 7461 6e64 6172 6420 3d3e 2061 202a 6e6f tandard => a *no │ │ │ │ +00030720: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ +00030730: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00030740: 426f 6f6c 6561 6e2c 2c20 6465 6661 756c Boolean,, defaul │ │ │ │ +00030750: 740a 2020 2020 2020 2020 7661 6c75 6520 t. value │ │ │ │ +00030760: 6661 6c73 652c 2077 6869 6368 206d 6f6e false, which mon │ │ │ │ +00030770: 6f6d 6961 6c73 2073 686f 756c 6420 6265 omials should be │ │ │ │ +00030780: 2063 6f6e 7369 6465 7265 6420 7461 696c considered tail │ │ │ │ +00030790: 206d 6f6e 6f6d 6961 6c73 206f 6620 610a monomials of a. │ │ │ │ +000307a0: 2020 2020 2020 2020 6d6f 6e6f 6d69 616c monomial │ │ │ │ +000307b0: 2024 6d24 3a20 6569 7468 6572 2061 6c6c $m$: either all │ │ │ │ +000307c0: 2073 7461 6e64 6172 6420 6d6f 6e6f 6d69 standard monomi │ │ │ │ +000307d0: 616c 7320 6f66 2061 2067 6976 656e 2064 als of a given d │ │ │ │ +000307e0: 6567 7265 652c 206f 7220 616c 6c0a 2020 egree, or all. │ │ │ │ +000307f0: 2020 2020 2020 6d6f 6e6f 6d69 616c 7320 monomials │ │ │ │ +00030800: 736d 616c 6c65 7220 7468 616e 2024 6d24 smaller than $m$ │ │ │ │ +00030810: 2069 6e20 7468 6520 6769 7665 6e20 7465 in the given te │ │ │ │ +00030820: 726d 206f 7264 6572 2028 6275 7420 7374 rm order (but st │ │ │ │ +00030830: 696c 6c20 6f66 2074 6865 0a20 2020 2020 ill of the. │ │ │ │ +00030840: 2020 2073 616d 6520 6465 6772 6565 290a same degree). │ │ │ │ +00030850: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00030860: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ +00030870: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +00030880: 446f 6329 4c69 7374 2c2c 2061 206c 6973 Doc)List,, a lis │ │ │ │ +00030890: 7420 6f66 206c 6973 7473 3a20 666f 7220 t of lists: for │ │ │ │ +000308a0: 6561 6368 0a20 2020 2020 2020 2067 656e each. gen │ │ │ │ +000308b0: 6572 6174 6f72 2024 6d24 206f 6620 244d erator $m$ of $M │ │ │ │ +000308c0: 242c 2074 6865 206c 6973 7420 6f66 2061 $, the list of a │ │ │ │ +000308d0: 6c6c 2074 6169 6c20 6d6f 6e6f 6d69 616c ll tail monomial │ │ │ │ +000308e0: 7320 4966 2069 6e73 7465 6164 2024 6d24 s If instead $m$ │ │ │ │ +000308f0: 2069 730a 2020 2020 2020 2020 6769 7665 is. give │ │ │ │ +00030900: 6e2c 2074 6865 206c 6973 7420 6f66 2074 n, the list of t │ │ │ │ +00030910: 6865 2074 6169 6c20 6d6f 6e6f 6d69 616c he tail monomial │ │ │ │ +00030920: 7320 6f66 2024 6d24 2069 7320 7265 7475 s of $m$ is retu │ │ │ │ +00030930: 726e 6564 0a0a 4465 7363 7269 7074 696f rned..Descriptio │ │ │ │ +00030940: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 n.===========..I │ │ │ │ +00030950: 6e70 7574 7469 6e67 2061 6e20 6964 6561 nputting an idea │ │ │ │ +00030960: 6c20 244d 2420 6765 6e65 7261 7465 6420 l $M$ generated │ │ │ │ +00030970: 6279 206d 6f6e 6f6d 6961 6c73 2072 6574 by monomials ret │ │ │ │ +00030980: 7572 6e73 2061 206c 6973 7420 6f66 206c urns a list of l │ │ │ │ +00030990: 6973 7473 206f 6620 7461 696c 0a6d 6f6e ists of tail.mon │ │ │ │ +000309a0: 6f6d 6961 6c73 2066 6f72 2065 6163 6820 omials for each │ │ │ │ +000309b0: 6765 6e65 7261 746f 7220 6f66 2024 4d24 generator of $M$ │ │ │ │ +000309c0: 2028 696e 2074 6865 2073 616d 6520 6f72 (in the same or │ │ │ │ +000309d0: 6465 7229 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d der)...+-------- │ │ │ │ 000309e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000309f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030a20: 2d2d 2d2d 2d2b 0a7c 6932 203a 204d 203d -----+.|i2 : M = │ │ │ │ -00030a30: 2069 6465 616c 2028 615e 322c 2062 5e32 ideal (a^2, b^2 │ │ │ │ -00030a40: 2c20 612a 622a 6329 3b20 2020 2020 2020 , a*b*c); │ │ │ │ +00030a20: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ +00030a30: 205a 5a2f 3332 3030 335b 612e 2e64 5d3b ZZ/32003[a..d]; │ │ │ │ +00030a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00030a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ac0: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ -00030ad0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -00030ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030a70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00030a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030ac0: 2d2d 2d2d 2d2b 0a7c 6932 203a 204d 203d -----+.|i2 : M = │ │ │ │ +00030ad0: 2069 6465 616c 2028 615e 322c 2062 5e32 ideal (a^2, b^2 │ │ │ │ +00030ae0: 2c20 612a 622a 6329 3b20 2020 2020 2020 , a*b*c); │ │ │ │ 00030af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00030b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030b60: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 6169 -----+.|i3 : tai │ │ │ │ -00030b70: 6c4d 6f6e 6f6d 6961 6c73 204d 2020 2020 lMonomials M │ │ │ │ +00030b10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030b60: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ +00030b70: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ 00030b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00030bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030c00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00030c10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00030bb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00030bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030c00: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 6169 -----+.|i3 : tai │ │ │ │ +00030c10: 6c4d 6f6e 6f6d 6961 6c73 204d 2020 2020 lMonomials M │ │ │ │ 00030c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030c30: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00030c40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00030c50: 2020 2020 207c 0a7c 6f33 203d 207b 7b61 |.|o3 = {{a │ │ │ │ -00030c60: 2a62 2c20 612a 632c 2062 2a63 2c20 6320 *b, a*c, b*c, c │ │ │ │ -00030c70: 2c20 612a 642c 2062 2a64 2c20 632a 642c , a*d, b*d, c*d, │ │ │ │ -00030c80: 2064 207d 2c20 7b61 2a63 2c20 622a 632c d }, {a*c, b*c, │ │ │ │ -00030c90: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ -00030ca0: 2a64 2c20 207c 0a7c 2020 2020 202d 2d2d *d, |.| --- │ │ │ │ -00030cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030cf0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3220 -----|.| 2 │ │ │ │ -00030d00: 2020 2020 2020 3220 2020 2020 3220 2020 2 2 │ │ │ │ -00030d10: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00030d20: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00030d30: 3220 2020 2020 3220 2020 2020 3220 2020 2 2 2 │ │ │ │ -00030d40: 3320 2020 207c 0a7c 2020 2020 2064 207d 3 |.| d } │ │ │ │ -00030d50: 2c20 7b61 2a63 202c 2062 2a63 202c 2063 , {a*c , b*c , c │ │ │ │ -00030d60: 202c 2061 2a62 2a64 2c20 612a 632a 642c , a*b*d, a*c*d, │ │ │ │ -00030d70: 2062 2a63 2a64 2c20 6320 642c 2061 2a64 b*c*d, c d, a*d │ │ │ │ -00030d80: 202c 2062 2a64 202c 2063 2a64 202c 2064 , b*d , c*d , d │ │ │ │ -00030d90: 207d 7d20 207c 0a7c 2020 2020 2020 2020 }} |.| │ │ │ │ -00030da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030de0: 2020 2020 207c 0a7c 6f33 203a 204c 6973 |.|o3 : Lis │ │ │ │ -00030df0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00030e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00030e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030e80: 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 6169 -----+.|i4 : tai │ │ │ │ -00030e90: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 416c lMonomials(M, Al │ │ │ │ -00030ea0: 6c53 7461 6e64 6172 6420 3d3e 2074 7275 lStandard => tru │ │ │ │ -00030eb0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ +00030c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030cb0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00030cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030cd0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00030ce0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00030cf0: 2020 2020 207c 0a7c 6f33 203d 207b 7b61 |.|o3 = {{a │ │ │ │ +00030d00: 2a62 2c20 612a 632c 2062 2a63 2c20 6320 *b, a*c, b*c, c │ │ │ │ +00030d10: 2c20 612a 642c 2062 2a64 2c20 632a 642c , a*d, b*d, c*d, │ │ │ │ +00030d20: 2064 207d 2c20 7b61 2a63 2c20 622a 632c d }, {a*c, b*c, │ │ │ │ +00030d30: 2063 202c 2061 2a64 2c20 622a 642c 2063 c , a*d, b*d, c │ │ │ │ +00030d40: 2a64 2c20 207c 0a7c 2020 2020 202d 2d2d *d, |.| --- │ │ │ │ +00030d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030d90: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3220 -----|.| 2 │ │ │ │ +00030da0: 2020 2020 2020 3220 2020 2020 3220 2020 2 2 │ │ │ │ +00030db0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00030dc0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00030dd0: 3220 2020 2020 3220 2020 2020 3220 2020 2 2 2 │ │ │ │ +00030de0: 3320 2020 207c 0a7c 2020 2020 2064 207d 3 |.| d } │ │ │ │ +00030df0: 2c20 7b61 2a63 202c 2062 2a63 202c 2063 , {a*c , b*c , c │ │ │ │ +00030e00: 202c 2061 2a62 2a64 2c20 612a 632a 642c , a*b*d, a*c*d, │ │ │ │ +00030e10: 2062 2a63 2a64 2c20 6320 642c 2061 2a64 b*c*d, c d, a*d │ │ │ │ +00030e20: 202c 2062 2a64 202c 2063 2a64 202c 2064 , b*d , c*d , d │ │ │ │ +00030e30: 207d 7d20 207c 0a7c 2020 2020 2020 2020 }} |.| │ │ │ │ +00030e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030e80: 2020 2020 207c 0a7c 6f33 203a 204c 6973 |.|o3 : Lis │ │ │ │ +00030e90: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00030ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00030ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00030f30: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00030f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f50: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00030f60: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00030f70: 2020 2020 207c 0a7c 6f34 203d 207b 7b61 |.|o4 = {{a │ │ │ │ -00030f80: 2a62 2c20 612a 632c 2062 2a63 2c20 6320 *b, a*c, b*c, c │ │ │ │ -00030f90: 2c20 612a 642c 2062 2a64 2c20 632a 642c , a*d, b*d, c*d, │ │ │ │ -00030fa0: 2064 207d 2c20 7b61 2a62 2c20 612a 632c d }, {a*b, a*c, │ │ │ │ -00030fb0: 2062 2a63 2c20 6320 2c20 612a 642c 2062 b*c, c , a*d, b │ │ │ │ -00030fc0: 2a64 2c20 207c 0a7c 2020 2020 202d 2d2d *d, |.| --- │ │ │ │ -00030fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031010: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00031020: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00031030: 2032 2020 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ -00031040: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00031050: 2020 2020 2032 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00031060: 2032 2020 207c 0a7c 2020 2020 2063 2a64 2 |.| c*d │ │ │ │ -00031070: 2c20 6420 7d2c 207b 612a 6320 2c20 622a , d }, {a*c , b* │ │ │ │ -00031080: 6320 2c20 6320 2c20 612a 622a 642c 2061 c , c , a*b*d, a │ │ │ │ -00031090: 2a63 2a64 2c20 622a 632a 642c 2063 2064 *c*d, b*c*d, c d │ │ │ │ -000310a0: 2c20 612a 6420 2c20 622a 6420 2c20 632a , a*d , b*d , c* │ │ │ │ -000310b0: 6420 2c20 207c 0a7c 2020 2020 202d 2d2d d , |.| --- │ │ │ │ -000310c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000310d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000310e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000310f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031100: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3320 -----|.| 3 │ │ │ │ -00031110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031150: 2020 2020 207c 0a7c 2020 2020 2064 207d |.| d } │ │ │ │ -00031160: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00031170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030ed0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00030ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00030f20: 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 6169 -----+.|i4 : tai │ │ │ │ +00030f30: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 416c lMonomials(M, Al │ │ │ │ +00030f40: 6c53 7461 6e64 6172 6420 3d3e 2074 7275 lStandard => tru │ │ │ │ +00030f50: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ +00030f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030fd0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00030fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00030ff0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00031000: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00031010: 2020 2020 207c 0a7c 6f34 203d 207b 7b61 |.|o4 = {{a │ │ │ │ +00031020: 2a62 2c20 612a 632c 2062 2a63 2c20 6320 *b, a*c, b*c, c │ │ │ │ +00031030: 2c20 612a 642c 2062 2a64 2c20 632a 642c , a*d, b*d, c*d, │ │ │ │ +00031040: 2064 207d 2c20 7b61 2a62 2c20 612a 632c d }, {a*b, a*c, │ │ │ │ +00031050: 2062 2a63 2c20 6320 2c20 612a 642c 2062 b*c, c , a*d, b │ │ │ │ +00031060: 2a64 2c20 207c 0a7c 2020 2020 202d 2d2d *d, |.| --- │ │ │ │ +00031070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000310a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000310b0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +000310c0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000310d0: 2032 2020 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +000310e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000310f0: 2020 2020 2032 2020 2020 2032 2020 2020 2 2 │ │ │ │ +00031100: 2032 2020 207c 0a7c 2020 2020 2063 2a64 2 |.| c*d │ │ │ │ +00031110: 2c20 6420 7d2c 207b 612a 6320 2c20 622a , d }, {a*c , b* │ │ │ │ +00031120: 6320 2c20 6320 2c20 612a 622a 642c 2061 c , c , a*b*d, a │ │ │ │ +00031130: 2a63 2a64 2c20 622a 632a 642c 2063 2064 *c*d, b*c*d, c d │ │ │ │ +00031140: 2c20 612a 6420 2c20 622a 6420 2c20 632a , a*d , b*d , c* │ │ │ │ +00031150: 6420 2c20 207c 0a7c 2020 2020 202d 2d2d d , |.| --- │ │ │ │ +00031160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000311a0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3320 -----|.| 3 │ │ │ │ 000311b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311f0: 2020 2020 207c 0a7c 6f34 203a 204c 6973 |.|o4 : Lis │ │ │ │ -00031200: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +000311f0: 2020 2020 207c 0a7c 2020 2020 2064 207d |.| d } │ │ │ │ +00031200: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00031210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031240: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00031250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031290: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 6169 -----+.|i5 : tai │ │ │ │ -000312a0: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 625e lMonomials(M, b^ │ │ │ │ -000312b0: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ +00031240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031290: 2020 2020 207c 0a7c 6f34 203a 204c 6973 |.|o4 : Lis │ │ │ │ +000312a0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +000312b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000312c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000312d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000312f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00031340: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00031350: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000312e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000312f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031330: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 6169 -----+.|i5 : tai │ │ │ │ +00031340: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 625e lMonomials(M, b^ │ │ │ │ +00031350: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ 00031360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031380: 2020 2020 207c 0a7c 6f35 203d 207b 612a |.|o5 = {a* │ │ │ │ -00031390: 632c 2062 2a63 2c20 6320 2c20 612a 642c c, b*c, c , a*d, │ │ │ │ -000313a0: 2062 2a64 2c20 632a 642c 2064 207d 2020 b*d, c*d, d } │ │ │ │ +00031380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000313a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000313e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000313e0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000313f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 00031400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031420: 2020 2020 207c 0a7c 6f35 203a 204c 6973 |.|o5 : Lis │ │ │ │ -00031430: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00031440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031420: 2020 2020 207c 0a7c 6f35 203d 207b 612a |.|o5 = {a* │ │ │ │ +00031430: 632c 2062 2a63 2c20 6320 2c20 612a 642c c, b*c, c , a*d, │ │ │ │ +00031440: 2062 2a64 2c20 632a 642c 2064 207d 2020 b*d, c*d, d } │ │ │ │ 00031450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031470: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00031480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000314a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000314b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000314c0: 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 6169 -----+.|i6 : tai │ │ │ │ -000314d0: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 625e lMonomials(M, b^ │ │ │ │ -000314e0: 322c 2041 6c6c 5374 616e 6461 7264 3d3e 2, AllStandard=> │ │ │ │ -000314f0: 7472 7565 2920 2020 2020 2020 2020 2020 true) │ │ │ │ +00031470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000314a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000314b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000314c0: 2020 2020 207c 0a7c 6f35 203a 204c 6973 |.|o5 : Lis │ │ │ │ +000314d0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +000314e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000314f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00031520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00031570: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00031580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031590: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00031510: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00031520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031560: 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 6169 -----+.|i6 : tai │ │ │ │ +00031570: 6c4d 6f6e 6f6d 6961 6c73 284d 2c20 625e lMonomials(M, b^ │ │ │ │ +00031580: 322c 2041 6c6c 5374 616e 6461 7264 3d3e 2, AllStandard=> │ │ │ │ +00031590: 7472 7565 2920 2020 2020 2020 2020 2020 true) │ │ │ │ 000315a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000315b0: 2020 2020 207c 0a7c 6f36 203d 207b 612a |.|o6 = {a* │ │ │ │ -000315c0: 622c 2061 2a63 2c20 622a 632c 2063 202c b, a*c, b*c, c , │ │ │ │ -000315d0: 2061 2a64 2c20 622a 642c 2063 2a64 2c20 a*d, b*d, c*d, │ │ │ │ -000315e0: 6420 7d20 2020 2020 2020 2020 2020 2020 d } │ │ │ │ +000315b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000315c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000315d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000315e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000315f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031600: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00031610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031610: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ 00031620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031630: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00031640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031650: 2020 2020 207c 0a7c 6f36 203a 204c 6973 |.|o6 : Lis │ │ │ │ -00031660: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00031670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031650: 2020 2020 207c 0a7c 6f36 203d 207b 612a |.|o6 = {a* │ │ │ │ +00031660: 622c 2061 2a63 2c20 622a 632c 2063 202c b, a*c, b*c, c , │ │ │ │ +00031670: 2061 2a64 2c20 622a 642c 2063 2a64 2c20 a*d, b*d, c*d, │ │ │ │ +00031680: 6420 7d20 2020 2020 2020 2020 2020 2020 d } │ │ │ │ 00031690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -000316b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000316f0: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ -00031700: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00031710: 6e6f 7465 2073 7461 6e64 6172 644d 6f6e note standardMon │ │ │ │ -00031720: 6f6d 6961 6c73 3a20 7374 616e 6461 7264 omials: standard │ │ │ │ -00031730: 4d6f 6e6f 6d69 616c 732c 202d 2d20 636f Monomials, -- co │ │ │ │ -00031740: 6d70 7574 6573 2073 7461 6e64 6172 6420 mputes standard │ │ │ │ -00031750: 6d6f 6e6f 6d69 616c 730a 2020 2a20 2a6e monomials. * *n │ │ │ │ -00031760: 6f74 6520 736d 616c 6c65 724d 6f6e 6f6d ote smallerMonom │ │ │ │ -00031770: 6961 6c73 3a20 736d 616c 6c65 724d 6f6e ials: smallerMon │ │ │ │ -00031780: 6f6d 6961 6c73 2c20 2d2d 2072 6574 7572 omials, -- retur │ │ │ │ -00031790: 6e73 2074 6865 2073 7461 6e64 6172 6420 ns the standard │ │ │ │ -000317a0: 6d6f 6e6f 6d69 616c 730a 2020 2020 736d monomials. sm │ │ │ │ -000317b0: 616c 6c65 7220 6275 7420 6f66 2074 6865 aller but of the │ │ │ │ -000317c0: 2073 616d 6520 6465 6772 6565 2061 7320 same degree as │ │ │ │ -000317d0: 6769 7665 6e20 6d6f 6e6f 6d69 616c 2873 given monomial(s │ │ │ │ -000317e0: 290a 0a57 6179 7320 746f 2075 7365 2074 )..Ways to use t │ │ │ │ -000317f0: 6169 6c4d 6f6e 6f6d 6961 6c73 3a0a 3d3d ailMonomials:.== │ │ │ │ -00031800: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00031810: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2274 ========.. * "t │ │ │ │ -00031820: 6169 6c4d 6f6e 6f6d 6961 6c73 2849 6465 ailMonomials(Ide │ │ │ │ -00031830: 616c 2922 0a20 202a 2022 7461 696c 4d6f al)". * "tailMo │ │ │ │ -00031840: 6e6f 6d69 616c 7328 4964 6561 6c2c 5269 nomials(Ideal,Ri │ │ │ │ -00031850: 6e67 456c 656d 656e 7429 220a 0a46 6f72 ngElement)"..For │ │ │ │ -00031860: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00031870: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00031880: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00031890: 6e6f 7465 2074 6169 6c4d 6f6e 6f6d 6961 note tailMonomia │ │ │ │ -000318a0: 6c73 3a20 7461 696c 4d6f 6e6f 6d69 616c ls: tailMonomial │ │ │ │ -000318b0: 732c 2069 7320 6120 2a6e 6f74 6520 6d65 s, is a *note me │ │ │ │ -000318c0: 7468 6f64 2066 756e 6374 696f 6e20 7769 thod function wi │ │ │ │ -000318d0: 7468 0a6f 7074 696f 6e73 3a20 284d 6163 th.options: (Mac │ │ │ │ -000318e0: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -000318f0: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ -00031900: 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ons,...--------- │ │ │ │ -00031910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031950: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00031960: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00031970: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00031980: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00031990: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -000319a0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -000319b0: 6c61 7932 2f70 6163 6b61 6765 732f 0a47 lay2/packages/.G │ │ │ │ -000319c0: 726f 6562 6e65 7253 7472 6174 612e 6d32 roebnerStrata.m2 │ │ │ │ -000319d0: 3a35 3635 3a30 2e0a 1f0a 5461 6720 5461 :565:0....Tag Ta │ │ │ │ -000319e0: 626c 653a 0a4e 6f64 653a 2054 6f70 7f32 ble:.Node: Top.2 │ │ │ │ -000319f0: 3537 0a4e 6f64 653a 2041 6c6c 5374 616e 57.Node: AllStan │ │ │ │ -00031a00: 6461 7264 7f35 3037 3839 0a4e 6f64 653a dard.50789.Node: │ │ │ │ -00031a10: 2066 696e 6457 6569 6768 7443 6f6e 7374 findWeightConst │ │ │ │ -00031a20: 7261 696e 7473 7f35 3237 3430 0a4e 6f64 raints.52740.Nod │ │ │ │ -00031a30: 653a 2066 696e 6457 6569 6768 7456 6563 e: findWeightVec │ │ │ │ -00031a40: 746f 727f 3631 3535 300a 4e6f 6465 3a20 tor.61550.Node: │ │ │ │ -00031a50: 6772 6f65 626e 6572 4661 6d69 6c79 7f36 groebnerFamily.6 │ │ │ │ -00031a60: 3632 3630 0a4e 6f64 653a 2067 726f 6562 6260.Node: groeb │ │ │ │ -00031a70: 6e65 7253 7472 6174 756d 7f31 3130 3331 nerStratum.11031 │ │ │ │ -00031a80: 370a 4e6f 6465 3a20 6c69 6e65 6172 5061 7.Node: linearPa │ │ │ │ -00031a90: 7274 7f31 3139 3538 330a 4e6f 6465 3a20 rt.119583.Node: │ │ │ │ -00031aa0: 4d69 6e69 6d61 6c69 7a65 7f31 3231 3638 Minimalize.12168 │ │ │ │ -00031ab0: 340a 4e6f 6465 3a20 6e6f 6e6d 696e 696d 4.Node: nonminim │ │ │ │ -00031ac0: 616c 4d61 7073 7f31 3233 3039 320a 4e6f alMaps.123092.No │ │ │ │ -00031ad0: 6465 3a20 7261 6e64 6f6d 506f 696e 744f de: randomPointO │ │ │ │ -00031ae0: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ -00031af0: 5f6c 7049 6465 616c 5f72 707f 3135 3030 _lpIdeal_rp.1500 │ │ │ │ -00031b00: 3133 0a4e 6f64 653a 2072 616e 646f 6d50 13.Node: randomP │ │ │ │ -00031b10: 6f69 6e74 734f 6e52 6174 696f 6e61 6c56 ointsOnRationalV │ │ │ │ -00031b20: 6172 6965 7479 5f6c 7049 6465 616c 5f63 ariety_lpIdeal_c │ │ │ │ -00031b30: 6d5a 5a5f 7270 7f31 3733 3933 300a 4e6f mZZ_rp.173930.No │ │ │ │ -00031b40: 6465 3a20 736d 616c 6c65 724d 6f6e 6f6d de: smallerMonom │ │ │ │ -00031b50: 6961 6c73 7f31 3839 3638 330a 4e6f 6465 ials.189683.Node │ │ │ │ -00031b60: 3a20 7374 616e 6461 7264 4d6f 6e6f 6d69 : standardMonomi │ │ │ │ -00031b70: 616c 737f 3139 3334 3236 0a4e 6f64 653a als.193426.Node: │ │ │ │ -00031b80: 2074 6169 6c4d 6f6e 6f6d 6961 6c73 7f31 tailMonomials.1 │ │ │ │ -00031b90: 3937 3635 340a 1f0a 456e 6420 5461 6720 97654...End Tag │ │ │ │ -00031ba0: 5461 626c 650a Table. │ │ │ │ +000316a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000316b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000316c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000316d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000316e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000316f0: 2020 2020 207c 0a7c 6f36 203a 204c 6973 |.|o6 : Lis │ │ │ │ +00031700: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00031710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00031740: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00031750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00031790: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +000317a0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +000317b0: 6e6f 7465 2073 7461 6e64 6172 644d 6f6e note standardMon │ │ │ │ +000317c0: 6f6d 6961 6c73 3a20 7374 616e 6461 7264 omials: standard │ │ │ │ +000317d0: 4d6f 6e6f 6d69 616c 732c 202d 2d20 636f Monomials, -- co │ │ │ │ +000317e0: 6d70 7574 6573 2073 7461 6e64 6172 6420 mputes standard │ │ │ │ +000317f0: 6d6f 6e6f 6d69 616c 730a 2020 2a20 2a6e monomials. * *n │ │ │ │ +00031800: 6f74 6520 736d 616c 6c65 724d 6f6e 6f6d ote smallerMonom │ │ │ │ +00031810: 6961 6c73 3a20 736d 616c 6c65 724d 6f6e ials: smallerMon │ │ │ │ +00031820: 6f6d 6961 6c73 2c20 2d2d 2072 6574 7572 omials, -- retur │ │ │ │ +00031830: 6e73 2074 6865 2073 7461 6e64 6172 6420 ns the standard │ │ │ │ +00031840: 6d6f 6e6f 6d69 616c 730a 2020 2020 736d monomials. sm │ │ │ │ +00031850: 616c 6c65 7220 6275 7420 6f66 2074 6865 aller but of the │ │ │ │ +00031860: 2073 616d 6520 6465 6772 6565 2061 7320 same degree as │ │ │ │ +00031870: 6769 7665 6e20 6d6f 6e6f 6d69 616c 2873 given monomial(s │ │ │ │ +00031880: 290a 0a57 6179 7320 746f 2075 7365 2074 )..Ways to use t │ │ │ │ +00031890: 6169 6c4d 6f6e 6f6d 6961 6c73 3a0a 3d3d ailMonomials:.== │ │ │ │ +000318a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000318b0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2274 ========.. * "t │ │ │ │ +000318c0: 6169 6c4d 6f6e 6f6d 6961 6c73 2849 6465 ailMonomials(Ide │ │ │ │ +000318d0: 616c 2922 0a20 202a 2022 7461 696c 4d6f al)". * "tailMo │ │ │ │ +000318e0: 6e6f 6d69 616c 7328 4964 6561 6c2c 5269 nomials(Ideal,Ri │ │ │ │ +000318f0: 6e67 456c 656d 656e 7429 220a 0a46 6f72 ngElement)"..For │ │ │ │ +00031900: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00031910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00031920: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00031930: 6e6f 7465 2074 6169 6c4d 6f6e 6f6d 6961 note tailMonomia │ │ │ │ +00031940: 6c73 3a20 7461 696c 4d6f 6e6f 6d69 616c ls: tailMonomial │ │ │ │ +00031950: 732c 2069 7320 6120 2a6e 6f74 6520 6d65 s, is a *note me │ │ │ │ +00031960: 7468 6f64 2066 756e 6374 696f 6e20 7769 thod function wi │ │ │ │ +00031970: 7468 0a6f 7074 696f 6e73 3a20 284d 6163 th.options: (Mac │ │ │ │ +00031980: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +00031990: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ +000319a0: 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ons,...--------- │ │ │ │ +000319b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000319c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000319d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000319e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000319f0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00031a00: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00031a10: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00031a20: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00031a30: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00031a40: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00031a50: 6c61 7932 2f70 6163 6b61 6765 732f 0a47 lay2/packages/.G │ │ │ │ +00031a60: 726f 6562 6e65 7253 7472 6174 612e 6d32 roebnerStrata.m2 │ │ │ │ +00031a70: 3a35 3635 3a30 2e0a 1f0a 5461 6720 5461 :565:0....Tag Ta │ │ │ │ +00031a80: 626c 653a 0a4e 6f64 653a 2054 6f70 7f32 ble:.Node: Top.2 │ │ │ │ +00031a90: 3537 0a4e 6f64 653a 2041 6c6c 5374 616e 57.Node: AllStan │ │ │ │ +00031aa0: 6461 7264 7f35 3037 3839 0a4e 6f64 653a dard.50789.Node: │ │ │ │ +00031ab0: 2066 696e 6457 6569 6768 7443 6f6e 7374 findWeightConst │ │ │ │ +00031ac0: 7261 696e 7473 7f35 3237 3430 0a4e 6f64 raints.52740.Nod │ │ │ │ +00031ad0: 653a 2066 696e 6457 6569 6768 7456 6563 e: findWeightVec │ │ │ │ +00031ae0: 746f 727f 3631 3535 300a 4e6f 6465 3a20 tor.61550.Node: │ │ │ │ +00031af0: 6772 6f65 626e 6572 4661 6d69 6c79 7f36 groebnerFamily.6 │ │ │ │ +00031b00: 3632 3630 0a4e 6f64 653a 2067 726f 6562 6260.Node: groeb │ │ │ │ +00031b10: 6e65 7253 7472 6174 756d 7f31 3130 3331 nerStratum.11031 │ │ │ │ +00031b20: 370a 4e6f 6465 3a20 6c69 6e65 6172 5061 7.Node: linearPa │ │ │ │ +00031b30: 7274 7f31 3139 3538 330a 4e6f 6465 3a20 rt.119583.Node: │ │ │ │ +00031b40: 4d69 6e69 6d61 6c69 7a65 7f31 3231 3638 Minimalize.12168 │ │ │ │ +00031b50: 340a 4e6f 6465 3a20 6e6f 6e6d 696e 696d 4.Node: nonminim │ │ │ │ +00031b60: 616c 4d61 7073 7f31 3233 3039 320a 4e6f alMaps.123092.No │ │ │ │ +00031b70: 6465 3a20 7261 6e64 6f6d 506f 696e 744f de: randomPointO │ │ │ │ +00031b80: 6e52 6174 696f 6e61 6c56 6172 6965 7479 nRationalVariety │ │ │ │ +00031b90: 5f6c 7049 6465 616c 5f72 707f 3134 3937 _lpIdeal_rp.1497 │ │ │ │ +00031ba0: 3733 0a4e 6f64 653a 2072 616e 646f 6d50 73.Node: randomP │ │ │ │ +00031bb0: 6f69 6e74 734f 6e52 6174 696f 6e61 6c56 ointsOnRationalV │ │ │ │ +00031bc0: 6172 6965 7479 5f6c 7049 6465 616c 5f63 ariety_lpIdeal_c │ │ │ │ +00031bd0: 6d5a 5a5f 7270 7f31 3734 3039 300a 4e6f mZZ_rp.174090.No │ │ │ │ +00031be0: 6465 3a20 736d 616c 6c65 724d 6f6e 6f6d de: smallerMonom │ │ │ │ +00031bf0: 6961 6c73 7f31 3839 3834 330a 4e6f 6465 ials.189843.Node │ │ │ │ +00031c00: 3a20 7374 616e 6461 7264 4d6f 6e6f 6d69 : standardMonomi │ │ │ │ +00031c10: 616c 737f 3139 3335 3836 0a4e 6f64 653a als.193586.Node: │ │ │ │ +00031c20: 2074 6169 6c4d 6f6e 6f6d 6961 6c73 7f31 tailMonomials.1 │ │ │ │ +00031c30: 3937 3831 340a 1f0a 456e 6420 5461 6720 97814...End Tag │ │ │ │ +00031c40: 5461 626c 650a Table. │ │ ├── ./usr/share/info/GroebnerWalk.info.gz │ │ │ ├── GroebnerWalk.info │ │ │ │ @@ -207,16 +207,16 @@ │ │ │ │ 00000ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00000d10: 7c69 3520 3a20 656c 6170 7365 6454 696d |i5 : elapsedTim │ │ │ │ 00000d20: 6520 6762 2049 3220 2020 2020 2020 2020 e gb I2 │ │ │ │ 00000d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000d50: 2020 2020 2020 7c0a 7c20 2d2d 2033 2e30 |.| -- 3.0 │ │ │ │ -00000d60: 3031 3931 7320 656c 6170 7365 6420 2020 0191s elapsed │ │ │ │ +00000d50: 2020 2020 2020 7c0a 7c20 2d2d 2031 2e39 |.| -- 1.9 │ │ │ │ +00000d60: 3836 3434 7320 656c 6170 7365 6420 2020 8644s elapsed │ │ │ │ 00000d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00000da0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00000db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -249,15 +249,15 @@ │ │ │ │ 00000f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000fa0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2065 -------+.|i6 : e │ │ │ │ 00000fb0: 6c61 7073 6564 5469 6d65 2067 726f 6562 lapsedTime groeb │ │ │ │ 00000fc0: 6e65 7257 616c 6b28 6762 2049 312c 2052 nerWalk(gb I1, R │ │ │ │ 00000fd0: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ 00000fe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00000ff0: 7c20 2d2d 2032 2e30 3839 3136 7320 656c | -- 2.08916s el │ │ │ │ +00000ff0: 7c20 2d2d 2031 2e36 3336 3032 7320 656c | -- 1.63602s el │ │ │ │ 00001000: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00001010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00001040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Hadamard.info.gz │ │ │ ├── Hadamard.info │ │ │ │ @@ -580,1432 +580,1442 @@ │ │ │ │ 00002430: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00002440: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ 00002450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002480: 2020 2020 7c0a 7c6f 3220 3d20 7b50 6f69 |.|o2 = {Poi │ │ │ │ 00002490: 6e74 7b31 2c20 302c 202d 7d2c 2050 6f69 nt{1, 0, -}, Poi │ │ │ │ -000024a0: 6e74 7b31 2c20 382c 2036 347d 2c20 506f nt{1, 8, 64}, Po │ │ │ │ -000024b0: 696e 747b 312c 2034 2c20 387d 2c20 506f int{1, 4, 8}, Po │ │ │ │ -000024c0: 696e 747b 312c 2030 2c20 3136 7d2c 2020 int{1, 0, 16}, │ │ │ │ +000024a0: 6e74 7b31 2c20 302c 2032 7d2c 2050 6f69 nt{1, 0, 2}, Poi │ │ │ │ +000024b0: 6e74 7b31 2c20 322c 2031 7d2c 2050 6f69 nt{1, 2, 1}, Poi │ │ │ │ +000024c0: 6e74 7b31 2c20 302c 2034 7d2c 2020 2020 nt{1, 0, 4}, │ │ │ │ 000024d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000024e0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +000024e0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000024f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002520: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00002530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002570: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -00002580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002590: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00002580: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00002590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000025a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000025b0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +000025b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000025c0: 2020 2020 7c0a 7c20 2020 2020 506f 696e |.| Poin │ │ │ │ -000025d0: 747b 312c 2030 2c20 317d 2c20 506f 696e t{1, 0, 1}, Poin │ │ │ │ -000025e0: 747b 312c 2031 2c20 2d7d 2c20 506f 696e t{1, 1, -}, Poin │ │ │ │ -000025f0: 747b 312c 2030 2c20 327d 2c20 506f 696e t{1, 0, 2}, Poin │ │ │ │ -00002600: 747b 312c 2030 2c20 2d7d 2c20 506f 696e t{1, 0, -}, Poin │ │ │ │ -00002610: 747b 312c 7c0a 7c20 2020 2020 2020 2020 t{1,|.| │ │ │ │ -00002620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002630: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ +000025d0: 747b 312c 2030 2c20 2d7d 2c20 506f 696e t{1, 0, -}, Poin │ │ │ │ +000025e0: 747b 312c 2038 2c20 3634 7d2c 2050 6f69 t{1, 8, 64}, Poi │ │ │ │ +000025f0: 6e74 7b31 2c20 342c 2038 7d2c 2050 6f69 nt{1, 4, 8}, Poi │ │ │ │ +00002600: 6e74 7b31 2c20 302c 2031 367d 2c20 2020 nt{1, 0, 16}, │ │ │ │ +00002610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00002620: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00002630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002650: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00002650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002660: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00002670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000026a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000026b0: 2d2d 2d2d 7c0a 7c20 2020 2020 322c 2031 ----|.| 2, 1 │ │ │ │ -000026c0: 7d2c 2050 6f69 6e74 7b31 2c20 302c 2034 }, Point{1, 0, 4 │ │ │ │ -000026d0: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +000026b0: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ +000026c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000026d0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ 000026e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000026f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00002710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002700: 2020 2020 7c0a 7c20 2020 2020 506f 696e |.| Poin │ │ │ │ +00002710: 747b 312c 2030 2c20 317d 2c20 506f 696e t{1, 0, 1}, Poin │ │ │ │ +00002720: 747b 312c 2031 2c20 2d7d 7d20 2020 2020 t{1, 1, -}} │ │ │ │ 00002730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002750: 2020 2020 7c0a 7c6f 3220 3a20 4c69 7374 |.|o2 : List │ │ │ │ +00002750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00002760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002770: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ 00002780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000027a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000027b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027f0: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ -00002800: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ -00002810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00002820: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00002830: 6f74 6520 6861 6461 6d61 7264 506f 7765 ote hadamardPowe │ │ │ │ -00002840: 7228 4c69 7374 2c5a 5a29 3a20 6861 6461 r(List,ZZ): hada │ │ │ │ -00002850: 6d61 7264 506f 7765 725f 6c70 4c69 7374 mardPower_lpList │ │ │ │ -00002860: 5f63 6d5a 5a5f 7270 2c20 2d2d 2063 6f6d _cmZZ_rp, -- com │ │ │ │ -00002870: 7075 7465 7320 7468 650a 2020 2020 2472 putes the. $r │ │ │ │ -00002880: 242d 7468 2048 6164 6d61 7264 2070 6f77 $-th Hadmard pow │ │ │ │ -00002890: 6572 7320 6f66 2061 2073 6574 2070 6f69 ers of a set poi │ │ │ │ -000028a0: 6e74 730a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d nts.------------ │ │ │ │ -000028b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000028c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000028d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000028e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000028f0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -00002900: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -00002910: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00002920: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00002930: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00002940: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00002950: 322f 7061 636b 6167 6573 2f48 6164 616d 2/packages/Hadam │ │ │ │ -00002960: 6172 642e 6d32 0a3a 3339 383a 302e 0a1f ard.m2.:398:0... │ │ │ │ -00002970: 0a46 696c 653a 2048 6164 616d 6172 642e .File: Hadamard. │ │ │ │ -00002980: 696e 666f 2c20 4e6f 6465 3a20 6861 6461 info, Node: hada │ │ │ │ -00002990: 6d61 7264 5072 6f64 7563 742c 204e 6578 mardProduct, Nex │ │ │ │ -000029a0: 743a 2068 6164 616d 6172 6450 726f 6475 t: hadamardProdu │ │ │ │ -000029b0: 6374 5f6c 7049 6465 616c 5f63 6d49 6465 ct_lpIdeal_cmIde │ │ │ │ -000029c0: 616c 5f72 702c 2050 7265 763a 2068 6164 al_rp, Prev: had │ │ │ │ -000029d0: 616d 6172 6450 6f77 6572 5f6c 704c 6973 amardPower_lpLis │ │ │ │ -000029e0: 745f 636d 5a5a 5f72 702c 2055 703a 2054 t_cmZZ_rp, Up: T │ │ │ │ -000029f0: 6f70 0a0a 6861 6461 6d61 7264 5072 6f64 op..hadamardProd │ │ │ │ -00002a00: 7563 7420 2d2d 2063 6f6d 7075 7465 7320 uct -- computes │ │ │ │ -00002a10: 7468 6520 4861 6461 6d61 7264 2070 726f the Hadamard pro │ │ │ │ -00002a20: 6475 6374 206f 6620 7661 7269 6574 6965 duct of varietie │ │ │ │ -00002a30: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ -00002a40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002a50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002a60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00002a70: 0a57 6179 7320 746f 2075 7365 2068 6164 .Ways to use had │ │ │ │ -00002a80: 616d 6172 6450 726f 6475 6374 3a0a 3d3d amardProduct:.== │ │ │ │ -00002a90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00002aa0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00002ab0: 2a6e 6f74 6520 6861 6461 6d61 7264 5072 *note hadamardPr │ │ │ │ -00002ac0: 6f64 7563 7428 4964 6561 6c2c 4964 6561 oduct(Ideal,Idea │ │ │ │ -00002ad0: 6c29 3a20 6861 6461 6d61 7264 5072 6f64 l): hadamardProd │ │ │ │ -00002ae0: 7563 745f 6c70 4964 6561 6c5f 636d 4964 uct_lpIdeal_cmId │ │ │ │ -00002af0: 6561 6c5f 7270 2c20 2d2d 0a20 2020 2048 eal_rp, --. H │ │ │ │ -00002b00: 6164 616d 6172 6420 7072 6f64 7563 7420 adamard product │ │ │ │ -00002b10: 6f66 2074 776f 2068 6f6d 6f67 656e 656f of two homogeneo │ │ │ │ -00002b20: 7573 2069 6465 616c 730a 2020 2a20 2a6e us ideals. * *n │ │ │ │ -00002b30: 6f74 6520 6861 6461 6d61 7264 5072 6f64 ote hadamardProd │ │ │ │ -00002b40: 7563 7428 4c69 7374 293a 2068 6164 616d uct(List): hadam │ │ │ │ -00002b50: 6172 6450 726f 6475 6374 5f6c 704c 6973 ardProduct_lpLis │ │ │ │ -00002b60: 745f 7270 2c20 2d2d 2048 6164 616d 6172 t_rp, -- Hadamar │ │ │ │ -00002b70: 6420 7072 6f64 7563 740a 2020 2020 6f66 d product. of │ │ │ │ -00002b80: 2061 206c 6973 7420 6f66 2068 6f6d 6f67 a list of homog │ │ │ │ -00002b90: 656e 656f 7573 2069 6465 616c 732c 206f eneous ideals, o │ │ │ │ -00002ba0: 7220 706f 696e 7473 0a20 202a 202a 6e6f r points. * *no │ │ │ │ -00002bb0: 7465 2068 6164 616d 6172 6450 726f 6475 te hadamardProdu │ │ │ │ -00002bc0: 6374 284c 6973 742c 4c69 7374 293a 2068 ct(List,List): h │ │ │ │ -00002bd0: 6164 616d 6172 6450 726f 6475 6374 5f6c adamardProduct_l │ │ │ │ -00002be0: 704c 6973 745f 636d 4c69 7374 5f72 702c pList_cmList_rp, │ │ │ │ -00002bf0: 202d 2d0a 2020 2020 4861 6461 6d61 7264 --. Hadamard │ │ │ │ -00002c00: 2070 726f 6475 6374 206f 6620 7477 6f20 product of two │ │ │ │ -00002c10: 7365 7473 206f 6620 706f 696e 7473 0a0a sets of points.. │ │ │ │ -00002c20: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00002c30: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00002c40: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00002c50: 7420 2a6e 6f74 6520 6861 6461 6d61 7264 t *note hadamard │ │ │ │ -00002c60: 5072 6f64 7563 743a 2068 6164 616d 6172 Product: hadamar │ │ │ │ -00002c70: 6450 726f 6475 6374 2c20 6973 2061 202a dProduct, is a * │ │ │ │ -00002c80: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -00002c90: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -00002ca0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00002cb0: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -00002cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002d00: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00002d10: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00002d20: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00002d30: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00002d40: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00002d50: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00002d60: 6179 322f 7061 636b 6167 6573 2f48 6164 ay2/packages/Had │ │ │ │ -00002d70: 616d 6172 642e 6d32 0a3a 3235 313a 302e amard.m2.:251:0. │ │ │ │ -00002d80: 0a1f 0a46 696c 653a 2048 6164 616d 6172 ...File: Hadamar │ │ │ │ -00002d90: 642e 696e 666f 2c20 4e6f 6465 3a20 6861 d.info, Node: ha │ │ │ │ -00002da0: 6461 6d61 7264 5072 6f64 7563 745f 6c70 damardProduct_lp │ │ │ │ -00002db0: 4964 6561 6c5f 636d 4964 6561 6c5f 7270 Ideal_cmIdeal_rp │ │ │ │ -00002dc0: 2c20 4e65 7874 3a20 6861 6461 6d61 7264 , Next: hadamard │ │ │ │ -00002dd0: 5072 6f64 7563 745f 6c70 4c69 7374 5f72 Product_lpList_r │ │ │ │ -00002de0: 702c 2050 7265 763a 2068 6164 616d 6172 p, Prev: hadamar │ │ │ │ -00002df0: 6450 726f 6475 6374 2c20 5570 3a20 546f dProduct, Up: To │ │ │ │ -00002e00: 700a 0a68 6164 616d 6172 6450 726f 6475 p..hadamardProdu │ │ │ │ -00002e10: 6374 2849 6465 616c 2c49 6465 616c 2920 ct(Ideal,Ideal) │ │ │ │ -00002e20: 2d2d 2048 6164 616d 6172 6420 7072 6f64 -- Hadamard prod │ │ │ │ -00002e30: 7563 7420 6f66 2074 776f 2068 6f6d 6f67 uct of two homog │ │ │ │ -00002e40: 656e 656f 7573 2069 6465 616c 730a 2a2a eneous ideals.** │ │ │ │ -00002e50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002e60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002e70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00002e90: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -00002ea0: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 6861 nction: *note ha │ │ │ │ -00002eb0: 6461 6d61 7264 5072 6f64 7563 743a 2068 damardProduct: h │ │ │ │ -00002ec0: 6164 616d 6172 6450 726f 6475 6374 2c0a adamardProduct,. │ │ │ │ -00002ed0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00002ee0: 2020 2020 6861 6461 6d61 7264 5072 6f64 hadamardProd │ │ │ │ -00002ef0: 7563 7428 492c 4a29 0a20 202a 2049 6e70 uct(I,J). * Inp │ │ │ │ -00002f00: 7574 733a 0a20 2020 2020 202a 2049 2c20 uts:. * I, │ │ │ │ -00002f10: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ -00002f20: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ -00002f30: 6561 6c2c 2c20 2868 6f6d 6f67 656e 656f eal,, (homogeneo │ │ │ │ -00002f40: 7573 290a 2020 2020 2020 2a20 4a2c 2061 us). * J, a │ │ │ │ -00002f50: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ -00002f60: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ -00002f70: 616c 2c2c 2028 686f 6d6f 6765 6e65 6f75 al,, (homogeneou │ │ │ │ -00002f80: 7329 0a20 202a 204f 7574 7075 7473 3a0a s). * Outputs:. │ │ │ │ -00002f90: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ -00002fa0: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ -00002fb0: 7932 446f 6329 4964 6561 6c2c 2c20 0a0a y2Doc)Ideal,, .. │ │ │ │ -00002fc0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00002fd0: 3d3d 3d3d 3d3d 3d0a 0a47 6976 656e 2074 =======..Given t │ │ │ │ -00002fe0: 776f 2070 726f 6a65 6374 6976 6520 7375 wo projective su │ │ │ │ -00002ff0: 6276 6172 6965 7469 6573 2024 5824 2061 bvarieties $X$ a │ │ │ │ -00003000: 6e64 2024 5924 2c20 7468 6569 7220 4861 nd $Y$, their Ha │ │ │ │ -00003010: 6461 6d61 7264 2070 726f 6475 6374 2069 damard product i │ │ │ │ -00003020: 730a 6465 6669 6e65 6420 6173 2074 6865 s.defined as the │ │ │ │ -00003030: 205a 6172 6973 6b69 2063 6c6f 7375 7265 Zariski closure │ │ │ │ -00003040: 206f 6620 7468 6520 7365 7420 6f66 2028 of the set of ( │ │ │ │ -00003050: 7765 6c6c 2d64 6566 696e 6564 2920 656e well-defined) en │ │ │ │ -00003060: 7472 7977 6973 6520 7072 6f64 7563 7473 trywise products │ │ │ │ -00003070: 0a6f 6620 7061 6972 7320 6f66 2070 6f69 .of pairs of poi │ │ │ │ -00003080: 6e74 7320 696e 2074 6865 2063 6172 7465 nts in the carte │ │ │ │ -00003090: 7369 616e 2070 726f 6475 6374 2024 5820 sian product $X │ │ │ │ -000030a0: 5c74 696d 6573 2059 242e 2054 6869 7320 \times Y$. This │ │ │ │ -000030b0: 6361 6e20 616c 736f 2062 650a 7265 6761 can also be.rega │ │ │ │ -000030c0: 7264 6564 2061 7320 7468 6520 696d 6167 rded as the imag │ │ │ │ -000030d0: 6520 6f66 2074 6865 2053 6567 7265 2070 e of the Segre p │ │ │ │ -000030e0: 726f 6475 6374 206f 6620 2458 205c 7469 roduct of $X \ti │ │ │ │ -000030f0: 6d65 7320 5924 2076 6961 2074 6865 206c mes Y$ via the l │ │ │ │ -00003100: 696e 6561 720a 7072 6f6a 6563 7469 6f6e inear.projection │ │ │ │ -00003110: 206f 6e20 7468 6520 247a 5f7b 6969 7d24 on the $z_{ii}$ │ │ │ │ -00003120: 2063 6f6f 7264 696e 6174 6573 2e20 5468 coordinates. Th │ │ │ │ -00003130: 6520 6c61 7474 6572 2069 7320 7468 6520 e latter is the │ │ │ │ -00003140: 7761 7920 7468 6520 6675 6e63 7469 6f6e way the function │ │ │ │ -00003150: 2069 730a 696d 706c 656d 656e 7465 642e is.implemented. │ │ │ │ -00003160: 0a0a 436f 6e73 6964 6572 2066 6f72 2065 ..Consider for e │ │ │ │ -00003170: 7861 6d70 6c65 2074 6865 2065 6e74 7279 xample the entry │ │ │ │ -00003180: 7769 7365 2070 726f 6475 6374 206f 6620 wise product of │ │ │ │ -00003190: 7477 6f20 706f 696e 7473 2e0a 0a2b 2d2d two points...+-- │ │ │ │ -000031a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000031b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000031c0: 2d2d 2d2b 0a7c 6931 203a 2053 203d 2051 ---+.|i1 : S = Q │ │ │ │ -000031d0: 515b 782c 792c 7a2c 745d 3b20 2020 2020 Q[x,y,z,t]; │ │ │ │ -000031e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000031f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003210: 2d2d 2d2b 0a7c 6932 203a 2070 203d 2070 ---+.|i2 : p = p │ │ │ │ -00003220: 6f69 6e74 207b 312c 312c 312c 327d 3b20 oint {1,1,1,2}; │ │ │ │ -00003230: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000027a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000027b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000027c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000027d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000027e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000027f0: 2020 2020 7c0a 7c6f 3220 3a20 4c69 7374 |.|o2 : List │ │ │ │ +00002800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002840: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00002850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002890: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +000028a0: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +000028b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000028c0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +000028d0: 6f74 6520 6861 6461 6d61 7264 506f 7765 ote hadamardPowe │ │ │ │ +000028e0: 7228 4c69 7374 2c5a 5a29 3a20 6861 6461 r(List,ZZ): hada │ │ │ │ +000028f0: 6d61 7264 506f 7765 725f 6c70 4c69 7374 mardPower_lpList │ │ │ │ +00002900: 5f63 6d5a 5a5f 7270 2c20 2d2d 2063 6f6d _cmZZ_rp, -- com │ │ │ │ +00002910: 7075 7465 7320 7468 650a 2020 2020 2472 putes the. $r │ │ │ │ +00002920: 242d 7468 2048 6164 6d61 7264 2070 6f77 $-th Hadmard pow │ │ │ │ +00002930: 6572 7320 6f66 2061 2073 6574 2070 6f69 ers of a set poi │ │ │ │ +00002940: 6e74 730a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d nts.------------ │ │ │ │ +00002950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002990: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +000029a0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +000029b0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +000029c0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +000029d0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +000029e0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +000029f0: 322f 7061 636b 6167 6573 2f48 6164 616d 2/packages/Hadam │ │ │ │ +00002a00: 6172 642e 6d32 0a3a 3339 383a 302e 0a1f ard.m2.:398:0... │ │ │ │ +00002a10: 0a46 696c 653a 2048 6164 616d 6172 642e .File: Hadamard. │ │ │ │ +00002a20: 696e 666f 2c20 4e6f 6465 3a20 6861 6461 info, Node: hada │ │ │ │ +00002a30: 6d61 7264 5072 6f64 7563 742c 204e 6578 mardProduct, Nex │ │ │ │ +00002a40: 743a 2068 6164 616d 6172 6450 726f 6475 t: hadamardProdu │ │ │ │ +00002a50: 6374 5f6c 7049 6465 616c 5f63 6d49 6465 ct_lpIdeal_cmIde │ │ │ │ +00002a60: 616c 5f72 702c 2050 7265 763a 2068 6164 al_rp, Prev: had │ │ │ │ +00002a70: 616d 6172 6450 6f77 6572 5f6c 704c 6973 amardPower_lpLis │ │ │ │ +00002a80: 745f 636d 5a5a 5f72 702c 2055 703a 2054 t_cmZZ_rp, Up: T │ │ │ │ +00002a90: 6f70 0a0a 6861 6461 6d61 7264 5072 6f64 op..hadamardProd │ │ │ │ +00002aa0: 7563 7420 2d2d 2063 6f6d 7075 7465 7320 uct -- computes │ │ │ │ +00002ab0: 7468 6520 4861 6461 6d61 7264 2070 726f the Hadamard pro │ │ │ │ +00002ac0: 6475 6374 206f 6620 7661 7269 6574 6965 duct of varietie │ │ │ │ +00002ad0: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ +00002ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002b00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00002b10: 0a57 6179 7320 746f 2075 7365 2068 6164 .Ways to use had │ │ │ │ +00002b20: 616d 6172 6450 726f 6475 6374 3a0a 3d3d amardProduct:.== │ │ │ │ +00002b30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00002b40: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00002b50: 2a6e 6f74 6520 6861 6461 6d61 7264 5072 *note hadamardPr │ │ │ │ +00002b60: 6f64 7563 7428 4964 6561 6c2c 4964 6561 oduct(Ideal,Idea │ │ │ │ +00002b70: 6c29 3a20 6861 6461 6d61 7264 5072 6f64 l): hadamardProd │ │ │ │ +00002b80: 7563 745f 6c70 4964 6561 6c5f 636d 4964 uct_lpIdeal_cmId │ │ │ │ +00002b90: 6561 6c5f 7270 2c20 2d2d 0a20 2020 2048 eal_rp, --. H │ │ │ │ +00002ba0: 6164 616d 6172 6420 7072 6f64 7563 7420 adamard product │ │ │ │ +00002bb0: 6f66 2074 776f 2068 6f6d 6f67 656e 656f of two homogeneo │ │ │ │ +00002bc0: 7573 2069 6465 616c 730a 2020 2a20 2a6e us ideals. * *n │ │ │ │ +00002bd0: 6f74 6520 6861 6461 6d61 7264 5072 6f64 ote hadamardProd │ │ │ │ +00002be0: 7563 7428 4c69 7374 293a 2068 6164 616d uct(List): hadam │ │ │ │ +00002bf0: 6172 6450 726f 6475 6374 5f6c 704c 6973 ardProduct_lpLis │ │ │ │ +00002c00: 745f 7270 2c20 2d2d 2048 6164 616d 6172 t_rp, -- Hadamar │ │ │ │ +00002c10: 6420 7072 6f64 7563 740a 2020 2020 6f66 d product. of │ │ │ │ +00002c20: 2061 206c 6973 7420 6f66 2068 6f6d 6f67 a list of homog │ │ │ │ +00002c30: 656e 656f 7573 2069 6465 616c 732c 206f eneous ideals, o │ │ │ │ +00002c40: 7220 706f 696e 7473 0a20 202a 202a 6e6f r points. * *no │ │ │ │ +00002c50: 7465 2068 6164 616d 6172 6450 726f 6475 te hadamardProdu │ │ │ │ +00002c60: 6374 284c 6973 742c 4c69 7374 293a 2068 ct(List,List): h │ │ │ │ +00002c70: 6164 616d 6172 6450 726f 6475 6374 5f6c adamardProduct_l │ │ │ │ +00002c80: 704c 6973 745f 636d 4c69 7374 5f72 702c pList_cmList_rp, │ │ │ │ +00002c90: 202d 2d0a 2020 2020 4861 6461 6d61 7264 --. Hadamard │ │ │ │ +00002ca0: 2070 726f 6475 6374 206f 6620 7477 6f20 product of two │ │ │ │ +00002cb0: 7365 7473 206f 6620 706f 696e 7473 0a0a sets of points.. │ │ │ │ +00002cc0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00002cd0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00002ce0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00002cf0: 7420 2a6e 6f74 6520 6861 6461 6d61 7264 t *note hadamard │ │ │ │ +00002d00: 5072 6f64 7563 743a 2068 6164 616d 6172 Product: hadamar │ │ │ │ +00002d10: 6450 726f 6475 6374 2c20 6973 2061 202a dProduct, is a * │ │ │ │ +00002d20: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +00002d30: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ +00002d40: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00002d50: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +00002d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002da0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00002db0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00002dc0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00002dd0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00002de0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00002df0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00002e00: 6179 322f 7061 636b 6167 6573 2f48 6164 ay2/packages/Had │ │ │ │ +00002e10: 616d 6172 642e 6d32 0a3a 3235 313a 302e amard.m2.:251:0. │ │ │ │ +00002e20: 0a1f 0a46 696c 653a 2048 6164 616d 6172 ...File: Hadamar │ │ │ │ +00002e30: 642e 696e 666f 2c20 4e6f 6465 3a20 6861 d.info, Node: ha │ │ │ │ +00002e40: 6461 6d61 7264 5072 6f64 7563 745f 6c70 damardProduct_lp │ │ │ │ +00002e50: 4964 6561 6c5f 636d 4964 6561 6c5f 7270 Ideal_cmIdeal_rp │ │ │ │ +00002e60: 2c20 4e65 7874 3a20 6861 6461 6d61 7264 , Next: hadamard │ │ │ │ +00002e70: 5072 6f64 7563 745f 6c70 4c69 7374 5f72 Product_lpList_r │ │ │ │ +00002e80: 702c 2050 7265 763a 2068 6164 616d 6172 p, Prev: hadamar │ │ │ │ +00002e90: 6450 726f 6475 6374 2c20 5570 3a20 546f dProduct, Up: To │ │ │ │ +00002ea0: 700a 0a68 6164 616d 6172 6450 726f 6475 p..hadamardProdu │ │ │ │ +00002eb0: 6374 2849 6465 616c 2c49 6465 616c 2920 ct(Ideal,Ideal) │ │ │ │ +00002ec0: 2d2d 2048 6164 616d 6172 6420 7072 6f64 -- Hadamard prod │ │ │ │ +00002ed0: 7563 7420 6f66 2074 776f 2068 6f6d 6f67 uct of two homog │ │ │ │ +00002ee0: 656e 656f 7573 2069 6465 616c 730a 2a2a eneous ideals.** │ │ │ │ +00002ef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002f00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002f10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00002f30: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ +00002f40: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 6861 nction: *note ha │ │ │ │ +00002f50: 6461 6d61 7264 5072 6f64 7563 743a 2068 damardProduct: h │ │ │ │ +00002f60: 6164 616d 6172 6450 726f 6475 6374 2c0a adamardProduct,. │ │ │ │ +00002f70: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00002f80: 2020 2020 6861 6461 6d61 7264 5072 6f64 hadamardProd │ │ │ │ +00002f90: 7563 7428 492c 4a29 0a20 202a 2049 6e70 uct(I,J). * Inp │ │ │ │ +00002fa0: 7574 733a 0a20 2020 2020 202a 2049 2c20 uts:. * I, │ │ │ │ +00002fb0: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ +00002fc0: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ +00002fd0: 6561 6c2c 2c20 2868 6f6d 6f67 656e 656f eal,, (homogeneo │ │ │ │ +00002fe0: 7573 290a 2020 2020 2020 2a20 4a2c 2061 us). * J, a │ │ │ │ +00002ff0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ +00003000: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ +00003010: 616c 2c2c 2028 686f 6d6f 6765 6e65 6f75 al,, (homogeneou │ │ │ │ +00003020: 7329 0a20 202a 204f 7574 7075 7473 3a0a s). * Outputs:. │ │ │ │ +00003030: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ +00003040: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ +00003050: 7932 446f 6329 4964 6561 6c2c 2c20 0a0a y2Doc)Ideal,, .. │ │ │ │ +00003060: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00003070: 3d3d 3d3d 3d3d 3d0a 0a47 6976 656e 2074 =======..Given t │ │ │ │ +00003080: 776f 2070 726f 6a65 6374 6976 6520 7375 wo projective su │ │ │ │ +00003090: 6276 6172 6965 7469 6573 2024 5824 2061 bvarieties $X$ a │ │ │ │ +000030a0: 6e64 2024 5924 2c20 7468 6569 7220 4861 nd $Y$, their Ha │ │ │ │ +000030b0: 6461 6d61 7264 2070 726f 6475 6374 2069 damard product i │ │ │ │ +000030c0: 730a 6465 6669 6e65 6420 6173 2074 6865 s.defined as the │ │ │ │ +000030d0: 205a 6172 6973 6b69 2063 6c6f 7375 7265 Zariski closure │ │ │ │ +000030e0: 206f 6620 7468 6520 7365 7420 6f66 2028 of the set of ( │ │ │ │ +000030f0: 7765 6c6c 2d64 6566 696e 6564 2920 656e well-defined) en │ │ │ │ +00003100: 7472 7977 6973 6520 7072 6f64 7563 7473 trywise products │ │ │ │ +00003110: 0a6f 6620 7061 6972 7320 6f66 2070 6f69 .of pairs of poi │ │ │ │ +00003120: 6e74 7320 696e 2074 6865 2063 6172 7465 nts in the carte │ │ │ │ +00003130: 7369 616e 2070 726f 6475 6374 2024 5820 sian product $X │ │ │ │ +00003140: 5c74 696d 6573 2059 242e 2054 6869 7320 \times Y$. This │ │ │ │ +00003150: 6361 6e20 616c 736f 2062 650a 7265 6761 can also be.rega │ │ │ │ +00003160: 7264 6564 2061 7320 7468 6520 696d 6167 rded as the imag │ │ │ │ +00003170: 6520 6f66 2074 6865 2053 6567 7265 2070 e of the Segre p │ │ │ │ +00003180: 726f 6475 6374 206f 6620 2458 205c 7469 roduct of $X \ti │ │ │ │ +00003190: 6d65 7320 5924 2076 6961 2074 6865 206c mes Y$ via the l │ │ │ │ +000031a0: 696e 6561 720a 7072 6f6a 6563 7469 6f6e inear.projection │ │ │ │ +000031b0: 206f 6e20 7468 6520 247a 5f7b 6969 7d24 on the $z_{ii}$ │ │ │ │ +000031c0: 2063 6f6f 7264 696e 6174 6573 2e20 5468 coordinates. Th │ │ │ │ +000031d0: 6520 6c61 7474 6572 2069 7320 7468 6520 e latter is the │ │ │ │ +000031e0: 7761 7920 7468 6520 6675 6e63 7469 6f6e way the function │ │ │ │ +000031f0: 2069 730a 696d 706c 656d 656e 7465 642e is.implemented. │ │ │ │ +00003200: 0a0a 436f 6e73 6964 6572 2066 6f72 2065 ..Consider for e │ │ │ │ +00003210: 7861 6d70 6c65 2074 6865 2065 6e74 7279 xample the entry │ │ │ │ +00003220: 7769 7365 2070 726f 6475 6374 206f 6620 wise product of │ │ │ │ +00003230: 7477 6f20 706f 696e 7473 2e0a 0a2b 2d2d two points...+-- │ │ │ │ 00003240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003260: 2d2d 2d2b 0a7c 6933 203a 2071 203d 2070 ---+.|i3 : q = p │ │ │ │ -00003270: 6f69 6e74 207b 312c 2d31 2c2d 312c 2d31 oint {1,-1,-1,-1 │ │ │ │ -00003280: 7d3b 2020 2020 2020 2020 207c 0a2b 2d2d }; |.+-- │ │ │ │ +00003260: 2d2d 2d2b 0a7c 6931 203a 2053 203d 2051 ---+.|i1 : S = Q │ │ │ │ +00003270: 515b 782c 792c 7a2c 745d 3b20 2020 2020 Q[x,y,z,t]; │ │ │ │ +00003280: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00003290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000032a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000032b0: 2d2d 2d2b 0a7c 6934 203a 2069 6465 616c ---+.|i4 : ideal │ │ │ │ -000032c0: 4f66 5072 6f6a 6563 7469 7665 506f 696e OfProjectivePoin │ │ │ │ -000032d0: 7473 287b 702a 717d 2c53 297c 0a7c 2020 ts({p*q},S)|.| │ │ │ │ -000032e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000032f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003300: 2020 207c 0a7c 6f34 203d 2069 6465 616c |.|o4 = ideal │ │ │ │ -00003310: 2028 327a 202d 2074 2c20 3279 202d 2074 (2z - t, 2y - t │ │ │ │ -00003320: 2c20 3278 202b 2074 2920 207c 0a7c 2020 , 2x + t) |.| │ │ │ │ -00003330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003350: 2020 207c 0a7c 6f34 203a 2049 6465 616c |.|o4 : Ideal │ │ │ │ -00003360: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ -00003370: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00003380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000033a0: 2d2d 2d2b 0a0a 5468 6973 2063 616e 2062 ---+..This can b │ │ │ │ -000033b0: 6520 636f 6d70 7574 6564 2061 6c73 6f20 e computed also │ │ │ │ -000033c0: 6672 6f6d 2074 6865 6972 2064 6566 696e from their defin │ │ │ │ -000033d0: 696e 6720 6964 6561 6c73 2061 7320 6578 ing ideals as ex │ │ │ │ -000033e0: 706c 6169 6e65 642e 0a0a 2b2d 2d2d 2d2d plained...+----- │ │ │ │ -000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00003410: 7c69 3520 3a20 4950 203d 2069 6465 616c |i5 : IP = ideal │ │ │ │ -00003420: 2878 2d79 2c78 2d7a 2c32 2a78 2d74 2920 (x-y,x-z,2*x-t) │ │ │ │ -00003430: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00003440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003450: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -00003460: 3d20 6964 6561 6c20 2878 202d 2079 2c20 = ideal (x - y, │ │ │ │ -00003470: 7820 2d20 7a2c 2032 7820 2d20 7429 2020 x - z, 2x - t) │ │ │ │ -00003480: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00003490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000034a0: 2020 2020 2020 7c0a 7c6f 3520 3a20 4964 |.|o5 : Id │ │ │ │ -000034b0: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ -000034c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -000034d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000034e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000034f0: 2d2d 2b0a 7c69 3620 3a20 4951 203d 2069 --+.|i6 : IQ = i │ │ │ │ -00003500: 6465 616c 2878 2b79 2c78 2b7a 2c78 2b74 deal(x+y,x+z,x+t │ │ │ │ -00003510: 2920 2020 2020 2020 7c0a 7c20 2020 2020 ) |.| │ │ │ │ -00003520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00003540: 7c6f 3620 3d20 6964 6561 6c20 2878 202b |o6 = ideal (x + │ │ │ │ -00003550: 2079 2c20 7820 2b20 7a2c 2078 202b 2074 y, x + z, x + t │ │ │ │ -00003560: 2920 2020 7c0a 7c20 2020 2020 2020 2020 ) |.| │ │ │ │ -00003570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003580: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00003590: 3a20 4964 6561 6c20 6f66 2053 2020 2020 : Ideal of S │ │ │ │ -000035a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000035b0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000035c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000035d0: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6861 ------+.|i7 : ha │ │ │ │ -000035e0: 6461 6d61 7264 5072 6f64 7563 7428 4950 damardProduct(IP │ │ │ │ -000035f0: 2c49 5129 2020 2020 2020 2020 7c0a 7c20 ,IQ) |.| │ │ │ │ -00003600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000032b0: 2d2d 2d2b 0a7c 6932 203a 2070 203d 2070 ---+.|i2 : p = p │ │ │ │ +000032c0: 6f69 6e74 207b 312c 312c 312c 327d 3b20 oint {1,1,1,2}; │ │ │ │ +000032d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000032e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000032f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003300: 2d2d 2d2b 0a7c 6933 203a 2071 203d 2070 ---+.|i3 : q = p │ │ │ │ +00003310: 6f69 6e74 207b 312c 2d31 2c2d 312c 2d31 oint {1,-1,-1,-1 │ │ │ │ +00003320: 7d3b 2020 2020 2020 2020 207c 0a2b 2d2d }; |.+-- │ │ │ │ +00003330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003350: 2d2d 2d2b 0a7c 6934 203a 2069 6465 616c ---+.|i4 : ideal │ │ │ │ +00003360: 4f66 5072 6f6a 6563 7469 7665 506f 696e OfProjectivePoin │ │ │ │ +00003370: 7473 287b 702a 717d 2c53 297c 0a7c 2020 ts({p*q},S)|.| │ │ │ │ +00003380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000033a0: 2020 207c 0a7c 6f34 203d 2069 6465 616c |.|o4 = ideal │ │ │ │ +000033b0: 2028 327a 202d 2074 2c20 3279 202d 2074 (2z - t, 2y - t │ │ │ │ +000033c0: 2c20 3278 202b 2074 2920 207c 0a7c 2020 , 2x + t) |.| │ │ │ │ +000033d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000033e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000033f0: 2020 207c 0a7c 6f34 203a 2049 6465 616c |.|o4 : Ideal │ │ │ │ +00003400: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ +00003410: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00003420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003440: 2d2d 2d2b 0a0a 5468 6973 2063 616e 2062 ---+..This can b │ │ │ │ +00003450: 6520 636f 6d70 7574 6564 2061 6c73 6f20 e computed also │ │ │ │ +00003460: 6672 6f6d 2074 6865 6972 2064 6566 696e from their defin │ │ │ │ +00003470: 696e 6720 6964 6561 6c73 2061 7320 6578 ing ideals as ex │ │ │ │ +00003480: 706c 6169 6e65 642e 0a0a 2b2d 2d2d 2d2d plained...+----- │ │ │ │ +00003490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000034a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000034b0: 7c69 3520 3a20 4950 203d 2069 6465 616c |i5 : IP = ideal │ │ │ │ +000034c0: 2878 2d79 2c78 2d7a 2c32 2a78 2d74 2920 (x-y,x-z,2*x-t) │ │ │ │ +000034d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000034f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00003500: 3d20 6964 6561 6c20 2878 202d 2079 2c20 = ideal (x - y, │ │ │ │ +00003510: 7820 2d20 7a2c 2032 7820 2d20 7429 2020 x - z, 2x - t) │ │ │ │ +00003520: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003540: 2020 2020 2020 7c0a 7c6f 3520 3a20 4964 |.|o5 : Id │ │ │ │ +00003550: 6561 6c20 6f66 2053 2020 2020 2020 2020 eal of S │ │ │ │ +00003560: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00003570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003590: 2d2d 2b0a 7c69 3620 3a20 4951 203d 2069 --+.|i6 : IQ = i │ │ │ │ +000035a0: 6465 616c 2878 2b79 2c78 2b7a 2c78 2b74 deal(x+y,x+z,x+t │ │ │ │ +000035b0: 2920 2020 2020 2020 7c0a 7c20 2020 2020 ) |.| │ │ │ │ +000035c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000035d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000035e0: 7c6f 3620 3d20 6964 6561 6c20 2878 202b |o6 = ideal (x + │ │ │ │ +000035f0: 2079 2c20 7820 2b20 7a2c 2078 202b 2074 y, x + z, x + t │ │ │ │ +00003600: 2920 2020 7c0a 7c20 2020 2020 2020 2020 ) |.| │ │ │ │ 00003610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003620: 2020 7c0a 7c6f 3720 3d20 6964 6561 6c20 |.|o7 = ideal │ │ │ │ -00003630: 2832 7a20 2d20 742c 2032 7920 2d20 742c (2z - t, 2y - t, │ │ │ │ -00003640: 2032 7820 2b20 7429 7c0a 7c20 2020 2020 2x + t)|.| │ │ │ │ -00003650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003660: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00003670: 7c6f 3720 3a20 4964 6561 6c20 6f66 2053 |o7 : Ideal of S │ │ │ │ -00003680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003690: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000036a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000036b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 ----------+..We │ │ │ │ -000036c0: 6361 6e20 616c 736f 2063 6f6e 7369 6465 can also conside │ │ │ │ -000036d0: 7220 4861 6461 6d61 7264 2070 726f 6475 r Hadamard produ │ │ │ │ -000036e0: 6374 206f 6620 6869 6768 6572 2064 696d ct of higher dim │ │ │ │ -000036f0: 656e 7369 6f6e 616c 2076 6172 6965 7469 ensional varieti │ │ │ │ -00003700: 6573 2e20 466f 720a 6578 616d 706c 652c es. For.example, │ │ │ │ -00003710: 2074 6865 2048 6164 616d 6172 6420 7072 the Hadamard pr │ │ │ │ -00003720: 6f64 7563 7420 6f66 2074 776f 206c 696e oduct of two lin │ │ │ │ -00003730: 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d es...+---------- │ │ │ │ +00003620: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +00003630: 3a20 4964 6561 6c20 6f66 2053 2020 2020 : Ideal of S │ │ │ │ +00003640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003650: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00003660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003670: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 6861 ------+.|i7 : ha │ │ │ │ +00003680: 6461 6d61 7264 5072 6f64 7563 7428 4950 damardProduct(IP │ │ │ │ +00003690: 2c49 5129 2020 2020 2020 2020 7c0a 7c20 ,IQ) |.| │ │ │ │ +000036a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000036b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000036c0: 2020 7c0a 7c6f 3720 3d20 6964 6561 6c20 |.|o7 = ideal │ │ │ │ +000036d0: 2832 7a20 2d20 742c 2032 7920 2d20 742c (2z - t, 2y - t, │ │ │ │ +000036e0: 2032 7820 2b20 7429 7c0a 7c20 2020 2020 2x + t)|.| │ │ │ │ +000036f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00003710: 7c6f 3720 3a20 4964 6561 6c20 6f66 2053 |o7 : Ideal of S │ │ │ │ +00003720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003730: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00003740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003780: 2d2d 2d2b 0a7c 6938 203a 2049 203d 2069 ---+.|i8 : I = i │ │ │ │ -00003790: 6465 616c 2872 616e 646f 6d28 312c 5329 deal(random(1,S) │ │ │ │ -000037a0: 2c72 616e 646f 6d28 312c 5329 293b 2020 ,random(1,S)); │ │ │ │ -000037b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000037c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000037d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000037e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000037f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003820: 2020 207c 0a7c 6f38 203a 2049 6465 616c |.|o8 : Ideal │ │ │ │ -00003830: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ -00003840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003750: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 ----------+..We │ │ │ │ +00003760: 6361 6e20 616c 736f 2063 6f6e 7369 6465 can also conside │ │ │ │ +00003770: 7220 4861 6461 6d61 7264 2070 726f 6475 r Hadamard produ │ │ │ │ +00003780: 6374 206f 6620 6869 6768 6572 2064 696d ct of higher dim │ │ │ │ +00003790: 656e 7369 6f6e 616c 2076 6172 6965 7469 ensional varieti │ │ │ │ +000037a0: 6573 2e20 466f 720a 6578 616d 706c 652c es. For.example, │ │ │ │ +000037b0: 2074 6865 2048 6164 616d 6172 6420 7072 the Hadamard pr │ │ │ │ +000037c0: 6f64 7563 7420 6f66 2074 776f 206c 696e oduct of two lin │ │ │ │ +000037d0: 6573 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d es...+---------- │ │ │ │ +000037e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000037f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003820: 2d2d 2d2b 0a7c 6938 203a 2049 203d 2069 ---+.|i8 : I = i │ │ │ │ +00003830: 6465 616c 2872 616e 646f 6d28 312c 5329 deal(random(1,S) │ │ │ │ +00003840: 2c72 616e 646f 6d28 312c 5329 293b 2020 ,random(1,S)); │ │ │ │ 00003850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003870: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00003880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000038a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000038b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000038c0: 2d2d 2d2b 0a7c 6939 203a 204a 203d 2069 ---+.|i9 : J = i │ │ │ │ -000038d0: 6465 616c 2872 616e 646f 6d28 312c 5329 deal(random(1,S) │ │ │ │ -000038e0: 2c72 616e 646f 6d28 312c 5329 293b 2020 ,random(1,S)); │ │ │ │ +00003870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000038a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000038b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000038c0: 2020 207c 0a7c 6f38 203a 2049 6465 616c |.|o8 : Ideal │ │ │ │ +000038d0: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ +000038e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000038f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003910: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00003920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003960: 2020 207c 0a7c 6f39 203a 2049 6465 616c |.|o9 : Ideal │ │ │ │ -00003970: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ -00003980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003910: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00003920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003960: 2d2d 2d2b 0a7c 6939 203a 204a 203d 2069 ---+.|i9 : J = i │ │ │ │ +00003970: 6465 616c 2872 616e 646f 6d28 312c 5329 deal(random(1,S) │ │ │ │ +00003980: 2c72 616e 646f 6d28 312c 5329 293b 2020 ,random(1,S)); │ │ │ │ 00003990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000039a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000039b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -000039c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000039d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000039e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000039f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003a00: 2d2d 2d2b 0a7c 6931 3020 3a20 6861 6461 ---+.|i10 : hada │ │ │ │ -00003a10: 6d61 7264 5072 6f64 7563 7428 492c 4a29 mardProduct(I,J) │ │ │ │ +000039b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000039c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000039d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000039e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000039f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003a00: 2020 207c 0a7c 6f39 203a 2049 6465 616c |.|o9 : Ideal │ │ │ │ +00003a10: 206f 6620 5320 2020 2020 2020 2020 2020 of S │ │ │ │ 00003a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003a50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00003a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003aa0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00003ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003ac0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00003a50: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00003a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003aa0: 2d2d 2d2b 0a7c 6931 3020 3a20 6861 6461 ---+.|i10 : hada │ │ │ │ +00003ab0: 6d61 7264 5072 6f64 7563 7428 492c 4a29 mardProduct(I,J) │ │ │ │ +00003ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003ae0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00003af0: 2020 207c 0a7c 6f31 3020 3d20 6964 6561 |.|o10 = idea │ │ │ │ -00003b00: 6c28 3136 3430 3636 3634 3132 3030 3078 l(1640666412000x │ │ │ │ -00003b10: 2020 2d20 3132 3739 3834 3138 3831 3530 - 127984188150 │ │ │ │ -00003b20: 782a 7920 2d20 3435 3435 3236 3334 3530 x*y - 4545263450 │ │ │ │ -00003b30: 7920 202b 2020 2020 2020 2020 2020 2020 y + │ │ │ │ -00003b40: 2020 207c 0a7c 2020 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ -00003b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003b90: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00003ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003bc0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00003bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003be0: 2020 207c 0a7c 2020 2020 2020 3338 3630 |.| 3860 │ │ │ │ -00003bf0: 3239 3838 3432 3430 782a 7a20 2b20 3130 29884240x*z + 10 │ │ │ │ -00003c00: 3938 3231 3134 3332 3579 2a7a 202d 2031 982114325y*z - 1 │ │ │ │ -00003c10: 3336 3630 3532 3638 387a 2020 2b20 3639 366052688z + 69 │ │ │ │ -00003c20: 3438 3239 3932 3535 3632 3578 2a74 202d 48299255625x*t - │ │ │ │ -00003c30: 2020 207c 0a7c 2020 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ -00003c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003c80: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00003c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003cb0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00003cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003cd0: 2020 207c 0a7c 2020 2020 2020 3637 3636 |.| 6766 │ │ │ │ -00003ce0: 3331 3536 3536 3735 792a 7420 2b20 3637 31565675y*t + 67 │ │ │ │ -00003cf0: 3432 3131 3331 3234 357a 2a74 202b 2031 421131245z*t + 1 │ │ │ │ -00003d00: 3531 3439 3235 3639 3633 3735 7420 2920 514925696375t ) │ │ │ │ -00003d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003af0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b60: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00003b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003b80: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00003b90: 2020 207c 0a7c 6f31 3020 3d20 6964 6561 |.|o10 = idea │ │ │ │ +00003ba0: 6c28 3136 3430 3636 3634 3132 3030 3078 l(1640666412000x │ │ │ │ +00003bb0: 2020 2d20 3132 3739 3834 3138 3831 3530 - 127984188150 │ │ │ │ +00003bc0: 782a 7920 2d20 3435 3435 3236 3334 3530 x*y - 4545263450 │ │ │ │ +00003bd0: 7920 202b 2020 2020 2020 2020 2020 2020 y + │ │ │ │ +00003be0: 2020 207c 0a7c 2020 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +00003bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003c30: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00003c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003c60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00003c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003c80: 2020 207c 0a7c 2020 2020 2020 3338 3630 |.| 3860 │ │ │ │ +00003c90: 3239 3838 3432 3430 782a 7a20 2b20 3130 29884240x*z + 10 │ │ │ │ +00003ca0: 3938 3231 3134 3332 3579 2a7a 202d 2031 982114325y*z - 1 │ │ │ │ +00003cb0: 3336 3630 3532 3638 387a 2020 2b20 3639 366052688z + 69 │ │ │ │ +00003cc0: 3438 3239 3932 3535 3632 3578 2a74 202d 48299255625x*t - │ │ │ │ +00003cd0: 2020 207c 0a7c 2020 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ +00003ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003d20: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ 00003d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003d50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ 00003d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003d70: 2020 207c 0a7c 6f31 3020 3a20 4964 6561 |.|o10 : Idea │ │ │ │ -00003d80: 6c20 6f66 2053 2020 2020 2020 2020 2020 l of S │ │ │ │ -00003d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003d70: 2020 207c 0a7c 2020 2020 2020 3637 3636 |.| 6766 │ │ │ │ +00003d80: 3331 3536 3536 3735 792a 7420 2b20 3637 31565675y*t + 67 │ │ │ │ +00003d90: 3432 3131 3331 3234 357a 2a74 202b 2031 421131245z*t + 1 │ │ │ │ +00003da0: 3531 3439 3235 3639 3633 3735 7420 2920 514925696375t ) │ │ │ │ 00003db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00003dc0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00003dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003e10: 2d2d 2d2b 0a0a 5761 7973 2074 6f20 7573 ---+..Ways to us │ │ │ │ -00003e20: 6520 7468 6973 206d 6574 686f 643a 0a3d e this method:.= │ │ │ │ -00003e30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00003e40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00003e50: 7465 2068 6164 616d 6172 6450 726f 6475 te hadamardProdu │ │ │ │ -00003e60: 6374 2849 6465 616c 2c49 6465 616c 293a ct(Ideal,Ideal): │ │ │ │ -00003e70: 2068 6164 616d 6172 6450 726f 6475 6374 hadamardProduct │ │ │ │ -00003e80: 5f6c 7049 6465 616c 5f63 6d49 6465 616c _lpIdeal_cmIdeal │ │ │ │ -00003e90: 5f72 702c 202d 2d0a 2020 2020 4861 6461 _rp, --. Hada │ │ │ │ -00003ea0: 6d61 7264 2070 726f 6475 6374 206f 6620 mard product of │ │ │ │ -00003eb0: 7477 6f20 686f 6d6f 6765 6e65 6f75 7320 two homogeneous │ │ │ │ -00003ec0: 6964 6561 6c73 0a2d 2d2d 2d2d 2d2d 2d2d ideals.--------- │ │ │ │ -00003ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00003f10: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00003f20: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00003f30: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00003f40: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00003f50: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00003f60: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00003f70: 6c61 7932 2f70 6163 6b61 6765 732f 4861 lay2/packages/Ha │ │ │ │ -00003f80: 6461 6d61 7264 2e6d 320a 3a32 3933 3a30 damard.m2.:293:0 │ │ │ │ -00003f90: 2e0a 1f0a 4669 6c65 3a20 4861 6461 6d61 ....File: Hadama │ │ │ │ -00003fa0: 7264 2e69 6e66 6f2c 204e 6f64 653a 2068 rd.info, Node: h │ │ │ │ -00003fb0: 6164 616d 6172 6450 726f 6475 6374 5f6c adamardProduct_l │ │ │ │ -00003fc0: 704c 6973 745f 7270 2c20 4e65 7874 3a20 pList_rp, Next: │ │ │ │ -00003fd0: 6861 6461 6d61 7264 5072 6f64 7563 745f hadamardProduct_ │ │ │ │ -00003fe0: 6c70 4c69 7374 5f63 6d4c 6973 745f 7270 lpList_cmList_rp │ │ │ │ -00003ff0: 2c20 5072 6576 3a20 6861 6461 6d61 7264 , Prev: hadamard │ │ │ │ -00004000: 5072 6f64 7563 745f 6c70 4964 6561 6c5f Product_lpIdeal_ │ │ │ │ -00004010: 636d 4964 6561 6c5f 7270 2c20 5570 3a20 cmIdeal_rp, Up: │ │ │ │ -00004020: 546f 700a 0a68 6164 616d 6172 6450 726f Top..hadamardPro │ │ │ │ -00004030: 6475 6374 284c 6973 7429 202d 2d20 4861 duct(List) -- Ha │ │ │ │ -00004040: 6461 6d61 7264 2070 726f 6475 6374 206f damard product o │ │ │ │ -00004050: 6620 6120 6c69 7374 206f 6620 686f 6d6f f a list of homo │ │ │ │ -00004060: 6765 6e65 6f75 7320 6964 6561 6c73 2c20 geneous ideals, │ │ │ │ -00004070: 6f72 2070 6f69 6e74 730a 2a2a 2a2a 2a2a or points.****** │ │ │ │ -00004080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00004090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000040a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000040b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000040c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -000040d0: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ -000040e0: 6f74 6520 6861 6461 6d61 7264 5072 6f64 ote hadamardProd │ │ │ │ -000040f0: 7563 743a 2068 6164 616d 6172 6450 726f uct: hadamardPro │ │ │ │ -00004100: 6475 6374 2c0a 2020 2a20 5573 6167 653a duct,. * Usage: │ │ │ │ -00004110: 200a 2020 2020 2020 2020 6861 6461 6d61 . hadama │ │ │ │ -00004120: 7264 5072 6f64 7563 7428 4c29 0a20 202a rdProduct(L). * │ │ │ │ -00004130: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00004140: 204c 2c20 6120 2a6e 6f74 6520 6c69 7374 L, a *note list │ │ │ │ -00004150: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00004160: 4c69 7374 2c2c 206f 6620 2a6e 6f74 6520 List,, of *note │ │ │ │ -00004170: 2868 6f6d 6f67 656e 656f 7573 2920 6964 (homogeneous) id │ │ │ │ -00004180: 6561 6c73 3a0a 2020 2020 2020 2020 284d eals:. (M │ │ │ │ -00004190: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ -000041a0: 6c2c 206f 7220 2a6e 6f74 6520 2870 726f l, or *note (pro │ │ │ │ -000041b0: 6a65 6374 6976 6529 2070 6f69 6e74 733a jective) points: │ │ │ │ -000041c0: 2050 6f69 6e74 2c0a 2020 2a20 4f75 7470 Point,. * Outp │ │ │ │ -000041d0: 7574 733a 0a20 2020 2020 202a 2061 6e20 uts:. * an │ │ │ │ -000041e0: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -000041f0: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -00004200: 2c2c 200a 2020 2020 2020 2a20 616e 2069 ,, . * an i │ │ │ │ -00004210: 6e73 7461 6e63 6520 6f66 2074 6865 2074 nstance of the t │ │ │ │ -00004220: 7970 6520 2a6e 6f74 6520 506f 696e 743a ype *note Point: │ │ │ │ -00004230: 2050 6f69 6e74 2c2c 200a 0a44 6573 6372 Point,, ..Descr │ │ │ │ -00004240: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00004250: 3d3d 0a0a 5468 6520 4861 6461 6d61 7264 ==..The Hadamard │ │ │ │ -00004260: 2070 726f 6475 6374 206f 6620 6120 6c69 product of a li │ │ │ │ -00004270: 7374 206f 6620 6964 6561 6c73 206f 7220 st of ideals or │ │ │ │ -00004280: 706f 696e 7473 2063 6f6e 7374 7275 6374 points construct │ │ │ │ -00004290: 6564 2062 7920 7573 696e 670a 6974 6572 ed by using.iter │ │ │ │ -000042a0: 6174 6976 656c 7920 7468 6520 6269 6e61 atively the bina │ │ │ │ -000042b0: 7279 2066 756e 6374 696f 6e20 2a6e 6f74 ry function *not │ │ │ │ -000042c0: 6520 6861 6461 6d61 7264 5072 6f64 7563 e hadamardProduc │ │ │ │ -000042d0: 7428 4964 6561 6c2c 4964 6561 6c29 3a0a t(Ideal,Ideal):. │ │ │ │ -000042e0: 6861 6461 6d61 7264 5072 6f64 7563 745f hadamardProduct_ │ │ │ │ -000042f0: 6c70 4964 6561 6c5f 636d 4964 6561 6c5f lpIdeal_cmIdeal_ │ │ │ │ -00004300: 7270 2c2c 206f 7220 202a 6e6f 7465 2050 rp,, or *note P │ │ │ │ -00004310: 6f69 6e74 202a 2050 6f69 6e74 3a20 506f oint * Point: Po │ │ │ │ -00004320: 696e 7420 5f73 7420 506f 696e 742c 2e0a int _st Point,.. │ │ │ │ -00004330: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004380: 0a7c 6931 203a 2053 203d 2051 515b 782c .|i1 : S = QQ[x, │ │ │ │ -00004390: 792c 7a2c 745d 3b20 2020 2020 2020 2020 y,z,t]; │ │ │ │ -000043a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000043b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000043c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00003dc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00003dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003e10: 2020 207c 0a7c 6f31 3020 3a20 4964 6561 |.|o10 : Idea │ │ │ │ +00003e20: 6c20 6f66 2053 2020 2020 2020 2020 2020 l of S │ │ │ │ +00003e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00003e60: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00003e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003eb0: 2d2d 2d2b 0a0a 5761 7973 2074 6f20 7573 ---+..Ways to us │ │ │ │ +00003ec0: 6520 7468 6973 206d 6574 686f 643a 0a3d e this method:.= │ │ │ │ +00003ed0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00003ee0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +00003ef0: 7465 2068 6164 616d 6172 6450 726f 6475 te hadamardProdu │ │ │ │ +00003f00: 6374 2849 6465 616c 2c49 6465 616c 293a ct(Ideal,Ideal): │ │ │ │ +00003f10: 2068 6164 616d 6172 6450 726f 6475 6374 hadamardProduct │ │ │ │ +00003f20: 5f6c 7049 6465 616c 5f63 6d49 6465 616c _lpIdeal_cmIdeal │ │ │ │ +00003f30: 5f72 702c 202d 2d0a 2020 2020 4861 6461 _rp, --. Hada │ │ │ │ +00003f40: 6d61 7264 2070 726f 6475 6374 206f 6620 mard product of │ │ │ │ +00003f50: 7477 6f20 686f 6d6f 6765 6e65 6f75 7320 two homogeneous │ │ │ │ +00003f60: 6964 6561 6c73 0a2d 2d2d 2d2d 2d2d 2d2d ideals.--------- │ │ │ │ +00003f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00003fb0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00003fc0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00003fd0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00003fe0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00003ff0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00004000: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00004010: 6c61 7932 2f70 6163 6b61 6765 732f 4861 lay2/packages/Ha │ │ │ │ +00004020: 6461 6d61 7264 2e6d 320a 3a32 3933 3a30 damard.m2.:293:0 │ │ │ │ +00004030: 2e0a 1f0a 4669 6c65 3a20 4861 6461 6d61 ....File: Hadama │ │ │ │ +00004040: 7264 2e69 6e66 6f2c 204e 6f64 653a 2068 rd.info, Node: h │ │ │ │ +00004050: 6164 616d 6172 6450 726f 6475 6374 5f6c adamardProduct_l │ │ │ │ +00004060: 704c 6973 745f 7270 2c20 4e65 7874 3a20 pList_rp, Next: │ │ │ │ +00004070: 6861 6461 6d61 7264 5072 6f64 7563 745f hadamardProduct_ │ │ │ │ +00004080: 6c70 4c69 7374 5f63 6d4c 6973 745f 7270 lpList_cmList_rp │ │ │ │ +00004090: 2c20 5072 6576 3a20 6861 6461 6d61 7264 , Prev: hadamard │ │ │ │ +000040a0: 5072 6f64 7563 745f 6c70 4964 6561 6c5f Product_lpIdeal_ │ │ │ │ +000040b0: 636d 4964 6561 6c5f 7270 2c20 5570 3a20 cmIdeal_rp, Up: │ │ │ │ +000040c0: 546f 700a 0a68 6164 616d 6172 6450 726f Top..hadamardPro │ │ │ │ +000040d0: 6475 6374 284c 6973 7429 202d 2d20 4861 duct(List) -- Ha │ │ │ │ +000040e0: 6461 6d61 7264 2070 726f 6475 6374 206f damard product o │ │ │ │ +000040f0: 6620 6120 6c69 7374 206f 6620 686f 6d6f f a list of homo │ │ │ │ +00004100: 6765 6e65 6f75 7320 6964 6561 6c73 2c20 geneous ideals, │ │ │ │ +00004110: 6f72 2070 6f69 6e74 730a 2a2a 2a2a 2a2a or points.****** │ │ │ │ +00004120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00004130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00004140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00004150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00004160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00004170: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ +00004180: 6f74 6520 6861 6461 6d61 7264 5072 6f64 ote hadamardProd │ │ │ │ +00004190: 7563 743a 2068 6164 616d 6172 6450 726f uct: hadamardPro │ │ │ │ +000041a0: 6475 6374 2c0a 2020 2a20 5573 6167 653a duct,. * Usage: │ │ │ │ +000041b0: 200a 2020 2020 2020 2020 6861 6461 6d61 . hadama │ │ │ │ +000041c0: 7264 5072 6f64 7563 7428 4c29 0a20 202a rdProduct(L). * │ │ │ │ +000041d0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +000041e0: 204c 2c20 6120 2a6e 6f74 6520 6c69 7374 L, a *note list │ │ │ │ +000041f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00004200: 4c69 7374 2c2c 206f 6620 2a6e 6f74 6520 List,, of *note │ │ │ │ +00004210: 2868 6f6d 6f67 656e 656f 7573 2920 6964 (homogeneous) id │ │ │ │ +00004220: 6561 6c73 3a0a 2020 2020 2020 2020 284d eals:. (M │ │ │ │ +00004230: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ +00004240: 6c2c 206f 7220 2a6e 6f74 6520 2870 726f l, or *note (pro │ │ │ │ +00004250: 6a65 6374 6976 6529 2070 6f69 6e74 733a jective) points: │ │ │ │ +00004260: 2050 6f69 6e74 2c0a 2020 2a20 4f75 7470 Point,. * Outp │ │ │ │ +00004270: 7574 733a 0a20 2020 2020 202a 2061 6e20 uts:. * an │ │ │ │ +00004280: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ +00004290: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ +000042a0: 2c2c 200a 2020 2020 2020 2a20 616e 2069 ,, . * an i │ │ │ │ +000042b0: 6e73 7461 6e63 6520 6f66 2074 6865 2074 nstance of the t │ │ │ │ +000042c0: 7970 6520 2a6e 6f74 6520 506f 696e 743a ype *note Point: │ │ │ │ +000042d0: 2050 6f69 6e74 2c2c 200a 0a44 6573 6372 Point,, ..Descr │ │ │ │ +000042e0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +000042f0: 3d3d 0a0a 5468 6520 4861 6461 6d61 7264 ==..The Hadamard │ │ │ │ +00004300: 2070 726f 6475 6374 206f 6620 6120 6c69 product of a li │ │ │ │ +00004310: 7374 206f 6620 6964 6561 6c73 206f 7220 st of ideals or │ │ │ │ +00004320: 706f 696e 7473 2063 6f6e 7374 7275 6374 points construct │ │ │ │ +00004330: 6564 2062 7920 7573 696e 670a 6974 6572 ed by using.iter │ │ │ │ +00004340: 6174 6976 656c 7920 7468 6520 6269 6e61 atively the bina │ │ │ │ +00004350: 7279 2066 756e 6374 696f 6e20 2a6e 6f74 ry function *not │ │ │ │ +00004360: 6520 6861 6461 6d61 7264 5072 6f64 7563 e hadamardProduc │ │ │ │ +00004370: 7428 4964 6561 6c2c 4964 6561 6c29 3a0a t(Ideal,Ideal):. │ │ │ │ +00004380: 6861 6461 6d61 7264 5072 6f64 7563 745f hadamardProduct_ │ │ │ │ +00004390: 6c70 4964 6561 6c5f 636d 4964 6561 6c5f lpIdeal_cmIdeal_ │ │ │ │ +000043a0: 7270 2c2c 206f 7220 202a 6e6f 7465 2050 rp,, or *note P │ │ │ │ +000043b0: 6f69 6e74 202a 2050 6f69 6e74 3a20 506f oint * Point: Po │ │ │ │ +000043c0: 696e 7420 5f73 7420 506f 696e 742c 2e0a int _st Point,.. │ │ │ │ 000043d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000043e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000043f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004420: 0a7c 6932 203a 2049 203d 2069 6465 616c .|i2 : I = ideal │ │ │ │ -00004430: 2872 616e 646f 6d28 312c 5329 2c72 616e (random(1,S),ran │ │ │ │ -00004440: 646f 6d28 312c 5329 293b 2020 2020 2020 dom(1,S)); │ │ │ │ +00004420: 0a7c 6931 203a 2053 203d 2051 515b 782c .|i1 : S = QQ[x, │ │ │ │ +00004430: 792c 7a2c 745d 3b20 2020 2020 2020 2020 y,z,t]; │ │ │ │ +00004440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00004480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000044a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000044b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000044c0: 0a7c 6f32 203a 2049 6465 616c 206f 6620 .|o2 : Ideal of │ │ │ │ -000044d0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -000044e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004470: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00004480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000044a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000044b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000044c0: 0a7c 6932 203a 2049 203d 2069 6465 616c .|i2 : I = ideal │ │ │ │ +000044d0: 2872 616e 646f 6d28 312c 5329 2c72 616e (random(1,S),ran │ │ │ │ +000044e0: 646f 6d28 312c 5329 293b 2020 2020 2020 dom(1,S)); │ │ │ │ 000044f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004510: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004560: 0a7c 6933 203a 204a 203d 2069 6465 616c .|i3 : J = ideal │ │ │ │ -00004570: 2872 616e 646f 6d28 312c 5329 2c72 616e (random(1,S),ran │ │ │ │ -00004580: 646f 6d28 312c 5329 293b 2020 2020 2020 dom(1,S)); │ │ │ │ +00004510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004560: 0a7c 6f32 203a 2049 6465 616c 206f 6620 .|o2 : Ideal of │ │ │ │ +00004570: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00004580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000045a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000045b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000045c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000045d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000045e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000045f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004600: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -00004610: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -00004620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000045b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000045c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000045d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000045e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000045f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00004600: 0a7c 6933 203a 204a 203d 2069 6465 616c .|i3 : J = ideal │ │ │ │ +00004610: 2872 616e 646f 6d28 312c 5329 2c72 616e (random(1,S),ran │ │ │ │ +00004620: 646f 6d28 312c 5329 293b 2020 2020 2020 dom(1,S)); │ │ │ │ 00004630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004650: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000046a0: 0a7c 6934 203a 204c 203d 207b 492c 4a7d .|i4 : L = {I,J} │ │ │ │ -000046b0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00004650: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000046a0: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ +000046b0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ 000046c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000046f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00004700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004740: 0a7c 6935 203a 2068 6164 616d 6172 6450 .|i5 : hadamardP │ │ │ │ -00004750: 726f 6475 6374 284c 2920 2020 2020 2020 roduct(L) │ │ │ │ +00004740: 0a7c 6934 203a 204c 203d 207b 492c 4a7d .|i4 : L = {I,J} │ │ │ │ +00004750: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 00004760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000047a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000047b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000047c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000047d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000047e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000047f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00004790: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000047a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000047b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000047c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000047d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000047e0: 0a7c 6935 203a 2068 6164 616d 6172 6450 .|i5 : hadamardP │ │ │ │ +000047f0: 726f 6475 6374 284c 2920 2020 2020 2020 roduct(L) │ │ │ │ 00004800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004810: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00004810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004830: 0a7c 6f35 203d 2069 6465 616c 2831 3634 .|o5 = ideal(164 │ │ │ │ -00004840: 3036 3636 3431 3230 3030 7820 202d 2031 0666412000x - 1 │ │ │ │ -00004850: 3237 3938 3431 3838 3135 3078 2a79 202d 27984188150x*y - │ │ │ │ -00004860: 2034 3534 3532 3633 3435 3079 2020 2b20 4545263450y + │ │ │ │ -00004870: 3338 3630 3239 3838 3432 3430 782a 7a7c 386029884240x*z| │ │ │ │ -00004880: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -00004890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000048a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000048b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000048c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000048d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000048e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000048f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00004900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004920: 0a7c 2020 2020 202b 2031 3039 3832 3131 .| + 1098211 │ │ │ │ -00004930: 3433 3235 792a 7a20 2d20 3133 3636 3035 4325y*z - 136605 │ │ │ │ -00004940: 3236 3838 7a20 202b 2036 3934 3832 3939 2688z + 6948299 │ │ │ │ -00004950: 3235 3536 3235 782a 7420 2d20 3637 3636 255625x*t - 6766 │ │ │ │ -00004960: 3331 3536 3536 3735 792a 7420 2b20 207c 31565675y*t + | │ │ │ │ -00004970: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ -00004980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000049a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000049b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000049c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000049d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000049e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000049f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004a10: 0a7c 2020 2020 2036 3734 3231 3133 3132 .| 674211312 │ │ │ │ -00004a20: 3435 7a2a 7420 2b20 3135 3134 3932 3536 45z*t + 15149256 │ │ │ │ -00004a30: 3936 3337 3574 2029 2020 2020 2020 2020 96375t ) │ │ │ │ -00004a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004890: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000048a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000048b0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000048c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000048d0: 0a7c 6f35 203d 2069 6465 616c 2831 3634 .|o5 = ideal(164 │ │ │ │ +000048e0: 3036 3636 3431 3230 3030 7820 202d 2031 0666412000x - 1 │ │ │ │ +000048f0: 3237 3938 3431 3838 3135 3078 2a79 202d 27984188150x*y - │ │ │ │ +00004900: 2034 3534 3532 3633 3435 3079 2020 2b20 4545263450y + │ │ │ │ +00004910: 3338 3630 3239 3838 3432 3430 782a 7a7c 386029884240x*z| │ │ │ │ +00004920: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00004930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00004970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004990: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000049a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000049b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000049c0: 0a7c 2020 2020 202b 2031 3039 3832 3131 .| + 1098211 │ │ │ │ +000049d0: 3433 3235 792a 7a20 2d20 3133 3636 3035 4325y*z - 136605 │ │ │ │ +000049e0: 3236 3838 7a20 202b 2036 3934 3832 3939 2688z + 6948299 │ │ │ │ +000049f0: 3235 3536 3235 782a 7420 2d20 3637 3636 255625x*t - 6766 │ │ │ │ +00004a00: 3331 3536 3536 3735 792a 7420 2b20 207c 31565675y*t + | │ │ │ │ +00004a10: 0a7c 2020 2020 202d 2d2d 2d2d 2d2d 2d2d .| --------- │ │ │ │ +00004a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00004a60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004a80: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00004a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004ab0: 0a7c 6f35 203a 2049 6465 616c 206f 6620 .|o5 : Ideal of │ │ │ │ -00004ac0: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ -00004ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004ab0: 0a7c 2020 2020 2036 3734 3231 3133 3132 .| 674211312 │ │ │ │ +00004ac0: 3435 7a2a 7420 2b20 3135 3134 3932 3536 45z*t + 15149256 │ │ │ │ +00004ad0: 3936 3337 3574 2029 2020 2020 2020 2020 96375t ) │ │ │ │ 00004ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004b00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004b50: 0a7c 6936 203a 2050 203d 2070 6f69 6e74 .|i6 : P = point │ │ │ │ -00004b60: 5c7b 7b31 2c32 2c33 7d2c 7b2d 312c 312c \{{1,2,3},{-1,1, │ │ │ │ -00004b70: 317d 2c7b 312c 312f 322c 2d31 2f33 7d7d 1},{1,1/2,-1/3}} │ │ │ │ +00004b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004b50: 0a7c 6f35 203a 2049 6465 616c 206f 6620 .|o5 : Ideal of │ │ │ │ +00004b60: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +00004b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004ba0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00004bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00004c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004c20: 2020 3120 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00004ba0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00004bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00004bf0: 0a7c 6936 203a 2050 203d 2070 6f69 6e74 .|i6 : P = point │ │ │ │ +00004c00: 5c7b 7b31 2c32 2c33 7d2c 7b2d 312c 312c \{{1,2,3},{-1,1, │ │ │ │ +00004c10: 317d 2c7b 312c 312f 322c 2d31 2f33 7d7d 1},{1,1/2,-1/3}} │ │ │ │ +00004c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004c40: 0a7c 6f36 203d 207b 506f 696e 747b 312c .|o6 = {Point{1, │ │ │ │ -00004c50: 2032 2c20 337d 2c20 506f 696e 747b 2d31 2, 3}, Point{-1 │ │ │ │ -00004c60: 2c20 312c 2031 7d2c 2050 6f69 6e74 7b31 , 1, 1}, Point{1 │ │ │ │ -00004c70: 2c20 2d2c 202d 202d 7d7d 2020 2020 2020 , -, - -}} │ │ │ │ +00004c40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004c90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004cc0: 2020 3220 2020 2033 2020 2020 2020 2020 2 3 │ │ │ │ +00004cc0: 2020 3120 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ 00004cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004ce0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00004cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004ce0: 0a7c 6f36 203d 207b 506f 696e 747b 312c .|o6 = {Point{1, │ │ │ │ +00004cf0: 2032 2c20 337d 2c20 506f 696e 747b 2d31 2, 3}, Point{-1 │ │ │ │ +00004d00: 2c20 312c 2031 7d2c 2050 6f69 6e74 7b31 , 1, 1}, Point{1 │ │ │ │ +00004d10: 2c20 2d2c 202d 202d 7d7d 2020 2020 2020 , -, - -}} │ │ │ │ 00004d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004d30: 0a7c 6f36 203a 204c 6973 7420 2020 2020 .|o6 : List │ │ │ │ +00004d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004d60: 2020 3220 2020 2033 2020 2020 2020 2020 2 3 │ │ │ │ 00004d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004d80: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004dd0: 0a7c 6937 203a 2068 6164 616d 6172 6450 .|i7 : hadamardP │ │ │ │ -00004de0: 726f 6475 6374 2850 2920 2020 2020 2020 roduct(P) │ │ │ │ +00004d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004dd0: 0a7c 6f36 203a 204c 6973 7420 2020 2020 .|o6 : List │ │ │ │ +00004de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004e20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00004e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004e70: 0a7c 6f37 203d 2050 6f69 6e74 7b2d 312c .|o7 = Point{-1, │ │ │ │ -00004e80: 2031 2c20 2d31 7d20 2020 2020 2020 2020 1, -1} │ │ │ │ +00004e20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00004e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00004e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00004e70: 0a7c 6937 203a 2068 6164 616d 6172 6450 .|i7 : hadamardP │ │ │ │ +00004e80: 726f 6475 6374 2850 2920 2020 2020 2020 roduct(P) │ │ │ │ 00004e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004eb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004f10: 0a7c 6f37 203a 2050 6f69 6e74 2020 2020 .|o7 : Point │ │ │ │ -00004f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004f10: 0a7c 6f37 203d 2050 6f69 6e74 7b2d 312c .|o7 = Point{-1, │ │ │ │ +00004f20: 2031 2c20 2d31 7d20 2020 2020 2020 2020 1, -1} │ │ │ │ 00004f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00004f60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00004f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00004fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00004fb0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ -00004fc0: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ -00004fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00004fe0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2068 ===.. * *note h │ │ │ │ -00004ff0: 6164 616d 6172 6450 726f 6475 6374 284c adamardProduct(L │ │ │ │ -00005000: 6973 7429 3a20 6861 6461 6d61 7264 5072 ist): hadamardPr │ │ │ │ -00005010: 6f64 7563 745f 6c70 4c69 7374 5f72 702c oduct_lpList_rp, │ │ │ │ -00005020: 202d 2d20 4861 6461 6d61 7264 2070 726f -- Hadamard pro │ │ │ │ -00005030: 6475 6374 0a20 2020 206f 6620 6120 6c69 duct. of a li │ │ │ │ -00005040: 7374 206f 6620 686f 6d6f 6765 6e65 6f75 st of homogeneou │ │ │ │ -00005050: 7320 6964 6561 6c73 2c20 6f72 2070 6f69 s ideals, or poi │ │ │ │ -00005060: 6e74 730a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d nts.------------ │ │ │ │ -00005070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000050a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000050b0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -000050c0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -000050d0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -000050e0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -000050f0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00005100: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00005110: 322f 7061 636b 6167 6573 2f48 6164 616d 2/packages/Hadam │ │ │ │ -00005120: 6172 642e 6d32 0a3a 3332 303a 302e 0a1f ard.m2.:320:0... │ │ │ │ -00005130: 0a46 696c 653a 2048 6164 616d 6172 642e .File: Hadamard. │ │ │ │ -00005140: 696e 666f 2c20 4e6f 6465 3a20 6861 6461 info, Node: hada │ │ │ │ -00005150: 6d61 7264 5072 6f64 7563 745f 6c70 4c69 mardProduct_lpLi │ │ │ │ -00005160: 7374 5f63 6d4c 6973 745f 7270 2c20 4e65 st_cmList_rp, Ne │ │ │ │ -00005170: 7874 3a20 6964 6561 6c4f 6650 726f 6a65 xt: idealOfProje │ │ │ │ -00005180: 6374 6976 6550 6f69 6e74 732c 2050 7265 ctivePoints, Pre │ │ │ │ -00005190: 763a 2068 6164 616d 6172 6450 726f 6475 v: hadamardProdu │ │ │ │ -000051a0: 6374 5f6c 704c 6973 745f 7270 2c20 5570 ct_lpList_rp, Up │ │ │ │ -000051b0: 3a20 546f 700a 0a68 6164 616d 6172 6450 : Top..hadamardP │ │ │ │ -000051c0: 726f 6475 6374 284c 6973 742c 4c69 7374 roduct(List,List │ │ │ │ -000051d0: 2920 2d2d 2048 6164 616d 6172 6420 7072 ) -- Hadamard pr │ │ │ │ -000051e0: 6f64 7563 7420 6f66 2074 776f 2073 6574 oduct of two set │ │ │ │ -000051f0: 7320 6f66 2070 6f69 6e74 730a 2a2a 2a2a s of points.**** │ │ │ │ -00005200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005240: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -00005250: 2a6e 6f74 6520 6861 6461 6d61 7264 5072 *note hadamardPr │ │ │ │ -00005260: 6f64 7563 743a 2068 6164 616d 6172 6450 oduct: hadamardP │ │ │ │ -00005270: 726f 6475 6374 2c0a 2020 2a20 5573 6167 roduct,. * Usag │ │ │ │ -00005280: 653a 200a 2020 2020 2020 2020 6861 6461 e: . hada │ │ │ │ -00005290: 6d61 7264 5072 6f64 7563 7428 4c2c 4d29 mardProduct(L,M) │ │ │ │ -000052a0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -000052b0: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ -000052c0: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ -000052d0: 446f 6329 4c69 7374 2c2c 206f 6620 2a6e Doc)List,, of *n │ │ │ │ -000052e0: 6f74 6520 506f 696e 743a 2050 6f69 6e74 ote Point: Point │ │ │ │ -000052f0: 2c0a 2020 2020 2020 2a20 4d2c 2061 202a ,. * M, a * │ │ │ │ -00005300: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00005310: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00005320: 6f66 202a 6e6f 7465 2050 6f69 6e74 3a20 of *note Point: │ │ │ │ -00005330: 506f 696e 742c 0a20 202a 204f 7574 7075 Point,. * Outpu │ │ │ │ -00005340: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -00005350: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ -00005360: 6c61 7932 446f 6329 4c69 7374 2c2c 206f lay2Doc)List,, o │ │ │ │ -00005370: 6620 2a6e 6f74 6520 506f 696e 743a 2050 f *note Point: P │ │ │ │ -00005380: 6f69 6e74 2c0a 0a44 6573 6372 6970 7469 oint,..Descripti │ │ │ │ -00005390: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -000053a0: 4769 7665 6e20 7477 6f20 7365 7473 206f Given two sets o │ │ │ │ -000053b0: 6620 706f 696e 7473 2024 4c24 2061 6e64 f points $L$ and │ │ │ │ -000053c0: 2024 4d24 2072 6574 7572 6e73 2074 6865 $M$ returns the │ │ │ │ -000053d0: 206c 6973 7420 6f66 2028 7765 6c6c 2d64 list of (well-d │ │ │ │ -000053e0: 6566 696e 6564 290a 656e 7472 7977 6973 efined).entrywis │ │ │ │ -000053f0: 6520 6d75 6c74 6970 6c69 6361 7469 6f6e e multiplication │ │ │ │ -00005400: 206f 6620 7061 6972 7320 6f66 2070 6f69 of pairs of poi │ │ │ │ -00005410: 6e74 7320 696e 2074 6865 2063 6172 7465 nts in the carte │ │ │ │ -00005420: 7369 616e 2070 726f 6475 6374 2024 4c5c sian product $L\ │ │ │ │ -00005430: 7469 6d65 730a 4d24 2e0a 0a2b 2d2d 2d2d times.M$...+---- │ │ │ │ -00005440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005460: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00005470: 4c20 3d20 7b70 6f69 6e74 7b30 2c31 7d2c L = {point{0,1}, │ │ │ │ -00005480: 2070 6f69 6e74 7b31 2c32 7d7d 3b20 2020 point{1,2}}; │ │ │ │ -00005490: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000054a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000054b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000054c0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 4d20 ------+.|i2 : M │ │ │ │ -000054d0: 3d20 7b70 6f69 6e74 7b31 2c30 7d2c 2070 = {point{1,0}, p │ │ │ │ -000054e0: 6f69 6e74 7b32 2c32 7d7d 3b20 2020 2020 oint{2,2}}; │ │ │ │ -000054f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00005500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005520: 2d2d 2d2d 2b0a 7c69 3320 3a20 6861 6461 ----+.|i3 : hada │ │ │ │ -00005530: 6d61 7264 5072 6f64 7563 7428 4c2c 4d29 mardProduct(L,M) │ │ │ │ -00005540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00005560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005580: 2020 7c0a 7c6f 3320 3d20 7b50 6f69 6e74 |.|o3 = {Point │ │ │ │ -00005590: 7b31 2c20 307d 2c20 506f 696e 747b 302c {1, 0}, Point{0, │ │ │ │ -000055a0: 2032 7d2c 2050 6f69 6e74 7b32 2c20 347d 2}, Point{2, 4} │ │ │ │ -000055b0: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ -000055c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000055d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000055e0: 7c0a 7c6f 3320 3a20 4c69 7374 2020 2020 |.|o3 : List │ │ │ │ -000055f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00005610: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00005620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00005640: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ -00005650: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ -00005660: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00005670: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6861 ==.. * *note ha │ │ │ │ -00005680: 6461 6d61 7264 5072 6f64 7563 7428 4c69 damardProduct(Li │ │ │ │ -00005690: 7374 2c4c 6973 7429 3a20 6861 6461 6d61 st,List): hadama │ │ │ │ -000056a0: 7264 5072 6f64 7563 745f 6c70 4c69 7374 rdProduct_lpList │ │ │ │ -000056b0: 5f63 6d4c 6973 745f 7270 2c20 2d2d 0a20 _cmList_rp, --. │ │ │ │ -000056c0: 2020 2048 6164 616d 6172 6420 7072 6f64 Hadamard prod │ │ │ │ -000056d0: 7563 7420 6f66 2074 776f 2073 6574 7320 uct of two sets │ │ │ │ -000056e0: 6f66 2070 6f69 6e74 730a 2d2d 2d2d 2d2d of points.------ │ │ │ │ -000056f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005730: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00005740: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00005750: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00005760: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00005770: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00005780: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00005790: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -000057a0: 2f48 6164 616d 6172 642e 6d32 0a3a 3334 /Hadamard.m2.:34 │ │ │ │ -000057b0: 353a 302e 0a1f 0a46 696c 653a 2048 6164 5:0....File: Had │ │ │ │ -000057c0: 616d 6172 642e 696e 666f 2c20 4e6f 6465 amard.info, Node │ │ │ │ -000057d0: 3a20 6964 6561 6c4f 6650 726f 6a65 6374 : idealOfProject │ │ │ │ -000057e0: 6976 6550 6f69 6e74 732c 204e 6578 743a ivePoints, Next: │ │ │ │ -000057f0: 2050 6f69 6e74 2c20 5072 6576 3a20 6861 Point, Prev: ha │ │ │ │ -00005800: 6461 6d61 7264 5072 6f64 7563 745f 6c70 damardProduct_lp │ │ │ │ -00005810: 4c69 7374 5f63 6d4c 6973 745f 7270 2c20 List_cmList_rp, │ │ │ │ -00005820: 5570 3a20 546f 700a 0a69 6465 616c 4f66 Up: Top..idealOf │ │ │ │ -00005830: 5072 6f6a 6563 7469 7665 506f 696e 7473 ProjectivePoints │ │ │ │ -00005840: 202d 2d20 636f 6d70 7574 6573 2074 6865 -- computes the │ │ │ │ -00005850: 2069 6465 616c 206f 6620 7365 7420 6f66 ideal of set of │ │ │ │ -00005860: 2070 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a points.******** │ │ │ │ -00005870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00005890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000058a0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -000058b0: 653a 200a 2020 2020 2020 2020 6964 6561 e: . idea │ │ │ │ -000058c0: 6c4f 6650 726f 6a65 6374 6976 6550 6f69 lOfProjectivePoi │ │ │ │ -000058d0: 6e74 7328 4c2c 5329 0a20 202a 2049 6e70 nts(L,S). * Inp │ │ │ │ -000058e0: 7574 733a 0a20 2020 2020 202a 204c 2c20 uts:. * L, │ │ │ │ -000058f0: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ -00005900: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ -00005910: 2c2c 206f 6620 2a6e 6f74 6520 2870 726f ,, of *note (pro │ │ │ │ -00005920: 6a65 6374 6976 6529 2070 6f69 6e74 733a jective) points: │ │ │ │ -00005930: 0a20 2020 2020 2020 2050 6f69 6e74 2c0a . Point,. │ │ │ │ -00005940: 2020 2020 2020 2a20 532c 2061 202a 6e6f * S, a *no │ │ │ │ -00005950: 7465 2072 696e 673a 2028 4d61 6361 756c te ring: (Macaul │ │ │ │ -00005960: 6179 3244 6f63 2952 696e 672c 2c20 0a20 ay2Doc)Ring,, . │ │ │ │ -00005970: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00005980: 2020 2a20 492c 2061 6e20 2a6e 6f74 6520 * I, an *note │ │ │ │ -00005990: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ -000059a0: 3244 6f63 2949 6465 616c 2c2c 200a 0a44 2Doc)Ideal,, ..D │ │ │ │ -000059b0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -000059c0: 3d3d 3d3d 3d3d 0a0a 4769 7665 6e20 6120 ======..Given a │ │ │ │ -000059d0: 7365 7420 706f 696e 7473 2024 5824 2c20 set points $X$, │ │ │ │ -000059e0: 6974 2072 6574 7572 6e73 2074 6865 2064 it returns the d │ │ │ │ -000059f0: 6566 696e 696e 6720 6964 6561 6c20 6f66 efining ideal of │ │ │ │ -00005a00: 2024 4928 5829 240a 0a2b 2d2d 2d2d 2d2d $I(X)$..+------ │ │ │ │ -00005a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005a50: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ -00005a60: 203d 2051 515b 782c 792c 7a5d 2020 2020 = QQ[x,y,z] │ │ │ │ -00005a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005aa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00005ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005af0: 2020 2020 2020 207c 0a7c 6f31 203d 2053 |.|o1 = S │ │ │ │ -00005b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00004f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00004fb0: 0a7c 6f37 203a 2050 6f69 6e74 2020 2020 .|o7 : Point │ │ │ │ +00004fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00004ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00005000: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00005010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00005050: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ +00005060: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ +00005070: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00005080: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2068 ===.. * *note h │ │ │ │ +00005090: 6164 616d 6172 6450 726f 6475 6374 284c adamardProduct(L │ │ │ │ +000050a0: 6973 7429 3a20 6861 6461 6d61 7264 5072 ist): hadamardPr │ │ │ │ +000050b0: 6f64 7563 745f 6c70 4c69 7374 5f72 702c oduct_lpList_rp, │ │ │ │ +000050c0: 202d 2d20 4861 6461 6d61 7264 2070 726f -- Hadamard pro │ │ │ │ +000050d0: 6475 6374 0a20 2020 206f 6620 6120 6c69 duct. of a li │ │ │ │ +000050e0: 7374 206f 6620 686f 6d6f 6765 6e65 6f75 st of homogeneou │ │ │ │ +000050f0: 7320 6964 6561 6c73 2c20 6f72 2070 6f69 s ideals, or poi │ │ │ │ +00005100: 6e74 730a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d nts.------------ │ │ │ │ +00005110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005150: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +00005160: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +00005170: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +00005180: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +00005190: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +000051a0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +000051b0: 322f 7061 636b 6167 6573 2f48 6164 616d 2/packages/Hadam │ │ │ │ +000051c0: 6172 642e 6d32 0a3a 3332 303a 302e 0a1f ard.m2.:320:0... │ │ │ │ +000051d0: 0a46 696c 653a 2048 6164 616d 6172 642e .File: Hadamard. │ │ │ │ +000051e0: 696e 666f 2c20 4e6f 6465 3a20 6861 6461 info, Node: hada │ │ │ │ +000051f0: 6d61 7264 5072 6f64 7563 745f 6c70 4c69 mardProduct_lpLi │ │ │ │ +00005200: 7374 5f63 6d4c 6973 745f 7270 2c20 4e65 st_cmList_rp, Ne │ │ │ │ +00005210: 7874 3a20 6964 6561 6c4f 6650 726f 6a65 xt: idealOfProje │ │ │ │ +00005220: 6374 6976 6550 6f69 6e74 732c 2050 7265 ctivePoints, Pre │ │ │ │ +00005230: 763a 2068 6164 616d 6172 6450 726f 6475 v: hadamardProdu │ │ │ │ +00005240: 6374 5f6c 704c 6973 745f 7270 2c20 5570 ct_lpList_rp, Up │ │ │ │ +00005250: 3a20 546f 700a 0a68 6164 616d 6172 6450 : Top..hadamardP │ │ │ │ +00005260: 726f 6475 6374 284c 6973 742c 4c69 7374 roduct(List,List │ │ │ │ +00005270: 2920 2d2d 2048 6164 616d 6172 6420 7072 ) -- Hadamard pr │ │ │ │ +00005280: 6f64 7563 7420 6f66 2074 776f 2073 6574 oduct of two set │ │ │ │ +00005290: 7320 6f66 2070 6f69 6e74 730a 2a2a 2a2a s of points.**** │ │ │ │ +000052a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000052b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000052c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000052d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +000052e0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ +000052f0: 2a6e 6f74 6520 6861 6461 6d61 7264 5072 *note hadamardPr │ │ │ │ +00005300: 6f64 7563 743a 2068 6164 616d 6172 6450 oduct: hadamardP │ │ │ │ +00005310: 726f 6475 6374 2c0a 2020 2a20 5573 6167 roduct,. * Usag │ │ │ │ +00005320: 653a 200a 2020 2020 2020 2020 6861 6461 e: . hada │ │ │ │ +00005330: 6d61 7264 5072 6f64 7563 7428 4c2c 4d29 mardProduct(L,M) │ │ │ │ +00005340: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00005350: 2020 202a 204c 2c20 6120 2a6e 6f74 6520 * L, a *note │ │ │ │ +00005360: 6c69 7374 3a20 284d 6163 6175 6c61 7932 list: (Macaulay2 │ │ │ │ +00005370: 446f 6329 4c69 7374 2c2c 206f 6620 2a6e Doc)List,, of *n │ │ │ │ +00005380: 6f74 6520 506f 696e 743a 2050 6f69 6e74 ote Point: Point │ │ │ │ +00005390: 2c0a 2020 2020 2020 2a20 4d2c 2061 202a ,. * M, a * │ │ │ │ +000053a0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +000053b0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +000053c0: 6f66 202a 6e6f 7465 2050 6f69 6e74 3a20 of *note Point: │ │ │ │ +000053d0: 506f 696e 742c 0a20 202a 204f 7574 7075 Point,. * Outpu │ │ │ │ +000053e0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ +000053f0: 6f74 6520 6c69 7374 3a20 284d 6163 6175 ote list: (Macau │ │ │ │ +00005400: 6c61 7932 446f 6329 4c69 7374 2c2c 206f lay2Doc)List,, o │ │ │ │ +00005410: 6620 2a6e 6f74 6520 506f 696e 743a 2050 f *note Point: P │ │ │ │ +00005420: 6f69 6e74 2c0a 0a44 6573 6372 6970 7469 oint,..Descripti │ │ │ │ +00005430: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00005440: 4769 7665 6e20 7477 6f20 7365 7473 206f Given two sets o │ │ │ │ +00005450: 6620 706f 696e 7473 2024 4c24 2061 6e64 f points $L$ and │ │ │ │ +00005460: 2024 4d24 2072 6574 7572 6e73 2074 6865 $M$ returns the │ │ │ │ +00005470: 206c 6973 7420 6f66 2028 7765 6c6c 2d64 list of (well-d │ │ │ │ +00005480: 6566 696e 6564 290a 656e 7472 7977 6973 efined).entrywis │ │ │ │ +00005490: 6520 6d75 6c74 6970 6c69 6361 7469 6f6e e multiplication │ │ │ │ +000054a0: 206f 6620 7061 6972 7320 6f66 2070 6f69 of pairs of poi │ │ │ │ +000054b0: 6e74 7320 696e 2074 6865 2063 6172 7465 nts in the carte │ │ │ │ +000054c0: 7369 616e 2070 726f 6475 6374 2024 4c5c sian product $L\ │ │ │ │ +000054d0: 7469 6d65 730a 4d24 2e0a 0a2b 2d2d 2d2d times.M$...+---- │ │ │ │ +000054e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000054f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005500: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00005510: 4c20 3d20 7b70 6f69 6e74 7b30 2c31 7d2c L = {point{0,1}, │ │ │ │ +00005520: 2070 6f69 6e74 7b31 2c32 7d7d 3b20 2020 point{1,2}}; │ │ │ │ +00005530: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00005540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005560: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 4d20 ------+.|i2 : M │ │ │ │ +00005570: 3d20 7b70 6f69 6e74 7b31 2c30 7d2c 2070 = {point{1,0}, p │ │ │ │ +00005580: 6f69 6e74 7b32 2c32 7d7d 3b20 2020 2020 oint{2,2}}; │ │ │ │ +00005590: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000055a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000055b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000055c0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6861 6461 ----+.|i3 : hada │ │ │ │ +000055d0: 6d61 7264 5072 6f64 7563 7428 4c2c 4d29 mardProduct(L,M) │ │ │ │ +000055e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000055f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00005600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005620: 2020 7c0a 7c6f 3320 3d20 7b50 6f69 6e74 |.|o3 = {Point │ │ │ │ +00005630: 7b32 2c20 347d 2c20 506f 696e 747b 312c {2, 4}, Point{1, │ │ │ │ +00005640: 2030 7d2c 2050 6f69 6e74 7b30 2c20 327d 0}, Point{0, 2} │ │ │ │ +00005650: 7d7c 0a7c 2020 2020 2020 2020 2020 2020 }|.| │ │ │ │ +00005660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005680: 7c0a 7c6f 3320 3a20 4c69 7374 2020 2020 |.|o3 : List │ │ │ │ +00005690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000056a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000056b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000056c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000056d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000056e0: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +000056f0: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ +00005700: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00005710: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6861 ==.. * *note ha │ │ │ │ +00005720: 6461 6d61 7264 5072 6f64 7563 7428 4c69 damardProduct(Li │ │ │ │ +00005730: 7374 2c4c 6973 7429 3a20 6861 6461 6d61 st,List): hadama │ │ │ │ +00005740: 7264 5072 6f64 7563 745f 6c70 4c69 7374 rdProduct_lpList │ │ │ │ +00005750: 5f63 6d4c 6973 745f 7270 2c20 2d2d 0a20 _cmList_rp, --. │ │ │ │ +00005760: 2020 2048 6164 616d 6172 6420 7072 6f64 Hadamard prod │ │ │ │ +00005770: 7563 7420 6f66 2074 776f 2073 6574 7320 uct of two sets │ │ │ │ +00005780: 6f66 2070 6f69 6e74 730a 2d2d 2d2d 2d2d of points.------ │ │ │ │ +00005790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000057a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000057b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000057c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000057d0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +000057e0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +000057f0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00005800: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00005810: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00005820: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00005830: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00005840: 2f48 6164 616d 6172 642e 6d32 0a3a 3334 /Hadamard.m2.:34 │ │ │ │ +00005850: 353a 302e 0a1f 0a46 696c 653a 2048 6164 5:0....File: Had │ │ │ │ +00005860: 616d 6172 642e 696e 666f 2c20 4e6f 6465 amard.info, Node │ │ │ │ +00005870: 3a20 6964 6561 6c4f 6650 726f 6a65 6374 : idealOfProject │ │ │ │ +00005880: 6976 6550 6f69 6e74 732c 204e 6578 743a ivePoints, Next: │ │ │ │ +00005890: 2050 6f69 6e74 2c20 5072 6576 3a20 6861 Point, Prev: ha │ │ │ │ +000058a0: 6461 6d61 7264 5072 6f64 7563 745f 6c70 damardProduct_lp │ │ │ │ +000058b0: 4c69 7374 5f63 6d4c 6973 745f 7270 2c20 List_cmList_rp, │ │ │ │ +000058c0: 5570 3a20 546f 700a 0a69 6465 616c 4f66 Up: Top..idealOf │ │ │ │ +000058d0: 5072 6f6a 6563 7469 7665 506f 696e 7473 ProjectivePoints │ │ │ │ +000058e0: 202d 2d20 636f 6d70 7574 6573 2074 6865 -- computes the │ │ │ │ +000058f0: 2069 6465 616c 206f 6620 7365 7420 6f66 ideal of set of │ │ │ │ +00005900: 2070 6f69 6e74 730a 2a2a 2a2a 2a2a 2a2a points.******** │ │ │ │ +00005910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00005920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00005930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00005940: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ +00005950: 653a 200a 2020 2020 2020 2020 6964 6561 e: . idea │ │ │ │ +00005960: 6c4f 6650 726f 6a65 6374 6976 6550 6f69 lOfProjectivePoi │ │ │ │ +00005970: 6e74 7328 4c2c 5329 0a20 202a 2049 6e70 nts(L,S). * Inp │ │ │ │ +00005980: 7574 733a 0a20 2020 2020 202a 204c 2c20 uts:. * L, │ │ │ │ +00005990: 6120 2a6e 6f74 6520 6c69 7374 3a20 284d a *note list: (M │ │ │ │ +000059a0: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ +000059b0: 2c2c 206f 6620 2a6e 6f74 6520 2870 726f ,, of *note (pro │ │ │ │ +000059c0: 6a65 6374 6976 6529 2070 6f69 6e74 733a jective) points: │ │ │ │ +000059d0: 0a20 2020 2020 2020 2050 6f69 6e74 2c0a . Point,. │ │ │ │ +000059e0: 2020 2020 2020 2a20 532c 2061 202a 6e6f * S, a *no │ │ │ │ +000059f0: 7465 2072 696e 673a 2028 4d61 6361 756c te ring: (Macaul │ │ │ │ +00005a00: 6179 3244 6f63 2952 696e 672c 2c20 0a20 ay2Doc)Ring,, . │ │ │ │ +00005a10: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00005a20: 2020 2a20 492c 2061 6e20 2a6e 6f74 6520 * I, an *note │ │ │ │ +00005a30: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ +00005a40: 3244 6f63 2949 6465 616c 2c2c 200a 0a44 2Doc)Ideal,, ..D │ │ │ │ +00005a50: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00005a60: 3d3d 3d3d 3d3d 0a0a 4769 7665 6e20 6120 ======..Given a │ │ │ │ +00005a70: 7365 7420 706f 696e 7473 2024 5824 2c20 set points $X$, │ │ │ │ +00005a80: 6974 2072 6574 7572 6e73 2074 6865 2064 it returns the d │ │ │ │ +00005a90: 6566 696e 696e 6720 6964 6561 6c20 6f66 efining ideal of │ │ │ │ +00005aa0: 2024 4928 5829 240a 0a2b 2d2d 2d2d 2d2d $I(X)$..+------ │ │ │ │ +00005ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005af0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2053 -------+.|i1 : S │ │ │ │ +00005b00: 203d 2051 515b 782c 792c 7a5d 2020 2020 = QQ[x,y,z] │ │ │ │ 00005b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00005b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005b90: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -00005ba0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00005b90: 2020 2020 2020 207c 0a7c 6f31 203d 2053 |.|o1 = S │ │ │ │ +00005ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005be0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00005bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005c30: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2058 -------+.|i2 : X │ │ │ │ -00005c40: 203d 207b 706f 696e 747b 312c 312c 307d = {point{1,1,0} │ │ │ │ -00005c50: 2c70 6f69 6e74 7b30 2c31 2c31 7d2c 706f ,point{0,1,1},po │ │ │ │ -00005c60: 696e 747b 312c 322c 2d31 7d7d 2020 2020 int{1,2,-1}} │ │ │ │ +00005be0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00005bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005c30: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ +00005c40: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00005c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005c80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00005c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005cd0: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ -00005ce0: 506f 696e 747b 312c 2031 2c20 307d 2c20 Point{1, 1, 0}, │ │ │ │ -00005cf0: 506f 696e 747b 302c 2031 2c20 317d 2c20 Point{0, 1, 1}, │ │ │ │ -00005d00: 506f 696e 747b 312c 2032 2c20 2d31 7d7d Point{1, 2, -1}} │ │ │ │ +00005c80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00005c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005cd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2058 -------+.|i2 : X │ │ │ │ +00005ce0: 203d 207b 706f 696e 747b 312c 312c 307d = {point{1,1,0} │ │ │ │ +00005cf0: 2c70 6f69 6e74 7b30 2c31 2c31 7d2c 706f ,point{0,1,1},po │ │ │ │ +00005d00: 696e 747b 312c 322c 2d31 7d7d 2020 2020 int{1,2,-1}} │ │ │ │ 00005d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005d20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00005d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005d70: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ -00005d80: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005d70: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ +00005d80: 506f 696e 747b 312c 2031 2c20 307d 2c20 Point{1, 1, 0}, │ │ │ │ +00005d90: 506f 696e 747b 302c 2031 2c20 317d 2c20 Point{0, 1, 1}, │ │ │ │ +00005da0: 506f 696e 747b 312c 2032 2c20 2d31 7d7d Point{1, 2, -1}} │ │ │ │ 00005db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005dc0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00005dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005e10: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 -------+.|i3 : I │ │ │ │ -00005e20: 203d 2069 6465 616c 4f66 5072 6f6a 6563 = idealOfProjec │ │ │ │ -00005e30: 7469 7665 506f 696e 7473 2858 2c53 2920 tivePoints(X,S) │ │ │ │ +00005dc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00005dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005e10: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ +00005e20: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005e60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00005e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005eb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00005ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ed0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00005ee0: 3220 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00005ef0: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -00005f00: 2020 2020 3220 207c 0a7c 6f33 203d 2069 2 |.|o3 = i │ │ │ │ -00005f10: 6465 616c 2028 3378 2a7a 202d 2079 2a7a deal (3x*z - y*z │ │ │ │ -00005f20: 202b 207a 202c 2033 782a 7920 2d20 3379 + z , 3x*y - 3y │ │ │ │ -00005f30: 2020 2d20 792a 7a20 2b20 347a 202c 2033 - y*z + 4z , 3 │ │ │ │ -00005f40: 7820 202d 2033 7920 202d 2032 792a 7a20 x - 3y - 2y*z │ │ │ │ -00005f50: 2b20 357a 202c 207c 0a7c 2020 2020 202d + 5z , |.| - │ │ │ │ -00005f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00005fa0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -00005fb0: 3220 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ -00005fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00005ff0: 2020 2020 2020 207c 0a7c 2020 2020 2079 |.| y │ │ │ │ -00006000: 207a 202b 2079 2a7a 2020 2d20 327a 2029 z + y*z - 2z ) │ │ │ │ -00006010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006040: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00006050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005e60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00005e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00005eb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 -------+.|i3 : I │ │ │ │ +00005ec0: 203d 2069 6465 616c 4f66 5072 6f6a 6563 = idealOfProjec │ │ │ │ +00005ed0: 7469 7665 506f 696e 7473 2858 2c53 2920 tivePoints(X,S) │ │ │ │ +00005ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00005f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00005f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00005f70: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00005f80: 3220 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00005f90: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +00005fa0: 2020 2020 3220 207c 0a7c 6f33 203d 2069 2 |.|o3 = i │ │ │ │ +00005fb0: 6465 616c 2028 3378 2a7a 202d 2079 2a7a deal (3x*z - y*z │ │ │ │ +00005fc0: 202b 207a 202c 2033 782a 7920 2d20 3379 + z , 3x*y - 3y │ │ │ │ +00005fd0: 2020 2d20 792a 7a20 2b20 347a 202c 2033 - y*z + 4z , 3 │ │ │ │ +00005fe0: 7820 202d 2033 7920 202d 2032 792a 7a20 x - 3y - 2y*z │ │ │ │ +00005ff0: 2b20 357a 202c 207c 0a7c 2020 2020 202d + 5z , |.| - │ │ │ │ +00006000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006040: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00006050: 3220 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ 00006060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006090: 2020 2020 2020 207c 0a7c 6f33 203a 2049 |.|o3 : I │ │ │ │ -000060a0: 6465 616c 206f 6620 5320 2020 2020 2020 deal of S │ │ │ │ +00006090: 2020 2020 2020 207c 0a7c 2020 2020 2079 |.| y │ │ │ │ +000060a0: 207a 202b 2079 2a7a 2020 2d20 327a 2029 z + y*z - 2z ) │ │ │ │ 000060b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000060c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000060d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000060e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000060f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006130: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2049 -------+.|i4 : I │ │ │ │ -00006140: 3220 3d20 6861 6461 6d61 7264 506f 7765 2 = hadamardPowe │ │ │ │ -00006150: 7228 492c 3229 2020 2020 2020 2020 2020 r(I,2) │ │ │ │ +000060e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000060f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006130: 2020 2020 2020 207c 0a7c 6f33 203a 2049 |.|o3 : I │ │ │ │ +00006140: 6465 616c 206f 6620 5320 2020 2020 2020 deal of S │ │ │ │ +00006150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006180: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00006190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000061a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000061b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000061c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000061d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000061e0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000061f0: 2032 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ -00006200: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00006210: 2032 2020 2020 2020 2032 2020 2020 3320 2 2 3 │ │ │ │ -00006220: 2020 2020 3220 207c 0a7c 6f34 203d 2069 2 |.|o4 = i │ │ │ │ -00006230: 6465 616c 2028 7920 7a20 2d20 3138 782a deal (y z - 18x* │ │ │ │ -00006240: 7a20 202b 2079 2a7a 2020 2d20 327a 202c z + y*z - 2z , │ │ │ │ -00006250: 2078 2a79 2a7a 202d 2034 782a 7a20 2c20 x*y*z - 4x*z , │ │ │ │ -00006260: 7820 7a20 2d20 782a 7a20 2c20 3278 2020 x z - x*z , 2x │ │ │ │ -00006270: 2d20 3378 2079 207c 0a7c 2020 2020 202d - 3x y |.| - │ │ │ │ -00006280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000062a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000062b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000062c0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -000062d0: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ -000062e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000062f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006310: 2020 2020 2020 207c 0a7c 2020 2020 202b |.| + │ │ │ │ -00006320: 2078 2a79 2020 2d20 3678 2a7a 2029 2020 x*y - 6x*z ) │ │ │ │ -00006330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006360: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00006370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006180: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00006190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000061a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000061b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000061c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000061d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2049 -------+.|i4 : I │ │ │ │ +000061e0: 3220 3d20 6861 6461 6d61 7264 506f 7765 2 = hadamardPowe │ │ │ │ +000061f0: 7228 492c 3229 2020 2020 2020 2020 2020 r(I,2) │ │ │ │ +00006200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00006230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00006280: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00006290: 2032 2020 2020 2020 3220 2020 2020 3320 2 2 3 │ │ │ │ +000062a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000062b0: 2032 2020 2020 2020 2032 2020 2020 3320 2 2 3 │ │ │ │ +000062c0: 2020 2020 3220 207c 0a7c 6f34 203d 2069 2 |.|o4 = i │ │ │ │ +000062d0: 6465 616c 2028 7920 7a20 2d20 3138 782a deal (y z - 18x* │ │ │ │ +000062e0: 7a20 202b 2079 2a7a 2020 2d20 327a 202c z + y*z - 2z , │ │ │ │ +000062f0: 2078 2a79 2a7a 202d 2034 782a 7a20 2c20 x*y*z - 4x*z , │ │ │ │ +00006300: 7820 7a20 2d20 782a 7a20 2c20 3278 2020 x z - x*z , 2x │ │ │ │ +00006310: 2d20 3378 2079 207c 0a7c 2020 2020 202d - 3x y |.| - │ │ │ │ +00006320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006360: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00006370: 2020 2020 3220 2020 2020 2020 3220 2020 2 2 │ │ │ │ 00006380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000063a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000063b0: 2020 2020 2020 207c 0a7c 6f34 203a 2049 |.|o4 : I │ │ │ │ -000063c0: 6465 616c 206f 6620 5320 2020 2020 2020 deal of S │ │ │ │ +000063b0: 2020 2020 2020 207c 0a7c 2020 2020 202b |.| + │ │ │ │ +000063c0: 2078 2a79 2020 2d20 3678 2a7a 2029 2020 x*y - 6x*z ) │ │ │ │ 000063d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000063e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000063f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006400: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00006410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006450: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2058 -------+.|i5 : X │ │ │ │ -00006460: 3220 3d20 6861 6461 6d61 7264 506f 7765 2 = hadamardPowe │ │ │ │ -00006470: 7228 582c 3229 2020 2020 2020 2020 2020 r(X,2) │ │ │ │ +00006400: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00006410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006450: 2020 2020 2020 207c 0a7c 6f34 203a 2049 |.|o4 : I │ │ │ │ +00006460: 6465 616c 206f 6620 5320 2020 2020 2020 deal of S │ │ │ │ +00006470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000064a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000064b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000064c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000064d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000064e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000064f0: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ -00006500: 506f 696e 747b 312c 2034 2c20 317d 2c20 Point{1, 4, 1}, │ │ │ │ -00006510: 506f 696e 747b 302c 2032 2c20 2d31 7d2c Point{0, 2, -1}, │ │ │ │ -00006520: 2050 6f69 6e74 7b30 2c20 312c 2030 7d2c Point{0, 1, 0}, │ │ │ │ -00006530: 2050 6f69 6e74 7b30 2c20 312c 2031 7d2c Point{0, 1, 1}, │ │ │ │ -00006540: 2020 2020 2020 207c 0a7c 2020 2020 202d |.| - │ │ │ │ -00006550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006590: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2050 -------|.| P │ │ │ │ -000065a0: 6f69 6e74 7b31 2c20 312c 2030 7d2c 2050 oint{1, 1, 0}, P │ │ │ │ -000065b0: 6f69 6e74 7b31 2c20 322c 2030 7d7d 2020 oint{1, 2, 0}} │ │ │ │ -000065c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000065d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000065e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000065f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006630: 2020 2020 2020 207c 0a7c 6f35 203a 204c |.|o5 : L │ │ │ │ -00006640: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00006650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000064a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000064b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000064c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000064d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000064e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000064f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2058 -------+.|i5 : X │ │ │ │ +00006500: 3220 3d20 6861 6461 6d61 7264 506f 7765 2 = hadamardPowe │ │ │ │ +00006510: 7228 582c 3229 2020 2020 2020 2020 2020 r(X,2) │ │ │ │ +00006520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006540: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00006550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006590: 2020 2020 2020 207c 0a7c 6f35 203d 207b |.|o5 = { │ │ │ │ +000065a0: 506f 696e 747b 312c 2034 2c20 317d 2c20 Point{1, 4, 1}, │ │ │ │ +000065b0: 506f 696e 747b 302c 2032 2c20 2d31 7d2c Point{0, 2, -1}, │ │ │ │ +000065c0: 2050 6f69 6e74 7b30 2c20 312c 2030 7d2c Point{0, 1, 0}, │ │ │ │ +000065d0: 2050 6f69 6e74 7b30 2c20 312c 2031 7d2c Point{0, 1, 1}, │ │ │ │ +000065e0: 2020 2020 2020 207c 0a7c 2020 2020 202d |.| - │ │ │ │ +000065f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006630: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2050 -------|.| P │ │ │ │ +00006640: 6f69 6e74 7b31 2c20 312c 2030 7d2c 2050 oint{1, 1, 0}, P │ │ │ │ +00006650: 6f69 6e74 7b31 2c20 322c 2030 7d7d 2020 oint{1, 2, 0}} │ │ │ │ 00006660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006680: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00006690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000066a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000066b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000066c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000066d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2049 -------+.|i6 : I │ │ │ │ -000066e0: 3220 3d3d 2069 6465 616c 4f66 5072 6f6a 2 == idealOfProj │ │ │ │ -000066f0: 6563 7469 7665 506f 696e 7473 2858 322c ectivePoints(X2, │ │ │ │ -00006700: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ +00006680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00006690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000066a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000066b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000066c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000066d0: 2020 2020 2020 207c 0a7c 6f35 203a 204c |.|o5 : L │ │ │ │ +000066e0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +000066f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006720: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00006730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00006770: 2020 2020 2020 207c 0a7c 6f36 203d 2074 |.|o6 = t │ │ │ │ -00006780: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ -00006790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000067a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006720: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00006730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006770: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2049 -------+.|i6 : I │ │ │ │ +00006780: 3220 3d3d 2069 6465 616c 4f66 5072 6f6a 2 == idealOfProj │ │ │ │ +00006790: 6563 7469 7665 506f 696e 7473 2858 322c ectivePoints(X2, │ │ │ │ +000067a0: 5329 2020 2020 2020 2020 2020 2020 2020 S) │ │ │ │ 000067b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000067c0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000067d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000067e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000067f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006810: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ -00006820: 6f20 7573 6520 6964 6561 6c4f 6650 726f o use idealOfPro │ │ │ │ -00006830: 6a65 6374 6976 6550 6f69 6e74 733a 0a3d jectivePoints:.= │ │ │ │ -00006840: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00006850: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00006860: 3d3d 3d0a 0a20 202a 2022 6964 6561 6c4f ===.. * "idealO │ │ │ │ -00006870: 6650 726f 6a65 6374 6976 6550 6f69 6e74 fProjectivePoint │ │ │ │ -00006880: 7328 4c69 7374 2c52 696e 6729 220a 0a46 s(List,Ring)"..F │ │ │ │ -00006890: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -000068a0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -000068b0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -000068c0: 202a 6e6f 7465 2069 6465 616c 4f66 5072 *note idealOfPr │ │ │ │ -000068d0: 6f6a 6563 7469 7665 506f 696e 7473 3a20 ojectivePoints: │ │ │ │ -000068e0: 6964 6561 6c4f 6650 726f 6a65 6374 6976 idealOfProjectiv │ │ │ │ -000068f0: 6550 6f69 6e74 732c 2069 7320 6120 2a6e ePoints, is a *n │ │ │ │ -00006900: 6f74 650a 6d65 7468 6f64 2066 756e 6374 ote.method funct │ │ │ │ -00006910: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ -00006920: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ -00006930: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -00006940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006980: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00006990: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -000069a0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -000069b0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -000069c0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -000069d0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -000069e0: 7932 2f70 6163 6b61 6765 732f 4861 6461 y2/packages/Hada │ │ │ │ -000069f0: 6d61 7264 2e6d 320a 3a34 3234 3a30 2e0a mard.m2.:424:0.. │ │ │ │ -00006a00: 1f0a 4669 6c65 3a20 4861 6461 6d61 7264 ..File: Hadamard │ │ │ │ -00006a10: 2e69 6e66 6f2c 204e 6f64 653a 2050 6f69 .info, Node: Poi │ │ │ │ -00006a20: 6e74 2c20 4e65 7874 3a20 706f 696e 742c nt, Next: point, │ │ │ │ -00006a30: 2050 7265 763a 2069 6465 616c 4f66 5072 Prev: idealOfPr │ │ │ │ -00006a40: 6f6a 6563 7469 7665 506f 696e 7473 2c20 ojectivePoints, │ │ │ │ -00006a50: 5570 3a20 546f 700a 0a50 6f69 6e74 202d Up: Top..Point - │ │ │ │ -00006a60: 2d20 6120 6e65 7720 7479 7065 2066 6f72 - a new type for │ │ │ │ -00006a70: 2070 6f69 6e74 7320 696e 2070 726f 6a65 points in proje │ │ │ │ -00006a80: 6374 6976 6520 7370 6163 650a 2a2a 2a2a ctive space.**** │ │ │ │ -00006a90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006aa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006ab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00006ac0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00006ad0: 3d3d 3d3d 3d3d 3d0a 0a41 2070 6f69 6e74 =======..A point │ │ │ │ -00006ae0: 2069 6e20 7072 6f6a 6563 7469 7665 2073 in projective s │ │ │ │ -00006af0: 7061 6365 2069 7320 7265 7072 6573 656e pace is represen │ │ │ │ -00006b00: 7465 6420 6173 2061 6e20 6f62 6a65 6374 ted as an object │ │ │ │ -00006b10: 2069 6e20 7468 6520 636c 6173 7320 2a6e in the class *n │ │ │ │ -00006b20: 6f74 650a 506f 696e 743a 2050 6f69 6e74 ote.Point: Point │ │ │ │ -00006b30: 2c2e 2041 6e20 656c 656d 656e 7420 6f66 ,. An element of │ │ │ │ -00006b40: 2074 6869 7320 636c 6173 7320 6973 2061 this class is a │ │ │ │ -00006b50: 202a 6e6f 7465 2042 6173 6963 4c69 7374 *note BasicList │ │ │ │ -00006b60: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ -00006b70: 4261 7369 634c 6973 742c 2e0a 0a4d 6574 BasicList,...Met │ │ │ │ -00006b80: 686f 6473 2074 6861 7420 7573 6520 616e hods that use an │ │ │ │ -00006b90: 206f 626a 6563 7420 6f66 2063 6c61 7373 object of class │ │ │ │ -00006ba0: 2050 6f69 6e74 3a0a 3d3d 3d3d 3d3d 3d3d Point:.======== │ │ │ │ -00006bb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00006bc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00006bd0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 506f ==.. * *note Po │ │ │ │ -00006be0: 696e 7420 2a20 506f 696e 743a 2050 6f69 int * Point: Poi │ │ │ │ -00006bf0: 6e74 205f 7374 2050 6f69 6e74 2c20 2d2d nt _st Point, -- │ │ │ │ -00006c00: 2065 6e74 7279 7769 7365 2070 726f 6475 entrywise produ │ │ │ │ -00006c10: 6374 206f 6620 7477 6f0a 2020 2020 7072 ct of two. pr │ │ │ │ -00006c20: 6f6a 6563 7469 7665 2070 6f69 6e74 730a ojective points. │ │ │ │ -00006c30: 2020 2a20 2a6e 6f74 6520 506f 696e 7420 * *note Point │ │ │ │ -00006c40: 3d3d 2050 6f69 6e74 3a20 506f 696e 7420 == Point: Point │ │ │ │ -00006c50: 3d3d 2050 6f69 6e74 2c20 2d2d 2063 6865 == Point, -- che │ │ │ │ -00006c60: 636b 2065 7175 616c 6974 7920 6f66 2074 ck equality of t │ │ │ │ -00006c70: 776f 2070 726f 6a65 6374 6976 650a 2020 wo projective. │ │ │ │ -00006c80: 2020 706f 696e 7473 0a0a 466f 7220 7468 points..For th │ │ │ │ -00006c90: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00006ca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00006cb0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00006cc0: 6520 506f 696e 743a 2050 6f69 6e74 2c20 e Point: Point, │ │ │ │ -00006cd0: 6973 2061 202a 6e6f 7465 2074 7970 653a is a *note type: │ │ │ │ -00006ce0: 2028 4d61 6361 756c 6179 3244 6f63 2954 (Macaulay2Doc)T │ │ │ │ -00006cf0: 7970 652c 2c20 7769 7468 0a61 6e63 6573 ype,, with.ances │ │ │ │ -00006d00: 746f 7220 636c 6173 7365 7320 2a6e 6f74 tor classes *not │ │ │ │ -00006d10: 6520 4261 7369 634c 6973 743a 2028 4d61 e BasicList: (Ma │ │ │ │ -00006d20: 6361 756c 6179 3244 6f63 2942 6173 6963 caulay2Doc)Basic │ │ │ │ -00006d30: 4c69 7374 2c20 3c20 2a6e 6f74 6520 5468 List, < *note Th │ │ │ │ -00006d40: 696e 673a 0a28 4d61 6361 756c 6179 3244 ing:.(Macaulay2D │ │ │ │ -00006d50: 6f63 2954 6869 6e67 2c2e 0a0a 2d2d 2d2d oc)Thing,...---- │ │ │ │ -00006d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00006da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00006db0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00006dc0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00006dd0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00006de0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00006df0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00006e00: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00006e10: 6573 2f48 6164 616d 6172 642e 6d32 0a3a es/Hadamard.m2.: │ │ │ │ -00006e20: 3138 333a 302e 0a1f 0a46 696c 653a 2048 183:0....File: H │ │ │ │ -00006e30: 6164 616d 6172 642e 696e 666f 2c20 4e6f adamard.info, No │ │ │ │ -00006e40: 6465 3a20 706f 696e 742c 204e 6578 743a de: point, Next: │ │ │ │ -00006e50: 2050 6f69 6e74 205f 7374 2050 6f69 6e74 Point _st Point │ │ │ │ -00006e60: 2c20 5072 6576 3a20 506f 696e 742c 2055 , Prev: Point, U │ │ │ │ -00006e70: 703a 2054 6f70 0a0a 706f 696e 7420 2d2d p: Top..point -- │ │ │ │ -00006e80: 2063 6f6e 7374 7275 6374 7320 6120 7072 constructs a pr │ │ │ │ -00006e90: 6f6a 6563 7469 7665 2070 6f69 6e74 2066 ojective point f │ │ │ │ -00006ea0: 726f 6d20 7468 6520 6c69 7374 2028 6f72 rom the list (or │ │ │ │ -00006eb0: 2061 7272 6179 2920 6f66 2063 6f6f 7264 array) of coord │ │ │ │ -00006ec0: 696e 6174 6573 2e0a 2a2a 2a2a 2a2a 2a2a inates..******** │ │ │ │ -00006ed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006ee0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006ef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006f00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00006f10: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00006f20: 6765 3a20 0a20 2020 2020 2020 2070 6f69 ge: . poi │ │ │ │ -00006f30: 6e74 284c 290a 2020 2a20 496e 7075 7473 nt(L). * Inputs │ │ │ │ -00006f40: 3a0a 2020 2020 2020 2a20 4c2c 2061 202a :. * L, a * │ │ │ │ -00006f50: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00006f60: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00006f70: 6f72 202a 6e6f 7465 2061 7272 6179 3a0a or *note array:. │ │ │ │ -00006f80: 2020 2020 2020 2020 284d 6163 6175 6c61 (Macaula │ │ │ │ -00006f90: 7932 446f 6329 4172 7261 792c 206f 7220 y2Doc)Array, or │ │ │ │ -00006fa0: 2a6e 6f74 6520 7669 7369 626c 6520 6c69 *note visible li │ │ │ │ -00006fb0: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ -00006fc0: 6329 5669 7369 626c 654c 6973 742c 0a20 c)VisibleList,. │ │ │ │ -00006fd0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00006fe0: 2020 2a20 616e 2069 6e73 7461 6e63 6520 * an instance │ │ │ │ -00006ff0: 6f66 2074 6865 2074 7970 6520 2a6e 6f74 of the type *not │ │ │ │ -00007000: 6520 506f 696e 743a 2050 6f69 6e74 2c2c e Point: Point,, │ │ │ │ -00007010: 200a 0a44 6573 6372 6970 7469 6f6e 0a3d ..Description.= │ │ │ │ -00007020: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ -00007030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007040: 2b0a 7c69 3120 3a20 706f 696e 7420 7b31 +.|i1 : point {1 │ │ │ │ -00007050: 2c32 2c33 7d20 7c0a 7c20 2020 2020 2020 ,2,3} |.| │ │ │ │ -00007060: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00007070: 3120 3d20 506f 696e 747b 312c 2032 2c20 1 = Point{1, 2, │ │ │ │ -00007080: 337d 7c0a 7c20 2020 2020 2020 2020 2020 3}|.| │ │ │ │ -00007090: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -000070a0: 506f 696e 7420 2020 2020 2020 2020 7c0a Point |. │ │ │ │ -000070b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -000070c0: 2d2d 2d2d 2b0a 7c69 3220 3a20 706f 696e ----+.|i2 : poin │ │ │ │ -000070d0: 7420 5b31 2c34 2c36 5d20 7c0a 7c20 2020 t [1,4,6] |.| │ │ │ │ -000070e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000070f0: 7c0a 7c6f 3220 3d20 506f 696e 747b 312c |.|o2 = Point{1, │ │ │ │ -00007100: 2034 2c20 367d 7c0a 7c20 2020 2020 2020 4, 6}|.| │ │ │ │ -00007110: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00007120: 3220 3a20 506f 696e 7420 2020 2020 2020 2 : Point │ │ │ │ -00007130: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00007140: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ -00007150: 746f 2075 7365 2070 6f69 6e74 3a0a 3d3d to use point:.== │ │ │ │ -00007160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00007170: 0a0a 2020 2a20 2270 6f69 6e74 2856 6973 .. * "point(Vis │ │ │ │ -00007180: 6962 6c65 4c69 7374 2922 0a0a 466f 7220 ibleList)"..For │ │ │ │ -00007190: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -000071a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000071b0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -000071c0: 6f74 6520 706f 696e 743a 2070 6f69 6e74 ote point: point │ │ │ │ -000071d0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -000071e0: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -000071f0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00007200: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ -00007210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00007260: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00007270: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00007280: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00007290: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -000072a0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -000072b0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -000072c0: 6167 6573 2f48 6164 616d 6172 642e 6d32 ages/Hadamard.m2 │ │ │ │ -000072d0: 0a3a 3234 343a 302e 0a1f 0a46 696c 653a .:244:0....File: │ │ │ │ -000072e0: 2048 6164 616d 6172 642e 696e 666f 2c20 Hadamard.info, │ │ │ │ -000072f0: 4e6f 6465 3a20 506f 696e 7420 5f73 7420 Node: Point _st │ │ │ │ -00007300: 506f 696e 742c 204e 6578 743a 2050 6f69 Point, Next: Poi │ │ │ │ -00007310: 6e74 203d 3d20 506f 696e 742c 2050 7265 nt == Point, Pre │ │ │ │ -00007320: 763a 2070 6f69 6e74 2c20 5570 3a20 546f v: point, Up: To │ │ │ │ -00007330: 700a 0a50 6f69 6e74 202a 2050 6f69 6e74 p..Point * Point │ │ │ │ -00007340: 202d 2d20 656e 7472 7977 6973 6520 7072 -- entrywise pr │ │ │ │ -00007350: 6f64 7563 7420 6f66 2074 776f 2070 726f oduct of two pro │ │ │ │ -00007360: 6a65 6374 6976 6520 706f 696e 7473 0a2a jective points.* │ │ │ │ -00007370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00007380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00007390: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000073a0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -000073b0: 4f70 6572 6174 6f72 3a20 2a6e 6f74 6520 Operator: *note │ │ │ │ -000073c0: 2a3a 2028 4d61 6361 756c 6179 3244 6f63 *: (Macaulay2Doc │ │ │ │ -000073d0: 295f 7374 2c0a 2020 2a20 5573 6167 653a )_st,. * Usage: │ │ │ │ -000073e0: 200a 2020 2020 2020 2020 7020 2a20 710a . p * q. │ │ │ │ -000073f0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00007400: 2020 2a20 702c 2061 6e20 696e 7374 616e * p, an instan │ │ │ │ -00007410: 6365 206f 6620 7468 6520 7479 7065 202a ce of the type * │ │ │ │ -00007420: 6e6f 7465 2050 6f69 6e74 3a20 506f 696e note Point: Poin │ │ │ │ -00007430: 742c 2c20 0a20 2020 2020 202a 2071 2c20 t,, . * q, │ │ │ │ -00007440: 616e 2069 6e73 7461 6e63 6520 6f66 2074 an instance of t │ │ │ │ -00007450: 6865 2074 7970 6520 2a6e 6f74 6520 506f he type *note Po │ │ │ │ -00007460: 696e 743a 2050 6f69 6e74 2c2c 200a 2020 int: Point,, . │ │ │ │ -00007470: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -00007480: 202a 2061 6e20 696e 7374 616e 6365 206f * an instance o │ │ │ │ -00007490: 6620 7468 6520 7479 7065 202a 6e6f 7465 f the type *note │ │ │ │ -000074a0: 2050 6f69 6e74 3a20 506f 696e 742c 2c20 Point: Point,, │ │ │ │ -000074b0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -000074c0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d =========..+---- │ │ │ │ -000074d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000074e0: 2d2d 2d2d 2b0a 7c69 3120 3a20 7020 3d20 ----+.|i1 : p = │ │ │ │ -000074f0: 706f 696e 7420 7b31 2c32 2c33 7d3b 207c point {1,2,3}; | │ │ │ │ -00007500: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00007510: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00007520: 3a20 7120 3d20 706f 696e 7420 7b2d 312c : q = point {-1, │ │ │ │ -00007530: 322c 357d 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2,5};|.+-------- │ │ │ │ -00007540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007550: 2b0a 7c69 3320 3a20 7020 2a20 7120 2020 +.|i3 : p * q │ │ │ │ -00007560: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00007570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007580: 2020 2020 2020 7c0a 7c6f 3320 3d20 506f |.|o3 = Po │ │ │ │ -00007590: 696e 747b 2d31 2c20 342c 2031 357d 2020 int{-1, 4, 15} │ │ │ │ -000075a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000075b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000075c0: 3320 3a20 506f 696e 7420 2020 2020 2020 3 : Point │ │ │ │ -000075d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000067c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000067d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000067e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000067f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006810: 2020 2020 2020 207c 0a7c 6f36 203d 2074 |.|o6 = t │ │ │ │ +00006820: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ +00006830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00006860: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00006870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000068a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000068b0: 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 -------+..Ways t │ │ │ │ +000068c0: 6f20 7573 6520 6964 6561 6c4f 6650 726f o use idealOfPro │ │ │ │ +000068d0: 6a65 6374 6976 6550 6f69 6e74 733a 0a3d jectivePoints:.= │ │ │ │ +000068e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000068f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00006900: 3d3d 3d0a 0a20 202a 2022 6964 6561 6c4f ===.. * "idealO │ │ │ │ +00006910: 6650 726f 6a65 6374 6976 6550 6f69 6e74 fProjectivePoint │ │ │ │ +00006920: 7328 4c69 7374 2c52 696e 6729 220a 0a46 s(List,Ring)"..F │ │ │ │ +00006930: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00006940: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00006950: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00006960: 202a 6e6f 7465 2069 6465 616c 4f66 5072 *note idealOfPr │ │ │ │ +00006970: 6f6a 6563 7469 7665 506f 696e 7473 3a20 ojectivePoints: │ │ │ │ +00006980: 6964 6561 6c4f 6650 726f 6a65 6374 6976 idealOfProjectiv │ │ │ │ +00006990: 6550 6f69 6e74 732c 2069 7320 6120 2a6e ePoints, is a *n │ │ │ │ +000069a0: 6f74 650a 6d65 7468 6f64 2066 756e 6374 ote.method funct │ │ │ │ +000069b0: 696f 6e3a 2028 4d61 6361 756c 6179 3244 ion: (Macaulay2D │ │ │ │ +000069c0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +000069d0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ +000069e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000069f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006a20: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00006a30: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00006a40: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00006a50: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00006a60: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00006a70: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00006a80: 7932 2f70 6163 6b61 6765 732f 4861 6461 y2/packages/Hada │ │ │ │ +00006a90: 6d61 7264 2e6d 320a 3a34 3234 3a30 2e0a mard.m2.:424:0.. │ │ │ │ +00006aa0: 1f0a 4669 6c65 3a20 4861 6461 6d61 7264 ..File: Hadamard │ │ │ │ +00006ab0: 2e69 6e66 6f2c 204e 6f64 653a 2050 6f69 .info, Node: Poi │ │ │ │ +00006ac0: 6e74 2c20 4e65 7874 3a20 706f 696e 742c nt, Next: point, │ │ │ │ +00006ad0: 2050 7265 763a 2069 6465 616c 4f66 5072 Prev: idealOfPr │ │ │ │ +00006ae0: 6f6a 6563 7469 7665 506f 696e 7473 2c20 ojectivePoints, │ │ │ │ +00006af0: 5570 3a20 546f 700a 0a50 6f69 6e74 202d Up: Top..Point - │ │ │ │ +00006b00: 2d20 6120 6e65 7720 7479 7065 2066 6f72 - a new type for │ │ │ │ +00006b10: 2070 6f69 6e74 7320 696e 2070 726f 6a65 points in proje │ │ │ │ +00006b20: 6374 6976 6520 7370 6163 650a 2a2a 2a2a ctive space.**** │ │ │ │ +00006b30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006b40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006b50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00006b60: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00006b70: 3d3d 3d3d 3d3d 3d0a 0a41 2070 6f69 6e74 =======..A point │ │ │ │ +00006b80: 2069 6e20 7072 6f6a 6563 7469 7665 2073 in projective s │ │ │ │ +00006b90: 7061 6365 2069 7320 7265 7072 6573 656e pace is represen │ │ │ │ +00006ba0: 7465 6420 6173 2061 6e20 6f62 6a65 6374 ted as an object │ │ │ │ +00006bb0: 2069 6e20 7468 6520 636c 6173 7320 2a6e in the class *n │ │ │ │ +00006bc0: 6f74 650a 506f 696e 743a 2050 6f69 6e74 ote.Point: Point │ │ │ │ +00006bd0: 2c2e 2041 6e20 656c 656d 656e 7420 6f66 ,. An element of │ │ │ │ +00006be0: 2074 6869 7320 636c 6173 7320 6973 2061 this class is a │ │ │ │ +00006bf0: 202a 6e6f 7465 2042 6173 6963 4c69 7374 *note BasicList │ │ │ │ +00006c00: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +00006c10: 4261 7369 634c 6973 742c 2e0a 0a4d 6574 BasicList,...Met │ │ │ │ +00006c20: 686f 6473 2074 6861 7420 7573 6520 616e hods that use an │ │ │ │ +00006c30: 206f 626a 6563 7420 6f66 2063 6c61 7373 object of class │ │ │ │ +00006c40: 2050 6f69 6e74 3a0a 3d3d 3d3d 3d3d 3d3d Point:.======== │ │ │ │ +00006c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00006c60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00006c70: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 506f ==.. * *note Po │ │ │ │ +00006c80: 696e 7420 2a20 506f 696e 743a 2050 6f69 int * Point: Poi │ │ │ │ +00006c90: 6e74 205f 7374 2050 6f69 6e74 2c20 2d2d nt _st Point, -- │ │ │ │ +00006ca0: 2065 6e74 7279 7769 7365 2070 726f 6475 entrywise produ │ │ │ │ +00006cb0: 6374 206f 6620 7477 6f0a 2020 2020 7072 ct of two. pr │ │ │ │ +00006cc0: 6f6a 6563 7469 7665 2070 6f69 6e74 730a ojective points. │ │ │ │ +00006cd0: 2020 2a20 2a6e 6f74 6520 506f 696e 7420 * *note Point │ │ │ │ +00006ce0: 3d3d 2050 6f69 6e74 3a20 506f 696e 7420 == Point: Point │ │ │ │ +00006cf0: 3d3d 2050 6f69 6e74 2c20 2d2d 2063 6865 == Point, -- che │ │ │ │ +00006d00: 636b 2065 7175 616c 6974 7920 6f66 2074 ck equality of t │ │ │ │ +00006d10: 776f 2070 726f 6a65 6374 6976 650a 2020 wo projective. │ │ │ │ +00006d20: 2020 706f 696e 7473 0a0a 466f 7220 7468 points..For th │ │ │ │ +00006d30: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00006d40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00006d50: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00006d60: 6520 506f 696e 743a 2050 6f69 6e74 2c20 e Point: Point, │ │ │ │ +00006d70: 6973 2061 202a 6e6f 7465 2074 7970 653a is a *note type: │ │ │ │ +00006d80: 2028 4d61 6361 756c 6179 3244 6f63 2954 (Macaulay2Doc)T │ │ │ │ +00006d90: 7970 652c 2c20 7769 7468 0a61 6e63 6573 ype,, with.ances │ │ │ │ +00006da0: 746f 7220 636c 6173 7365 7320 2a6e 6f74 tor classes *not │ │ │ │ +00006db0: 6520 4261 7369 634c 6973 743a 2028 4d61 e BasicList: (Ma │ │ │ │ +00006dc0: 6361 756c 6179 3244 6f63 2942 6173 6963 caulay2Doc)Basic │ │ │ │ +00006dd0: 4c69 7374 2c20 3c20 2a6e 6f74 6520 5468 List, < *note Th │ │ │ │ +00006de0: 696e 673a 0a28 4d61 6361 756c 6179 3244 ing:.(Macaulay2D │ │ │ │ +00006df0: 6f63 2954 6869 6e67 2c2e 0a0a 2d2d 2d2d oc)Thing,...---- │ │ │ │ +00006e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00006e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00006e50: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00006e60: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00006e70: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00006e80: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00006e90: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00006ea0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00006eb0: 6573 2f48 6164 616d 6172 642e 6d32 0a3a es/Hadamard.m2.: │ │ │ │ +00006ec0: 3138 333a 302e 0a1f 0a46 696c 653a 2048 183:0....File: H │ │ │ │ +00006ed0: 6164 616d 6172 642e 696e 666f 2c20 4e6f adamard.info, No │ │ │ │ +00006ee0: 6465 3a20 706f 696e 742c 204e 6578 743a de: point, Next: │ │ │ │ +00006ef0: 2050 6f69 6e74 205f 7374 2050 6f69 6e74 Point _st Point │ │ │ │ +00006f00: 2c20 5072 6576 3a20 506f 696e 742c 2055 , Prev: Point, U │ │ │ │ +00006f10: 703a 2054 6f70 0a0a 706f 696e 7420 2d2d p: Top..point -- │ │ │ │ +00006f20: 2063 6f6e 7374 7275 6374 7320 6120 7072 constructs a pr │ │ │ │ +00006f30: 6f6a 6563 7469 7665 2070 6f69 6e74 2066 ojective point f │ │ │ │ +00006f40: 726f 6d20 7468 6520 6c69 7374 2028 6f72 rom the list (or │ │ │ │ +00006f50: 2061 7272 6179 2920 6f66 2063 6f6f 7264 array) of coord │ │ │ │ +00006f60: 696e 6174 6573 2e0a 2a2a 2a2a 2a2a 2a2a inates..******** │ │ │ │ +00006f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006fa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00006fb0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +00006fc0: 6765 3a20 0a20 2020 2020 2020 2070 6f69 ge: . poi │ │ │ │ +00006fd0: 6e74 284c 290a 2020 2a20 496e 7075 7473 nt(L). * Inputs │ │ │ │ +00006fe0: 3a0a 2020 2020 2020 2a20 4c2c 2061 202a :. * L, a * │ │ │ │ +00006ff0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +00007000: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +00007010: 6f72 202a 6e6f 7465 2061 7272 6179 3a0a or *note array:. │ │ │ │ +00007020: 2020 2020 2020 2020 284d 6163 6175 6c61 (Macaula │ │ │ │ +00007030: 7932 446f 6329 4172 7261 792c 206f 7220 y2Doc)Array, or │ │ │ │ +00007040: 2a6e 6f74 6520 7669 7369 626c 6520 6c69 *note visible li │ │ │ │ +00007050: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ +00007060: 6329 5669 7369 626c 654c 6973 742c 0a20 c)VisibleList,. │ │ │ │ +00007070: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00007080: 2020 2a20 616e 2069 6e73 7461 6e63 6520 * an instance │ │ │ │ +00007090: 6f66 2074 6865 2074 7970 6520 2a6e 6f74 of the type *not │ │ │ │ +000070a0: 6520 506f 696e 743a 2050 6f69 6e74 2c2c e Point: Point,, │ │ │ │ +000070b0: 200a 0a44 6573 6372 6970 7469 6f6e 0a3d ..Description.= │ │ │ │ +000070c0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ +000070d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000070e0: 2b0a 7c69 3120 3a20 706f 696e 7420 7b31 +.|i1 : point {1 │ │ │ │ +000070f0: 2c32 2c33 7d20 7c0a 7c20 2020 2020 2020 ,2,3} |.| │ │ │ │ +00007100: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00007110: 3120 3d20 506f 696e 747b 312c 2032 2c20 1 = Point{1, 2, │ │ │ │ +00007120: 337d 7c0a 7c20 2020 2020 2020 2020 2020 3}|.| │ │ │ │ +00007130: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00007140: 506f 696e 7420 2020 2020 2020 2020 7c0a Point |. │ │ │ │ +00007150: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00007160: 2d2d 2d2d 2b0a 7c69 3220 3a20 706f 696e ----+.|i2 : poin │ │ │ │ +00007170: 7420 5b31 2c34 2c36 5d20 7c0a 7c20 2020 t [1,4,6] |.| │ │ │ │ +00007180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007190: 7c0a 7c6f 3220 3d20 506f 696e 747b 312c |.|o2 = Point{1, │ │ │ │ +000071a0: 2034 2c20 367d 7c0a 7c20 2020 2020 2020 4, 6}|.| │ │ │ │ +000071b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +000071c0: 3220 3a20 506f 696e 7420 2020 2020 2020 2 : Point │ │ │ │ +000071d0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000071e0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ +000071f0: 746f 2075 7365 2070 6f69 6e74 3a0a 3d3d to use point:.== │ │ │ │ +00007200: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00007210: 0a0a 2020 2a20 2270 6f69 6e74 2856 6973 .. * "point(Vis │ │ │ │ +00007220: 6962 6c65 4c69 7374 2922 0a0a 466f 7220 ibleList)"..For │ │ │ │ +00007230: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +00007240: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00007250: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00007260: 6f74 6520 706f 696e 743a 2070 6f69 6e74 ote point: point │ │ │ │ +00007270: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ +00007280: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ +00007290: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +000072a0: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +000072b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000072c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000072d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000072e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000072f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00007300: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00007310: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00007320: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00007330: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00007340: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00007350: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00007360: 6167 6573 2f48 6164 616d 6172 642e 6d32 ages/Hadamard.m2 │ │ │ │ +00007370: 0a3a 3234 343a 302e 0a1f 0a46 696c 653a .:244:0....File: │ │ │ │ +00007380: 2048 6164 616d 6172 642e 696e 666f 2c20 Hadamard.info, │ │ │ │ +00007390: 4e6f 6465 3a20 506f 696e 7420 5f73 7420 Node: Point _st │ │ │ │ +000073a0: 506f 696e 742c 204e 6578 743a 2050 6f69 Point, Next: Poi │ │ │ │ +000073b0: 6e74 203d 3d20 506f 696e 742c 2050 7265 nt == Point, Pre │ │ │ │ +000073c0: 763a 2070 6f69 6e74 2c20 5570 3a20 546f v: point, Up: To │ │ │ │ +000073d0: 700a 0a50 6f69 6e74 202a 2050 6f69 6e74 p..Point * Point │ │ │ │ +000073e0: 202d 2d20 656e 7472 7977 6973 6520 7072 -- entrywise pr │ │ │ │ +000073f0: 6f64 7563 7420 6f66 2074 776f 2070 726f oduct of two pro │ │ │ │ +00007400: 6a65 6374 6976 6520 706f 696e 7473 0a2a jective points.* │ │ │ │ +00007410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00007420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00007430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00007440: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00007450: 4f70 6572 6174 6f72 3a20 2a6e 6f74 6520 Operator: *note │ │ │ │ +00007460: 2a3a 2028 4d61 6361 756c 6179 3244 6f63 *: (Macaulay2Doc │ │ │ │ +00007470: 295f 7374 2c0a 2020 2a20 5573 6167 653a )_st,. * Usage: │ │ │ │ +00007480: 200a 2020 2020 2020 2020 7020 2a20 710a . p * q. │ │ │ │ +00007490: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +000074a0: 2020 2a20 702c 2061 6e20 696e 7374 616e * p, an instan │ │ │ │ +000074b0: 6365 206f 6620 7468 6520 7479 7065 202a ce of the type * │ │ │ │ +000074c0: 6e6f 7465 2050 6f69 6e74 3a20 506f 696e note Point: Poin │ │ │ │ +000074d0: 742c 2c20 0a20 2020 2020 202a 2071 2c20 t,, . * q, │ │ │ │ +000074e0: 616e 2069 6e73 7461 6e63 6520 6f66 2074 an instance of t │ │ │ │ +000074f0: 6865 2074 7970 6520 2a6e 6f74 6520 506f he type *note Po │ │ │ │ +00007500: 696e 743a 2050 6f69 6e74 2c2c 200a 2020 int: Point,, . │ │ │ │ +00007510: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00007520: 202a 2061 6e20 696e 7374 616e 6365 206f * an instance o │ │ │ │ +00007530: 6620 7468 6520 7479 7065 202a 6e6f 7465 f the type *note │ │ │ │ +00007540: 2050 6f69 6e74 3a20 506f 696e 742c 2c20 Point: Point,, │ │ │ │ +00007550: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00007560: 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d =========..+---- │ │ │ │ +00007570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007580: 2d2d 2d2d 2b0a 7c69 3120 3a20 7020 3d20 ----+.|i1 : p = │ │ │ │ +00007590: 706f 696e 7420 7b31 2c32 2c33 7d3b 207c point {1,2,3}; | │ │ │ │ +000075a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000075b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +000075c0: 3a20 7120 3d20 706f 696e 7420 7b2d 312c : q = point {-1, │ │ │ │ +000075d0: 322c 357d 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2,5};|.+-------- │ │ │ │ 000075e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000075f0: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2074 --+..Note that t │ │ │ │ -00007600: 6869 7320 6f70 6572 6174 696f 6e20 6973 his operation is │ │ │ │ -00007610: 206e 6f74 2061 6c77 6179 7320 7765 6c6c not always well │ │ │ │ -00007620: 2d64 6566 696e 6564 2069 6e20 7072 6f6a -defined in proj │ │ │ │ -00007630: 6563 7469 7665 2073 7061 6365 2c20 652e ective space, e. │ │ │ │ -00007640: 672e 2c0a 7468 6520 4861 6461 6d61 7264 g.,.the Hadamard │ │ │ │ -00007650: 2070 726f 6475 6374 206f 6620 7468 6520 product of the │ │ │ │ -00007660: 706f 696e 7473 2024 5b31 3a30 5d24 2061 points $[1:0]$ a │ │ │ │ -00007670: 6e64 2024 5b30 3a31 5d24 2069 7320 6e6f nd $[0:1]$ is no │ │ │ │ -00007680: 7420 7765 6c6c 2d64 6566 696e 6564 0a0a t well-defined.. │ │ │ │ -00007690: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ -000076a0: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ -000076b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000076c0: 3d0a 0a20 202a 202a 6e6f 7465 2050 6f69 =.. * *note Poi │ │ │ │ -000076d0: 6e74 202a 2050 6f69 6e74 3a20 506f 696e nt * Point: Poin │ │ │ │ -000076e0: 7420 5f73 7420 506f 696e 742c 202d 2d20 t _st Point, -- │ │ │ │ -000076f0: 656e 7472 7977 6973 6520 7072 6f64 7563 entrywise produc │ │ │ │ -00007700: 7420 6f66 2074 776f 0a20 2020 2070 726f t of two. pro │ │ │ │ -00007710: 6a65 6374 6976 6520 706f 696e 7473 0a2d jective points.- │ │ │ │ -00007720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00007770: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00007780: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00007790: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -000077a0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -000077b0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -000077c0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -000077d0: 6b61 6765 732f 4861 6461 6d61 7264 2e6d kages/Hadamard.m │ │ │ │ -000077e0: 320a 3a32 3035 3a30 2e0a 1f0a 4669 6c65 2.:205:0....File │ │ │ │ -000077f0: 3a20 4861 6461 6d61 7264 2e69 6e66 6f2c : Hadamard.info, │ │ │ │ -00007800: 204e 6f64 653a 2050 6f69 6e74 203d 3d20 Node: Point == │ │ │ │ -00007810: 506f 696e 742c 2050 7265 763a 2050 6f69 Point, Prev: Poi │ │ │ │ -00007820: 6e74 205f 7374 2050 6f69 6e74 2c20 5570 nt _st Point, Up │ │ │ │ -00007830: 3a20 546f 700a 0a50 6f69 6e74 203d 3d20 : Top..Point == │ │ │ │ -00007840: 506f 696e 7420 2d2d 2063 6865 636b 2065 Point -- check e │ │ │ │ -00007850: 7175 616c 6974 7920 6f66 2074 776f 2070 quality of two p │ │ │ │ -00007860: 726f 6a65 6374 6976 6520 706f 696e 7473 rojective points │ │ │ │ -00007870: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00007880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00007890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000078a0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -000078b0: 4f70 6572 6174 6f72 3a20 2a6e 6f74 6520 Operator: *note │ │ │ │ -000078c0: 3d3d 3a20 284d 6163 6175 6c61 7932 446f ==: (Macaulay2Do │ │ │ │ -000078d0: 6329 3d3d 2c0a 2020 2a20 5573 6167 653a c)==,. * Usage: │ │ │ │ -000078e0: 200a 2020 2020 2020 2020 7020 3d3d 2071 . p == q │ │ │ │ -000078f0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -00007900: 2020 202a 2070 2c20 616e 2069 6e73 7461 * p, an insta │ │ │ │ -00007910: 6e63 6520 6f66 2074 6865 2074 7970 6520 nce of the type │ │ │ │ -00007920: 2a6e 6f74 6520 506f 696e 743a 2050 6f69 *note Point: Poi │ │ │ │ -00007930: 6e74 2c2c 200a 2020 2020 2020 2a20 712c nt,, . * q, │ │ │ │ -00007940: 2061 6e20 696e 7374 616e 6365 206f 6620 an instance of │ │ │ │ -00007950: 7468 6520 7479 7065 202a 6e6f 7465 2050 the type *note P │ │ │ │ -00007960: 6f69 6e74 3a20 506f 696e 742c 2c20 0a20 oint: Point,, . │ │ │ │ -00007970: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00007980: 2020 2a20 6120 2a6e 6f74 6520 426f 6f6c * a *note Bool │ │ │ │ -00007990: 6561 6e20 7661 6c75 653a 2028 4d61 6361 ean value: (Maca │ │ │ │ -000079a0: 756c 6179 3244 6f63 2942 6f6f 6c65 616e ulay2Doc)Boolean │ │ │ │ -000079b0: 2c2c 200a 0a44 6573 6372 6970 7469 6f6e ,, ..Description │ │ │ │ -000079c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ -000079d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000079e0: 2d2d 2d2d 2b0a 7c69 3120 3a20 7020 3d20 ----+.|i1 : p = │ │ │ │ -000079f0: 706f 696e 7420 7b31 2c31 7d3b 7c0a 2b2d point {1,1};|.+- │ │ │ │ -00007a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007a10: 2d2d 2d2d 2b0a 7c69 3220 3a20 7120 3d20 ----+.|i2 : q = │ │ │ │ -00007a20: 706f 696e 7420 7b32 2c32 7d3b 7c0a 2b2d point {2,2};|.+- │ │ │ │ -00007a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007a40: 2d2d 2d2d 2b0a 7c69 3320 3a20 7020 3d3d ----+.|i3 : p == │ │ │ │ -00007a50: 2071 2020 2020 2020 2020 2020 7c0a 7c20 q |.| │ │ │ │ -00007a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00007a70: 2020 2020 7c0a 7c6f 3320 3d20 7472 7565 |.|o3 = true │ │ │ │ -00007a80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00007a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007aa0: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ -00007ab0: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ -00007ac0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00007ad0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00007ae0: 6f74 6520 506f 696e 7420 3d3d 2050 6f69 ote Point == Poi │ │ │ │ -00007af0: 6e74 3a20 506f 696e 7420 3d3d 2050 6f69 nt: Point == Poi │ │ │ │ -00007b00: 6e74 2c20 2d2d 2063 6865 636b 2065 7175 nt, -- check equ │ │ │ │ -00007b10: 616c 6974 7920 6f66 2074 776f 2070 726f ality of two pro │ │ │ │ -00007b20: 6a65 6374 6976 650a 2020 2020 706f 696e jective. poin │ │ │ │ -00007b30: 7473 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ts.------------- │ │ │ │ -00007b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00007b80: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00007b90: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00007ba0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00007bb0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00007bc0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00007bd0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00007be0: 2f70 6163 6b61 6765 732f 4861 6461 6d61 /packages/Hadama │ │ │ │ -00007bf0: 7264 2e6d 320a 3a32 3234 3a30 2e0a 1f0a rd.m2.:224:0.... │ │ │ │ -00007c00: 5461 6720 5461 626c 653a 0a4e 6f64 653a Tag Table:.Node: │ │ │ │ -00007c10: 2054 6f70 7f32 3438 0a4e 6f64 653a 2068 Top.248.Node: h │ │ │ │ -00007c20: 6164 616d 6172 6450 6f77 6572 7f33 3735 adamardPower.375 │ │ │ │ -00007c30: 350a 4e6f 6465 3a20 6861 6461 6d61 7264 5.Node: hadamard │ │ │ │ -00007c40: 506f 7765 725f 6c70 4964 6561 6c5f 636d Power_lpIdeal_cm │ │ │ │ -00007c50: 5a5a 5f72 707f 3436 3233 0a4e 6f64 653a ZZ_rp.4623.Node: │ │ │ │ -00007c60: 2068 6164 616d 6172 6450 6f77 6572 5f6c hadamardPower_l │ │ │ │ -00007c70: 704c 6973 745f 636d 5a5a 5f72 707f 3736 pList_cmZZ_rp.76 │ │ │ │ -00007c80: 3234 0a4e 6f64 653a 2068 6164 616d 6172 24.Node: hadamar │ │ │ │ -00007c90: 6450 726f 6475 6374 7f31 3036 3037 0a4e dProduct.10607.N │ │ │ │ -00007ca0: 6f64 653a 2068 6164 616d 6172 6450 726f ode: hadamardPro │ │ │ │ -00007cb0: 6475 6374 5f6c 7049 6465 616c 5f63 6d49 duct_lpIdeal_cmI │ │ │ │ -00007cc0: 6465 616c 5f72 707f 3131 3634 390a 4e6f deal_rp.11649.No │ │ │ │ -00007cd0: 6465 3a20 6861 6461 6d61 7264 5072 6f64 de: hadamardProd │ │ │ │ -00007ce0: 7563 745f 6c70 4c69 7374 5f72 707f 3136 uct_lpList_rp.16 │ │ │ │ -00007cf0: 3237 340a 4e6f 6465 3a20 6861 6461 6d61 274.Node: hadama │ │ │ │ -00007d00: 7264 5072 6f64 7563 745f 6c70 4c69 7374 rdProduct_lpList │ │ │ │ -00007d10: 5f63 6d4c 6973 745f 7270 7f32 3037 3833 _cmList_rp.20783 │ │ │ │ -00007d20: 0a4e 6f64 653a 2069 6465 616c 4f66 5072 .Node: idealOfPr │ │ │ │ -00007d30: 6f6a 6563 7469 7665 506f 696e 7473 7f32 ojectivePoints.2 │ │ │ │ -00007d40: 3234 3533 0a4e 6f64 653a 2050 6f69 6e74 2453.Node: Point │ │ │ │ -00007d50: 7f32 3731 3336 0a4e 6f64 653a 2070 6f69 .27136.Node: poi │ │ │ │ -00007d60: 6e74 7f32 3831 3939 0a4e 6f64 653a 2050 nt.28199.Node: P │ │ │ │ -00007d70: 6f69 6e74 205f 7374 2050 6f69 6e74 7f32 oint _st Point.2 │ │ │ │ -00007d80: 3934 3031 0a4e 6f64 653a 2050 6f69 6e74 9401.Node: Point │ │ │ │ -00007d90: 203d 3d20 506f 696e 747f 3330 3639 380a == Point.30698. │ │ │ │ -00007da0: 1f0a 456e 6420 5461 6720 5461 626c 650a ..End Tag Table. │ │ │ │ +000075f0: 2b0a 7c69 3320 3a20 7020 2a20 7120 2020 +.|i3 : p * q │ │ │ │ +00007600: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00007610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007620: 2020 2020 2020 7c0a 7c6f 3320 3d20 506f |.|o3 = Po │ │ │ │ +00007630: 696e 747b 2d31 2c20 342c 2031 357d 2020 int{-1, 4, 15} │ │ │ │ +00007640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00007650: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00007660: 3320 3a20 506f 696e 7420 2020 2020 2020 3 : Point │ │ │ │ +00007670: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00007680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007690: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2074 --+..Note that t │ │ │ │ +000076a0: 6869 7320 6f70 6572 6174 696f 6e20 6973 his operation is │ │ │ │ +000076b0: 206e 6f74 2061 6c77 6179 7320 7765 6c6c not always well │ │ │ │ +000076c0: 2d64 6566 696e 6564 2069 6e20 7072 6f6a -defined in proj │ │ │ │ +000076d0: 6563 7469 7665 2073 7061 6365 2c20 652e ective space, e. │ │ │ │ +000076e0: 672e 2c0a 7468 6520 4861 6461 6d61 7264 g.,.the Hadamard │ │ │ │ +000076f0: 2070 726f 6475 6374 206f 6620 7468 6520 product of the │ │ │ │ +00007700: 706f 696e 7473 2024 5b31 3a30 5d24 2061 points $[1:0]$ a │ │ │ │ +00007710: 6e64 2024 5b30 3a31 5d24 2069 7320 6e6f nd $[0:1]$ is no │ │ │ │ +00007720: 7420 7765 6c6c 2d64 6566 696e 6564 0a0a t well-defined.. │ │ │ │ +00007730: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ +00007740: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ +00007750: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00007760: 3d0a 0a20 202a 202a 6e6f 7465 2050 6f69 =.. * *note Poi │ │ │ │ +00007770: 6e74 202a 2050 6f69 6e74 3a20 506f 696e nt * Point: Poin │ │ │ │ +00007780: 7420 5f73 7420 506f 696e 742c 202d 2d20 t _st Point, -- │ │ │ │ +00007790: 656e 7472 7977 6973 6520 7072 6f64 7563 entrywise produc │ │ │ │ +000077a0: 7420 6f66 2074 776f 0a20 2020 2070 726f t of two. pro │ │ │ │ +000077b0: 6a65 6374 6976 6520 706f 696e 7473 0a2d jective points.- │ │ │ │ +000077c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000077f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00007810: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00007820: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00007830: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00007840: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00007850: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00007860: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00007870: 6b61 6765 732f 4861 6461 6d61 7264 2e6d kages/Hadamard.m │ │ │ │ +00007880: 320a 3a32 3035 3a30 2e0a 1f0a 4669 6c65 2.:205:0....File │ │ │ │ +00007890: 3a20 4861 6461 6d61 7264 2e69 6e66 6f2c : Hadamard.info, │ │ │ │ +000078a0: 204e 6f64 653a 2050 6f69 6e74 203d 3d20 Node: Point == │ │ │ │ +000078b0: 506f 696e 742c 2050 7265 763a 2050 6f69 Point, Prev: Poi │ │ │ │ +000078c0: 6e74 205f 7374 2050 6f69 6e74 2c20 5570 nt _st Point, Up │ │ │ │ +000078d0: 3a20 546f 700a 0a50 6f69 6e74 203d 3d20 : Top..Point == │ │ │ │ +000078e0: 506f 696e 7420 2d2d 2063 6865 636b 2065 Point -- check e │ │ │ │ +000078f0: 7175 616c 6974 7920 6f66 2074 776f 2070 quality of two p │ │ │ │ +00007900: 726f 6a65 6374 6976 6520 706f 696e 7473 rojective points │ │ │ │ +00007910: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +00007920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00007930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00007940: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00007950: 4f70 6572 6174 6f72 3a20 2a6e 6f74 6520 Operator: *note │ │ │ │ +00007960: 3d3d 3a20 284d 6163 6175 6c61 7932 446f ==: (Macaulay2Do │ │ │ │ +00007970: 6329 3d3d 2c0a 2020 2a20 5573 6167 653a c)==,. * Usage: │ │ │ │ +00007980: 200a 2020 2020 2020 2020 7020 3d3d 2071 . p == q │ │ │ │ +00007990: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +000079a0: 2020 202a 2070 2c20 616e 2069 6e73 7461 * p, an insta │ │ │ │ +000079b0: 6e63 6520 6f66 2074 6865 2074 7970 6520 nce of the type │ │ │ │ +000079c0: 2a6e 6f74 6520 506f 696e 743a 2050 6f69 *note Point: Poi │ │ │ │ +000079d0: 6e74 2c2c 200a 2020 2020 2020 2a20 712c nt,, . * q, │ │ │ │ +000079e0: 2061 6e20 696e 7374 616e 6365 206f 6620 an instance of │ │ │ │ +000079f0: 7468 6520 7479 7065 202a 6e6f 7465 2050 the type *note P │ │ │ │ +00007a00: 6f69 6e74 3a20 506f 696e 742c 2c20 0a20 oint: Point,, . │ │ │ │ +00007a10: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00007a20: 2020 2a20 6120 2a6e 6f74 6520 426f 6f6c * a *note Bool │ │ │ │ +00007a30: 6561 6e20 7661 6c75 653a 2028 4d61 6361 ean value: (Maca │ │ │ │ +00007a40: 756c 6179 3244 6f63 2942 6f6f 6c65 616e ulay2Doc)Boolean │ │ │ │ +00007a50: 2c2c 200a 0a44 6573 6372 6970 7469 6f6e ,, ..Description │ │ │ │ +00007a60: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ +00007a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007a80: 2d2d 2d2d 2b0a 7c69 3120 3a20 7020 3d20 ----+.|i1 : p = │ │ │ │ +00007a90: 706f 696e 7420 7b31 2c31 7d3b 7c0a 2b2d point {1,1};|.+- │ │ │ │ +00007aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007ab0: 2d2d 2d2d 2b0a 7c69 3220 3a20 7120 3d20 ----+.|i2 : q = │ │ │ │ +00007ac0: 706f 696e 7420 7b32 2c32 7d3b 7c0a 2b2d point {2,2};|.+- │ │ │ │ +00007ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007ae0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7020 3d3d ----+.|i3 : p == │ │ │ │ +00007af0: 2071 2020 2020 2020 2020 2020 7c0a 7c20 q |.| │ │ │ │ +00007b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00007b10: 2020 2020 7c0a 7c6f 3320 3d20 7472 7565 |.|o3 = true │ │ │ │ +00007b20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00007b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007b40: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +00007b50: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00007b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00007b70: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00007b80: 6f74 6520 506f 696e 7420 3d3d 2050 6f69 ote Point == Poi │ │ │ │ +00007b90: 6e74 3a20 506f 696e 7420 3d3d 2050 6f69 nt: Point == Poi │ │ │ │ +00007ba0: 6e74 2c20 2d2d 2063 6865 636b 2065 7175 nt, -- check equ │ │ │ │ +00007bb0: 616c 6974 7920 6f66 2074 776f 2070 726f ality of two pro │ │ │ │ +00007bc0: 6a65 6374 6976 650a 2020 2020 706f 696e jective. poin │ │ │ │ +00007bd0: 7473 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ts.------------- │ │ │ │ +00007be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00007c20: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00007c30: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00007c40: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00007c50: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00007c60: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00007c70: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00007c80: 2f70 6163 6b61 6765 732f 4861 6461 6d61 /packages/Hadama │ │ │ │ +00007c90: 7264 2e6d 320a 3a32 3234 3a30 2e0a 1f0a rd.m2.:224:0.... │ │ │ │ +00007ca0: 5461 6720 5461 626c 653a 0a4e 6f64 653a Tag Table:.Node: │ │ │ │ +00007cb0: 2054 6f70 7f32 3438 0a4e 6f64 653a 2068 Top.248.Node: h │ │ │ │ +00007cc0: 6164 616d 6172 6450 6f77 6572 7f33 3735 adamardPower.375 │ │ │ │ +00007cd0: 350a 4e6f 6465 3a20 6861 6461 6d61 7264 5.Node: hadamard │ │ │ │ +00007ce0: 506f 7765 725f 6c70 4964 6561 6c5f 636d Power_lpIdeal_cm │ │ │ │ +00007cf0: 5a5a 5f72 707f 3436 3233 0a4e 6f64 653a ZZ_rp.4623.Node: │ │ │ │ +00007d00: 2068 6164 616d 6172 6450 6f77 6572 5f6c hadamardPower_l │ │ │ │ +00007d10: 704c 6973 745f 636d 5a5a 5f72 707f 3736 pList_cmZZ_rp.76 │ │ │ │ +00007d20: 3234 0a4e 6f64 653a 2068 6164 616d 6172 24.Node: hadamar │ │ │ │ +00007d30: 6450 726f 6475 6374 7f31 3037 3637 0a4e dProduct.10767.N │ │ │ │ +00007d40: 6f64 653a 2068 6164 616d 6172 6450 726f ode: hadamardPro │ │ │ │ +00007d50: 6475 6374 5f6c 7049 6465 616c 5f63 6d49 duct_lpIdeal_cmI │ │ │ │ +00007d60: 6465 616c 5f72 707f 3131 3830 390a 4e6f deal_rp.11809.No │ │ │ │ +00007d70: 6465 3a20 6861 6461 6d61 7264 5072 6f64 de: hadamardProd │ │ │ │ +00007d80: 7563 745f 6c70 4c69 7374 5f72 707f 3136 uct_lpList_rp.16 │ │ │ │ +00007d90: 3433 340a 4e6f 6465 3a20 6861 6461 6d61 434.Node: hadama │ │ │ │ +00007da0: 7264 5072 6f64 7563 745f 6c70 4c69 7374 rdProduct_lpList │ │ │ │ +00007db0: 5f63 6d4c 6973 745f 7270 7f32 3039 3433 _cmList_rp.20943 │ │ │ │ +00007dc0: 0a4e 6f64 653a 2069 6465 616c 4f66 5072 .Node: idealOfPr │ │ │ │ +00007dd0: 6f6a 6563 7469 7665 506f 696e 7473 7f32 ojectivePoints.2 │ │ │ │ +00007de0: 3236 3133 0a4e 6f64 653a 2050 6f69 6e74 2613.Node: Point │ │ │ │ +00007df0: 7f32 3732 3936 0a4e 6f64 653a 2070 6f69 .27296.Node: poi │ │ │ │ +00007e00: 6e74 7f32 3833 3539 0a4e 6f64 653a 2050 nt.28359.Node: P │ │ │ │ +00007e10: 6f69 6e74 205f 7374 2050 6f69 6e74 7f32 oint _st Point.2 │ │ │ │ +00007e20: 3935 3631 0a4e 6f64 653a 2050 6f69 6e74 9561.Node: Point │ │ │ │ +00007e30: 203d 3d20 506f 696e 747f 3330 3835 380a == Point.30858. │ │ │ │ +00007e40: 1f0a 456e 6420 5461 6720 5461 626c 650a ..End Tag Table. │ │ ├── ./usr/share/info/HolonomicSystems.info.gz │ │ │ ├── HolonomicSystems.info │ │ │ │ @@ -4008,36 +4008,36 @@ │ │ │ │ 0000fa70: 7272 656e 7420 636f 6566 6669 6369 656e rrent coefficien │ │ │ │ 0000fa80: 7420 7269 6e67 206f 7220 2020 2020 2020 t ring or │ │ │ │ 0000fa90: 207c 0a7c 436f 6e76 6572 7469 6e67 2074 |.|Converting t │ │ │ │ 0000faa0: 6f20 4e61 6976 6520 616c 676f 7269 7468 o Naive algorith │ │ │ │ 0000fab0: 6d2e 2020 2020 2020 2020 2020 2020 2020 m. │ │ │ │ 0000fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fae0: 207c 0a7c 202d 2d20 2e30 3030 3030 3434 |.| -- .0000044 │ │ │ │ -0000faf0: 3739 7320 656c 6170 7365 6420 2020 2020 79s elapsed │ │ │ │ +0000fae0: 207c 0a7c 202d 2d20 2e30 3030 3030 3931 |.| -- .0000091 │ │ │ │ +0000faf0: 3532 7320 656c 6170 7365 6420 2020 2020 52s elapsed │ │ │ │ 0000fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb30: 207c 0a7c 202d 2d20 2e30 3030 3030 3432 |.| -- .0000042 │ │ │ │ -0000fb40: 3338 7320 656c 6170 7365 6420 2020 2020 38s elapsed │ │ │ │ +0000fb30: 207c 0a7c 202d 2d20 2e30 3030 3030 3739 |.| -- .0000079 │ │ │ │ +0000fb40: 3538 7320 656c 6170 7365 6420 2020 2020 58s elapsed │ │ │ │ 0000fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fb80: 207c 0a7c 202d 2d20 2e30 3030 3030 3339 |.| -- .0000039 │ │ │ │ -0000fb90: 3737 7320 656c 6170 7365 6420 2020 2020 77s elapsed │ │ │ │ +0000fb80: 207c 0a7c 202d 2d20 2e30 3030 3030 3834 |.| -- .0000084 │ │ │ │ +0000fb90: 3173 2065 6c61 7073 6564 2020 2020 2020 1s elapsed │ │ │ │ 0000fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fbd0: 207c 0a7c 202d 2d20 2e30 3030 3030 3138 |.| -- .0000018 │ │ │ │ -0000fbe0: 3833 7320 656c 6170 7365 6420 2020 2020 83s elapsed │ │ │ │ +0000fbd0: 207c 0a7c 202d 2d20 2e30 3030 3030 3834 |.| -- .0000084 │ │ │ │ +0000fbe0: 3032 7320 656c 6170 7365 6420 2020 2020 02s elapsed │ │ │ │ 0000fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000fc20: 207c 0a7c 202d 2d20 2e30 3030 3030 3133 |.| -- .0000013 │ │ │ │ -0000fc30: 3932 7320 656c 6170 7365 6420 2020 2020 92s elapsed │ │ │ │ +0000fc20: 207c 0a7c 202d 2d20 2e30 3030 3030 3933 |.| -- .0000093 │ │ │ │ +0000fc30: 3832 7320 656c 6170 7365 6420 2020 2020 82s elapsed │ │ │ │ 0000fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5558,15 +5558,15 @@ │ │ │ │ 00015b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00015b70: 3320 3a20 736f 6c76 6546 726f 6265 6e69 3 : solveFrobeni │ │ │ │ 00015b80: 7573 4964 6561 6c20 4920 2020 2020 2020 usIdeal I │ │ │ │ 00015b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015bb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00015bc0: 2d2d 202e 3030 3030 3034 3038 3873 2065 -- .000004088s e │ │ │ │ +00015bc0: 2d2d 202e 3030 3030 3036 3039 3173 2065 -- .000006091s e │ │ │ │ 00015bd0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00015be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015c00: 2020 2020 2020 2020 2020 2020 7c0a 7c57 |.|W │ │ │ │ 00015c10: 6172 6e69 6e67 3a20 2046 3420 416c 676f arning: F4 Algo │ │ │ │ 00015c20: 7269 7468 6d20 6e6f 7420 6176 6169 6c61 rithm not availa │ │ │ │ 00015c30: 626c 6520 6f76 6572 2063 7572 7265 6e74 ble over current │ │ │ │ @@ -5678,16 +5678,16 @@ │ │ │ │ 000162d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000162e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 000162f0: 3520 3a20 736f 6c76 6546 726f 6265 6e69 5 : solveFrobeni │ │ │ │ 00016300: 7573 4964 6561 6c28 492c 2057 2920 2020 usIdeal(I, W) │ │ │ │ 00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016330: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016340: 2d2d 202e 3030 3030 3035 3335 7320 656c -- .00000535s el │ │ │ │ -00016350: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +00016340: 2d2d 202e 3030 3030 3036 3333 3973 2065 -- .000006339s e │ │ │ │ +00016350: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00016360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016380: 2020 2020 2020 2020 2020 2020 7c0a 7c57 |.|W │ │ │ │ 00016390: 6172 6e69 6e67 3a20 2046 3420 416c 676f arning: F4 Algo │ │ │ │ 000163a0: 7269 7468 6d20 6e6f 7420 6176 6169 6c61 rithm not availa │ │ │ │ 000163b0: 626c 6520 6f76 6572 2063 7572 7265 6e74 ble over current │ │ │ │ 000163c0: 2063 6f65 6666 6963 6965 6e74 2072 696e coefficient rin │ │ ├── ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ ├── HomotopyLieAlgebra.info │ │ │ │ @@ -2134,351 +2134,351 @@ │ │ │ │ 00008550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00008570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000085a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000085b0: 2020 7c0a 7c6f 3135 203d 207b 287b 5420 |.|o15 = {({T │ │ │ │ -000085c0: 2c20 5420 7d2c 2054 2054 2020 2b20 5420 , T }, T T + T │ │ │ │ -000085d0: 5420 202d 207a 2a54 2020 202b 2079 2a54 T - z*T + y*T │ │ │ │ -000085e0: 2020 292c 2028 7b54 202c 2054 207d 2c20 ), ({T , T }, │ │ │ │ -000085f0: 2d20 5420 5420 202b 2079 2a54 2020 292c - T T + y*T ), │ │ │ │ -00008600: 2020 7c0a 7c20 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ -00008610: 2020 2037 2020 2020 3420 3620 2020 2033 7 4 6 3 │ │ │ │ -00008620: 2037 2020 2020 2020 3131 2020 2020 2020 7 11 │ │ │ │ -00008630: 3133 2020 2020 2020 3220 2020 3920 2020 13 2 9 │ │ │ │ -00008640: 2020 2032 2039 2020 2020 2020 3136 2020 2 9 16 │ │ │ │ +000085c0: 2c20 5420 7d2c 202d 2054 2054 2020 2d20 , T }, - T T - │ │ │ │ +000085d0: 5420 5420 202d 207a 2a54 2020 202b 2078 T T - z*T + x │ │ │ │ +000085e0: 2a54 2020 292c 2028 7b54 202c 2054 207d *T ), ({T , T } │ │ │ │ +000085f0: 2c20 2d20 5420 5420 202b 207a 2a54 2020 , - T T + z*T │ │ │ │ +00008600: 292c 7c0a 7c20 2020 2020 2020 2020 2031 ),|.| 1 │ │ │ │ +00008610: 2020 2039 2020 2020 2020 3520 3620 2020 9 5 6 │ │ │ │ +00008620: 2031 2039 2020 2020 2020 3134 2020 2020 1 9 14 │ │ │ │ +00008630: 2020 3137 2020 2020 2020 3420 2020 3720 17 4 7 │ │ │ │ +00008640: 2020 2020 2034 2037 2020 2020 2020 3133 4 7 13 │ │ │ │ 00008650: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000086a0: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -000086b0: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ -000086c0: 2054 2020 2d20 7a2a 5420 2020 2b20 782a T - z*T + x* │ │ │ │ -000086d0: 5420 2029 2c20 287b 5420 2c20 5420 7d2c T ), ({T , T }, │ │ │ │ -000086e0: 202d 2054 2054 2020 2b20 7a2a 5420 2029 - T T + z*T ) │ │ │ │ -000086f0: 2c20 7c0a 7c20 2020 2020 2020 2020 3120 , |.| 1 │ │ │ │ -00008700: 2020 3920 2020 2020 2035 2036 2020 2020 9 5 6 │ │ │ │ -00008710: 3120 3920 2020 2020 2031 3420 2020 2020 1 9 14 │ │ │ │ -00008720: 2031 3720 2020 2020 2034 2020 2037 2020 17 4 7 │ │ │ │ -00008730: 2020 2020 3420 3720 2020 2020 2031 3320 4 7 13 │ │ │ │ +000086b0: 2054 2020 7d2c 2054 2054 2020 2d20 5420 T }, T T - T │ │ │ │ +000086c0: 5420 2020 2b20 782a 5420 2029 2c20 287b T + x*T ), ({ │ │ │ │ +000086d0: 5420 2c20 5420 7d2c 202d 2054 2054 2020 T , T }, - T T │ │ │ │ +000086e0: 2b20 7a2a 5420 2029 2c20 287b 5420 2c20 + z*T ), ({T , │ │ │ │ +000086f0: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +00008700: 2020 3130 2020 2020 3420 3620 2020 2031 10 4 6 1 │ │ │ │ +00008710: 2031 3020 2020 2020 2032 3020 2020 2020 10 20 │ │ │ │ +00008720: 2035 2020 2039 2020 2020 2020 3520 3920 5 9 5 9 │ │ │ │ +00008730: 2020 2020 2031 3620 2020 2020 2033 2020 16 3 │ │ │ │ 00008740: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008790: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -000087a0: 2054 2020 7d2c 2054 2054 2020 2d20 5420 T }, T T - T │ │ │ │ -000087b0: 5420 2020 2b20 782a 5420 2029 2c20 287b T + x*T ), ({ │ │ │ │ -000087c0: 5420 2c20 5420 7d2c 202d 2054 2054 2020 T , T }, - T T │ │ │ │ -000087d0: 2b20 7a2a 5420 2029 2c20 287b 5420 2c20 + z*T ), ({T , │ │ │ │ -000087e0: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ -000087f0: 2020 3130 2020 2020 3420 3620 2020 2031 10 4 6 1 │ │ │ │ -00008800: 2031 3020 2020 2020 2032 3020 2020 2020 10 20 │ │ │ │ -00008810: 2035 2020 2039 2020 2020 2020 3520 3920 5 9 5 9 │ │ │ │ -00008820: 2020 2020 2031 3620 2020 2020 2033 2020 16 3 │ │ │ │ +00008790: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ +000087a0: 5420 5420 202d 207a 2a54 2020 202b 2078 T T - z*T + x │ │ │ │ +000087b0: 2a54 2020 292c 2028 7b54 202c 2054 207d *T ), ({T , T } │ │ │ │ +000087c0: 2c20 2d20 5420 5420 202d 2054 2054 2020 , - T T - T T │ │ │ │ +000087d0: 2d20 7a2a 5420 2020 2b20 782a 5420 2029 - z*T + x*T ) │ │ │ │ +000087e0: 2c20 7c0a 7c20 2020 2020 2020 3720 2020 , |.| 7 │ │ │ │ +000087f0: 2033 2037 2020 2020 2020 3131 2020 2020 3 7 11 │ │ │ │ +00008800: 2020 3132 2020 2020 2020 3520 2020 3620 12 5 6 │ │ │ │ +00008810: 2020 2020 2035 2036 2020 2020 3120 3920 5 6 1 9 │ │ │ │ +00008820: 2020 2020 2031 3420 2020 2020 2031 3720 14 17 │ │ │ │ 00008830: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008880: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ -00008890: 5420 5420 202d 207a 2a54 2020 202b 2078 T T - z*T + x │ │ │ │ -000088a0: 2a54 2020 292c 2028 7b54 202c 2054 207d *T ), ({T , T } │ │ │ │ -000088b0: 2c20 2d20 5420 5420 202d 2054 2054 2020 , - T T - T T │ │ │ │ -000088c0: 2d20 7a2a 5420 2020 2b20 782a 5420 2029 - z*T + x*T ) │ │ │ │ -000088d0: 2c20 7c0a 7c20 2020 2020 2020 3720 2020 , |.| 7 │ │ │ │ -000088e0: 2033 2037 2020 2020 2020 3131 2020 2020 3 7 11 │ │ │ │ -000088f0: 2020 3132 2020 2020 2020 3520 2020 3620 12 5 6 │ │ │ │ -00008900: 2020 2020 2035 2036 2020 2020 3120 3920 5 6 1 9 │ │ │ │ -00008910: 2020 2020 2031 3420 2020 2020 2031 3720 14 17 │ │ │ │ +00008880: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ +00008890: 2054 207d 2c20 5420 5420 202b 2054 2054 T }, T T + T T │ │ │ │ +000088a0: 2020 2d20 7a2a 5420 2020 2b20 782a 5420 - z*T + x*T │ │ │ │ +000088b0: 2029 2c20 287b 5420 2c20 5420 7d2c 202d ), ({T , T }, - │ │ │ │ +000088c0: 2054 2054 2020 2d20 5420 5420 202b 2020 T T - T T + │ │ │ │ +000088d0: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ +000088e0: 2020 3820 2020 2035 2038 2020 2020 3320 8 5 8 3 │ │ │ │ +000088f0: 3920 2020 2020 2031 3520 2020 2020 2031 9 15 1 │ │ │ │ +00008900: 3620 2020 2020 2034 2020 2038 2020 2020 6 4 8 │ │ │ │ +00008910: 2020 3220 3720 2020 2034 2038 2020 2020 2 7 4 8 │ │ │ │ 00008920: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008970: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -00008980: 2054 207d 2c20 5420 5420 202b 2054 2054 T }, T T + T T │ │ │ │ -00008990: 2020 2d20 7a2a 5420 2020 2b20 782a 5420 - z*T + x*T │ │ │ │ -000089a0: 2029 2c20 287b 5420 2c20 5420 7d2c 202d ), ({T , T }, - │ │ │ │ -000089b0: 2054 2054 2020 2d20 5420 5420 202b 2020 T T - T T + │ │ │ │ -000089c0: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ -000089d0: 2020 3820 2020 2035 2038 2020 2020 3320 8 5 8 3 │ │ │ │ -000089e0: 3920 2020 2020 2031 3520 2020 2020 2031 9 15 1 │ │ │ │ -000089f0: 3620 2020 2020 2034 2020 2038 2020 2020 6 4 8 │ │ │ │ -00008a00: 2020 3220 3720 2020 2034 2038 2020 2020 2 7 4 8 │ │ │ │ +00008970: 2d2d 7c0a 7c20 2020 2020 2079 2a54 2020 --|.| y*T │ │ │ │ +00008980: 202b 207a 2a54 2020 292c 2028 7b54 202c + z*T ), ({T , │ │ │ │ +00008990: 2054 207d 2c20 5420 5420 202d 207a 2a54 T }, T T - z*T │ │ │ │ +000089a0: 2020 202b 2079 2a54 2020 292c 2028 7b54 + y*T ), ({T │ │ │ │ +000089b0: 202c 2054 207d 2c20 2d20 5420 5420 202d , T }, - T T - │ │ │ │ +000089c0: 2020 7c0a 7c20 2020 2020 2020 2020 3132 |.| 12 │ │ │ │ +000089d0: 2020 2020 2020 3134 2020 2020 2020 3320 14 3 │ │ │ │ +000089e0: 2020 3920 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ +000089f0: 3135 2020 2020 2020 3137 2020 2020 2020 15 17 │ │ │ │ +00008a00: 3320 2020 3620 2020 2020 2033 2036 2020 3 6 3 6 │ │ │ │ 00008a10: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008a60: 2d2d 7c0a 7c20 2020 2020 2079 2a54 2020 --|.| y*T │ │ │ │ -00008a70: 202b 207a 2a54 2020 292c 2028 7b54 202c + z*T ), ({T , │ │ │ │ -00008a80: 2054 207d 2c20 5420 5420 202d 207a 2a54 T }, T T - z*T │ │ │ │ -00008a90: 2020 202b 2079 2a54 2020 292c 2028 7b54 + y*T ), ({T │ │ │ │ -00008aa0: 202c 2054 207d 2c20 2d20 5420 5420 202d , T }, - T T - │ │ │ │ -00008ab0: 2020 7c0a 7c20 2020 2020 2020 2020 3132 |.| 12 │ │ │ │ -00008ac0: 2020 2020 2020 3134 2020 2020 2020 3320 14 3 │ │ │ │ -00008ad0: 2020 3920 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ -00008ae0: 3135 2020 2020 2020 3137 2020 2020 2020 15 17 │ │ │ │ -00008af0: 3320 2020 3620 2020 2020 2033 2036 2020 3 6 3 6 │ │ │ │ +00008a60: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ +00008a70: 2d20 5420 5420 202b 207a 2a54 2020 202b - T T + z*T + │ │ │ │ +00008a80: 2078 2a54 2020 292c 2028 7b54 202c 2054 x*T ), ({T , T │ │ │ │ +00008a90: 207d 2c20 2d20 5420 5420 202b 2078 2a54 }, - T T + x*T │ │ │ │ +00008aa0: 2020 292c 2028 7b54 202c 2054 207d 2c20 ), ({T , T }, │ │ │ │ +00008ab0: 2d20 7c0a 7c20 2020 2020 2020 3520 3720 - |.| 5 7 │ │ │ │ +00008ac0: 2020 2031 2038 2020 2020 2020 3132 2020 1 8 12 │ │ │ │ +00008ad0: 2020 2020 3134 2020 2020 2020 3120 2020 14 1 │ │ │ │ +00008ae0: 3720 2020 2020 2031 2037 2020 2020 2020 7 1 7 │ │ │ │ +00008af0: 3133 2020 2020 2020 3520 2020 3920 2020 13 5 9 │ │ │ │ 00008b00: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b50: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -00008b60: 2d20 5420 5420 202b 207a 2a54 2020 202b - T T + z*T + │ │ │ │ -00008b70: 2078 2a54 2020 292c 2028 7b54 202c 2054 x*T ), ({T , T │ │ │ │ -00008b80: 207d 2c20 2d20 5420 5420 202b 2078 2a54 }, - T T + x*T │ │ │ │ -00008b90: 2020 292c 2028 7b54 202c 2054 207d 2c20 ), ({T , T }, │ │ │ │ -00008ba0: 2d20 7c0a 7c20 2020 2020 2020 3520 3720 - |.| 5 7 │ │ │ │ -00008bb0: 2020 2031 2038 2020 2020 2020 3132 2020 1 8 12 │ │ │ │ -00008bc0: 2020 2020 3134 2020 2020 2020 3120 2020 14 1 │ │ │ │ -00008bd0: 3720 2020 2020 2031 2037 2020 2020 2020 7 1 7 │ │ │ │ -00008be0: 3133 2020 2020 2020 3520 2020 3920 2020 13 5 9 │ │ │ │ +00008b60: 2d20 5420 5420 202b 2079 2a54 2020 292c - T T + y*T ), │ │ │ │ +00008b70: 2028 7b54 202c 2054 2020 7d2c 202d 2054 ({T , T }, - T │ │ │ │ +00008b80: 2054 2020 2b20 5420 5420 2020 2d20 7a2a T + T T - z* │ │ │ │ +00008b90: 5420 2020 2b20 782a 5420 2029 2c20 2020 T + x*T ), │ │ │ │ +00008ba0: 2020 7c0a 7c20 2020 2020 2020 3220 3820 |.| 2 8 │ │ │ │ +00008bb0: 2020 2035 2039 2020 2020 2020 3135 2020 5 9 15 │ │ │ │ +00008bc0: 2020 2020 3320 2020 3130 2020 2020 2020 3 10 │ │ │ │ +00008bd0: 3420 3820 2020 2033 2031 3020 2020 2020 4 8 3 10 │ │ │ │ +00008be0: 2031 3820 2020 2020 2031 3920 2020 2020 18 19 │ │ │ │ 00008bf0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008c40: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -00008c50: 2d20 5420 5420 202b 2079 2a54 2020 292c - T T + y*T ), │ │ │ │ -00008c60: 2028 7b54 202c 2054 2020 7d2c 202d 2054 ({T , T }, - T │ │ │ │ -00008c70: 2054 2020 2b20 5420 5420 2020 2d20 7a2a T + T T - z* │ │ │ │ -00008c80: 5420 2020 2b20 782a 5420 2029 2c20 2020 T + x*T ), │ │ │ │ -00008c90: 2020 7c0a 7c20 2020 2020 2020 3220 3820 |.| 2 8 │ │ │ │ -00008ca0: 2020 2035 2039 2020 2020 2020 3135 2020 5 9 15 │ │ │ │ -00008cb0: 2020 2020 3320 2020 3130 2020 2020 2020 3 10 │ │ │ │ -00008cc0: 3420 3820 2020 2033 2031 3020 2020 2020 4 8 3 10 │ │ │ │ -00008cd0: 2031 3820 2020 2020 2031 3920 2020 2020 18 19 │ │ │ │ +00008c40: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ +00008c50: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ +00008c60: 2054 2020 2b20 792a 5420 2020 2b20 7a2a T + y*T + z* │ │ │ │ +00008c70: 5420 2029 2c20 287b 5420 2c20 5420 7d2c T ), ({T , T }, │ │ │ │ +00008c80: 202d 2054 2054 2020 2b20 5420 5420 2020 - T T + T T │ │ │ │ +00008c90: 2d20 7c0a 7c20 2020 2020 2020 2020 3220 - |.| 2 │ │ │ │ +00008ca0: 2020 3720 2020 2020 2032 2037 2020 2020 7 2 7 │ │ │ │ +00008cb0: 3420 3820 2020 2020 2031 3220 2020 2020 4 8 12 │ │ │ │ +00008cc0: 2031 3420 2020 2020 2034 2020 2038 2020 14 4 8 │ │ │ │ +00008cd0: 2020 2020 3420 3820 2020 2033 2031 3020 4 8 3 10 │ │ │ │ 00008ce0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008d30: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -00008d40: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ -00008d50: 2054 2020 2b20 792a 5420 2020 2b20 7a2a T + y*T + z* │ │ │ │ -00008d60: 5420 2029 2c20 287b 5420 2c20 5420 7d2c T ), ({T , T }, │ │ │ │ -00008d70: 202d 2054 2054 2020 2b20 5420 5420 2020 - T T + T T │ │ │ │ -00008d80: 2d20 7c0a 7c20 2020 2020 2020 2020 3220 - |.| 2 │ │ │ │ -00008d90: 2020 3720 2020 2020 2032 2037 2020 2020 7 2 7 │ │ │ │ -00008da0: 3420 3820 2020 2020 2031 3220 2020 2020 4 8 12 │ │ │ │ -00008db0: 2031 3420 2020 2020 2034 2020 2038 2020 14 4 8 │ │ │ │ -00008dc0: 2020 2020 3420 3820 2020 2033 2031 3020 4 8 3 10 │ │ │ │ +00008d30: 2d2d 7c0a 7c20 2020 2020 207a 2a54 2020 --|.| z*T │ │ │ │ +00008d40: 202b 2078 2a54 2020 292c 2028 7b54 202c + x*T ), ({T , │ │ │ │ +00008d50: 2054 2020 7d2c 202d 2054 2054 2020 2d20 T }, - T T - │ │ │ │ +00008d60: 5420 5420 2020 2b20 792a 5420 2029 2c20 T T + y*T ), │ │ │ │ +00008d70: 287b 5420 2c20 5420 207d 2c20 2d20 2020 ({T , T }, - │ │ │ │ +00008d80: 2020 7c0a 7c20 2020 2020 2020 2020 3138 |.| 18 │ │ │ │ +00008d90: 2020 2020 2020 3139 2020 2020 2020 3220 19 2 │ │ │ │ +00008da0: 2020 3130 2020 2020 2020 3520 3820 2020 10 5 8 │ │ │ │ +00008db0: 2032 2031 3020 2020 2020 2031 3920 2020 2 10 19 │ │ │ │ +00008dc0: 2020 2034 2020 2031 3020 2020 2020 2020 4 10 │ │ │ │ 00008dd0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008e20: 2d2d 7c0a 7c20 2020 2020 207a 2a54 2020 --|.| z*T │ │ │ │ +00008e20: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ 00008e30: 202b 2078 2a54 2020 292c 2028 7b54 202c + x*T ), ({T , │ │ │ │ -00008e40: 2054 2020 7d2c 202d 2054 2054 2020 2d20 T }, - T T - │ │ │ │ -00008e50: 5420 5420 2020 2b20 792a 5420 2029 2c20 T T + y*T ), │ │ │ │ -00008e60: 287b 5420 2c20 5420 207d 2c20 2d20 2020 ({T , T }, - │ │ │ │ -00008e70: 2020 7c0a 7c20 2020 2020 2020 2020 3138 |.| 18 │ │ │ │ -00008e80: 2020 2020 2020 3139 2020 2020 2020 3220 19 2 │ │ │ │ -00008e90: 2020 3130 2020 2020 2020 3520 3820 2020 10 5 8 │ │ │ │ -00008ea0: 2032 2031 3020 2020 2020 2031 3920 2020 2 10 19 │ │ │ │ -00008eb0: 2020 2034 2020 2031 3020 2020 2020 2020 4 10 │ │ │ │ +00008e40: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ +00008e50: 2054 2020 202b 2079 2a54 2020 292c 2028 T + y*T ), ( │ │ │ │ +00008e60: 7b54 202c 2054 207d 2c20 5420 5420 202b {T , T }, T T + │ │ │ │ +00008e70: 2020 7c0a 7c20 2020 2020 2020 3420 3130 |.| 4 10 │ │ │ │ +00008e80: 2020 2020 2020 3138 2020 2020 2020 3520 18 5 │ │ │ │ +00008e90: 2020 3820 2020 2020 2035 2038 2020 2020 8 5 8 │ │ │ │ +00008ea0: 3220 3130 2020 2020 2020 3139 2020 2020 2 10 19 │ │ │ │ +00008eb0: 2020 3320 2020 3820 2020 2033 2038 2020 3 8 3 8 │ │ │ │ 00008ec0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00008ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00008f10: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -00008f20: 202b 2078 2a54 2020 292c 2028 7b54 202c + x*T ), ({T , │ │ │ │ +00008f10: 2d2d 7c0a 7c20 2020 2020 2078 2a54 2020 --|.| x*T │ │ │ │ +00008f20: 202d 207a 2a54 2020 292c 2028 7b54 202c - z*T ), ({T , │ │ │ │ 00008f30: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ -00008f40: 2054 2020 202b 2079 2a54 2020 292c 2028 T + y*T ), ( │ │ │ │ -00008f50: 7b54 202c 2054 207d 2c20 5420 5420 202b {T , T }, T T + │ │ │ │ -00008f60: 2020 7c0a 7c20 2020 2020 2020 3420 3130 |.| 4 10 │ │ │ │ -00008f70: 2020 2020 2020 3138 2020 2020 2020 3520 18 5 │ │ │ │ -00008f80: 2020 3820 2020 2020 2035 2038 2020 2020 8 5 8 │ │ │ │ -00008f90: 3220 3130 2020 2020 2020 3139 2020 2020 2 10 19 │ │ │ │ -00008fa0: 2020 3320 2020 3820 2020 2033 2038 2020 3 8 3 8 │ │ │ │ -00008fb0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ +00008f40: 2054 2020 2d20 5420 5420 202b 207a 2a54 T - T T + z*T │ │ │ │ +00008f50: 2020 202b 2078 2a54 2020 292c 2028 7b54 + x*T ), ({T │ │ │ │ +00008f60: 202c 7c0a 7c20 2020 2020 2020 2020 3135 ,|.| 15 │ │ │ │ +00008f70: 2020 2020 2020 3137 2020 2020 2020 3120 17 1 │ │ │ │ +00008f80: 2020 3820 2020 2020 2033 2036 2020 2020 8 3 6 │ │ │ │ +00008f90: 3520 3720 2020 2031 2038 2020 2020 2020 5 7 1 8 │ │ │ │ +00008fa0: 3132 2020 2020 2020 3134 2020 2020 2020 12 14 │ │ │ │ +00008fb0: 3420 7c0a 7c20 2020 2020 202d 2d2d 2d2d 4 |.| ----- │ │ │ │ 00008fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009000: 2d2d 7c0a 7c20 2020 2020 2078 2a54 2020 --|.| x*T │ │ │ │ -00009010: 202d 207a 2a54 2020 292c 2028 7b54 202c - z*T ), ({T , │ │ │ │ -00009020: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ -00009030: 2054 2020 2d20 5420 5420 202b 207a 2a54 T - T T + z*T │ │ │ │ -00009040: 2020 202b 2078 2a54 2020 292c 2028 7b54 + x*T ), ({T │ │ │ │ -00009050: 202c 7c0a 7c20 2020 2020 2020 2020 3135 ,|.| 15 │ │ │ │ -00009060: 2020 2020 2020 3137 2020 2020 2020 3120 17 1 │ │ │ │ -00009070: 2020 3820 2020 2020 2033 2036 2020 2020 8 3 6 │ │ │ │ -00009080: 3520 3720 2020 2031 2038 2020 2020 2020 5 7 1 8 │ │ │ │ -00009090: 3132 2020 2020 2020 3134 2020 2020 2020 12 14 │ │ │ │ -000090a0: 3420 7c0a 7c20 2020 2020 202d 2d2d 2d2d 4 |.| ----- │ │ │ │ +00009000: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ +00009010: 5420 5420 202d 2054 2054 2020 202d 207a T T - T T - z │ │ │ │ +00009020: 2a54 2020 202b 207a 2a54 2020 292c 2028 *T + z*T ), ( │ │ │ │ +00009030: 7b54 202c 2054 207d 2c20 2d20 5420 5420 {T , T }, - T T │ │ │ │ +00009040: 202d 2054 2054 2020 2b20 792a 5420 2029 - T T + y*T ) │ │ │ │ +00009050: 2c20 7c0a 7c20 2020 2020 2020 3920 2020 , |.| 9 │ │ │ │ +00009060: 2034 2039 2020 2020 3520 3130 2020 2020 4 9 5 10 │ │ │ │ +00009070: 2020 3137 2020 2020 2020 3139 2020 2020 17 19 │ │ │ │ +00009080: 2020 3220 2020 3820 2020 2020 2032 2038 2 8 2 8 │ │ │ │ +00009090: 2020 2020 3520 3920 2020 2020 2031 3520 5 9 15 │ │ │ │ +000090a0: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 000090b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000090c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000090d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000090e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000090f0: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ -00009100: 5420 5420 202d 2054 2054 2020 202d 207a T T - T T - z │ │ │ │ -00009110: 2a54 2020 202b 207a 2a54 2020 292c 2028 *T + z*T ), ( │ │ │ │ -00009120: 7b54 202c 2054 207d 2c20 2d20 5420 5420 {T , T }, - T T │ │ │ │ -00009130: 202d 2054 2054 2020 2b20 792a 5420 2029 - T T + y*T ) │ │ │ │ -00009140: 2c20 7c0a 7c20 2020 2020 2020 3920 2020 , |.| 9 │ │ │ │ -00009150: 2034 2039 2020 2020 3520 3130 2020 2020 4 9 5 10 │ │ │ │ -00009160: 2020 3137 2020 2020 2020 3139 2020 2020 17 19 │ │ │ │ -00009170: 2020 3220 2020 3820 2020 2020 2032 2038 2 8 2 8 │ │ │ │ -00009180: 2020 2020 3520 3920 2020 2020 2031 3520 5 9 15 │ │ │ │ +000090f0: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ +00009100: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ +00009110: 2054 2020 2d20 5420 5420 202b 207a 2a54 T - T T + z*T │ │ │ │ +00009120: 2020 202b 2078 2a54 2020 292c 2028 7b54 + x*T ), ({T │ │ │ │ +00009130: 202c 2054 207d 2c20 5420 5420 202b 2020 , T }, T T + │ │ │ │ +00009140: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ +00009150: 2020 3720 2020 2020 2033 2036 2020 2020 7 3 6 │ │ │ │ +00009160: 3520 3720 2020 2031 2038 2020 2020 2020 5 7 1 8 │ │ │ │ +00009170: 3132 2020 2020 2020 3134 2020 2020 2020 12 14 │ │ │ │ +00009180: 3420 2020 3920 2020 2032 2036 2020 2020 4 9 2 6 │ │ │ │ 00009190: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 000091a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000091b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000091c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000091d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000091e0: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -000091f0: 2054 207d 2c20 2d20 5420 5420 202d 2054 T }, - T T - T │ │ │ │ -00009200: 2054 2020 2d20 5420 5420 202b 207a 2a54 T - T T + z*T │ │ │ │ -00009210: 2020 202b 2078 2a54 2020 292c 2028 7b54 + x*T ), ({T │ │ │ │ -00009220: 202c 2054 207d 2c20 5420 5420 202b 2020 , T }, T T + │ │ │ │ -00009230: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ -00009240: 2020 3720 2020 2020 2033 2036 2020 2020 7 3 6 │ │ │ │ -00009250: 3520 3720 2020 2031 2038 2020 2020 2020 5 7 1 8 │ │ │ │ -00009260: 3132 2020 2020 2020 3134 2020 2020 2020 12 14 │ │ │ │ -00009270: 3420 2020 3920 2020 2032 2036 2020 2020 4 9 2 6 │ │ │ │ +000091e0: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ +000091f0: 2b20 5420 5420 202b 2079 2a54 2020 202d + T T + y*T - │ │ │ │ +00009200: 207a 2a54 2020 292c 2028 7b54 202c 2054 z*T ), ({T , T │ │ │ │ +00009210: 2020 7d2c 2054 2054 2020 2b20 5420 5420 }, T T + T T │ │ │ │ +00009220: 2020 2d20 7a2a 5420 2020 2b20 2020 2020 - z*T + │ │ │ │ +00009230: 2020 7c0a 7c20 2020 2020 2020 3320 3820 |.| 3 8 │ │ │ │ +00009240: 2020 2034 2039 2020 2020 2020 3134 2020 4 9 14 │ │ │ │ +00009250: 2020 2020 3137 2020 2020 2020 3320 2020 17 3 │ │ │ │ +00009260: 3130 2020 2020 3520 3620 2020 2033 2031 10 5 6 3 1 │ │ │ │ +00009270: 3020 2020 2020 2031 3820 2020 2020 2020 0 18 │ │ │ │ 00009280: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000092a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000092b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000092c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000092d0: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -000092e0: 2b20 5420 5420 202b 2079 2a54 2020 202d + T T + y*T - │ │ │ │ -000092f0: 207a 2a54 2020 292c 2028 7b54 202c 2054 z*T ), ({T , T │ │ │ │ -00009300: 2020 7d2c 2054 2054 2020 2b20 5420 5420 }, T T + T T │ │ │ │ -00009310: 2020 2d20 7a2a 5420 2020 2b20 2020 2020 - z*T + │ │ │ │ -00009320: 2020 7c0a 7c20 2020 2020 2020 3320 3820 |.| 3 8 │ │ │ │ -00009330: 2020 2034 2039 2020 2020 2020 3134 2020 4 9 14 │ │ │ │ -00009340: 2020 2020 3137 2020 2020 2020 3320 2020 17 3 │ │ │ │ -00009350: 3130 2020 2020 3520 3620 2020 2033 2031 10 5 6 3 1 │ │ │ │ -00009360: 3020 2020 2020 2031 3820 2020 2020 2020 0 18 │ │ │ │ +000092d0: 2d2d 7c0a 7c20 2020 2020 2079 2a54 2020 --|.| y*T │ │ │ │ +000092e0: 292c 2028 7b54 202c 2054 207d 2c20 5420 ), ({T , T }, T │ │ │ │ +000092f0: 5420 202b 2054 2054 2020 202d 207a 2a54 T + T T - z*T │ │ │ │ +00009300: 2020 202b 2079 2a54 2020 292c 2028 7b54 + y*T ), ({T │ │ │ │ +00009310: 202c 2054 2020 7d2c 202d 2054 2054 2020 , T }, - T T │ │ │ │ +00009320: 2d20 7c0a 7c20 2020 2020 2020 2020 3230 - |.| 20 │ │ │ │ +00009330: 2020 2020 2020 3520 2020 3620 2020 2035 5 6 5 │ │ │ │ +00009340: 2036 2020 2020 3320 3130 2020 2020 2020 6 3 10 │ │ │ │ +00009350: 3138 2020 2020 2020 3230 2020 2020 2020 18 20 │ │ │ │ +00009360: 3420 2020 3130 2020 2020 2020 3520 3720 4 10 5 7 │ │ │ │ 00009370: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000093a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000093b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000093c0: 2d2d 7c0a 7c20 2020 2020 2079 2a54 2020 --|.| y*T │ │ │ │ -000093d0: 292c 2028 7b54 202c 2054 207d 2c20 5420 ), ({T , T }, T │ │ │ │ -000093e0: 5420 202b 2054 2054 2020 202d 207a 2a54 T + T T - z*T │ │ │ │ -000093f0: 2020 202b 2079 2a54 2020 292c 2028 7b54 + y*T ), ({T │ │ │ │ -00009400: 202c 2054 2020 7d2c 202d 2054 2054 2020 , T }, - T T │ │ │ │ -00009410: 2d20 7c0a 7c20 2020 2020 2020 2020 3230 - |.| 20 │ │ │ │ -00009420: 2020 2020 2020 3520 2020 3620 2020 2035 5 6 5 │ │ │ │ -00009430: 2036 2020 2020 3320 3130 2020 2020 2020 6 3 10 │ │ │ │ -00009440: 3138 2020 2020 2020 3230 2020 2020 2020 18 20 │ │ │ │ -00009450: 3420 2020 3130 2020 2020 2020 3520 3720 4 10 5 7 │ │ │ │ +000093c0: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ +000093d0: 202b 207a 2a54 2020 202b 207a 2a54 2020 + z*T + z*T │ │ │ │ +000093e0: 292c 2028 7b54 202c 2054 207d 2c20 2d20 ), ({T , T }, - │ │ │ │ +000093f0: 5420 5420 202d 2054 2054 2020 2b20 782a T T - T T + x* │ │ │ │ +00009400: 5420 2029 2c20 287b 5420 2c20 5420 7d2c T ), ({T , T }, │ │ │ │ +00009410: 2020 7c0a 7c20 2020 2020 2020 3420 3130 |.| 4 10 │ │ │ │ +00009420: 2020 2020 2020 3132 2020 2020 2020 3230 12 20 │ │ │ │ +00009430: 2020 2020 2020 3120 2020 3620 2020 2020 1 6 │ │ │ │ +00009440: 2031 2036 2020 2020 3420 3720 2020 2020 1 6 4 7 │ │ │ │ +00009450: 2031 3120 2020 2020 2033 2020 2039 2020 11 3 9 │ │ │ │ 00009460: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000094a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000094b0: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -000094c0: 202b 207a 2a54 2020 202b 207a 2a54 2020 + z*T + z*T │ │ │ │ -000094d0: 292c 2028 7b54 202c 2054 207d 2c20 2d20 ), ({T , T }, - │ │ │ │ -000094e0: 5420 5420 202d 2054 2054 2020 2b20 782a T T - T T + x* │ │ │ │ -000094f0: 5420 2029 2c20 287b 5420 2c20 5420 7d2c T ), ({T , T }, │ │ │ │ -00009500: 2020 7c0a 7c20 2020 2020 2020 3420 3130 |.| 4 10 │ │ │ │ -00009510: 2020 2020 2020 3132 2020 2020 2020 3230 12 20 │ │ │ │ -00009520: 2020 2020 2020 3120 2020 3620 2020 2020 1 6 │ │ │ │ -00009530: 2031 2036 2020 2020 3420 3720 2020 2020 1 6 4 7 │ │ │ │ -00009540: 2031 3120 2020 2020 2033 2020 2039 2020 11 3 9 │ │ │ │ +000094c0: 2b20 5420 5420 202d 207a 2a54 2020 202b + T T - z*T + │ │ │ │ +000094d0: 2078 2a54 2020 292c 2028 7b54 202c 2054 x*T ), ({T , T │ │ │ │ +000094e0: 207d 2c20 5420 5420 202b 2054 2054 2020 }, T T + T T │ │ │ │ +000094f0: 2d20 7a2a 5420 2020 2b20 792a 5420 2029 - z*T + y*T ) │ │ │ │ +00009500: 2c20 7c0a 7c20 2020 2020 2020 3520 3820 , |.| 5 8 │ │ │ │ +00009510: 2020 2033 2039 2020 2020 2020 3135 2020 3 9 15 │ │ │ │ +00009520: 2020 2020 3136 2020 2020 2020 3420 2020 16 4 │ │ │ │ +00009530: 3620 2020 2034 2036 2020 2020 3320 3720 6 4 6 3 7 │ │ │ │ +00009540: 2020 2020 2031 3120 2020 2020 2031 3320 11 13 │ │ │ │ 00009550: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000095a0: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -000095b0: 2b20 5420 5420 202d 207a 2a54 2020 202b + T T - z*T + │ │ │ │ -000095c0: 2078 2a54 2020 292c 2028 7b54 202c 2054 x*T ), ({T , T │ │ │ │ -000095d0: 207d 2c20 5420 5420 202b 2054 2054 2020 }, T T + T T │ │ │ │ -000095e0: 2d20 7a2a 5420 2020 2b20 792a 5420 2029 - z*T + y*T ) │ │ │ │ -000095f0: 2c20 7c0a 7c20 2020 2020 2020 3520 3820 , |.| 5 8 │ │ │ │ -00009600: 2020 2033 2039 2020 2020 2020 3135 2020 3 9 15 │ │ │ │ -00009610: 2020 2020 3136 2020 2020 2020 3420 2020 16 4 │ │ │ │ -00009620: 3620 2020 2034 2036 2020 2020 3320 3720 6 4 6 3 7 │ │ │ │ -00009630: 2020 2020 2031 3120 2020 2020 2031 3320 11 13 │ │ │ │ +000095a0: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ +000095b0: 2054 2020 7d2c 202d 2054 2054 2020 202b T }, - T T + │ │ │ │ +000095c0: 2079 2a54 2020 292c 2028 7b54 202c 2054 y*T ), ({T , T │ │ │ │ +000095d0: 207d 2c20 5420 5420 202d 2054 2054 2020 }, T T - T T │ │ │ │ +000095e0: 202b 2078 2a54 2020 292c 2028 7b54 202c + x*T ), ({T , │ │ │ │ +000095f0: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ +00009600: 2020 3130 2020 2020 2020 3520 3130 2020 10 5 10 │ │ │ │ +00009610: 2020 2020 3138 2020 2020 2020 3420 2020 18 4 │ │ │ │ +00009620: 3620 2020 2034 2036 2020 2020 3120 3130 6 4 6 1 10 │ │ │ │ +00009630: 2020 2020 2020 3230 2020 2020 2020 3420 20 4 │ │ │ │ 00009640: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009690: 2d2d 7c0a 7c20 2020 2020 2028 7b54 202c --|.| ({T , │ │ │ │ -000096a0: 2054 2020 7d2c 202d 2054 2054 2020 202b T }, - T T + │ │ │ │ -000096b0: 2079 2a54 2020 292c 2028 7b54 202c 2054 y*T ), ({T , T │ │ │ │ -000096c0: 207d 2c20 5420 5420 202d 2054 2054 2020 }, T T - T T │ │ │ │ -000096d0: 202b 2078 2a54 2020 292c 2028 7b54 202c + x*T ), ({T , │ │ │ │ -000096e0: 2020 7c0a 7c20 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ -000096f0: 2020 3130 2020 2020 2020 3520 3130 2020 10 5 10 │ │ │ │ -00009700: 2020 2020 3138 2020 2020 2020 3420 2020 18 4 │ │ │ │ -00009710: 3620 2020 2034 2036 2020 2020 3120 3130 6 4 6 1 10 │ │ │ │ -00009720: 2020 2020 2020 3230 2020 2020 2020 3420 20 4 │ │ │ │ +00009690: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ +000096a0: 2d20 5420 5420 202d 2054 2054 2020 2b20 - T T - T T + │ │ │ │ +000096b0: 782a 5420 2029 2c20 287b 5420 2c20 5420 x*T ), ({T , T │ │ │ │ +000096c0: 7d2c 2054 2054 2020 2b20 5420 5420 202b }, T T + T T + │ │ │ │ +000096d0: 2054 2054 2020 2b20 792a 5420 2020 2d20 T T + y*T - │ │ │ │ +000096e0: 2020 7c0a 7c20 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ +000096f0: 2020 2031 2036 2020 2020 3420 3720 2020 1 6 4 7 │ │ │ │ +00009700: 2020 2031 3120 2020 2020 2032 2020 2036 11 2 6 │ │ │ │ +00009710: 2020 2020 3220 3620 2020 2033 2038 2020 2 6 3 8 │ │ │ │ +00009720: 2020 3420 3920 2020 2020 2031 3420 2020 4 9 14 │ │ │ │ 00009730: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009780: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ -00009790: 2d20 5420 5420 202d 2054 2054 2020 2b20 - T T - T T + │ │ │ │ -000097a0: 782a 5420 2029 2c20 287b 5420 2c20 5420 x*T ), ({T , T │ │ │ │ -000097b0: 7d2c 2054 2054 2020 2b20 5420 5420 202b }, T T + T T + │ │ │ │ -000097c0: 2054 2054 2020 2b20 792a 5420 2020 2d20 T T + y*T - │ │ │ │ -000097d0: 2020 7c0a 7c20 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ -000097e0: 2020 2031 2036 2020 2020 3420 3720 2020 1 6 4 7 │ │ │ │ -000097f0: 2020 2031 3120 2020 2020 2032 2020 2036 11 2 6 │ │ │ │ -00009800: 2020 2020 3220 3620 2020 2033 2038 2020 2 6 3 8 │ │ │ │ -00009810: 2020 3420 3920 2020 2020 2031 3420 2020 4 9 14 │ │ │ │ +00009780: 2d2d 7c0a 7c20 2020 2020 207a 2a54 2020 --|.| z*T │ │ │ │ +00009790: 292c 2028 7b54 202c 2054 2020 7d2c 2054 ), ({T , T }, T │ │ │ │ +000097a0: 2054 2020 2d20 5420 5420 2020 2d20 7a2a T - T T - z* │ │ │ │ +000097b0: 5420 2020 2b20 7a2a 5420 2029 2c20 287b T + z*T ), ({ │ │ │ │ +000097c0: 5420 2c20 5420 7d2c 2054 2054 2020 2b20 T , T }, T T + │ │ │ │ +000097d0: 2020 7c0a 7c20 2020 2020 2020 2020 3137 |.| 17 │ │ │ │ +000097e0: 2020 2020 2020 3520 2020 3130 2020 2020 5 10 │ │ │ │ +000097f0: 3420 3920 2020 2035 2031 3020 2020 2020 4 9 5 10 │ │ │ │ +00009800: 2031 3720 2020 2020 2031 3920 2020 2020 17 19 │ │ │ │ +00009810: 2033 2020 2038 2020 2020 3220 3620 2020 3 8 2 6 │ │ │ │ 00009820: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009870: 2d2d 7c0a 7c20 2020 2020 207a 2a54 2020 --|.| z*T │ │ │ │ -00009880: 292c 2028 7b54 202c 2054 2020 7d2c 2054 ), ({T , T }, T │ │ │ │ -00009890: 2054 2020 2d20 5420 5420 2020 2d20 7a2a T - T T - z* │ │ │ │ -000098a0: 5420 2020 2b20 7a2a 5420 2029 2c20 287b T + z*T ), ({ │ │ │ │ -000098b0: 5420 2c20 5420 7d2c 2054 2054 2020 2b20 T , T }, T T + │ │ │ │ -000098c0: 2020 7c0a 7c20 2020 2020 2020 2020 3137 |.| 17 │ │ │ │ -000098d0: 2020 2020 2020 3520 2020 3130 2020 2020 5 10 │ │ │ │ -000098e0: 3420 3920 2020 2035 2031 3020 2020 2020 4 9 5 10 │ │ │ │ -000098f0: 2031 3720 2020 2020 2031 3920 2020 2020 17 19 │ │ │ │ -00009900: 2033 2020 2038 2020 2020 3220 3620 2020 3 8 2 6 │ │ │ │ +00009870: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ +00009880: 2b20 5420 5420 202b 2079 2a54 2020 202d + T T + y*T - │ │ │ │ +00009890: 207a 2a54 2020 292c 2028 7b54 202c 2054 z*T ), ({T , T │ │ │ │ +000098a0: 207d 2c20 5420 5420 202b 2079 2a54 2020 }, T T + y*T │ │ │ │ +000098b0: 202d 207a 2a54 2020 292c 2028 7b54 202c - z*T ), ({T , │ │ │ │ +000098c0: 2020 7c0a 7c20 2020 2020 2020 3320 3820 |.| 3 8 │ │ │ │ +000098d0: 2020 2034 2039 2020 2020 2020 3134 2020 4 9 14 │ │ │ │ +000098e0: 2020 2020 3137 2020 2020 2020 3320 2020 17 3 │ │ │ │ +000098f0: 3620 2020 2033 2036 2020 2020 2020 3131 6 3 6 11 │ │ │ │ +00009900: 2020 2020 2020 3132 2020 2020 2020 3520 12 5 │ │ │ │ 00009910: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009960: 2d2d 7c0a 7c20 2020 2020 2054 2054 2020 --|.| T T │ │ │ │ -00009970: 2b20 5420 5420 202b 2079 2a54 2020 202d + T T + y*T - │ │ │ │ -00009980: 207a 2a54 2020 292c 2028 7b54 202c 2054 z*T ), ({T , T │ │ │ │ -00009990: 207d 2c20 5420 5420 202b 2079 2a54 2020 }, T T + y*T │ │ │ │ -000099a0: 202d 207a 2a54 2020 292c 2028 7b54 202c - z*T ), ({T , │ │ │ │ -000099b0: 2020 7c0a 7c20 2020 2020 2020 3320 3820 |.| 3 8 │ │ │ │ -000099c0: 2020 2034 2039 2020 2020 2020 3134 2020 4 9 14 │ │ │ │ -000099d0: 2020 2020 3137 2020 2020 2020 3320 2020 17 3 │ │ │ │ -000099e0: 3620 2020 2033 2036 2020 2020 2020 3131 6 3 6 11 │ │ │ │ -000099f0: 2020 2020 2020 3132 2020 2020 2020 3520 12 5 │ │ │ │ +00009960: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ +00009970: 2d20 5420 5420 202d 2054 2054 2020 202b - T T - T T + │ │ │ │ +00009980: 207a 2a54 2020 202b 207a 2a54 2020 292c z*T + z*T ), │ │ │ │ +00009990: 2028 7b54 202c 2054 207d 2c20 5420 5420 ({T , T }, T T │ │ │ │ +000099a0: 202b 2054 2054 2020 2d20 7a2a 5420 2020 + T T - z*T │ │ │ │ +000099b0: 2b20 7c0a 7c20 2020 2020 2020 3720 2020 + |.| 7 │ │ │ │ +000099c0: 2020 2035 2037 2020 2020 3420 3130 2020 5 7 4 10 │ │ │ │ +000099d0: 2020 2020 3132 2020 2020 2020 3230 2020 12 20 │ │ │ │ +000099e0: 2020 2020 3320 2020 3720 2020 2034 2036 3 7 4 6 │ │ │ │ +000099f0: 2020 2020 3320 3720 2020 2020 2031 3120 3 7 11 │ │ │ │ 00009a00: 2020 7c0a 7c20 2020 2020 202d 2d2d 2d2d |.| ----- │ │ │ │ 00009a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00009a50: 2d2d 7c0a 7c20 2020 2020 2054 207d 2c20 --|.| T }, │ │ │ │ -00009a60: 2d20 5420 5420 202d 2054 2054 2020 202b - T T - T T + │ │ │ │ -00009a70: 207a 2a54 2020 202b 207a 2a54 2020 297d z*T + z*T )} │ │ │ │ +00009a50: 2d2d 7c0a 7c20 2020 2020 2079 2a54 2020 --|.| y*T │ │ │ │ +00009a60: 292c 2028 7b54 202c 2054 207d 2c20 2d20 ), ({T , T }, - │ │ │ │ +00009a70: 5420 5420 202b 2079 2a54 2020 297d 2020 T T + y*T )} │ │ │ │ 00009a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009aa0: 2020 7c0a 7c20 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ -00009ab0: 2020 2035 2037 2020 2020 3420 3130 2020 5 7 4 10 │ │ │ │ -00009ac0: 2020 2020 3132 2020 2020 2020 3230 2020 12 20 │ │ │ │ +00009aa0: 2020 7c0a 7c20 2020 2020 2020 2020 3133 |.| 13 │ │ │ │ +00009ab0: 2020 2020 2020 3220 2020 3920 2020 2020 2 9 │ │ │ │ +00009ac0: 2032 2039 2020 2020 2020 3136 2020 2020 2 9 16 │ │ │ │ 00009ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009af0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2498,15 +2498,15 @@ │ │ │ │ 00009c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00009c80: 2020 7c0a 7c6f 3136 203d 2031 2020 2020 |.|o16 = 1 │ │ │ │ +00009c80: 2020 7c0a 7c6f 3136 203d 202d 3120 2020 |.|o16 = -1 │ │ │ │ 00009c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00009ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ ├── HyperplaneArrangements.info │ │ │ │ @@ -7210,16 +7210,16 @@ │ │ │ │ 0001c290: 3134 203a 2063 4127 2720 3d20 7472 696d 14 : cA'' = trim │ │ │ │ 0001c2a0: 2063 6f6e 6528 412c 2078 2920 2020 2020 cone(A, x) │ │ │ │ 0001c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0001c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c300: 2020 7c0a 7c6f 3134 203d 207b 7820 2d20 |.|o14 = {x - │ │ │ │ -0001c310: 792c 2079 2c20 787d 2020 2020 2020 2020 y, y, x} │ │ │ │ +0001c300: 2020 7c0a 7c6f 3134 203d 207b 792c 2078 |.|o14 = {y, x │ │ │ │ +0001c310: 2c20 7820 2d20 797d 2020 2020 2020 2020 , x - y} │ │ │ │ 0001c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c370: 2020 2020 2020 2020 7c0a 7c6f 3134 203a |.|o14 : │ │ │ │ 0001c380: 2048 7970 6572 706c 616e 6520 4172 7261 Hyperplane Arra │ │ │ │ @@ -19190,21 +19190,21 @@ │ │ │ │ 0004af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004afc0: 207c 0a7c 6f36 203d 207b 7820 2c20 7820 |.|o6 = {x , x │ │ │ │ -0004afd0: 2c20 7820 202b 2078 207d 2020 2020 2020 , x + x } │ │ │ │ +0004afc0: 207c 0a7c 6f36 203d 207b 7820 202b 2078 |.|o6 = {x + x │ │ │ │ +0004afd0: 202c 2078 202c 2078 207d 2020 2020 2020 , x , x } │ │ │ │ 0004afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b010: 207c 0a7c 2020 2020 2020 2032 2020 2031 |.| 2 1 │ │ │ │ -0004b020: 2020 2031 2020 2020 3220 2020 2020 2020 1 2 │ │ │ │ +0004b010: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +0004b020: 3220 2020 3220 2020 3120 2020 2020 2020 2 2 1 │ │ │ │ 0004b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/IntegralClosure.info.gz │ │ │ ├── IntegralClosure.info │ │ │ │ @@ -4491,16 +4491,16 @@ │ │ │ │ 000118a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000118b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 000118c0: 7469 6d65 2052 2720 3d20 696e 7465 6772 time R' = integr │ │ │ │ 000118d0: 616c 436c 6f73 7572 6520 5220 2020 2020 alClosure R │ │ │ │ 000118e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000118f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011900: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00011910: 7365 6420 302e 3639 3838 3373 2028 6370 sed 0.69883s (cp │ │ │ │ -00011920: 7529 3b20 302e 3433 3032 3433 7320 2874 u); 0.430243s (t │ │ │ │ +00011910: 7365 6420 302e 3737 3336 3234 7320 2863 sed 0.773624s (c │ │ │ │ +00011920: 7075 293b 2030 2e34 3039 3037 7320 2874 pu); 0.40907s (t │ │ │ │ 00011930: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011950: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00011960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4981,16 +4981,16 @@ │ │ │ │ 00013740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013750: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a --------+.|i10 : │ │ │ │ 00013760: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 00013770: 7261 6c43 6c6f 7375 7265 2852 2c20 5374 ralClosure(R, St │ │ │ │ 00013780: 7261 7465 6779 203d 3e20 5261 6469 6361 rategy => Radica │ │ │ │ 00013790: 6c29 2020 2020 2020 2020 2020 2020 2020 l) │ │ │ │ 000137a0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000137b0: 7365 6420 302e 3738 3834 3734 7320 2863 sed 0.788474s (c │ │ │ │ -000137c0: 7075 293b 2030 2e34 3138 3436 3373 2028 pu); 0.418463s ( │ │ │ │ +000137b0: 7365 6420 302e 3833 3730 3932 7320 2863 sed 0.837092s (c │ │ │ │ +000137c0: 7075 293b 2030 2e34 3331 3137 3173 2028 pu); 0.431171s ( │ │ │ │ 000137d0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 000137e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000137f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5471,16 +5471,16 @@ │ │ │ │ 000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a --------+.|i16 : │ │ │ │ 00015600: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 00015610: 7261 6c43 6c6f 7375 7265 2852 2c20 5374 ralClosure(R, St │ │ │ │ 00015620: 7261 7465 6779 203d 3e20 416c 6c43 6f64 rategy => AllCod │ │ │ │ 00015630: 696d 656e 7369 6f6e 7329 2020 2020 2020 imensions) │ │ │ │ 00015640: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00015650: 7365 6420 302e 3837 3437 3939 7320 2863 sed 0.874799s (c │ │ │ │ -00015660: 7075 293b 2030 2e34 3937 3536 3373 2028 pu); 0.497563s ( │ │ │ │ +00015650: 7365 6420 302e 3834 3131 3137 7320 2863 sed 0.841117s (c │ │ │ │ +00015660: 7075 293b 2030 2e34 3133 3136 3973 2028 pu); 0.413169s ( │ │ │ │ 00015670: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00015680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000156a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5916,16 +5916,16 @@ │ │ │ │ 000171b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000171c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a --------+.|i21 : │ │ │ │ 000171d0: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 000171e0: 7261 6c43 6c6f 7375 7265 2852 2c20 5374 ralClosure(R, St │ │ │ │ 000171f0: 7261 7465 6779 203d 3e20 5369 6d70 6c69 rategy => Simpli │ │ │ │ 00017200: 6679 4672 6163 7469 6f6e 7329 2020 2020 fyFractions) │ │ │ │ 00017210: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00017220: 7365 6420 302e 3934 3835 3636 7320 2863 sed 0.948566s (c │ │ │ │ -00017230: 7075 293b 2030 2e35 3236 3932 3973 2028 pu); 0.526929s ( │ │ │ │ +00017220: 7365 6420 302e 3933 3732 3138 7320 2863 sed 0.937218s (c │ │ │ │ +00017230: 7075 293b 2030 2e34 3639 3737 3373 2028 pu); 0.469773s ( │ │ │ │ 00017240: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6361,16 +6361,16 @@ │ │ │ │ 00018d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3236 203a --------+.|i26 : │ │ │ │ 00018da0: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 00018db0: 7261 6c43 6c6f 7375 7265 2028 522c 2053 ralClosure (R, S │ │ │ │ 00018dc0: 7472 6174 6567 7920 3d3e 2052 6164 6963 trategy => Radic │ │ │ │ 00018dd0: 616c 436f 6469 6d31 2920 2020 2020 2020 alCodim1) │ │ │ │ 00018de0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00018df0: 7365 6420 312e 3734 3835 3473 2028 6370 sed 1.74854s (cp │ │ │ │ -00018e00: 7529 3b20 302e 3837 3332 3632 7320 2874 u); 0.873262s (t │ │ │ │ +00018df0: 7365 6420 312e 3830 3235 3573 2028 6370 sed 1.80255s (cp │ │ │ │ +00018e00: 7529 3b20 302e 3831 3132 3933 7320 2874 u); 0.811293s (t │ │ │ │ 00018e10: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00018e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00018e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -6806,16 +6806,16 @@ │ │ │ │ 0001a950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a960: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3331 203a --------+.|i31 : │ │ │ │ 0001a970: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 0001a980: 7261 6c43 6c6f 7375 7265 2028 522c 2053 ralClosure (R, S │ │ │ │ 0001a990: 7472 6174 6567 7920 3d3e 2056 6173 636f trategy => Vasco │ │ │ │ 0001a9a0: 6e63 656c 6f73 2920 2020 2020 2020 2020 ncelos) │ │ │ │ 0001a9b0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -0001a9c0: 7365 6420 302e 3534 3934 3639 7320 2863 sed 0.549469s (c │ │ │ │ -0001a9d0: 7075 293b 2030 2e34 3430 3539 3673 2028 pu); 0.440596s ( │ │ │ │ +0001a9c0: 7365 6420 302e 3538 3639 3739 7320 2863 sed 0.586979s (c │ │ │ │ +0001a9d0: 7075 293b 2030 2e34 3130 3239 3773 2028 pu); 0.410297s ( │ │ │ │ 0001a9e0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7223,18 +7223,18 @@ │ │ │ │ 0001c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c390: 2d2d 2d2d 2b0a 7c69 3336 203a 2074 696d ----+.|i36 : tim │ │ │ │ 0001c3a0: 6520 5227 203d 2069 6e74 6567 7261 6c43 e R' = integralC │ │ │ │ 0001c3b0: 6c6f 7375 7265 2052 2020 2020 2020 2020 losure R │ │ │ │ 0001c3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001c3d0: 0a7c 202d 2d20 7573 6564 2030 2e30 3434 .| -- used 0.044 │ │ │ │ -0001c3e0: 3032 3373 2028 6370 7529 3b20 302e 3034 023s (cpu); 0.04 │ │ │ │ -0001c3f0: 3430 3230 3173 2028 7468 7265 6164 293b 40201s (thread); │ │ │ │ -0001c400: 2030 7320 2867 6329 2020 7c0a 7c20 2020 0s (gc) |.| │ │ │ │ +0001c3d0: 0a7c 202d 2d20 7573 6564 2030 2e30 3532 .| -- used 0.052 │ │ │ │ +0001c3e0: 3833 3731 7320 2863 7075 293b 2030 2e30 8371s (cpu); 0.0 │ │ │ │ +0001c3f0: 3532 3833 3531 7320 2874 6872 6561 6429 528351s (thread) │ │ │ │ +0001c400: 3b20 3073 2028 6763 2920 7c0a 7c20 2020 ; 0s (gc) |.| │ │ │ │ 0001c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c440: 2020 2020 207c 0a7c 6f33 3620 3d20 5227 |.|o36 = R' │ │ │ │ 0001c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7413,16 +7413,16 @@ │ │ │ │ 0001cf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001cf60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3431 203a --------+.|i41 : │ │ │ │ 0001cf70: 2074 696d 6520 5227 203d 2069 6e74 6567 time R' = integ │ │ │ │ 0001cf80: 7261 6c43 6c6f 7375 7265 2852 2c20 5374 ralClosure(R, St │ │ │ │ 0001cf90: 7261 7465 6779 203d 3e20 5261 6469 6361 rategy => Radica │ │ │ │ 0001cfa0: 6c29 207c 0a7c 202d 2d20 7573 6564 2030 l) |.| -- used 0 │ │ │ │ -0001cfb0: 2e30 3433 3635 3231 7320 2863 7075 293b .0436521s (cpu); │ │ │ │ -0001cfc0: 2030 2e30 3433 3635 3237 7320 2874 6872 0.0436527s (thr │ │ │ │ +0001cfb0: 2e30 3531 3533 3738 7320 2863 7075 293b .0515378s (cpu); │ │ │ │ +0001cfc0: 2030 2e30 3531 3533 3737 7320 2874 6872 0.0515377s (thr │ │ │ │ 0001cfd0: 6561 6429 3b20 3073 2028 6763 2920 7c0a ead); 0s (gc) |. │ │ │ │ 0001cfe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d010: 2020 2020 2020 2020 207c 0a7c 6f34 3120 |.|o41 │ │ │ │ 0001d020: 3d20 5227 2020 2020 2020 2020 2020 2020 = R' │ │ │ │ 0001d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7555,17 +7555,17 @@ │ │ │ │ 0001d820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d840: 2b0a 7c69 3436 203a 2074 696d 6520 5227 +.|i46 : time R' │ │ │ │ 0001d850: 203d 2069 6e74 6567 7261 6c43 6c6f 7375 = integralClosu │ │ │ │ 0001d860: 7265 2852 2c20 5374 7261 7465 6779 203d re(R, Strategy = │ │ │ │ 0001d870: 3e20 416c 6c43 6f64 696d 656e 7369 6f6e > AllCodimension │ │ │ │ 0001d880: 7329 7c0a 7c20 2d2d 2075 7365 6420 302e s)|.| -- used 0. │ │ │ │ -0001d890: 3036 3231 3831 3473 2028 6370 7529 3b20 0621814s (cpu); │ │ │ │ -0001d8a0: 302e 3036 3231 3832 3873 2028 7468 7265 0.0621828s (thre │ │ │ │ -0001d8b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +0001d890: 3037 3436 3831 3173 2028 6370 7529 3b20 0746811s (cpu); │ │ │ │ +0001d8a0: 302e 3037 3436 3736 7320 2874 6872 6561 0.074676s (threa │ │ │ │ +0001d8b0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0001d8c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d900: 2020 2020 2020 7c0a 7c6f 3436 203d 2052 |.|o46 = R │ │ │ │ 0001d910: 2720 2020 2020 2020 2020 2020 2020 2020 ' │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7698,16 +7698,16 @@ │ │ │ │ 0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e130: 2d2d 2b0a 7c69 3531 203a 2074 696d 6520 --+.|i51 : time │ │ │ │ 0001e140: 5227 203d 2069 6e74 6567 7261 6c43 6c6f R' = integralClo │ │ │ │ 0001e150: 7375 7265 2028 522c 2053 7472 6174 6567 sure (R, Strateg │ │ │ │ 0001e160: 7920 3d3e 2052 6164 6963 616c 436f 6469 y => RadicalCodi │ │ │ │ 0001e170: 6d31 297c 0a7c 202d 2d20 7573 6564 2030 m1)|.| -- used 0 │ │ │ │ -0001e180: 2e30 3432 3638 3131 7320 2863 7075 293b .0426811s (cpu); │ │ │ │ -0001e190: 2030 2e30 3432 3637 3638 7320 2874 6872 0.0426768s (thr │ │ │ │ +0001e180: 2e30 3537 3833 3736 7320 2863 7075 293b .0578376s (cpu); │ │ │ │ +0001e190: 2030 2e30 3537 3833 3434 7320 2874 6872 0.0578344s (thr │ │ │ │ 0001e1a0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 0001e1b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e1f0: 2020 2020 207c 0a7c 6f35 3120 3d20 5227 |.|o51 = R' │ │ │ │ 0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7841,17 +7841,17 @@ │ │ │ │ 0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0001ea30: 7c69 3536 203a 2074 696d 6520 5227 203d |i56 : time R' = │ │ │ │ 0001ea40: 2069 6e74 6567 7261 6c43 6c6f 7375 7265 integralClosure │ │ │ │ 0001ea50: 2028 522c 2053 7472 6174 6567 7920 3d3e (R, Strategy => │ │ │ │ 0001ea60: 2056 6173 636f 6e63 656c 6f73 297c 0a7c Vasconcelos)|.| │ │ │ │ -0001ea70: 202d 2d20 7573 6564 2030 2e30 3536 3535 -- used 0.05655 │ │ │ │ -0001ea80: 3831 7320 2863 7075 293b 2030 2e30 3536 81s (cpu); 0.056 │ │ │ │ -0001ea90: 3535 3931 7320 2874 6872 6561 6429 3b20 5591s (thread); │ │ │ │ +0001ea70: 202d 2d20 7573 6564 2030 2e30 3730 3732 -- used 0.07072 │ │ │ │ +0001ea80: 3936 7320 2863 7075 293b 2030 2e30 3730 96s (cpu); 0.070 │ │ │ │ +0001ea90: 3732 3931 7320 2874 6872 6561 6429 3b20 7291s (thread); │ │ │ │ 0001eaa0: 3073 2028 6763 2920 2020 2020 7c0a 7c20 0s (gc) |.| │ │ │ │ 0001eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eae0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ 0001eaf0: 3620 3d20 5227 2020 2020 2020 2020 2020 6 = R' │ │ │ │ 0001eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8358,17 +8358,17 @@ │ │ │ │ 00020a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020a60: 2d2d 2d2d 2b0a 7c69 3637 203a 2074 696d ----+.|i67 : tim │ │ │ │ 00020a70: 6520 5227 203d 2069 6e74 6567 7261 6c43 e R' = integralC │ │ │ │ 00020a80: 6c6f 7375 7265 2852 2c20 5374 7261 7465 losure(R, Strate │ │ │ │ 00020a90: 6779 203d 3e20 5261 6469 6361 6c29 2020 gy => Radical) │ │ │ │ 00020aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ab0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00020ac0: 302e 3036 3031 3831 3773 2028 6370 7529 0.0601817s (cpu) │ │ │ │ -00020ad0: 3b20 302e 3036 3031 3830 3873 2028 7468 ; 0.0601808s (th │ │ │ │ -00020ae0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00020ac0: 302e 3139 3237 3032 7320 2863 7075 293b 0.192702s (cpu); │ │ │ │ +00020ad0: 2030 2e31 3031 3739 3773 2028 7468 7265 0.101797s (thre │ │ │ │ +00020ae0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00020af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00020b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b50: 2020 2020 7c0a 7c6f 3637 203d 2052 2720 |.|o67 = R' │ │ │ │ @@ -8853,16 +8853,16 @@ │ │ │ │ 00022940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022950: 2d2d 2d2d 2b0a 7c69 3738 203a 2074 696d ----+.|i78 : tim │ │ │ │ 00022960: 6520 5227 203d 2069 6e74 6567 7261 6c43 e R' = integralC │ │ │ │ 00022970: 6c6f 7375 7265 2852 2c20 5374 7261 7465 losure(R, Strate │ │ │ │ 00022980: 6779 203d 3e20 5261 6469 6361 6c29 2020 gy => Radical) │ │ │ │ 00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229a0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -000229b0: 302e 3339 3936 3837 7320 2863 7075 293b 0.399687s (cpu); │ │ │ │ -000229c0: 2030 2e33 3437 3737 3373 2028 7468 7265 0.347773s (thre │ │ │ │ +000229b0: 302e 3436 3039 3135 7320 2863 7075 293b 0.460915s (cpu); │ │ │ │ +000229c0: 2030 2e33 3834 3830 3573 2028 7468 7265 0.384805s (thre │ │ │ │ 000229d0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 000229e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8985,17 +8985,17 @@ │ │ │ │ 00023180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000231a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000231b0: 7c69 3832 203a 2074 696d 6520 5227 203d |i82 : time R' = │ │ │ │ 000231c0: 2069 6e74 6567 7261 6c43 6c6f 7375 7265 integralClosure │ │ │ │ 000231d0: 2852 2c20 5374 7261 7465 6779 203d 3e20 (R, Strategy => │ │ │ │ 000231e0: 416c 6c43 6f64 696d 656e 7369 6f6e 7329 AllCodimensions) │ │ │ │ -000231f0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3531 |.| -- used 0.51 │ │ │ │ -00023200: 3133 3937 7320 2863 7075 293b 2030 2e33 1397s (cpu); 0.3 │ │ │ │ -00023210: 3733 3437 3973 2028 7468 7265 6164 293b 73479s (thread); │ │ │ │ +000231f0: 7c0a 7c20 2d2d 2075 7365 6420 302e 3534 |.| -- used 0.54 │ │ │ │ +00023200: 3335 3531 7320 2863 7075 293b 2030 2e33 3551s (cpu); 0.3 │ │ │ │ +00023210: 3937 3230 3673 2028 7468 7265 6164 293b 97206s (thread); │ │ │ │ 00023220: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00023230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023270: 2020 2020 7c0a 7c6f 3832 203d 2052 2720 |.|o82 = R' │ │ │ │ 00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9118,41 +9118,41 @@ │ │ │ │ 000239d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000239e0: 7c69 3836 203a 2074 696d 6520 5227 203d |i86 : time R' = │ │ │ │ 000239f0: 2069 6e74 6567 7261 6c43 6c6f 7375 7265 integralClosure │ │ │ │ 00023a00: 2028 522c 2053 7472 6174 6567 7920 3d3e (R, Strategy => │ │ │ │ 00023a10: 2052 6164 6963 616c 436f 6469 6d31 2c20 RadicalCodim1, │ │ │ │ 00023a20: 5665 7262 6f73 6974 7920 3d3e 2020 7c0a Verbosity => |. │ │ │ │ 00023a30: 7c20 5b6a 6163 6f62 6961 6e20 7469 6d65 | [jacobian time │ │ │ │ -00023a40: 202e 3030 3035 3638 3638 3620 7365 6320 .000568686 sec │ │ │ │ +00023a40: 202e 3030 3036 3033 3238 3420 7365 6320 .000603284 sec │ │ │ │ 00023a50: 236d 696e 6f72 7320 345d 2020 2020 2020 #minors 4] │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00023a80: 7c69 6e74 6567 7261 6c20 636c 6f73 7572 |integral closur │ │ │ │ 00023a90: 6520 6e76 6172 7320 3420 6e75 6d67 656e e nvars 4 numgen │ │ │ │ 00023aa0: 7320 3120 6973 2053 3220 636f 6469 6d20 s 1 is S2 codim │ │ │ │ 00023ab0: 3120 636f 6469 6d4a 2032 2020 2020 2020 1 codimJ 2 │ │ │ │ 00023ac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00023ad0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00023b20: 7c20 5b73 7465 7020 303a 2020 2074 696d | [step 0: tim │ │ │ │ -00023b30: 6520 2e32 3035 3639 3220 7365 6320 2023 e .205692 sec # │ │ │ │ +00023b30: 6520 2e32 3133 3734 3420 7365 6320 2023 e .213744 sec # │ │ │ │ 00023b40: 6672 6163 7469 6f6e 7320 365d 2020 2020 fractions 6] │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00023b70: 7c20 5b73 7465 7020 313a 2020 2074 696d | [step 1: tim │ │ │ │ -00023b80: 6520 2e32 3331 3832 3320 7365 6320 2023 e .231823 sec # │ │ │ │ +00023b80: 6520 2e32 3539 3639 3420 7365 6320 2023 e .259694 sec # │ │ │ │ 00023b90: 6672 6163 7469 6f6e 7320 365d 2020 2020 fractions 6] │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00023bc0: 7c20 2d2d 2075 7365 6420 302e 3434 3135 | -- used 0.4415 │ │ │ │ -00023bd0: 3435 7320 2863 7075 293b 2030 2e33 3131 45s (cpu); 0.311 │ │ │ │ -00023be0: 3837 3673 2028 7468 7265 6164 293b 2030 876s (thread); 0 │ │ │ │ +00023bc0: 7c20 2d2d 2075 7365 6420 302e 3437 3737 | -- used 0.4777 │ │ │ │ +00023bd0: 3839 7320 2863 7075 293b 2030 2e33 3233 89s (cpu); 0.323 │ │ │ │ +00023be0: 3231 3573 2028 7468 7265 6164 293b 2030 215s (thread); 0 │ │ │ │ 00023bf0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 00023c00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00023c10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ @@ -9297,40 +9297,40 @@ │ │ │ │ 00024500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024510: 2d2b 0a7c 6939 3020 3a20 7469 6d65 2052 -+.|i90 : time R │ │ │ │ 00024520: 2720 3d20 696e 7465 6772 616c 436c 6f73 ' = integralClos │ │ │ │ 00024530: 7572 6520 2852 2c20 5374 7261 7465 6779 ure (R, Strategy │ │ │ │ 00024540: 203d 3e20 5661 7363 6f6e 6365 6c6f 732c => Vasconcelos, │ │ │ │ 00024550: 2056 6572 626f 7369 7479 203d 3e20 3129 Verbosity => 1) │ │ │ │ 00024560: 7c0a 7c20 5b6a 6163 6f62 6961 6e20 7469 |.| [jacobian ti │ │ │ │ -00024570: 6d65 202e 3030 3035 3331 3037 3620 7365 me .000531076 se │ │ │ │ -00024580: 6320 236d 696e 6f72 7320 345d 2020 2020 c #minors 4] │ │ │ │ +00024570: 6d65 202e 3030 3035 3735 3234 2073 6563 me .00057524 sec │ │ │ │ +00024580: 2023 6d69 6e6f 7273 2034 5d20 2020 2020 #minors 4] │ │ │ │ 00024590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000245b0: 0a7c 696e 7465 6772 616c 2063 6c6f 7375 .|integral closu │ │ │ │ 000245c0: 7265 206e 7661 7273 2034 206e 756d 6765 re nvars 4 numge │ │ │ │ 000245d0: 6e73 2031 2069 7320 5332 2063 6f64 696d ns 1 is S2 codim │ │ │ │ 000245e0: 2031 2063 6f64 696d 4a20 3220 2020 2020 1 codimJ 2 │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00024600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00024650: 205b 7374 6570 2030 3a20 2020 7469 6d65 [step 0: time │ │ │ │ -00024660: 202e 3039 3030 3138 3720 7365 6320 2023 .0900187 sec # │ │ │ │ -00024670: 6672 6163 7469 6f6e 7320 365d 2020 2020 fractions 6] │ │ │ │ +00024660: 202e 3130 3534 3932 2073 6563 2020 2366 .105492 sec #f │ │ │ │ +00024670: 7261 6374 696f 6e73 2036 5d20 2020 2020 ractions 6] │ │ │ │ 00024680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000246a0: 5b73 7465 7020 313a 2020 2074 696d 6520 [step 1: time │ │ │ │ -000246b0: 2e33 3631 3535 3120 7365 6320 2023 6672 .361551 sec #fr │ │ │ │ +000246b0: 2e34 3631 3136 3820 7365 6320 2023 6672 .461168 sec #fr │ │ │ │ 000246c0: 6163 7469 6f6e 7320 365d 2020 2020 2020 actions 6] │ │ │ │ 000246d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000246f0: 2d20 7573 6564 2030 2e34 3535 3530 3873 - used 0.455508s │ │ │ │ -00024700: 2028 6370 7529 3b20 302e 3333 3234 3836 (cpu); 0.332486 │ │ │ │ +000246f0: 2d20 7573 6564 2030 2e35 3730 3736 3573 - used 0.570765s │ │ │ │ +00024700: 2028 6370 7529 3b20 302e 3339 3435 3337 (cpu); 0.394537 │ │ │ │ 00024710: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00024720: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 00024730: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9474,42 +9474,42 @@ │ │ │ │ 00025010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025020: 2d2d 2d2d 2b0a 7c69 3934 203a 2074 696d ----+.|i94 : tim │ │ │ │ 00025030: 6520 5227 203d 2069 6e74 6567 7261 6c43 e R' = integralC │ │ │ │ 00025040: 6c6f 7375 7265 2028 522c 2053 7472 6174 losure (R, Strat │ │ │ │ 00025050: 6567 7920 3d3e 207b 5661 7363 6f6e 6365 egy => {Vasconce │ │ │ │ 00025060: 6c6f 732c 2020 2020 2020 2020 2020 2020 los, │ │ │ │ 00025070: 2020 2020 7c0a 7c20 5b6a 6163 6f62 6961 |.| [jacobia │ │ │ │ -00025080: 6e20 7469 6d65 202e 3030 3036 3134 3334 n time .00061434 │ │ │ │ -00025090: 3220 7365 6320 236d 696e 6f72 7320 315d 2 sec #minors 1] │ │ │ │ +00025080: 6e20 7469 6d65 202e 3030 3037 3636 3639 n time .00076669 │ │ │ │ +00025090: 3520 7365 6320 236d 696e 6f72 7320 315d 5 sec #minors 1] │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250c0: 2020 2020 7c0a 7c69 6e74 6567 7261 6c20 |.|integral │ │ │ │ 000250d0: 636c 6f73 7572 6520 6e76 6172 7320 3420 closure nvars 4 │ │ │ │ 000250e0: 6e75 6d67 656e 7320 3120 6973 2053 3220 numgens 1 is S2 │ │ │ │ 000250f0: 636f 6469 6d20 3120 636f 6469 6d4a 2032 codim 1 codimJ 2 │ │ │ │ 00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025110: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025160: 2020 2020 7c0a 7c20 5b73 7465 7020 303a |.| [step 0: │ │ │ │ -00025170: 2020 2074 696d 6520 2e31 3135 3334 3920 time .115349 │ │ │ │ +00025170: 2020 2074 696d 6520 2e31 3336 3632 3620 time .136626 │ │ │ │ 00025180: 7365 6320 2023 6672 6163 7469 6f6e 7320 sec #fractions │ │ │ │ 00025190: 365d 2020 2020 2020 2020 2020 2020 2020 6] │ │ │ │ 000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251b0: 2020 2020 7c0a 7c20 5b73 7465 7020 313a |.| [step 1: │ │ │ │ -000251c0: 2020 2074 696d 6520 2e34 3736 3539 3720 time .476597 │ │ │ │ +000251c0: 2020 2074 696d 6520 2e35 3235 3434 3720 time .525447 │ │ │ │ 000251d0: 7365 6320 2023 6672 6163 7469 6f6e 7320 sec #fractions │ │ │ │ 000251e0: 365d 2020 2020 2020 2020 2020 2020 2020 6] │ │ │ │ 000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025200: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00025210: 302e 3539 3535 3736 7320 2863 7075 293b 0.595576s (cpu); │ │ │ │ -00025220: 2030 2e34 3334 3438 7320 2874 6872 6561 0.43448s (threa │ │ │ │ -00025230: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +00025210: 302e 3636 3635 3535 7320 2863 7075 293b 0.666555s (cpu); │ │ │ │ +00025220: 2030 2e34 3836 3832 3773 2028 7468 7265 0.486827s (thre │ │ │ │ +00025230: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00025260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252a0: 2020 2020 7c0a 7c6f 3934 203d 2052 2720 |.|o94 = R' │ │ │ │ @@ -10305,15 +10305,15 @@ │ │ │ │ 00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028410: 2d2d 2b0a 7c69 3220 3a20 7469 6d65 2052 --+.|i2 : time R │ │ │ │ 00028420: 2720 3d20 696e 7465 6772 616c 436c 6f73 ' = integralClos │ │ │ │ 00028430: 7572 6528 522c 2056 6572 626f 7369 7479 ure(R, Verbosity │ │ │ │ 00028440: 203d 3e20 3229 2020 2020 2020 2020 2020 => 2) │ │ │ │ 00028450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028460: 2020 7c0a 7c20 5b6a 6163 6f62 6961 6e20 |.| [jacobian │ │ │ │ -00028470: 7469 6d65 202e 3030 3035 3930 3031 3720 time .000590017 │ │ │ │ +00028470: 7469 6d65 202e 3030 3036 3037 3333 3220 time .000607332 │ │ │ │ 00028480: 7365 6320 236d 696e 6f72 7320 335d 2020 sec #minors 3] │ │ │ │ 00028490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284b0: 2020 7c0a 7c69 6e74 6567 7261 6c20 636c |.|integral cl │ │ │ │ 000284c0: 6f73 7572 6520 6e76 6172 7320 3320 6e75 osure nvars 3 nu │ │ │ │ 000284d0: 6d67 656e 7320 3120 6973 2053 3220 636f mgens 1 is S2 co │ │ │ │ 000284e0: 6469 6d20 3120 636f 6469 6d4a 2032 2020 dim 1 codimJ 2 │ │ │ │ @@ -10326,180 +10326,180 @@ │ │ │ │ 00028550: 2020 7c0a 7c20 5b73 7465 7020 303a 2020 |.| [step 0: │ │ │ │ 00028560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285a0: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 000285b0: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -000285c0: 7329 202e 3030 3236 3136 3238 2073 6563 s) .00261628 sec │ │ │ │ +000285c0: 7329 202e 3030 3334 3634 3638 2073 6563 s) .00346468 sec │ │ │ │ 000285d0: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 000285e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000285f0: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028600: 6572 313a 2020 2e30 3039 3634 3134 3120 er1: .00964141 │ │ │ │ -00028610: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028600: 6572 313a 2020 2e30 3039 3738 3037 2073 er1: .0097807 s │ │ │ │ +00028610: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028640: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028650: 6572 323a 2020 2e30 3039 3835 3336 3920 er2: .00985369 │ │ │ │ -00028660: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028650: 6572 323a 2020 2e30 3131 3038 3439 2073 er2: .0110849 s │ │ │ │ +00028660: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028690: 2020 7c0a 7c20 2020 2020 206d 696e 7072 |.| minpr │ │ │ │ -000286a0: 6573 3a20 2020 2e30 3038 3637 3634 3620 es: .00867646 │ │ │ │ -000286b0: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +000286a0: 6573 3a20 2020 2e30 3130 3631 3339 2073 es: .0106139 s │ │ │ │ +000286b0: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 000286c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000286d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286e0: 2020 7c0a 7c20 2074 696d 6520 2e30 3432 |.| time .042 │ │ │ │ -000286f0: 3535 3937 2073 6563 2020 2366 7261 6374 5597 sec #fract │ │ │ │ +000286e0: 2020 7c0a 7c20 2074 696d 6520 2e30 3438 |.| time .048 │ │ │ │ +000286f0: 3137 3839 2073 6563 2020 2366 7261 6374 1789 sec #fract │ │ │ │ 00028700: 696f 6e73 2034 5d20 2020 2020 2020 2020 ions 4] │ │ │ │ 00028710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028730: 2020 7c0a 7c20 5b73 7465 7020 313a 2020 |.| [step 1: │ │ │ │ 00028740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028780: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 00028790: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -000287a0: 7329 202e 3030 3233 3933 3737 2073 6563 s) .00239377 sec │ │ │ │ +000287a0: 7329 202e 3030 3237 3535 3131 2073 6563 s) .00275511 sec │ │ │ │ 000287b0: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 000287c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287d0: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -000287e0: 6572 313a 2020 2e30 3131 3135 3431 2073 er1: .0111541 s │ │ │ │ -000287f0: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ +000287e0: 6572 313a 2020 2e30 3134 3132 3620 7365 er1: .014126 se │ │ │ │ +000287f0: 636f 6e64 7320 2020 2020 2020 2020 2020 conds │ │ │ │ 00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028820: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028830: 6572 323a 2020 2e30 3039 3932 3832 3820 er2: .00992828 │ │ │ │ -00028840: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028830: 6572 323a 2020 2e30 3132 3532 3231 2073 er2: .0125221 s │ │ │ │ +00028840: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028870: 2020 7c0a 7c20 2020 2020 206d 696e 7072 |.| minpr │ │ │ │ -00028880: 6573 3a20 2020 2e30 3131 3139 3338 2073 es: .0111938 s │ │ │ │ +00028880: 6573 3a20 2020 2e30 3134 3631 3133 2073 es: .0146113 s │ │ │ │ 00028890: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000288b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288c0: 2020 7c0a 7c20 2074 696d 6520 2e30 3435 |.| time .045 │ │ │ │ -000288d0: 3433 3337 2073 6563 2020 2366 7261 6374 4337 sec #fract │ │ │ │ +000288c0: 2020 7c0a 7c20 2074 696d 6520 2e30 3537 |.| time .057 │ │ │ │ +000288d0: 3130 3239 2073 6563 2020 2366 7261 6374 1029 sec #fract │ │ │ │ 000288e0: 696f 6e73 2034 5d20 2020 2020 2020 2020 ions 4] │ │ │ │ 000288f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028910: 2020 7c0a 7c20 5b73 7465 7020 323a 2020 |.| [step 2: │ │ │ │ 00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028960: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 00028970: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -00028980: 7329 202e 3030 3233 3933 3435 2073 6563 s) .00239345 sec │ │ │ │ +00028980: 7329 202e 3030 3238 3539 3738 2073 6563 s) .00285978 sec │ │ │ │ 00028990: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289b0: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -000289c0: 6572 313a 2020 2e30 3131 3531 3232 2073 er1: .0115122 s │ │ │ │ +000289c0: 6572 313a 2020 2e30 3134 3133 3239 2073 er1: .0141329 s │ │ │ │ 000289d0: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 000289e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a00: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028a10: 6572 323a 2020 2e30 3039 3731 3836 3120 er2: .00971861 │ │ │ │ -00028a20: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028a10: 6572 323a 2020 2e30 3131 3734 3734 2073 er2: .0117474 s │ │ │ │ +00028a20: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a50: 2020 7c0a 7c20 2020 2020 206d 696e 7072 |.| minpr │ │ │ │ -00028a60: 6573 3a20 2020 2e30 3038 3930 3233 3220 es: .00890232 │ │ │ │ -00028a70: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028a60: 6573 3a20 2020 2e30 3131 3032 3534 2073 es: .0110254 s │ │ │ │ +00028a70: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028aa0: 2020 7c0a 7c20 2074 696d 6520 2e30 3433 |.| time .043 │ │ │ │ -00028ab0: 3431 3539 2073 6563 2020 2366 7261 6374 4159 sec #fract │ │ │ │ +00028aa0: 2020 7c0a 7c20 2074 696d 6520 2e30 3532 |.| time .052 │ │ │ │ +00028ab0: 3731 3732 2073 6563 2020 2366 7261 6374 7172 sec #fract │ │ │ │ 00028ac0: 696f 6e73 2035 5d20 2020 2020 2020 2020 ions 5] │ │ │ │ 00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028af0: 2020 7c0a 7c20 5b73 7465 7020 333a 2020 |.| [step 3: │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b40: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 00028b50: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -00028b60: 7329 202e 3030 3235 3238 3438 2073 6563 s) .00252848 sec │ │ │ │ +00028b60: 7329 202e 3030 3239 3734 3131 2073 6563 s) .00297411 sec │ │ │ │ 00028b70: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 00028b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b90: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028ba0: 6572 313a 2020 2e31 3138 3434 3220 7365 er1: .118442 se │ │ │ │ +00028ba0: 6572 313a 2020 2e31 3337 3531 3220 7365 er1: .137512 se │ │ │ │ 00028bb0: 636f 6e64 7320 2020 2020 2020 2020 2020 conds │ │ │ │ 00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028be0: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028bf0: 6572 323a 2020 2e30 3133 3332 3834 2073 er2: .0133284 s │ │ │ │ +00028bf0: 6572 323a 2020 2e30 3135 3037 3236 2073 er2: .0150726 s │ │ │ │ 00028c00: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c30: 2020 7c0a 7c20 2020 2020 206d 696e 7072 |.| minpr │ │ │ │ -00028c40: 6573 3a20 2020 2e30 3135 3639 3235 2073 es: .0156925 s │ │ │ │ +00028c40: 6573 3a20 2020 2e30 3138 3535 3733 2073 es: .0185573 s │ │ │ │ 00028c50: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c80: 2020 7c0a 7c20 2074 696d 6520 2e31 3632 |.| time .162 │ │ │ │ -00028c90: 3036 3720 7365 6320 2023 6672 6163 7469 067 sec #fracti │ │ │ │ +00028c80: 2020 7c0a 7c20 2074 696d 6520 2e31 3838 |.| time .188 │ │ │ │ +00028c90: 3339 3720 7365 6320 2023 6672 6163 7469 397 sec #fracti │ │ │ │ 00028ca0: 6f6e 7320 355d 2020 2020 2020 2020 2020 ons 5] │ │ │ │ 00028cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cd0: 2020 7c0a 7c20 5b73 7465 7020 343a 2020 |.| [step 4: │ │ │ │ 00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d20: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 00028d30: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -00028d40: 7329 202e 3030 3238 3238 3237 2073 6563 s) .00282827 sec │ │ │ │ +00028d40: 7329 202e 3030 3238 3538 3536 2073 6563 s) .00285856 sec │ │ │ │ 00028d50: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028d70: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028d80: 6572 313a 2020 2e30 3039 3234 3335 3120 er1: .00924351 │ │ │ │ -00028d90: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028d80: 6572 313a 2020 2e30 3131 3230 3433 2073 er1: .0112043 s │ │ │ │ +00028d90: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028dc0: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028dd0: 6572 323a 2020 2e30 3136 3233 3739 2073 er2: .0162379 s │ │ │ │ +00028dd0: 6572 323a 2020 2e30 3138 3236 3333 2073 er2: .0182633 s │ │ │ │ 00028de0: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e10: 2020 7c0a 7c20 2020 2020 206d 696e 7072 |.| minpr │ │ │ │ -00028e20: 6573 3a20 2020 2e30 3132 3032 3632 2073 es: .0120262 s │ │ │ │ +00028e20: 6573 3a20 2020 2e30 3139 3034 3736 2073 es: .0190476 s │ │ │ │ 00028e30: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e60: 2020 7c0a 7c20 2074 696d 6520 2e30 3533 |.| time .053 │ │ │ │ -00028e70: 3632 3233 2073 6563 2020 2366 7261 6374 6223 sec #fract │ │ │ │ +00028e60: 2020 7c0a 7c20 2074 696d 6520 2e30 3637 |.| time .067 │ │ │ │ +00028e70: 3132 3932 2073 6563 2020 2366 7261 6374 1292 sec #fract │ │ │ │ 00028e80: 696f 6e73 2035 5d20 2020 2020 2020 2020 ions 5] │ │ │ │ 00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028eb0: 2020 7c0a 7c20 5b73 7465 7020 353a 2020 |.| [step 5: │ │ │ │ 00028ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f00: 2020 7c0a 7c20 2020 2020 2072 6164 6963 |.| radic │ │ │ │ 00028f10: 616c 2028 7573 6520 6d69 6e70 7269 6d65 al (use minprime │ │ │ │ -00028f20: 7329 202e 3030 3233 3231 3439 2073 6563 s) .00232149 sec │ │ │ │ +00028f20: 7329 202e 3030 3238 3337 3139 2073 6563 s) .00283719 sec │ │ │ │ 00028f30: 6f6e 6473 2020 2020 2020 2020 2020 2020 onds │ │ │ │ 00028f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f50: 2020 7c0a 7c20 2020 2020 2069 646c 697a |.| idliz │ │ │ │ -00028f60: 6572 313a 2020 2e30 3037 3839 3533 3420 er1: .00789534 │ │ │ │ -00028f70: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00028f60: 6572 313a 2020 2e30 3130 3336 3132 2073 er1: .0103612 s │ │ │ │ +00028f70: 6563 6f6e 6473 2020 2020 2020 2020 2020 econds │ │ │ │ 00028f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fa0: 2020 7c0a 7c20 2074 696d 6520 2e30 3136 |.| time .016 │ │ │ │ -00028fb0: 3930 3839 2073 6563 2020 2366 7261 6374 9089 sec #fract │ │ │ │ +00028fa0: 2020 7c0a 7c20 2074 696d 6520 2e30 3231 |.| time .021 │ │ │ │ +00028fb0: 3732 3735 2073 6563 2020 2366 7261 6374 7275 sec #fract │ │ │ │ 00028fc0: 696f 6e73 2035 5d20 2020 2020 2020 2020 ions 5] │ │ │ │ 00028fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ff0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00029000: 3336 3832 3631 7320 2863 7075 293b 2030 368261s (cpu); 0 │ │ │ │ -00029010: 2e33 3031 3538 3573 2028 7468 7265 6164 .301585s (thread │ │ │ │ +00029000: 3433 3937 3933 7320 2863 7075 293b 2030 439793s (cpu); 0 │ │ │ │ +00029010: 2e33 3630 3635 3873 2028 7468 7265 6164 .360658s (thread │ │ │ │ 00029020: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 00029030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029040: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10998,17 +10998,17 @@ │ │ │ │ 0002af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0002af70: 0a7c 6934 203a 2074 696d 6520 696e 7465 .|i4 : time inte │ │ │ │ 0002af80: 6772 616c 436c 6f73 7572 6520 4a20 2020 gralClosure J │ │ │ │ 0002af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002afc0: 0a7c 202d 2d20 7573 6564 2031 2e30 3035 .| -- used 1.005 │ │ │ │ -0002afd0: 3332 7320 2863 7075 293b 2030 2e37 3137 32s (cpu); 0.717 │ │ │ │ -0002afe0: 3039 3573 2028 7468 7265 6164 293b 2030 095s (thread); 0 │ │ │ │ +0002afc0: 0a7c 202d 2d20 7573 6564 2031 2e34 3131 .| -- used 1.411 │ │ │ │ +0002afd0: 3934 7320 2863 7075 293b 2030 2e38 3038 94s (cpu); 0.808 │ │ │ │ +0002afe0: 3534 3273 2028 7468 7265 6164 293b 2030 542s (thread); 0 │ │ │ │ 0002aff0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0002b000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002b010: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -11053,18 +11053,18 @@ │ │ │ │ 0002b2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0002b2e0: 0a7c 6935 203a 2074 696d 6520 696e 7465 .|i5 : time inte │ │ │ │ 0002b2f0: 6772 616c 436c 6f73 7572 6528 4a2c 2053 gralClosure(J, S │ │ │ │ 0002b300: 7472 6174 6567 793d 3e7b 5261 6469 6361 trategy=>{Radica │ │ │ │ 0002b310: 6c43 6f64 696d 317d 2920 2020 2020 2020 lCodim1}) │ │ │ │ 0002b320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002b330: 0a7c 202d 2d20 7573 6564 2030 2e36 3337 .| -- used 0.637 │ │ │ │ -0002b340: 3832 3673 2028 6370 7529 3b20 302e 3438 826s (cpu); 0.48 │ │ │ │ -0002b350: 3437 7320 2874 6872 6561 6429 3b20 3073 47s (thread); 0s │ │ │ │ -0002b360: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0002b330: 0a7c 202d 2d20 7573 6564 2030 2e39 3532 .| -- used 0.952 │ │ │ │ +0002b340: 3735 3573 2028 6370 7529 3b20 302e 3535 755s (cpu); 0.55 │ │ │ │ +0002b350: 3639 3238 7320 2874 6872 6561 6429 3b20 6928s (thread); │ │ │ │ +0002b360: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0002b370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002b380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0002b3d0: 0a7c 2020 2020 2020 2020 2020 2020 2032 .| 2 │ │ ├── ./usr/share/info/InvariantRing.info.gz │ │ │ ├── InvariantRing.info │ │ │ │ @@ -3301,16 +3301,16 @@ │ │ │ │ 0000ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ce60: 2d2d 2b0a 7c69 3520 3a20 656c 6170 7365 --+.|i5 : elapse │ │ │ │ 0000ce70: 6454 696d 6520 6571 7569 7661 7269 616e dTime equivarian │ │ │ │ 0000ce80: 7448 696c 6265 7274 5365 7269 6573 2854 tHilbertSeries(T │ │ │ │ 0000ce90: 2c20 4f72 6465 7220 3d3e 2035 2920 2020 , Order => 5) │ │ │ │ 0000cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ceb0: 2020 7c0a 7c20 2d2d 202e 3030 3237 3437 |.| -- .002747 │ │ │ │ -0000cec0: 3032 7320 656c 6170 7365 6420 2020 2020 02s elapsed │ │ │ │ +0000ceb0: 2020 7c0a 7c20 2d2d 202e 3030 3334 3338 |.| -- .003438 │ │ │ │ +0000cec0: 3173 2065 6c61 7073 6564 2020 2020 2020 1s elapsed │ │ │ │ 0000ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cf00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -3431,16 +3431,16 @@ │ │ │ │ 0000d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d680: 2d2d 2b0a 7c69 3720 3a20 656c 6170 7365 --+.|i7 : elapse │ │ │ │ 0000d690: 6454 696d 6520 6571 7569 7661 7269 616e dTime equivarian │ │ │ │ 0000d6a0: 7448 696c 6265 7274 5365 7269 6573 2854 tHilbertSeries(T │ │ │ │ 0000d6b0: 2c20 4f72 6465 7220 3d3e 2035 293b 2020 , Order => 5); │ │ │ │ 0000d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000d6d0: 2020 7c0a 7c20 2d2d 202e 3030 3034 3237 |.| -- .000427 │ │ │ │ -0000d6e0: 3739 3873 2065 6c61 7073 6564 2020 2020 798s elapsed │ │ │ │ +0000d6d0: 2020 7c0a 7c20 2d2d 202e 3030 3035 3836 |.| -- .000586 │ │ │ │ +0000d6e0: 3534 3273 2065 6c61 7073 6564 2020 2020 542s elapsed │ │ │ │ 0000d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000d720: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0000d730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000d750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -7199,17 +7199,17 @@ │ │ │ │ 0001c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0001c200: 0a7c 6934 203a 2074 696d 6520 5031 3d70 .|i4 : time P1=p │ │ │ │ 0001c210: 7269 6d61 7279 496e 7661 7269 616e 7473 rimaryInvariants │ │ │ │ 0001c220: 2043 3478 4332 2020 2020 2020 2020 2020 C4xC2 │ │ │ │ 0001c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001c250: 0a7c 202d 2d20 7573 6564 2030 2e37 3937 .| -- used 0.797 │ │ │ │ -0001c260: 3635 3973 2028 6370 7529 3b20 302e 3531 659s (cpu); 0.51 │ │ │ │ -0001c270: 3939 3439 7320 2874 6872 6561 6429 3b20 9949s (thread); │ │ │ │ +0001c250: 0a7c 202d 2d20 7573 6564 2030 2e39 3433 .| -- used 0.943 │ │ │ │ +0001c260: 3434 3273 2028 6370 7529 3b20 302e 3633 442s (cpu); 0.63 │ │ │ │ +0001c270: 3831 3139 7320 2874 6872 6561 6429 3b20 8119s (thread); │ │ │ │ 0001c280: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0001c290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0001c2a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -7239,18 +7239,18 @@ │ │ │ │ 0001c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0001c480: 0a7c 6935 203a 2074 696d 6520 5032 3d70 .|i5 : time P2=p │ │ │ │ 0001c490: 7269 6d61 7279 496e 7661 7269 616e 7473 rimaryInvariants │ │ │ │ 0001c4a0: 2843 3478 4332 2c44 6164 653d 3e74 7275 (C4xC2,Dade=>tru │ │ │ │ 0001c4b0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ 0001c4c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001c4d0: 0a7c 202d 2d20 7573 6564 2030 2e36 3731 .| -- used 0.671 │ │ │ │ -0001c4e0: 3432 3273 2028 6370 7529 3b20 302e 3336 422s (cpu); 0.36 │ │ │ │ -0001c4f0: 3434 3634 7320 2874 6872 6561 6429 3b20 4464s (thread); │ │ │ │ -0001c500: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +0001c4d0: 0a7c 202d 2d20 7573 6564 2030 2e37 3834 .| -- used 0.784 │ │ │ │ +0001c4e0: 3332 3773 2028 6370 7529 3b20 302e 3431 327s (cpu); 0.41 │ │ │ │ +0001c4f0: 3932 3473 2028 7468 7265 6164 293b 2030 924s (thread); 0 │ │ │ │ +0001c500: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ 0001c510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0001c520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0001c570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ @@ -7558,17 +7558,17 @@ │ │ │ │ 0001d850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0001d870: 0a7c 6936 203a 2074 696d 6520 7365 636f .|i6 : time seco │ │ │ │ 0001d880: 6e64 6172 7949 6e76 6172 6961 6e74 7328 ndaryInvariants( │ │ │ │ 0001d890: 5031 2c43 3478 4332 2920 2020 2020 2020 P1,C4xC2) │ │ │ │ 0001d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001d8c0: 0a7c 202d 2d20 7573 6564 2030 2e30 3231 .| -- used 0.021 │ │ │ │ -0001d8d0: 3931 3137 7320 2863 7075 293b 2030 2e30 9117s (cpu); 0.0 │ │ │ │ -0001d8e0: 3231 3931 3638 7320 2874 6872 6561 6429 219168s (thread) │ │ │ │ +0001d8c0: 0a7c 202d 2d20 7573 6564 2030 2e30 3235 .| -- used 0.025 │ │ │ │ +0001d8d0: 3636 3538 7320 2863 7075 293b 2030 2e30 6658s (cpu); 0.0 │ │ │ │ +0001d8e0: 3235 3636 3639 7320 2874 6872 6561 6429 256669s (thread) │ │ │ │ 0001d8f0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0001d900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0001d910: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -7598,17 +7598,17 @@ │ │ │ │ 0001dad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0001daf0: 0a7c 6937 203a 2074 696d 6520 7365 636f .|i7 : time seco │ │ │ │ 0001db00: 6e64 6172 7949 6e76 6172 6961 6e74 7328 ndaryInvariants( │ │ │ │ 0001db10: 5032 2c43 3478 4332 2920 2020 2020 2020 P2,C4xC2) │ │ │ │ 0001db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001db40: 0a7c 202d 2d20 7573 6564 2032 2e30 3033 .| -- used 2.003 │ │ │ │ -0001db50: 3433 7320 2863 7075 293b 2031 2e32 3637 43s (cpu); 1.267 │ │ │ │ -0001db60: 3935 7320 2874 6872 6561 6429 3b20 3073 95s (thread); 0s │ │ │ │ +0001db40: 0a7c 202d 2d20 7573 6564 2032 2e36 3836 .| -- used 2.686 │ │ │ │ +0001db50: 3334 7320 2863 7075 293b 2031 2e35 3237 34s (cpu); 1.527 │ │ │ │ +0001db60: 3632 7320 2874 6872 6561 6429 3b20 3073 62s (thread); 0s │ │ │ │ 0001db70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0001db80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0001db90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -8867,15 +8867,15 @@ │ │ │ │ 00022a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a40: 2d2d 2d2b 0a7c 6934 203a 2065 6c61 7073 ---+.|i4 : elaps │ │ │ │ 00022a50: 6564 5469 6d65 2069 6e76 6172 6961 6e74 edTime invariant │ │ │ │ 00022a60: 7320 5334 2020 2020 2020 2020 2020 2020 s S4 │ │ │ │ 00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a90: 2020 207c 0a7c 202d 2d20 2e37 3739 3935 |.| -- .77995 │ │ │ │ +00022a90: 2020 207c 0a7c 202d 2d20 2e35 3939 3135 |.| -- .59915 │ │ │ │ 00022aa0: 3673 2065 6c61 7073 6564 2020 2020 2020 6s elapsed │ │ │ │ 00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ae0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8957,16 +8957,16 @@ │ │ │ │ 00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023030: 2020 207c 0a7c 202d 2d20 2e35 3234 3632 |.| -- .52462 │ │ │ │ -00023040: 3573 2065 6c61 7073 6564 2020 2020 2020 5s elapsed │ │ │ │ +00023030: 2020 207c 0a7c 202d 2d20 2e34 3830 3339 |.| -- .48039 │ │ │ │ +00023040: 3773 2065 6c61 7073 6564 2020 2020 2020 7s elapsed │ │ │ │ 00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000230b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9894,15 +9894,15 @@ │ │ │ │ 00026a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00026a70: 0a7c 6934 203a 2065 6c61 7073 6564 5469 .|i4 : elapsedTi │ │ │ │ 00026a80: 6d65 2069 6e76 6172 6961 6e74 7320 5334 me invariants S4 │ │ │ │ 00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00026ac0: 0a7c 202d 2d20 2e36 3737 3139 3473 2065 .| -- .677194s e │ │ │ │ +00026ac0: 0a7c 202d 2d20 2e35 3730 3435 3473 2065 .| -- .570454s e │ │ │ │ 00026ad0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00026b10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9959,16 +9959,16 @@ │ │ │ │ 00026e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00026e80: 0a7c 6935 203a 2065 6c61 7073 6564 5469 .|i5 : elapsedTi │ │ │ │ 00026e90: 6d65 2069 6e76 6172 6961 6e74 7328 5334 me invariants(S4 │ │ │ │ 00026ea0: 2c55 7365 4c69 6e65 6172 416c 6765 6272 ,UseLinearAlgebr │ │ │ │ 00026eb0: 613d 3e74 7275 6529 2020 2020 2020 2020 a=>true) │ │ │ │ 00026ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00026ed0: 0a7c 202d 2d20 2e31 3034 3936 3473 2065 .| -- .104964s e │ │ │ │ -00026ee0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ +00026ed0: 0a7c 202d 2d20 2e30 3732 3137 3931 7320 .| -- .0721791s │ │ │ │ +00026ee0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00026ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00026f20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Isomorphism.info.gz │ │ │ ├── Isomorphism.info │ │ │ │ @@ -4544,15 +4544,15 @@ │ │ │ │ 00011bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c00: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3320 3a20 -------+.|i23 : │ │ │ │ 00011c10: 656c 6170 7365 6454 696d 6520 6973 4973 elapsedTime isIs │ │ │ │ 00011c20: 6f6d 6f72 7068 6963 2854 312c 2054 3229 omorphic(T1, T2) │ │ │ │ 00011c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c50: 2020 2020 2020 207c 0a7c 202d 2d20 312e |.| -- 1. │ │ │ │ -00011c60: 3430 3034 7320 656c 6170 7365 6420 2020 4004s elapsed │ │ │ │ +00011c60: 3630 3437 3373 2065 6c61 7073 6564 2020 60473s elapsed │ │ │ │ 00011c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011ca0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00011cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4569,16 +4569,16 @@ │ │ │ │ 00011d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011d90: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3420 3a20 -------+.|i24 : │ │ │ │ 00011da0: 656c 6170 7365 6454 696d 6520 6973 6f6d elapsedTime isom │ │ │ │ 00011db0: 6f72 7068 6973 6d28 5431 2c20 5432 2920 orphism(T1, T2) │ │ │ │ 00011dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011de0: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00011df0: 3030 3032 3038 3773 2065 6c61 7073 6564 0002087s elapsed │ │ │ │ -00011e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00011df0: 3030 3033 3732 3831 7320 656c 6170 7365 00037281s elapse │ │ │ │ +00011e00: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 00011e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00011e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/JSON.info.gz │ │ │ ├── JSON.info │ │ │ │ @@ -476,27 +476,27 @@ │ │ │ │ 00001db0: 2d2d 2d2d 2d2b 0a7c 6939 203a 206a 736f -----+.|i9 : jso │ │ │ │ 00001dc0: 6e46 696c 6520 3d20 7465 6d70 6f72 6172 nFile = temporar │ │ │ │ 00001dd0: 7946 696c 654e 616d 6528 2920 7c20 222e yFileName() | ". │ │ │ │ 00001de0: 6a73 6f6e 2220 7c0a 7c20 2020 2020 2020 json" |.| │ │ │ │ 00001df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e10: 2020 2020 2020 207c 0a7c 6f39 203d 202f |.|o9 = / │ │ │ │ -00001e20: 746d 702f 4d32 2d35 3034 3132 2d30 2f30 tmp/M2-50412-0/0 │ │ │ │ +00001e20: 746d 702f 4d32 2d37 3934 3032 2d30 2f30 tmp/M2-79402-0/0 │ │ │ │ 00001e30: 2e6a 736f 6e20 2020 2020 2020 2020 2020 .json │ │ │ │ 00001e40: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00001e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ 00001e80: 3a20 6a73 6f6e 4669 6c65 203c 3c20 225b : jsonFile << "[ │ │ │ │ 00001e90: 312c 2032 2c20 335d 2220 3c3c 2065 6e64 1, 2, 3]" << end │ │ │ │ 00001ea0: 6c20 3c3c 2063 6c6f 7365 7c0a 7c20 2020 l << close|.| │ │ │ │ 00001eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ed0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00001ee0: 3020 3d20 2f74 6d70 2f4d 322d 3530 3431 0 = /tmp/M2-5041 │ │ │ │ +00001ee0: 3020 3d20 2f74 6d70 2f4d 322d 3739 3430 0 = /tmp/M2-7940 │ │ │ │ 00001ef0: 322d 302f 302e 6a73 6f6e 2020 2020 2020 2-0/0.json │ │ │ │ 00001f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00001f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00001f40: 6f31 3020 3a20 4669 6c65 2020 2020 2020 o10 : File │ │ │ │ 00001f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Jets.info.gz │ │ │ ├── Jets.info │ │ │ │ @@ -5260,15 +5260,15 @@ │ │ │ │ 000148b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000148c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 000148d0: 656c 6170 7365 6454 696d 6520 6a65 7473 elapsedTime jets │ │ │ │ 000148e0: 5261 6469 6361 6c28 322c 4929 2020 2020 Radical(2,I) │ │ │ │ 000148f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014910: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -00014920: 3030 3232 3632 3839 7320 656c 6170 7365 00226289s elapse │ │ │ │ +00014920: 3030 3236 3833 3738 7320 656c 6170 7365 00268378s elapse │ │ │ │ 00014930: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 00014940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00014970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5305,15 +5305,15 @@ │ │ │ │ 00014b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014b90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ 00014ba0: 656c 6170 7365 6454 696d 6520 7261 6469 elapsedTime radi │ │ │ │ 00014bb0: 6361 6c20 4a32 4920 2020 2020 2020 2020 cal J2I │ │ │ │ 00014bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014be0: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -00014bf0: 3239 3730 3039 7320 656c 6170 7365 6420 297009s elapsed │ │ │ │ +00014bf0: 3235 3532 3937 7320 656c 6170 7365 6420 255297s elapsed │ │ │ │ 00014c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00014c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8104,15 +8104,15 @@ │ │ │ │ 0001fa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fa90: 2d2d 2b0a 7c69 3820 3a20 656c 6170 7365 --+.|i8 : elapse │ │ │ │ 0001faa0: 6454 696d 6520 6a65 7473 2833 2c49 2920 dTime jets(3,I) │ │ │ │ 0001fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fae0: 207c 0a7c 202d 2d20 2e30 3234 3739 3933 |.| -- .0247993 │ │ │ │ +0001fae0: 207c 0a7c 202d 2d20 2e30 3131 3037 3434 |.| -- .0110744 │ │ │ │ 0001faf0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0001fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8203,16 +8203,16 @@ │ │ │ │ 000200a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000200b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000200c0: 7c69 3131 203a 2065 6c61 7073 6564 5469 |i11 : elapsedTi │ │ │ │ 000200d0: 6d65 206a 6574 7328 332c 4929 2020 2020 me jets(3,I) │ │ │ │ 000200e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00020110: 202d 2d20 2e30 3134 3631 3434 7320 656c -- .0146144s el │ │ │ │ -00020120: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +00020110: 202d 2d20 2e30 3033 3038 3632 3673 2065 -- .00308626s e │ │ │ │ +00020120: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00020130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020150: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00020160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8242,16 +8242,16 @@ │ │ │ │ 00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020330: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2065 ------+.|i12 : e │ │ │ │ 00020340: 6c61 7073 6564 5469 6d65 206a 6574 7328 lapsedTime jets( │ │ │ │ 00020350: 322c 4929 2020 2020 2020 2020 2020 2020 2,I) │ │ │ │ 00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020380: 2020 2020 207c 0a7c 202d 2d20 2e30 3036 |.| -- .006 │ │ │ │ -00020390: 3334 3333 3573 2065 6c61 7073 6564 2020 34335s elapsed │ │ │ │ +00020380: 2020 2020 207c 0a7c 202d 2d20 2e30 3032 |.| -- .002 │ │ │ │ +00020390: 3732 3433 7320 656c 6170 7365 6420 2020 7243s elapsed │ │ │ │ 000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8754,15 +8754,15 @@ │ │ │ │ 00022310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00022330: 0a7c 6932 3420 3a20 656c 6170 7365 6454 .|i24 : elapsedT │ │ │ │ 00022340: 696d 6520 6a65 7473 2833 2c66 2920 2020 ime jets(3,f) │ │ │ │ 00022350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022380: 0a7c 202d 2d20 2e30 3131 3638 3632 7320 .| -- .0116862s │ │ │ │ +00022380: 0a7c 202d 2d20 2e30 3135 3037 3334 7320 .| -- .0150734s │ │ │ │ 00022390: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 000223a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 000223d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000223e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -8944,15 +8944,15 @@ │ │ │ │ 00022ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00022f10: 0a7c 6932 3720 3a20 656c 6170 7365 6454 .|i27 : elapsedT │ │ │ │ 00022f20: 696d 6520 6a65 7473 2832 2c66 2920 2020 ime jets(2,f) │ │ │ │ 00022f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00022f60: 0a7c 202d 2d20 2e30 3030 3631 3337 3935 .| -- .000613795 │ │ │ │ +00022f60: 0a7c 202d 2d20 2e30 3030 3739 3836 3534 .| -- .000798654 │ │ │ │ 00022f70: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 00022f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00022fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/K3Carpets.info.gz │ │ │ ├── K3Carpets.info │ │ │ │ @@ -1860,15 +1860,15 @@ │ │ │ │ 00007430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007440: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 204c -------+.|i4 : L │ │ │ │ 00007450: 203d 2061 6e61 6c79 7a65 5374 7261 6e64 = analyzeStrand │ │ │ │ 00007460: 2846 2c61 293b 2023 4c20 2020 2020 2020 (F,a); #L │ │ │ │ 00007470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007490: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -000074a0: 3236 3933 3936 7320 656c 6170 7365 6420 269396s elapsed │ │ │ │ +000074a0: 3238 3139 3938 7320 656c 6170 7365 6420 281998s elapsed │ │ │ │ 000074b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000074c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000074d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000074e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000074f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1995,35 +1995,35 @@ │ │ │ │ 00007ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007cb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ 00007cc0: 6361 7270 6574 4265 7474 6954 6162 6c65 carpetBettiTable │ │ │ │ 00007cd0: 2861 2c62 2c33 2920 2020 2020 2020 2020 (a,b,3) │ │ │ │ 00007ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d00: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00007d10: 3032 3430 3432 7320 656c 6170 7365 6420 024042s elapsed │ │ │ │ +00007d10: 3032 3636 3136 3673 2065 6c61 7073 6564 0266166s elapsed │ │ │ │ 00007d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d50: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00007d60: 3036 3530 3737 3773 2065 6c61 7073 6564 0650777s elapsed │ │ │ │ +00007d60: 3037 3530 3336 3473 2065 6c61 7073 6564 0750364s elapsed │ │ │ │ 00007d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007da0: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00007db0: 3532 3730 3634 7320 656c 6170 7365 6420 527064s elapsed │ │ │ │ +00007db0: 3237 3130 3635 7320 656c 6170 7365 6420 271065s elapsed │ │ │ │ 00007dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007df0: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00007e00: 3733 3637 3531 7320 656c 6170 7365 6420 736751s elapsed │ │ │ │ +00007e00: 3432 3137 3237 7320 656c 6170 7365 6420 421727s elapsed │ │ │ │ 00007e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e40: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00007e50: 3136 3232 3173 2065 6c61 7073 6564 2020 16221s elapsed │ │ │ │ +00007e50: 3033 3637 3930 3773 2065 6c61 7073 6564 0367907s elapsed │ │ │ │ 00007e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007e90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00007ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -3676,35 +3676,35 @@ │ │ │ │ 0000e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000e5e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2065 -------+.|i2 : e │ │ │ │ 0000e5f0: 6c61 7073 6564 5469 6d65 2054 3d63 6172 lapsedTime T=car │ │ │ │ 0000e600: 7065 7442 6574 7469 5461 626c 6528 612c petBettiTable(a, │ │ │ │ 0000e610: 622c 3329 2020 2020 2020 2020 2020 2020 b,3) │ │ │ │ -0000e620: 2020 2020 7c0a 7c20 2d2d 202e 3030 3232 |.| -- .0022 │ │ │ │ -0000e630: 3336 3739 7320 656c 6170 7365 6420 2020 3679s elapsed │ │ │ │ +0000e620: 2020 2020 7c0a 7c20 2d2d 202e 3030 3238 |.| -- .0028 │ │ │ │ +0000e630: 3132 3932 7320 656c 6170 7365 6420 2020 1292s elapsed │ │ │ │ 0000e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e660: 207c 0a7c 202d 2d20 2e30 3038 3034 3035 |.| -- .0080405 │ │ │ │ -0000e670: 3573 2065 6c61 7073 6564 2020 2020 2020 5s elapsed │ │ │ │ +0000e660: 207c 0a7c 202d 2d20 2e30 3037 3234 3435 |.| -- .0072445 │ │ │ │ +0000e670: 3173 2065 6c61 7073 6564 2020 2020 2020 1s elapsed │ │ │ │ 0000e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000e6a0: 7c20 2d2d 202e 3032 3236 3237 3373 2065 | -- .0226273s e │ │ │ │ +0000e6a0: 7c20 2d2d 202e 3032 3633 3832 3273 2065 | -- .0263822s e │ │ │ │ 0000e6b0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e6d0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0000e6e0: 2d20 2e30 3039 3633 3632 3173 2065 6c61 - .00963621s ela │ │ │ │ -0000e6f0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ +0000e6e0: 2d20 2e30 3039 3833 3635 7320 656c 6170 - .0098365s elap │ │ │ │ +0000e6f0: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 0000e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e710: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -0000e720: 3030 3334 3932 3331 7320 656c 6170 7365 00349231s elapse │ │ │ │ +0000e720: 3030 3430 3131 3835 7320 656c 6170 7365 00401185s elapse │ │ │ │ 0000e730: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000e750: 2020 2020 207c 0a7c 202d 2d20 2e34 3734 |.| -- .474 │ │ │ │ -0000e760: 3430 3773 2065 6c61 7073 6564 2020 2020 407s elapsed │ │ │ │ +0000e750: 2020 2020 207c 0a7c 202d 2d20 2e34 3234 |.| -- .424 │ │ │ │ +0000e760: 3132 3473 2065 6c61 7073 6564 2020 2020 124s elapsed │ │ │ │ 0000e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000e7c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000e7d0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ @@ -3764,15 +3764,15 @@ │ │ │ │ 0000eb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000eb60: 2d2d 2b0a 7c69 3420 3a20 656c 6170 7365 --+.|i4 : elapse │ │ │ │ 0000eb70: 6454 696d 6520 5427 3d6d 696e 696d 616c dTime T'=minimal │ │ │ │ 0000eb80: 4265 7474 6920 4a20 2020 2020 2020 2020 Betti J │ │ │ │ 0000eb90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000eba0: 0a7c 202d 2d20 2e32 3437 3730 3273 2065 .| -- .247702s e │ │ │ │ +0000eba0: 0a7c 202d 2d20 2e32 3034 3331 3673 2065 .| -- .204316s e │ │ │ │ 0000ebb0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ebd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ec10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ @@ -3848,42 +3848,42 @@ │ │ │ │ 0000f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f0a0: 2b0a 7c69 3620 3a20 656c 6170 7365 6454 +.|i6 : elapsedT │ │ │ │ 0000f0b0: 696d 6520 683d 6361 7270 6574 4265 7474 ime h=carpetBett │ │ │ │ 0000f0c0: 6954 6162 6c65 7328 362c 3629 3b20 2020 iTables(6,6); │ │ │ │ 0000f0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0000f0e0: 202d 2d20 2e30 3034 3530 3830 3373 2065 -- .00450803s e │ │ │ │ +0000f0e0: 202d 2d20 2e30 3034 3836 3137 3473 2065 -- .00486174s e │ │ │ │ 0000f0f0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f110: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -0000f120: 202e 3031 3731 3435 7320 656c 6170 7365 .017145s elapse │ │ │ │ -0000f130: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ +0000f120: 202e 3031 3839 3639 3273 2065 6c61 7073 .0189692s elaps │ │ │ │ +0000f130: 6564 2020 2020 2020 2020 2020 2020 2020 ed │ │ │ │ 0000f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f150: 2020 2020 2020 207c 0a7c 202d 2d20 2e31 |.| -- .1 │ │ │ │ -0000f160: 3332 3237 3873 2065 6c61 7073 6564 2020 32278s elapsed │ │ │ │ +0000f160: 3036 3538 3273 2065 6c61 7073 6564 2020 06582s elapsed │ │ │ │ 0000f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f190: 2020 2020 7c0a 7c20 2d2d 2031 2e31 3431 |.| -- 1.141 │ │ │ │ -0000f1a0: 3339 7320 656c 6170 7365 6420 2020 2020 39s elapsed │ │ │ │ +0000f190: 2020 2020 7c0a 7c20 2d2d 202e 3934 3933 |.| -- .9493 │ │ │ │ +0000f1a0: 3473 2065 6c61 7073 6564 2020 2020 2020 4s elapsed │ │ │ │ 0000f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f1d0: 207c 0a7c 202d 2d20 2e35 3137 3134 3373 |.| -- .517143s │ │ │ │ +0000f1d0: 207c 0a7c 202d 2d20 2e34 3132 3635 3373 |.| -- .412653s │ │ │ │ 0000f1e0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 0000f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0000f210: 7c20 2d2d 202e 3037 3130 3930 3273 2065 | -- .0710902s e │ │ │ │ +0000f210: 7c20 2d2d 202e 3034 3037 3233 3973 2065 | -- .0407239s e │ │ │ │ 0000f220: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f240: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0000f250: 2d20 2e30 3036 3532 3236 3773 2065 6c61 - .00652267s ela │ │ │ │ +0000f250: 2d20 2e30 3037 3137 3634 3473 2065 6c61 - .00717644s ela │ │ │ │ 0000f260: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 0000f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000f280: 2020 2020 2020 2020 7c0a 7c20 2d2d 2036 |.| -- 6 │ │ │ │ -0000f290: 2e34 3736 3738 7320 656c 6170 7365 6420 .47678s elapsed │ │ │ │ +0000f280: 2020 2020 2020 2020 7c0a 7c20 2d2d 2035 |.| -- 5 │ │ │ │ +0000f290: 2e36 3433 3239 7320 656c 6170 7365 6420 .64329s elapsed │ │ │ │ 0000f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f2c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000f300: 2d2d 2b0a 7c69 3720 3a20 6361 7270 6574 --+.|i7 : carpet │ │ │ │ @@ -4107,32 +4107,32 @@ │ │ │ │ 000100a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000100b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000100c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000100d0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2068 3d63 -----+.|i2 : h=c │ │ │ │ 000100e0: 6172 7065 7442 6574 7469 5461 626c 6573 arpetBettiTables │ │ │ │ 000100f0: 2861 2c62 2920 2020 2020 2020 2020 2020 (a,b) │ │ │ │ 00010100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010110: 2020 2020 207c 0a7c 202d 2d20 2e30 3130 |.| -- .010 │ │ │ │ -00010120: 3336 3835 7320 656c 6170 7365 6420 2020 3685s elapsed │ │ │ │ +00010110: 2020 2020 207c 0a7c 202d 2d20 2e30 3032 |.| -- .002 │ │ │ │ +00010120: 3838 3739 3773 2065 6c61 7073 6564 2020 88797s elapsed │ │ │ │ 00010130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010150: 2020 2020 207c 0a7c 202d 2d20 2e30 3036 |.| -- .006 │ │ │ │ -00010160: 3632 3637 3773 2065 6c61 7073 6564 2020 62677s elapsed │ │ │ │ +00010150: 2020 2020 207c 0a7c 202d 2d20 2e30 3039 |.| -- .009 │ │ │ │ +00010160: 3934 3738 3373 2065 6c61 7073 6564 2020 94783s elapsed │ │ │ │ 00010170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010190: 2020 2020 207c 0a7c 202d 2d20 2e30 3232 |.| -- .022 │ │ │ │ -000101a0: 3834 3335 7320 656c 6170 7365 6420 2020 8435s elapsed │ │ │ │ +00010190: 2020 2020 207c 0a7c 202d 2d20 2e30 3235 |.| -- .025 │ │ │ │ +000101a0: 3438 3336 7320 656c 6170 7365 6420 2020 4836s elapsed │ │ │ │ 000101b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000101c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000101d0: 2020 2020 207c 0a7c 202d 2d20 2e30 3333 |.| -- .033 │ │ │ │ -000101e0: 3738 3532 7320 656c 6170 7365 6420 2020 7852s elapsed │ │ │ │ +000101d0: 2020 2020 207c 0a7c 202d 2d20 2e30 3130 |.| -- .010 │ │ │ │ +000101e0: 3036 3539 7320 656c 6170 7365 6420 2020 0659s elapsed │ │ │ │ 000101f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010210: 2020 2020 207c 0a7c 202d 2d20 2e30 3033 |.| -- .003 │ │ │ │ -00010220: 3633 3137 3573 2065 6c61 7073 6564 2020 63175s elapsed │ │ │ │ +00010210: 2020 2020 207c 0a7c 202d 2d20 2e30 3034 |.| -- .004 │ │ │ │ +00010220: 3138 3139 3773 2065 6c61 7073 6564 2020 18197s elapsed │ │ │ │ 00010230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ @@ -4287,16 +4287,16 @@ │ │ │ │ 00010be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010c10: 2d2d 2d2d 2d2b 0a7c 6935 203a 2065 6c61 -----+.|i5 : ela │ │ │ │ 00010c20: 7073 6564 5469 6d65 2054 273d 6d69 6e69 psedTime T'=mini │ │ │ │ 00010c30: 6d61 6c42 6574 7469 204a 2020 2020 2020 malBetti J │ │ │ │ 00010c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010c50: 2020 2020 207c 0a7c 202d 2d20 2e32 3438 |.| -- .248 │ │ │ │ -00010c60: 3733 3673 2065 6c61 7073 6564 2020 2020 736s elapsed │ │ │ │ +00010c50: 2020 2020 207c 0a7c 202d 2d20 2e32 3132 |.| -- .212 │ │ │ │ +00010c60: 3133 3173 2065 6c61 7073 6564 2020 2020 131s elapsed │ │ │ │ 00010c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010c90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00010ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ @@ -4375,44 +4375,44 @@ │ │ │ │ 00011160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011190: 2d2d 2d2d 2d2b 0a7c 6937 203a 2065 6c61 -----+.|i7 : ela │ │ │ │ 000111a0: 7073 6564 5469 6d65 2068 3d63 6172 7065 psedTime h=carpe │ │ │ │ 000111b0: 7442 6574 7469 5461 626c 6573 2836 2c36 tBettiTables(6,6 │ │ │ │ 000111c0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -000111d0: 2020 2020 207c 0a7c 202d 2d20 2e30 3035 |.| -- .005 │ │ │ │ -000111e0: 3336 3131 3573 2065 6c61 7073 6564 2020 36115s elapsed │ │ │ │ +000111d0: 2020 2020 207c 0a7c 202d 2d20 2e30 3034 |.| -- .004 │ │ │ │ +000111e0: 3934 3237 3973 2065 6c61 7073 6564 2020 94279s elapsed │ │ │ │ 000111f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011210: 2020 2020 207c 0a7c 202d 2d20 2e30 3337 |.| -- .037 │ │ │ │ -00011220: 3030 3035 7320 656c 6170 7365 6420 2020 0005s elapsed │ │ │ │ +00011210: 2020 2020 207c 0a7c 202d 2d20 2e30 3138 |.| -- .018 │ │ │ │ +00011220: 3535 3235 7320 656c 6170 7365 6420 2020 5525s elapsed │ │ │ │ 00011230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011250: 2020 2020 207c 0a7c 202d 2d20 2e32 3034 |.| -- .204 │ │ │ │ -00011260: 3938 3373 2065 6c61 7073 6564 2020 2020 983s elapsed │ │ │ │ +00011250: 2020 2020 207c 0a7c 202d 2d20 2e31 3035 |.| -- .105 │ │ │ │ +00011260: 3736 3873 2065 6c61 7073 6564 2020 2020 768s elapsed │ │ │ │ 00011270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011290: 2020 2020 207c 0a7c 202d 2d20 312e 3332 |.| -- 1.32 │ │ │ │ -000112a0: 3933 3373 2065 6c61 7073 6564 2020 2020 933s elapsed │ │ │ │ +00011290: 2020 2020 207c 0a7c 202d 2d20 2e39 3738 |.| -- .978 │ │ │ │ +000112a0: 3430 3573 2065 6c61 7073 6564 2020 2020 405s elapsed │ │ │ │ 000112b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000112c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000112d0: 2020 2020 207c 0a7c 202d 2d20 2e34 3330 |.| -- .430 │ │ │ │ -000112e0: 3936 3973 2065 6c61 7073 6564 2020 2020 969s elapsed │ │ │ │ +000112d0: 2020 2020 207c 0a7c 202d 2d20 2e34 3431 |.| -- .441 │ │ │ │ +000112e0: 3935 3573 2065 6c61 7073 6564 2020 2020 955s elapsed │ │ │ │ 000112f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011310: 2020 2020 207c 0a7c 202d 2d20 2e30 3531 |.| -- .051 │ │ │ │ -00011320: 3136 3534 7320 656c 6170 7365 6420 2020 1654s elapsed │ │ │ │ +00011310: 2020 2020 207c 0a7c 202d 2d20 2e30 3430 |.| -- .040 │ │ │ │ +00011320: 3836 3835 7320 656c 6170 7365 6420 2020 8685s elapsed │ │ │ │ 00011330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011350: 2020 2020 207c 0a7c 202d 2d20 2e30 3036 |.| -- .006 │ │ │ │ -00011360: 3534 3939 3273 2065 6c61 7073 6564 2020 54992s elapsed │ │ │ │ +00011350: 2020 2020 207c 0a7c 202d 2d20 2e30 3037 |.| -- .007 │ │ │ │ +00011360: 3738 3130 3873 2065 6c61 7073 6564 2020 78108s elapsed │ │ │ │ 00011370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011390: 2020 2020 207c 0a7c 202d 2d20 362e 3834 |.| -- 6.84 │ │ │ │ -000113a0: 3134 3973 2065 6c61 7073 6564 2020 2020 149s elapsed │ │ │ │ +00011390: 2020 2020 207c 0a7c 202d 2d20 352e 3737 |.| -- 5.77 │ │ │ │ +000113a0: 3837 3273 2065 6c61 7073 6564 2020 2020 872s elapsed │ │ │ │ 000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000113e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000113f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011410: 2d2d 2d2d 2d2b 0a7c 6938 203a 206b 6579 -----+.|i8 : key │ │ │ │ @@ -4634,162 +4634,162 @@ │ │ │ │ 00012190: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ 000121a0: 203a 2053 6571 7565 6e63 6520 2020 2020 : Sequence │ │ │ │ 000121b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000121c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000121d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000121e0: 2d2b 0a7c 6932 203a 2064 3d63 6172 7065 -+.|i2 : d=carpe │ │ │ │ 000121f0: 7444 6574 2861 2c62 2920 2020 2020 2020 tDet(a,b) │ │ │ │ -00012200: 2020 2020 7c0a 7c20 2d2d 202e 3030 3639 |.| -- .0069 │ │ │ │ -00012210: 3436 3339 7320 656c 6170 7365 6420 2020 4639s elapsed │ │ │ │ +00012200: 2020 2020 7c0a 7c20 2d2d 202e 3030 3938 |.| -- .0098 │ │ │ │ +00012210: 3734 7320 656c 6170 7365 6420 2020 2020 74s elapsed │ │ │ │ 00012220: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00012230: 3132 3334 3831 7320 656c 6170 7365 6420 123481s elapsed │ │ │ │ +00012230: 3132 3635 3837 7320 656c 6170 7365 6420 126587s elapsed │ │ │ │ 00012240: 2020 2020 2020 2020 2020 7c0a 7c28 6e75 |.|(nu │ │ │ │ 00012250: 6d62 6572 204f 6620 626c 6f63 6b73 2c20 mber Of blocks, │ │ │ │ 00012260: 3236 2920 2020 2020 2020 2020 207c 0a7c 26) |.| │ │ │ │ -00012270: 202d 2d20 2e30 3030 3239 3731 3834 7320 -- .000297184s │ │ │ │ -00012280: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ +00012270: 202d 2d20 2e30 3030 3237 3435 3573 2065 -- .00027455s e │ │ │ │ +00012280: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00012290: 7c0a 7c31 2020 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 000122a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000122b0: 2020 207c 0a7c 202d 2d20 2e30 3030 3134 |.| -- .00014 │ │ │ │ -000122c0: 3334 3337 7320 656c 6170 7365 6420 2020 3437s elapsed │ │ │ │ +000122b0: 2020 207c 0a7c 202d 2d20 2e30 3030 3138 |.| -- .00018 │ │ │ │ +000122c0: 3536 3838 7320 656c 6170 7365 6420 2020 5688s elapsed │ │ │ │ 000122d0: 2020 2020 2020 7c0a 7c31 2020 2020 2020 |.|1 │ │ │ │ 000122e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000122f0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00012300: 2e30 3030 3133 3132 3935 7320 656c 6170 .000131295s elap │ │ │ │ +00012300: 2e30 3030 3137 3833 3739 7320 656c 6170 .000178379s elap │ │ │ │ 00012310: 7365 6420 2020 2020 2020 2020 7c0a 7c31 sed |.|1 │ │ │ │ 00012320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012340: 0a7c 202d 2d20 2e30 3030 3132 3835 3739 .| -- .000128579 │ │ │ │ +00012340: 0a7c 202d 2d20 2e30 3030 3137 3734 3831 .| -- .000177481 │ │ │ │ 00012350: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 00012360: 2020 7c0a 7c31 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 00012370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012380: 2020 2020 207c 0a7c 202d 2d20 2e30 3030 |.| -- .000 │ │ │ │ -00012390: 3134 3333 3237 7320 656c 6170 7365 6420 143327s elapsed │ │ │ │ +00012390: 3136 3932 3039 7320 656c 6170 7365 6420 169209s elapsed │ │ │ │ 000123a0: 2020 2020 2020 2020 7c0a 7c32 2020 2020 |.|2 │ │ │ │ 000123b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000123c0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -000123d0: 2d20 2e30 3030 3134 3236 3835 7320 656c - .000142685s el │ │ │ │ +000123d0: 2d20 2e30 3030 3136 3937 3134 7320 656c - .000169714s el │ │ │ │ 000123e0: 6170 7365 6420 2020 2020 2020 2020 7c0a apsed |. │ │ │ │ 000123f0: 7c20 3220 2020 2020 2020 2020 2020 2020 | 2 │ │ │ │ 00012400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012410: 207c 0a7c 3220 2020 2020 2020 2020 2020 |.|2 │ │ │ │ 00012420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012430: 2020 2020 7c0a 7c20 2d2d 202e 3030 3031 |.| -- .0001 │ │ │ │ -00012440: 3534 3037 3873 2065 6c61 7073 6564 2020 54078s elapsed │ │ │ │ +00012440: 3837 3937 3873 2065 6c61 7073 6564 2020 87978s elapsed │ │ │ │ 00012450: 2020 2020 2020 207c 0a7c 2032 2020 2020 |.| 2 │ │ │ │ 00012460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012470: 2020 2020 2020 2020 2020 7c0a 7c32 2020 |.|2 │ │ │ │ 00012480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000124a0: 202d 2d20 2e30 3030 3136 3030 3939 7320 -- .000160099s │ │ │ │ -000124b0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ +000124a0: 202d 2d20 2e30 3030 3233 3830 3273 2065 -- .00023802s e │ │ │ │ +000124b0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 000124c0: 7c0a 7c20 3220 2020 2020 2020 2020 2020 |.| 2 │ │ │ │ 000124d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000124e0: 2020 207c 0a7c 3220 3320 2020 2020 2020 |.|2 3 │ │ │ │ 000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012500: 2020 2020 2020 7c0a 7c20 2d2d 202e 3030 |.| -- .00 │ │ │ │ -00012510: 3031 3430 3436 3273 2065 6c61 7073 6564 0140462s elapsed │ │ │ │ +00012510: 3031 3637 3739 3373 2065 6c61 7073 6564 0167793s elapsed │ │ │ │ 00012520: 2020 2020 2020 2020 207c 0a7c 2032 2020 |.| 2 │ │ │ │ 00012530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012540: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ 00012550: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00012560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00012570: 0a7c 202d 2d20 2e30 3030 3133 3937 3173 .| -- .00013971s │ │ │ │ -00012580: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ +00012570: 0a7c 202d 2d20 2e30 3030 3138 3637 3534 .| -- .000186754 │ │ │ │ +00012580: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 00012590: 2020 7c0a 7c20 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ 000125a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000125b0: 2020 2020 207c 0a7c 3220 3320 2020 2020 |.|2 3 │ │ │ │ 000125c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000125d0: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -000125e0: 3030 3031 3338 3032 3873 2065 6c61 7073 000138028s elaps │ │ │ │ +000125e0: 3030 3031 3935 3234 3773 2065 6c61 7073 000195247s elaps │ │ │ │ 000125f0: 6564 2020 2020 2020 2020 207c 0a7c 2032 ed |.| 2 │ │ │ │ 00012600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00012620: 7c32 2020 2020 2020 2020 2020 2020 2020 |2 │ │ │ │ 00012630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012640: 207c 0a7c 202d 2d20 2e30 3030 3133 3236 |.| -- .0001326 │ │ │ │ -00012650: 3738 7320 656c 6170 7365 6420 2020 2020 78s elapsed │ │ │ │ +00012640: 207c 0a7c 202d 2d20 2e30 3030 3137 3837 |.| -- .0001787 │ │ │ │ +00012650: 3333 7320 656c 6170 7365 6420 2020 2020 33s elapsed │ │ │ │ 00012660: 2020 2020 7c0a 7c20 3220 2020 2020 2020 |.| 2 │ │ │ │ 00012670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012680: 2020 2020 2020 207c 0a7c 3220 2020 2020 |.|2 │ │ │ │ 00012690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000126a0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000126b0: 202e 3030 3031 3230 3538 3473 2065 6c61 .000120584s ela │ │ │ │ +000126b0: 202e 3030 3031 3437 3235 3873 2065 6c61 .000147258s ela │ │ │ │ 000126c0: 7073 6564 2020 2020 2020 2020 207c 0a7c psed |.| │ │ │ │ 000126d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000126e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000126f0: 7c0a 7c20 2d2d 202e 3030 3031 3232 3931 |.| -- .00012291 │ │ │ │ +000126f0: 7c0a 7c20 2d2d 202e 3030 3031 3530 3537 |.| -- .00015057 │ │ │ │ 00012700: 3973 2065 6c61 7073 6564 2020 2020 2020 9s elapsed │ │ │ │ 00012710: 2020 207c 0a7c 3220 2020 2020 2020 2020 |.|2 │ │ │ │ 00012720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012730: 2020 2020 2020 7c0a 7c20 2d2d 202e 3030 |.| -- .00 │ │ │ │ -00012740: 3031 3334 3932 3273 2065 6c61 7073 6564 0134922s elapsed │ │ │ │ +00012740: 3031 3737 3038 3373 2065 6c61 7073 6564 0177083s elapsed │ │ │ │ 00012750: 2020 2020 2020 2020 207c 0a7c 2032 2020 |.| 2 │ │ │ │ 00012760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012770: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ 00012780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000127a0: 0a7c 202d 2d20 2e30 3030 3132 3331 3773 .| -- .00012317s │ │ │ │ -000127b0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ +000127a0: 0a7c 202d 2d20 2e30 3030 3136 3133 3338 .| -- .000161338 │ │ │ │ +000127b0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 000127c0: 2020 7c0a 7c20 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ 000127d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000127e0: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ 000127f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012800: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -00012810: 3030 3031 3430 3831 3273 2065 6c61 7073 000140812s elaps │ │ │ │ +00012810: 3030 3031 3735 3533 3673 2065 6c61 7073 000175536s elaps │ │ │ │ 00012820: 6564 2020 2020 2020 2020 207c 0a7c 2032 ed |.| 2 │ │ │ │ 00012830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00012850: 7c32 2033 2020 2020 2020 2020 2020 2020 |2 3 │ │ │ │ 00012860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012870: 207c 0a7c 202d 2d20 2e30 3030 3133 3338 |.| -- .0001338 │ │ │ │ -00012880: 3539 7320 656c 6170 7365 6420 2020 2020 59s elapsed │ │ │ │ +00012870: 207c 0a7c 202d 2d20 2e30 3030 3135 3737 |.| -- .0001577 │ │ │ │ +00012880: 3133 7320 656c 6170 7365 6420 2020 2020 13s elapsed │ │ │ │ 00012890: 2020 2020 7c0a 7c20 3220 2020 2020 2020 |.| 2 │ │ │ │ 000128a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128b0: 2020 2020 2020 207c 0a7c 3220 3320 2020 |.|2 3 │ │ │ │ 000128c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000128d0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000128e0: 202e 3030 3031 3432 3236 3573 2065 6c61 .000142265s ela │ │ │ │ +000128e0: 202e 3030 3031 3636 3238 3473 2065 6c61 .000166284s ela │ │ │ │ 000128f0: 7073 6564 2020 2020 2020 2020 207c 0a7c psed |.| │ │ │ │ 00012900: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00012910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012920: 7c0a 7c32 2033 2020 2020 2020 2020 2020 |.|2 3 │ │ │ │ 00012930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012940: 2020 207c 0a7c 202d 2d20 2e30 3030 3133 |.| -- .00013 │ │ │ │ -00012950: 3036 3534 7320 656c 6170 7365 6420 2020 0654s elapsed │ │ │ │ +00012940: 2020 207c 0a7c 202d 2d20 2e30 3030 3137 |.| -- .00017 │ │ │ │ +00012950: 3833 3533 7320 656c 6170 7365 6420 2020 8353s elapsed │ │ │ │ 00012960: 2020 2020 2020 7c0a 7c20 3220 2020 2020 |.| 2 │ │ │ │ 00012970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012980: 2020 2020 2020 2020 207c 0a7c 3220 2020 |.|2 │ │ │ │ 00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000129b0: 2d2d 202e 3030 3031 3332 3131 3673 2065 -- .000132116s e │ │ │ │ +000129b0: 2d2d 202e 3030 3031 3637 3438 3673 2065 -- .000167486s e │ │ │ │ 000129c0: 6c61 7073 6564 2020 2020 2020 2020 207c lapsed | │ │ │ │ 000129d0: 0a7c 2032 2020 2020 2020 2020 2020 2020 .| 2 │ │ │ │ 000129e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129f0: 2020 7c0a 7c32 2020 2020 2020 2020 2020 |.|2 │ │ │ │ 00012a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a10: 2020 2020 207c 0a7c 202d 2d20 2e30 3030 |.| -- .000 │ │ │ │ -00012a20: 3131 3733 3038 7320 656c 6170 7365 6420 117308s elapsed │ │ │ │ +00012a20: 3138 3430 3037 7320 656c 6170 7365 6420 184007s elapsed │ │ │ │ 00012a30: 2020 2020 2020 2020 7c0a 7c32 2020 2020 |.|2 │ │ │ │ 00012a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a50: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00012a60: 2d20 2e30 3030 3131 3937 3334 7320 656c - .000119734s el │ │ │ │ -00012a70: 6170 7365 6420 2020 2020 2020 2020 7c0a apsed |. │ │ │ │ +00012a60: 2d20 2e30 3030 3136 3239 7320 656c 6170 - .0001629s elap │ │ │ │ +00012a70: 7365 6420 2020 2020 2020 2020 2020 7c0a sed |. │ │ │ │ 00012a80: 7c31 2020 2020 2020 2020 2020 2020 2020 |1 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012aa0: 207c 0a7c 202d 2d20 2e30 3030 3132 3634 |.| -- .0001264 │ │ │ │ -00012ab0: 3035 7320 656c 6170 7365 6420 2020 2020 05s elapsed │ │ │ │ +00012aa0: 207c 0a7c 202d 2d20 2e30 3030 3134 3834 |.| -- .0001484 │ │ │ │ +00012ab0: 3932 7320 656c 6170 7365 6420 2020 2020 92s elapsed │ │ │ │ 00012ac0: 2020 2020 7c0a 7c31 2020 2020 2020 2020 |.|1 │ │ │ │ 00012ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012ae0: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -00012af0: 3030 3132 3734 3338 7320 656c 6170 7365 00127438s elapse │ │ │ │ +00012af0: 3030 3138 3435 3338 7320 656c 6170 7365 00184538s elapse │ │ │ │ 00012b00: 6420 2020 2020 2020 2020 7c0a 7c31 2020 d |.|1 │ │ │ │ 00012b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00012b30: 202d 2d20 2e30 3030 3133 3335 3439 7320 -- .000133549s │ │ │ │ +00012b30: 202d 2d20 2e30 3030 3136 3233 3136 7320 -- .000162316s │ │ │ │ 00012b40: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00012b50: 7c0a 7c31 2020 2020 2020 2020 2020 2020 |.|1 │ │ │ │ 00012b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00012b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012b90: 2020 2020 2020 7c0a 7c6f 3220 3d20 3331 |.|o2 = 31 │ │ │ │ 00012ba0: 3331 3033 3131 3538 3738 3420 2020 2020 31031158784 │ │ │ │ @@ -4930,26 +4930,26 @@ │ │ │ │ 00013410: 2020 2020 7c0a 7c6f 3120 3a20 5365 7175 |.|o1 : Sequ │ │ │ │ 00013420: 656e 6365 2020 2020 2020 2020 2020 2020 ence │ │ │ │ 00013430: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013450: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 636f ------+.|i2 : co │ │ │ │ 00013460: 6d70 7574 6542 6f75 6e64 2033 2020 2020 mputeBound 3 │ │ │ │ 00013470: 2020 2020 2020 207c 0a7c 202d 2d20 2e31 |.| -- .1 │ │ │ │ -00013480: 3933 3434 3773 2065 6c61 7073 6564 2020 93447s elapsed │ │ │ │ +00013480: 3530 3833 3273 2065 6c61 7073 6564 2020 50832s elapsed │ │ │ │ 00013490: 2020 2020 2020 2020 7c0a 7c20 2d2d 202e |.| -- . │ │ │ │ -000134a0: 3236 3533 3738 7320 656c 6170 7365 6420 265378s elapsed │ │ │ │ +000134a0: 3139 3236 3634 7320 656c 6170 7365 6420 192664s elapsed │ │ │ │ 000134b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000134c0: 2e32 3131 3736 3173 2065 6c61 7073 6564 .211761s elapsed │ │ │ │ +000134c0: 2e31 3635 3033 3373 2065 6c61 7073 6564 .165033s elapsed │ │ │ │ 000134d0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000134e0: 202e 3238 3431 3735 7320 656c 6170 7365 .284175s elapse │ │ │ │ +000134e0: 202e 3138 3537 3533 7320 656c 6170 7365 .185753s elapse │ │ │ │ 000134f0: 6420 2020 2020 2020 2020 207c 0a7c 202d d |.| - │ │ │ │ -00013500: 2d20 2e33 3232 3233 3873 2065 6c61 7073 - .322238s elaps │ │ │ │ +00013500: 2d20 2e32 3232 3031 3473 2065 6c61 7073 - .222014s elaps │ │ │ │ 00013510: 6564 2020 2020 2020 2020 2020 7c0a 7c20 ed |.| │ │ │ │ -00013520: 2d2d 202e 3431 3031 3635 7320 656c 6170 -- .410165s elap │ │ │ │ -00013530: 7365 6420 2020 2020 2020 2020 207c 0a7c sed |.| │ │ │ │ +00013520: 2d2d 202e 3234 3134 3473 2065 6c61 7073 -- .24144s elaps │ │ │ │ +00013530: 6564 2020 2020 2020 2020 2020 207c 0a7c ed |.| │ │ │ │ 00013540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00013560: 7c6f 3220 3d20 3620 2020 2020 2020 2020 |o2 = 6 │ │ │ │ 00013570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00013580: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00013590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000135a0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ @@ -6949,33 +6949,33 @@ │ │ │ │ 0001b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b260: 2b0a 7c69 3320 3a20 683d 6465 6765 6e65 +.|i3 : h=degene │ │ │ │ 0001b270: 7261 7465 4b33 4265 7474 6954 6162 6c65 rateK3BettiTable │ │ │ │ 0001b280: 7328 612c 622c 6529 2020 2020 2020 2020 s(a,b,e) │ │ │ │ 0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2a0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0001b2b0: 2e30 3633 3438 3933 7320 656c 6170 7365 .0634893s elapse │ │ │ │ +0001b2b0: 2e30 3232 3037 3034 7320 656c 6170 7365 .0220704s elapse │ │ │ │ 0001b2c0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2f0: 2020 7c0a 7c20 2d2d 202e 3030 3635 3734 |.| -- .006574 │ │ │ │ -0001b300: 3333 7320 656c 6170 7365 6420 2020 2020 33s elapsed │ │ │ │ +0001b2f0: 2020 7c0a 7c20 2d2d 202e 3030 3737 3435 |.| -- .007745 │ │ │ │ +0001b300: 3233 7320 656c 6170 7365 6420 2020 2020 23s elapsed │ │ │ │ 0001b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b330: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0001b340: 2d20 2e30 3235 3435 3233 7320 656c 6170 - .0254523s elap │ │ │ │ +0001b340: 2d20 2e30 3236 3835 3934 7320 656c 6170 - .0268594s elap │ │ │ │ 0001b350: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 0001b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b380: 2020 2020 7c0a 7c20 2d2d 202e 3030 3837 |.| -- .0087 │ │ │ │ -0001b390: 3933 3237 7320 656c 6170 7365 6420 2020 9327s elapsed │ │ │ │ +0001b380: 2020 2020 7c0a 7c20 2d2d 202e 3031 3034 |.| -- .0104 │ │ │ │ +0001b390: 3732 3873 2065 6c61 7073 6564 2020 2020 728s elapsed │ │ │ │ 0001b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b3d0: 202d 2d20 2e30 3033 3336 3738 3873 2065 -- .00336788s e │ │ │ │ +0001b3d0: 202d 2d20 2e30 3034 3032 3033 3373 2065 -- .00402033s e │ │ │ │ 0001b3e0: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0001b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7131,15 +7131,15 @@ │ │ │ │ 0001bda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bdc0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ 0001bdd0: 656c 6170 7365 6454 696d 6520 543d 206d elapsedTime T= m │ │ │ │ 0001bde0: 696e 696d 616c 4265 7474 6920 6465 6765 inimalBetti dege │ │ │ │ 0001bdf0: 6e65 7261 7465 4b33 2861 2c62 2c65 2c43 nerateK3(a,b,e,C │ │ │ │ 0001be00: 6861 7261 6374 6572 6973 7469 633d 3e35 haracteristic=>5 │ │ │ │ -0001be10: 297c 0a7c 202d 2d20 2e33 3039 3136 3673 )|.| -- .309166s │ │ │ │ +0001be10: 297c 0a7c 202d 2d20 2e33 3138 3136 3573 )|.| -- .318165s │ │ │ │ 0001be20: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -7277,33 +7277,33 @@ │ │ │ │ 0001c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0001c6f0: 6938 203a 2068 3d64 6567 656e 6572 6174 i8 : h=degenerat │ │ │ │ 0001c700: 654b 3342 6574 7469 5461 626c 6573 2861 eK3BettiTables(a │ │ │ │ 0001c710: 2c62 2c65 2920 2020 2020 2020 2020 2020 ,b,e) │ │ │ │ 0001c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c730: 2020 7c0a 7c20 2d2d 202e 3030 3235 3035 |.| -- .002505 │ │ │ │ -0001c740: 3935 7320 656c 6170 7365 6420 2020 2020 95s elapsed │ │ │ │ +0001c730: 2020 7c0a 7c20 2d2d 202e 3030 3330 3230 |.| -- .003020 │ │ │ │ +0001c740: 3631 7320 656c 6170 7365 6420 2020 2020 61s elapsed │ │ │ │ 0001c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c770: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -0001c780: 3036 3539 3335 3873 2065 6c61 7073 6564 0659358s elapsed │ │ │ │ +0001c780: 3036 3639 3537 3573 2065 6c61 7073 6564 0669575s elapsed │ │ │ │ 0001c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001c7c0: 2d2d 202e 3032 3331 3832 3373 2065 6c61 -- .0231823s ela │ │ │ │ +0001c7c0: 2d2d 202e 3032 3538 3935 3173 2065 6c61 -- .0258951s ela │ │ │ │ 0001c7d0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 0001c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c800: 207c 0a7c 202d 2d20 2e30 3130 3230 3139 |.| -- .0102019 │ │ │ │ +0001c800: 207c 0a7c 202d 2d20 2e30 3139 3237 3433 |.| -- .0192743 │ │ │ │ 0001c810: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0001c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c840: 2020 2020 2020 7c0a 7c20 2d2d 202e 3030 |.| -- .00 │ │ │ │ -0001c850: 3337 3735 3733 7320 656c 6170 7365 6420 377573s elapsed │ │ │ │ +0001c850: 3433 3837 3031 7320 656c 6170 7365 6420 438701s elapsed │ │ │ │ 0001c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9875,16 +9875,16 @@ │ │ │ │ 00026920: 3d20 3420 2020 2020 2020 2020 2020 2020 = 4 │ │ │ │ 00026930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026940: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00026950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026960: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ 00026970: 3a20 2864 312c 6432 293d 7265 736f 6e61 : (d1,d2)=resona │ │ │ │ 00026980: 6e63 6544 6574 2861 2920 2020 2020 2020 nceDet(a) │ │ │ │ -00026990: 2020 7c0a 7c20 2d2d 202e 3031 3737 3437 |.| -- .017747 │ │ │ │ -000269a0: 3773 2065 6c61 7073 6564 2020 2020 2020 7s elapsed │ │ │ │ +00026990: 2020 7c0a 7c20 2d2d 202e 3031 3833 3373 |.| -- .01833s │ │ │ │ +000269a0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 000269b0: 2020 2020 2020 2020 2020 7c0a 7c28 6e75 |.|(nu │ │ │ │ 000269c0: 6d62 6572 206f 6620 626c 6f63 6b73 3d20 mber of blocks= │ │ │ │ 000269d0: 2c20 3138 2920 2020 2020 2020 2020 2020 , 18) │ │ │ │ 000269e0: 2020 7c0a 7c28 7369 7a65 206f 6620 7468 |.|(size of th │ │ │ │ 000269f0: 6520 6d61 7472 6963 6573 2c20 5461 6c6c e matrices, Tall │ │ │ │ 00026a00: 797b 3120 3d3e 2034 7d29 7c0a 7c20 2020 y{1 => 4})|.| │ │ │ │ 00026a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -9898,15 +9898,15 @@ │ │ │ │ 00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026aa0: 2020 2020 2020 2020 2020 7c0a 7c74 6f74 |.|tot │ │ │ │ 00026ab0: 616c 3a20 3120 3120 2020 2020 2020 2020 al: 1 1 │ │ │ │ 00026ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ad0: 2020 7c0a 7c20 2020 2037 3a20 3120 3120 |.| 7: 1 1 │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00026b00: 202e 3030 3030 3531 3332 3573 2065 6c61 .000051325s ela │ │ │ │ +00026b00: 202e 3030 3030 3337 3932 3973 2065 6c61 .000037929s ela │ │ │ │ 00026b10: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00026b20: 2020 7c0a 7c28 6520 2928 2d31 2920 2020 |.|(e )(-1) │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b40: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b70: 2020 7c0a 7c20 2020 2020 2020 3020 3120 |.| 0 1 │ │ │ │ @@ -9915,16 +9915,16 @@ │ │ │ │ 00026ba0: 616c 3a20 3220 3220 2020 2020 2020 2020 al: 2 2 │ │ │ │ 00026bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026bc0: 2020 7c0a 7c20 2020 2037 3a20 3220 2e20 |.| 7: 2 . │ │ │ │ 00026bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026be0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00026bf0: 2038 3a20 2e20 3220 2020 2020 2020 2020 8: . 2 │ │ │ │ 00026c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c10: 2020 7c0a 7c20 2d2d 202e 3030 3030 3935 |.| -- .000095 │ │ │ │ -00026c20: 3633 3973 2065 6c61 7073 6564 2020 2020 639s elapsed │ │ │ │ +00026c10: 2020 7c0a 7c20 2d2d 202e 3030 3030 3833 |.| -- .000083 │ │ │ │ +00026c20: 3532 3473 2065 6c61 7073 6564 2020 2020 524s elapsed │ │ │ │ 00026c30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00026c40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00026c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c60: 2020 7c0a 7c28 6520 2920 2865 2029 282d |.|(e ) (e )(- │ │ │ │ 00026c70: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ 00026c80: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00026c90: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -9938,15 +9938,15 @@ │ │ │ │ 00026d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00026d30: 2038 3a20 2e20 2e20 2020 2020 2020 2020 8: . . │ │ │ │ 00026d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d50: 2020 7c0a 7c20 2020 2039 3a20 2e20 3220 |.| 9: . 2 │ │ │ │ 00026d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d70: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00026d80: 202e 3030 3030 3736 3734 3373 2065 6c61 .000076743s ela │ │ │ │ +00026d80: 202e 3030 3030 3934 3938 3173 2065 6c61 .000094981s ela │ │ │ │ 00026d90: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00026da0: 2020 7c0a 7c20 2020 2032 2020 2020 3220 |.| 2 2 │ │ │ │ 00026db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026dc0: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00026dd0: 2920 2865 2029 2020 2020 2020 2020 2020 ) (e ) │ │ │ │ 00026de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026df0: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ @@ -9963,15 +9963,15 @@ │ │ │ │ 00026ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026eb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00026ec0: 2039 3a20 2e20 3120 2020 2020 2020 2020 9: . 1 │ │ │ │ 00026ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ee0: 2020 7c0a 7c20 2020 3130 3a20 2e20 3220 |.| 10: . 2 │ │ │ │ 00026ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f00: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00026f10: 202e 3030 3030 3739 3936 3973 2065 6c61 .000079969s ela │ │ │ │ +00026f10: 202e 3030 3031 3033 3930 3773 2065 6c61 .000103907s ela │ │ │ │ 00026f20: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00026f30: 2020 7c0a 7c20 2020 2032 2020 2020 3420 |.| 2 4 │ │ │ │ 00026f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f50: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00026f60: 2920 2865 2029 2028 2d33 2920 2020 2020 ) (e ) (-3) │ │ │ │ 00026f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f80: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ @@ -9990,16 +9990,16 @@ │ │ │ │ 00027050: 2039 3a20 3220 3220 2020 2020 2020 2020 9: 2 2 │ │ │ │ 00027060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027070: 2020 7c0a 7c20 2020 3130 3a20 2e20 3120 |.| 10: . 1 │ │ │ │ 00027080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027090: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000270a0: 3131 3a20 2e20 3120 2020 2020 2020 2020 11: . 1 │ │ │ │ 000270b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270c0: 2020 7c0a 7c20 2d2d 202e 3030 3030 3833 |.| -- .000083 │ │ │ │ -000270d0: 3632 3573 2065 6c61 7073 6564 2020 2020 625s elapsed │ │ │ │ +000270c0: 2020 7c0a 7c20 2d2d 202e 3030 3031 3036 |.| -- .000106 │ │ │ │ +000270d0: 3632 3273 2065 6c61 7073 6564 2020 2020 622s elapsed │ │ │ │ 000270e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000270f0: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ 00027100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027110: 2020 7c0a 7c28 6520 2920 2865 2029 2028 |.|(e ) (e ) ( │ │ │ │ 00027120: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 00027130: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00027140: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -10015,16 +10015,16 @@ │ │ │ │ 000271e0: 2039 3a20 3220 3120 2020 2020 2020 2020 9: 2 1 │ │ │ │ 000271f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027200: 2020 7c0a 7c20 2020 3130 3a20 3120 3220 |.| 10: 1 2 │ │ │ │ 00027210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027220: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027230: 3131 3a20 2e20 3120 2020 2020 2020 2020 11: . 1 │ │ │ │ 00027240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027250: 2020 7c0a 7c20 2d2d 202e 3030 3030 3933 |.| -- .000093 │ │ │ │ -00027260: 3433 3473 2065 6c61 7073 6564 2020 2020 434s elapsed │ │ │ │ +00027250: 2020 7c0a 7c20 2d2d 202e 3030 3030 3839 |.| -- .000089 │ │ │ │ +00027260: 3837 3373 2065 6c61 7073 6564 2020 2020 873s elapsed │ │ │ │ 00027270: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027280: 2032 2020 2020 3320 2020 2020 2020 2020 2 3 │ │ │ │ 00027290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000272a0: 2020 7c0a 7c28 6520 2920 2865 2029 2028 |.|(e ) (e ) ( │ │ │ │ 000272b0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 000272c0: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 000272d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -10033,15 +10033,15 @@ │ │ │ │ 00027300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027310: 2020 2020 2020 2020 2020 7c0a 7c74 6f74 |.|tot │ │ │ │ 00027320: 616c 3a20 3120 3120 2020 2020 2020 2020 al: 1 1 │ │ │ │ 00027330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027340: 2020 7c0a 7c20 2020 2039 3a20 3120 3120 |.| 9: 1 1 │ │ │ │ 00027350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027360: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027370: 202e 3030 3030 3234 3332 3673 2065 6c61 .000024326s ela │ │ │ │ +00027370: 202e 3030 3030 3237 3235 3673 2065 6c61 .000027256s ela │ │ │ │ 00027380: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00027390: 2020 7c0a 7c28 6520 2928 2d31 2920 2020 |.|(e )(-1) │ │ │ │ 000273a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273b0: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 000273c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000273e0: 2020 7c0a 7c20 2020 2020 2020 3020 3120 |.| 0 1 │ │ │ │ @@ -10050,16 +10050,16 @@ │ │ │ │ 00027410: 616c 3a20 3220 3220 2020 2020 2020 2020 al: 2 2 │ │ │ │ 00027420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027430: 2020 7c0a 7c20 2020 2039 3a20 3120 3120 |.| 9: 1 1 │ │ │ │ 00027440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027450: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027460: 3130 3a20 3120 3120 2020 2020 2020 2020 10: 1 1 │ │ │ │ 00027470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027480: 2020 7c0a 7c20 2d2d 202e 3030 3030 3637 |.| -- .000067 │ │ │ │ -00027490: 3032 3673 2065 6c61 7073 6564 2020 2020 026s elapsed │ │ │ │ +00027480: 2020 7c0a 7c20 2d2d 202e 3030 3030 3635 |.| -- .000065 │ │ │ │ +00027490: 3335 7320 656c 6170 7365 6420 2020 2020 35s elapsed │ │ │ │ 000274a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000274b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000274c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274d0: 2020 7c0a 7c28 6520 2920 2020 2020 2020 |.|(e ) │ │ │ │ 000274e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274f0: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00027500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10073,16 +10073,16 @@ │ │ │ │ 00027580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027590: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000275a0: 3130 3a20 3120 3120 2020 2020 2020 2020 10: 1 1 │ │ │ │ 000275b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275c0: 2020 7c0a 7c20 2020 3131 3a20 3120 3220 |.| 11: 1 2 │ │ │ │ 000275d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275e0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -000275f0: 202e 3030 3030 3931 3338 7320 656c 6170 .00009138s elap │ │ │ │ -00027600: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ +000275f0: 202e 3030 3031 3037 3538 3273 2065 6c61 .000107582s ela │ │ │ │ +00027600: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00027610: 2020 7c0a 7c20 2020 2032 2020 2020 3220 |.| 2 2 │ │ │ │ 00027620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027630: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00027640: 2920 2865 2029 2028 2d31 2920 2020 2020 ) (e ) (-1) │ │ │ │ 00027650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027660: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ 00027670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10098,15 +10098,15 @@ │ │ │ │ 00027710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027720: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027730: 3131 3a20 3120 3220 2020 2020 2020 2020 11: 1 2 │ │ │ │ 00027740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027750: 2020 7c0a 7c20 2020 3132 3a20 2e20 3120 |.| 12: . 1 │ │ │ │ 00027760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027770: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027780: 202e 3030 3030 3935 3936 3973 2065 6c61 .000095969s ela │ │ │ │ +00027780: 202e 3030 3031 3031 3436 3573 2065 6c61 .000101465s ela │ │ │ │ 00027790: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 000277a0: 2020 7c0a 7c20 2020 2032 2020 2020 3320 |.| 2 3 │ │ │ │ 000277b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277c0: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 000277d0: 2920 2865 2029 2028 3329 2020 2020 2020 ) (e ) (3) │ │ │ │ 000277e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277f0: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ @@ -10125,16 +10125,16 @@ │ │ │ │ 000278c0: 3131 3a20 3220 3220 2020 2020 2020 2020 11: 2 2 │ │ │ │ 000278d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278e0: 2020 7c0a 7c20 2020 3132 3a20 2e20 3120 |.| 12: . 1 │ │ │ │ 000278f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027900: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027910: 3133 3a20 2e20 3120 2020 2020 2020 2020 13: . 1 │ │ │ │ 00027920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027930: 2020 7c0a 7c20 2d2d 202e 3030 3030 3930 |.| -- .000090 │ │ │ │ -00027940: 3438 3873 2065 6c61 7073 6564 2020 2020 488s elapsed │ │ │ │ +00027930: 2020 7c0a 7c20 2d2d 202e 3030 3031 3030 |.| -- .000100 │ │ │ │ +00027940: 3139 3373 2065 6c61 7073 6564 2020 2020 193s elapsed │ │ │ │ 00027950: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027960: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ 00027970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027980: 2020 7c0a 7c28 6520 2920 2865 2029 2028 |.|(e ) (e ) ( │ │ │ │ 00027990: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 000279a0: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 000279b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -10148,15 +10148,15 @@ │ │ │ │ 00027a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027a50: 3130 3a20 3120 3120 2020 2020 2020 2020 10: 1 1 │ │ │ │ 00027a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a70: 2020 7c0a 7c20 2020 3131 3a20 3120 3220 |.| 11: 1 2 │ │ │ │ 00027a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a90: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027aa0: 202e 3030 3030 3831 3439 3273 2065 6c61 .000081492s ela │ │ │ │ +00027aa0: 202e 3030 3030 3833 3738 3273 2065 6c61 .000083782s ela │ │ │ │ 00027ab0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00027ac0: 2020 7c0a 7c20 2020 2032 2020 2020 3220 |.| 2 2 │ │ │ │ 00027ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ae0: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00027af0: 2920 2865 2029 2028 2d31 2920 2020 2020 ) (e ) (-1) │ │ │ │ 00027b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027b10: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ @@ -10173,16 +10173,16 @@ │ │ │ │ 00027bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027bd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027be0: 3132 3a20 2e20 3120 2020 2020 2020 2020 12: . 1 │ │ │ │ 00027bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c00: 2020 7c0a 7c20 2020 3133 3a20 2e20 3220 |.| 13: . 2 │ │ │ │ 00027c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c20: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027c30: 202e 3030 3030 3936 3132 7320 656c 6170 .00009612s elap │ │ │ │ -00027c40: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ +00027c30: 202e 3030 3030 3830 3135 3173 2065 6c61 .000080151s ela │ │ │ │ +00027c40: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00027c50: 2020 7c0a 7c20 2020 2032 2020 2020 3420 |.| 2 4 │ │ │ │ 00027c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027c70: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00027c80: 2920 2865 2029 2028 3329 2020 2020 2020 ) (e ) (3) │ │ │ │ 00027c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ca0: 2020 7c0a 7c20 2031 2020 2020 3220 2020 |.| 1 2 │ │ │ │ 00027cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10193,16 +10193,16 @@ │ │ │ │ 00027d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027d20: 3130 3a20 3120 3120 2020 2020 2020 2020 10: 1 1 │ │ │ │ 00027d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d40: 2020 7c0a 7c20 2020 3131 3a20 3120 3120 |.| 11: 1 1 │ │ │ │ 00027d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027d60: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027d70: 202e 3030 3030 3635 3432 3173 2065 6c61 .000065421s ela │ │ │ │ -00027d80: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ +00027d70: 202e 3030 3030 3730 3273 2065 6c61 7073 .0000702s elaps │ │ │ │ +00027d80: 6564 2020 2020 2020 2020 2020 2020 2020 ed │ │ │ │ 00027d90: 2020 7c0a 7c20 2020 2032 2020 2020 2020 |.| 2 │ │ │ │ 00027da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027db0: 2020 2020 2020 2020 2020 7c0a 7c28 6520 |.|(e │ │ │ │ 00027dc0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00027dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027de0: 2020 7c0a 7c20 2031 2020 2020 2020 2020 |.| 1 │ │ │ │ 00027df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -10215,16 +10215,16 @@ │ │ │ │ 00027e60: 3131 3a20 3220 2e20 2020 2020 2020 2020 11: 2 . │ │ │ │ 00027e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027e80: 2020 7c0a 7c20 2020 3132 3a20 2e20 2e20 |.| 12: . . │ │ │ │ 00027e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027ea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027eb0: 3133 3a20 2e20 3220 2020 2020 2020 2020 13: . 2 │ │ │ │ 00027ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ed0: 2020 7c0a 7c20 2d2d 202e 3030 3030 3737 |.| -- .000077 │ │ │ │ -00027ee0: 3638 3573 2065 6c61 7073 6564 2020 2020 685s elapsed │ │ │ │ +00027ed0: 2020 7c0a 7c20 2d2d 202e 3030 3030 3634 |.| -- .000064 │ │ │ │ +00027ee0: 3333 3873 2065 6c61 7073 6564 2020 2020 338s elapsed │ │ │ │ 00027ef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00027f00: 2032 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ 00027f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f20: 2020 7c0a 7c28 6520 2920 2865 2029 2020 |.|(e ) (e ) │ │ │ │ 00027f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f40: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00027f50: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -10233,15 +10233,15 @@ │ │ │ │ 00027f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027f90: 2020 2020 2020 2020 2020 7c0a 7c74 6f74 |.|tot │ │ │ │ 00027fa0: 616c 3a20 3120 3120 2020 2020 2020 2020 al: 1 1 │ │ │ │ 00027fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027fc0: 2020 7c0a 7c20 2020 3131 3a20 3120 3120 |.| 11: 1 1 │ │ │ │ 00027fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027fe0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00027ff0: 202e 3030 3030 3234 3633 3673 2065 6c61 .000024636s ela │ │ │ │ +00027ff0: 202e 3030 3030 3235 3534 3573 2065 6c61 .000025545s ela │ │ │ │ 00028000: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00028010: 2020 7c0a 7c28 6520 2920 2020 2020 2020 |.|(e ) │ │ │ │ 00028020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028030: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00028040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028060: 2020 7c0a 7c20 2020 2020 2020 3020 3120 |.| 0 1 │ │ │ │ @@ -10250,16 +10250,16 @@ │ │ │ │ 00028090: 616c 3a20 3220 3220 2020 2020 2020 2020 al: 2 2 │ │ │ │ 000280a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000280b0: 2020 7c0a 7c20 2020 3132 3a20 3220 2e20 |.| 12: 2 . │ │ │ │ 000280c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000280d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000280e0: 3133 3a20 2e20 3220 2020 2020 2020 2020 13: . 2 │ │ │ │ 000280f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028100: 2020 7c0a 7c20 2d2d 202e 3030 3030 3736 |.| -- .000076 │ │ │ │ -00028110: 3339 3273 2065 6c61 7073 6564 2020 2020 392s elapsed │ │ │ │ +00028100: 2020 7c0a 7c20 2d2d 202e 3030 3030 3639 |.| -- .000069 │ │ │ │ +00028110: 3331 3973 2065 6c61 7073 6564 2020 2020 319s elapsed │ │ │ │ 00028120: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00028130: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00028140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028150: 2020 7c0a 7c28 6520 2920 2865 2029 282d |.|(e ) (e )(- │ │ │ │ 00028160: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ 00028170: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00028180: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -10268,15 +10268,15 @@ │ │ │ │ 000281b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281c0: 2020 2020 2020 2020 2020 7c0a 7c74 6f74 |.|tot │ │ │ │ 000281d0: 616c 3a20 3120 3120 2020 2020 2020 2020 al: 1 1 │ │ │ │ 000281e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000281f0: 2020 7c0a 7c20 2020 3133 3a20 3120 3120 |.| 13: 1 1 │ │ │ │ 00028200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028210: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00028220: 202e 3030 3030 3237 3034 3173 2065 6c61 .000027041s ela │ │ │ │ +00028220: 202e 3030 3030 3237 3635 3573 2065 6c61 .000027655s ela │ │ │ │ 00028230: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00028240: 2020 7c0a 7c28 6520 2920 2020 2020 2020 |.|(e ) │ │ │ │ 00028250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028260: 2020 2020 2020 2020 2020 7c0a 7c20 2031 |.| 1 │ │ │ │ 00028270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ ├── ./usr/share/info/LLLBases.info.gz │ │ │ ├── LLLBases.info │ │ │ │ @@ -2531,16 +2531,16 @@ │ │ │ │ 00009e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ 00009e40: 3a20 7469 6d65 204c 4c4c 206d 3b20 2020 : time LLL m; │ │ │ │ 00009e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009e80: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -00009e90: 3039 3034 3433 3573 2028 6370 7529 3b20 0904435s (cpu); │ │ │ │ -00009ea0: 302e 3030 3930 3430 3031 7320 2874 6872 0.00904001s (thr │ │ │ │ +00009e90: 3039 3830 3036 3273 2028 6370 7529 3b20 0980062s (cpu); │ │ │ │ +00009ea0: 302e 3030 3937 3938 3939 7320 2874 6872 0.00979899s (thr │ │ │ │ 00009eb0: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00009ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00009ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00009f10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ @@ -2557,18 +2557,18 @@ │ │ │ │ 00009fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00009fe0: 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 6d65 ----+.|i4 : time │ │ │ │ 00009ff0: 204c 4c4c 286d 2c20 5374 7261 7465 6779 LLL(m, Strategy │ │ │ │ 0000a000: 3d3e 436f 6865 6e45 6e67 696e 6529 3b20 =>CohenEngine); │ │ │ │ 0000a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a020: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0000a030: 2d20 7573 6564 2030 2e30 3237 3338 3836 - used 0.0273886 │ │ │ │ -0000a040: 7320 2863 7075 293b 2030 2e30 3237 3339 s (cpu); 0.02739 │ │ │ │ -0000a050: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -0000a060: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +0000a030: 2d20 7573 6564 2030 2e30 3238 3639 3534 - used 0.0286954 │ │ │ │ +0000a040: 7320 2863 7075 293b 2030 2e30 3238 3730 s (cpu); 0.02870 │ │ │ │ +0000a050: 3231 7320 2874 6872 6561 6429 3b20 3073 21s (thread); 0s │ │ │ │ +0000a060: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000a070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a0b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000a0c0: 2020 2020 2020 2020 2020 3530 2020 2020 50 │ │ │ │ 0000a0d0: 2020 2034 3720 2020 2020 2020 2020 2020 47 │ │ │ │ @@ -2584,17 +2584,17 @@ │ │ │ │ 0000a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0000a190: 7c69 3520 3a20 7469 6d65 204c 4c4c 286d |i5 : time LLL(m │ │ │ │ 0000a1a0: 2c20 5374 7261 7465 6779 3d3e 436f 6865 , Strategy=>Cohe │ │ │ │ 0000a1b0: 6e54 6f70 4c65 7665 6c29 3b20 2020 2020 nTopLevel); │ │ │ │ 0000a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a1d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0000a1e0: 2030 2e31 3037 3435 3373 2028 6370 7529 0.107453s (cpu) │ │ │ │ -0000a1f0: 3b20 302e 3130 3734 3373 2028 7468 7265 ; 0.10743s (thre │ │ │ │ -0000a200: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +0000a1e0: 2030 2e31 3232 3035 3573 2028 6370 7529 0.122055s (cpu) │ │ │ │ +0000a1f0: 3b20 302e 3132 3230 3631 7320 2874 6872 ; 0.122061s (thr │ │ │ │ +0000a200: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 0000a210: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0000a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a270: 2020 2020 3530 2020 2020 2020 2034 3720 50 47 │ │ │ │ @@ -2610,17 +2610,17 @@ │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a330: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 0000a340: 7469 6d65 204c 4c4c 286d 2c20 5374 7261 time LLL(m, Stra │ │ │ │ 0000a350: 7465 6779 3d3e 7b47 6976 656e 732c 5265 tegy=>{Givens,Re │ │ │ │ 0000a360: 616c 4650 7d29 3b20 2020 2020 2020 2020 alFP}); │ │ │ │ 0000a370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a380: 0a7c 202d 2d20 7573 6564 2030 2e30 3131 .| -- used 0.011 │ │ │ │ -0000a390: 3836 3973 2028 6370 7529 3b20 302e 3031 869s (cpu); 0.01 │ │ │ │ -0000a3a0: 3138 3639 3373 2028 7468 7265 6164 293b 18693s (thread); │ │ │ │ +0000a380: 0a7c 202d 2d20 7573 6564 2030 2e30 3133 .| -- used 0.013 │ │ │ │ +0000a390: 3036 3334 7320 2863 7075 293b 2030 2e30 0634s (cpu); 0.0 │ │ │ │ +0000a3a0: 3133 3036 3873 2028 7468 7265 6164 293b 13068s (thread); │ │ │ │ 0000a3b0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000a3c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0000a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a400: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000a410: 2020 2020 2020 2020 2020 2020 2020 3530 50 │ │ │ │ @@ -2637,16 +2637,16 @@ │ │ │ │ 0000a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a4e0: 2d2d 2b0a 7c69 3720 3a20 7469 6d65 204c --+.|i7 : time L │ │ │ │ 0000a4f0: 4c4c 286d 2c20 5374 7261 7465 6779 3d3e LL(m, Strategy=> │ │ │ │ 0000a500: 7b47 6976 656e 732c 5265 616c 5150 7d29 {Givens,RealQP}) │ │ │ │ 0000a510: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 0000a520: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0000a530: 7573 6564 2030 2e30 3438 3037 3033 7320 used 0.0480703s │ │ │ │ -0000a540: 2863 7075 293b 2030 2e30 3438 3037 3432 (cpu); 0.0480742 │ │ │ │ +0000a530: 7573 6564 2030 2e30 3632 3333 3135 7320 used 0.0623315s │ │ │ │ +0000a540: 2863 7075 293b 2030 2e30 3632 3136 3532 (cpu); 0.0621652 │ │ │ │ 0000a550: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 0000a560: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 0000a570: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ @@ -2664,16 +2664,16 @@ │ │ │ │ 0000a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0000a690: 3820 3a20 7469 6d65 204c 4c4c 286d 2c20 8 : time LLL(m, │ │ │ │ 0000a6a0: 5374 7261 7465 6779 3d3e 7b47 6976 656e Strategy=>{Given │ │ │ │ 0000a6b0: 732c 5265 616c 5844 7d29 3b20 2020 2020 s,RealXD}); │ │ │ │ 0000a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a6d0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -0000a6e0: 2e30 3539 3038 3138 7320 2863 7075 293b .0590818s (cpu); │ │ │ │ -0000a6f0: 2030 2e30 3539 3038 3139 7320 2874 6872 0.0590819s (thr │ │ │ │ +0000a6e0: 2e30 3635 3430 3631 7320 2863 7075 293b .0654061s (cpu); │ │ │ │ +0000a6f0: 2030 2e30 3635 3430 3631 7320 2874 6872 0.0654061s (thr │ │ │ │ 0000a700: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 0000a710: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0000a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ @@ -2690,17 +2690,17 @@ │ │ │ │ 0000a810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a830: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 7469 ------+.|i9 : ti │ │ │ │ 0000a840: 6d65 204c 4c4c 286d 2c20 5374 7261 7465 me LLL(m, Strate │ │ │ │ 0000a850: 6779 3d3e 7b47 6976 656e 732c 5265 616c gy=>{Givens,Real │ │ │ │ 0000a860: 5252 7d29 3b20 2020 2020 2020 2020 2020 RR}); │ │ │ │ 0000a870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0000a880: 202d 2d20 7573 6564 2030 2e33 3437 3039 -- used 0.34709 │ │ │ │ -0000a890: 3273 2028 6370 7529 3b20 302e 3334 3730 2s (cpu); 0.3470 │ │ │ │ -0000a8a0: 3932 7320 2874 6872 6561 6429 3b20 3073 92s (thread); 0s │ │ │ │ +0000a880: 202d 2d20 7573 6564 2030 2e33 3434 3330 -- used 0.34430 │ │ │ │ +0000a890: 3573 2028 6370 7529 3b20 302e 3334 3433 5s (cpu); 0.3443 │ │ │ │ +0000a8a0: 3131 7320 2874 6872 6561 6429 3b20 3073 11s (thread); 0s │ │ │ │ 0000a8b0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000a8c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0000a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a900: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000a910: 2020 2020 2020 2020 2020 2020 3530 2020 50 │ │ │ │ @@ -2717,16 +2717,16 @@ │ │ │ │ 0000a9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a9e0: 2b0a 7c69 3130 203a 2074 696d 6520 4c4c +.|i10 : time LL │ │ │ │ 0000a9f0: 4c28 6d2c 2053 7472 6174 6567 793d 3e7b L(m, Strategy=>{ │ │ │ │ 0000aa00: 424b 5a2c 4769 7665 6e73 2c52 6561 6c51 BKZ,Givens,RealQ │ │ │ │ 0000aa10: 507d 293b 2020 2020 2020 2020 2020 2020 P}); │ │ │ │ 0000aa20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0000aa30: 6564 2030 2e31 3133 3239 3873 2028 6370 ed 0.113298s (cp │ │ │ │ -0000aa40: 7529 3b20 302e 3131 3333 3031 7320 2874 u); 0.113301s (t │ │ │ │ +0000aa30: 6564 2030 2e31 3535 3331 3773 2028 6370 ed 0.155317s (cp │ │ │ │ +0000aa40: 7529 3b20 302e 3135 3533 3232 7320 2874 u); 0.155322s (t │ │ │ │ 0000aa50: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 0000aa60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000aa70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0000aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ ├── ./usr/share/info/LatticePolytopes.info.gz │ │ │ ├── LatticePolytopes.info │ │ │ │ @@ -1196,32 +1196,32 @@ │ │ │ │ 00004ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004ad0: 2d2b 0a7c 6936 203a 2074 696d 6520 6172 -+.|i6 : time ar │ │ │ │ 00004ae0: 6549 736f 6d6f 7270 6869 6328 502c 5029 eIsomorphic(P,P) │ │ │ │ 00004af0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ 00004b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004b20: 207c 0a7c 202d 2d20 7573 6564 2030 2e35 |.| -- used 0.5 │ │ │ │ -00004b30: 3933 3939 3273 2028 6370 7529 3b20 302e 93992s (cpu); 0. │ │ │ │ -00004b40: 3434 3132 3135 7320 2874 6872 6561 6429 441215s (thread) │ │ │ │ -00004b50: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00004b20: 207c 0a7c 202d 2d20 7573 6564 2031 2e30 |.| -- used 1.0 │ │ │ │ +00004b30: 3834 3034 7320 2863 7075 293b 2030 2e35 8404s (cpu); 0.5 │ │ │ │ +00004b40: 3338 3736 3373 2028 7468 7265 6164 293b 38763s (thread); │ │ │ │ +00004b50: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 00004b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004b70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00004b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bc0: 2d2b 0a7c 6937 203a 2074 696d 6520 6172 -+.|i7 : time ar │ │ │ │ 00004bd0: 6549 736f 6d6f 7270 6869 6328 502c 502c eIsomorphic(P,P, │ │ │ │ 00004be0: 736d 6f6f 7468 5465 7374 3d3e 6661 6c73 smoothTest=>fals │ │ │ │ 00004bf0: 6529 3b20 2020 2020 2020 2020 2020 2020 e); │ │ │ │ 00004c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00004c10: 207c 0a7c 202d 2d20 7573 6564 2030 2e34 |.| -- used 0.4 │ │ │ │ -00004c20: 3439 3531 3573 2028 6370 7529 3b20 302e 49515s (cpu); 0. │ │ │ │ -00004c30: 3239 3239 3138 7320 2874 6872 6561 6429 292918s (thread) │ │ │ │ +00004c10: 207c 0a7c 202d 2d20 7573 6564 2030 2e39 |.| -- used 0.9 │ │ │ │ +00004c20: 3638 3236 3673 2028 6370 7529 3b20 302e 68266s (cpu); 0. │ │ │ │ +00004c30: 3337 3730 3731 7320 2874 6872 6561 6429 377071s (thread) │ │ │ │ 00004c40: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00004c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c60: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00004c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/LinearTruncations.info.gz │ │ │ ├── LinearTruncations.info │ │ │ │ @@ -2197,16 +2197,16 @@ │ │ │ │ 00008940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008950: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ 00008960: 2065 6c61 7073 6564 5469 6d65 2066 696e elapsedTime fin │ │ │ │ 00008970: 6452 6567 696f 6e28 7b7b 302c 307d 2c7b dRegion({{0,0},{ │ │ │ │ 00008980: 342c 347d 7d2c 4d2c 6629 2020 2020 2020 4,4}},M,f) │ │ │ │ 00008990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089a0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000089b0: 2e31 3239 3639 3973 2065 6c61 7073 6564 .129699s elapsed │ │ │ │ -000089c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000089b0: 2e30 3831 3933 3939 7320 656c 6170 7365 .0819399s elapse │ │ │ │ +000089c0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 000089d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000089f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00008a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2232,15 +2232,15 @@ │ │ │ │ 00008b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008b80: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ 00008b90: 2065 6c61 7073 6564 5469 6d65 2066 696e elapsedTime fin │ │ │ │ 00008ba0: 6452 6567 696f 6e28 7b7b 302c 307d 2c7b dRegion({{0,0},{ │ │ │ │ 00008bb0: 342c 347d 7d2c 4d2c 662c 496e 6e65 723d 4,4}},M,f,Inner= │ │ │ │ 00008bc0: 3e7b 7b31 2c32 7d2c 7b33 2c31 7d7d 2c4f >{{1,2},{3,1}},O │ │ │ │ 00008bd0: 7574 6572 3d3e 7b7b 317c 0a7c 202d 2d20 uter=>{{1|.| -- │ │ │ │ -00008be0: 2e30 3132 3137 3436 7320 656c 6170 7365 .0121746s elapse │ │ │ │ +00008be0: 2e30 3134 3832 3933 7320 656c 6170 7365 .0148293s elapse │ │ │ │ 00008bf0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 00008c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00008c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4119,16 +4119,16 @@ │ │ │ │ 00010160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 000101a0: 656c 6170 7365 6454 696d 6520 6c69 6e65 elapsedTime line │ │ │ │ 000101b0: 6172 5472 756e 6361 7469 6f6e 7328 7b7b arTruncations({{ │ │ │ │ 000101c0: 322c 322c 327d 2c7b 342c 342c 347d 7d2c 2,2,2},{4,4,4}}, │ │ │ │ -000101d0: 204d 297c 0a7c 202d 2d20 342e 3136 3035 M)|.| -- 4.1605 │ │ │ │ -000101e0: 3973 2065 6c61 7073 6564 2020 2020 2020 9s elapsed │ │ │ │ +000101d0: 204d 297c 0a7c 202d 2d20 332e 3035 3138 M)|.| -- 3.0518 │ │ │ │ +000101e0: 3873 2065 6c61 7073 6564 2020 2020 2020 8s elapsed │ │ │ │ 000101f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00010210: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00010220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010240: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ 00010250: 207b 7b34 2c20 332c 2033 7d2c 207b 342c {{4, 3, 3}, {4, │ │ │ │ @@ -4145,15 +4145,15 @@ │ │ │ │ 00010300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010330: 2d2d 2d2d 2d2b 0a7c 6937 203a 2065 6c61 -----+.|i7 : ela │ │ │ │ 00010340: 7073 6564 5469 6d65 206c 696e 6561 7254 psedTime linearT │ │ │ │ 00010350: 7275 6e63 6174 696f 6e73 426f 756e 6420 runcationsBound │ │ │ │ 00010360: 4d20 2020 2020 2020 2020 2020 2020 2020 M │ │ │ │ -00010370: 7c0a 7c20 2d2d 202e 3032 3636 3239 3573 |.| -- .0266295s │ │ │ │ +00010370: 7c0a 7c20 2d2d 202e 3032 3735 3337 3473 |.| -- .0275374s │ │ │ │ 00010380: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 00010390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000103a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000103b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000103c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000103d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000103e0: 2020 2020 2020 7c0a 7c6f 3720 3d20 7b7b |.|o7 = {{ │ │ ├── ./usr/share/info/LocalRings.info.gz │ │ │ ├── LocalRings.info │ │ │ │ @@ -2607,16 +2607,16 @@ │ │ │ │ 0000a2e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0000a320: 6935 203a 2065 6c61 7073 6564 5469 6d65 i5 : elapsedTime │ │ │ │ 0000a330: 2068 696c 6265 7274 5361 6d75 656c 4675 hilbertSamuelFu │ │ │ │ 0000a340: 6e63 7469 6f6e 284d 2c20 302c 2036 2920 nction(M, 0, 6) │ │ │ │ -0000a350: 2020 2020 207c 0a7c 202d 2d20 2e32 3338 |.| -- .238 │ │ │ │ -0000a360: 3635 3173 2065 6c61 7073 6564 2020 2020 651s elapsed │ │ │ │ +0000a350: 2020 2020 207c 0a7c 202d 2d20 2e31 3939 |.| -- .199 │ │ │ │ +0000a360: 3534 3773 2065 6c61 7073 6564 2020 2020 547s elapsed │ │ │ │ 0000a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3c0: 2020 2020 207c 0a7c 6f35 203d 207b 312c |.|o5 = {1, │ │ │ │ 0000a3d0: 2033 2c20 362c 2037 2c20 362c 2033 2c20 3, 6, 7, 6, 3, │ │ │ │ @@ -2745,15 +2745,15 @@ │ │ │ │ 0000ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0000aba0: 7c69 3131 203a 2065 6c61 7073 6564 5469 |i11 : elapsedTi │ │ │ │ 0000abb0: 6d65 2068 696c 6265 7274 5361 6d75 656c me hilbertSamuel │ │ │ │ 0000abc0: 4675 6e63 7469 6f6e 284e 2c20 302c 2035 Function(N, 0, 5 │ │ │ │ 0000abd0: 2920 2d2d 206e 2b31 202d 2d20 302e 3032 ) -- n+1 -- 0.02 │ │ │ │ 0000abe0: 2073 6563 6f6e 6473 2020 2020 2020 7c0a seconds |. │ │ │ │ -0000abf0: 7c20 2d2d 202e 3037 3534 3737 3473 2065 | -- .0754774s e │ │ │ │ +0000abf0: 7c20 2d2d 202e 3031 3636 3838 3373 2065 | -- .0166883s e │ │ │ │ 0000ac00: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 0000ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000ac40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -2780,15 +2780,15 @@ │ │ │ │ 0000adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000adc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0000add0: 7c69 3132 203a 2065 6c61 7073 6564 5469 |i12 : elapsedTi │ │ │ │ 0000ade0: 6d65 2068 696c 6265 7274 5361 6d75 656c me hilbertSamuel │ │ │ │ 0000adf0: 4675 6e63 7469 6f6e 2871 2c20 4e2c 2030 Function(q, N, 0 │ │ │ │ 0000ae00: 2c20 3529 202d 2d20 3628 6e2b 3129 202d , 5) -- 6(n+1) - │ │ │ │ 0000ae10: 2d20 302e 3332 2073 6563 6f6e 6473 7c0a - 0.32 seconds|. │ │ │ │ -0000ae20: 7c20 2d2d 202e 3338 3134 3032 7320 656c | -- .381402s el │ │ │ │ +0000ae20: 7c20 2d2d 202e 3236 3338 3835 7320 656c | -- .263885s el │ │ │ │ 0000ae30: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 0000ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0000ae70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Macaulay2Doc.info.gz │ │ │ ├── Macaulay2Doc.info │ │ │ │ @@ -4921,16 +4921,16 @@ │ │ │ │ 00013380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3539 ----------+.|i59 │ │ │ │ 000133b0: 203a 2074 696d 6520 4320 3d20 7265 736f : time C = reso │ │ │ │ 000133c0: 6c75 7469 6f6e 204d 2020 2020 2020 2020 lution M │ │ │ │ 000133d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000133e0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000133f0: 6420 302e 3030 3139 3237 3738 7320 2863 d 0.00192778s (c │ │ │ │ -00013400: 7075 293b 2030 2e30 3031 3931 3934 3573 pu); 0.00191945s │ │ │ │ +000133f0: 6420 302e 3030 3139 3530 3531 7320 2863 d 0.00195051s (c │ │ │ │ +00013400: 7075 293b 2030 2e30 3031 3934 3439 3173 pu); 0.00194491s │ │ │ │ 00013410: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ 00013420: 6329 7c0a 7c20 2020 2020 2020 2020 2020 c)|.| │ │ │ │ 00013430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00013460: 7c20 2020 2020 2020 3320 2020 2020 2036 | 3 6 │ │ │ │ 00013470: 2020 2020 2020 3135 2020 2020 2020 3138 15 18 │ │ │ │ @@ -24315,17 +24315,17 @@ │ │ │ │ 0005efa0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 2863 ------+.|i3 : (c │ │ │ │ 0005efb0: 203d 2043 6f6d 6d61 6e64 2022 6461 7465 = Command "date │ │ │ │ 0005efc0: 223b 2920 2020 2020 2020 207c 0a2b 2d2d ";) |.+-- │ │ │ │ 0005efd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005efe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005eff0: 2b0a 7c69 3420 3a20 6320 2020 2020 2020 +.|i4 : c │ │ │ │ 0005f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f010: 2020 2020 207c 0a7c 5375 6e20 4465 6320 |.|Sun Dec │ │ │ │ -0005f020: 3134 2031 353a 3236 3a35 3620 5554 4320 14 15:26:56 UTC │ │ │ │ -0005f030: 3230 3235 2020 2020 2020 7c0a 7c20 2020 2025 |.| │ │ │ │ +0005f010: 2020 2020 207c 0a7c 5468 7520 4a61 6e20 |.|Thu Jan │ │ │ │ +0005f020: 2031 2031 313a 3032 3a33 3120 5554 4320 1 11:02:31 UTC │ │ │ │ +0005f030: 3230 3236 2020 2020 2020 7c0a 7c20 2020 2026 |.| │ │ │ │ 0005f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0005f060: 0a7c 6f34 203d 2030 2020 2020 2020 2020 .|o4 = 0 │ │ │ │ 0005f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f080: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 0005f090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f0a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ @@ -100453,16 +100453,16 @@ │ │ │ │ 00188640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00188650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00188660: 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 696d -----+.|i8 : tim │ │ │ │ 00188670: 6520 4a20 3d20 7472 756e 6361 7465 2838 e J = truncate(8 │ │ │ │ 00188680: 2c20 492c 204d 696e 696d 616c 4765 6e65 , I, MinimalGene │ │ │ │ 00188690: 7261 746f 7273 203d 3e20 6661 6c73 6529 rators => false) │ │ │ │ 001886a0: 3b7c 0a7c 202d 2d20 7573 6564 2030 2e30 ;|.| -- used 0.0 │ │ │ │ -001886b0: 3039 3036 3535 3273 2028 6370 7529 3b20 0906552s (cpu); │ │ │ │ -001886c0: 302e 3030 3930 3538 3638 7320 2874 6872 0.00905868s (thr │ │ │ │ +001886b0: 3035 3238 3239 3673 2028 6370 7529 3b20 0528296s (cpu); │ │ │ │ +001886c0: 302e 3030 3532 3737 3736 7320 2874 6872 0.00527776s (thr │ │ │ │ 001886d0: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ 001886e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001886f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00188700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00188710: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ 00188720: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ 00188730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -100471,17 +100471,17 @@ │ │ │ │ 00188760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00188770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00188780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00188790: 2d2b 0a7c 6939 203a 2074 696d 6520 4b20 -+.|i9 : time K │ │ │ │ 001887a0: 3d20 7472 756e 6361 7465 2838 2c20 492c = truncate(8, I, │ │ │ │ 001887b0: 204d 696e 696d 616c 4765 6e65 7261 746f MinimalGenerato │ │ │ │ 001887c0: 7273 203d 3e20 7472 7565 293b 207c 0a7c rs => true); |.| │ │ │ │ -001887d0: 202d 2d20 7573 6564 2030 2e30 3739 3436 -- used 0.07946 │ │ │ │ -001887e0: 3634 7320 2863 7075 293b 2030 2e30 3739 64s (cpu); 0.079 │ │ │ │ -001887f0: 3437 3432 7320 2874 6872 6561 6429 3b20 4742s (thread); │ │ │ │ +001887d0: 202d 2d20 7573 6564 2030 2e30 3535 3033 -- used 0.05503 │ │ │ │ +001887e0: 3238 7320 2863 7075 293b 2030 2e30 3535 28s (cpu); 0.055 │ │ │ │ +001887f0: 3034 3139 7320 2874 6872 6561 6429 3b20 0419s (thread); │ │ │ │ 00188800: 3073 2028 6763 2920 207c 0a7c 2020 2020 0s (gc) |.| │ │ │ │ 00188810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00188820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00188830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00188840: 2020 2020 207c 0a7c 6f39 203a 2049 6465 |.|o9 : Ide │ │ │ │ 00188850: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ 00188860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -101080,15 +101080,15 @@ │ │ │ │ 0018ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ad80: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ 0018ad90: 2d20 636f 6d70 7574 696e 6720 7064 696d - computing pdim │ │ │ │ 0018ada0: 2720 2020 2020 2020 2020 2020 2020 2020 ' │ │ │ │ 0018adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018add0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0018ade0: 2d20 2e30 3036 3730 3034 3773 2065 6c61 - .00670047s ela │ │ │ │ +0018ade0: 2d20 2e30 3033 3832 3533 3873 2065 6c61 - .00382538s ela │ │ │ │ 0018adf0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 0018ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ae20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0018ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -101105,15 +101105,15 @@ │ │ │ │ 0018af00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018af10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ 0018af20: 203a 2065 6c61 7073 6564 5469 6d65 2070 : elapsedTime p │ │ │ │ 0018af30: 6469 6d27 204d 2020 2020 2020 2020 2020 dim' M │ │ │ │ 0018af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018af60: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -0018af70: 2d20 2e30 3030 3030 3135 3133 7320 656c - .000001513s el │ │ │ │ +0018af70: 2d20 2e30 3030 3030 3236 3833 7320 656c - .000002683s el │ │ │ │ 0018af80: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 0018af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018afb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0018afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -101608,18 +101608,18 @@ │ │ │ │ 0018ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018cea0: 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 696d -----+.|i2 : tim │ │ │ │ 0018ceb0: 6520 6669 6220 3238 2020 2020 2020 2020 e fib 28 │ │ │ │ 0018cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0018cee0: 207c 0a7c 202d 2d20 7573 6564 2031 2e32 |.| -- used 1.2 │ │ │ │ -0018cef0: 3633 3333 7320 2863 7075 293b 2030 2e37 6333s (cpu); 0.7 │ │ │ │ -0018cf00: 3236 3938 3773 2028 7468 7265 6164 293b 26987s (thread); │ │ │ │ -0018cf10: 2030 7320 2867 6329 2020 2020 207c 0a7c 0s (gc) |.| │ │ │ │ +0018cee0: 207c 0a7c 202d 2d20 7573 6564 2030 2e37 |.| -- used 0.7 │ │ │ │ +0018cef0: 3534 3736 3273 2028 6370 7529 3b20 302e 54762s (cpu); 0. │ │ │ │ +0018cf00: 3537 3736 3934 7320 2874 6872 6561 6429 577694s (thread) │ │ │ │ +0018cf10: 3b20 3073 2028 6763 2920 2020 207c 0a7c ; 0s (gc) |.| │ │ │ │ 0018cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018cf50: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ 0018cf60: 2035 3134 3232 3920 2020 2020 2020 2020 514229 │ │ │ │ 0018cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -101650,16 +101650,16 @@ │ │ │ │ 0018d110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018d120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018d130: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ 0018d140: 2074 696d 6520 6669 6220 3238 2020 2020 time fib 28 │ │ │ │ 0018d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d170: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0018d180: 2037 2e35 3534 3265 2d30 3573 2028 6370 7.5542e-05s (cp │ │ │ │ -0018d190: 7529 3b20 372e 3438 3031 652d 3035 7320 u); 7.4801e-05s │ │ │ │ +0018d180: 2038 2e32 3935 3565 2d30 3573 2028 6370 8.2955e-05s (cp │ │ │ │ +0018d190: 7529 3b20 382e 3137 3739 652d 3035 7320 u); 8.1779e-05s │ │ │ │ 0018d1a0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0018d1b0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ 0018d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0018d1f0: 6f34 203d 2035 3134 3232 3920 2020 2020 o4 = 514229 │ │ │ │ 0018d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -101668,17 +101668,17 @@ │ │ │ │ 0018d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0018d260: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 696d -----+.|i5 : tim │ │ │ │ 0018d270: 6520 6669 6220 3238 2020 2020 2020 2020 e fib 28 │ │ │ │ 0018d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0018d2a0: 207c 0a7c 202d 2d20 7573 6564 2033 2e39 |.| -- used 3.9 │ │ │ │ -0018d2b0: 3837 652d 3036 7320 2863 7075 293b 2033 87e-06s (cpu); 3 │ │ │ │ -0018d2c0: 2e36 3237 652d 3036 7320 2874 6872 6561 .627e-06s (threa │ │ │ │ +0018d2a0: 207c 0a7c 202d 2d20 7573 6564 2033 2e36 |.| -- used 3.6 │ │ │ │ +0018d2b0: 3936 652d 3036 7320 2863 7075 293b 2033 96e-06s (cpu); 3 │ │ │ │ +0018d2c0: 2e34 3437 652d 3036 7320 2874 6872 6561 .447e-06s (threa │ │ │ │ 0018d2d0: 6429 3b20 3073 2028 6763 2920 207c 0a7c d); 0s (gc) |.| │ │ │ │ 0018d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0018d310: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ 0018d320: 2035 3134 3232 3920 2020 2020 2020 2020 514229 │ │ │ │ 0018d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -104209,15 +104209,15 @@ │ │ │ │ 00197100: 2020 206c 696e 654e 756d 6265 7220 3d3e lineNumber => │ │ │ │ 00197110: 2032 2020 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ 00197120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00197130: 6c6f 6164 4465 7074 6820 3d3e 2033 2020 loadDepth => 3 │ │ │ │ 00197140: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00197150: 2020 2020 2020 2020 2020 2020 206d 6178 max │ │ │ │ 00197160: 416c 6c6f 7761 626c 6554 6872 6561 6473 AllowableThreads │ │ │ │ -00197170: 203d 3e20 3720 2020 7c0a 7c20 2020 2020 => 7 |.| │ │ │ │ +00197170: 203d 3e20 3137 2020 7c0a 7c20 2020 2020 => 17 |.| │ │ │ │ 00197180: 2020 2020 2020 2020 2020 6d61 7845 7870 maxExp │ │ │ │ 00197190: 6f6e 656e 7420 3d3e 2031 3037 3337 3431 onent => 1073741 │ │ │ │ 001971a0: 3832 3320 207c 0a7c 2020 2020 2020 2020 823 |.| │ │ │ │ 001971b0: 2020 2020 2020 206d 696e 4578 706f 6e65 minExpone │ │ │ │ 001971c0: 6e74 203d 3e20 2d31 3037 3337 3431 3832 nt => -107374182 │ │ │ │ 001971d0: 3420 7c0a 7c20 2020 2020 2020 2020 2020 4 |.| │ │ │ │ 001971e0: 2020 2020 6e75 6d54 4242 5468 7265 6164 numTBBThread │ │ │ │ @@ -114602,16 +114602,16 @@ │ │ │ │ 001bfa90: 636f 6e64 732e 0a2b 2d2d 2d2d 2d2d 2d2d conds..+-------- │ │ │ │ 001bfaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 001bfab0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6265 ------+.|i1 : be │ │ │ │ 001bfac0: 6e63 686d 6172 6b20 2273 7172 7420 3270 nchmark "sqrt 2p │ │ │ │ 001bfad0: 3130 3030 3030 227c 0a7c 2020 2020 2020 100000"|.| │ │ │ │ 001bfae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001bfaf0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -001bfb00: 2e30 3030 3239 3036 3937 3836 3133 3637 .000290697861367 │ │ │ │ -001bfb10: 3333 3220 2020 2020 207c 0a7c 2020 2020 332 |.| │ │ │ │ +001bfb00: 2e30 3030 3334 3738 3634 3038 3031 3434 .000347864080144 │ │ │ │ +001bfb10: 3532 3539 2020 2020 207c 0a7c 2020 2020 5259 |.| │ │ │ │ 001bfb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001bfb30: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ 001bfb40: 3a20 5252 2028 6f66 2070 7265 6369 7369 : RR (of precisi │ │ │ │ 001bfb50: 6f6e 2035 3329 2020 2020 207c 0a2b 2d2d on 53) |.+-- │ │ │ │ 001bfb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 001bfb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 5468 ------------+.Th │ │ │ │ 001bfb80: 6520 736e 6970 7065 7420 6f66 2063 6f64 e snippet of cod │ │ │ │ @@ -120072,40 +120072,40 @@ │ │ │ │ 001d5070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5080: 2020 2020 2020 2020 2020 2020 207d 7c0a }|. │ │ │ │ 001d5090: 7c20 2020 2020 7b31 3820 3d3e 2028 6d61 | {18 => (ma │ │ │ │ 001d50a0: 7468 4d4c 2c20 4265 7474 6954 616c 6c79 thML, BettiTally │ │ │ │ 001d50b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 001d50c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d50d0: 2020 207d 7c0a 7c20 2020 2020 7b31 3920 }|.| {19 │ │ │ │ -001d50e0: 3d3e 2028 636f 6469 6d2c 2042 6574 7469 => (codim, Betti │ │ │ │ -001d50f0: 5461 6c6c 7929 2020 2020 2020 2020 2020 Tally) │ │ │ │ -001d5100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +001d50e0: 3d3e 2028 7472 756e 6361 7465 2c20 4265 => (truncate, Be │ │ │ │ +001d50f0: 7474 6954 616c 6c79 2c20 496e 6669 6e69 ttiTally, Infini │ │ │ │ +001d5100: 7465 4e75 6d62 6572 2c20 5a5a 2920 2020 teNumber, ZZ) │ │ │ │ 001d5110: 2020 2020 2020 2020 207d 7c0a 7c20 2020 }|.| │ │ │ │ 001d5120: 2020 7b32 3020 3d3e 2028 7472 756e 6361 {20 => (trunca │ │ │ │ 001d5130: 7465 2c20 4265 7474 6954 616c 6c79 2c20 te, BettiTally, │ │ │ │ 001d5140: 5a5a 2c20 5a5a 2920 2020 2020 2020 2020 ZZ, ZZ) │ │ │ │ 001d5150: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ 001d5160: 7c0a 7c20 2020 2020 7b32 3120 3d3e 2028 |.| {21 => ( │ │ │ │ -001d5170: 6475 616c 2c20 4265 7474 6954 616c 6c79 dual, BettiTally │ │ │ │ -001d5180: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -001d5190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +001d5170: 7472 756e 6361 7465 2c20 4265 7474 6954 truncate, BettiT │ │ │ │ +001d5180: 616c 6c79 2c20 5a5a 2c20 496e 6669 6e69 ally, ZZ, Infini │ │ │ │ +001d5190: 7465 4e75 6d62 6572 2920 2020 2020 2020 teNumber) │ │ │ │ 001d51a0: 2020 2020 207d 7c0a 7c20 2020 2020 7b32 }|.| {2 │ │ │ │ 001d51b0: 3220 3d3e 2028 7472 756e 6361 7465 2c20 2 => (truncate, │ │ │ │ 001d51c0: 4265 7474 6954 616c 6c79 2c20 496e 6669 BettiTally, Infi │ │ │ │ -001d51d0: 6e69 7465 4e75 6d62 6572 2c20 5a5a 2920 niteNumber, ZZ) │ │ │ │ -001d51e0: 2020 2020 2020 2020 2020 207d 7c0a 7c20 }|.| │ │ │ │ -001d51f0: 2020 2020 7b32 3320 3d3e 2028 7472 756e {23 => (trun │ │ │ │ -001d5200: 6361 7465 2c20 4265 7474 6954 616c 6c79 cate, BettiTally │ │ │ │ -001d5210: 2c20 5a5a 2c20 496e 6669 6e69 7465 4e75 , ZZ, InfiniteNu │ │ │ │ -001d5220: 6d62 6572 2920 2020 2020 2020 2020 2020 mber) │ │ │ │ +001d51d0: 6e69 7465 4e75 6d62 6572 2c20 496e 6669 niteNumber, Infi │ │ │ │ +001d51e0: 6e69 7465 4e75 6d62 6572 297d 7c0a 7c20 niteNumber)}|.| │ │ │ │ +001d51f0: 2020 2020 7b32 3320 3d3e 2028 636f 6469 {23 => (codi │ │ │ │ +001d5200: 6d2c 2042 6574 7469 5461 6c6c 7929 2020 m, BettiTally) │ │ │ │ +001d5210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +001d5220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5230: 207d 7c0a 7c20 2020 2020 7b32 3420 3d3e }|.| {24 => │ │ │ │ -001d5240: 2028 7472 756e 6361 7465 2c20 4265 7474 (truncate, Bett │ │ │ │ -001d5250: 6954 616c 6c79 2c20 496e 6669 6e69 7465 iTally, Infinite │ │ │ │ -001d5260: 4e75 6d62 6572 2c20 496e 6669 6e69 7465 Number, Infinite │ │ │ │ -001d5270: 4e75 6d62 6572 297d 7c0a 7c20 2020 2020 Number)}|.| │ │ │ │ +001d5240: 2028 6475 616c 2c20 4265 7474 6954 616c (dual, BettiTal │ │ │ │ +001d5250: 6c79 2920 2020 2020 2020 2020 2020 2020 ly) │ │ │ │ +001d5260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +001d5270: 2020 2020 2020 207d 7c0a 7c20 2020 2020 }|.| │ │ │ │ 001d5280: 7b32 3520 3d3e 2028 5e2c 2052 696e 672c {25 => (^, Ring, │ │ │ │ 001d5290: 2042 6574 7469 5461 6c6c 7929 2020 2020 BettiTally) │ │ │ │ 001d52a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d52b0: 2020 2020 2020 2020 2020 2020 207d 7c0a }|. │ │ │ │ 001d52c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 001d52d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d52e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -120282,38 +120282,38 @@ │ │ │ │ 001d5d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5db0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 001d5dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5df0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -001d5e00: 207b 3020 3d3e 2028 636f 6e74 7261 6374 {0 => (contract │ │ │ │ -001d5e10: 2c20 4d61 7472 6978 2c20 4d61 7472 6978 , Matrix, Matrix │ │ │ │ -001d5e20: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +001d5e00: 207b 3020 3d3e 2028 2b2c 204d 6174 7269 {0 => (+, Matri │ │ │ │ +001d5e10: 782c 204d 6174 7269 7829 2020 2020 2020 x, Matrix) │ │ │ │ +001d5e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5e30: 2020 2020 2020 2020 2020 2020 207d 7c0a }|. │ │ │ │ -001d5e40: 7c20 2020 2020 7b31 203d 3e20 2864 6966 | {1 => (dif │ │ │ │ -001d5e50: 662c 204d 6174 7269 782c 204d 6174 7269 f, Matrix, Matri │ │ │ │ -001d5e60: 7829 2020 2020 2020 2020 2020 2020 2020 x) │ │ │ │ +001d5e40: 7c20 2020 2020 7b31 203d 3e20 282d 2c20 | {1 => (-, │ │ │ │ +001d5e50: 4d61 7472 6978 2c20 4d61 7472 6978 2920 Matrix, Matrix) │ │ │ │ +001d5e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5e80: 2020 7d7c 0a7c 2020 2020 207b 3220 3d3e }|.| {2 => │ │ │ │ -001d5e90: 2028 6469 6666 272c 204d 6174 7269 782c (diff', Matrix, │ │ │ │ -001d5ea0: 204d 6174 7269 7829 2020 2020 2020 2020 Matrix) │ │ │ │ +001d5e90: 2028 636f 6e74 7261 6374 2c20 4d61 7472 (contract, Matr │ │ │ │ +001d5ea0: 6978 2c20 4d61 7472 6978 2920 2020 2020 ix, Matrix) │ │ │ │ 001d5eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5ec0: 2020 2020 2020 207d 7c0a 7c20 2020 2020 }|.| │ │ │ │ -001d5ed0: 7b33 203d 3e20 282d 2c20 4d61 7472 6978 {3 => (-, Matrix │ │ │ │ -001d5ee0: 2c20 4d61 7472 6978 2920 2020 2020 2020 , Matrix) │ │ │ │ +001d5ed0: 7b33 203d 3e20 2864 6966 662c 204d 6174 {3 => (diff, Mat │ │ │ │ +001d5ee0: 7269 782c 204d 6174 7269 7829 2020 2020 rix, Matrix) │ │ │ │ 001d5ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5f00: 2020 2020 2020 2020 2020 2020 7d7c 0a7c }|.| │ │ │ │ 001d5f10: 2020 2020 207b 3420 3d3e 2028 636f 6e74 {4 => (cont │ │ │ │ 001d5f20: 7261 6374 272c 204d 6174 7269 782c 204d ract', Matrix, M │ │ │ │ 001d5f30: 6174 7269 7829 2020 2020 2020 2020 2020 atrix) │ │ │ │ 001d5f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5f50: 207d 7c0a 7c20 2020 2020 7b35 203d 3e20 }|.| {5 => │ │ │ │ -001d5f60: 282b 2c20 4d61 7472 6978 2c20 4d61 7472 (+, Matrix, Matr │ │ │ │ -001d5f70: 6978 2920 2020 2020 2020 2020 2020 2020 ix) │ │ │ │ +001d5f60: 2864 6966 6627 2c20 4d61 7472 6978 2c20 (diff', Matrix, │ │ │ │ +001d5f70: 4d61 7472 6978 2920 2020 2020 2020 2020 Matrix) │ │ │ │ 001d5f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5f90: 2020 2020 2020 7d7c 0a7c 2020 2020 207b }|.| { │ │ │ │ 001d5fa0: 3620 3d3e 2028 6d61 726b 6564 4742 2c20 6 => (markedGB, │ │ │ │ 001d5fb0: 4d61 7472 6978 2c20 4d61 7472 6978 2920 Matrix, Matrix) │ │ │ │ 001d5fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d5fd0: 2020 2020 2020 2020 2020 207d 7c0a 7c20 }|.| │ │ │ │ 001d5fe0: 2020 2020 7b37 203d 3e20 2848 6f6d 2c20 {7 => (Hom, │ │ │ │ @@ -120403,29 +120403,29 @@ │ │ │ │ 001d6520: 6978 2920 2020 2020 2020 2020 2020 2020 ix) │ │ │ │ 001d6530: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ 001d6540: 7c0a 7c20 2020 2020 7b32 3720 3d3e 2028 |.| {27 => ( │ │ │ │ 001d6550: 736f 6c76 652c 204d 6174 7269 782c 204d solve, Matrix, M │ │ │ │ 001d6560: 6174 7269 7829 2020 2020 2020 2020 2020 atrix) │ │ │ │ 001d6570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d6580: 2020 2020 7d7c 0a7c 2020 2020 207b 3238 }|.| {28 │ │ │ │ -001d6590: 203d 3e20 2870 756c 6c62 6163 6b2c 204d => (pullback, M │ │ │ │ -001d65a0: 6174 7269 782c 204d 6174 7269 7829 2020 atrix, Matrix) │ │ │ │ -001d65b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +001d6590: 203d 3e20 2869 6e74 6572 7365 6374 2c20 => (intersect, │ │ │ │ +001d65a0: 4d61 7472 6978 2c20 4d61 7472 6978 2c20 Matrix, Matrix, │ │ │ │ +001d65b0: 4d61 7472 6978 2c20 4d61 7472 6978 2920 Matrix, Matrix) │ │ │ │ 001d65c0: 2020 2020 2020 2020 207d 7c0a 7c20 2020 }|.| │ │ │ │ 001d65d0: 2020 7b32 3920 3d3e 2028 696e 7465 7273 {29 => (inters │ │ │ │ 001d65e0: 6563 742c 204d 6174 7269 782c 204d 6174 ect, Matrix, Mat │ │ │ │ 001d65f0: 7269 7829 2020 2020 2020 2020 2020 2020 rix) │ │ │ │ 001d6600: 2020 2020 2020 2020 2020 2020 2020 7d7c }| │ │ │ │ -001d6610: 0a7c 2020 2020 207b 3330 203d 3e20 2869 .| {30 => (i │ │ │ │ -001d6620: 6e74 6572 7365 6374 2c20 4d61 7472 6978 ntersect, Matrix │ │ │ │ -001d6630: 2c20 4d61 7472 6978 2c20 4d61 7472 6978 , Matrix, Matrix │ │ │ │ -001d6640: 2c20 4d61 7472 6978 2920 2020 2020 2020 , Matrix) │ │ │ │ +001d6610: 0a7c 2020 2020 207b 3330 203d 3e20 2874 .| {30 => (t │ │ │ │ +001d6620: 656e 736f 722c 204d 6174 7269 782c 204d ensor, Matrix, M │ │ │ │ +001d6630: 6174 7269 7829 2020 2020 2020 2020 2020 atrix) │ │ │ │ +001d6640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d6650: 2020 207d 7c0a 7c20 2020 2020 7b33 3120 }|.| {31 │ │ │ │ -001d6660: 3d3e 2028 7465 6e73 6f72 2c20 4d61 7472 => (tensor, Matr │ │ │ │ -001d6670: 6978 2c20 4d61 7472 6978 2920 2020 2020 ix, Matrix) │ │ │ │ +001d6660: 3d3e 2028 7075 6c6c 6261 636b 2c20 4d61 => (pullback, Ma │ │ │ │ +001d6670: 7472 6978 2c20 4d61 7472 6978 2920 2020 trix, Matrix) │ │ │ │ 001d6680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d6690: 2020 2020 2020 2020 7d7c 0a7c 2020 2020 }|.| │ │ │ │ 001d66a0: 207b 3332 203d 3e20 2873 7562 7374 6974 {32 => (substit │ │ │ │ 001d66b0: 7574 652c 204d 6174 7269 782c 204d 6174 ute, Matrix, Mat │ │ │ │ 001d66c0: 7269 7829 2020 2020 2020 2020 2020 2020 rix) │ │ │ │ 001d66d0: 2020 2020 2020 2020 2020 2020 207d 7c0a }|. │ │ │ │ 001d66e0: 7c20 2020 2020 7b33 3320 3d3e 2028 796f | {33 => (yo │ │ │ │ @@ -121335,84 +121335,84 @@ │ │ │ │ 001d9f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d9f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d9f80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 001d9f90: 6f32 203d 2023 7275 6e20 2025 7469 6d65 o2 = #run %time │ │ │ │ 001d9fa0: 2020 2070 6f73 6974 696f 6e20 2020 2020 position │ │ │ │ 001d9fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001d9fc0: 2020 2020 7c0a 7c20 2020 2020 3120 2020 |.| 1 │ │ │ │ -001d9fd0: 2020 3934 2e35 3220 2020 2e2e 2f2e 2e2f 94.52 ../../ │ │ │ │ +001d9fd0: 2020 3933 2e33 3520 2020 2e2e 2f2e 2e2f 93.35 ../../ │ │ │ │ 001d9fe0: 6d32 2f6d 6174 7269 7831 2e6d 323a 3237 m2/matrix1.m2:27 │ │ │ │ 001d9ff0: 393a 342d 3238 323a 3538 207c 0a7c 2020 9:4-282:58 |.| │ │ │ │ -001da000: 2020 2031 2020 2020 2039 322e 3132 2020 1 92.12 │ │ │ │ +001da000: 2020 2031 2020 2020 2039 302e 3635 2020 1 90.65 │ │ │ │ 001da010: 202e 2e2f 2e2e 2f6d 322f 6d61 7472 6978 ../../m2/matrix │ │ │ │ 001da020: 312e 6d32 3a32 3831 3a32 322d 3238 313a 1.m2:281:22-281: │ │ │ │ 001da030: 3433 7c0a 7c20 2020 2020 3120 2020 2020 43|.| 1 │ │ │ │ -001da040: 3434 2e31 3620 2020 2e2e 2f2e 2e2f 6d32 44.16 ../../m2 │ │ │ │ +001da040: 3433 2e30 3120 2020 2e2e 2f2e 2e2f 6d32 43.01 ../../m2 │ │ │ │ 001da050: 2f6d 6174 7269 7831 2e6d 323a 3139 333a /matrix1.m2:193: │ │ │ │ 001da060: 3235 2d31 3933 3a35 327c 0a7c 2020 2020 25-193:52|.| │ │ │ │ -001da070: 2031 2020 2020 2033 302e 3539 2020 202e 1 30.59 . │ │ │ │ +001da070: 2031 2020 2020 2032 392e 3934 2020 202e 1 29.94 . │ │ │ │ 001da080: 2e2f 2e2e 2f6d 322f 6d61 7472 6978 312e ./../m2/matrix1. │ │ │ │ 001da090: 6d32 3a31 3134 3a35 2d31 3536 3a37 3220 m2:114:5-156:72 │ │ │ │ -001da0a0: 7c0a 7c20 2020 2020 3120 2020 2020 3239 |.| 1 29 │ │ │ │ -001da0b0: 2e34 3720 2020 2e2e 2f2e 2e2f 6d32 2f6d .47 ../../m2/m │ │ │ │ +001da0a0: 7c0a 7c20 2020 2020 3120 2020 2020 3238 |.| 1 28 │ │ │ │ +001da0b0: 2e37 3220 2020 2e2e 2f2e 2e2f 6d32 2f6d .72 ../../m2/m │ │ │ │ 001da0c0: 6174 7269 7831 2e6d 323a 3134 303a 3130 atrix1.m2:140:10 │ │ │ │ 001da0d0: 2d31 3535 3a31 367c 0a7c 2020 2020 2031 -155:16|.| 1 │ │ │ │ -001da0e0: 2020 2020 2032 332e 3833 2020 202e 2e2f 23.83 ../ │ │ │ │ +001da0e0: 2020 2020 2032 332e 3436 2020 202e 2e2f 23.46 ../ │ │ │ │ 001da0f0: 2e2e 2f6d 322f 6d61 7472 6978 312e 6d32 ../m2/matrix1.m2 │ │ │ │ 001da100: 3a31 3831 3a34 2d31 3831 3a34 3220 7c0a :181:4-181:42 |. │ │ │ │ -001da110: 7c20 2020 2020 3120 2020 2020 3232 2e35 | 1 22.5 │ │ │ │ -001da120: 3420 2020 2e2e 2f2e 2e2f 6d32 2f73 6574 4 ../../m2/set │ │ │ │ +001da110: 7c20 2020 2020 3120 2020 2020 3232 2e31 | 1 22.1 │ │ │ │ +001da120: 3220 2020 2e2e 2f2e 2e2f 6d32 2f73 6574 2 ../../m2/set │ │ │ │ 001da130: 2e6d 323a 3132 373a 352d 3132 373a 3631 .m2:127:5-127:61 │ │ │ │ 001da140: 2020 2020 207c 0a7c 2020 2020 2031 2020 |.| 1 │ │ │ │ -001da150: 2020 2032 302e 3836 2020 202e 2e2f 2e2e 20.86 ../.. │ │ │ │ +001da150: 2020 2032 302e 3220 2020 202e 2e2f 2e2e 20.2 ../.. │ │ │ │ 001da160: 2f6d 322f 6d61 7472 6978 312e 6d32 3a34 /m2/matrix1.m2:4 │ │ │ │ 001da170: 353a 3130 2d34 393a 3232 2020 7c0a 7c20 5:10-49:22 |.| │ │ │ │ -001da180: 2020 2020 3120 2020 2020 332e 3330 2020 1 3.30 │ │ │ │ +001da180: 2020 2020 3120 2020 2020 332e 3236 2020 1 3.26 │ │ │ │ 001da190: 2020 2e2e 2f2e 2e2f 6d32 2f6d 6174 7269 ../../m2/matri │ │ │ │ 001da1a0: 7831 2e6d 323a 3131 323a 352d 3131 323a x1.m2:112:5-112: │ │ │ │ 001da1b0: 3239 207c 0a7c 2020 2020 2031 2020 2020 29 |.| 1 │ │ │ │ -001da1c0: 2032 2e33 3420 2020 202e 2e2f 2e2e 2f6d 2.34 ../../m │ │ │ │ +001da1c0: 2032 2e38 2020 2020 202e 2e2f 2e2e 2f6d 2.8 ../../m │ │ │ │ 001da1d0: 322f 6d61 7472 6978 312e 6d32 3a31 3431 2/matrix1.m2:141 │ │ │ │ 001da1e0: 3a31 332d 3134 313a 3738 7c0a 7c20 2020 :13-141:78|.| │ │ │ │ -001da1f0: 2020 3120 2020 2020 322e 3138 2020 2020 1 2.18 │ │ │ │ +001da1f0: 2020 3120 2020 2020 322e 3136 2020 2020 1 2.16 │ │ │ │ 001da200: 2e2e 2f2e 2e2f 6d32 2f6d 6174 7269 7831 ../../m2/matrix1 │ │ │ │ 001da210: 2e6d 323a 3936 3a35 2d31 3039 3a31 3120 .m2:96:5-109:11 │ │ │ │ 001da220: 207c 0a7c 2020 2020 2031 2020 2020 2031 |.| 1 1 │ │ │ │ -001da230: 2e34 3220 2020 202e 2e2f 2e2e 2f6d 322f .42 ../../m2/ │ │ │ │ +001da230: 2e36 3920 2020 202e 2e2f 2e2e 2f6d 322f .69 ../../m2/ │ │ │ │ 001da240: 6d61 7472 6978 312e 6d32 3a32 3831 3a37 matrix1.m2:281:7 │ │ │ │ 001da250: 2d32 3831 3a31 3620 7c0a 7c20 2020 2020 -281:16 |.| │ │ │ │ -001da260: 3120 2020 2020 312e 3239 2020 2020 2e2e 1 1.29 .. │ │ │ │ +001da260: 3120 2020 2020 312e 3337 2020 2020 2e2e 1 1.37 .. │ │ │ │ 001da270: 2f2e 2e2f 6d32 2f6d 6174 7269 7831 2e6d /../m2/matrix1.m │ │ │ │ -001da280: 323a 3134 373a 3230 2d31 3437 3a36 347c 2:147:20-147:64| │ │ │ │ +001da280: 323a 3237 363a 342d 3237 373a 3733 207c 2:276:4-277:73 | │ │ │ │ 001da290: 0a7c 2020 2020 2031 2020 2020 2031 2e32 .| 1 1.2 │ │ │ │ -001da2a0: 3920 2020 202e 2e2f 2e2e 2f6d 322f 6d61 9 ../../m2/ma │ │ │ │ -001da2b0: 7472 6978 312e 6d32 3a31 3131 3a35 2d31 trix1.m2:111:5-1 │ │ │ │ -001da2c0: 3131 3a39 3120 7c0a 7c20 2020 2020 3120 11:91 |.| 1 │ │ │ │ -001da2d0: 2020 2020 312e 3237 2020 2020 2e2e 2f2e 1.27 ../. │ │ │ │ +001da2a0: 3620 2020 202e 2e2f 2e2e 2f6d 322f 6d61 6 ../../m2/ma │ │ │ │ +001da2b0: 7472 6978 312e 6d32 3a31 3437 3a32 302d trix1.m2:147:20- │ │ │ │ +001da2c0: 3134 373a 3634 7c0a 7c20 2020 2020 3120 147:64|.| 1 │ │ │ │ +001da2d0: 2020 2020 312e 3134 2020 2020 2e2e 2f2e 1.14 ../. │ │ │ │ 001da2e0: 2e2f 6d32 2f6d 6174 7269 7831 2e6d 323a ./m2/matrix1.m2: │ │ │ │ -001da2f0: 3237 363a 342d 3237 373a 3733 207c 0a7c 276:4-277:73 |.| │ │ │ │ -001da300: 2020 2020 2031 2020 2020 2031 2e30 3220 1 1.02 │ │ │ │ +001da2f0: 3131 313a 352d 3131 313a 3931 207c 0a7c 111:5-111:91 |.| │ │ │ │ +001da300: 2020 2020 2031 2020 2020 2031 2e31 3020 1 1.10 │ │ │ │ 001da310: 2020 202e 2e2f 2e2e 2f6d 322f 6d61 7472 ../../m2/matr │ │ │ │ -001da320: 6978 312e 6d32 3a39 383a 3130 2d39 383a ix1.m2:98:10-98: │ │ │ │ -001da330: 3436 2020 7c0a 7c20 2020 2020 3120 2020 46 |.| 1 │ │ │ │ -001da340: 2020 2e39 3720 2020 2020 2e2e 2f2e 2e2f .97 ../../ │ │ │ │ -001da350: 6d32 2f6d 6174 7269 7831 2e6d 323a 3138 m2/matrix1.m2:18 │ │ │ │ -001da360: 323a 342d 3138 343a 3734 207c 0a7c 2020 2:4-184:74 |.| │ │ │ │ -001da370: 2020 2031 2020 2020 202e 3831 2020 2020 1 .81 │ │ │ │ -001da380: 202e 2e2f 2e2e 2f6d 322f 6d6f 6475 6c65 ../../m2/module │ │ │ │ -001da390: 732e 6d32 3a32 3739 3a34 2d32 3739 3a35 s.m2:279:4-279:5 │ │ │ │ -001da3a0: 3220 7c0a 7c20 2020 2020 3230 2020 2020 2 |.| 20 │ │ │ │ -001da3b0: 2e36 3420 2020 2020 2e2e 2f2e 2e2f 6d32 .64 ../../m2 │ │ │ │ -001da3c0: 2f6d 6174 7269 7831 2e6d 323a 3139 313a /matrix1.m2:191: │ │ │ │ -001da3d0: 3134 2d31 3932 3a36 377c 0a7c 2020 2020 14-192:67|.| │ │ │ │ -001da3e0: 2032 3020 2020 202e 3437 2020 2020 202e 20 .47 . │ │ │ │ +001da320: 6978 312e 6d32 3a31 3832 3a34 2d31 3834 ix1.m2:182:4-184 │ │ │ │ +001da330: 3a37 3420 7c0a 7c20 2020 2020 3120 2020 :74 |.| 1 │ │ │ │ +001da340: 2020 312e 3038 2020 2020 2e2e 2f2e 2e2f 1.08 ../../ │ │ │ │ +001da350: 6d32 2f6d 6174 7269 7831 2e6d 323a 3938 m2/matrix1.m2:98 │ │ │ │ +001da360: 3a31 302d 3938 3a34 3620 207c 0a7c 2020 :10-98:46 |.| │ │ │ │ +001da370: 2020 2032 3020 2020 202e 3935 2020 2020 20 .95 │ │ │ │ +001da380: 202e 2e2f 2e2e 2f6d 322f 6d61 7472 6978 ../../m2/matrix │ │ │ │ +001da390: 312e 6d32 3a31 3931 3a31 342d 3139 323a 1.m2:191:14-192: │ │ │ │ +001da3a0: 3637 7c0a 7c20 2020 2020 3230 2020 2020 67|.| 20 │ │ │ │ +001da3b0: 2e36 3720 2020 2020 2e2e 2f2e 2e2f 6d32 .67 ../../m2 │ │ │ │ +001da3c0: 2f6d 6174 7269 7831 2e6d 323a 3437 3a34 /matrix1.m2:47:4 │ │ │ │ +001da3d0: 332d 3437 3a37 3120 207c 0a7c 2020 2020 3-47:71 |.| │ │ │ │ +001da3e0: 2032 3020 2020 202e 3630 2020 2020 202e 20 .60 . │ │ │ │ 001da3f0: 2e2f 2e2e 2f6d 322f 6d61 7472 6978 312e ./../m2/matrix1. │ │ │ │ -001da400: 6d32 3a34 373a 3433 2d34 373a 3731 2020 m2:47:43-47:71 │ │ │ │ +001da400: 6d32 3a31 3930 3a31 372d 3139 303a 3239 m2:190:17-190:29 │ │ │ │ 001da410: 7c0a 7c20 2020 2020 3120 2020 2020 2e30 |.| 1 .0 │ │ │ │ -001da420: 3033 3873 2020 656c 6170 7365 6420 746f 038s elapsed to │ │ │ │ +001da420: 3033 3573 2020 656c 6170 7365 6420 746f 035s elapsed to │ │ │ │ 001da430: 7461 6c20 2020 2020 2020 2020 2020 2020 tal │ │ │ │ 001da440: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 001da450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 001da460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 001da470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 001da480: 7c69 3320 3a20 636f 7665 7261 6765 5375 |i3 : coverageSu │ │ │ │ 001da490: 6d6d 6172 7920 2020 2020 2020 2020 2020 mmary │ │ │ │ @@ -127828,21 +127828,21 @@ │ │ │ │ 001f3530: 206f 6620 780a 0a44 6573 6372 6970 7469 of x..Descripti │ │ │ │ 001f3540: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ 001f3550: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 001f3560: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 -------+.|i1 : s │ │ │ │ 001f3570: 6572 6961 6c4e 756d 6265 7220 6173 6466 erialNumber asdf │ │ │ │ 001f3580: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 001f3590: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -001f35a0: 2031 3432 3632 3733 2020 2020 2020 2020 1426273 │ │ │ │ +001f35a0: 2031 3532 3632 3733 2020 2020 2020 2020 1526273 │ │ │ │ 001f35b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 001f35c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 001f35d0: 203a 2073 6572 6961 6c4e 756d 6265 7220 : serialNumber │ │ │ │ 001f35e0: 666f 6f20 7c0a 7c20 2020 2020 2020 2020 foo |.| │ │ │ │ 001f35f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -001f3600: 6f32 203d 2031 3432 3632 3735 2020 2020 o2 = 1426275 │ │ │ │ +001f3600: 6f32 203d 2031 3532 3632 3735 2020 2020 o2 = 1526275 │ │ │ │ 001f3610: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 001f3620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 001f3630: 0a7c 6933 203a 2073 6572 6961 6c4e 756d .|i3 : serialNum │ │ │ │ 001f3640: 6265 7220 5a5a 2020 7c0a 7c20 2020 2020 ber ZZ |.| │ │ │ │ 001f3650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 001f3660: 207c 0a7c 6f33 203d 2031 3030 3030 3530 |.|o3 = 1000050 │ │ │ │ 001f3670: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ @@ -131620,16 +131620,16 @@ │ │ │ │ 00202230: 656c 6f61 6469 6e67 2046 6972 7374 5061 eloading FirstPa │ │ │ │ 00202240: 636b 6167 653b 2072 6563 7265 6174 6520 ckage; recreate │ │ │ │ 00202250: 696e 7374 616e 6365 7320 6f66 2074 7970 instances of typ │ │ │ │ 00202260: 6573 2066 726f 6d20 7468 6973 2020 207c es from this | │ │ │ │ 00202270: 0a7c 202d 2d20 6361 7074 7572 696e 6720 .| -- capturing │ │ │ │ 00202280: 6368 6563 6b28 312c 2022 4669 7273 7450 check(1, "FirstP │ │ │ │ 00202290: 6163 6b61 6765 2229 2020 2020 2020 2020 ackage") │ │ │ │ -002022a0: 2d2d 202e 3135 3134 3773 2065 6c61 7073 -- .15147s elaps │ │ │ │ -002022b0: 6564 2020 2020 2020 2020 2020 2020 207c ed | │ │ │ │ +002022a0: 2d2d 202e 3132 3235 3434 7320 656c 6170 -- .122544s elap │ │ │ │ +002022b0: 7365 6420 2020 2020 2020 2020 2020 207c sed | │ │ │ │ 002022c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 002022d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002022e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002022f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ 00202310: 0a7c 7061 636b 6167 6520 2020 2020 2020 .|package │ │ │ │ 00202320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -131645,20 +131645,20 @@ │ │ │ │ 002023c0: 7374 5061 636b 6167 6520 2020 2020 2020 stPackage │ │ │ │ 002023d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002023e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002023f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00202400: 0a7c 202d 2d20 6361 7074 7572 696e 6720 .| -- capturing │ │ │ │ 00202410: 6368 6563 6b28 302c 2022 4669 7273 7450 check(0, "FirstP │ │ │ │ 00202420: 6163 6b61 6765 2229 2020 2020 2020 2020 ackage") │ │ │ │ -00202430: 2d2d 202e 3135 3031 3831 7320 656c 6170 -- .150181s elap │ │ │ │ +00202430: 2d2d 202e 3131 3633 3432 7320 656c 6170 -- .116342s elap │ │ │ │ 00202440: 7365 6420 2020 2020 2020 2020 2020 207c sed | │ │ │ │ 00202450: 0a7c 202d 2d20 6361 7074 7572 696e 6720 .| -- capturing │ │ │ │ 00202460: 6368 6563 6b28 312c 2022 4669 7273 7450 check(1, "FirstP │ │ │ │ 00202470: 6163 6b61 6765 2229 2020 2020 2020 2020 ackage") │ │ │ │ -00202480: 2d2d 202e 3135 3039 3635 7320 656c 6170 -- .150965s elap │ │ │ │ +00202480: 2d2d 202e 3131 3836 3038 7320 656c 6170 -- .118608s elap │ │ │ │ 00202490: 7365 6420 2020 2020 2020 2020 2020 207c sed | │ │ │ │ 002024a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 002024b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002024c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002024d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002024e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 002024f0: 0a0a 416c 7465 726e 6174 6976 656c 792c ..Alternatively, │ │ │ │ @@ -131674,32 +131674,32 @@ │ │ │ │ 00202590: 2b0a 7c69 3420 3a20 6368 6563 6b5f 3120 +.|i4 : check_1 │ │ │ │ 002025a0: 2246 6972 7374 5061 636b 6167 6522 2020 "FirstPackage" │ │ │ │ 002025b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002025c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002025d0: 2020 2020 7c0a 7c20 2d2d 2063 6170 7475 |.| -- captu │ │ │ │ 002025e0: 7269 6e67 2063 6865 636b 2831 2c20 2246 ring check(1, "F │ │ │ │ 002025f0: 6972 7374 5061 636b 6167 6522 2920 2020 irstPackage") │ │ │ │ -00202600: 2020 2020 202d 2d20 2e31 3532 3537 3973 -- .152579s │ │ │ │ +00202600: 2020 2020 202d 2d20 2e31 3138 3630 3873 -- .118608s │ │ │ │ 00202610: 2065 6c61 7073 6564 7c0a 2b2d 2d2d 2d2d elapsed|.+----- │ │ │ │ 00202620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00202660: 3520 3a20 6368 6563 6b20 2246 6972 7374 5 : check "First │ │ │ │ 00202670: 5061 636b 6167 6522 2020 2020 2020 2020 Package" │ │ │ │ 00202680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00202690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002026a0: 7c0a 7c20 2d2d 2063 6170 7475 7269 6e67 |.| -- capturing │ │ │ │ 002026b0: 2063 6865 636b 2830 2c20 2246 6972 7374 check(0, "First │ │ │ │ 002026c0: 5061 636b 6167 6522 2920 2020 2020 2020 Package") │ │ │ │ -002026d0: 202d 2d20 2e31 3532 3035 3373 2065 6c61 -- .152053s ela │ │ │ │ +002026d0: 202d 2d20 2e31 3230 3037 3273 2065 6c61 -- .120072s ela │ │ │ │ 002026e0: 7073 6564 7c0a 7c20 2d2d 2063 6170 7475 psed|.| -- captu │ │ │ │ 002026f0: 7269 6e67 2063 6865 636b 2831 2c20 2246 ring check(1, "F │ │ │ │ 00202700: 6972 7374 5061 636b 6167 6522 2920 2020 irstPackage") │ │ │ │ -00202710: 2020 2020 202d 2d20 2e31 3531 3836 3773 -- .151867s │ │ │ │ +00202710: 2020 2020 202d 2d20 2e31 3139 3531 3373 -- .119513s │ │ │ │ 00202720: 2065 6c61 7073 6564 7c0a 2b2d 2d2d 2d2d elapsed|.+----- │ │ │ │ 00202730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 ------------+..A │ │ │ │ 00202770: 202a 6e6f 7465 2054 6573 7449 6e70 7574 *note TestInput │ │ │ │ 00202780: 3a20 7465 7374 732c 206f 626a 6563 7420 : tests, object │ │ │ │ @@ -131741,15 +131741,15 @@ │ │ │ │ 002029c0: 6937 203a 2063 6865 636b 206f 6f20 2020 i7 : check oo │ │ │ │ 002029d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002029e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002029f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00202a00: 2020 2020 207c 0a7c 202d 2d20 6361 7074 |.| -- capt │ │ │ │ 00202a10: 7572 696e 6720 6368 6563 6b28 312c 2022 uring check(1, " │ │ │ │ 00202a20: 4669 7273 7450 6163 6b61 6765 2229 2020 FirstPackage") │ │ │ │ -00202a30: 2020 2020 2020 2d2d 202e 3135 3330 3833 -- .153083 │ │ │ │ +00202a30: 2020 2020 2020 2d2d 202e 3131 3933 3939 -- .119399 │ │ │ │ 00202a40: 7320 656c 6170 7365 6420 2020 207c 0a2b s elapsed |.+ │ │ │ │ 00202a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202a90: 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 6573 -----+.|i8 : tes │ │ │ │ 00202aa0: 7473 2022 4669 7273 7450 6163 6b61 6765 ts "FirstPackage │ │ │ │ @@ -131786,20 +131786,20 @@ │ │ │ │ 00202c90: 6939 203a 2063 6865 636b 206f 6f20 2020 i9 : check oo │ │ │ │ 00202ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00202cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00202cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00202cd0: 2020 2020 207c 0a7c 202d 2d20 6361 7074 |.| -- capt │ │ │ │ 00202ce0: 7572 696e 6720 6368 6563 6b28 302c 2022 uring check(0, " │ │ │ │ 00202cf0: 4669 7273 7450 6163 6b61 6765 2229 2020 FirstPackage") │ │ │ │ -00202d00: 2020 2020 2020 2d2d 202e 3135 3237 3033 -- .152703 │ │ │ │ +00202d00: 2020 2020 2020 2d2d 202e 3131 3830 3131 -- .118011 │ │ │ │ 00202d10: 7320 656c 6170 7365 6420 2020 207c 0a7c s elapsed |.| │ │ │ │ 00202d20: 202d 2d20 6361 7074 7572 696e 6720 6368 -- capturing ch │ │ │ │ 00202d30: 6563 6b28 312c 2022 4669 7273 7450 6163 eck(1, "FirstPac │ │ │ │ 00202d40: 6b61 6765 2229 2020 2020 2020 2020 2d2d kage") -- │ │ │ │ -00202d50: 202e 3135 3039 3031 7320 656c 6170 7365 .150901s elapse │ │ │ │ +00202d50: 202e 3131 3633 3734 7320 656c 6170 7365 .116374s elapse │ │ │ │ 00202d60: 6420 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d d |.+-------- │ │ │ │ 00202d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00202da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ 00202db0: 4966 206f 6e6c 7920 616e 2069 6e74 6567 If only an integ │ │ │ │ 00202dc0: 6572 2069 7320 7061 7373 6564 2061 7320 er is passed as │ │ │ │ @@ -131849,15 +131849,15 @@ │ │ │ │ 00203080: 636b 2031 2020 2020 2020 2020 2020 2020 ck 1 │ │ │ │ 00203090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002030a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002030b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 002030c0: 202d 2d20 6361 7074 7572 696e 6720 6368 -- capturing ch │ │ │ │ 002030d0: 6563 6b28 312c 2022 4669 7273 7450 6163 eck(1, "FirstPac │ │ │ │ 002030e0: 6b61 6765 2229 2020 2020 2020 2020 2d2d kage") -- │ │ │ │ -002030f0: 202e 3135 3133 3436 7320 656c 6170 7365 .151346s elapse │ │ │ │ +002030f0: 202e 3132 3335 3432 7320 656c 6170 7365 .123542s elapse │ │ │ │ 00203100: 6420 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d d |.+------- │ │ │ │ 00203110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00203120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00203130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00203140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00203150: 0a0a 4361 7665 6174 0a3d 3d3d 3d3d 3d0a ..Caveat.======. │ │ │ │ 00203160: 0a43 7572 7265 6e74 6c79 2c20 6966 2074 .Currently, if t │ │ │ │ @@ -135799,15 +135799,15 @@ │ │ │ │ 00212760: 2020 2020 2020 2020 7261 7720 646f 6375 raw docu │ │ │ │ 00212770: 6d65 6e74 6174 696f 6e20 3d3e 204d 7574 mentation => Mut │ │ │ │ 00212780: 6162 6c65 4861 7368 5461 626c 657b 7d20 ableHashTable{} │ │ │ │ 00212790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002127a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 002127b0: 2020 2020 2020 2020 736f 7572 6365 2064 source d │ │ │ │ 002127c0: 6972 6563 746f 7279 203d 3e20 2f74 6d70 irectory => /tmp │ │ │ │ -002127d0: 2f4d 322d 3130 3139 312d 302f 3931 2d72 /M2-10191-0/91-r │ │ │ │ +002127d0: 2f4d 322d 3130 3331 312d 302f 3931 2d72 /M2-10311-0/91-r │ │ │ │ 002127e0: 756e 6469 722f 2020 2020 2020 2020 2020 undir/ │ │ │ │ 002127f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00212800: 2020 2020 2020 2020 736f 7572 6365 2066 source f │ │ │ │ 00212810: 696c 6520 3d3e 2073 7464 696f 2020 2020 ile => stdio │ │ │ │ 00212820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00212830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00212840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ @@ -141794,26 +141794,26 @@ │ │ │ │ 00229e10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00229e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00229e50: 7c69 3320 3a20 656c 6170 7365 6454 696d |i3 : elapsedTim │ │ │ │ 00229e60: 6520 2020 2020 2020 2020 6170 706c 7928 e apply( │ │ │ │ 00229e70: 312e 2e31 3030 2c20 6e20 2d3e 2073 6f72 1..100, n -> sor │ │ │ │ -00229e80: 7420 4c29 3b7c 0a7c 202d 2d20 2e36 3430 t L);|.| -- .640 │ │ │ │ -00229e90: 3637 3473 2065 6c61 7073 6564 2020 2020 674s elapsed │ │ │ │ +00229e80: 7420 4c29 3b7c 0a7c 202d 2d20 2e36 3831 t L);|.| -- .681 │ │ │ │ +00229e90: 3335 3673 2065 6c61 7073 6564 2020 2020 356s elapsed │ │ │ │ 00229ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00229eb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00229ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229ef0: 2d2d 2d2b 0a7c 6934 203a 2065 6c61 7073 ---+.|i4 : elaps │ │ │ │ 00229f00: 6564 5469 6d65 2070 6172 616c 6c65 6c41 edTime parallelA │ │ │ │ 00229f10: 7070 6c79 2831 2e2e 3130 302c 206e 202d pply(1..100, n - │ │ │ │ 00229f20: 3e20 736f 7274 204c 293b 7c0a 7c20 2d2d > sort L);|.| -- │ │ │ │ -00229f30: 202e 3330 3739 3139 7320 656c 6170 7365 .307919s elapse │ │ │ │ +00229f30: 202e 3138 3230 3638 7320 656c 6170 7365 .182068s elapse │ │ │ │ 00229f40: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 00229f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00229f60: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00229f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00229f90: 2d2d 2d2d 2d2d 2d2d 2b0a 0a59 6f75 2077 --------+..You w │ │ │ │ 00229fa0: 696c 6c20 6861 7665 2074 6f20 7472 7920 ill have to try │ │ │ │ @@ -141894,15 +141894,15 @@ │ │ │ │ 0022a450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0022a460: 2d2b 0a7c 6936 203a 2061 6c6c 6f77 6162 -+.|i6 : allowab │ │ │ │ 0022a470: 6c65 5468 7265 6164 7320 3d20 6d61 7841 leThreads = maxA │ │ │ │ 0022a480: 6c6c 6f77 6162 6c65 5468 7265 6164 737c llowableThreads| │ │ │ │ 0022a490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0022a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0022a4b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0022a4c0: 6f36 203d 2037 2020 2020 2020 2020 2020 o6 = 7 │ │ │ │ +0022a4c0: 6f36 203d 2031 3720 2020 2020 2020 2020 o6 = 17 │ │ │ │ 0022a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0022a4e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0022a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0022a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0022a510: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 546f 2072 ---------+..To r │ │ │ │ 0022a520: 756e 2061 2066 756e 6374 696f 6e20 696e un a function in │ │ │ │ 0022a530: 2061 6e6f 7468 6572 2074 6872 6561 6420 another thread │ │ │ │ @@ -142027,16 +142027,16 @@ │ │ │ │ 0022aca0: 6861 7320 636f 6d70 6c65 7465 6420 7468 has completed th │ │ │ │ 0022acb0: 650a 636f 6d70 7574 6174 696f 6e2e 0a0a e.computation... │ │ │ │ 0022acc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0022acd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a --------+.|i11 : │ │ │ │ 0022ace0: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0022acf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0022ad00: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0022ad10: 3131 203d 203c 3c74 6173 6b2c 2072 756e 11 = <>|.| │ │ │ │ +0022ad10: 3131 203d 203c 3c74 6173 6b2c 2063 7265 11 = <>|.| │ │ │ │ 0022ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0022ad40: 7c0a 7c6f 3131 203a 2054 6173 6b20 2020 |.|o11 : Task │ │ │ │ 0022ad50: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0022ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0022ad70: 2d2d 2d2d 2b0a 0a55 7365 202a 6e6f 7465 ----+..Use *note │ │ │ │ 0022ad80: 2069 7352 6561 6479 3a20 6973 5265 6164 isReady: isRead │ │ │ │ 0022ad90: 795f 6c70 4669 6c65 5f72 702c 2074 6f20 y_lpFile_rp, to │ │ │ │ @@ -143389,16 +143389,16 @@ │ │ │ │ 002301c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002301d0: 2d2d 2d2d 2b0a 7c69 3520 3a20 6e20 2020 ----+.|i5 : n │ │ │ │ 002301e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002301f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00230210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00230230: 2020 2020 2020 7c0a 7c6f 3520 3d20 3731 |.|o5 = 71 │ │ │ │ -00230240: 3132 3036 2020 2020 2020 2020 2020 2020 1206 │ │ │ │ +00230230: 2020 2020 2020 7c0a 7c6f 3520 3d20 3130 |.|o5 = 10 │ │ │ │ +00230240: 3935 3031 3520 2020 2020 2020 2020 2020 95015 │ │ │ │ 00230250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230260: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00230270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230290: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ 002302a0: 736c 6565 7020 3120 2020 2020 2020 2020 sleep 1 │ │ │ │ 002302b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -143432,16 +143432,16 @@ │ │ │ │ 00230470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230480: 2d2d 2b0a 7c69 3820 3a20 6e20 2020 2020 --+.|i8 : n │ │ │ │ 00230490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002304a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002304b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 002304c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002304d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002304e0: 2020 2020 7c0a 7c6f 3820 3d20 3134 3533 |.|o8 = 1453 │ │ │ │ -002304f0: 3533 3320 2020 2020 2020 2020 2020 2020 533 │ │ │ │ +002304e0: 2020 2020 7c0a 7c6f 3820 3d20 3232 3230 |.|o8 = 2220 │ │ │ │ +002304f0: 3831 3420 2020 2020 2020 2020 2020 2020 814 │ │ │ │ 00230500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230510: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00230520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230540: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 6973 ------+.|i9 : is │ │ │ │ 00230550: 5265 6164 7920 7420 2020 2020 2020 2020 Ready t │ │ │ │ 00230560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -143497,15 +143497,15 @@ │ │ │ │ 00230880: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ 00230890: 6e20 2020 2020 2020 2020 2020 2020 2020 n │ │ │ │ 002308a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002308b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 002308c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002308d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002308e0: 2020 2020 2020 2020 207c 0a7c 6f31 3320 |.|o13 │ │ │ │ -002308f0: 3d20 3134 3533 3734 3620 2020 2020 2020 = 1453746 │ │ │ │ +002308f0: 3d20 3232 3231 3030 3120 2020 2020 2020 = 2221001 │ │ │ │ 00230900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230910: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 00230920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00230950: 3420 3a20 736c 6565 7020 3120 2020 2020 4 : sleep 1 │ │ │ │ 00230960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -143521,16 +143521,16 @@ │ │ │ │ 00230a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00230a10: 0a7c 6931 3520 3a20 6e20 2020 2020 2020 .|i15 : n │ │ │ │ 00230a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230a40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00230a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00230a70: 207c 0a7c 6f31 3520 3d20 3134 3533 3734 |.|o15 = 145374 │ │ │ │ -00230a80: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00230a70: 207c 0a7c 6f31 3520 3d20 3232 3231 3030 |.|o15 = 222100 │ │ │ │ +00230a80: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00230a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00230aa0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00230ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00230ad0: 2d2d 2d2b 0a7c 6931 3620 3a20 6973 5265 ---+.|i16 : isRe │ │ │ │ 00230ae0: 6164 7920 7420 2020 2020 2020 2020 2020 ady t │ │ │ │ 00230af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -144288,15 +144288,15 @@ │ │ │ │ 002339f0: 7365 740a 0a44 6573 6372 6970 7469 6f6e set..Description │ │ │ │ 00233a00: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ 00233a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00233a20: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206d -------+.|i1 : m │ │ │ │ 00233a30: 6178 416c 6c6f 7761 626c 6554 6872 6561 axAllowableThrea │ │ │ │ 00233a40: 6473 7c0a 7c20 2020 2020 2020 2020 2020 ds|.| │ │ │ │ 00233a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00233a60: 6f31 203d 2037 2020 2020 2020 2020 2020 o1 = 7 │ │ │ │ +00233a60: 6f31 203d 2031 3720 2020 2020 2020 2020 o1 = 17 │ │ │ │ 00233a70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 00233a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00233a90: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ 00233aa0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ 00233ab0: 7465 2070 6172 616c 6c65 6c20 7072 6f67 te parallel prog │ │ │ │ 00233ac0: 7261 6d6d 696e 6720 7769 7468 2074 6872 ramming with thr │ │ │ │ 00233ad0: 6561 6473 2061 6e64 2074 6173 6b73 3a20 eads and tasks: │ │ │ │ @@ -145520,15 +145520,15 @@ │ │ │ │ 002386f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00238710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238750: 207c 0a7c 6f33 203d 202f 746d 702f 4d32 |.|o3 = /tmp/M2 │ │ │ │ -00238760: 2d31 3039 3332 2d30 2f30 2020 2020 2020 -10932-0/0 │ │ │ │ +00238760: 2d31 3137 3832 2d30 2f30 2020 2020 2020 -11782-0/0 │ │ │ │ 00238770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002387a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 002387b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002387c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002387d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -145540,15 +145540,15 @@ │ │ │ │ 00238830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00238850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238890: 207c 0a7c 6f34 203d 202f 746d 702f 4d32 |.|o4 = /tmp/M2 │ │ │ │ -002388a0: 2d31 3039 3332 2d30 2f30 2020 2020 2020 -10932-0/0 │ │ │ │ +002388a0: 2d31 3137 3832 2d30 2f30 2020 2020 2020 -11782-0/0 │ │ │ │ 002388b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002388c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002388d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002388e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 002388f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00238910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -145700,15 +145700,15 @@ │ │ │ │ 00239230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00239250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239290: 207c 0a7c 6f39 203d 202f 746d 702f 4d32 |.|o9 = /tmp/M2 │ │ │ │ -002392a0: 2d31 3039 3332 2d30 2f30 2020 2020 2020 -10932-0/0 │ │ │ │ +002392a0: 2d31 3137 3832 2d30 2f30 2020 2020 2020 -11782-0/0 │ │ │ │ 002392b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002392c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002392d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002392e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 002392f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -145760,15 +145760,15 @@ │ │ │ │ 002395f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00239610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239650: 207c 0a7c 6f31 3120 3d20 2f74 6d70 2f4d |.|o11 = /tmp/M │ │ │ │ -00239660: 322d 3130 3933 322d 302f 3020 2020 2020 2-10932-0/0 │ │ │ │ +00239660: 322d 3131 3738 322d 302f 3020 2020 2020 2-11782-0/0 │ │ │ │ 00239670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00239690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002396a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 002396b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002396c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002396d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -146165,15 +146165,15 @@ │ │ │ │ 0023af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023af50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0023af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023afa0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0023afb0: 203d 202f 746d 702f 4d32 2d31 3131 3037 = /tmp/M2-11107 │ │ │ │ +0023afb0: 203d 202f 746d 702f 4d32 2d31 3231 3337 = /tmp/M2-12137 │ │ │ │ 0023afc0: 2d30 2f30 2020 2020 2020 2020 2020 2020 -0/0 │ │ │ │ 0023afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023aff0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0023b000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0023b010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0023b020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -146185,15 +146185,15 @@ │ │ │ │ 0023b080: 5e32 2b31 322a 795e 322a 7a5e 322b 785e ^2+12*y^2*z^2+x^ │ │ │ │ 0023b090: 332b 362a 785e 322a 792b 207c 0a7c 2020 3+6*x^2*y+ |.| │ │ │ │ 0023b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b0e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0023b0f0: 203d 202f 746d 702f 4d32 2d31 3131 3037 = /tmp/M2-11107 │ │ │ │ +0023b0f0: 203d 202f 746d 702f 4d32 2d31 3231 3337 = /tmp/M2-12137 │ │ │ │ 0023b100: 2d30 2f30 2020 2020 2020 2020 2020 2020 -0/0 │ │ │ │ 0023b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b130: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0023b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -146401,15 +146401,15 @@ │ │ │ │ 0023be00: 7361 6d70 6c65 203d 2032 5e31 3030 7c0a sample = 2^100|. │ │ │ │ 0023be10: 7c20 2020 2020 7072 696e 7420 7361 6d70 | print samp │ │ │ │ 0023be20: 6c65 2020 2020 2020 2020 207c 0a7c 2020 le |.| │ │ │ │ 0023be30: 2020 2022 203c 3c20 636c 6f73 6520 2020 " << close │ │ │ │ 0023be40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0023be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023be60: 2020 2020 207c 0a7c 6f37 203d 202f 746d |.|o7 = /tm │ │ │ │ -0023be70: 702f 4d32 2d31 3131 3037 2d30 2f30 2020 p/M2-11107-0/0 │ │ │ │ +0023be70: 702f 4d32 2d31 3231 3337 2d30 2f30 2020 p/M2-12137-0/0 │ │ │ │ 0023be80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0023be90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0023bea0: 0a7c 6f37 203a 2046 696c 6520 2020 2020 .|o7 : File │ │ │ │ 0023beb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0023bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0023bed0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a4e 6f77 2076 ---------+.Now v │ │ │ │ 0023bee0: 6572 6966 7920 7468 6174 2069 7420 636f erify that it co │ │ │ │ @@ -147002,15 +147002,15 @@ │ │ │ │ 0023e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e3a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0023e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e3f0: 2020 207c 0a7c 6f35 203d 202f 746d 702f |.|o5 = /tmp/ │ │ │ │ -0023e400: 4d32 2d31 3133 3536 2d30 2f30 2020 2020 M2-11356-0/0 │ │ │ │ +0023e400: 4d32 2d31 3236 3436 2d30 2f30 2020 2020 M2-12646-0/0 │ │ │ │ 0023e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e440: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0023e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0023e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0023e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -147022,15 +147022,15 @@ │ │ │ │ 0023e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e4e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0023e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e530: 2020 207c 0a7c 6f36 203d 202f 746d 702f |.|o6 = /tmp/ │ │ │ │ -0023e540: 4d32 2d31 3133 3536 2d30 2f30 2020 2020 M2-11356-0/0 │ │ │ │ +0023e540: 4d32 2d31 3236 3436 2d30 2f30 2020 2020 M2-12646-0/0 │ │ │ │ 0023e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e580: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0023e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0023e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -147987,24 +147987,24 @@ │ │ │ │ 00242120: 6520 7379 7374 656d 2e0a 2b2d 2d2d 2d2d e system..+----- │ │ │ │ 00242130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00242140: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ 00242150: 2066 6e20 3d20 7465 6d70 6f72 6172 7946 fn = temporaryF │ │ │ │ 00242160: 696c 654e 616d 6528 2920 7c0a 7c20 2020 ileName() |.| │ │ │ │ 00242170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00242180: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00242190: 203d 202f 746d 702f 4d32 2d31 3231 3838 = /tmp/M2-12188 │ │ │ │ +00242190: 203d 202f 746d 702f 4d32 2d31 3433 3438 = /tmp/M2-14348 │ │ │ │ 002421a0: 2d30 2f30 2020 2020 2020 2020 7c0a 2b2d -0/0 |.+- │ │ │ │ 002421b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002421c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 002421d0: 6932 203a 2066 6e20 3c3c 2022 6869 2074 i2 : fn << "hi t │ │ │ │ 002421e0: 6865 7265 2220 3c3c 2063 6c6f 7365 7c0a here" << close|. │ │ │ │ 002421f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00242200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00242210: 0a7c 6f32 203d 202f 746d 702f 4d32 2d31 .|o2 = /tmp/M2-1 │ │ │ │ -00242220: 3231 3838 2d30 2f30 2020 2020 2020 2020 2188-0/0 │ │ │ │ +00242220: 3433 3438 2d30 2f30 2020 2020 2020 2020 4348-0/0 │ │ │ │ 00242230: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00242240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00242250: 207c 0a7c 6f32 203a 2046 696c 6520 2020 |.|o2 : File │ │ │ │ 00242260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00242270: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00242280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00242290: 2d2d 2d2b 0a7c 6933 203a 2069 7352 6567 ---+.|i3 : isReg │ │ │ │ @@ -148090,24 +148090,24 @@ │ │ │ │ 00242790: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 002427a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002427b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ 002427c0: 666e 203d 2074 656d 706f 7261 7279 4669 fn = temporaryFi │ │ │ │ 002427d0: 6c65 4e61 6d65 2829 207c 0a7c 2020 2020 leName() |.| │ │ │ │ 002427e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002427f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00242800: 3d20 2f74 6d70 2f4d 322d 3130 3338 302d = /tmp/M2-10380- │ │ │ │ +00242800: 3d20 2f74 6d70 2f4d 322d 3130 3637 302d = /tmp/M2-10670- │ │ │ │ 00242810: 302f 3020 2020 2020 2020 207c 0a2b 2d2d 0/0 |.+-- │ │ │ │ 00242820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00242830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00242840: 3320 3a20 666e 203c 3c20 2268 6920 7468 3 : fn << "hi th │ │ │ │ 00242850: 6572 6522 203c 3c20 636c 6f73 657c 0a7c ere" << close|.| │ │ │ │ 00242860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00242870: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00242880: 7c6f 3320 3d20 2f74 6d70 2f4d 322d 3130 |o3 = /tmp/M2-10 │ │ │ │ -00242890: 3338 302d 302f 3020 2020 2020 2020 207c 380-0/0 | │ │ │ │ +00242890: 3637 302d 302f 3020 2020 2020 2020 207c 670-0/0 | │ │ │ │ 002428a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002428b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002428c0: 7c0a 7c6f 3320 3a20 4669 6c65 2020 2020 |.|o3 : File │ │ │ │ 002428d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002428e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 002428f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00242900: 2d2d 2b0a 7c69 3420 3a20 6973 4469 7265 --+.|i4 : isDire │ │ │ │ @@ -148286,25 +148286,25 @@ │ │ │ │ 002433d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002433e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 002433f0: 0a7c 6931 203a 2074 656d 706f 7261 7279 .|i1 : temporary │ │ │ │ 00243400: 4669 6c65 4e61 6d65 2028 2920 7c20 222e FileName () | ". │ │ │ │ 00243410: 7465 7822 207c 0a7c 2020 2020 2020 2020 tex" |.| │ │ │ │ 00243420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00243430: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00243440: 203d 202f 746d 702f 4d32 2d31 3231 3639 = /tmp/M2-12169 │ │ │ │ +00243440: 203d 202f 746d 702f 4d32 2d31 3433 3039 = /tmp/M2-14309 │ │ │ │ 00243450: 2d30 2f30 2e74 6578 2020 2020 2020 2020 -0/0.tex │ │ │ │ 00243460: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00243470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00243480: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ 00243490: 656d 706f 7261 7279 4669 6c65 4e61 6d65 emporaryFileName │ │ │ │ 002434a0: 2028 2920 7c20 222e 6874 6d6c 227c 0a7c () | ".html"|.| │ │ │ │ 002434b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002434c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002434d0: 2020 207c 0a7c 6f32 203d 202f 746d 702f |.|o2 = /tmp/ │ │ │ │ -002434e0: 4d32 2d31 3231 3639 2d30 2f31 2e68 746d M2-12169-0/1.htm │ │ │ │ +002434e0: 4d32 2d31 3433 3039 2d30 2f31 2e68 746d M2-14309-0/1.htm │ │ │ │ 002434f0: 6c20 2020 2020 2020 207c 0a2b 2d2d 2d2d l |.+---- │ │ │ │ 00243500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00243510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00243520: 0a0a 5468 6973 2066 756e 6374 696f 6e20 ..This function │ │ │ │ 00243530: 7769 6c6c 2077 6f72 6b20 756e 6465 7220 will work under │ │ │ │ 00243540: 556e 6978 2c20 616e 6420 616c 736f 2075 Unix, and also u │ │ │ │ 00243550: 6e64 6572 2057 696e 646f 7773 2069 6620 nder Windows if │ │ │ │ @@ -148468,23 +148468,23 @@ │ │ │ │ 00243f30: 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ===..+---------- │ │ │ │ 00243f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00243f50: 2d2d 2d2b 0a7c 6931 203a 2066 6e20 3d20 ---+.|i1 : fn = │ │ │ │ 00243f60: 7465 6d70 6f72 6172 7946 696c 654e 616d temporaryFileNam │ │ │ │ 00243f70: 6528 297c 0a7c 2020 2020 2020 2020 2020 e()|.| │ │ │ │ 00243f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00243f90: 2020 207c 0a7c 6f31 203d 202f 746d 702f |.|o1 = /tmp/ │ │ │ │ -00243fa0: 4d32 2d31 3133 3735 2d30 2f30 2020 2020 M2-11375-0/0 │ │ │ │ +00243fa0: 4d32 2d31 3236 3835 2d30 2f30 2020 2020 M2-12685-0/0 │ │ │ │ 00243fb0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00243fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00243fd0: 2d2d 2d2b 0a7c 6932 203a 2066 203d 2066 ---+.|i2 : f = f │ │ │ │ 00243fe0: 6e20 3c3c 2022 6869 2074 6865 7265 2220 n << "hi there" │ │ │ │ 00243ff0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00244000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244010: 2020 207c 0a7c 6f32 203d 202f 746d 702f |.|o2 = /tmp/ │ │ │ │ -00244020: 4d32 2d31 3133 3735 2d30 2f30 2020 2020 M2-11375-0/0 │ │ │ │ +00244020: 4d32 2d31 3236 3835 2d30 2f30 2020 2020 M2-12685-0/0 │ │ │ │ 00244030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00244040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244050: 2020 207c 0a7c 6f32 203a 2046 696c 6520 |.|o2 : File │ │ │ │ 00244060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244070: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00244080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244090: 2d2d 2d2b 0a7c 6933 203a 2066 696c 654d ---+.|i3 : fileM │ │ │ │ @@ -148496,15 +148496,15 @@ │ │ │ │ 002440f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00244100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244110: 2d2d 2d2b 0a7c 6934 203a 2063 6c6f 7365 ---+.|i4 : close │ │ │ │ 00244120: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ 00244130: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00244140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244150: 2020 207c 0a7c 6f34 203d 202f 746d 702f |.|o4 = /tmp/ │ │ │ │ -00244160: 4d32 2d31 3133 3735 2d30 2f30 2020 2020 M2-11375-0/0 │ │ │ │ +00244160: 4d32 2d31 3236 3835 2d30 2f30 2020 2020 M2-12685-0/0 │ │ │ │ 00244170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00244180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244190: 2020 207c 0a7c 6f34 203a 2046 696c 6520 |.|o4 : File │ │ │ │ 002441a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002441b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 002441c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002441d0: 2d2d 2d2b 0a7c 6935 203a 2072 656d 6f76 ---+.|i5 : remov │ │ │ │ @@ -148562,23 +148562,23 @@ │ │ │ │ 00244510: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ 00244520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244530: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ 00244540: 3a20 666e 203d 2074 656d 706f 7261 7279 : fn = temporary │ │ │ │ 00244550: 4669 6c65 4e61 6d65 2829 7c0a 7c20 2020 FileName()|.| │ │ │ │ 00244560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244570: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -00244580: 3d20 2f74 6d70 2f4d 322d 3130 3835 342d = /tmp/M2-10854- │ │ │ │ +00244580: 3d20 2f74 6d70 2f4d 322d 3131 3632 342d = /tmp/M2-11624- │ │ │ │ 00244590: 302f 3020 2020 2020 2020 7c0a 2b2d 2d2d 0/0 |.+--- │ │ │ │ 002445a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002445b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ 002445c0: 3a20 6620 3d20 666e 203c 3c20 2268 6920 : f = fn << "hi │ │ │ │ 002445d0: 7468 6572 6522 2020 2020 7c0a 7c20 2020 there" |.| │ │ │ │ 002445e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002445f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00244600: 3d20 2f74 6d70 2f4d 322d 3130 3835 342d = /tmp/M2-10854- │ │ │ │ +00244600: 3d20 2f74 6d70 2f4d 322d 3131 3632 342d = /tmp/M2-11624- │ │ │ │ 00244610: 302f 3020 2020 2020 2020 7c0a 7c20 2020 0/0 |.| │ │ │ │ 00244620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244630: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ 00244640: 3a20 4669 6c65 2020 2020 2020 2020 2020 : File │ │ │ │ 00244650: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 00244660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244670: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ @@ -148602,15 +148602,15 @@ │ │ │ │ 00244790: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 002447a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002447b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ 002447c0: 3a20 636c 6f73 6520 6620 2020 2020 2020 : close f │ │ │ │ 002447d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 002447e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002447f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00244800: 3d20 2f74 6d70 2f4d 322d 3130 3835 342d = /tmp/M2-10854- │ │ │ │ +00244800: 3d20 2f74 6d70 2f4d 322d 3131 3632 342d = /tmp/M2-11624- │ │ │ │ 00244810: 302f 3020 2020 2020 2020 7c0a 7c20 2020 0/0 |.| │ │ │ │ 00244820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244830: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ 00244840: 3a20 4669 6c65 2020 2020 2020 2020 2020 : File │ │ │ │ 00244850: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 00244860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244870: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ @@ -148678,24 +148678,24 @@ │ │ │ │ 00244c50: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ 00244c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244c70: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ 00244c80: 666e 203d 2074 656d 706f 7261 7279 4669 fn = temporaryFi │ │ │ │ 00244c90: 6c65 4e61 6d65 2829 207c 0a7c 2020 2020 leName() |.| │ │ │ │ 00244ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244cb0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -00244cc0: 3d20 2f74 6d70 2f4d 322d 3130 3938 392d = /tmp/M2-10989- │ │ │ │ +00244cc0: 3d20 2f74 6d70 2f4d 322d 3131 3839 392d = /tmp/M2-11899- │ │ │ │ 00244cd0: 302f 3020 2020 2020 2020 207c 0a2b 2d2d 0/0 |.+-- │ │ │ │ 00244ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00244d00: 3220 3a20 666e 203c 3c20 2268 6920 7468 2 : fn << "hi th │ │ │ │ 00244d10: 6572 6522 203c 3c20 636c 6f73 657c 0a7c ere" << close|.| │ │ │ │ 00244d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244d30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00244d40: 7c6f 3220 3d20 2f74 6d70 2f4d 322d 3130 |o2 = /tmp/M2-10 │ │ │ │ -00244d50: 3938 392d 302f 3020 2020 2020 2020 207c 989-0/0 | │ │ │ │ +00244d40: 7c6f 3220 3d20 2f74 6d70 2f4d 322d 3131 |o2 = /tmp/M2-11 │ │ │ │ +00244d50: 3839 392d 302f 3020 2020 2020 2020 207c 899-0/0 | │ │ │ │ 00244d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00244d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244d80: 7c0a 7c6f 3220 3a20 4669 6c65 2020 2020 |.|o2 : File │ │ │ │ 00244d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00244da0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00244db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00244dc0: 2d2d 2b0a 7c69 3320 3a20 6669 6c65 4d6f --+.|i3 : fileMo │ │ │ │ @@ -148763,23 +148763,23 @@ │ │ │ │ 002451a0: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ 002451b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002451c0: 2d2d 2b0a 7c69 3120 3a20 666e 203d 2074 --+.|i1 : fn = t │ │ │ │ 002451d0: 656d 706f 7261 7279 4669 6c65 4e61 6d65 emporaryFileName │ │ │ │ 002451e0: 2829 207c 0a7c 2020 2020 2020 2020 2020 () |.| │ │ │ │ 002451f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00245200: 2020 2020 7c0a 7c6f 3120 3d20 2f74 6d70 |.|o1 = /tmp │ │ │ │ -00245210: 2f4d 322d 3131 3937 372d 302f 3020 2020 /M2-11977-0/0 │ │ │ │ +00245210: 2f4d 322d 3133 3931 372d 302f 3020 2020 /M2-13917-0/0 │ │ │ │ 00245220: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00245230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00245240: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 666e ------+.|i2 : fn │ │ │ │ 00245250: 203c 3c20 2268 6920 7468 6572 6522 203c << "hi there" < │ │ │ │ 00245260: 3c20 636c 6f73 657c 0a7c 2020 2020 2020 < close|.| │ │ │ │ 00245270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00245280: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00245290: 2f74 6d70 2f4d 322d 3131 3937 372d 302f /tmp/M2-11977-0/ │ │ │ │ +00245290: 2f74 6d70 2f4d 322d 3133 3931 372d 302f /tmp/M2-13917-0/ │ │ │ │ 002452a0: 3020 2020 2020 2020 207c 0a7c 2020 2020 0 |.| │ │ │ │ 002452b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002452c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ 002452d0: 3a20 4669 6c65 2020 2020 2020 2020 2020 : File │ │ │ │ 002452e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 002452f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00245300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ @@ -148857,15 +148857,15 @@ │ │ │ │ 00245780: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00245790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002457a0: 2b0a 7c69 3120 3a20 666e 203d 2074 656d +.|i1 : fn = tem │ │ │ │ 002457b0: 706f 7261 7279 4669 6c65 4e61 6d65 2829 poraryFileName() │ │ │ │ 002457c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 002457d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002457e0: 2020 7c0a 7c6f 3120 3d20 2f74 6d70 2f4d |.|o1 = /tmp/M │ │ │ │ -002457f0: 322d 3130 3535 382d 302f 3020 2020 2020 2-10558-0/0 │ │ │ │ +002457f0: 322d 3131 3032 382d 302f 3020 2020 2020 2-11028-0/0 │ │ │ │ 00245800: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00245810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00245820: 2d2d 2d2d 2b0a 7c69 3220 3a20 6669 6c65 ----+.|i2 : file │ │ │ │ 00245830: 4578 6973 7473 2066 6e20 2020 2020 2020 Exists fn │ │ │ │ 00245840: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00245850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00245860: 2020 2020 2020 7c0a 7c6f 3220 3d20 6661 |.|o2 = fa │ │ │ │ @@ -148873,15 +148873,15 @@ │ │ │ │ 00245880: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00245890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002458a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ 002458b0: 666e 203c 3c20 2268 6920 7468 6572 6522 fn << "hi there" │ │ │ │ 002458c0: 203c 3c20 636c 6f73 657c 0a7c 2020 2020 << close|.| │ │ │ │ 002458d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002458e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -002458f0: 3d20 2f74 6d70 2f4d 322d 3130 3535 382d = /tmp/M2-10558- │ │ │ │ +002458f0: 3d20 2f74 6d70 2f4d 322d 3131 3032 382d = /tmp/M2-11028- │ │ │ │ 00245900: 302f 3020 2020 2020 2020 207c 0a7c 2020 0/0 |.| │ │ │ │ 00245910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00245920: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 00245930: 3320 3a20 4669 6c65 2020 2020 2020 2020 3 : File │ │ │ │ 00245940: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00245950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00245960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ @@ -149175,15 +149175,15 @@ │ │ │ │ 00246b60: 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00246b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00246b80: 2d2d 2d2d 2b0a 7c69 3120 3a20 6375 7272 ----+.|i1 : curr │ │ │ │ 00246b90: 656e 7454 696d 6528 2920 2d20 6669 6c65 entTime() - file │ │ │ │ 00246ba0: 5469 6d65 2022 2e22 7c0a 7c20 2020 2020 Time "."|.| │ │ │ │ 00246bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00246bc0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00246bd0: 3120 3d20 3631 2020 2020 2020 2020 2020 1 = 61 │ │ │ │ +00246bd0: 3120 3d20 3436 2020 2020 2020 2020 2020 1 = 46 │ │ │ │ 00246be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00246bf0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00246c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00246c10: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ 00246c20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ 00246c30: 6f74 6520 6375 7272 656e 7454 696d 653a ote currentTime: │ │ │ │ 00246c40: 2063 7572 7265 6e74 5469 6d65 2c20 2d2d currentTime, -- │ │ │ │ @@ -149284,15 +149284,15 @@ │ │ │ │ 00247230: 2829 2020 2020 2020 2020 2020 2020 2020 () │ │ │ │ 00247240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247250: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00247260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247290: 2020 2020 2020 207c 0a7c 6f31 203d 202f |.|o1 = / │ │ │ │ -002472a0: 746d 702f 4d32 2d31 3039 3730 2d30 2f30 tmp/M2-10970-0/0 │ │ │ │ +002472a0: 746d 702f 4d32 2d31 3138 3630 2d30 2f30 tmp/M2-11860-0/0 │ │ │ │ 002472b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002472c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002472d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 002472e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002472f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ @@ -149301,15 +149301,15 @@ │ │ │ │ 00247340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247360: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00247370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002473a0: 2020 207c 0a7c 6f32 203d 202f 746d 702f |.|o2 = /tmp/ │ │ │ │ -002473b0: 4d32 2d31 3039 3730 2d30 2f31 2020 2020 M2-10970-0/1 │ │ │ │ +002473b0: 4d32 2d31 3138 3630 2d30 2f31 2020 2020 M2-11860-0/1 │ │ │ │ 002473c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002473d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002473e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 002473f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247420: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ @@ -149318,15 +149318,15 @@ │ │ │ │ 00247450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00247470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002474a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 002474b0: 0a7c 6f33 203d 202f 746d 702f 4d32 2d31 .|o3 = /tmp/M2-1 │ │ │ │ -002474c0: 3039 3730 2d30 2f30 2020 2020 2020 2020 0970-0/0 │ │ │ │ +002474c0: 3138 3630 2d30 2f30 2020 2020 2020 2020 1860-0/0 │ │ │ │ 002474d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002474e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002474f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00247500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247530: 2020 2020 207c 0a7c 6f33 203a 2046 696c |.|o3 : Fil │ │ │ │ @@ -149339,16 +149339,16 @@ │ │ │ │ 002475a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002475b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ 002475c0: 203a 2063 6f70 7946 696c 6528 7372 632c : copyFile(src, │ │ │ │ 002475d0: 6473 742c 5665 7262 6f73 653d 3e74 7275 dst,Verbose=>tru │ │ │ │ 002475e0: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ 002475f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00247600: 7c20 2d2d 2063 6f70 7969 6e67 3a20 2f74 | -- copying: /t │ │ │ │ -00247610: 6d70 2f4d 322d 3130 3937 302d 302f 3020 mp/M2-10970-0/0 │ │ │ │ -00247620: 2d3e 202f 746d 702f 4d32 2d31 3039 3730 -> /tmp/M2-10970 │ │ │ │ +00247610: 6d70 2f4d 322d 3131 3836 302d 302f 3020 mp/M2-11860-0/0 │ │ │ │ +00247620: 2d3e 202f 746d 702f 4d32 2d31 3138 3630 -> /tmp/M2-11860 │ │ │ │ 00247630: 2d30 2f31 2020 2020 2020 2020 2020 2020 -0/1 │ │ │ │ 00247640: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00247650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247680: 2d2d 2d2d 2b0a 7c69 3520 3a20 6765 7420 ----+.|i5 : get │ │ │ │ 00247690: 6473 7420 2020 2020 2020 2020 2020 2020 dst │ │ │ │ @@ -149368,32 +149368,32 @@ │ │ │ │ 00247770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247790: 2b0a 7c69 3620 3a20 636f 7079 4669 6c65 +.|i6 : copyFile │ │ │ │ 002477a0: 2873 7263 2c64 7374 2c56 6572 626f 7365 (src,dst,Verbose │ │ │ │ 002477b0: 3d3e 7472 7565 2c55 7064 6174 654f 6e6c =>true,UpdateOnl │ │ │ │ 002477c0: 7920 3d3e 2074 7275 6529 2020 2020 2020 y => true) │ │ │ │ 002477d0: 2020 207c 0a7c 202d 2d20 736b 6970 7069 |.| -- skippi │ │ │ │ -002477e0: 6e67 3a20 2f74 6d70 2f4d 322d 3130 3937 ng: /tmp/M2-1097 │ │ │ │ +002477e0: 6e67 3a20 2f74 6d70 2f4d 322d 3131 3836 ng: /tmp/M2-1186 │ │ │ │ 002477f0: 302d 302f 3020 6e6f 7420 6e65 7765 7220 0-0/0 not newer │ │ │ │ -00247800: 7468 616e 202f 746d 702f 4d32 2d31 3039 than /tmp/M2-109 │ │ │ │ -00247810: 3730 2d30 2f31 7c0a 2b2d 2d2d 2d2d 2d2d 70-0/1|.+------- │ │ │ │ +00247800: 7468 616e 202f 746d 702f 4d32 2d31 3138 than /tmp/M2-118 │ │ │ │ +00247810: 3630 2d30 2f31 7c0a 2b2d 2d2d 2d2d 2d2d 60-0/1|.+------- │ │ │ │ 00247820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247850: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ 00247860: 2073 7263 203c 3c20 2268 6f20 7468 6572 src << "ho ther │ │ │ │ 00247870: 6522 203c 3c20 636c 6f73 6520 2020 2020 e" << close │ │ │ │ 00247880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 002478a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002478b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002478c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002478d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 002478e0: 0a7c 6f37 203d 202f 746d 702f 4d32 2d31 .|o7 = /tmp/M2-1 │ │ │ │ -002478f0: 3039 3730 2d30 2f30 2020 2020 2020 2020 0970-0/0 │ │ │ │ +002478f0: 3138 3630 2d30 2f30 2020 2020 2020 2020 1860-0/0 │ │ │ │ 00247900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00247930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00247960: 2020 2020 207c 0a7c 6f37 203a 2046 696c |.|o7 : Fil │ │ │ │ @@ -149406,17 +149406,17 @@ │ │ │ │ 002479d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002479e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ 002479f0: 203a 2063 6f70 7946 696c 6528 7372 632c : copyFile(src, │ │ │ │ 00247a00: 6473 742c 5665 7262 6f73 653d 3e74 7275 dst,Verbose=>tru │ │ │ │ 00247a10: 652c 5570 6461 7465 4f6e 6c79 203d 3e20 e,UpdateOnly => │ │ │ │ 00247a20: 7472 7565 2920 2020 2020 2020 2020 7c0a true) |. │ │ │ │ 00247a30: 7c20 2d2d 2073 6b69 7070 696e 673a 202f | -- skipping: / │ │ │ │ -00247a40: 746d 702f 4d32 2d31 3039 3730 2d30 2f30 tmp/M2-10970-0/0 │ │ │ │ +00247a40: 746d 702f 4d32 2d31 3138 3630 2d30 2f30 tmp/M2-11860-0/0 │ │ │ │ 00247a50: 206e 6f74 206e 6577 6572 2074 6861 6e20 not newer than │ │ │ │ -00247a60: 2f74 6d70 2f4d 322d 3130 3937 302d 302f /tmp/M2-10970-0/ │ │ │ │ +00247a60: 2f74 6d70 2f4d 322d 3131 3836 302d 302f /tmp/M2-11860-0/ │ │ │ │ 00247a70: 317c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 1|.+------------ │ │ │ │ 00247a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00247ab0: 2d2d 2d2d 2b0a 7c69 3920 3a20 6765 7420 ----+.|i9 : get │ │ │ │ 00247ac0: 6473 7420 2020 2020 2020 2020 2020 2020 dst │ │ │ │ 00247ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -149554,41 +149554,41 @@ │ │ │ │ 00248310: 2d2b 0a7c 6931 203a 2073 7263 203d 2074 -+.|i1 : src = t │ │ │ │ 00248320: 656d 706f 7261 7279 4669 6c65 4e61 6d65 emporaryFileName │ │ │ │ 00248330: 2829 2020 2020 2020 2020 2020 2020 2020 () │ │ │ │ 00248340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00248350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248370: 2020 2020 2020 207c 0a7c 6f31 203d 202f |.|o1 = / │ │ │ │ -00248380: 746d 702f 4d32 2d31 3036 3135 2d30 2f30 tmp/M2-10615-0/0 │ │ │ │ +00248380: 746d 702f 4d32 2d31 3131 3435 2d30 2f30 tmp/M2-11145-0/0 │ │ │ │ 00248390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002483a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 002483b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002483c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002483d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 002483e0: 6932 203a 2064 7374 203d 2074 656d 706f i2 : dst = tempo │ │ │ │ 002483f0: 7261 7279 4669 6c65 4e61 6d65 2829 2020 raryFileName() │ │ │ │ 00248400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248410: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00248420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248440: 2020 207c 0a7c 6f32 203d 202f 746d 702f |.|o2 = /tmp/ │ │ │ │ -00248450: 4d32 2d31 3036 3135 2d30 2f31 2020 2020 M2-10615-0/1 │ │ │ │ +00248450: 4d32 2d31 3131 3435 2d30 2f31 2020 2020 M2-11145-0/1 │ │ │ │ 00248460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248470: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00248480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002484a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 002484b0: 2073 7263 203c 3c20 2268 6920 7468 6572 src << "hi ther │ │ │ │ 002484c0: 6522 203c 3c20 636c 6f73 6520 2020 2020 e" << close │ │ │ │ 002484d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 002484e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002484f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00248510: 0a7c 6f33 203d 202f 746d 702f 4d32 2d31 .|o3 = /tmp/M2-1 │ │ │ │ -00248520: 3036 3135 2d30 2f30 2020 2020 2020 2020 0615-0/0 │ │ │ │ +00248520: 3131 3435 2d30 2f30 2020 2020 2020 2020 1145-0/0 │ │ │ │ 00248530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248540: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00248550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00248570: 2020 2020 207c 0a7c 6f33 203a 2046 696c |.|o3 : Fil │ │ │ │ 00248580: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00248590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -149596,16 +149596,16 @@ │ │ │ │ 002485b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002485c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002485d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ 002485e0: 203a 206d 6f76 6546 696c 6528 7372 632c : moveFile(src, │ │ │ │ 002485f0: 6473 742c 5665 7262 6f73 653d 3e74 7275 dst,Verbose=>tru │ │ │ │ 00248600: 6529 2020 2020 2020 2020 2020 2020 7c0a e) |. │ │ │ │ 00248610: 7c2d 2d6d 6f76 696e 673a 202f 746d 702f |--moving: /tmp/ │ │ │ │ -00248620: 4d32 2d31 3036 3135 2d30 2f30 202d 3e20 M2-10615-0/0 -> │ │ │ │ -00248630: 2f74 6d70 2f4d 322d 3130 3631 352d 302f /tmp/M2-10615-0/ │ │ │ │ +00248620: 4d32 2d31 3131 3435 2d30 2f30 202d 3e20 M2-11145-0/0 -> │ │ │ │ +00248630: 2f74 6d70 2f4d 322d 3131 3134 352d 302f /tmp/M2-11145-0/ │ │ │ │ 00248640: 317c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 1|.+------------ │ │ │ │ 00248650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248670: 2d2d 2d2d 2b0a 7c69 3520 3a20 6765 7420 ----+.|i5 : get │ │ │ │ 00248680: 6473 7420 2020 2020 2020 2020 2020 2020 dst │ │ │ │ 00248690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002486a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ @@ -149619,20 +149619,20 @@ │ │ │ │ 00248720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248740: 2b0a 7c69 3620 3a20 6261 6b20 3d20 6d6f +.|i6 : bak = mo │ │ │ │ 00248750: 7665 4669 6c65 2864 7374 2c56 6572 626f veFile(dst,Verbo │ │ │ │ 00248760: 7365 3d3e 7472 7565 2920 2020 2020 2020 se=>true) │ │ │ │ 00248770: 2020 207c 0a7c 2d2d 6261 636b 7570 2066 |.|--backup f │ │ │ │ 00248780: 696c 6520 6372 6561 7465 643a 202f 746d ile created: /tm │ │ │ │ -00248790: 702f 4d32 2d31 3036 3135 2d30 2f31 2e62 p/M2-10615-0/1.b │ │ │ │ +00248790: 702f 4d32 2d31 3131 3435 2d30 2f31 2e62 p/M2-11145-0/1.b │ │ │ │ 002487a0: 616b 2020 2020 7c0a 7c20 2020 2020 2020 ak |.| │ │ │ │ 002487b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002487c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002487d0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -002487e0: 202f 746d 702f 4d32 2d31 3036 3135 2d30 /tmp/M2-10615-0 │ │ │ │ +002487e0: 202f 746d 702f 4d32 2d31 3131 3435 2d30 /tmp/M2-11145-0 │ │ │ │ 002487f0: 2f31 2e62 616b 2020 2020 2020 2020 2020 /1.bak │ │ │ │ 00248800: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00248810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00248830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00248840: 0a7c 6937 203a 2072 656d 6f76 6546 696c .|i7 : removeFil │ │ │ │ 00248850: 6520 6261 6b20 2020 2020 2020 2020 2020 e bak │ │ │ │ @@ -149848,15 +149848,15 @@ │ │ │ │ 00249570: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00249580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00249590: 0a7c 6931 203a 2066 6e20 3d20 7465 6d70 .|i1 : fn = temp │ │ │ │ 002495a0: 6f72 6172 7946 696c 654e 616d 6528 297c oraryFileName()| │ │ │ │ 002495b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002495c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 002495d0: 0a7c 6f31 203d 202f 746d 702f 4d32 2d31 .|o1 = /tmp/M2-1 │ │ │ │ -002495e0: 3132 3034 2d30 2f30 2020 2020 2020 207c 1204-0/0 | │ │ │ │ +002495e0: 3233 3334 2d30 2f30 2020 2020 2020 207c 2334-0/0 | │ │ │ │ 002495f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00249600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00249610: 0a7c 6932 203a 2073 796d 6c69 6e6b 4669 .|i2 : symlinkFi │ │ │ │ 00249620: 6c65 2822 7177 6572 7422 2c20 666e 297c le("qwert", fn)| │ │ │ │ 00249630: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00249640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00249650: 0a7c 6933 203a 2066 696c 6545 7869 7374 .|i3 : fileExist │ │ │ │ @@ -150009,15 +150009,15 @@ │ │ │ │ 00249f80: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ 00249f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00249fa0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2070 -------+.|i1 : p │ │ │ │ 00249fb0: 203d 2074 656d 706f 7261 7279 4669 6c65 = temporaryFile │ │ │ │ 00249fc0: 4e61 6d65 2028 297c 0a7c 2020 2020 2020 Name ()|.| │ │ │ │ 00249fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00249fe0: 2020 2020 2020 207c 0a7c 6f31 203d 202f |.|o1 = / │ │ │ │ -00249ff0: 746d 702f 4d32 2d31 3138 3036 2d30 2f30 tmp/M2-11806-0/0 │ │ │ │ +00249ff0: 746d 702f 4d32 2d31 3335 3536 2d30 2f30 tmp/M2-13556-0/0 │ │ │ │ 0024a000: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0024a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a020: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2073 -------+.|i2 : s │ │ │ │ 0024a030: 796d 6c69 6e6b 4669 6c65 2028 2266 6f6f ymlinkFile ("foo │ │ │ │ 0024a040: 222c 2070 2920 207c 0a2b 2d2d 2d2d 2d2d ", p) |.+------ │ │ │ │ 0024a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a060: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2072 -------+.|i3 : r │ │ │ │ @@ -150099,66 +150099,66 @@ │ │ │ │ 0024a520: 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ==..+----------- │ │ │ │ 0024a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a540: 2d2d 2d2d 2b0a 7c69 3120 3a20 7265 616c ----+.|i1 : real │ │ │ │ 0024a550: 7061 7468 2022 2e22 2020 2020 2020 2020 path "." │ │ │ │ 0024a560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0024a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a580: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -0024a590: 2f74 6d70 2f4d 322d 3130 3139 312d 302f /tmp/M2-10191-0/ │ │ │ │ +0024a590: 2f74 6d70 2f4d 322d 3130 3331 312d 302f /tmp/M2-10311-0/ │ │ │ │ 0024a5a0: 3836 2d72 756e 6469 722f 7c0a 2b2d 2d2d 86-rundir/|.+--- │ │ │ │ 0024a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0024a5d0: 3220 3a20 7020 3d20 7465 6d70 6f72 6172 2 : p = temporar │ │ │ │ 0024a5e0: 7946 696c 654e 616d 6528 2920 2020 7c0a yFileName() |. │ │ │ │ 0024a5f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0024a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a610: 7c0a 7c6f 3220 3d20 2f74 6d70 2f4d 322d |.|o2 = /tmp/M2- │ │ │ │ -0024a620: 3131 3832 352d 302f 3020 2020 2020 2020 11825-0/0 │ │ │ │ +0024a620: 3133 3539 352d 302f 3020 2020 2020 2020 13595-0/0 │ │ │ │ 0024a630: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0024a640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a650: 2d2d 2d2d 2b0a 7c69 3320 3a20 7120 3d20 ----+.|i3 : q = │ │ │ │ 0024a660: 7465 6d70 6f72 6172 7946 696c 654e 616d temporaryFileNam │ │ │ │ 0024a670: 6528 2920 2020 7c0a 7c20 2020 2020 2020 e() |.| │ │ │ │ 0024a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a690: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -0024a6a0: 2f74 6d70 2f4d 322d 3131 3832 352d 302f /tmp/M2-11825-0/ │ │ │ │ +0024a6a0: 2f74 6d70 2f4d 322d 3133 3539 352d 302f /tmp/M2-13595-0/ │ │ │ │ 0024a6b0: 3120 2020 2020 2020 2020 7c0a 2b2d 2d2d 1 |.+--- │ │ │ │ 0024a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0024a6e0: 3420 3a20 7379 6d6c 696e 6b46 696c 6528 4 : symlinkFile( │ │ │ │ 0024a6f0: 702c 7129 2020 2020 2020 2020 2020 7c0a p,q) |. │ │ │ │ 0024a700: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0024a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a720: 2b0a 7c69 3520 3a20 7020 3c3c 2063 6c6f +.|i5 : p << clo │ │ │ │ 0024a730: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ 0024a740: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a760: 2020 2020 7c0a 7c6f 3520 3d20 2f74 6d70 |.|o5 = /tmp │ │ │ │ -0024a770: 2f4d 322d 3131 3832 352d 302f 3020 2020 /M2-11825-0/0 │ │ │ │ +0024a770: 2f4d 322d 3133 3539 352d 302f 3020 2020 /M2-13595-0/0 │ │ │ │ 0024a780: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0024a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a7a0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ 0024a7b0: 4669 6c65 2020 2020 2020 2020 2020 2020 File │ │ │ │ 0024a7c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 0024a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0024a7f0: 3620 3a20 7265 6164 6c69 6e6b 2071 2020 6 : readlink q │ │ │ │ 0024a800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0024a810: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0024a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a830: 7c0a 7c6f 3620 3d20 2f74 6d70 2f4d 322d |.|o6 = /tmp/M2- │ │ │ │ -0024a840: 3131 3832 352d 302f 3020 2020 2020 2020 11825-0/0 │ │ │ │ +0024a840: 3133 3539 352d 302f 3020 2020 2020 2020 13595-0/0 │ │ │ │ 0024a850: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0024a860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a870: 2d2d 2d2d 2b0a 7c69 3720 3a20 7265 616c ----+.|i7 : real │ │ │ │ 0024a880: 7061 7468 2071 2020 2020 2020 2020 2020 path q │ │ │ │ 0024a890: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0024a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024a8b0: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ -0024a8c0: 2f74 6d70 2f4d 322d 3131 3832 352d 302f /tmp/M2-11825-0/ │ │ │ │ +0024a8c0: 2f74 6d70 2f4d 322d 3133 3539 352d 302f /tmp/M2-13595-0/ │ │ │ │ 0024a8d0: 3020 2020 2020 2020 2020 7c0a 2b2d 2d2d 0 |.+--- │ │ │ │ 0024a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0024a900: 3820 3a20 7265 6d6f 7665 4669 6c65 2070 8 : removeFile p │ │ │ │ 0024a910: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 0024a920: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0024a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150174,15 +150174,15 @@ │ │ │ │ 0024a9d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0024a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024a9f0: 2d2d 2b0a 7c69 3130 203a 2072 6561 6c70 --+.|i10 : realp │ │ │ │ 0024aa00: 6174 6820 2222 2020 2020 2020 2020 2020 ath "" │ │ │ │ 0024aa10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0024aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024aa30: 2020 2020 2020 2020 7c0a 7c6f 3130 203d |.|o10 = │ │ │ │ -0024aa40: 202f 746d 702f 4d32 2d31 3031 3931 2d30 /tmp/M2-10191-0 │ │ │ │ +0024aa40: 202f 746d 702f 4d32 2d31 3033 3131 2d30 /tmp/M2-10311-0 │ │ │ │ 0024aa50: 2f38 362d 7275 6e64 6972 2f7c 0a2b 2d2d /86-rundir/|.+-- │ │ │ │ 0024aa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024aa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 0024aa80: 0a43 6176 6561 740a 3d3d 3d3d 3d3d 0a0a .Caveat.======.. │ │ │ │ 0024aa90: 4576 6572 7920 636f 6d70 6f6e 656e 7420 Every component │ │ │ │ 0024aaa0: 6f66 2074 6865 2070 6174 6820 6d75 7374 of the path must │ │ │ │ 0024aab0: 2065 7869 7374 2069 6e20 7468 6520 6669 exist in the fi │ │ │ │ @@ -150340,43 +150340,43 @@ │ │ │ │ 0024b430: 6469 7220 3d20 7465 6d70 6f72 6172 7946 dir = temporaryF │ │ │ │ 0024b440: 696c 654e 616d 6528 2920 2020 2020 2020 ileName() │ │ │ │ 0024b450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024b460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0024b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b490: 2020 2020 2020 7c0a 7c6f 3120 3d20 2f74 |.|o1 = /t │ │ │ │ -0024b4a0: 6d70 2f4d 322d 3131 3536 352d 302f 3020 mp/M2-11565-0/0 │ │ │ │ +0024b4a0: 6d70 2f4d 322d 3133 3037 352d 302f 3020 mp/M2-13075-0/0 │ │ │ │ 0024b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b4c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 0024b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b500: 2d2d 2d2d 2b0a 7c69 3220 3a20 6d61 6b65 ----+.|i2 : make │ │ │ │ 0024b510: 4469 7265 6374 6f72 7920 6469 7220 2020 Directory dir │ │ │ │ 0024b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b530: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0024b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b570: 2020 7c0a 7c6f 3220 3d20 2f74 6d70 2f4d |.|o2 = /tmp/M │ │ │ │ -0024b580: 322d 3131 3536 352d 302f 3020 2020 2020 2-11565-0/0 │ │ │ │ +0024b580: 322d 3133 3037 352d 302f 3020 2020 2020 2-13075-0/0 │ │ │ │ 0024b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b5a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0024b5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024b5e0: 2b0a 7c69 3320 3a20 2866 6e20 3d20 6469 +.|i3 : (fn = di │ │ │ │ 0024b5f0: 7220 7c20 222f 2220 7c20 2266 6f6f 2229 r | "/" | "foo") │ │ │ │ 0024b600: 203c 3c20 2268 6920 7468 6572 6522 203c << "hi there" < │ │ │ │ 0024b610: 3c20 636c 6f73 657c 0a7c 2020 2020 2020 < close|.| │ │ │ │ 0024b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b640: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0024b650: 7c6f 3320 3d20 2f74 6d70 2f4d 322d 3131 |o3 = /tmp/M2-11 │ │ │ │ -0024b660: 3536 352d 302f 302f 666f 6f20 2020 2020 565-0/0/foo │ │ │ │ +0024b650: 7c6f 3320 3d20 2f74 6d70 2f4d 322d 3133 |o3 = /tmp/M2-13 │ │ │ │ +0024b660: 3037 352d 302f 302f 666f 6f20 2020 2020 075-0/0/foo │ │ │ │ 0024b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0024b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0024b6c0: 3320 3a20 4669 6c65 2020 2020 2020 2020 3 : File │ │ │ │ 0024b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -150388,15 +150388,15 @@ │ │ │ │ 0024b730: 3a20 7265 6164 4469 7265 6374 6f72 7920 : readDirectory │ │ │ │ 0024b740: 6469 7220 2020 2020 2020 2020 2020 2020 dir │ │ │ │ 0024b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b790: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -0024b7a0: 7b2e 2c20 2e2e 2c20 666f 6f7d 2020 2020 {., .., foo} │ │ │ │ +0024b7a0: 7b2e 2e2c 202e 2c20 666f 6f7d 2020 2020 {.., ., foo} │ │ │ │ 0024b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b7c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024b7d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0024b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024b800: 2020 2020 2020 7c0a 7c6f 3420 3a20 4c69 |.|o4 : Li │ │ │ │ 0024b810: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ @@ -150496,24 +150496,24 @@ │ │ │ │ 0024bdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024be00: 2d2d 2d2b 0a7c 6931 203a 2064 6972 203d ---+.|i1 : dir = │ │ │ │ 0024be10: 2074 656d 706f 7261 7279 4669 6c65 4e61 temporaryFileNa │ │ │ │ 0024be20: 6d65 2829 2020 2020 207c 0a7c 2020 2020 me() |.| │ │ │ │ 0024be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024be40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024be50: 0a7c 6f31 203d 202f 746d 702f 4d32 2d31 .|o1 = /tmp/M2-1 │ │ │ │ -0024be60: 3037 3232 2d30 2f30 2020 2020 2020 2020 0722-0/0 │ │ │ │ +0024be60: 3133 3532 2d30 2f30 2020 2020 2020 2020 1352-0/0 │ │ │ │ 0024be70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0024be80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024be90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 0024bea0: 203a 206d 616b 6544 6972 6563 746f 7279 : makeDirectory │ │ │ │ 0024beb0: 2028 6469 727c 222f 612f 622f 6322 2920 (dir|"/a/b/c") │ │ │ │ 0024bec0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024bee0: 2020 2020 2020 207c 0a7c 6f32 203d 202f |.|o2 = / │ │ │ │ -0024bef0: 746d 702f 4d32 2d31 3037 3232 2d30 2f30 tmp/M2-10722-0/0 │ │ │ │ +0024bef0: 746d 702f 4d32 2d31 3133 3532 2d30 2f30 tmp/M2-11352-0/0 │ │ │ │ 0024bf00: 2f61 2f62 2f63 2020 2020 2020 207c 0a2b /a/b/c |.+ │ │ │ │ 0024bf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024bf30: 2d2d 2d2b 0a7c 6933 203a 2072 656d 6f76 ---+.|i3 : remov │ │ │ │ 0024bf40: 6544 6972 6563 746f 7279 2028 6469 727c eDirectory (dir| │ │ │ │ 0024bf50: 222f 612f 622f 6322 297c 0a2b 2d2d 2d2d "/a/b/c")|.+---- │ │ │ │ 0024bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150590,15 +150590,15 @@ │ │ │ │ 0024c3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ 0024c3e0: 3a20 7020 3d20 7465 6d70 6f72 6172 7946 : p = temporaryF │ │ │ │ 0024c3f0: 696c 654e 616d 6528 2920 7c20 222f 2220 ileName() | "/" │ │ │ │ 0024c400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0024c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c430: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -0024c440: 2f74 6d70 2f4d 322d 3130 3734 312d 302f /tmp/M2-10741-0/ │ │ │ │ +0024c440: 2f74 6d70 2f4d 322d 3131 3339 312d 302f /tmp/M2-11391-0/ │ │ │ │ 0024c450: 302f 2020 2020 2020 2020 2020 2020 2020 0/ │ │ │ │ 0024c460: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0024c470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024c480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024c490: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 6d6b ------+.|i2 : mk │ │ │ │ 0024c4a0: 6469 7220 7020 2020 2020 2020 2020 2020 dir p │ │ │ │ 0024c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -150619,16 +150619,16 @@ │ │ │ │ 0024c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024c5b0: 2b0a 7c69 3420 3a20 2866 6e20 3d20 7020 +.|i4 : (fn = p │ │ │ │ 0024c5c0: 7c20 2266 6f6f 2229 203c 3c20 2268 6920 | "foo") << "hi │ │ │ │ 0024c5d0: 7468 6572 6522 203c 3c20 636c 6f73 657c there" << close| │ │ │ │ 0024c5e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0024c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0024c610: 7c6f 3420 3d20 2f74 6d70 2f4d 322d 3130 |o4 = /tmp/M2-10 │ │ │ │ -0024c620: 3734 312d 302f 302f 666f 6f20 2020 2020 741-0/0/foo │ │ │ │ +0024c610: 7c6f 3420 3d20 2f74 6d70 2f4d 322d 3131 |o4 = /tmp/M2-11 │ │ │ │ +0024c620: 3339 312d 302f 302f 666f 6f20 2020 2020 391-0/0/foo │ │ │ │ 0024c630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0024c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c660: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0024c670: 3420 3a20 4669 6c65 2020 2020 2020 2020 4 : File │ │ │ │ 0024c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024c690: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ @@ -150723,40 +150723,40 @@ │ │ │ │ 0024cc20: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 0024cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024cc40: 2d2b 0a7c 6931 203a 2064 6972 203d 2074 -+.|i1 : dir = t │ │ │ │ 0024cc50: 656d 706f 7261 7279 4669 6c65 4e61 6d65 emporaryFileName │ │ │ │ 0024cc60: 2829 7c0a 7c20 2020 2020 2020 2020 2020 ()|.| │ │ │ │ 0024cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024cc80: 2020 207c 0a7c 6f31 203d 202f 746d 702f |.|o1 = /tmp/ │ │ │ │ -0024cc90: 4d32 2d31 3034 3633 2d30 2f30 2020 2020 M2-10463-0/0 │ │ │ │ +0024cc90: 4d32 2d31 3038 3333 2d30 2f30 2020 2020 M2-10833-0/0 │ │ │ │ 0024cca0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 0024ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024ccc0: 2d2d 2d2d 2d2b 0a7c 6932 203a 206d 616b -----+.|i2 : mak │ │ │ │ 0024ccd0: 6544 6972 6563 746f 7279 2064 6972 2020 eDirectory dir │ │ │ │ 0024cce0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0024ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024cd00: 2020 2020 2020 207c 0a7c 6f32 203d 202f |.|o2 = / │ │ │ │ -0024cd10: 746d 702f 4d32 2d31 3034 3633 2d30 2f30 tmp/M2-10463-0/0 │ │ │ │ +0024cd10: 746d 702f 4d32 2d31 3038 3333 2d30 2f30 tmp/M2-10833-0/0 │ │ │ │ 0024cd20: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 0024cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024cd40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 0024cd50: 2063 6861 6e67 6544 6972 6563 746f 7279 changeDirectory │ │ │ │ 0024cd60: 2064 6972 2020 2020 2020 7c0a 7c20 2020 dir |.| │ │ │ │ 0024cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024cd80: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -0024cd90: 203d 202f 746d 702f 4d32 2d31 3034 3633 = /tmp/M2-10463 │ │ │ │ +0024cd90: 203d 202f 746d 702f 4d32 2d31 3038 3333 = /tmp/M2-10833 │ │ │ │ 0024cda0: 2d30 2f30 2f20 2020 2020 2020 7c0a 2b2d -0/0/ |.+- │ │ │ │ 0024cdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024cdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0024cdd0: 6934 203a 2063 7572 7265 6e74 4469 7265 i4 : currentDire │ │ │ │ 0024cde0: 6374 6f72 7928 2920 2020 2020 2020 7c0a ctory() |. │ │ │ │ 0024cdf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0024ce00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024ce10: 0a7c 6f34 203d 202f 746d 702f 4d32 2d31 .|o4 = /tmp/M2-1 │ │ │ │ -0024ce20: 3034 3633 2d30 2f30 2f20 2020 2020 2020 0463-0/0/ │ │ │ │ +0024ce20: 3038 3333 2d30 2f30 2f20 2020 2020 2020 0833-0/0/ │ │ │ │ 0024ce30: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 0024ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024ce50: 2d2b 0a0a 4966 2064 6972 2069 7320 6f6d -+..If dir is om │ │ │ │ 0024ce60: 6974 7465 642c 2074 6865 6e20 7468 6520 itted, then the │ │ │ │ 0024ce70: 6375 7272 656e 7420 776f 726b 696e 6720 current working │ │ │ │ 0024ce80: 6469 7265 6374 6f72 7920 6973 2063 6861 directory is cha │ │ │ │ 0024ce90: 6e67 6564 2074 6f20 7468 6520 7573 6572 nged to the user │ │ │ │ @@ -150884,15 +150884,15 @@ │ │ │ │ 0024d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d690: 7c0a 7c6f 3120 3d20 2f74 6d70 2f4d 322d |.|o1 = /tmp/M2- │ │ │ │ -0024d6a0: 3131 3138 352d 302f 302f 2020 2020 2020 11185-0/0/ │ │ │ │ +0024d6a0: 3132 3239 352d 302f 302f 2020 2020 2020 12295-0/0/ │ │ │ │ 0024d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d6d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024d6e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0024d6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150903,15 +150903,15 @@ │ │ │ │ 0024d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d770: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0024d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d7c0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0024d7d0: 3220 3d20 2f74 6d70 2f4d 322d 3131 3138 2 = /tmp/M2-1118 │ │ │ │ +0024d7d0: 3220 3d20 2f74 6d70 2f4d 322d 3132 3239 2 = /tmp/M2-1229 │ │ │ │ 0024d7e0: 352d 302f 312f 2020 2020 2020 2020 2020 5-0/1/ │ │ │ │ 0024d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d810: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 0024d820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150923,15 +150923,15 @@ │ │ │ │ 0024d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d8b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0024d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d900: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -0024d910: 2f74 6d70 2f4d 322d 3131 3138 352d 302f /tmp/M2-11185-0/ │ │ │ │ +0024d910: 2f74 6d70 2f4d 322d 3132 3239 352d 302f /tmp/M2-12295-0/ │ │ │ │ 0024d920: 302f 612f 2020 2020 2020 2020 2020 2020 0/a/ │ │ │ │ 0024d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d950: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0024d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150943,15 +150943,15 @@ │ │ │ │ 0024d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024d9f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0024da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da40: 2020 2020 7c0a 7c6f 3420 3d20 2f74 6d70 |.|o4 = /tmp │ │ │ │ -0024da50: 2f4d 322d 3131 3138 352d 302f 302f 622f /M2-11185-0/0/b/ │ │ │ │ +0024da50: 2f4d 322d 3132 3239 352d 302f 302f 622f /M2-12295-0/0/b/ │ │ │ │ 0024da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024da90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0024daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150963,15 +150963,15 @@ │ │ │ │ 0024db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024db30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024db80: 7c0a 7c6f 3520 3d20 2f74 6d70 2f4d 322d |.|o5 = /tmp/M2- │ │ │ │ -0024db90: 3131 3138 352d 302f 302f 622f 632f 2020 11185-0/0/b/c/ │ │ │ │ +0024db90: 3132 3239 352d 302f 302f 622f 632f 2020 12295-0/0/b/c/ │ │ │ │ 0024dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dbc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024dbd0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0024dbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024dbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024dc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -150982,15 +150982,15 @@ │ │ │ │ 0024dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dc60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0024dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dcb0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0024dcc0: 3620 3d20 2f74 6d70 2f4d 322d 3131 3138 6 = /tmp/M2-1118 │ │ │ │ +0024dcc0: 3620 3d20 2f74 6d70 2f4d 322d 3132 3239 6 = /tmp/M2-1229 │ │ │ │ 0024dcd0: 352d 302f 302f 612f 6620 2020 2020 2020 5-0/0/a/f │ │ │ │ 0024dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dd00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0024dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -151012,15 +151012,15 @@ │ │ │ │ 0024de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024de40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0024de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024de90: 2020 2020 2020 7c0a 7c6f 3720 3d20 2f74 |.|o7 = /t │ │ │ │ -0024dea0: 6d70 2f4d 322d 3131 3138 352d 302f 302f mp/M2-11185-0/0/ │ │ │ │ +0024dea0: 6d70 2f4d 322d 3132 3239 352d 302f 302f mp/M2-12295-0/0/ │ │ │ │ 0024deb0: 612f 6720 2020 2020 2020 2020 2020 2020 a/g │ │ │ │ 0024dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024dee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0024def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -151042,15 +151042,15 @@ │ │ │ │ 0024e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e020: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e070: 7c0a 7c6f 3820 3d20 2f74 6d70 2f4d 322d |.|o8 = /tmp/M2- │ │ │ │ -0024e080: 3131 3138 352d 302f 302f 622f 632f 6720 11185-0/0/b/c/g │ │ │ │ +0024e080: 3132 3239 352d 302f 302f 622f 632f 6720 12295-0/0/b/c/g │ │ │ │ 0024e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024e0c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0024e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -151071,98 +151071,98 @@ │ │ │ │ 0024e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e1f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0024e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e240: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0024e250: 3d20 2f74 6d70 2f4d 322d 3131 3138 352d = /tmp/M2-11185- │ │ │ │ +0024e250: 3d20 2f74 6d70 2f4d 322d 3132 3239 352d = /tmp/M2-12295- │ │ │ │ 0024e260: 302f 302f 2020 2020 2020 2020 2020 2020 0/0/ │ │ │ │ 0024e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e290: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0024e2a0: 202f 746d 702f 4d32 2d31 3131 3835 2d30 /tmp/M2-11185-0 │ │ │ │ -0024e2b0: 2f30 2f62 2f20 2020 2020 2020 2020 2020 /0/b/ │ │ │ │ +0024e2a0: 202f 746d 702f 4d32 2d31 3232 3935 2d30 /tmp/M2-12295-0 │ │ │ │ +0024e2b0: 2f30 2f61 2f20 2020 2020 2020 2020 2020 /0/a/ │ │ │ │ 0024e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e2e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0024e2f0: 2f74 6d70 2f4d 322d 3131 3138 352d 302f /tmp/M2-11185-0/ │ │ │ │ -0024e300: 302f 622f 632f 2020 2020 2020 2020 2020 0/b/c/ │ │ │ │ +0024e2f0: 2f74 6d70 2f4d 322d 3132 3239 352d 302f /tmp/M2-12295-0/ │ │ │ │ +0024e300: 302f 612f 6720 2020 2020 2020 2020 2020 0/a/g │ │ │ │ 0024e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e330: 2020 2020 2020 207c 0a7c 2020 2020 202f |.| / │ │ │ │ -0024e340: 746d 702f 4d32 2d31 3131 3835 2d30 2f30 tmp/M2-11185-0/0 │ │ │ │ -0024e350: 2f62 2f63 2f67 2020 2020 2020 2020 2020 /b/c/g │ │ │ │ +0024e340: 746d 702f 4d32 2d31 3232 3935 2d30 2f30 tmp/M2-12295-0/0 │ │ │ │ +0024e350: 2f61 2f66 2020 2020 2020 2020 2020 2020 /a/f │ │ │ │ 0024e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e380: 2020 2020 2020 7c0a 7c20 2020 2020 2f74 |.| /t │ │ │ │ -0024e390: 6d70 2f4d 322d 3131 3138 352d 302f 302f mp/M2-11185-0/0/ │ │ │ │ -0024e3a0: 612f 2020 2020 2020 2020 2020 2020 2020 a/ │ │ │ │ +0024e390: 6d70 2f4d 322d 3132 3239 352d 302f 302f mp/M2-12295-0/0/ │ │ │ │ +0024e3a0: 622f 2020 2020 2020 2020 2020 2020 2020 b/ │ │ │ │ 0024e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e3d0: 2020 2020 207c 0a7c 2020 2020 202f 746d |.| /tm │ │ │ │ -0024e3e0: 702f 4d32 2d31 3131 3835 2d30 2f30 2f61 p/M2-11185-0/0/a │ │ │ │ -0024e3f0: 2f67 2020 2020 2020 2020 2020 2020 2020 /g │ │ │ │ +0024e3e0: 702f 4d32 2d31 3232 3935 2d30 2f30 2f62 p/M2-12295-0/0/b │ │ │ │ +0024e3f0: 2f63 2f20 2020 2020 2020 2020 2020 2020 /c/ │ │ │ │ 0024e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e420: 2020 2020 7c0a 7c20 2020 2020 2f74 6d70 |.| /tmp │ │ │ │ -0024e430: 2f4d 322d 3131 3138 352d 302f 302f 612f /M2-11185-0/0/a/ │ │ │ │ -0024e440: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ +0024e430: 2f4d 322d 3132 3239 352d 302f 302f 622f /M2-12295-0/0/b/ │ │ │ │ +0024e440: 632f 6720 2020 2020 2020 2020 2020 2020 c/g │ │ │ │ 0024e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e470: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0024e480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e4c0: 2d2d 2b0a 7c69 3130 203a 2063 6f70 7944 --+.|i10 : copyD │ │ │ │ 0024e4d0: 6972 6563 746f 7279 2873 7263 2c64 7374 irectory(src,dst │ │ │ │ 0024e4e0: 2c56 6572 626f 7365 3d3e 7472 7565 2920 ,Verbose=>true) │ │ │ │ 0024e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e510: 207c 0a7c 202d 2d20 636f 7079 696e 673a |.| -- copying: │ │ │ │ -0024e520: 202f 746d 702f 4d32 2d31 3131 3835 2d30 /tmp/M2-11185-0 │ │ │ │ -0024e530: 2f30 2f62 2f63 2f67 202d 3e20 2f74 6d70 /0/b/c/g -> /tmp │ │ │ │ -0024e540: 2f4d 322d 3131 3138 352d 302f 312f 622f /M2-11185-0/1/b/ │ │ │ │ -0024e550: 632f 6720 2020 2020 2020 2020 2020 2020 c/g │ │ │ │ +0024e520: 202f 746d 702f 4d32 2d31 3232 3935 2d30 /tmp/M2-12295-0 │ │ │ │ +0024e530: 2f30 2f61 2f67 202d 3e20 2f74 6d70 2f4d /0/a/g -> /tmp/M │ │ │ │ +0024e540: 322d 3132 3239 352d 302f 312f 612f 6720 2-12295-0/1/a/g │ │ │ │ +0024e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e560: 7c0a 7c20 2d2d 2063 6f70 7969 6e67 3a20 |.| -- copying: │ │ │ │ -0024e570: 2f74 6d70 2f4d 322d 3131 3138 352d 302f /tmp/M2-11185-0/ │ │ │ │ -0024e580: 302f 612f 6720 2d3e 202f 746d 702f 4d32 0/a/g -> /tmp/M2 │ │ │ │ -0024e590: 2d31 3131 3835 2d30 2f31 2f61 2f67 2020 -11185-0/1/a/g │ │ │ │ +0024e570: 2f74 6d70 2f4d 322d 3132 3239 352d 302f /tmp/M2-12295-0/ │ │ │ │ +0024e580: 302f 612f 6620 2d3e 202f 746d 702f 4d32 0/a/f -> /tmp/M2 │ │ │ │ +0024e590: 2d31 3232 3935 2d30 2f31 2f61 2f66 2020 -12295-0/1/a/f │ │ │ │ 0024e5a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024e5b0: 0a7c 202d 2d20 636f 7079 696e 673a 202f .| -- copying: / │ │ │ │ -0024e5c0: 746d 702f 4d32 2d31 3131 3835 2d30 2f30 tmp/M2-11185-0/0 │ │ │ │ -0024e5d0: 2f61 2f66 202d 3e20 2f74 6d70 2f4d 322d /a/f -> /tmp/M2- │ │ │ │ -0024e5e0: 3131 3138 352d 302f 312f 612f 6620 2020 11185-0/1/a/f │ │ │ │ -0024e5f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0024e5c0: 746d 702f 4d32 2d31 3232 3935 2d30 2f30 tmp/M2-12295-0/0 │ │ │ │ +0024e5d0: 2f62 2f63 2f67 202d 3e20 2f74 6d70 2f4d /b/c/g -> /tmp/M │ │ │ │ +0024e5e0: 322d 3132 3239 352d 302f 312f 622f 632f 2-12295-0/1/b/c/ │ │ │ │ +0024e5f0: 6720 2020 2020 2020 2020 2020 2020 7c0a g |. │ │ │ │ 0024e600: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0024e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0024e650: 6931 3120 3a20 636f 7079 4469 7265 6374 i11 : copyDirect │ │ │ │ 0024e660: 6f72 7928 7372 632c 6473 742c 5665 7262 ory(src,dst,Verb │ │ │ │ 0024e670: 6f73 653d 3e74 7275 652c 5570 6461 7465 ose=>true,Update │ │ │ │ 0024e680: 4f6e 6c79 203d 3e20 7472 7565 2920 2020 Only => true) │ │ │ │ 0024e690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0024e6a0: 2d2d 2073 6b69 7070 696e 673a 202f 746d -- skipping: /tm │ │ │ │ -0024e6b0: 702f 4d32 2d31 3131 3835 2d30 2f30 2f62 p/M2-11185-0/0/b │ │ │ │ -0024e6c0: 2f63 2f67 206e 6f74 206e 6577 6572 2074 /c/g not newer t │ │ │ │ -0024e6d0: 6861 6e20 2f74 6d70 2f4d 322d 3131 3138 han /tmp/M2-1118 │ │ │ │ -0024e6e0: 352d 302f 312f 622f 632f 677c 0a7c 202d 5-0/1/b/c/g|.| - │ │ │ │ +0024e6b0: 702f 4d32 2d31 3232 3935 2d30 2f30 2f61 p/M2-12295-0/0/a │ │ │ │ +0024e6c0: 2f67 206e 6f74 206e 6577 6572 2074 6861 /g not newer tha │ │ │ │ +0024e6d0: 6e20 2f74 6d70 2f4d 322d 3132 3239 352d n /tmp/M2-12295- │ │ │ │ +0024e6e0: 302f 312f 612f 6720 2020 207c 0a7c 202d 0/1/a/g |.| - │ │ │ │ 0024e6f0: 2d20 736b 6970 7069 6e67 3a20 2f74 6d70 - skipping: /tmp │ │ │ │ -0024e700: 2f4d 322d 3131 3138 352d 302f 302f 612f /M2-11185-0/0/a/ │ │ │ │ -0024e710: 6720 6e6f 7420 6e65 7765 7220 7468 616e g not newer than │ │ │ │ -0024e720: 202f 746d 702f 4d32 2d31 3131 3835 2d30 /tmp/M2-11185-0 │ │ │ │ -0024e730: 2f31 2f61 2f67 2020 2020 7c0a 7c20 2d2d /1/a/g |.| -- │ │ │ │ +0024e700: 2f4d 322d 3132 3239 352d 302f 302f 612f /M2-12295-0/0/a/ │ │ │ │ +0024e710: 6620 6e6f 7420 6e65 7765 7220 7468 616e f not newer than │ │ │ │ +0024e720: 202f 746d 702f 4d32 2d31 3232 3935 2d30 /tmp/M2-12295-0 │ │ │ │ +0024e730: 2f31 2f61 2f66 2020 2020 7c0a 7c20 2d2d /1/a/f |.| -- │ │ │ │ 0024e740: 2073 6b69 7070 696e 673a 202f 746d 702f skipping: /tmp/ │ │ │ │ -0024e750: 4d32 2d31 3131 3835 2d30 2f30 2f61 2f66 M2-11185-0/0/a/f │ │ │ │ -0024e760: 206e 6f74 206e 6577 6572 2074 6861 6e20 not newer than │ │ │ │ -0024e770: 2f74 6d70 2f4d 322d 3131 3138 352d 302f /tmp/M2-11185-0/ │ │ │ │ -0024e780: 312f 612f 6620 2020 207c 0a2b 2d2d 2d2d 1/a/f |.+---- │ │ │ │ +0024e750: 4d32 2d31 3232 3935 2d30 2f30 2f62 2f63 M2-12295-0/0/b/c │ │ │ │ +0024e760: 2f67 206e 6f74 206e 6577 6572 2074 6861 /g not newer tha │ │ │ │ +0024e770: 6e20 2f74 6d70 2f4d 322d 3132 3239 352d n /tmp/M2-12295- │ │ │ │ +0024e780: 302f 312f 622f 632f 677c 0a2b 2d2d 2d2d 0/1/b/c/g|.+---- │ │ │ │ 0024e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024e7d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a --------+.|i12 : │ │ │ │ 0024e7e0: 2073 7461 636b 2066 696e 6446 696c 6573 stack findFiles │ │ │ │ 0024e7f0: 2064 7374 2020 2020 2020 2020 2020 2020 dst │ │ │ │ @@ -151170,45 +151170,45 @@ │ │ │ │ 0024e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0024e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e870: 2020 2020 2020 7c0a 7c6f 3132 203d 202f |.|o12 = / │ │ │ │ -0024e880: 746d 702f 4d32 2d31 3131 3835 2d30 2f31 tmp/M2-11185-0/1 │ │ │ │ +0024e880: 746d 702f 4d32 2d31 3232 3935 2d30 2f31 tmp/M2-12295-0/1 │ │ │ │ 0024e890: 2f20 2020 2020 2020 2020 2020 2020 2020 / │ │ │ │ 0024e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e8c0: 2020 2020 207c 0a7c 2020 2020 2020 2f74 |.| /t │ │ │ │ -0024e8d0: 6d70 2f4d 322d 3131 3138 352d 302f 312f mp/M2-11185-0/1/ │ │ │ │ +0024e8d0: 6d70 2f4d 322d 3132 3239 352d 302f 312f mp/M2-12295-0/1/ │ │ │ │ 0024e8e0: 612f 2020 2020 2020 2020 2020 2020 2020 a/ │ │ │ │ 0024e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e910: 2020 2020 7c0a 7c20 2020 2020 202f 746d |.| /tm │ │ │ │ -0024e920: 702f 4d32 2d31 3131 3835 2d30 2f31 2f61 p/M2-11185-0/1/a │ │ │ │ -0024e930: 2f66 2020 2020 2020 2020 2020 2020 2020 /f │ │ │ │ +0024e920: 702f 4d32 2d31 3232 3935 2d30 2f31 2f61 p/M2-12295-0/1/a │ │ │ │ +0024e930: 2f67 2020 2020 2020 2020 2020 2020 2020 /g │ │ │ │ 0024e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e960: 2020 207c 0a7c 2020 2020 2020 2f74 6d70 |.| /tmp │ │ │ │ -0024e970: 2f4d 322d 3131 3138 352d 302f 312f 612f /M2-11185-0/1/a/ │ │ │ │ -0024e980: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0024e970: 2f4d 322d 3132 3239 352d 302f 312f 612f /M2-12295-0/1/a/ │ │ │ │ +0024e980: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ 0024e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e9b0: 2020 7c0a 7c20 2020 2020 202f 746d 702f |.| /tmp/ │ │ │ │ -0024e9c0: 4d32 2d31 3131 3835 2d30 2f31 2f62 2f20 M2-11185-0/1/b/ │ │ │ │ +0024e9c0: 4d32 2d31 3232 3935 2d30 2f31 2f62 2f20 M2-12295-0/1/b/ │ │ │ │ 0024e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea00: 207c 0a7c 2020 2020 2020 2f74 6d70 2f4d |.| /tmp/M │ │ │ │ -0024ea10: 322d 3131 3138 352d 302f 312f 622f 632f 2-11185-0/1/b/c/ │ │ │ │ +0024ea10: 322d 3132 3239 352d 302f 312f 622f 632f 2-12295-0/1/b/c/ │ │ │ │ 0024ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea50: 7c0a 7c20 2020 2020 202f 746d 702f 4d32 |.| /tmp/M2 │ │ │ │ -0024ea60: 2d31 3131 3835 2d30 2f31 2f62 2f63 2f67 -11185-0/1/b/c/g │ │ │ │ +0024ea60: 2d31 3232 3935 2d30 2f31 2f62 2f63 2f67 -12295-0/1/b/c/g │ │ │ │ 0024ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ea90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0024eaa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0024eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024ead0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -151349,31 +151349,31 @@ │ │ │ │ 0024f340: 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d ======..+------- │ │ │ │ 0024f350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024f360: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2064 -------+.|i1 : d │ │ │ │ 0024f370: 6972 203d 2074 656d 706f 7261 7279 4669 ir = temporaryFi │ │ │ │ 0024f380: 6c65 4e61 6d65 2829 7c0a 7c20 2020 2020 leName()|.| │ │ │ │ 0024f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024f3a0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0024f3b0: 202f 746d 702f 4d32 2d31 3037 3739 2d30 /tmp/M2-10779-0 │ │ │ │ +0024f3b0: 202f 746d 702f 4d32 2d31 3134 3639 2d30 /tmp/M2-11469-0 │ │ │ │ 0024f3c0: 2f30 2020 2020 2020 2020 7c0a 2b2d 2d2d /0 |.+--- │ │ │ │ 0024f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 0024f3f0: 203a 206d 616b 6544 6972 6563 746f 7279 : makeDirectory │ │ │ │ 0024f400: 2064 6972 2020 2020 2020 2020 7c0a 7c20 dir |.| │ │ │ │ 0024f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024f420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0024f430: 6f32 203d 202f 746d 702f 4d32 2d31 3037 o2 = /tmp/M2-107 │ │ │ │ -0024f440: 3739 2d30 2f30 2020 2020 2020 2020 7c0a 79-0/0 |. │ │ │ │ +0024f430: 6f32 203d 202f 746d 702f 4d32 2d31 3134 o2 = /tmp/M2-114 │ │ │ │ +0024f440: 3639 2d30 2f30 2020 2020 2020 2020 7c0a 69-0/0 |. │ │ │ │ 0024f450: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0024f460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0024f470: 0a7c 6933 203a 2072 6561 6444 6972 6563 .|i3 : readDirec │ │ │ │ 0024f480: 746f 7279 2064 6972 2020 2020 2020 2020 tory dir │ │ │ │ 0024f490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0024f4b0: 207c 0a7c 6f33 203d 207b 2e2c 202e 2e7d |.|o3 = {., ..} │ │ │ │ +0024f4b0: 207c 0a7c 6f33 203d 207b 2e2e 2c20 2e7d |.|o3 = {.., .} │ │ │ │ 0024f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024f4d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0024f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024f4f0: 2020 207c 0a7c 6f33 203a 204c 6973 7420 |.|o3 : List │ │ │ │ 0024f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024f510: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 0024f520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -151540,30 +151540,30 @@ │ │ │ │ 0024ff30: 696c 654e 616d 6528 2920 7c20 222f 2220 ileName() | "/" │ │ │ │ 0024ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ff50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0024ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ff90: 2020 2020 7c0a 7c6f 3120 3d20 2f74 6d70 |.|o1 = /tmp │ │ │ │ -0024ffa0: 2f4d 322d 3131 3134 372d 302f 302f 2020 /M2-11147-0/0/ │ │ │ │ +0024ffa0: 2f4d 322d 3132 3231 372d 302f 302f 2020 /M2-12217-0/0/ │ │ │ │ 0024ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0024ffd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0024ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0024fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250010: 2b0a 7c69 3220 3a20 6473 7420 3d20 7465 +.|i2 : dst = te │ │ │ │ 00250020: 6d70 6f72 6172 7946 696c 654e 616d 6528 mporaryFileName( │ │ │ │ 00250030: 2920 7c20 222f 2220 2020 2020 2020 2020 ) | "/" │ │ │ │ 00250040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00250050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00250060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250080: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00250090: 3220 3d20 2f74 6d70 2f4d 322d 3131 3134 2 = /tmp/M2-1114 │ │ │ │ +00250090: 3220 3d20 2f74 6d70 2f4d 322d 3132 3231 2 = /tmp/M2-1221 │ │ │ │ 002500a0: 372d 302f 312f 2020 2020 2020 2020 2020 7-0/1/ │ │ │ │ 002500b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002500c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 002500d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002500e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002500f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250100: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ @@ -151571,30 +151571,30 @@ │ │ │ │ 00250120: 7263 7c22 612f 2229 2020 2020 2020 2020 rc|"a/") │ │ │ │ 00250130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00250150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250180: 2020 2020 7c0a 7c6f 3320 3d20 2f74 6d70 |.|o3 = /tmp │ │ │ │ -00250190: 2f4d 322d 3131 3134 372d 302f 302f 612f /M2-11147-0/0/a/ │ │ │ │ +00250190: 2f4d 322d 3132 3231 372d 302f 302f 612f /M2-12217-0/0/a/ │ │ │ │ 002501a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002501b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002501c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 002501d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002501e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002501f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250200: 2b0a 7c69 3420 3a20 6d61 6b65 4469 7265 +.|i4 : makeDire │ │ │ │ 00250210: 6374 6f72 7920 2873 7263 7c22 622f 2229 ctory (src|"b/") │ │ │ │ 00250220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250230: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00250240: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00250250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250270: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00250280: 3420 3d20 2f74 6d70 2f4d 322d 3131 3134 4 = /tmp/M2-1114 │ │ │ │ +00250280: 3420 3d20 2f74 6d70 2f4d 322d 3132 3231 4 = /tmp/M2-1221 │ │ │ │ 00250290: 372d 302f 302f 622f 2020 2020 2020 2020 7-0/0/b/ │ │ │ │ 002502a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002502b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 002502c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002502d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002502e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002502f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ @@ -151602,30 +151602,30 @@ │ │ │ │ 00250310: 7263 7c22 622f 632f 2229 2020 2020 2020 rc|"b/c/") │ │ │ │ 00250320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250330: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00250340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250370: 2020 2020 7c0a 7c6f 3520 3d20 2f74 6d70 |.|o5 = /tmp │ │ │ │ -00250380: 2f4d 322d 3131 3134 372d 302f 302f 622f /M2-11147-0/0/b/ │ │ │ │ +00250380: 2f4d 322d 3132 3231 372d 302f 302f 622f /M2-12217-0/0/b/ │ │ │ │ 00250390: 632f 2020 2020 2020 2020 2020 2020 2020 c/ │ │ │ │ 002503a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002503b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 002503c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002503d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002503e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002503f0: 2b0a 7c69 3620 3a20 7372 637c 2261 2f66 +.|i6 : src|"a/f │ │ │ │ 00250400: 2220 3c3c 2022 6869 2074 6865 7265 2220 " << "hi there" │ │ │ │ 00250410: 3c3c 2063 6c6f 7365 2020 2020 2020 2020 << close │ │ │ │ 00250420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00250430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00250440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250460: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00250470: 3620 3d20 2f74 6d70 2f4d 322d 3131 3134 6 = /tmp/M2-1114 │ │ │ │ +00250470: 3620 3d20 2f74 6d70 2f4d 322d 3132 3231 6 = /tmp/M2-1221 │ │ │ │ 00250480: 372d 302f 302f 612f 6620 2020 2020 2020 7-0/0/a/f │ │ │ │ 00250490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002504a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 002504b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002504c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002504d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002504e0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ @@ -151641,15 +151641,15 @@ │ │ │ │ 00250580: 7265 2220 3c3c 2063 6c6f 7365 2020 2020 re" << close │ │ │ │ 00250590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002505a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 002505b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002505c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002505d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002505e0: 7c0a 7c6f 3720 3d20 2f74 6d70 2f4d 322d |.|o7 = /tmp/M2- │ │ │ │ -002505f0: 3131 3134 372d 302f 302f 612f 6720 2020 11147-0/0/a/g │ │ │ │ +002505f0: 3132 3231 372d 302f 302f 612f 6720 2020 12217-0/0/a/g │ │ │ │ 00250600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00250620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00250630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250650: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 00250660: 3720 3a20 4669 6c65 2020 2020 2020 2020 7 : File │ │ │ │ @@ -151664,15 +151664,15 @@ │ │ │ │ 002506f0: 686f 2074 6865 7265 2220 3c3c 2063 6c6f ho there" << clo │ │ │ │ 00250700: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ 00250710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00250720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250750: 2020 2020 7c0a 7c6f 3820 3d20 2f74 6d70 |.|o8 = /tmp │ │ │ │ -00250760: 2f4d 322d 3131 3134 372d 302f 302f 622f /M2-11147-0/0/b/ │ │ │ │ +00250760: 2f4d 322d 3132 3231 372d 302f 302f 622f /M2-12217-0/0/b/ │ │ │ │ 00250770: 632f 6720 2020 2020 2020 2020 2020 2020 c/g │ │ │ │ 00250780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00250790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 002507a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002507b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002507c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002507d0: 7c0a 7c6f 3820 3a20 4669 6c65 2020 2020 |.|o8 : File │ │ │ │ @@ -151684,25 +151684,25 @@ │ │ │ │ 00250830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00250850: 3920 3a20 7379 6d6c 696e 6b44 6972 6563 9 : symlinkDirec │ │ │ │ 00250860: 746f 7279 2873 7263 2c64 7374 2c56 6572 tory(src,dst,Ver │ │ │ │ 00250870: 626f 7365 3d3e 7472 7565 2920 2020 2020 bose=>true) │ │ │ │ 00250880: 2020 2020 2020 2020 2020 7c0a 7c2d 2d73 |.|--s │ │ │ │ 00250890: 796d 6c69 6e6b 696e 673a 202e 2e2f 2e2e ymlinking: ../.. │ │ │ │ -002508a0: 2f2e 2e2f 302f 622f 632f 6720 2d3e 202f /../0/b/c/g -> / │ │ │ │ -002508b0: 746d 702f 4d32 2d31 3131 3437 2d30 2f31 tmp/M2-11147-0/1 │ │ │ │ -002508c0: 2f62 2f63 2f67 2020 7c0a 7c2d 2d73 796d /b/c/g |.|--sym │ │ │ │ +002508a0: 2f30 2f61 2f67 202d 3e20 2f74 6d70 2f4d /0/a/g -> /tmp/M │ │ │ │ +002508b0: 322d 3132 3231 372d 302f 312f 612f 6720 2-12217-0/1/a/g │ │ │ │ +002508c0: 2020 2020 2020 2020 7c0a 7c2d 2d73 796d |.|--sym │ │ │ │ 002508d0: 6c69 6e6b 696e 673a 202e 2e2f 2e2e 2f30 linking: ../../0 │ │ │ │ -002508e0: 2f61 2f67 202d 3e20 2f74 6d70 2f4d 322d /a/g -> /tmp/M2- │ │ │ │ -002508f0: 3131 3134 372d 302f 312f 612f 6720 2020 11147-0/1/a/g │ │ │ │ +002508e0: 2f61 2f66 202d 3e20 2f74 6d70 2f4d 322d /a/f -> /tmp/M2- │ │ │ │ +002508f0: 3132 3231 372d 302f 312f 612f 6620 2020 12217-0/1/a/f │ │ │ │ 00250900: 2020 2020 2020 7c0a 7c2d 2d73 796d 6c69 |.|--symli │ │ │ │ -00250910: 6e6b 696e 673a 202e 2e2f 2e2e 2f30 2f61 nking: ../../0/a │ │ │ │ -00250920: 2f66 202d 3e20 2f74 6d70 2f4d 322d 3131 /f -> /tmp/M2-11 │ │ │ │ -00250930: 3134 372d 302f 312f 612f 6620 2020 2020 147-0/1/a/f │ │ │ │ -00250940: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00250910: 6e6b 696e 673a 202e 2e2f 2e2e 2f2e 2e2f nking: ../../../ │ │ │ │ +00250920: 302f 622f 632f 6720 2d3e 202f 746d 702f 0/b/c/g -> /tmp/ │ │ │ │ +00250930: 4d32 2d31 3232 3137 2d30 2f31 2f62 2f63 M2-12217-0/1/b/c │ │ │ │ +00250940: 2f67 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d /g |.+--------- │ │ │ │ 00250950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250980: 2d2d 2b0a 7c69 3130 203a 2067 6574 2028 --+.|i10 : get ( │ │ │ │ 00250990: 6473 747c 2262 2f63 2f67 2229 2020 2020 dst|"b/c/g") │ │ │ │ 002509a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002509b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -151719,25 +151719,25 @@ │ │ │ │ 00250a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ 00250a80: 203a 2073 796d 6c69 6e6b 4469 7265 6374 : symlinkDirect │ │ │ │ 00250a90: 6f72 7928 7372 632c 6473 742c 5665 7262 ory(src,dst,Verb │ │ │ │ 00250aa0: 6f73 653d 3e74 7275 652c 556e 646f 3d3e ose=>true,Undo=> │ │ │ │ 00250ab0: 7472 7565 2920 2020 7c0a 7c2d 2d75 6e73 true) |.|--uns │ │ │ │ 00250ac0: 796d 6c69 6e6b 696e 673a 202e 2e2f 2e2e ymlinking: ../.. │ │ │ │ -00250ad0: 2f2e 2e2f 302f 622f 632f 6720 2d3e 202f /../0/b/c/g -> / │ │ │ │ -00250ae0: 746d 702f 4d32 2d31 3131 3437 2d30 2f31 tmp/M2-11147-0/1 │ │ │ │ -00250af0: 2f62 2f63 2f67 7c0a 7c2d 2d75 6e73 796d /b/c/g|.|--unsym │ │ │ │ +00250ad0: 2f30 2f61 2f67 202d 3e20 2f74 6d70 2f4d /0/a/g -> /tmp/M │ │ │ │ +00250ae0: 322d 3132 3231 372d 302f 312f 612f 6720 2-12217-0/1/a/g │ │ │ │ +00250af0: 2020 2020 2020 7c0a 7c2d 2d75 6e73 796d |.|--unsym │ │ │ │ 00250b00: 6c69 6e6b 696e 673a 202e 2e2f 2e2e 2f30 linking: ../../0 │ │ │ │ -00250b10: 2f61 2f67 202d 3e20 2f74 6d70 2f4d 322d /a/g -> /tmp/M2- │ │ │ │ -00250b20: 3131 3134 372d 302f 312f 612f 6720 2020 11147-0/1/a/g │ │ │ │ +00250b10: 2f61 2f66 202d 3e20 2f74 6d70 2f4d 322d /a/f -> /tmp/M2- │ │ │ │ +00250b20: 3132 3231 372d 302f 312f 612f 6620 2020 12217-0/1/a/f │ │ │ │ 00250b30: 2020 2020 7c0a 7c2d 2d75 6e73 796d 6c69 |.|--unsymli │ │ │ │ -00250b40: 6e6b 696e 673a 202e 2e2f 2e2e 2f30 2f61 nking: ../../0/a │ │ │ │ -00250b50: 2f66 202d 3e20 2f74 6d70 2f4d 322d 3131 /f -> /tmp/M2-11 │ │ │ │ -00250b60: 3134 372d 302f 312f 612f 6620 2020 2020 147-0/1/a/f │ │ │ │ -00250b70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00250b40: 6e6b 696e 673a 202e 2e2f 2e2e 2f2e 2e2f nking: ../../../ │ │ │ │ +00250b50: 302f 622f 632f 6720 2d3e 202f 746d 702f 0/b/c/g -> /tmp/ │ │ │ │ +00250b60: 4d32 2d31 3232 3137 2d30 2f31 2f62 2f63 M2-12217-0/1/b/c │ │ │ │ +00250b70: 2f67 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d /g|.+----------- │ │ │ │ 00250b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00250bb0: 2b0a 4e6f 7720 7765 2072 656d 6f76 6520 +.Now we remove │ │ │ │ 00250bc0: 7468 6520 6669 6c65 7320 616e 6420 6469 the files and di │ │ │ │ 00250bd0: 7265 6374 6f72 6965 7320 7765 2063 7265 rectories we cre │ │ │ │ 00250be0: 6174 6564 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d ated..+--------- │ │ │ │ @@ -151859,36 +151859,36 @@ │ │ │ │ 00251320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ 00251330: 203a 2072 756e 2022 756e 616d 6520 2d61 : run "uname -a │ │ │ │ 00251340: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00251350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251370: 2020 2020 2020 2020 2020 207c 0a7c 4c69 |.|Li │ │ │ │ 00251380: 6e75 7820 7362 7569 6c64 2036 2e31 322e nux sbuild 6.12. │ │ │ │ -00251390: 3537 2b64 6562 3133 2d61 6d64 3634 2023 57+deb13-amd64 # │ │ │ │ -002513a0: 3120 534d 5020 5052 4545 4d50 545f 4459 1 SMP PREEMPT_DY │ │ │ │ -002513b0: 4e41 4d49 4320 4465 6269 616e 2036 2e31 NAMIC Debian 6.1 │ │ │ │ -002513c0: 322e 3537 2d31 2020 2020 207c 0a7c 2020 2.57-1 |.| │ │ │ │ +00251390: 3537 2b64 6562 3133 2d63 6c6f 7564 2d61 57+deb13-cloud-a │ │ │ │ +002513a0: 6d64 3634 2023 3120 534d 5020 5052 4545 md64 #1 SMP PREE │ │ │ │ +002513b0: 4d50 545f 4459 4e41 4d49 4320 4465 6269 MPT_DYNAMIC Debi │ │ │ │ +002513c0: 616e 2020 2020 2020 2020 207c 0a7c 2020 an |.| │ │ │ │ 002513d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002513e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002513f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251410: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ 00251420: 203d 2030 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ 00251430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251460: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ 00251470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002514a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002514b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2832 -----------|.|(2 │ │ │ │ -002514c0: 3032 352d 3131 2d30 3529 2078 3836 5f36 025-11-05) x86_6 │ │ │ │ -002514d0: 3420 474e 552f 4c69 6e75 7820 2020 2020 4 GNU/Linux │ │ │ │ -002514e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002514b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 362e -----------|.|6. │ │ │ │ +002514c0: 3132 2e35 372d 3120 2832 3032 352d 3131 12.57-1 (2025-11 │ │ │ │ +002514d0: 2d30 3529 2078 3836 5f36 3420 474e 552f -05) x86_64 GNU/ │ │ │ │ +002514e0: 4c69 6e75 7820 2020 2020 2020 2020 2020 Linux │ │ │ │ 002514f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251500: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00251510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00251550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a54 6f20 -----------+.To │ │ │ │ @@ -151960,284889 +151960,284891 @@ │ │ │ │ 00251970: 746f 2073 6565 0a77 6865 7468 6572 2069 to see.whether i │ │ │ │ 00251980: 7420 696e 636c 7564 6573 2061 206e 6577 t includes a new │ │ │ │ 00251990: 6c69 6e65 2063 6861 7261 6374 6572 2e0a line character.. │ │ │ │ 002519a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 002519b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002519c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002519d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002519e0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2070 6565 -----+.|i3 : pee │ │ │ │ -002519f0: 6b20 6765 7420 2221 756e 616d 6520 2d61 k get "!uname -a │ │ │ │ -00251a00: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +002519e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +002519f0: 203a 2070 6565 6b20 6765 7420 2221 756e : peek get "!un │ │ │ │ +00251a00: 616d 6520 2d61 2220 2020 2020 2020 2020 ame -a" │ │ │ │ 00251a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251a20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00251a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251a30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00251a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251a70: 2020 207c 0a7c 6f33 203d 2022 4c69 6e75 |.|o3 = "Linu │ │ │ │ -00251a80: 7820 7362 7569 6c64 2036 2e31 322e 3537 x sbuild 6.12.57 │ │ │ │ -00251a90: 2b64 6562 3133 2d61 6d64 3634 2023 3120 +deb13-amd64 #1 │ │ │ │ -00251aa0: 534d 5020 5052 4545 4d50 545f 4459 4e41 SMP PREEMPT_DYNA │ │ │ │ -00251ab0: 4d49 4320 4465 6269 616e 7c0a 7c20 2020 MIC Debian|.| │ │ │ │ -00251ac0: 2020 362e 3132 2e35 372d 3120 2832 3032 6.12.57-1 (202 │ │ │ │ -00251ad0: 352d 3131 2d30 3529 2078 3836 5f36 3420 5-11-05) x86_64 │ │ │ │ -00251ae0: 474e 552f 4c69 6e75 785c 6e22 2020 2020 GNU/Linux\n" │ │ │ │ -00251af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251b00: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00251b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251a80: 2020 2020 207c 0a7c 6f33 203d 2022 4c69 |.|o3 = "Li │ │ │ │ +00251a90: 6e75 7820 7362 7569 6c64 2036 2e31 322e nux sbuild 6.12. │ │ │ │ +00251aa0: 3537 2b64 6562 3133 2d63 6c6f 7564 2d61 57+deb13-cloud-a │ │ │ │ +00251ab0: 6d64 3634 2023 3120 534d 5020 5052 4545 md64 #1 SMP PREE │ │ │ │ +00251ac0: 4d50 545f 4459 4e41 4d49 4320 4465 6269 MPT_DYNAMIC Debi │ │ │ │ +00251ad0: 616e 7c0a 7c20 2020 2020 362e 3132 2e35 an|.| 6.12.5 │ │ │ │ +00251ae0: 372d 3120 2832 3032 352d 3131 2d30 3529 7-1 (2025-11-05) │ │ │ │ +00251af0: 2078 3836 5f36 3420 474e 552f 4c69 6e75 x86_64 GNU/Linu │ │ │ │ +00251b00: 785c 6e22 2020 2020 2020 2020 2020 2020 x\n" │ │ │ │ +00251b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00251b20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00251b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251b40: 2d2d 2d2d 2d2d 2d2d 2b0a 4269 6469 7265 --------+.Bidire │ │ │ │ -00251b50: 6374 696f 6e61 6c20 636f 6d6d 756e 6963 ctional communic │ │ │ │ -00251b60: 6174 696f 6e20 7769 7468 2061 2070 726f ation with a pro │ │ │ │ -00251b70: 6772 616d 2069 7320 616c 736f 2070 6f73 gram is also pos │ │ │ │ -00251b80: 7369 626c 652e 2020 5765 2075 7365 202a sible. We use * │ │ │ │ -00251b90: 6e6f 7465 0a6f 7065 6e49 6e4f 7574 3a20 note.openInOut: │ │ │ │ -00251ba0: 6f70 656e 496e 4f75 742c 2074 6f20 6372 openInOut, to cr │ │ │ │ -00251bb0: 6561 7465 2061 2066 696c 6520 7468 6174 eate a file that │ │ │ │ -00251bc0: 2073 6572 7665 7320 6173 2061 2062 6964 serves as a bid │ │ │ │ -00251bd0: 6972 6563 7469 6f6e 616c 0a63 6f6e 6e65 irectional.conne │ │ │ │ -00251be0: 6374 696f 6e20 746f 2061 2070 726f 6772 ction to a progr │ │ │ │ -00251bf0: 616d 2e20 2054 6861 7420 6669 6c65 2069 am. That file i │ │ │ │ -00251c00: 7320 6361 6c6c 6564 2061 6e20 696e 7075 s called an inpu │ │ │ │ -00251c10: 7420 6f75 7470 7574 2066 696c 652e 2020 t output file. │ │ │ │ -00251c20: 496e 2074 6869 730a 6578 616d 706c 6520 In this.example │ │ │ │ -00251c30: 7765 206f 7065 6e20 6120 636f 6e6e 6563 we open a connec │ │ │ │ -00251c40: 7469 6f6e 2074 6f20 7468 6520 756e 6978 tion to the unix │ │ │ │ -00251c50: 2075 7469 6c69 7479 2067 7265 7020 616e utility grep an │ │ │ │ -00251c60: 6420 7573 6520 6974 2074 6f20 6c6f 6361 d use it to loca │ │ │ │ -00251c70: 7465 2074 6865 0a73 796d 626f 6c20 6e61 te the.symbol na │ │ │ │ -00251c80: 6d65 7320 696e 204d 6163 6175 6c61 7932 mes in Macaulay2 │ │ │ │ -00251c90: 2074 6861 7420 6265 6769 6e20 7769 7468 that begin with │ │ │ │ -00251ca0: 2069 6e2e 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d in..+---------- │ │ │ │ -00251cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00251ce0: 7c69 3420 3a20 6620 3d20 6f70 656e 496e |i4 : f = openIn │ │ │ │ -00251cf0: 4f75 7420 2221 6772 6570 202d 4520 275e Out "!grep -E '^ │ │ │ │ -00251d00: 696e 2722 2020 2020 2020 2020 2020 2020 in'" │ │ │ │ -00251d10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00251d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 4269 ------------+.Bi │ │ │ │ +00251b70: 6469 7265 6374 696f 6e61 6c20 636f 6d6d directional comm │ │ │ │ +00251b80: 756e 6963 6174 696f 6e20 7769 7468 2061 unication with a │ │ │ │ +00251b90: 2070 726f 6772 616d 2069 7320 616c 736f program is also │ │ │ │ +00251ba0: 2070 6f73 7369 626c 652e 2020 5765 2075 possible. We u │ │ │ │ +00251bb0: 7365 202a 6e6f 7465 0a6f 7065 6e49 6e4f se *note.openInO │ │ │ │ +00251bc0: 7574 3a20 6f70 656e 496e 4f75 742c 2074 ut: openInOut, t │ │ │ │ +00251bd0: 6f20 6372 6561 7465 2061 2066 696c 6520 o create a file │ │ │ │ +00251be0: 7468 6174 2073 6572 7665 7320 6173 2061 that serves as a │ │ │ │ +00251bf0: 2062 6964 6972 6563 7469 6f6e 616c 0a63 bidirectional.c │ │ │ │ +00251c00: 6f6e 6e65 6374 696f 6e20 746f 2061 2070 onnection to a p │ │ │ │ +00251c10: 726f 6772 616d 2e20 2054 6861 7420 6669 rogram. That fi │ │ │ │ +00251c20: 6c65 2069 7320 6361 6c6c 6564 2061 6e20 le is called an │ │ │ │ +00251c30: 696e 7075 7420 6f75 7470 7574 2066 696c input output fil │ │ │ │ +00251c40: 652e 2020 496e 2074 6869 730a 6578 616d e. In this.exam │ │ │ │ +00251c50: 706c 6520 7765 206f 7065 6e20 6120 636f ple we open a co │ │ │ │ +00251c60: 6e6e 6563 7469 6f6e 2074 6f20 7468 6520 nnection to the │ │ │ │ +00251c70: 756e 6978 2075 7469 6c69 7479 2067 7265 unix utility gre │ │ │ │ +00251c80: 7020 616e 6420 7573 6520 6974 2074 6f20 p and use it to │ │ │ │ +00251c90: 6c6f 6361 7465 2074 6865 0a73 796d 626f locate the.symbo │ │ │ │ +00251ca0: 6c20 6e61 6d65 7320 696e 204d 6163 6175 l names in Macau │ │ │ │ +00251cb0: 6c61 7932 2074 6861 7420 6265 6769 6e20 lay2 that begin │ │ │ │ +00251cc0: 7769 7468 2069 6e2e 0a2b 2d2d 2d2d 2d2d with in..+------ │ │ │ │ +00251cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251d00: 2d2d 2b0a 7c69 3420 3a20 6620 3d20 6f70 --+.|i4 : f = op │ │ │ │ +00251d10: 656e 496e 4f75 7420 2221 6772 6570 202d enInOut "!grep - │ │ │ │ +00251d20: 4520 275e 696e 2722 2020 2020 2020 2020 E '^in'" │ │ │ │ +00251d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00251d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251d50: 2020 2020 7c0a 7c6f 3420 3d20 2167 7265 |.|o4 = !gre │ │ │ │ -00251d60: 7020 2d45 2027 5e69 6e27 2020 2020 2020 p -E '^in' │ │ │ │ -00251d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00251d90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00251d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251d70: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +00251d80: 2167 7265 7020 2d45 2027 5e69 6e27 2020 !grep -E '^in' │ │ │ │ +00251d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251dc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -00251dd0: 3a20 4669 6c65 2020 2020 2020 2020 2020 : File │ │ │ │ -00251de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251e00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00251e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251db0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00251dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251de0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00251df0: 7c6f 3420 3a20 4669 6c65 2020 2020 2020 |o4 : File │ │ │ │ +00251e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251e20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00251e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251e40: 2b0a 7c69 3520 3a20 7363 616e 286b 6579 +.|i5 : scan(key │ │ │ │ -00251e50: 7320 436f 7265 2e44 6963 7469 6f6e 6172 s Core.Dictionar │ │ │ │ -00251e60: 792c 206b 6579 202d 3e20 6620 3c3c 206b y, key -> f << k │ │ │ │ -00251e70: 6579 203c 3c20 656e 646c 297c 0a2b 2d2d ey << endl)|.+-- │ │ │ │ -00251e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251eb0: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 6620 ------+.|i6 : f │ │ │ │ -00251ec0: 3c3c 2063 6c6f 7365 4f75 7420 2020 2020 << closeOut │ │ │ │ -00251ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00251e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251e60: 2d2d 2d2d 2b0a 7c69 3520 3a20 7363 616e ----+.|i5 : scan │ │ │ │ +00251e70: 286b 6579 7320 436f 7265 2e44 6963 7469 (keys Core.Dicti │ │ │ │ +00251e80: 6f6e 6172 792c 206b 6579 202d 3e20 6620 onary, key -> f │ │ │ │ +00251e90: 3c3c 206b 6579 203c 3c20 656e 646c 297c << key << endl)| │ │ │ │ +00251ea0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00251eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00251ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ +00251ee0: 3a20 6620 3c3c 2063 6c6f 7365 4f75 7420 : f << closeOut │ │ │ │ +00251ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251f20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00251f30: 3620 3d20 2167 7265 7020 2d45 2027 5e69 6 = !grep -E '^i │ │ │ │ -00251f40: 6e27 2020 2020 2020 2020 2020 2020 2020 n' │ │ │ │ -00251f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251f60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00251f10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00251f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251f50: 7c0a 7c6f 3620 3d20 2167 7265 7020 2d45 |.|o6 = !grep -E │ │ │ │ +00251f60: 2027 5e69 6e27 2020 2020 2020 2020 2020 '^in' │ │ │ │ 00251f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251f80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00251f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251fa0: 2020 7c0a 7c6f 3620 3a20 4669 6c65 2020 |.|o6 : File │ │ │ │ +00251fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00251fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00251fd0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00251fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00251ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252010: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ -00252020: 6765 7420 6620 2020 2020 2020 2020 2020 get f │ │ │ │ -00252030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00251fc0: 2020 2020 2020 7c0a 7c6f 3620 3a20 4669 |.|o6 : Fi │ │ │ │ +00251fd0: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ +00251fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00251ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252000: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00252010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00252040: 3720 3a20 6765 7420 6620 2020 2020 2020 7 : get f │ │ │ │ +00252050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00252090: 7c6f 3720 3d20 696e 7465 7270 7265 7465 |o7 = interprete │ │ │ │ -002520a0: 7244 6570 7468 2020 2020 2020 2020 2020 rDepth │ │ │ │ -002520b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002520c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -002520d0: 2069 6e66 6f48 656c 7020 2020 2020 2020 infoHelp │ │ │ │ -002520e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002520f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252100: 2020 2020 7c0a 7c20 2020 2020 696e 7465 |.| inte │ │ │ │ -00252110: 6772 6174 6520 2020 2020 2020 2020 2020 grate │ │ │ │ -00252120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00252140: 0a7c 2020 2020 2069 6e64 7563 6564 4d61 .| inducedMa │ │ │ │ -00252150: 7020 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ -00252160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252170: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00252180: 2020 696e 7374 616c 6c4d 6574 686f 6420 installMethod │ │ │ │ -00252190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002521a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002521b0: 2020 2020 207c 0a7c 2020 2020 2069 6e73 |.| ins │ │ │ │ -002521c0: 6572 7420 2020 2020 2020 2020 2020 2020 ert │ │ │ │ -002521d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002521e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002521f0: 7c0a 7c20 2020 2020 696e 666f 2020 2020 |.| info │ │ │ │ +00252070: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00252080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002520a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002520b0: 2020 7c0a 7c6f 3720 3d20 696e 7465 7270 |.|o7 = interp │ │ │ │ +002520c0: 7265 7465 7244 6570 7468 2020 2020 2020 reterDepth │ │ │ │ +002520d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002520e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002520f0: 2020 2020 2069 6e66 6f48 656c 7020 2020 infoHelp │ │ │ │ +00252100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00252130: 696e 7465 6772 6174 6520 2020 2020 2020 integrate │ │ │ │ +00252140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252160: 2020 207c 0a7c 2020 2020 2069 6e64 7563 |.| induc │ │ │ │ +00252170: 6564 4d61 7020 2020 2020 2020 2020 2020 edMap │ │ │ │ +00252180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +002521a0: 7c20 2020 2020 696e 7374 616c 6c4d 6574 | installMet │ │ │ │ +002521b0: 686f 6420 2020 2020 2020 2020 2020 2020 hod │ │ │ │ +002521c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002521d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002521e0: 2069 6e73 6572 7420 2020 2020 2020 2020 insert │ │ │ │ +002521f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252220: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00252230: 2020 2069 6e74 6572 7661 6c20 2020 2020 interval │ │ │ │ -00252240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252260: 2020 2020 2020 7c0a 7c20 2020 2020 696e |.| in │ │ │ │ -00252270: 7465 7273 6563 7420 2020 2020 2020 2020 tersect │ │ │ │ -00252280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002522a0: 207c 0a7c 2020 2020 2069 6e76 6572 7365 |.| inverse │ │ │ │ -002522b0: 5065 726d 7574 6174 696f 6e20 2020 2020 Permutation │ │ │ │ -002522c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002522d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -002522e0: 2020 2020 696e 7665 7273 6545 7266 2020 inverseErf │ │ │ │ +00252210: 2020 2020 7c0a 7c20 2020 2020 696e 666f |.| info │ │ │ │ +00252220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00252250: 0a7c 2020 2020 2069 6e74 6572 7661 6c20 .| interval │ │ │ │ +00252260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252280: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00252290: 2020 696e 7465 7273 6563 7420 2020 2020 intersect │ │ │ │ +002522a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002522b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002522c0: 2020 2020 207c 0a7c 2020 2020 2069 6e76 |.| inv │ │ │ │ +002522d0: 6572 7365 5065 726d 7574 6174 696f 6e20 ersePermutation │ │ │ │ +002522e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002522f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252310: 2020 2020 2020 207c 0a7c 2020 2020 2069 |.| i │ │ │ │ -00252320: 6e64 6578 2020 2020 2020 2020 2020 2020 ndex │ │ │ │ -00252330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252350: 2020 7c0a 7c20 2020 2020 696e 6465 7843 |.| indexC │ │ │ │ -00252360: 6f6d 706f 6e65 6e74 7320 2020 2020 2020 omponents │ │ │ │ -00252370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252380: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00252390: 2020 2020 2069 6e73 7461 6c6c 4173 7369 installAssi │ │ │ │ -002523a0: 676e 6d65 6e74 4d65 7468 6f64 2020 2020 gnmentMethod │ │ │ │ -002523b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002523c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -002523d0: 696e 6669 6e69 7479 2020 2020 2020 2020 infinity │ │ │ │ -002523e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002523f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252400: 2020 207c 0a7c 2020 2020 2069 6e74 6572 |.| inter │ │ │ │ -00252410: 7365 6374 696f 6e20 2020 2020 2020 2020 section │ │ │ │ -00252420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00252440: 7c20 2020 2020 696e 6469 6365 7320 2020 | indices │ │ │ │ +00252300: 7c0a 7c20 2020 2020 696e 7665 7273 6545 |.| inverseE │ │ │ │ +00252310: 7266 2020 2020 2020 2020 2020 2020 2020 rf │ │ │ │ +00252320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252330: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00252340: 2020 2069 6e64 6578 2020 2020 2020 2020 index │ │ │ │ +00252350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252370: 2020 2020 2020 7c0a 7c20 2020 2020 696e |.| in │ │ │ │ +00252380: 6465 7843 6f6d 706f 6e65 6e74 7320 2020 dexComponents │ │ │ │ +00252390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002523a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002523b0: 207c 0a7c 2020 2020 2069 6e73 7461 6c6c |.| install │ │ │ │ +002523c0: 4173 7369 676e 6d65 6e74 4d65 7468 6f64 AssignmentMethod │ │ │ │ +002523d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002523e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +002523f0: 2020 2020 696e 6669 6e69 7479 2020 2020 infinity │ │ │ │ +00252400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252420: 2020 2020 2020 207c 0a7c 2020 2020 2069 |.| i │ │ │ │ +00252430: 6e74 6572 7365 6374 696f 6e20 2020 2020 ntersection │ │ │ │ +00252440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00252480: 2069 6e63 6f6d 7061 7261 626c 6520 2020 incomparable │ │ │ │ -00252490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002524a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002524b0: 2020 2020 7c0a 7c20 2020 2020 696e 6465 |.| inde │ │ │ │ -002524c0: 7465 726d 696e 6174 6520 2020 2020 2020 terminate │ │ │ │ -002524d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002524e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -002524f0: 0a7c 2020 2020 2069 6e20 2020 2020 2020 .| in │ │ │ │ +00252460: 2020 7c0a 7c20 2020 2020 696e 6469 6365 |.| indice │ │ │ │ +00252470: 7320 2020 2020 2020 2020 2020 2020 2020 s │ │ │ │ +00252480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002524a0: 2020 2020 2069 6e63 6f6d 7061 7261 626c incomparabl │ │ │ │ +002524b0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +002524c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002524d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +002524e0: 696e 6465 7465 726d 696e 6174 6520 2020 indeterminate │ │ │ │ +002524f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00252530: 2020 696e 7665 7273 6552 6567 756c 6172 inverseRegular │ │ │ │ -00252540: 697a 6564 4265 7461 2020 2020 2020 2020 izedBeta │ │ │ │ -00252550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252560: 2020 2020 207c 0a7c 2020 2020 2069 6e64 |.| ind │ │ │ │ -00252570: 6570 656e 6465 6e74 5365 7473 2020 2020 ependentSets │ │ │ │ -00252580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002525a0: 7c0a 7c20 2020 2020 696e 7374 616c 6c50 |.| installP │ │ │ │ -002525b0: 6163 6b61 6765 2020 2020 2020 2020 2020 ackage │ │ │ │ -002525c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002525d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -002525e0: 2020 2069 6e73 7461 6e63 6520 2020 2020 instance │ │ │ │ -002525f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252610: 2020 2020 2020 7c0a 7c20 2020 2020 696e |.| in │ │ │ │ -00252620: 7374 616c 6c65 6450 6163 6b61 6765 7320 stalledPackages │ │ │ │ -00252630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252650: 207c 0a7c 2020 2020 2069 6e70 7574 2020 |.| input │ │ │ │ +00252510: 2020 207c 0a7c 2020 2020 2069 6e20 2020 |.| in │ │ │ │ +00252520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00252550: 7c20 2020 2020 696e 7665 7273 6552 6567 | inverseReg │ │ │ │ +00252560: 756c 6172 697a 6564 4265 7461 2020 2020 ularizedBeta │ │ │ │ +00252570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252580: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00252590: 2069 6e64 6570 656e 6465 6e74 5365 7473 independentSets │ │ │ │ +002525a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002525b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002525c0: 2020 2020 7c0a 7c20 2020 2020 696e 7374 |.| inst │ │ │ │ +002525d0: 616c 6c50 6163 6b61 6765 2020 2020 2020 allPackage │ │ │ │ +002525e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002525f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00252600: 0a7c 2020 2020 2069 6e73 7461 6e63 6520 .| instance │ │ │ │ +00252610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252630: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00252640: 2020 696e 7374 616c 6c65 6450 6163 6b61 installedPacka │ │ │ │ +00252650: 6765 7320 2020 2020 2020 2020 2020 2020 ges │ │ │ │ 00252660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00252690: 2020 2020 696e 6475 6365 7357 656c 6c44 inducesWellD │ │ │ │ -002526a0: 6566 696e 6564 4d61 7020 2020 2020 2020 efinedMap │ │ │ │ -002526b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002526c0: 2020 2020 2020 207c 0a7c 2020 2020 2069 |.| i │ │ │ │ -002526d0: 6e76 6572 7365 5265 6775 6c61 7269 7a65 nverseRegularize │ │ │ │ -002526e0: 6447 616d 6d61 2020 2020 2020 2020 2020 dGamma │ │ │ │ -002526f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252700: 2020 7c0a 7c20 2020 2020 696e 7665 7273 |.| invers │ │ │ │ -00252710: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00252720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00252740: 2020 2020 2069 6e73 7461 6c6c 4869 6c62 installHilb │ │ │ │ -00252750: 6572 7446 756e 6374 696f 6e20 2020 2020 ertFunction │ │ │ │ -00252760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252770: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00252780: 696e 7374 616e 6365 7320 2020 2020 2020 instances │ │ │ │ -00252790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002527a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002527b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -002527c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002527d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002527e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -002527f0: 5769 7468 2074 6869 7320 666f 726d 206f With this form o │ │ │ │ -00252800: 6620 6269 6469 7265 6374 696f 6e61 6c20 f bidirectional │ │ │ │ -00252810: 636f 6d6d 756e 6963 6174 696f 6e20 7468 communication th │ │ │ │ -00252820: 6572 6520 6973 2061 6c77 6179 7320 6120 ere is always a │ │ │ │ -00252830: 6461 6e67 6572 206f 660a 626c 6f63 6b69 danger of.blocki │ │ │ │ -00252840: 6e67 2c20 6265 6361 7573 6520 7468 6520 ng, because the │ │ │ │ -00252850: 6275 6666 6572 7320 6173 736f 6369 6174 buffers associat │ │ │ │ -00252860: 6564 2077 6974 6820 7468 6520 636f 6d6d ed with the comm │ │ │ │ -00252870: 756e 6963 6174 696f 6e20 6368 616e 6e65 unication channe │ │ │ │ -00252880: 6c73 0a28 7069 7065 7329 2074 7970 6963 ls.(pipes) typic │ │ │ │ -00252890: 616c 6c79 2068 6f6c 6420 6f6e 6c79 2034 ally hold only 4 │ │ │ │ -002528a0: 3039 3620 6279 7465 732e 2020 496e 2074 096 bytes. In t │ │ │ │ -002528b0: 6869 7320 6578 616d 706c 6520 7765 2073 his example we s │ │ │ │ -002528c0: 7563 6365 6564 6564 2062 6563 6175 7365 ucceeded because │ │ │ │ -002528d0: 0a74 6865 2065 6e74 6972 6520 6f75 7470 .the entire outp │ │ │ │ -002528e0: 7574 2066 726f 6d20 6772 6570 2077 6173 ut from grep was │ │ │ │ -002528f0: 2073 6d61 6c6c 6572 2074 6861 6e20 3430 smaller than 40 │ │ │ │ -00252900: 3936 2062 7974 6573 2e20 2049 6e20 6765 96 bytes. In ge │ │ │ │ -00252910: 6e65 7261 6c2c 206f 6e65 0a73 686f 756c neral, one.shoul │ │ │ │ -00252920: 6420 6265 2063 6172 6566 756c 2074 6f20 d be careful to │ │ │ │ -00252930: 6172 7261 6e67 6520 7468 696e 6773 2073 arrange things s │ │ │ │ -00252940: 6f20 7468 6174 2074 6865 2074 776f 2070 o that the two p │ │ │ │ -00252950: 726f 6772 616d 7320 7461 6b65 2074 7572 rograms take tur │ │ │ │ -00252960: 6e73 2075 7369 6e67 0a74 6865 2063 6f6d ns using.the com │ │ │ │ -00252970: 6d75 6e69 6361 7469 6f6e 2063 6861 6e6e munication chann │ │ │ │ -00252980: 656c 2c20 736f 2074 6861 7420 7768 656e el, so that when │ │ │ │ -00252990: 206f 6e65 2069 7320 7772 6974 696e 6720 one is writing │ │ │ │ -002529a0: 6461 7461 2c20 7468 6520 6f74 6865 7220 data, the other │ │ │ │ -002529b0: 6973 0a72 6561 6469 6e67 2069 742e 0a0a is.reading it... │ │ │ │ -002529c0: 0a41 2075 7365 6675 6c20 6675 6e63 7469 .A useful functi │ │ │ │ -002529d0: 6f6e 2069 6e20 7468 6973 2063 6f6e 6e65 on in this conne │ │ │ │ -002529e0: 6374 696f 6e20 6973 202a 6e6f 7465 2069 ction is *note i │ │ │ │ -002529f0: 7352 6561 6479 3a20 6973 5265 6164 795f sReady: isReady_ │ │ │ │ -00252a00: 6c70 4669 6c65 5f72 702c 2c0a 7768 6963 lpFile_rp,,.whic │ │ │ │ -00252a10: 6820 7769 6c6c 2074 656c 6c20 796f 7520 h will tell you │ │ │ │ -00252a20: 7768 6574 6865 7220 616e 2069 6e70 7574 whether an input │ │ │ │ -00252a30: 2066 696c 6520 6861 7320 616e 7920 696e file has any in │ │ │ │ -00252a40: 7075 7420 6176 6169 6c61 626c 6520 666f put available fo │ │ │ │ -00252a50: 7220 7265 6164 696e 672c 0a6f 7220 7768 r reading,.or wh │ │ │ │ -00252a60: 6574 6865 7220 6974 2068 6173 2061 7272 ether it has arr │ │ │ │ -00252a70: 6976 6564 2061 7420 7468 6520 656e 642e ived at the end. │ │ │ │ -00252a80: 2020 5765 2069 6c6c 7573 7472 6174 6520 We illustrate │ │ │ │ -00252a90: 6974 2069 6e20 7468 6520 666f 6c6c 6f77 it in the follow │ │ │ │ -00252aa0: 696e 670a 6578 616d 706c 6520 6279 2073 ing.example by s │ │ │ │ -00252ab0: 696d 756c 6174 696e 6720 6120 636f 6d70 imulating a comp │ │ │ │ -00252ac0: 7574 6174 696f 6e20 7468 6174 2074 616b utation that tak │ │ │ │ -00252ad0: 6573 2035 2073 6563 6f6e 6473 2074 6f20 es 5 seconds to │ │ │ │ -00252ae0: 636f 6d70 6c65 7465 2c20 7072 696e 7469 complete, printi │ │ │ │ -00252af0: 6e67 0a6f 6e65 2064 6f74 2070 6572 2073 ng.one dot per s │ │ │ │ -00252b00: 6563 6f6e 6420 7768 696c 6520 7761 6974 econd while wait │ │ │ │ -00252b10: 696e 672e 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ing..+---------- │ │ │ │ -00252b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00252b50: 6938 203a 2066 203d 206f 7065 6e49 6e20 i8 : f = openIn │ │ │ │ -00252b60: 2221 736c 6565 7020 353b 2065 6368 6f20 "!sleep 5; echo │ │ │ │ -00252b70: 2d6e 2074 6865 2061 6e73 7765 7220 6973 -n the answer is │ │ │ │ -00252b80: 2034 2220 2020 207c 0a7c 2020 2020 2020 4" |.| │ │ │ │ -00252b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252670: 2020 2020 207c 0a7c 2020 2020 2069 6e70 |.| inp │ │ │ │ +00252680: 7574 2020 2020 2020 2020 2020 2020 2020 ut │ │ │ │ +00252690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002526a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002526b0: 7c0a 7c20 2020 2020 696e 6475 6365 7357 |.| inducesW │ │ │ │ +002526c0: 656c 6c44 6566 696e 6564 4d61 7020 2020 ellDefinedMap │ │ │ │ +002526d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002526e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +002526f0: 2020 2069 6e76 6572 7365 5265 6775 6c61 inverseRegula │ │ │ │ +00252700: 7269 7a65 6447 616d 6d61 2020 2020 2020 rizedGamma │ │ │ │ +00252710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252720: 2020 2020 2020 7c0a 7c20 2020 2020 696e |.| in │ │ │ │ +00252730: 7665 7273 6520 2020 2020 2020 2020 2020 verse │ │ │ │ +00252740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252760: 207c 0a7c 2020 2020 2069 6e73 7461 6c6c |.| install │ │ │ │ +00252770: 4869 6c62 6572 7446 756e 6374 696f 6e20 HilbertFunction │ │ │ │ +00252780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252790: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +002527a0: 2020 2020 696e 7374 616e 6365 7320 2020 instances │ │ │ │ +002527b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002527c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002527d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +002527e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002527f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252810: 2d2d 2b0a 5769 7468 2074 6869 7320 666f --+.With this fo │ │ │ │ +00252820: 726d 206f 6620 6269 6469 7265 6374 696f rm of bidirectio │ │ │ │ +00252830: 6e61 6c20 636f 6d6d 756e 6963 6174 696f nal communicatio │ │ │ │ +00252840: 6e20 7468 6572 6520 6973 2061 6c77 6179 n there is alway │ │ │ │ +00252850: 7320 6120 6461 6e67 6572 206f 660a 626c s a danger of.bl │ │ │ │ +00252860: 6f63 6b69 6e67 2c20 6265 6361 7573 6520 ocking, because │ │ │ │ +00252870: 7468 6520 6275 6666 6572 7320 6173 736f the buffers asso │ │ │ │ +00252880: 6369 6174 6564 2077 6974 6820 7468 6520 ciated with the │ │ │ │ +00252890: 636f 6d6d 756e 6963 6174 696f 6e20 6368 communication ch │ │ │ │ +002528a0: 616e 6e65 6c73 0a28 7069 7065 7329 2074 annels.(pipes) t │ │ │ │ +002528b0: 7970 6963 616c 6c79 2068 6f6c 6420 6f6e ypically hold on │ │ │ │ +002528c0: 6c79 2034 3039 3620 6279 7465 732e 2020 ly 4096 bytes. │ │ │ │ +002528d0: 496e 2074 6869 7320 6578 616d 706c 6520 In this example │ │ │ │ +002528e0: 7765 2073 7563 6365 6564 6564 2062 6563 we succeeded bec │ │ │ │ +002528f0: 6175 7365 0a74 6865 2065 6e74 6972 6520 ause.the entire │ │ │ │ +00252900: 6f75 7470 7574 2066 726f 6d20 6772 6570 output from grep │ │ │ │ +00252910: 2077 6173 2073 6d61 6c6c 6572 2074 6861 was smaller tha │ │ │ │ +00252920: 6e20 3430 3936 2062 7974 6573 2e20 2049 n 4096 bytes. I │ │ │ │ +00252930: 6e20 6765 6e65 7261 6c2c 206f 6e65 0a73 n general, one.s │ │ │ │ +00252940: 686f 756c 6420 6265 2063 6172 6566 756c hould be careful │ │ │ │ +00252950: 2074 6f20 6172 7261 6e67 6520 7468 696e to arrange thin │ │ │ │ +00252960: 6773 2073 6f20 7468 6174 2074 6865 2074 gs so that the t │ │ │ │ +00252970: 776f 2070 726f 6772 616d 7320 7461 6b65 wo programs take │ │ │ │ +00252980: 2074 7572 6e73 2075 7369 6e67 0a74 6865 turns using.the │ │ │ │ +00252990: 2063 6f6d 6d75 6e69 6361 7469 6f6e 2063 communication c │ │ │ │ +002529a0: 6861 6e6e 656c 2c20 736f 2074 6861 7420 hannel, so that │ │ │ │ +002529b0: 7768 656e 206f 6e65 2069 7320 7772 6974 when one is writ │ │ │ │ +002529c0: 696e 6720 6461 7461 2c20 7468 6520 6f74 ing data, the ot │ │ │ │ +002529d0: 6865 7220 6973 0a72 6561 6469 6e67 2069 her is.reading i │ │ │ │ +002529e0: 742e 0a0a 0a41 2075 7365 6675 6c20 6675 t....A useful fu │ │ │ │ +002529f0: 6e63 7469 6f6e 2069 6e20 7468 6973 2063 nction in this c │ │ │ │ +00252a00: 6f6e 6e65 6374 696f 6e20 6973 202a 6e6f onnection is *no │ │ │ │ +00252a10: 7465 2069 7352 6561 6479 3a20 6973 5265 te isReady: isRe │ │ │ │ +00252a20: 6164 795f 6c70 4669 6c65 5f72 702c 2c0a ady_lpFile_rp,,. │ │ │ │ +00252a30: 7768 6963 6820 7769 6c6c 2074 656c 6c20 which will tell │ │ │ │ +00252a40: 796f 7520 7768 6574 6865 7220 616e 2069 you whether an i │ │ │ │ +00252a50: 6e70 7574 2066 696c 6520 6861 7320 616e nput file has an │ │ │ │ +00252a60: 7920 696e 7075 7420 6176 6169 6c61 626c y input availabl │ │ │ │ +00252a70: 6520 666f 7220 7265 6164 696e 672c 0a6f e for reading,.o │ │ │ │ +00252a80: 7220 7768 6574 6865 7220 6974 2068 6173 r whether it has │ │ │ │ +00252a90: 2061 7272 6976 6564 2061 7420 7468 6520 arrived at the │ │ │ │ +00252aa0: 656e 642e 2020 5765 2069 6c6c 7573 7472 end. We illustr │ │ │ │ +00252ab0: 6174 6520 6974 2069 6e20 7468 6520 666f ate it in the fo │ │ │ │ +00252ac0: 6c6c 6f77 696e 670a 6578 616d 706c 6520 llowing.example │ │ │ │ +00252ad0: 6279 2073 696d 756c 6174 696e 6720 6120 by simulating a │ │ │ │ +00252ae0: 636f 6d70 7574 6174 696f 6e20 7468 6174 computation that │ │ │ │ +00252af0: 2074 616b 6573 2035 2073 6563 6f6e 6473 takes 5 seconds │ │ │ │ +00252b00: 2074 6f20 636f 6d70 6c65 7465 2c20 7072 to complete, pr │ │ │ │ +00252b10: 696e 7469 6e67 0a6f 6e65 2064 6f74 2070 inting.one dot p │ │ │ │ +00252b20: 6572 2073 6563 6f6e 6420 7768 696c 6520 er second while │ │ │ │ +00252b30: 7761 6974 696e 672e 0a2b 2d2d 2d2d 2d2d waiting..+------ │ │ │ │ +00252b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252b70: 2d2b 0a7c 6938 203a 2066 203d 206f 7065 -+.|i8 : f = ope │ │ │ │ +00252b80: 6e49 6e20 2221 736c 6565 7020 353b 2065 nIn "!sleep 5; e │ │ │ │ +00252b90: 6368 6f20 2d6e 2074 6865 2061 6e73 7765 cho -n the answe │ │ │ │ +00252ba0: 7220 6973 2034 2220 2020 207c 0a7c 2020 r is 4" |.| │ │ │ │ 00252bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252bc0: 207c 0a7c 6f38 203d 2021 736c 6565 7020 |.|o8 = !sleep │ │ │ │ -00252bd0: 353b 2065 6368 6f20 2d6e 2074 6865 2061 5; echo -n the a │ │ │ │ -00252be0: 6e73 7765 7220 6973 2034 2020 2020 2020 nswer is 4 │ │ │ │ -00252bf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00252c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252c30: 2020 2020 207c 0a7c 6f38 203a 2046 696c |.|o8 : Fil │ │ │ │ -00252c40: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00252c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00252c70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00252c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252ca0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ -00252cb0: 2069 7352 6561 6479 2066 2020 2020 2020 isReady f │ │ │ │ -00252cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252ce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00252bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252be0: 2020 2020 207c 0a7c 6f38 203d 2021 736c |.|o8 = !sl │ │ │ │ +00252bf0: 6565 7020 353b 2065 6368 6f20 2d6e 2074 eep 5; echo -n t │ │ │ │ +00252c00: 6865 2061 6e73 7765 7220 6973 2034 2020 he answer is 4 │ │ │ │ +00252c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00252c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00252c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252c50: 2020 2020 2020 2020 207c 0a7c 6f38 203a |.|o8 : │ │ │ │ +00252c60: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ +00252c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252c90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00252ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00252cd0: 6939 203a 2069 7352 6561 6479 2066 2020 i9 : isReady f │ │ │ │ +00252ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00252d20: 6f39 203d 2066 616c 7365 2020 2020 2020 o9 = false │ │ │ │ +00252d00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00252d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252d50: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00252d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252d40: 207c 0a7c 6f39 203d 2066 616c 7365 2020 |.|o9 = false │ │ │ │ +00252d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252d70: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ 00252d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252d90: 2d2b 0a7c 6931 3020 3a20 7768 696c 6520 -+.|i10 : while │ │ │ │ -00252da0: 6e6f 7420 6973 5265 6164 7920 6620 646f not isReady f do │ │ │ │ -00252db0: 2028 736c 6565 7020 313b 203c 3c20 222e (sleep 1; << ". │ │ │ │ -00252dc0: 2220 3c3c 2066 6c75 7368 297c 0a7c 2e2e " << flush)|.|.. │ │ │ │ -00252dd0: 2e2e 2e2e 2020 2020 2020 2020 2020 2020 .... │ │ │ │ -00252de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252e00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00252e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00252e40: 0a7c 6931 3120 3a20 7265 6164 2066 2020 .|i11 : read f │ │ │ │ -00252e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252e70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00252d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252db0: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 7768 -----+.|i10 : wh │ │ │ │ +00252dc0: 696c 6520 6e6f 7420 6973 5265 6164 7920 ile not isReady │ │ │ │ +00252dd0: 6620 646f 2028 736c 6565 7020 313b 203c f do (sleep 1; < │ │ │ │ +00252de0: 3c20 222e 2220 3c3c 2066 6c75 7368 297c < "." << flush)| │ │ │ │ +00252df0: 0a7c 2e2e 2e2e 2e2e 2020 2020 2020 2020 .|...... │ │ │ │ +00252e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252e20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00252e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252e60: 2d2d 2d2b 0a7c 6931 3120 3a20 7265 6164 ---+.|i11 : read │ │ │ │ +00252e70: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ 00252e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252e90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00252ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252eb0: 2020 207c 0a7c 6f31 3120 3d20 7468 6520 |.|o11 = the │ │ │ │ -00252ec0: 616e 7377 6572 2069 7320 3420 2020 2020 answer is 4 │ │ │ │ -00252ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252ee0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00252ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252f20: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ -00252f30: 6973 5265 6164 7920 6620 2020 2020 2020 isReady f │ │ │ │ -00252f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00252eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252ed0: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +00252ee0: 7468 6520 616e 7377 6572 2069 7320 3420 the answer is 4 │ │ │ │ +00252ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252f10: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00252f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00252f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00252f50: 3220 3a20 6973 5265 6164 7920 6620 2020 2 : isReady f │ │ │ │ +00252f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00252f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252f90: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00252fa0: 3220 3d20 7472 7565 2020 2020 2020 2020 2 = true │ │ │ │ -00252fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00252fd0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00252fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00252ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00253000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00253010: 0a7c 6931 3320 3a20 6174 456e 644f 6646 .|i13 : atEndOfF │ │ │ │ -00253020: 696c 6520 6620 2020 2020 2020 2020 2020 ile f │ │ │ │ -00253030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253040: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00252f80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00252f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00252fc0: 0a7c 6f31 3220 3d20 7472 7565 2020 2020 .|o12 = true │ │ │ │ +00252fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00252ff0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00253000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253030: 2d2d 2d2b 0a7c 6931 3320 3a20 6174 456e ---+.|i13 : atEn │ │ │ │ +00253040: 644f 6646 696c 6520 6620 2020 2020 2020 dOfFile f │ │ │ │ 00253050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00253070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253080: 2020 207c 0a7c 6f31 3320 3d20 7472 7565 |.|o13 = true │ │ │ │ +00253080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00253090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002530a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002530b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -002530c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002530d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002530e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002530f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ -00253100: 636c 6f73 6520 6620 2020 2020 2020 2020 close f │ │ │ │ -00253110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002530a0: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ +002530b0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +002530c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002530d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002530e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +002530f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00253120: 3420 3a20 636c 6f73 6520 6620 2020 2020 4 : close f │ │ │ │ +00253130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00253140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253160: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00253170: 3420 3d20 2173 6c65 6570 2035 3b20 6563 4 = !sleep 5; ec │ │ │ │ -00253180: 686f 202d 6e20 7468 6520 616e 7377 6572 ho -n the answer │ │ │ │ -00253190: 2069 7320 3420 2020 2020 2020 2020 2020 is 4 │ │ │ │ -002531a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002531b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002531c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002531d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -002531e0: 0a7c 6f31 3420 3a20 4669 6c65 2020 2020 .|o14 : File │ │ │ │ +00253150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00253160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00253190: 0a7c 6f31 3420 3d20 2173 6c65 6570 2035 .|o14 = !sleep 5 │ │ │ │ +002531a0: 3b20 6563 686f 202d 6e20 7468 6520 616e ; echo -n the an │ │ │ │ +002531b0: 7377 6572 2069 7320 3420 2020 2020 2020 swer is 4 │ │ │ │ +002531c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002531d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002531e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002531f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00253210: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00253220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00253230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253200: 2020 207c 0a7c 6f31 3420 3a20 4669 6c65 |.|o14 : File │ │ │ │ +00253210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253230: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00253240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00253250: 2d2d 2d2b 0a57 6520 616c 736f 2061 6c6c ---+.We also all │ │ │ │ -00253260: 6f77 2066 6f72 2062 6964 6972 6563 7469 ow for bidirecti │ │ │ │ -00253270: 6f6e 616c 2063 6f6d 6d75 6e69 6361 7469 onal communicati │ │ │ │ -00253280: 6f6e 2074 6872 6f75 6768 2073 6f63 6b65 on through socke │ │ │ │ -00253290: 7473 206f 7665 7220 7468 650a 696e 7465 ts over the.inte │ │ │ │ -002532a0: 726e 6574 2e20 2053 6565 202a 6e6f 7465 rnet. See *note │ │ │ │ -002532b0: 206f 7065 6e49 6e4f 7574 3a20 6f70 656e openInOut: open │ │ │ │ -002532c0: 496e 4f75 742c 2061 6e64 202a 6e6f 7465 InOut, and *note │ │ │ │ -002532d0: 206f 7065 6e4c 6973 7465 6e65 723a 0a6f openListener:.o │ │ │ │ -002532e0: 7065 6e4c 6973 7465 6e65 725f 6c70 5374 penListener_lpSt │ │ │ │ -002532f0: 7269 6e67 5f72 702c 2c20 6f72 2074 6865 ring_rp,, or the │ │ │ │ -00253300: 206e 6578 7420 7365 6374 696f 6e2e 0a0a next section... │ │ │ │ -00253310: 0a41 6e6f 7468 6572 2075 7365 6675 6c20 .Another useful │ │ │ │ -00253320: 6675 6e63 7469 6f6e 2069 7320 2a6e 6f74 function is *not │ │ │ │ -00253330: 6520 7761 6974 3a20 7761 6974 2c2c 2077 e wait: wait,, w │ │ │ │ -00253340: 6869 6368 2063 616e 2062 6520 7573 6564 hich can be used │ │ │ │ -00253350: 2074 6f20 7761 6974 2066 6f72 0a69 6e70 to wait for.inp │ │ │ │ -00253360: 7574 2074 6f20 6265 2061 7661 696c 6162 ut to be availab │ │ │ │ -00253370: 6c65 2066 726f 6d20 616e 7920 6f66 2061 le from any of a │ │ │ │ -00253380: 206c 6973 7420 6f66 2069 6e70 7574 2066 list of input f │ │ │ │ -00253390: 696c 6573 2e0a 2a20 4d65 6e75 3a0a 0a2a iles..* Menu:..* │ │ │ │ -002533a0: 2072 756e 3a3a 2020 2020 2020 2020 2020 run:: │ │ │ │ -002533b0: 2020 2020 2020 2020 2020 2020 2020 2072 r │ │ │ │ -002533c0: 756e 2061 6e20 6578 7465 726e 616c 2063 un an external c │ │ │ │ -002533d0: 6f6d 6d61 6e64 0a2a 2066 696e 6450 726f ommand.* findPro │ │ │ │ -002533e0: 6772 616d 3a3a 2020 2020 2020 2020 2020 gram:: │ │ │ │ -002533f0: 2020 2020 2020 206c 6f61 6420 6578 7465 load exte │ │ │ │ -00253400: 726e 616c 2070 726f 6772 616d 0a2a 2072 rnal program.* r │ │ │ │ -00253410: 756e 5072 6f67 7261 6d3a 3a20 2020 2020 unProgram:: │ │ │ │ -00253420: 2020 2020 2020 2020 2020 2020 2072 756e run │ │ │ │ -00253430: 2061 6e20 6578 7465 726e 616c 2070 726f an external pro │ │ │ │ -00253440: 6772 616d 0a2a 2050 726f 6772 616d 203c gram.* Program < │ │ │ │ -00253450: 3c20 5468 696e 673a 3a20 2020 2020 2020 < Thing:: │ │ │ │ -00253460: 2020 2020 2072 756e 2070 726f 6772 616d run program │ │ │ │ -00253470: 2077 6974 6820 696e 7075 7420 7265 6469 with input redi │ │ │ │ -00253480: 7265 6374 696f 6e0a 2d2d 2d2d 2d2d 2d2d rection.-------- │ │ │ │ -00253490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002534a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253270: 2d2d 2d2d 2d2d 2d2b 0a57 6520 616c 736f -------+.We also │ │ │ │ +00253280: 2061 6c6c 6f77 2066 6f72 2062 6964 6972 allow for bidir │ │ │ │ +00253290: 6563 7469 6f6e 616c 2063 6f6d 6d75 6e69 ectional communi │ │ │ │ +002532a0: 6361 7469 6f6e 2074 6872 6f75 6768 2073 cation through s │ │ │ │ +002532b0: 6f63 6b65 7473 206f 7665 7220 7468 650a ockets over the. │ │ │ │ +002532c0: 696e 7465 726e 6574 2e20 2053 6565 202a internet. See * │ │ │ │ +002532d0: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a20 note openInOut: │ │ │ │ +002532e0: 6f70 656e 496e 4f75 742c 2061 6e64 202a openInOut, and * │ │ │ │ +002532f0: 6e6f 7465 206f 7065 6e4c 6973 7465 6e65 note openListene │ │ │ │ +00253300: 723a 0a6f 7065 6e4c 6973 7465 6e65 725f r:.openListener_ │ │ │ │ +00253310: 6c70 5374 7269 6e67 5f72 702c 2c20 6f72 lpString_rp,, or │ │ │ │ +00253320: 2074 6865 206e 6578 7420 7365 6374 696f the next sectio │ │ │ │ +00253330: 6e2e 0a0a 0a41 6e6f 7468 6572 2075 7365 n....Another use │ │ │ │ +00253340: 6675 6c20 6675 6e63 7469 6f6e 2069 7320 ful function is │ │ │ │ +00253350: 2a6e 6f74 6520 7761 6974 3a20 7761 6974 *note wait: wait │ │ │ │ +00253360: 2c2c 2077 6869 6368 2063 616e 2062 6520 ,, which can be │ │ │ │ +00253370: 7573 6564 2074 6f20 7761 6974 2066 6f72 used to wait for │ │ │ │ +00253380: 0a69 6e70 7574 2074 6f20 6265 2061 7661 .input to be ava │ │ │ │ +00253390: 696c 6162 6c65 2066 726f 6d20 616e 7920 ilable from any │ │ │ │ +002533a0: 6f66 2061 206c 6973 7420 6f66 2069 6e70 of a list of inp │ │ │ │ +002533b0: 7574 2066 696c 6573 2e0a 2a20 4d65 6e75 ut files..* Menu │ │ │ │ +002533c0: 3a0a 0a2a 2072 756e 3a3a 2020 2020 2020 :..* run:: │ │ │ │ +002533d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002533e0: 2020 2072 756e 2061 6e20 6578 7465 726e run an extern │ │ │ │ +002533f0: 616c 2063 6f6d 6d61 6e64 0a2a 2066 696e al command.* fin │ │ │ │ +00253400: 6450 726f 6772 616d 3a3a 2020 2020 2020 dProgram:: │ │ │ │ +00253410: 2020 2020 2020 2020 2020 206c 6f61 6420 load │ │ │ │ +00253420: 6578 7465 726e 616c 2070 726f 6772 616d external program │ │ │ │ +00253430: 0a2a 2072 756e 5072 6f67 7261 6d3a 3a20 .* runProgram:: │ │ │ │ +00253440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00253450: 2072 756e 2061 6e20 6578 7465 726e 616c run an external │ │ │ │ +00253460: 2070 726f 6772 616d 0a2a 2050 726f 6772 program.* Progr │ │ │ │ +00253470: 616d 203c 3c20 5468 696e 673a 3a20 2020 am << Thing:: │ │ │ │ +00253480: 2020 2020 2020 2020 2072 756e 2070 726f run pro │ │ │ │ +00253490: 6772 616d 2077 6974 6820 696e 7075 7420 gram with input │ │ │ │ +002534a0: 7265 6469 7265 6374 696f 6e0a 2d2d 2d2d redirection.---- │ │ │ │ 002534b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002534c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002534d0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -002534e0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -002534f0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00253500: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00253510: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00253520: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00253530: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00253540: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -00253550: 6669 6c65 732e 6d32 3a34 3435 3a30 2e0a files.m2:445:0.. │ │ │ │ -00253560: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -00253570: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -00253580: 2072 756e 2c20 4e65 7874 3a20 6669 6e64 run, Next: find │ │ │ │ -00253590: 5072 6f67 7261 6d2c 2055 703a 2063 6f6d Program, Up: com │ │ │ │ -002535a0: 6d75 6e69 6361 7469 6e67 2077 6974 6820 municating with │ │ │ │ -002535b0: 7072 6f67 7261 6d73 0a0a 7275 6e20 2d2d programs..run -- │ │ │ │ -002535c0: 2072 756e 2061 6e20 6578 7465 726e 616c run an external │ │ │ │ -002535d0: 2063 6f6d 6d61 6e64 0a2a 2a2a 2a2a 2a2a command.******* │ │ │ │ -002535e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002535f0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00253600: 6765 3a20 0a20 2020 2020 2020 2072 756e ge: . run │ │ │ │ -00253610: 2073 0a20 202a 2049 6e70 7574 733a 0a20 s. * Inputs:. │ │ │ │ -00253620: 2020 2020 202a 2073 2c20 6120 2a6e 6f74 * s, a *not │ │ │ │ -00253630: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ -00253640: 2c2c 2061 2063 6f6d 6d61 6e64 2075 6e64 ,, a command und │ │ │ │ -00253650: 6572 7374 616e 6461 626c 6520 6279 2074 erstandable by t │ │ │ │ -00253660: 6865 206f 7065 7261 7469 6e67 0a20 2020 he operating. │ │ │ │ -00253670: 2020 2020 2073 7973 7465 6d0a 2020 2a20 system. * │ │ │ │ -00253680: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00253690: 2061 6e20 2a6e 6f74 6520 696e 7465 6765 an *note intege │ │ │ │ -002536a0: 723a 205a 5a2c 2c20 7468 6520 7265 7475 r: ZZ,, the retu │ │ │ │ -002536b0: 726e 2063 6f64 650a 0a44 6573 6372 6970 rn code..Descrip │ │ │ │ -002536c0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -002536d0: 0a0a 5468 6520 7072 6f63 6573 7320 6973 ..The process is │ │ │ │ -002536e0: 2072 756e 2069 6e20 7468 6520 7361 6d65 run in the same │ │ │ │ -002536f0: 2070 726f 6365 7373 2067 726f 7570 2c20 process group, │ │ │ │ -00253700: 736f 2073 6967 6e61 6c73 2069 6e76 6f6b so signals invok │ │ │ │ -00253710: 6564 2062 7920 636f 6e74 726f 6c0a 6368 ed by control.ch │ │ │ │ -00253720: 6172 6163 7465 7273 2061 7420 7468 6520 aracters at the │ │ │ │ -00253730: 7465 726d 696e 616c 2077 696c 6c20 676f terminal will go │ │ │ │ -00253740: 2062 6f74 6820 746f 2069 7420 616e 6420 both to it and │ │ │ │ -00253750: 746f 204d 6163 6175 6c61 7932 2e0a 0a55 to Macaulay2...U │ │ │ │ -00253760: 6e64 6572 204c 696e 7578 2061 6e64 204d nder Linux and M │ │ │ │ -00253770: 6163 204f 532c 2074 6865 2072 6574 7572 ac OS, the retur │ │ │ │ -00253780: 6e20 636f 6465 2069 7320 3235 3620 7469 n code is 256 ti │ │ │ │ -00253790: 6d65 7320 7468 6520 6578 6974 2073 7461 mes the exit sta │ │ │ │ -002537a0: 7475 7320 636f 6465 206f 660a 7468 6520 tus code of.the │ │ │ │ -002537b0: 636f 6d6d 616e 642c 2069 6620 7468 6520 command, if the │ │ │ │ -002537c0: 636f 6d6d 616e 6420 6578 6974 6564 206e command exited n │ │ │ │ -002537d0: 6f72 6d61 6c6c 793b 2062 7920 636f 6e76 ormally; by conv │ │ │ │ -002537e0: 656e 7469 6f6e 2c20 616e 2065 7869 7420 ention, an exit │ │ │ │ -002537f0: 7374 6174 7573 2063 6f64 650a 6f66 2030 status code.of 0 │ │ │ │ -00253800: 2069 6e64 6963 6174 6573 2065 7272 6f72 indicates error │ │ │ │ -00253810: 2066 7265 6520 6578 6563 7574 696f 6e20 free execution │ │ │ │ -00253820: 6f72 2074 6865 2042 6f6f 6c65 616e 2076 or the Boolean v │ │ │ │ -00253830: 616c 7565 2074 7275 652c 2061 6e20 6578 alue true, an ex │ │ │ │ -00253840: 6974 2073 7461 7475 730a 636f 6465 206f it status.code o │ │ │ │ -00253850: 6620 3120 696e 6469 6361 7465 7320 616e f 1 indicates an │ │ │ │ -00253860: 2065 7272 6f72 206f 7220 7468 6520 426f error or the Bo │ │ │ │ -00253870: 6f6c 6561 6e20 7661 6c75 6520 6661 6c73 olean value fals │ │ │ │ -00253880: 653b 2069 6620 7468 6520 636f 6d6d 616e e; if the comman │ │ │ │ -00253890: 640a 7465 726d 696e 6174 6564 2069 6e20 d.terminated in │ │ │ │ -002538a0: 7265 7370 6f6e 7365 2074 6f20 6120 7369 response to a si │ │ │ │ -002538b0: 676e 616c 206f 7220 6661 756c 742c 2074 gnal or fault, t │ │ │ │ -002538c0: 6865 2073 6967 6e61 6c20 6e75 6d62 6572 he signal number │ │ │ │ -002538d0: 2028 696e 2074 6865 2072 616e 6765 0a31 (in the range.1 │ │ │ │ -002538e0: 2d31 3236 2920 6973 2072 6574 7572 6e65 -126) is returne │ │ │ │ -002538f0: 642c 2061 6464 6564 2074 6f20 3132 3820 d, added to 128 │ │ │ │ -00253900: 6966 2061 2063 6f72 6520 6475 6d70 2077 if a core dump w │ │ │ │ -00253910: 6173 2063 7265 6174 6564 3b20 6966 2074 as created; if t │ │ │ │ -00253920: 6865 2073 6865 6c6c 0a28 636f 6d6d 616e he shell.(comman │ │ │ │ -00253930: 6420 696e 7465 7270 7265 7465 7229 2063 d interpreter) c │ │ │ │ -00253940: 6f75 6c64 206e 6f74 2062 6520 6578 6563 ould not be exec │ │ │ │ -00253950: 7574 6564 2c20 7468 656e 2031 3237 2069 uted, then 127 i │ │ │ │ -00253960: 7320 7265 7475 726e 6564 2e20 2053 6967 s returned. Sig │ │ │ │ -00253970: 6e61 6c0a 6e75 6d62 6572 7320 7479 7069 nal.numbers typi │ │ │ │ -00253980: 6361 6c6c 7920 696e 636c 7564 6520 3220 cally include 2 │ │ │ │ -00253990: 666f 7220 696e 7465 7272 7570 742c 2033 for interrupt, 3 │ │ │ │ -002539a0: 2066 6f72 2071 7569 742c 2036 2066 6f72 for quit, 6 for │ │ │ │ -002539b0: 2061 626f 7274 2c20 3920 666f 7220 6b69 abort, 9 for ki │ │ │ │ -002539c0: 6c6c 2c0a 3131 2066 6f72 2073 6567 6d65 ll,.11 for segme │ │ │ │ -002539d0: 6e74 6174 696f 6e20 6661 756c 742c 2061 ntation fault, a │ │ │ │ -002539e0: 6e64 2031 3520 666f 7220 7465 726d 696e nd 15 for termin │ │ │ │ -002539f0: 6174 696f 6e2e 2020 466f 7220 6465 7461 ation. For deta │ │ │ │ -00253a00: 696c 732c 2073 6565 2074 6865 206d 616e ils, see the man │ │ │ │ -00253a10: 0a70 6167 6520 6f66 2074 6865 206c 6962 .page of the lib │ │ │ │ -00253a20: 6320 726f 7574 696e 6520 7379 7374 656d c routine system │ │ │ │ -00253a30: 2829 2e0a 0a46 6f72 2074 6865 2070 726f ()...For the pro │ │ │ │ -00253a40: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00253a50: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00253a60: 6f62 6a65 6374 202a 6e6f 7465 2072 756e object *note run │ │ │ │ -00253a70: 3a20 7275 6e2c 2069 7320 6120 2a6e 6f74 : run, is a *not │ │ │ │ -00253a80: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ -00253a90: 696f 6e3a 2043 6f6d 7069 6c65 6446 756e ion: CompiledFun │ │ │ │ -00253aa0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ -00253ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00253ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002534d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002534e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002534f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00253500: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00253510: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00253520: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00253530: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00253540: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00253550: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00253560: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +00253570: 2f6f 765f 6669 6c65 732e 6d32 3a34 3435 /ov_files.m2:445 │ │ │ │ +00253580: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00253590: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +002535a0: 6f64 653a 2072 756e 2c20 4e65 7874 3a20 ode: run, Next: │ │ │ │ +002535b0: 6669 6e64 5072 6f67 7261 6d2c 2055 703a findProgram, Up: │ │ │ │ +002535c0: 2063 6f6d 6d75 6e69 6361 7469 6e67 2077 communicating w │ │ │ │ +002535d0: 6974 6820 7072 6f67 7261 6d73 0a0a 7275 ith programs..ru │ │ │ │ +002535e0: 6e20 2d2d 2072 756e 2061 6e20 6578 7465 n -- run an exte │ │ │ │ +002535f0: 726e 616c 2063 6f6d 6d61 6e64 0a2a 2a2a rnal command.*** │ │ │ │ +00253600: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00253610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00253620: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00253630: 2072 756e 2073 0a20 202a 2049 6e70 7574 run s. * Input │ │ │ │ +00253640: 733a 0a20 2020 2020 202a 2073 2c20 6120 s:. * s, a │ │ │ │ +00253650: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +00253660: 7269 6e67 2c2c 2061 2063 6f6d 6d61 6e64 ring,, a command │ │ │ │ +00253670: 2075 6e64 6572 7374 616e 6461 626c 6520 understandable │ │ │ │ +00253680: 6279 2074 6865 206f 7065 7261 7469 6e67 by the operating │ │ │ │ +00253690: 0a20 2020 2020 2020 2073 7973 7465 6d0a . system. │ │ │ │ +002536a0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +002536b0: 2020 202a 2061 6e20 2a6e 6f74 6520 696e * an *note in │ │ │ │ +002536c0: 7465 6765 723a 205a 5a2c 2c20 7468 6520 teger: ZZ,, the │ │ │ │ +002536d0: 7265 7475 726e 2063 6f64 650a 0a44 6573 return code..Des │ │ │ │ +002536e0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +002536f0: 3d3d 3d3d 0a0a 5468 6520 7072 6f63 6573 ====..The proces │ │ │ │ +00253700: 7320 6973 2072 756e 2069 6e20 7468 6520 s is run in the │ │ │ │ +00253710: 7361 6d65 2070 726f 6365 7373 2067 726f same process gro │ │ │ │ +00253720: 7570 2c20 736f 2073 6967 6e61 6c73 2069 up, so signals i │ │ │ │ +00253730: 6e76 6f6b 6564 2062 7920 636f 6e74 726f nvoked by contro │ │ │ │ +00253740: 6c0a 6368 6172 6163 7465 7273 2061 7420 l.characters at │ │ │ │ +00253750: 7468 6520 7465 726d 696e 616c 2077 696c the terminal wil │ │ │ │ +00253760: 6c20 676f 2062 6f74 6820 746f 2069 7420 l go both to it │ │ │ │ +00253770: 616e 6420 746f 204d 6163 6175 6c61 7932 and to Macaulay2 │ │ │ │ +00253780: 2e0a 0a55 6e64 6572 204c 696e 7578 2061 ...Under Linux a │ │ │ │ +00253790: 6e64 204d 6163 204f 532c 2074 6865 2072 nd Mac OS, the r │ │ │ │ +002537a0: 6574 7572 6e20 636f 6465 2069 7320 3235 eturn code is 25 │ │ │ │ +002537b0: 3620 7469 6d65 7320 7468 6520 6578 6974 6 times the exit │ │ │ │ +002537c0: 2073 7461 7475 7320 636f 6465 206f 660a status code of. │ │ │ │ +002537d0: 7468 6520 636f 6d6d 616e 642c 2069 6620 the command, if │ │ │ │ +002537e0: 7468 6520 636f 6d6d 616e 6420 6578 6974 the command exit │ │ │ │ +002537f0: 6564 206e 6f72 6d61 6c6c 793b 2062 7920 ed normally; by │ │ │ │ +00253800: 636f 6e76 656e 7469 6f6e 2c20 616e 2065 convention, an e │ │ │ │ +00253810: 7869 7420 7374 6174 7573 2063 6f64 650a xit status code. │ │ │ │ +00253820: 6f66 2030 2069 6e64 6963 6174 6573 2065 of 0 indicates e │ │ │ │ +00253830: 7272 6f72 2066 7265 6520 6578 6563 7574 rror free execut │ │ │ │ +00253840: 696f 6e20 6f72 2074 6865 2042 6f6f 6c65 ion or the Boole │ │ │ │ +00253850: 616e 2076 616c 7565 2074 7275 652c 2061 an value true, a │ │ │ │ +00253860: 6e20 6578 6974 2073 7461 7475 730a 636f n exit status.co │ │ │ │ +00253870: 6465 206f 6620 3120 696e 6469 6361 7465 de of 1 indicate │ │ │ │ +00253880: 7320 616e 2065 7272 6f72 206f 7220 7468 s an error or th │ │ │ │ +00253890: 6520 426f 6f6c 6561 6e20 7661 6c75 6520 e Boolean value │ │ │ │ +002538a0: 6661 6c73 653b 2069 6620 7468 6520 636f false; if the co │ │ │ │ +002538b0: 6d6d 616e 640a 7465 726d 696e 6174 6564 mmand.terminated │ │ │ │ +002538c0: 2069 6e20 7265 7370 6f6e 7365 2074 6f20 in response to │ │ │ │ +002538d0: 6120 7369 676e 616c 206f 7220 6661 756c a signal or faul │ │ │ │ +002538e0: 742c 2074 6865 2073 6967 6e61 6c20 6e75 t, the signal nu │ │ │ │ +002538f0: 6d62 6572 2028 696e 2074 6865 2072 616e mber (in the ran │ │ │ │ +00253900: 6765 0a31 2d31 3236 2920 6973 2072 6574 ge.1-126) is ret │ │ │ │ +00253910: 7572 6e65 642c 2061 6464 6564 2074 6f20 urned, added to │ │ │ │ +00253920: 3132 3820 6966 2061 2063 6f72 6520 6475 128 if a core du │ │ │ │ +00253930: 6d70 2077 6173 2063 7265 6174 6564 3b20 mp was created; │ │ │ │ +00253940: 6966 2074 6865 2073 6865 6c6c 0a28 636f if the shell.(co │ │ │ │ +00253950: 6d6d 616e 6420 696e 7465 7270 7265 7465 mmand interprete │ │ │ │ +00253960: 7229 2063 6f75 6c64 206e 6f74 2062 6520 r) could not be │ │ │ │ +00253970: 6578 6563 7574 6564 2c20 7468 656e 2031 executed, then 1 │ │ │ │ +00253980: 3237 2069 7320 7265 7475 726e 6564 2e20 27 is returned. │ │ │ │ +00253990: 2053 6967 6e61 6c0a 6e75 6d62 6572 7320 Signal.numbers │ │ │ │ +002539a0: 7479 7069 6361 6c6c 7920 696e 636c 7564 typically includ │ │ │ │ +002539b0: 6520 3220 666f 7220 696e 7465 7272 7570 e 2 for interrup │ │ │ │ +002539c0: 742c 2033 2066 6f72 2071 7569 742c 2036 t, 3 for quit, 6 │ │ │ │ +002539d0: 2066 6f72 2061 626f 7274 2c20 3920 666f for abort, 9 fo │ │ │ │ +002539e0: 7220 6b69 6c6c 2c0a 3131 2066 6f72 2073 r kill,.11 for s │ │ │ │ +002539f0: 6567 6d65 6e74 6174 696f 6e20 6661 756c egmentation faul │ │ │ │ +00253a00: 742c 2061 6e64 2031 3520 666f 7220 7465 t, and 15 for te │ │ │ │ +00253a10: 726d 696e 6174 696f 6e2e 2020 466f 7220 rmination. For │ │ │ │ +00253a20: 6465 7461 696c 732c 2073 6565 2074 6865 details, see the │ │ │ │ +00253a30: 206d 616e 0a70 6167 6520 6f66 2074 6865 man.page of the │ │ │ │ +00253a40: 206c 6962 6320 726f 7574 696e 6520 7379 libc routine sy │ │ │ │ +00253a50: 7374 656d 2829 2e0a 0a46 6f72 2074 6865 stem()...For the │ │ │ │ +00253a60: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +00253a70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00253a80: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +00253a90: 2072 756e 3a20 7275 6e2c 2069 7320 6120 run: run, is a │ │ │ │ +00253aa0: 2a6e 6f74 6520 636f 6d70 696c 6564 2066 *note compiled f │ │ │ │ +00253ab0: 756e 6374 696f 6e3a 2043 6f6d 7069 6c65 unction: Compile │ │ │ │ +00253ac0: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ 00253ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00253ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00253af0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00253b00: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00253b10: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00253b20: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00253b30: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00253b40: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00253b50: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00253b60: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -00253b70: 5f73 7973 7465 6d2e 6d32 3a38 3730 3a30 _system.m2:870:0 │ │ │ │ -00253b80: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ -00253b90: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ -00253ba0: 653a 2066 696e 6450 726f 6772 616d 2c20 e: findProgram, │ │ │ │ -00253bb0: 4e65 7874 3a20 7275 6e50 726f 6772 616d Next: runProgram │ │ │ │ -00253bc0: 2c20 5072 6576 3a20 7275 6e2c 2055 703a , Prev: run, Up: │ │ │ │ -00253bd0: 2063 6f6d 6d75 6e69 6361 7469 6e67 2077 communicating w │ │ │ │ -00253be0: 6974 6820 7072 6f67 7261 6d73 0a0a 6669 ith programs..fi │ │ │ │ -00253bf0: 6e64 5072 6f67 7261 6d20 2d2d 206c 6f61 ndProgram -- loa │ │ │ │ -00253c00: 6420 6578 7465 726e 616c 2070 726f 6772 d external progr │ │ │ │ -00253c10: 616d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a am.************* │ │ │ │ -00253c20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00253c30: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00253c40: 6765 3a20 0a20 2020 2020 2020 2066 696e ge: . fin │ │ │ │ -00253c50: 6450 726f 6772 616d 206e 616d 650a 2020 dProgram name. │ │ │ │ -00253c60: 2020 2020 2020 6669 6e64 5072 6f67 7261 findProgra │ │ │ │ -00253c70: 6d28 6e61 6d65 2c20 636d 6429 0a20 2020 m(name, cmd). │ │ │ │ -00253c80: 2020 2020 2066 696e 6450 726f 6772 616d findProgram │ │ │ │ -00253c90: 286e 616d 652c 2063 6d64 7329 0a20 202a (name, cmds). * │ │ │ │ -00253ca0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00253cb0: 206e 616d 652c 2061 202a 6e6f 7465 2073 name, a *note s │ │ │ │ -00253cc0: 7472 696e 673a 2053 7472 696e 672c 2c20 tring: String,, │ │ │ │ -00253cd0: 7468 6520 6e61 6d65 206f 6620 7468 6520 the name of the │ │ │ │ -00253ce0: 7072 6f67 7261 6d20 746f 206c 6f61 642e program to load. │ │ │ │ -00253cf0: 2020 5468 6973 0a20 2020 2020 2020 2073 This. s │ │ │ │ -00253d00: 686f 756c 6420 6d61 7463 6820 7468 6520 hould match the │ │ │ │ -00253d10: 636f 7272 6573 706f 6e64 696e 6720 6b65 corresponding ke │ │ │ │ -00253d20: 7920 696e 202a 6e6f 7465 2070 726f 6772 y in *note progr │ │ │ │ -00253d30: 616d 5061 7468 733a 0a20 2020 2020 2020 amPaths:. │ │ │ │ -00253d40: 2070 726f 6772 616d 5061 7468 732c 2e0a programPaths,.. │ │ │ │ -00253d50: 2020 2020 2020 2a20 636d 642c 2061 202a * cmd, a * │ │ │ │ -00253d60: 6e6f 7465 2073 7472 696e 673a 2053 7472 note string: Str │ │ │ │ -00253d70: 696e 672c 2c20 6120 636f 6d6d 616e 6420 ing,, a command │ │ │ │ -00253d80: 746f 2072 756e 2074 6861 7420 7368 6f75 to run that shou │ │ │ │ -00253d90: 6c64 2072 6574 7572 6e20 3020 6966 0a20 ld return 0 if. │ │ │ │ -00253da0: 2020 2020 2020 2074 6865 2070 726f 6772 the progr │ │ │ │ -00253db0: 616d 2069 7320 7072 6573 656e 742e 0a20 am is present.. │ │ │ │ -00253dc0: 2020 2020 202a 2063 6d64 732c 2061 202a * cmds, a * │ │ │ │ -00253dd0: 6e6f 7465 206c 6973 743a 204c 6973 742c note list: List, │ │ │ │ -00253de0: 2c20 6120 6c69 7374 206f 6620 636f 6d6d , a list of comm │ │ │ │ -00253df0: 616e 6473 2074 6f20 7275 6e20 7468 6174 ands to run that │ │ │ │ -00253e00: 2073 686f 756c 6420 616c 6c0a 2020 2020 should all. │ │ │ │ -00253e10: 2020 2020 7265 7475 726e 2030 2069 6620 return 0 if │ │ │ │ -00253e20: 7468 6520 7072 6f67 7261 6d20 6973 2070 the program is p │ │ │ │ -00253e30: 7265 7365 6e74 2e0a 2020 2a20 2a6e 6f74 resent.. * *not │ │ │ │ -00253e40: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -00253e50: 733a 2075 7369 6e67 2066 756e 6374 696f s: using functio │ │ │ │ -00253e60: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00253e70: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ -00253e80: 2a20 5261 6973 6545 7272 6f72 203d 3e20 * RaiseError => │ │ │ │ -00253e90: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ -00253ea0: 7661 6c75 653a 2042 6f6f 6c65 616e 2c2c value: Boolean,, │ │ │ │ -00253eb0: 2064 6566 6175 6c74 2076 616c 7565 2074 default value t │ │ │ │ -00253ec0: 7275 652c 0a20 2020 2020 2020 2077 6865 rue,. whe │ │ │ │ -00253ed0: 7468 6572 2074 6f20 7261 6973 6520 616e ther to raise an │ │ │ │ -00253ee0: 2065 7272 6f72 2069 6620 7468 6520 7072 error if the pr │ │ │ │ -00253ef0: 6f67 7261 6d20 6973 206e 6f74 2066 6f75 ogram is not fou │ │ │ │ -00253f00: 6e64 2e0a 2020 2020 2020 2a20 5665 7262 nd.. * Verb │ │ │ │ -00253f10: 6f73 6520 3d3e 2061 202a 6e6f 7465 2042 ose => a *note B │ │ │ │ -00253f20: 6f6f 6c65 616e 2076 616c 7565 3a20 426f oolean value: Bo │ │ │ │ -00253f30: 6f6c 6561 6e2c 2c20 6465 6661 756c 7420 olean,, default │ │ │ │ -00253f40: 7661 6c75 6520 6661 6c73 652c 0a20 2020 value false,. │ │ │ │ -00253f50: 2020 2020 2077 6865 7468 6572 2074 6f20 whether to │ │ │ │ -00253f60: 696e 666f 726d 2074 6865 2075 7365 7220 inform the user │ │ │ │ -00253f70: 6f66 2065 6163 6820 7061 7468 2074 6861 of each path tha │ │ │ │ -00253f80: 7420 6973 2063 6865 636b 6564 2e0a 2020 t is checked.. │ │ │ │ -00253f90: 2020 2020 2a20 5072 6566 6978 203d 3e20 * Prefix => │ │ │ │ -00253fa0: 6120 2a6e 6f74 6520 6c69 7374 3a20 4c69 a *note list: Li │ │ │ │ -00253fb0: 7374 2c2c 2064 6566 6175 6c74 2076 616c st,, default val │ │ │ │ -00253fc0: 7565 207b 7d2c 2061 206c 6973 7420 6f66 ue {}, a list of │ │ │ │ -00253fd0: 2073 6571 7565 6e63 6573 0a20 2020 2020 sequences. │ │ │ │ -00253fe0: 2020 2063 6f6e 7461 696e 696e 6720 7477 containing tw │ │ │ │ -00253ff0: 6f20 7374 7269 6e67 7320 6964 656e 7469 o strings identi │ │ │ │ -00254000: 6679 696e 6720 6120 7072 6566 6978 2074 fying a prefix t │ │ │ │ -00254010: 6861 7420 6973 2061 6464 6564 2074 6f20 hat is added to │ │ │ │ -00254020: 7468 650a 2020 2020 2020 2020 6578 6563 the. exec │ │ │ │ -00254030: 7574 6162 6c65 2062 696e 6172 6965 7320 utable binaries │ │ │ │ -00254040: 6265 6c6f 6e67 696e 6720 746f 2074 6865 belonging to the │ │ │ │ -00254050: 2070 726f 6772 616d 2062 7920 736f 6d65 program by some │ │ │ │ -00254060: 2064 6973 7472 6962 7574 696f 6e73 2e0a distributions.. │ │ │ │ -00254070: 2020 2020 2020 2020 5468 6573 6520 7365 These se │ │ │ │ -00254080: 7175 656e 6365 7320 7368 6f75 6c64 2062 quences should b │ │ │ │ -00254090: 6520 6f66 2074 6865 2066 6f72 6d20 2872 e of the form (r │ │ │ │ -002540a0: 6567 6578 2c20 7072 6566 6978 292c 2077 egex, prefix), w │ │ │ │ -002540b0: 6865 7265 2072 6567 6578 2069 7320 610a here regex is a. │ │ │ │ -002540c0: 2020 2020 2020 2020 2a6e 6f74 6520 7265 *note re │ │ │ │ -002540d0: 6775 6c61 7220 6578 7072 6573 7369 6f6e gular expression │ │ │ │ -002540e0: 3a20 7265 6775 6c61 7220 6578 7072 6573 : regular expres │ │ │ │ -002540f0: 7369 6f6e 732c 2074 6861 7420 7368 6f75 sions, that shou │ │ │ │ -00254100: 6c64 206d 6174 6368 2061 6c6c 0a20 2020 ld match all. │ │ │ │ -00254110: 2020 2020 2062 696e 6172 7920 6578 6563 binary exec │ │ │ │ -00254120: 7574 6162 6c65 7320 7468 6174 206e 6565 utables that nee │ │ │ │ -00254130: 6420 7468 6520 7072 6566 6978 2061 6e64 d the prefix and │ │ │ │ -00254140: 2070 7265 6669 7820 6973 2074 6865 2070 prefix is the p │ │ │ │ -00254150: 7265 6669 780a 2020 2020 2020 2020 6974 refix. it │ │ │ │ -00254160: 7365 6c66 2e0a 2020 2020 2020 2a20 4164 self.. * Ad │ │ │ │ -00254170: 6469 7469 6f6e 616c 5061 7468 7320 3d3e ditionalPaths => │ │ │ │ -00254180: 2061 202a 6e6f 7465 206c 6973 743a 204c a *note list: L │ │ │ │ -00254190: 6973 742c 2c20 6465 6661 756c 7420 7661 ist,, default va │ │ │ │ -002541a0: 6c75 6520 7b7d 2c20 6120 6c69 7374 206f lue {}, a list o │ │ │ │ -002541b0: 660a 2020 2020 2020 2020 7374 7269 6e67 f. string │ │ │ │ -002541c0: 7320 636f 6e74 6169 6e69 6e67 2061 6e79 s containing any │ │ │ │ -002541d0: 2070 6174 6873 2074 6f20 6368 6563 6b20 paths to check │ │ │ │ -002541e0: 666f 7220 7468 6520 7072 6f67 7261 6d20 for the program │ │ │ │ -002541f0: 696e 2061 6464 6974 696f 6e20 746f 0a20 in addition to. │ │ │ │ -00254200: 2020 2020 2020 2074 6865 2064 6566 6175 the defau │ │ │ │ -00254210: 6c74 206f 6e65 732e 0a20 2020 2020 202a lt ones.. * │ │ │ │ -00254220: 204d 696e 696d 756d 5665 7273 696f 6e20 MinimumVersion │ │ │ │ -00254230: 3d3e 2061 202a 6e6f 7465 2073 6571 7565 => a *note seque │ │ │ │ -00254240: 6e63 653a 2053 6571 7565 6e63 652c 2c20 nce: Sequence,, │ │ │ │ -00254250: 6465 6661 756c 7420 7661 6c75 6520 6e75 default value nu │ │ │ │ -00254260: 6c6c 2c0a 2020 2020 2020 2020 636f 6e74 ll,. cont │ │ │ │ -00254270: 6169 6e69 6e67 2074 776f 2073 7472 696e aining two strin │ │ │ │ -00254280: 6773 2074 6865 2066 6f72 6d20 286d 696e gs the form (min │ │ │ │ -00254290: 5665 7273 696f 6e2c 2076 6572 7369 6f6e Version, version │ │ │ │ -002542a0: 436f 6d6d 616e 6429 2077 6865 7265 0a20 Command) where. │ │ │ │ -002542b0: 2020 2020 2020 206d 696e 5665 7273 696f minVersio │ │ │ │ -002542c0: 6e20 6973 2074 6865 206d 696e 696d 756d n is the minimum │ │ │ │ -002542d0: 2072 6571 7569 7265 6420 7665 7273 696f required versio │ │ │ │ -002542e0: 6e20 6f66 2074 6865 2070 726f 6772 616d n of the program │ │ │ │ -002542f0: 2061 6e64 0a20 2020 2020 2020 2076 6572 and. ver │ │ │ │ -00254300: 7369 6f6e 436f 6d6d 616e 6420 6973 2061 sionCommand is a │ │ │ │ -00254310: 2073 6865 6c6c 2063 6f6d 6d61 6e64 2074 shell command t │ │ │ │ -00254320: 6f20 6f62 7461 696e 2074 6865 2076 6572 o obtain the ver │ │ │ │ -00254330: 7369 6f6e 206e 756d 6265 7220 6f66 2061 sion number of a │ │ │ │ -00254340: 6e0a 2020 2020 2020 2020 696e 7374 616c n. instal │ │ │ │ -00254350: 6c65 6420 7072 6f67 7261 6d2e 0a20 202a led program.. * │ │ │ │ -00254360: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00254370: 2a20 616e 2069 6e73 7461 6e63 6520 6f66 * an instance of │ │ │ │ -00254380: 2074 6865 2074 7970 6520 2a6e 6f74 6520 the type *note │ │ │ │ -00254390: 5072 6f67 7261 6d3a 2050 726f 6772 616d Program: Program │ │ │ │ -002543a0: 2c2c 2074 6865 2070 726f 6772 616d 2074 ,, the program t │ │ │ │ -002543b0: 6861 7420 7761 730a 2020 2020 2020 2020 hat was. │ │ │ │ -002543c0: 6c6f 6164 6564 2e20 2049 6620 7468 6520 loaded. If the │ │ │ │ -002543d0: 7072 6f67 7261 6d20 6973 206e 6f74 2066 program is not f │ │ │ │ -002543e0: 6f75 6e64 2061 6e64 2052 6169 7365 4572 ound and RaiseEr │ │ │ │ -002543f0: 726f 7220 6973 2073 6574 2074 6f20 2a6e ror is set to *n │ │ │ │ -00254400: 6f74 650a 2020 2020 2020 2020 6661 6c73 ote. fals │ │ │ │ -00254410: 653a 2066 616c 7365 2c2c 2074 6865 6e20 e: false,, then │ │ │ │ -00254420: 2a6e 6f74 6520 6e75 6c6c 3a20 6e75 6c6c *note null: null │ │ │ │ -00254430: 2c20 6973 2072 6574 7572 6e65 642e 0a0a , is returned... │ │ │ │ -00254440: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00254450: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6675 =======..This fu │ │ │ │ -00254460: 6e63 7469 6f6e 2063 6865 636b 7320 666f nction checks fo │ │ │ │ -00254470: 7220 7468 6520 6578 6973 7465 6e63 6520 r the existence │ │ │ │ -00254480: 6f66 2061 6e20 6578 7465 726e 616c 2070 of an external p │ │ │ │ -00254490: 726f 6772 616d 2062 7920 7275 6e6e 696e rogram by runnin │ │ │ │ -002544a0: 6720 636d 640a 286f 7220 6576 6572 7920 g cmd.(or every │ │ │ │ -002544b0: 656c 656d 656e 7420 6f66 2063 6d64 7329 element of cmds) │ │ │ │ -002544c0: 2c20 7072 6570 656e 6465 6420 7769 7468 , prepended with │ │ │ │ -002544d0: 2076 6172 696f 7573 2070 6174 6873 2069 various paths i │ │ │ │ -002544e0: 6e20 7468 6520 666f 6c6c 6f77 696e 670a n the following. │ │ │ │ -002544f0: 6f72 6465 723a 0a0a 2020 2a20 5468 6520 order:.. * The │ │ │ │ -00254500: 7573 6572 2d64 6566 696e 6564 2070 6174 user-defined pat │ │ │ │ -00254510: 6820 7370 6563 6966 6965 6420 6279 2070 h specified by p │ │ │ │ -00254520: 726f 6772 616d 5061 7468 7323 6e61 6d65 rogramPaths#name │ │ │ │ -00254530: 2c20 6966 2069 7420 6578 6973 7473 2e0a , if it exists.. │ │ │ │ -00254540: 2020 2a20 5468 6520 7061 7468 2073 7065 * The path spe │ │ │ │ -00254550: 6369 6669 6564 2062 7920 7072 6566 6978 cified by prefix │ │ │ │ -00254560: 4469 7265 6374 6f72 7920 7c20 6375 7272 Directory | curr │ │ │ │ -00254570: 656e 744c 6179 6f75 7423 2270 726f 6772 entLayout#"progr │ │ │ │ -00254580: 616d 7322 2c20 7768 6572 6520 7468 650a ams", where the. │ │ │ │ -00254590: 2020 2020 7072 6f67 7261 6d73 2073 6869 programs shi │ │ │ │ -002545a0: 7070 6564 2077 6974 6820 4d61 6361 756c pped with Macaul │ │ │ │ -002545b0: 6179 3220 6172 6520 696e 7374 616c 6c65 ay2 are installe │ │ │ │ -002545c0: 642e 0a20 202a 2045 6163 6820 7061 7468 d.. * Each path │ │ │ │ -002545d0: 2073 7065 6369 6669 6564 2062 7920 7468 specified by th │ │ │ │ -002545e0: 6520 4164 6469 7469 6f6e 616c 5061 7468 e AdditionalPath │ │ │ │ -002545f0: 7320 6f70 7469 6f6e 2e0a 2020 2a20 4561 s option.. * Ea │ │ │ │ -00254600: 6368 2070 6174 6820 7370 6563 6966 6965 ch path specifie │ │ │ │ -00254610: 6420 6279 2074 6865 2075 7365 7227 7320 d by the user's │ │ │ │ -00254620: 5041 5448 2065 6e76 6972 6f6e 6d65 6e74 PATH environment │ │ │ │ -00254630: 2076 6172 6961 626c 652e 0a20 202a 2054 variable.. * T │ │ │ │ -00254640: 6865 2070 6174 6820 746f 204d 322d 6269 he path to M2-bi │ │ │ │ -00254650: 6e61 7279 2e0a 0a46 6f72 2065 6163 6820 nary...For each │ │ │ │ -00254660: 7061 7468 2c20 616e 7920 7072 6566 6978 path, any prefix │ │ │ │ -00254670: 6573 2073 7065 6369 6669 6564 2062 7920 es specified by │ │ │ │ -00254680: 7468 6520 5072 6566 6978 206f 7074 696f the Prefix optio │ │ │ │ -00254690: 6e20 6172 6520 6368 6563 6b65 642e 0a0a n are checked... │ │ │ │ -002546a0: 4f6e 6365 2074 6869 7320 6973 2073 7563 Once this is suc │ │ │ │ -002546b0: 6365 7373 6675 6c20 2869 2e65 2e2c 2063 cessful (i.e., c │ │ │ │ -002546c0: 6d64 206f 7220 6561 6368 2065 6c65 6d65 md or each eleme │ │ │ │ -002546d0: 6e74 206f 6620 636d 6473 2072 6574 7572 nt of cmds retur │ │ │ │ -002546e0: 6e73 2061 2076 616c 7565 206f 660a 3029 ns a value of.0) │ │ │ │ -002546f0: 2074 6865 6e20 6120 2a6e 6f74 6520 5072 then a *note Pr │ │ │ │ -00254700: 6f67 7261 6d3a 2050 726f 6772 616d 2c20 ogram: Program, │ │ │ │ -00254710: 6f62 6a65 6374 2069 7320 7265 7475 726e object is return │ │ │ │ -00254720: 6564 2e20 2049 6620 6974 2069 7320 756e ed. If it is un │ │ │ │ -00254730: 7375 6363 6573 7366 756c 2c0a 7468 656e successful,.then │ │ │ │ -00254740: 2065 6974 6865 7220 616e 2065 7272 6f72 either an error │ │ │ │ -00254750: 2069 7320 7261 6973 6564 206f 7220 2a6e is raised or *n │ │ │ │ -00254760: 6f74 6520 6e75 6c6c 3a20 6e75 6c6c 2c20 ote null: null, │ │ │ │ -00254770: 6973 2072 6574 7572 6e65 642c 2064 6570 is returned, dep │ │ │ │ -00254780: 656e 6469 6e67 206f 6e0a 7468 6520 7661 ending on.the va │ │ │ │ -00254790: 6c75 6520 6f66 2052 6169 7365 4572 726f lue of RaiseErro │ │ │ │ -002547a0: 722e 0a0a 4e6f 7465 2074 6861 7420 6966 r...Note that if │ │ │ │ -002547b0: 2061 2070 726f 6772 616d 2063 6f6e 7369 a program consi │ │ │ │ -002547c0: 7374 7320 6f66 2061 2073 696e 676c 6520 sts of a single │ │ │ │ -002547d0: 6578 6563 7574 6162 6c65 2062 696e 6172 executable binar │ │ │ │ -002547e0: 7920 6669 6c65 2c20 7468 656e 206e 616d y file, then nam │ │ │ │ -002547f0: 650a 7368 6f75 6c64 2063 6f69 6e63 6964 e.should coincid │ │ │ │ -00254800: 6520 7769 7468 2074 6865 206e 616d 6520 e with the name │ │ │ │ -00254810: 6f66 2074 6869 7320 6669 6c65 2e0a 0a2b of this file...+ │ │ │ │ -00254820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00253b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00253b20: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00253b30: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00253b40: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00253b50: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00253b60: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00253b70: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00253b80: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +00253b90: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a38 c/ov_system.m2:8 │ │ │ │ +00253ba0: 3730 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 70:0....File: Ma │ │ │ │ +00253bb0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ +00253bc0: 204e 6f64 653a 2066 696e 6450 726f 6772 Node: findProgr │ │ │ │ +00253bd0: 616d 2c20 4e65 7874 3a20 7275 6e50 726f am, Next: runPro │ │ │ │ +00253be0: 6772 616d 2c20 5072 6576 3a20 7275 6e2c gram, Prev: run, │ │ │ │ +00253bf0: 2055 703a 2063 6f6d 6d75 6e69 6361 7469 Up: communicati │ │ │ │ +00253c00: 6e67 2077 6974 6820 7072 6f67 7261 6d73 ng with programs │ │ │ │ +00253c10: 0a0a 6669 6e64 5072 6f67 7261 6d20 2d2d ..findProgram -- │ │ │ │ +00253c20: 206c 6f61 6420 6578 7465 726e 616c 2070 load external p │ │ │ │ +00253c30: 726f 6772 616d 0a2a 2a2a 2a2a 2a2a 2a2a rogram.********* │ │ │ │ +00253c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00253c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00253c60: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +00253c70: 2066 696e 6450 726f 6772 616d 206e 616d findProgram nam │ │ │ │ +00253c80: 650a 2020 2020 2020 2020 6669 6e64 5072 e. findPr │ │ │ │ +00253c90: 6f67 7261 6d28 6e61 6d65 2c20 636d 6429 ogram(name, cmd) │ │ │ │ +00253ca0: 0a20 2020 2020 2020 2066 696e 6450 726f . findPro │ │ │ │ +00253cb0: 6772 616d 286e 616d 652c 2063 6d64 7329 gram(name, cmds) │ │ │ │ +00253cc0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00253cd0: 2020 202a 206e 616d 652c 2061 202a 6e6f * name, a *no │ │ │ │ +00253ce0: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ +00253cf0: 672c 2c20 7468 6520 6e61 6d65 206f 6620 g,, the name of │ │ │ │ +00253d00: 7468 6520 7072 6f67 7261 6d20 746f 206c the program to l │ │ │ │ +00253d10: 6f61 642e 2020 5468 6973 0a20 2020 2020 oad. This. │ │ │ │ +00253d20: 2020 2073 686f 756c 6420 6d61 7463 6820 should match │ │ │ │ +00253d30: 7468 6520 636f 7272 6573 706f 6e64 696e the correspondin │ │ │ │ +00253d40: 6720 6b65 7920 696e 202a 6e6f 7465 2070 g key in *note p │ │ │ │ +00253d50: 726f 6772 616d 5061 7468 733a 0a20 2020 rogramPaths:. │ │ │ │ +00253d60: 2020 2020 2070 726f 6772 616d 5061 7468 programPath │ │ │ │ +00253d70: 732c 2e0a 2020 2020 2020 2a20 636d 642c s,.. * cmd, │ │ │ │ +00253d80: 2061 202a 6e6f 7465 2073 7472 696e 673a a *note string: │ │ │ │ +00253d90: 2053 7472 696e 672c 2c20 6120 636f 6d6d String,, a comm │ │ │ │ +00253da0: 616e 6420 746f 2072 756e 2074 6861 7420 and to run that │ │ │ │ +00253db0: 7368 6f75 6c64 2072 6574 7572 6e20 3020 should return 0 │ │ │ │ +00253dc0: 6966 0a20 2020 2020 2020 2074 6865 2070 if. the p │ │ │ │ +00253dd0: 726f 6772 616d 2069 7320 7072 6573 656e rogram is presen │ │ │ │ +00253de0: 742e 0a20 2020 2020 202a 2063 6d64 732c t.. * cmds, │ │ │ │ +00253df0: 2061 202a 6e6f 7465 206c 6973 743a 204c a *note list: L │ │ │ │ +00253e00: 6973 742c 2c20 6120 6c69 7374 206f 6620 ist,, a list of │ │ │ │ +00253e10: 636f 6d6d 616e 6473 2074 6f20 7275 6e20 commands to run │ │ │ │ +00253e20: 7468 6174 2073 686f 756c 6420 616c 6c0a that should all. │ │ │ │ +00253e30: 2020 2020 2020 2020 7265 7475 726e 2030 return 0 │ │ │ │ +00253e40: 2069 6620 7468 6520 7072 6f67 7261 6d20 if the program │ │ │ │ +00253e50: 6973 2070 7265 7365 6e74 2e0a 2020 2a20 is present.. * │ │ │ │ +00253e60: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ +00253e70: 6e70 7574 733a 2075 7369 6e67 2066 756e nputs: using fun │ │ │ │ +00253e80: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +00253e90: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ +00253ea0: 2020 2020 2a20 5261 6973 6545 7272 6f72 * RaiseError │ │ │ │ +00253eb0: 203d 3e20 6120 2a6e 6f74 6520 426f 6f6c => a *note Bool │ │ │ │ +00253ec0: 6561 6e20 7661 6c75 653a 2042 6f6f 6c65 ean value: Boole │ │ │ │ +00253ed0: 616e 2c2c 2064 6566 6175 6c74 2076 616c an,, default val │ │ │ │ +00253ee0: 7565 2074 7275 652c 0a20 2020 2020 2020 ue true,. │ │ │ │ +00253ef0: 2077 6865 7468 6572 2074 6f20 7261 6973 whether to rais │ │ │ │ +00253f00: 6520 616e 2065 7272 6f72 2069 6620 7468 e an error if th │ │ │ │ +00253f10: 6520 7072 6f67 7261 6d20 6973 206e 6f74 e program is not │ │ │ │ +00253f20: 2066 6f75 6e64 2e0a 2020 2020 2020 2a20 found.. * │ │ │ │ +00253f30: 5665 7262 6f73 6520 3d3e 2061 202a 6e6f Verbose => a *no │ │ │ │ +00253f40: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ +00253f50: 3a20 426f 6f6c 6561 6e2c 2c20 6465 6661 : Boolean,, defa │ │ │ │ +00253f60: 756c 7420 7661 6c75 6520 6661 6c73 652c ult value false, │ │ │ │ +00253f70: 0a20 2020 2020 2020 2077 6865 7468 6572 . whether │ │ │ │ +00253f80: 2074 6f20 696e 666f 726d 2074 6865 2075 to inform the u │ │ │ │ +00253f90: 7365 7220 6f66 2065 6163 6820 7061 7468 ser of each path │ │ │ │ +00253fa0: 2074 6861 7420 6973 2063 6865 636b 6564 that is checked │ │ │ │ +00253fb0: 2e0a 2020 2020 2020 2a20 5072 6566 6978 .. * Prefix │ │ │ │ +00253fc0: 203d 3e20 6120 2a6e 6f74 6520 6c69 7374 => a *note list │ │ │ │ +00253fd0: 3a20 4c69 7374 2c2c 2064 6566 6175 6c74 : List,, default │ │ │ │ +00253fe0: 2076 616c 7565 207b 7d2c 2061 206c 6973 value {}, a lis │ │ │ │ +00253ff0: 7420 6f66 2073 6571 7565 6e63 6573 0a20 t of sequences. │ │ │ │ +00254000: 2020 2020 2020 2063 6f6e 7461 696e 696e containin │ │ │ │ +00254010: 6720 7477 6f20 7374 7269 6e67 7320 6964 g two strings id │ │ │ │ +00254020: 656e 7469 6679 696e 6720 6120 7072 6566 entifying a pref │ │ │ │ +00254030: 6978 2074 6861 7420 6973 2061 6464 6564 ix that is added │ │ │ │ +00254040: 2074 6f20 7468 650a 2020 2020 2020 2020 to the. │ │ │ │ +00254050: 6578 6563 7574 6162 6c65 2062 696e 6172 executable binar │ │ │ │ +00254060: 6965 7320 6265 6c6f 6e67 696e 6720 746f ies belonging to │ │ │ │ +00254070: 2074 6865 2070 726f 6772 616d 2062 7920 the program by │ │ │ │ +00254080: 736f 6d65 2064 6973 7472 6962 7574 696f some distributio │ │ │ │ +00254090: 6e73 2e0a 2020 2020 2020 2020 5468 6573 ns.. Thes │ │ │ │ +002540a0: 6520 7365 7175 656e 6365 7320 7368 6f75 e sequences shou │ │ │ │ +002540b0: 6c64 2062 6520 6f66 2074 6865 2066 6f72 ld be of the for │ │ │ │ +002540c0: 6d20 2872 6567 6578 2c20 7072 6566 6978 m (regex, prefix │ │ │ │ +002540d0: 292c 2077 6865 7265 2072 6567 6578 2069 ), where regex i │ │ │ │ +002540e0: 7320 610a 2020 2020 2020 2020 2a6e 6f74 s a. *not │ │ │ │ +002540f0: 6520 7265 6775 6c61 7220 6578 7072 6573 e regular expres │ │ │ │ +00254100: 7369 6f6e 3a20 7265 6775 6c61 7220 6578 sion: regular ex │ │ │ │ +00254110: 7072 6573 7369 6f6e 732c 2074 6861 7420 pressions, that │ │ │ │ +00254120: 7368 6f75 6c64 206d 6174 6368 2061 6c6c should match all │ │ │ │ +00254130: 0a20 2020 2020 2020 2062 696e 6172 7920 . binary │ │ │ │ +00254140: 6578 6563 7574 6162 6c65 7320 7468 6174 executables that │ │ │ │ +00254150: 206e 6565 6420 7468 6520 7072 6566 6978 need the prefix │ │ │ │ +00254160: 2061 6e64 2070 7265 6669 7820 6973 2074 and prefix is t │ │ │ │ +00254170: 6865 2070 7265 6669 780a 2020 2020 2020 he prefix. │ │ │ │ +00254180: 2020 6974 7365 6c66 2e0a 2020 2020 2020 itself.. │ │ │ │ +00254190: 2a20 4164 6469 7469 6f6e 616c 5061 7468 * AdditionalPath │ │ │ │ +002541a0: 7320 3d3e 2061 202a 6e6f 7465 206c 6973 s => a *note lis │ │ │ │ +002541b0: 743a 204c 6973 742c 2c20 6465 6661 756c t: List,, defaul │ │ │ │ +002541c0: 7420 7661 6c75 6520 7b7d 2c20 6120 6c69 t value {}, a li │ │ │ │ +002541d0: 7374 206f 660a 2020 2020 2020 2020 7374 st of. st │ │ │ │ +002541e0: 7269 6e67 7320 636f 6e74 6169 6e69 6e67 rings containing │ │ │ │ +002541f0: 2061 6e79 2070 6174 6873 2074 6f20 6368 any paths to ch │ │ │ │ +00254200: 6563 6b20 666f 7220 7468 6520 7072 6f67 eck for the prog │ │ │ │ +00254210: 7261 6d20 696e 2061 6464 6974 696f 6e20 ram in addition │ │ │ │ +00254220: 746f 0a20 2020 2020 2020 2074 6865 2064 to. the d │ │ │ │ +00254230: 6566 6175 6c74 206f 6e65 732e 0a20 2020 efault ones.. │ │ │ │ +00254240: 2020 202a 204d 696e 696d 756d 5665 7273 * MinimumVers │ │ │ │ +00254250: 696f 6e20 3d3e 2061 202a 6e6f 7465 2073 ion => a *note s │ │ │ │ +00254260: 6571 7565 6e63 653a 2053 6571 7565 6e63 equence: Sequenc │ │ │ │ +00254270: 652c 2c20 6465 6661 756c 7420 7661 6c75 e,, default valu │ │ │ │ +00254280: 6520 6e75 6c6c 2c0a 2020 2020 2020 2020 e null,. │ │ │ │ +00254290: 636f 6e74 6169 6e69 6e67 2074 776f 2073 containing two s │ │ │ │ +002542a0: 7472 696e 6773 2074 6865 2066 6f72 6d20 trings the form │ │ │ │ +002542b0: 286d 696e 5665 7273 696f 6e2c 2076 6572 (minVersion, ver │ │ │ │ +002542c0: 7369 6f6e 436f 6d6d 616e 6429 2077 6865 sionCommand) whe │ │ │ │ +002542d0: 7265 0a20 2020 2020 2020 206d 696e 5665 re. minVe │ │ │ │ +002542e0: 7273 696f 6e20 6973 2074 6865 206d 696e rsion is the min │ │ │ │ +002542f0: 696d 756d 2072 6571 7569 7265 6420 7665 imum required ve │ │ │ │ +00254300: 7273 696f 6e20 6f66 2074 6865 2070 726f rsion of the pro │ │ │ │ +00254310: 6772 616d 2061 6e64 0a20 2020 2020 2020 gram and. │ │ │ │ +00254320: 2076 6572 7369 6f6e 436f 6d6d 616e 6420 versionCommand │ │ │ │ +00254330: 6973 2061 2073 6865 6c6c 2063 6f6d 6d61 is a shell comma │ │ │ │ +00254340: 6e64 2074 6f20 6f62 7461 696e 2074 6865 nd to obtain the │ │ │ │ +00254350: 2076 6572 7369 6f6e 206e 756d 6265 7220 version number │ │ │ │ +00254360: 6f66 2061 6e0a 2020 2020 2020 2020 696e of an. in │ │ │ │ +00254370: 7374 616c 6c65 6420 7072 6f67 7261 6d2e stalled program. │ │ │ │ +00254380: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00254390: 2020 2020 2a20 616e 2069 6e73 7461 6e63 * an instanc │ │ │ │ +002543a0: 6520 6f66 2074 6865 2074 7970 6520 2a6e e of the type *n │ │ │ │ +002543b0: 6f74 6520 5072 6f67 7261 6d3a 2050 726f ote Program: Pro │ │ │ │ +002543c0: 6772 616d 2c2c 2074 6865 2070 726f 6772 gram,, the progr │ │ │ │ +002543d0: 616d 2074 6861 7420 7761 730a 2020 2020 am that was. │ │ │ │ +002543e0: 2020 2020 6c6f 6164 6564 2e20 2049 6620 loaded. If │ │ │ │ +002543f0: 7468 6520 7072 6f67 7261 6d20 6973 206e the program is n │ │ │ │ +00254400: 6f74 2066 6f75 6e64 2061 6e64 2052 6169 ot found and Rai │ │ │ │ +00254410: 7365 4572 726f 7220 6973 2073 6574 2074 seError is set t │ │ │ │ +00254420: 6f20 2a6e 6f74 650a 2020 2020 2020 2020 o *note. │ │ │ │ +00254430: 6661 6c73 653a 2066 616c 7365 2c2c 2074 false: false,, t │ │ │ │ +00254440: 6865 6e20 2a6e 6f74 6520 6e75 6c6c 3a20 hen *note null: │ │ │ │ +00254450: 6e75 6c6c 2c20 6973 2072 6574 7572 6e65 null, is returne │ │ │ │ +00254460: 642e 0a0a 4465 7363 7269 7074 696f 6e0a d...Description. │ │ │ │ +00254470: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +00254480: 7320 6675 6e63 7469 6f6e 2063 6865 636b s function check │ │ │ │ +00254490: 7320 666f 7220 7468 6520 6578 6973 7465 s for the existe │ │ │ │ +002544a0: 6e63 6520 6f66 2061 6e20 6578 7465 726e nce of an extern │ │ │ │ +002544b0: 616c 2070 726f 6772 616d 2062 7920 7275 al program by ru │ │ │ │ +002544c0: 6e6e 696e 6720 636d 640a 286f 7220 6576 nning cmd.(or ev │ │ │ │ +002544d0: 6572 7920 656c 656d 656e 7420 6f66 2063 ery element of c │ │ │ │ +002544e0: 6d64 7329 2c20 7072 6570 656e 6465 6420 mds), prepended │ │ │ │ +002544f0: 7769 7468 2076 6172 696f 7573 2070 6174 with various pat │ │ │ │ +00254500: 6873 2069 6e20 7468 6520 666f 6c6c 6f77 hs in the follow │ │ │ │ +00254510: 696e 670a 6f72 6465 723a 0a0a 2020 2a20 ing.order:.. * │ │ │ │ +00254520: 5468 6520 7573 6572 2d64 6566 696e 6564 The user-defined │ │ │ │ +00254530: 2070 6174 6820 7370 6563 6966 6965 6420 path specified │ │ │ │ +00254540: 6279 2070 726f 6772 616d 5061 7468 7323 by programPaths# │ │ │ │ +00254550: 6e61 6d65 2c20 6966 2069 7420 6578 6973 name, if it exis │ │ │ │ +00254560: 7473 2e0a 2020 2a20 5468 6520 7061 7468 ts.. * The path │ │ │ │ +00254570: 2073 7065 6369 6669 6564 2062 7920 7072 specified by pr │ │ │ │ +00254580: 6566 6978 4469 7265 6374 6f72 7920 7c20 efixDirectory | │ │ │ │ +00254590: 6375 7272 656e 744c 6179 6f75 7423 2270 currentLayout#"p │ │ │ │ +002545a0: 726f 6772 616d 7322 2c20 7768 6572 6520 rograms", where │ │ │ │ +002545b0: 7468 650a 2020 2020 7072 6f67 7261 6d73 the. programs │ │ │ │ +002545c0: 2073 6869 7070 6564 2077 6974 6820 4d61 shipped with Ma │ │ │ │ +002545d0: 6361 756c 6179 3220 6172 6520 696e 7374 caulay2 are inst │ │ │ │ +002545e0: 616c 6c65 642e 0a20 202a 2045 6163 6820 alled.. * Each │ │ │ │ +002545f0: 7061 7468 2073 7065 6369 6669 6564 2062 path specified b │ │ │ │ +00254600: 7920 7468 6520 4164 6469 7469 6f6e 616c y the Additional │ │ │ │ +00254610: 5061 7468 7320 6f70 7469 6f6e 2e0a 2020 Paths option.. │ │ │ │ +00254620: 2a20 4561 6368 2070 6174 6820 7370 6563 * Each path spec │ │ │ │ +00254630: 6966 6965 6420 6279 2074 6865 2075 7365 ified by the use │ │ │ │ +00254640: 7227 7320 5041 5448 2065 6e76 6972 6f6e r's PATH environ │ │ │ │ +00254650: 6d65 6e74 2076 6172 6961 626c 652e 0a20 ment variable.. │ │ │ │ +00254660: 202a 2054 6865 2070 6174 6820 746f 204d * The path to M │ │ │ │ +00254670: 322d 6269 6e61 7279 2e0a 0a46 6f72 2065 2-binary...For e │ │ │ │ +00254680: 6163 6820 7061 7468 2c20 616e 7920 7072 ach path, any pr │ │ │ │ +00254690: 6566 6978 6573 2073 7065 6369 6669 6564 efixes specified │ │ │ │ +002546a0: 2062 7920 7468 6520 5072 6566 6978 206f by the Prefix o │ │ │ │ +002546b0: 7074 696f 6e20 6172 6520 6368 6563 6b65 ption are checke │ │ │ │ +002546c0: 642e 0a0a 4f6e 6365 2074 6869 7320 6973 d...Once this is │ │ │ │ +002546d0: 2073 7563 6365 7373 6675 6c20 2869 2e65 successful (i.e │ │ │ │ +002546e0: 2e2c 2063 6d64 206f 7220 6561 6368 2065 ., cmd or each e │ │ │ │ +002546f0: 6c65 6d65 6e74 206f 6620 636d 6473 2072 lement of cmds r │ │ │ │ +00254700: 6574 7572 6e73 2061 2076 616c 7565 206f eturns a value o │ │ │ │ +00254710: 660a 3029 2074 6865 6e20 6120 2a6e 6f74 f.0) then a *not │ │ │ │ +00254720: 6520 5072 6f67 7261 6d3a 2050 726f 6772 e Program: Progr │ │ │ │ +00254730: 616d 2c20 6f62 6a65 6374 2069 7320 7265 am, object is re │ │ │ │ +00254740: 7475 726e 6564 2e20 2049 6620 6974 2069 turned. If it i │ │ │ │ +00254750: 7320 756e 7375 6363 6573 7366 756c 2c0a s unsuccessful,. │ │ │ │ +00254760: 7468 656e 2065 6974 6865 7220 616e 2065 then either an e │ │ │ │ +00254770: 7272 6f72 2069 7320 7261 6973 6564 206f rror is raised o │ │ │ │ +00254780: 7220 2a6e 6f74 6520 6e75 6c6c 3a20 6e75 r *note null: nu │ │ │ │ +00254790: 6c6c 2c20 6973 2072 6574 7572 6e65 642c ll, is returned, │ │ │ │ +002547a0: 2064 6570 656e 6469 6e67 206f 6e0a 7468 depending on.th │ │ │ │ +002547b0: 6520 7661 6c75 6520 6f66 2052 6169 7365 e value of Raise │ │ │ │ +002547c0: 4572 726f 722e 0a0a 4e6f 7465 2074 6861 Error...Note tha │ │ │ │ +002547d0: 7420 6966 2061 2070 726f 6772 616d 2063 t if a program c │ │ │ │ +002547e0: 6f6e 7369 7374 7320 6f66 2061 2073 696e onsists of a sin │ │ │ │ +002547f0: 676c 6520 6578 6563 7574 6162 6c65 2062 gle executable b │ │ │ │ +00254800: 696e 6172 7920 6669 6c65 2c20 7468 656e inary file, then │ │ │ │ +00254810: 206e 616d 650a 7368 6f75 6c64 2063 6f69 name.should coi │ │ │ │ +00254820: 6e63 6964 6520 7769 7468 2074 6865 206e ncide with the n │ │ │ │ +00254830: 616d 6520 6f66 2074 6869 7320 6669 6c65 ame of this file │ │ │ │ +00254840: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00254850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254860: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00254870: 7072 6f67 7261 6d50 6174 6873 2322 6766 programPaths#"gf │ │ │ │ -00254880: 616e 2220 3d20 222f 7061 7468 2f74 6f2f an" = "/path/to/ │ │ │ │ -00254890: 6766 616e 2f22 2020 2020 2020 2020 2020 gfan/" │ │ │ │ -002548a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002548b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00254860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00254890: 3120 3a20 7072 6f67 7261 6d50 6174 6873 1 : programPaths │ │ │ │ +002548a0: 2322 6766 616e 2220 3d20 222f 7061 7468 #"gfan" = "/path │ │ │ │ +002548b0: 2f74 6f2f 6766 616e 2f22 2020 2020 2020 /to/gfan/" │ │ │ │ 002548c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002548d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002548d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 002548e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002548f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00254900: 7c6f 3120 3d20 2f70 6174 682f 746f 2f67 |o1 = /path/to/g │ │ │ │ -00254910: 6661 6e2f 2020 2020 2020 2020 2020 2020 fan/ │ │ │ │ -00254920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254940: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -00254950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002548f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254920: 2020 7c0a 7c6f 3120 3d20 2f70 6174 682f |.|o1 = /path/ │ │ │ │ +00254930: 746f 2f67 6661 6e2f 2020 2020 2020 2020 to/gfan/ │ │ │ │ +00254940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254960: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 00254970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00254980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254990: 2d2d 2d2d 2b0a 7c69 3220 3a20 6766 616e ----+.|i2 : gfan │ │ │ │ -002549a0: 203d 2066 696e 6450 726f 6772 616d 2822 = findProgram(" │ │ │ │ -002549b0: 6766 616e 222c 2022 6766 616e 205f 7665 gfan", "gfan _ve │ │ │ │ -002549c0: 7273 696f 6e20 2d2d 6865 6c70 222c 2056 rsion --help", V │ │ │ │ -002549d0: 6572 626f 7365 203d 3e20 7472 7565 297c erbose => true)| │ │ │ │ -002549e0: 0a7c 202d 2d20 2f70 6174 682f 746f 2f67 .| -- /path/to/g │ │ │ │ -002549f0: 6661 6e2f 6766 616e 2064 6f65 7320 6e6f fan/gfan does no │ │ │ │ -00254a00: 7420 6578 6973 7420 2020 2020 2020 2020 t exist │ │ │ │ -00254a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254a20: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00254a30: 202f 7573 722f 6c69 6265 7865 632f 4d61 /usr/libexec/Ma │ │ │ │ -00254a40: 6361 756c 6179 322f 6269 6e2f 6766 616e caulay2/bin/gfan │ │ │ │ -00254a50: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -00254a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254a70: 2020 2020 207c 0a7c 202d 2d20 2f75 7372 |.| -- /usr │ │ │ │ -00254a80: 2f6c 6f63 616c 2f73 6269 6e2f 6766 616e /local/sbin/gfan │ │ │ │ -00254a90: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -00254aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254ac0: 7c0a 7c20 2d2d 202f 7573 722f 6c6f 6361 |.| -- /usr/loca │ │ │ │ -00254ad0: 6c2f 6269 6e2f 6766 616e 2064 6f65 7320 l/bin/gfan does │ │ │ │ -00254ae0: 6e6f 7420 6578 6973 7420 2020 2020 2020 not exist │ │ │ │ -00254af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254b00: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00254b10: 2d20 2f75 7372 2f73 6269 6e2f 6766 616e - /usr/sbin/gfan │ │ │ │ -00254b20: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -00254b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254b50: 2020 2020 2020 7c0a 7c20 2d2d 202f 7573 |.| -- /us │ │ │ │ -00254b60: 722f 6269 6e2f 6766 616e 2065 7869 7374 r/bin/gfan exist │ │ │ │ -00254b70: 7320 616e 6420 6973 2065 7865 6375 7461 s and is executa │ │ │ │ -00254b80: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ -00254b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254ba0: 207c 0a7c 202d 2d20 7275 6e6e 696e 6720 |.| -- running │ │ │ │ -00254bb0: 222f 7573 722f 6269 6e2f 6766 616e 205f "/usr/bin/gfan _ │ │ │ │ -00254bc0: 7665 7273 696f 6e20 2d2d 6865 6c70 223a version --help": │ │ │ │ -00254bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254be0: 2020 2020 2020 2020 2020 2020 7c0a 7c54 |.|T │ │ │ │ -00254bf0: 6869 7320 7072 6f67 7261 6d20 7772 6974 his program writ │ │ │ │ -00254c00: 6573 206f 7574 2076 6572 7369 6f6e 2069 es out version i │ │ │ │ -00254c10: 6e66 6f72 6d61 7469 6f6e 206f 6620 7468 nformation of th │ │ │ │ -00254c20: 6520 4766 616e 2069 6e73 7461 6c6c 6174 e Gfan installat │ │ │ │ -00254c30: 696f 6e2e 2020 207c 0a7c 202d 2d20 7265 ion. |.| -- re │ │ │ │ -00254c40: 7475 726e 2076 616c 7565 3a20 3020 2020 turn value: 0 │ │ │ │ -00254c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254c80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00254990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002549a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002549b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +002549c0: 6766 616e 203d 2066 696e 6450 726f 6772 gfan = findProgr │ │ │ │ +002549d0: 616d 2822 6766 616e 222c 2022 6766 616e am("gfan", "gfan │ │ │ │ +002549e0: 205f 7665 7273 696f 6e20 2d2d 6865 6c70 _version --help │ │ │ │ +002549f0: 222c 2056 6572 626f 7365 203d 3e20 7472 ", Verbose => tr │ │ │ │ +00254a00: 7565 297c 0a7c 202d 2d20 2f70 6174 682f ue)|.| -- /path/ │ │ │ │ +00254a10: 746f 2f67 6661 6e2f 6766 616e 2064 6f65 to/gfan/gfan doe │ │ │ │ +00254a20: 7320 6e6f 7420 6578 6973 7420 2020 2020 s not exist │ │ │ │ +00254a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254a40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00254a50: 7c20 2d2d 202f 7573 722f 6c69 6265 7865 | -- /usr/libexe │ │ │ │ +00254a60: 632f 4d61 6361 756c 6179 322f 6269 6e2f c/Macaulay2/bin/ │ │ │ │ +00254a70: 6766 616e 2064 6f65 7320 6e6f 7420 6578 gfan does not ex │ │ │ │ +00254a80: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00254a90: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +00254aa0: 2f75 7372 2f6c 6f63 616c 2f73 6269 6e2f /usr/local/sbin/ │ │ │ │ +00254ab0: 6766 616e 2064 6f65 7320 6e6f 7420 6578 gfan does not ex │ │ │ │ +00254ac0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00254ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254ae0: 2020 2020 7c0a 7c20 2d2d 202f 7573 722f |.| -- /usr/ │ │ │ │ +00254af0: 6c6f 6361 6c2f 6269 6e2f 6766 616e 2064 local/bin/gfan d │ │ │ │ +00254b00: 6f65 7320 6e6f 7420 6578 6973 7420 2020 oes not exist │ │ │ │ +00254b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00254b30: 0a7c 202d 2d20 2f75 7372 2f73 6269 6e2f .| -- /usr/sbin/ │ │ │ │ +00254b40: 6766 616e 2064 6f65 7320 6e6f 7420 6578 gfan does not ex │ │ │ │ +00254b50: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00254b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254b70: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +00254b80: 202f 7573 722f 6269 6e2f 6766 616e 2065 /usr/bin/gfan e │ │ │ │ +00254b90: 7869 7374 7320 616e 6420 6973 2065 7865 xists and is exe │ │ │ │ +00254ba0: 6375 7461 626c 6520 2020 2020 2020 2020 cutable │ │ │ │ +00254bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254bc0: 2020 2020 207c 0a7c 202d 2d20 7275 6e6e |.| -- runn │ │ │ │ +00254bd0: 696e 6720 222f 7573 722f 6269 6e2f 6766 ing "/usr/bin/gf │ │ │ │ +00254be0: 616e 205f 7665 7273 696f 6e20 2d2d 6865 an _version --he │ │ │ │ +00254bf0: 6c70 223a 2020 2020 2020 2020 2020 2020 lp": │ │ │ │ +00254c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254c10: 7c0a 7c54 6869 7320 7072 6f67 7261 6d20 |.|This program │ │ │ │ +00254c20: 7772 6974 6573 206f 7574 2076 6572 7369 writes out versi │ │ │ │ +00254c30: 6f6e 2069 6e66 6f72 6d61 7469 6f6e 206f on information o │ │ │ │ +00254c40: 6620 7468 6520 4766 616e 2069 6e73 7461 f the Gfan insta │ │ │ │ +00254c50: 6c6c 6174 696f 6e2e 2020 207c 0a7c 202d llation. |.| - │ │ │ │ +00254c60: 2d20 7265 7475 726e 2076 616c 7565 3a20 - return value: │ │ │ │ +00254c70: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00254c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00254c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254ca0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00254cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00254cd0: 6f32 203d 2067 6661 6e20 2020 2020 2020 o2 = gfan │ │ │ │ +00254cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00254ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254cf0: 207c 0a7c 6f32 203d 2067 6661 6e20 2020 |.|o2 = gfan │ │ │ │ 00254d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254d10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00254d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00254d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254d30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00254d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00254d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254d60: 2020 207c 0a7c 6f32 203a 2050 726f 6772 |.|o2 : Progr │ │ │ │ -00254d70: 616d 2020 2020 2020 2020 2020 2020 2020 am │ │ │ │ -00254d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254da0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00254db0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00254dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254d80: 2020 2020 2020 207c 0a7c 6f32 203a 2050 |.|o2 : P │ │ │ │ +00254d90: 726f 6772 616d 2020 2020 2020 2020 2020 rogram │ │ │ │ +00254da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254dd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00254de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254df0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4966 2063 ---------+..If c │ │ │ │ -00254e00: 6d64 2069 7320 6e6f 7420 7072 6f76 6964 md is not provid │ │ │ │ -00254e10: 6564 2c20 7468 656e 206e 616d 6520 6973 ed, then name is │ │ │ │ -00254e20: 2072 756e 2077 6974 6820 7468 6520 636f run with the co │ │ │ │ -00254e30: 6d6d 6f6e 202d 2d76 6572 7369 6f6e 2063 mmon --version c │ │ │ │ -00254e40: 6f6d 6d61 6e64 206c 696e 650a 6f70 7469 ommand line.opti │ │ │ │ -00254e50: 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d on...+---------- │ │ │ │ -00254e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254e70: 2d2b 0a7c 6933 203a 2066 696e 6450 726f -+.|i3 : findPro │ │ │ │ -00254e80: 6772 616d 2022 6e6f 726d 616c 697a 227c gram "normaliz"| │ │ │ │ -00254e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00254ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00254eb0: 6f33 203d 206e 6f72 6d61 6c69 7a20 2020 o3 = normaliz │ │ │ │ -00254ec0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00254ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00254ee0: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -00254ef0: 2050 726f 6772 616d 2020 2020 2020 2020 Program │ │ │ │ -00254f00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00254f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254f20: 2d2d 2d2d 2d2b 0a0a 4f6e 6520 7072 6f67 -----+..One prog │ │ │ │ -00254f30: 7261 6d20 7468 6174 2069 7320 7368 6970 ram that is ship │ │ │ │ -00254f40: 7065 6420 7769 7468 2061 2076 6172 6965 ped with a varie │ │ │ │ -00254f50: 7479 206f 6620 7072 6566 6978 6573 2069 ty of prefixes i │ │ │ │ -00254f60: 6e20 6469 6666 6572 656e 740a 6469 7374 n different.dist │ │ │ │ -00254f70: 7269 6275 7469 6f6e 7320 616e 6420 666f ributions and fo │ │ │ │ -00254f80: 7220 7768 6963 6820 7468 6520 5072 6566 r which the Pref │ │ │ │ -00254f90: 6978 206f 7074 696f 6e20 6973 2075 7365 ix option is use │ │ │ │ -00254fa0: 6675 6c20 6973 2054 4f50 434f 4d3a 0a0a ful is TOPCOM:.. │ │ │ │ -00254fb0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00254fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00254e20: 4966 2063 6d64 2069 7320 6e6f 7420 7072 If cmd is not pr │ │ │ │ +00254e30: 6f76 6964 6564 2c20 7468 656e 206e 616d ovided, then nam │ │ │ │ +00254e40: 6520 6973 2072 756e 2077 6974 6820 7468 e is run with th │ │ │ │ +00254e50: 6520 636f 6d6d 6f6e 202d 2d76 6572 7369 e common --versi │ │ │ │ +00254e60: 6f6e 2063 6f6d 6d61 6e64 206c 696e 650a on command line. │ │ │ │ +00254e70: 6f70 7469 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d option...+------ │ │ │ │ +00254e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254e90: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 696e -----+.|i3 : fin │ │ │ │ +00254ea0: 6450 726f 6772 616d 2022 6e6f 726d 616c dProgram "normal │ │ │ │ +00254eb0: 697a 227c 0a7c 2020 2020 2020 2020 2020 iz"|.| │ │ │ │ +00254ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00254ed0: 207c 0a7c 6f33 203d 206e 6f72 6d61 6c69 |.|o3 = normali │ │ │ │ +00254ee0: 7a20 2020 2020 2020 2020 2020 2020 207c z | │ │ │ │ +00254ef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00254f00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00254f10: 6f33 203a 2050 726f 6772 616d 2020 2020 o3 : Program │ │ │ │ +00254f20: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00254f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00254f40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4f6e 6520 ---------+..One │ │ │ │ +00254f50: 7072 6f67 7261 6d20 7468 6174 2069 7320 program that is │ │ │ │ +00254f60: 7368 6970 7065 6420 7769 7468 2061 2076 shipped with a v │ │ │ │ +00254f70: 6172 6965 7479 206f 6620 7072 6566 6978 ariety of prefix │ │ │ │ +00254f80: 6573 2069 6e20 6469 6666 6572 656e 740a es in different. │ │ │ │ +00254f90: 6469 7374 7269 6275 7469 6f6e 7320 616e distributions an │ │ │ │ +00254fa0: 6420 666f 7220 7768 6963 6820 7468 6520 d for which the │ │ │ │ +00254fb0: 5072 6566 6978 206f 7074 696f 6e20 6973 Prefix option is │ │ │ │ +00254fc0: 2075 7365 6675 6c20 6973 2054 4f50 434f useful is TOPCO │ │ │ │ +00254fd0: 4d3a 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d M:..+----------- │ │ │ │ 00254fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00254ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00255000: 7c69 3420 3a20 6669 6e64 5072 6f67 7261 |i4 : findProgra │ │ │ │ -00255010: 6d28 2274 6f70 636f 6d22 2c20 2263 7562 m("topcom", "cub │ │ │ │ -00255020: 6520 3322 2c20 5665 7262 6f73 6520 3d3e e 3", Verbose => │ │ │ │ -00255030: 2074 7275 652c 2050 7265 6669 7820 3d3e true, Prefix => │ │ │ │ -00255040: 207b 2020 2020 2020 2020 2020 2020 7c0a { |. │ │ │ │ -00255050: 7c20 2020 2020 2020 2822 2e2a 222c 2022 | (".*", " │ │ │ │ -00255060: 746f 7063 6f6d 2d22 292c 2020 2020 2020 topcom-"), │ │ │ │ -00255070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255090: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002550a0: 7c20 2020 2020 2020 2822 5e28 6372 6f73 | ("^(cros │ │ │ │ -002550b0: 737c 6375 6265 7c63 7963 6c69 637c 6879 s|cube|cyclic|hy │ │ │ │ -002550c0: 7065 7273 696d 706c 6578 7c6c 6174 7469 persimplex|latti │ │ │ │ -002550d0: 6365 2924 222c 2022 544f 5043 4f4d 2d22 ce)$", "TOPCOM-" │ │ │ │ -002550e0: 292c 2020 2020 2020 2020 2020 2020 7c0a ), |. │ │ │ │ -002550f0: 7c20 2020 2020 2020 2822 5e63 7562 6524 | ("^cube$ │ │ │ │ -00255100: 222c 2022 746f 7063 6f6d 5f22 297d 2920 ", "topcom_")}) │ │ │ │ -00255110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255130: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255140: 7c20 2d2d 202f 7573 722f 6c69 6265 7865 | -- /usr/libexe │ │ │ │ -00255150: 632f 4d61 6361 756c 6179 322f 6269 6e2f c/Macaulay2/bin/ │ │ │ │ -00255160: 6375 6265 2064 6f65 7320 6e6f 7420 6578 cube does not ex │ │ │ │ -00255170: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00255180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255190: 7c20 2d2d 202f 7573 722f 6c69 6265 7865 | -- /usr/libexe │ │ │ │ -002551a0: 632f 4d61 6361 756c 6179 322f 6269 6e2f c/Macaulay2/bin/ │ │ │ │ -002551b0: 746f 7063 6f6d 2d63 7562 6520 646f 6573 topcom-cube does │ │ │ │ -002551c0: 206e 6f74 2065 7869 7374 2020 2020 2020 not exist │ │ │ │ -002551d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002551e0: 7c20 2d2d 202f 7573 722f 6c69 6265 7865 | -- /usr/libexe │ │ │ │ -002551f0: 632f 4d61 6361 756c 6179 322f 6269 6e2f c/Macaulay2/bin/ │ │ │ │ -00255200: 544f 5043 4f4d 2d63 7562 6520 646f 6573 TOPCOM-cube does │ │ │ │ -00255210: 206e 6f74 2065 7869 7374 2020 2020 2020 not exist │ │ │ │ -00255220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255230: 7c20 2d2d 202f 7573 722f 6c69 6265 7865 | -- /usr/libexe │ │ │ │ -00255240: 632f 4d61 6361 756c 6179 322f 6269 6e2f c/Macaulay2/bin/ │ │ │ │ -00255250: 746f 7063 6f6d 5f63 7562 6520 646f 6573 topcom_cube does │ │ │ │ -00255260: 206e 6f74 2065 7869 7374 2020 2020 2020 not exist │ │ │ │ -00255270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255280: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -00255290: 7362 696e 2f63 7562 6520 646f 6573 206e sbin/cube does n │ │ │ │ -002552a0: 6f74 2065 7869 7374 2020 2020 2020 2020 ot exist │ │ │ │ -002552b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002552c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002552d0: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -002552e0: 7362 696e 2f74 6f70 636f 6d2d 6375 6265 sbin/topcom-cube │ │ │ │ -002552f0: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -00255300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255320: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -00255330: 7362 696e 2f54 4f50 434f 4d2d 6375 6265 sbin/TOPCOM-cube │ │ │ │ -00255340: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -00255350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255360: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255370: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -00255380: 7362 696e 2f74 6f70 636f 6d5f 6375 6265 sbin/topcom_cube │ │ │ │ -00255390: 2064 6f65 7320 6e6f 7420 6578 6973 7420 does not exist │ │ │ │ -002553a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002553b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002553c0: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -002553d0: 6269 6e2f 6375 6265 2064 6f65 7320 6e6f bin/cube does no │ │ │ │ -002553e0: 7420 6578 6973 7420 2020 2020 2020 2020 t exist │ │ │ │ -002553f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255410: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -00255420: 6269 6e2f 746f 7063 6f6d 2d63 7562 6520 bin/topcom-cube │ │ │ │ -00255430: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ -00255440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255460: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -00255470: 6269 6e2f 544f 5043 4f4d 2d63 7562 6520 bin/TOPCOM-cube │ │ │ │ -00255480: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ -00255490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002554a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002554b0: 7c20 2d2d 202f 7573 722f 6c6f 6361 6c2f | -- /usr/local/ │ │ │ │ -002554c0: 6269 6e2f 746f 7063 6f6d 5f63 7562 6520 bin/topcom_cube │ │ │ │ -002554d0: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ -002554e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002554f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255500: 7c20 2d2d 202f 7573 722f 7362 696e 2f63 | -- /usr/sbin/c │ │ │ │ -00255510: 7562 6520 646f 6573 206e 6f74 2065 7869 ube does not exi │ │ │ │ -00255520: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ -00255530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255550: 7c20 2d2d 202f 7573 722f 7362 696e 2f74 | -- /usr/sbin/t │ │ │ │ -00255560: 6f70 636f 6d2d 6375 6265 2064 6f65 7320 opcom-cube does │ │ │ │ -00255570: 6e6f 7420 6578 6973 7420 2020 2020 2020 not exist │ │ │ │ -00255580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002555a0: 7c20 2d2d 202f 7573 722f 7362 696e 2f54 | -- /usr/sbin/T │ │ │ │ -002555b0: 4f50 434f 4d2d 6375 6265 2064 6f65 7320 OPCOM-cube does │ │ │ │ -002555c0: 6e6f 7420 6578 6973 7420 2020 2020 2020 not exist │ │ │ │ -002555d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002555e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002555f0: 7c20 2d2d 202f 7573 722f 7362 696e 2f74 | -- /usr/sbin/t │ │ │ │ -00255600: 6f70 636f 6d5f 6375 6265 2064 6f65 7320 opcom_cube does │ │ │ │ -00255610: 6e6f 7420 6578 6973 7420 2020 2020 2020 not exist │ │ │ │ -00255620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255630: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255640: 7c20 2d2d 202f 7573 722f 6269 6e2f 6375 | -- /usr/bin/cu │ │ │ │ -00255650: 6265 2064 6f65 7320 6e6f 7420 6578 6973 be does not exis │ │ │ │ -00255660: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00255670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255690: 7c20 2d2d 202f 7573 722f 6269 6e2f 746f | -- /usr/bin/to │ │ │ │ -002556a0: 7063 6f6d 2d63 7562 6520 6578 6973 7473 pcom-cube exists │ │ │ │ -002556b0: 2061 6e64 2069 7320 6578 6563 7574 6162 and is executab │ │ │ │ -002556c0: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ -002556d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002556e0: 7c20 2d2d 2072 756e 6e69 6e67 2022 2f75 | -- running "/u │ │ │ │ -002556f0: 7372 2f62 696e 2f74 6f70 636f 6d2d 6375 sr/bin/topcom-cu │ │ │ │ -00255700: 6265 2033 223a 2020 2020 2020 2020 2020 be 3": │ │ │ │ -00255710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255730: 7c5b 5b30 2c30 2c30 2c31 5d2c 5b31 2c30 |[[0,0,0,1],[1,0 │ │ │ │ -00255740: 2c30 2c31 5d2c 5b30 2c31 2c30 2c31 5d2c ,0,1],[0,1,0,1], │ │ │ │ -00255750: 5b31 2c31 2c30 2c31 5d2c 5b30 2c30 2c31 [1,1,0,1],[0,0,1 │ │ │ │ -00255760: 2c31 5d2c 5b31 2c30 2c31 2c31 5d2c 5b30 ,1],[1,0,1,1],[0 │ │ │ │ -00255770: 2c31 2c31 2c31 5d2c 5b31 2c31 2c31 7c0a ,1,1,1],[1,1,1|. │ │ │ │ -00255780: 7c5b 5b37 2c36 2c35 2c34 2c33 2c32 2c31 |[[7,6,5,4,3,2,1 │ │ │ │ -00255790: 2c30 5d2c 5b36 2c37 2c34 2c35 2c32 2c33 ,0],[6,7,4,5,2,3 │ │ │ │ -002557a0: 2c30 2c31 5d2c 5b34 2c36 2c35 2c37 2c30 ,0,1],[4,6,5,7,0 │ │ │ │ -002557b0: 2c32 2c31 2c33 5d2c 5b30 2c34 2c32 2c36 ,2,1,3],[0,4,2,6 │ │ │ │ -002557c0: 2c31 2c35 2c33 2c37 5d5d 2020 2020 7c0a ,1,5,3,7]] |. │ │ │ │ -002557d0: 7c20 2d2d 2072 6574 7572 6e20 7661 6c75 | -- return valu │ │ │ │ -002557e0: 653a 2030 2020 2020 2020 2020 2020 2020 e: 0 │ │ │ │ -002557f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255820: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00254ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255020: 2d2d 2b0a 7c69 3420 3a20 6669 6e64 5072 --+.|i4 : findPr │ │ │ │ +00255030: 6f67 7261 6d28 2274 6f70 636f 6d22 2c20 ogram("topcom", │ │ │ │ +00255040: 2263 7562 6520 3322 2c20 5665 7262 6f73 "cube 3", Verbos │ │ │ │ +00255050: 6520 3d3e 2074 7275 652c 2050 7265 6669 e => true, Prefi │ │ │ │ +00255060: 7820 3d3e 207b 2020 2020 2020 2020 2020 x => { │ │ │ │ +00255070: 2020 7c0a 7c20 2020 2020 2020 2822 2e2a |.| (".* │ │ │ │ +00255080: 222c 2022 746f 7063 6f6d 2d22 292c 2020 ", "topcom-"), │ │ │ │ +00255090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002550a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002550b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002550c0: 2020 7c0a 7c20 2020 2020 2020 2822 5e28 |.| ("^( │ │ │ │ +002550d0: 6372 6f73 737c 6375 6265 7c63 7963 6c69 cross|cube|cycli │ │ │ │ +002550e0: 637c 6879 7065 7273 696d 706c 6578 7c6c c|hypersimplex|l │ │ │ │ +002550f0: 6174 7469 6365 2924 222c 2022 544f 5043 attice)$", "TOPC │ │ │ │ +00255100: 4f4d 2d22 292c 2020 2020 2020 2020 2020 OM-"), │ │ │ │ +00255110: 2020 7c0a 7c20 2020 2020 2020 2822 5e63 |.| ("^c │ │ │ │ +00255120: 7562 6524 222c 2022 746f 7063 6f6d 5f22 ube$", "topcom_" │ │ │ │ +00255130: 297d 2920 2020 2020 2020 2020 2020 2020 )}) │ │ │ │ +00255140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255160: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c69 |.| -- /usr/li │ │ │ │ +00255170: 6265 7865 632f 4d61 6361 756c 6179 322f bexec/Macaulay2/ │ │ │ │ +00255180: 6269 6e2f 6375 6265 2064 6f65 7320 6e6f bin/cube does no │ │ │ │ +00255190: 7420 6578 6973 7420 2020 2020 2020 2020 t exist │ │ │ │ +002551a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002551b0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c69 |.| -- /usr/li │ │ │ │ +002551c0: 6265 7865 632f 4d61 6361 756c 6179 322f bexec/Macaulay2/ │ │ │ │ +002551d0: 6269 6e2f 746f 7063 6f6d 2d63 7562 6520 bin/topcom-cube │ │ │ │ +002551e0: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ +002551f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255200: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c69 |.| -- /usr/li │ │ │ │ +00255210: 6265 7865 632f 4d61 6361 756c 6179 322f bexec/Macaulay2/ │ │ │ │ +00255220: 6269 6e2f 544f 5043 4f4d 2d63 7562 6520 bin/TOPCOM-cube │ │ │ │ +00255230: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ +00255240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255250: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c69 |.| -- /usr/li │ │ │ │ +00255260: 6265 7865 632f 4d61 6361 756c 6179 322f bexec/Macaulay2/ │ │ │ │ +00255270: 6269 6e2f 746f 7063 6f6d 5f63 7562 6520 bin/topcom_cube │ │ │ │ +00255280: 646f 6573 206e 6f74 2065 7869 7374 2020 does not exist │ │ │ │ +00255290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002552a0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +002552b0: 6361 6c2f 7362 696e 2f63 7562 6520 646f cal/sbin/cube do │ │ │ │ +002552c0: 6573 206e 6f74 2065 7869 7374 2020 2020 es not exist │ │ │ │ +002552d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002552e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002552f0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +00255300: 6361 6c2f 7362 696e 2f74 6f70 636f 6d2d cal/sbin/topcom- │ │ │ │ +00255310: 6375 6265 2064 6f65 7320 6e6f 7420 6578 cube does not ex │ │ │ │ +00255320: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00255330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255340: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +00255350: 6361 6c2f 7362 696e 2f54 4f50 434f 4d2d cal/sbin/TOPCOM- │ │ │ │ +00255360: 6375 6265 2064 6f65 7320 6e6f 7420 6578 cube does not ex │ │ │ │ +00255370: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00255380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255390: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +002553a0: 6361 6c2f 7362 696e 2f74 6f70 636f 6d5f cal/sbin/topcom_ │ │ │ │ +002553b0: 6375 6265 2064 6f65 7320 6e6f 7420 6578 cube does not ex │ │ │ │ +002553c0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +002553d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002553e0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +002553f0: 6361 6c2f 6269 6e2f 6375 6265 2064 6f65 cal/bin/cube doe │ │ │ │ +00255400: 7320 6e6f 7420 6578 6973 7420 2020 2020 s not exist │ │ │ │ +00255410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255430: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +00255440: 6361 6c2f 6269 6e2f 746f 7063 6f6d 2d63 cal/bin/topcom-c │ │ │ │ +00255450: 7562 6520 646f 6573 206e 6f74 2065 7869 ube does not exi │ │ │ │ +00255460: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00255470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255480: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +00255490: 6361 6c2f 6269 6e2f 544f 5043 4f4d 2d63 cal/bin/TOPCOM-c │ │ │ │ +002554a0: 7562 6520 646f 6573 206e 6f74 2065 7869 ube does not exi │ │ │ │ +002554b0: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +002554c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002554d0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6c6f |.| -- /usr/lo │ │ │ │ +002554e0: 6361 6c2f 6269 6e2f 746f 7063 6f6d 5f63 cal/bin/topcom_c │ │ │ │ +002554f0: 7562 6520 646f 6573 206e 6f74 2065 7869 ube does not exi │ │ │ │ +00255500: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ +00255510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255520: 2020 7c0a 7c20 2d2d 202f 7573 722f 7362 |.| -- /usr/sb │ │ │ │ +00255530: 696e 2f63 7562 6520 646f 6573 206e 6f74 in/cube does not │ │ │ │ +00255540: 2065 7869 7374 2020 2020 2020 2020 2020 exist │ │ │ │ +00255550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255570: 2020 7c0a 7c20 2d2d 202f 7573 722f 7362 |.| -- /usr/sb │ │ │ │ +00255580: 696e 2f74 6f70 636f 6d2d 6375 6265 2064 in/topcom-cube d │ │ │ │ +00255590: 6f65 7320 6e6f 7420 6578 6973 7420 2020 oes not exist │ │ │ │ +002555a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002555b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002555c0: 2020 7c0a 7c20 2d2d 202f 7573 722f 7362 |.| -- /usr/sb │ │ │ │ +002555d0: 696e 2f54 4f50 434f 4d2d 6375 6265 2064 in/TOPCOM-cube d │ │ │ │ +002555e0: 6f65 7320 6e6f 7420 6578 6973 7420 2020 oes not exist │ │ │ │ +002555f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255610: 2020 7c0a 7c20 2d2d 202f 7573 722f 7362 |.| -- /usr/sb │ │ │ │ +00255620: 696e 2f74 6f70 636f 6d5f 6375 6265 2064 in/topcom_cube d │ │ │ │ +00255630: 6f65 7320 6e6f 7420 6578 6973 7420 2020 oes not exist │ │ │ │ +00255640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255660: 2020 7c0a 7c20 2d2d 202f 7573 722f 6269 |.| -- /usr/bi │ │ │ │ +00255670: 6e2f 6375 6265 2064 6f65 7320 6e6f 7420 n/cube does not │ │ │ │ +00255680: 6578 6973 7420 2020 2020 2020 2020 2020 exist │ │ │ │ +00255690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002556a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002556b0: 2020 7c0a 7c20 2d2d 202f 7573 722f 6269 |.| -- /usr/bi │ │ │ │ +002556c0: 6e2f 746f 7063 6f6d 2d63 7562 6520 6578 n/topcom-cube ex │ │ │ │ +002556d0: 6973 7473 2061 6e64 2069 7320 6578 6563 ists and is exec │ │ │ │ +002556e0: 7574 6162 6c65 2020 2020 2020 2020 2020 utable │ │ │ │ +002556f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255700: 2020 7c0a 7c20 2d2d 2072 756e 6e69 6e67 |.| -- running │ │ │ │ +00255710: 2022 2f75 7372 2f62 696e 2f74 6f70 636f "/usr/bin/topco │ │ │ │ +00255720: 6d2d 6375 6265 2033 223a 2020 2020 2020 m-cube 3": │ │ │ │ +00255730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255750: 2020 7c0a 7c5b 5b30 2c30 2c30 2c31 5d2c |.|[[0,0,0,1], │ │ │ │ +00255760: 5b31 2c30 2c30 2c31 5d2c 5b30 2c31 2c30 [1,0,0,1],[0,1,0 │ │ │ │ +00255770: 2c31 5d2c 5b31 2c31 2c30 2c31 5d2c 5b30 ,1],[1,1,0,1],[0 │ │ │ │ +00255780: 2c30 2c31 2c31 5d2c 5b31 2c30 2c31 2c31 ,0,1,1],[1,0,1,1 │ │ │ │ +00255790: 5d2c 5b30 2c31 2c31 2c31 5d2c 5b31 2c31 ],[0,1,1,1],[1,1 │ │ │ │ +002557a0: 2c31 7c0a 7c5b 5b37 2c36 2c35 2c34 2c33 ,1|.|[[7,6,5,4,3 │ │ │ │ +002557b0: 2c32 2c31 2c30 5d2c 5b36 2c37 2c34 2c35 ,2,1,0],[6,7,4,5 │ │ │ │ +002557c0: 2c32 2c33 2c30 2c31 5d2c 5b34 2c36 2c35 ,2,3,0,1],[4,6,5 │ │ │ │ +002557d0: 2c37 2c30 2c32 2c31 2c33 5d2c 5b30 2c34 ,7,0,2,1,3],[0,4 │ │ │ │ +002557e0: 2c32 2c36 2c31 2c35 2c33 2c37 5d5d 2020 ,2,6,1,5,3,7]] │ │ │ │ +002557f0: 2020 7c0a 7c20 2d2d 2072 6574 7572 6e20 |.| -- return │ │ │ │ +00255800: 7661 6c75 653a 2030 2020 2020 2020 2020 value: 0 │ │ │ │ +00255810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00255830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00255850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255870: 7c6f 3420 3d20 746f 7063 6f6d 2020 2020 |o4 = topcom │ │ │ │ +00255860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00255880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255890: 2020 7c0a 7c6f 3420 3d20 746f 7063 6f6d |.|o4 = topcom │ │ │ │ 002558a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002558b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002558c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +002558b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002558c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002558d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002558e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002558e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 002558f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255900: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255910: 7c6f 3420 3a20 5072 6f67 7261 6d20 2020 |o4 : Program │ │ │ │ +00255900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00255920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255960: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ -00255970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00255980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255930: 2020 7c0a 7c6f 3420 3a20 5072 6f67 7261 |.|o4 : Progra │ │ │ │ +00255940: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +00255950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255980: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00255990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002559a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -002559b0: 7c2c 315d 5d20 2020 2020 2020 2020 2020 |,1]] │ │ │ │ -002559c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002559d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002559a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002559b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002559c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002559d0: 2d2d 7c0a 7c2c 315d 5d20 2020 2020 2020 --|.|,1]] │ │ │ │ 002559e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002559f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00255a00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00255a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00255a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002559f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255a20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00255a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00255a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00255a50: 0a4e 6f74 6520 7468 6174 2077 6865 6e20 .Note that when │ │ │ │ -00255a60: 7573 696e 6720 7468 6520 4d69 6e69 6d75 using the Minimu │ │ │ │ -00255a70: 6d56 6572 7369 6f6e 206f 7074 696f 6e2c mVersion option, │ │ │ │ -00255a80: 2074 6865 2063 6f6d 6d61 6e64 2075 7365 the command use │ │ │ │ -00255a90: 6420 746f 206f 6274 6169 6e20 7468 650a d to obtain the. │ │ │ │ -00255aa0: 6375 7272 656e 7420 7665 7273 696f 6e20 current version │ │ │ │ -00255ab0: 6e75 6d62 6572 206d 7573 7420 7265 6d6f number must remo │ │ │ │ -00255ac0: 7665 2065 7665 7279 7468 696e 6720 6578 ve everything ex │ │ │ │ -00255ad0: 6365 7074 2074 6865 2076 6572 7369 6f6e cept the version │ │ │ │ -00255ae0: 206e 756d 6265 7220 6974 7365 6c66 0a61 number itself.a │ │ │ │ -00255af0: 6e64 2061 6e79 206c 6561 6469 6e67 206f nd any leading o │ │ │ │ -00255b00: 7220 7472 6169 6c69 6e67 2077 6869 7465 r trailing white │ │ │ │ -00255b10: 7370 6163 652e 2020 5069 7069 6e67 2077 space. Piping w │ │ │ │ -00255b20: 6974 6820 7374 616e 6461 7264 2055 4e49 ith standard UNI │ │ │ │ -00255b30: 5820 7574 696c 6974 6965 730a 7375 6368 X utilities.such │ │ │ │ -00255b40: 2061 7320 7365 642c 2068 6561 642c 2074 as sed, head, t │ │ │ │ -00255b50: 6169 6c2c 2063 7574 2c20 616e 6420 7472 ail, cut, and tr │ │ │ │ -00255b60: 206d 6179 2062 6520 7573 6566 756c 2e0a may be useful.. │ │ │ │ -00255b70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00255b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00255b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255a70: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2077 --+..Note that w │ │ │ │ +00255a80: 6865 6e20 7573 696e 6720 7468 6520 4d69 hen using the Mi │ │ │ │ +00255a90: 6e69 6d75 6d56 6572 7369 6f6e 206f 7074 nimumVersion opt │ │ │ │ +00255aa0: 696f 6e2c 2074 6865 2063 6f6d 6d61 6e64 ion, the command │ │ │ │ +00255ab0: 2075 7365 6420 746f 206f 6274 6169 6e20 used to obtain │ │ │ │ +00255ac0: 7468 650a 6375 7272 656e 7420 7665 7273 the.current vers │ │ │ │ +00255ad0: 696f 6e20 6e75 6d62 6572 206d 7573 7420 ion number must │ │ │ │ +00255ae0: 7265 6d6f 7665 2065 7665 7279 7468 696e remove everythin │ │ │ │ +00255af0: 6720 6578 6365 7074 2074 6865 2076 6572 g except the ver │ │ │ │ +00255b00: 7369 6f6e 206e 756d 6265 7220 6974 7365 sion number itse │ │ │ │ +00255b10: 6c66 0a61 6e64 2061 6e79 206c 6561 6469 lf.and any leadi │ │ │ │ +00255b20: 6e67 206f 7220 7472 6169 6c69 6e67 2077 ng or trailing w │ │ │ │ +00255b30: 6869 7465 7370 6163 652e 2020 5069 7069 hitespace. Pipi │ │ │ │ +00255b40: 6e67 2077 6974 6820 7374 616e 6461 7264 ng with standard │ │ │ │ +00255b50: 2055 4e49 5820 7574 696c 6974 6965 730a UNIX utilities. │ │ │ │ +00255b60: 7375 6368 2061 7320 7365 642c 2068 6561 such as sed, hea │ │ │ │ +00255b70: 642c 2074 6169 6c2c 2063 7574 2c20 616e d, tail, cut, an │ │ │ │ +00255b80: 6420 7472 206d 6179 2062 6520 7573 6566 d tr may be usef │ │ │ │ +00255b90: 756c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ul...+---------- │ │ │ │ 00255ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00255bb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2066 -------+.|i5 : f │ │ │ │ -00255bc0: 696e 6450 726f 6772 616d 2822 6766 616e indProgram("gfan │ │ │ │ -00255bd0: 222c 2022 6766 616e 205f 7665 7273 696f ", "gfan _versio │ │ │ │ -00255be0: 6e20 2d2d 6865 6c70 222c 2056 6572 626f n --help", Verbo │ │ │ │ -00255bf0: 7365 203d 3e20 7472 7565 2c20 2020 207c se => true, | │ │ │ │ -00255c00: 0a7c 2020 2020 2020 204d 696e 696d 756d .| Minimum │ │ │ │ -00255c10: 5665 7273 696f 6e20 3d3e 2028 2230 2e35 Version => ("0.5 │ │ │ │ -00255c20: 222c 2020 2020 2020 2020 2020 2020 2020 ", │ │ │ │ -00255c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255c40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00255c50: 2267 6661 6e20 5f76 6572 7369 6f6e 207c "gfan _version | │ │ │ │ -00255c60: 2068 6561 6420 2d32 207c 2074 6169 6c20 head -2 | tail │ │ │ │ -00255c70: 2d31 207c 2073 6564 2027 732f 6766 616e -1 | sed 's/gfan │ │ │ │ -00255c80: 2f2f 2722 2929 2020 2020 2020 2020 207c //'")) | │ │ │ │ -00255c90: 0a7c 202d 2d20 2f70 6174 682f 746f 2f67 .| -- /path/to/g │ │ │ │ -00255ca0: 6661 6e2f 6766 616e 2064 6f65 7320 6e6f fan/gfan does no │ │ │ │ -00255cb0: 7420 6578 6973 7420 2020 2020 2020 2020 t exist │ │ │ │ -00255cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255cd0: 2020 2020 2020 207c 0a7c 202d 2d20 2f75 |.| -- /u │ │ │ │ -00255ce0: 7372 2f6c 6962 6578 6563 2f4d 6163 6175 sr/libexec/Macau │ │ │ │ -00255cf0: 6c61 7932 2f62 696e 2f67 6661 6e20 646f lay2/bin/gfan do │ │ │ │ -00255d00: 6573 206e 6f74 2065 7869 7374 2020 2020 es not exist │ │ │ │ -00255d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00255d20: 0a7c 202d 2d20 2f75 7372 2f6c 6f63 616c .| -- /usr/local │ │ │ │ -00255d30: 2f73 6269 6e2f 6766 616e 2064 6f65 7320 /sbin/gfan does │ │ │ │ -00255d40: 6e6f 7420 6578 6973 7420 2020 2020 2020 not exist │ │ │ │ -00255d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255d60: 2020 2020 2020 207c 0a7c 202d 2d20 2f75 |.| -- /u │ │ │ │ -00255d70: 7372 2f6c 6f63 616c 2f62 696e 2f67 6661 sr/local/bin/gfa │ │ │ │ -00255d80: 6e20 646f 6573 206e 6f74 2065 7869 7374 n does not exist │ │ │ │ -00255d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00255db0: 0a7c 202d 2d20 2f75 7372 2f73 6269 6e2f .| -- /usr/sbin/ │ │ │ │ -00255dc0: 6766 616e 2064 6f65 7320 6e6f 7420 6578 gfan does not ex │ │ │ │ -00255dd0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00255de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255df0: 2020 2020 2020 207c 0a7c 202d 2d20 2f75 |.| -- /u │ │ │ │ -00255e00: 7372 2f62 696e 2f67 6661 6e20 6578 6973 sr/bin/gfan exis │ │ │ │ -00255e10: 7473 2061 6e64 2069 7320 6578 6563 7574 ts and is execut │ │ │ │ -00255e20: 6162 6c65 2020 2020 2020 2020 2020 2020 able │ │ │ │ -00255e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00255e40: 0a7c 202d 2d20 7275 6e6e 696e 6720 222f .| -- running "/ │ │ │ │ -00255e50: 7573 722f 6269 6e2f 6766 616e 205f 7665 usr/bin/gfan _ve │ │ │ │ -00255e60: 7273 696f 6e20 2d2d 6865 6c70 223a 2020 rsion --help": │ │ │ │ -00255e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255e80: 2020 2020 2020 207c 0a7c 5468 6973 2070 |.|This p │ │ │ │ -00255e90: 726f 6772 616d 2077 7269 7465 7320 6f75 rogram writes ou │ │ │ │ -00255ea0: 7420 7665 7273 696f 6e20 696e 666f 726d t version inform │ │ │ │ -00255eb0: 6174 696f 6e20 6f66 2074 6865 2047 6661 ation of the Gfa │ │ │ │ -00255ec0: 6e20 696e 7374 616c 6c61 7469 6f6e 2e7c n installation.| │ │ │ │ -00255ed0: 0a7c 202d 2d20 7265 7475 726e 2076 616c .| -- return val │ │ │ │ -00255ee0: 7565 3a20 3020 2020 2020 2020 2020 2020 ue: 0 │ │ │ │ -00255ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255f10: 2020 2020 2020 207c 0a7c 202d 2d20 666f |.| -- fo │ │ │ │ -00255f20: 756e 6420 7665 7273 696f 6e20 302e 3720 und version 0.7 │ │ │ │ -00255f30: 3e3d 2030 2e35 2020 2020 2020 2020 2020 >= 0.5 │ │ │ │ -00255f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00255f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00255bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00255bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +00255be0: 203a 2066 696e 6450 726f 6772 616d 2822 : findProgram(" │ │ │ │ +00255bf0: 6766 616e 222c 2022 6766 616e 205f 7665 gfan", "gfan _ve │ │ │ │ +00255c00: 7273 696f 6e20 2d2d 6865 6c70 222c 2056 rsion --help", V │ │ │ │ +00255c10: 6572 626f 7365 203d 3e20 7472 7565 2c20 erbose => true, │ │ │ │ +00255c20: 2020 207c 0a7c 2020 2020 2020 204d 696e |.| Min │ │ │ │ +00255c30: 696d 756d 5665 7273 696f 6e20 3d3e 2028 imumVersion => ( │ │ │ │ +00255c40: 2230 2e35 222c 2020 2020 2020 2020 2020 "0.5", │ │ │ │ +00255c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255c60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00255c70: 2020 2020 2267 6661 6e20 5f76 6572 7369 "gfan _versi │ │ │ │ +00255c80: 6f6e 207c 2068 6561 6420 2d32 207c 2074 on | head -2 | t │ │ │ │ +00255c90: 6169 6c20 2d31 207c 2073 6564 2027 732f ail -1 | sed 's/ │ │ │ │ +00255ca0: 6766 616e 2f2f 2722 2929 2020 2020 2020 gfan//'")) │ │ │ │ +00255cb0: 2020 207c 0a7c 202d 2d20 2f70 6174 682f |.| -- /path/ │ │ │ │ +00255cc0: 746f 2f67 6661 6e2f 6766 616e 2064 6f65 to/gfan/gfan doe │ │ │ │ +00255cd0: 7320 6e6f 7420 6578 6973 7420 2020 2020 s not exist │ │ │ │ +00255ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255cf0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00255d00: 2d20 2f75 7372 2f6c 6962 6578 6563 2f4d - /usr/libexec/M │ │ │ │ +00255d10: 6163 6175 6c61 7932 2f62 696e 2f67 6661 acaulay2/bin/gfa │ │ │ │ +00255d20: 6e20 646f 6573 206e 6f74 2065 7869 7374 n does not exist │ │ │ │ +00255d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255d40: 2020 207c 0a7c 202d 2d20 2f75 7372 2f6c |.| -- /usr/l │ │ │ │ +00255d50: 6f63 616c 2f73 6269 6e2f 6766 616e 2064 ocal/sbin/gfan d │ │ │ │ +00255d60: 6f65 7320 6e6f 7420 6578 6973 7420 2020 oes not exist │ │ │ │ +00255d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255d80: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00255d90: 2d20 2f75 7372 2f6c 6f63 616c 2f62 696e - /usr/local/bin │ │ │ │ +00255da0: 2f67 6661 6e20 646f 6573 206e 6f74 2065 /gfan does not e │ │ │ │ +00255db0: 7869 7374 2020 2020 2020 2020 2020 2020 xist │ │ │ │ +00255dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255dd0: 2020 207c 0a7c 202d 2d20 2f75 7372 2f73 |.| -- /usr/s │ │ │ │ +00255de0: 6269 6e2f 6766 616e 2064 6f65 7320 6e6f bin/gfan does no │ │ │ │ +00255df0: 7420 6578 6973 7420 2020 2020 2020 2020 t exist │ │ │ │ +00255e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255e10: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00255e20: 2d20 2f75 7372 2f62 696e 2f67 6661 6e20 - /usr/bin/gfan │ │ │ │ +00255e30: 6578 6973 7473 2061 6e64 2069 7320 6578 exists and is ex │ │ │ │ +00255e40: 6563 7574 6162 6c65 2020 2020 2020 2020 ecutable │ │ │ │ +00255e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255e60: 2020 207c 0a7c 202d 2d20 7275 6e6e 696e |.| -- runnin │ │ │ │ +00255e70: 6720 222f 7573 722f 6269 6e2f 6766 616e g "/usr/bin/gfan │ │ │ │ +00255e80: 205f 7665 7273 696f 6e20 2d2d 6865 6c70 _version --help │ │ │ │ +00255e90: 223a 2020 2020 2020 2020 2020 2020 2020 ": │ │ │ │ +00255ea0: 2020 2020 2020 2020 2020 207c 0a7c 5468 |.|Th │ │ │ │ +00255eb0: 6973 2070 726f 6772 616d 2077 7269 7465 is program write │ │ │ │ +00255ec0: 7320 6f75 7420 7665 7273 696f 6e20 696e s out version in │ │ │ │ +00255ed0: 666f 726d 6174 696f 6e20 6f66 2074 6865 formation of the │ │ │ │ +00255ee0: 2047 6661 6e20 696e 7374 616c 6c61 7469 Gfan installati │ │ │ │ +00255ef0: 6f6e 2e7c 0a7c 202d 2d20 7265 7475 726e on.|.| -- return │ │ │ │ +00255f00: 2076 616c 7565 3a20 3020 2020 2020 2020 value: 0 │ │ │ │ +00255f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255f30: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00255f40: 2d20 666f 756e 6420 7665 7273 696f 6e20 - found version │ │ │ │ +00255f50: 302e 3720 3e3d 2030 2e35 2020 2020 2020 0.7 >= 0.5 │ │ │ │ +00255f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00255f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255f80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00255f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255fa0: 2020 2020 2020 207c 0a7c 6f35 203d 2067 |.|o5 = g │ │ │ │ -00255fb0: 6661 6e20 2020 2020 2020 2020 2020 2020 fan │ │ │ │ -00255fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00255fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00255ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00255fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255fc0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00255fd0: 203d 2067 6661 6e20 2020 2020 2020 2020 = gfan │ │ │ │ +00255fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00255ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00256000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00256010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00256010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00256020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00256030: 2020 2020 2020 207c 0a7c 6f35 203a 2050 |.|o5 : P │ │ │ │ -00256040: 726f 6772 616d 2020 2020 2020 2020 2020 rogram │ │ │ │ -00256050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00256060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00256070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00256080: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00256090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002560a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00256040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00256050: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00256060: 203a 2050 726f 6772 616d 2020 2020 2020 : Program │ │ │ │ +00256070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00256080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00256090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002560a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 002560b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002560c0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ -002560d0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -002560e0: 202a 6e6f 7465 2072 756e 5072 6f67 7261 *note runProgra │ │ │ │ -002560f0: 6d3a 2072 756e 5072 6f67 7261 6d2c 202d m: runProgram, - │ │ │ │ -00256100: 2d20 7275 6e20 616e 2065 7874 6572 6e61 - run an externa │ │ │ │ -00256110: 6c20 7072 6f67 7261 6d0a 2020 2a20 2a6e l program. * *n │ │ │ │ -00256120: 6f74 6520 7365 6172 6368 5061 7468 3a20 ote searchPath: │ │ │ │ -00256130: 7365 6172 6368 5061 7468 5f6c 704c 6973 searchPath_lpLis │ │ │ │ -00256140: 745f 636d 5374 7269 6e67 5f72 702c 202d t_cmString_rp, - │ │ │ │ -00256150: 2d20 7365 6172 6368 2061 2070 6174 6820 - search a path │ │ │ │ -00256160: 666f 7220 610a 2020 2020 6669 6c65 0a2a for a. file.* │ │ │ │ -00256170: 204d 656e 753a 0a0a 2a20 5072 6f67 7261 Menu:..* Progra │ │ │ │ -00256180: 6d3a 3a20 2020 2020 2020 2020 2020 2020 m:: │ │ │ │ -00256190: 2020 2020 2020 2020 6578 7465 726e 616c external │ │ │ │ -002561a0: 2070 726f 6772 616d 206f 626a 6563 740a program object. │ │ │ │ -002561b0: 2a20 7072 6f67 7261 6d50 6174 6873 3a3a * programPaths:: │ │ │ │ -002561c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002561d0: 7573 6572 2d64 6566 696e 6564 2065 7874 user-defined ext │ │ │ │ -002561e0: 6572 6e61 6c20 7072 6f67 7261 6d20 7061 ernal program pa │ │ │ │ -002561f0: 7468 730a 0a57 6179 7320 746f 2075 7365 ths..Ways to use │ │ │ │ -00256200: 2066 696e 6450 726f 6772 616d 3a0a 3d3d findProgram:.== │ │ │ │ -00256210: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00256220: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2266 696e ======.. * "fin │ │ │ │ -00256230: 6450 726f 6772 616d 2853 7472 696e 6729 dProgram(String) │ │ │ │ -00256240: 220a 2020 2a20 2266 696e 6450 726f 6772 ". * "findProgr │ │ │ │ -00256250: 616d 2853 7472 696e 672c 4c69 7374 2922 am(String,List)" │ │ │ │ -00256260: 0a20 202a 2022 6669 6e64 5072 6f67 7261 . * "findProgra │ │ │ │ -00256270: 6d28 5374 7269 6e67 2c53 7472 696e 6729 m(String,String) │ │ │ │ -00256280: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ -00256290: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -002562a0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -002562b0: 6a65 6374 202a 6e6f 7465 2066 696e 6450 ject *note findP │ │ │ │ -002562c0: 726f 6772 616d 3a20 6669 6e64 5072 6f67 rogram: findProg │ │ │ │ -002562d0: 7261 6d2c 2069 7320 6120 2a6e 6f74 6520 ram, is a *note │ │ │ │ -002562e0: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -002562f0: 7769 7468 0a6f 7074 696f 6e73 3a20 4d65 with.options: Me │ │ │ │ -00256300: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ -00256310: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ -00256320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00256330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002560c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002560d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002560e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +002560f0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00256100: 0a20 202a 202a 6e6f 7465 2072 756e 5072 . * *note runPr │ │ │ │ +00256110: 6f67 7261 6d3a 2072 756e 5072 6f67 7261 ogram: runProgra │ │ │ │ +00256120: 6d2c 202d 2d20 7275 6e20 616e 2065 7874 m, -- run an ext │ │ │ │ +00256130: 6572 6e61 6c20 7072 6f67 7261 6d0a 2020 ernal program. │ │ │ │ +00256140: 2a20 2a6e 6f74 6520 7365 6172 6368 5061 * *note searchPa │ │ │ │ +00256150: 7468 3a20 7365 6172 6368 5061 7468 5f6c th: searchPath_l │ │ │ │ +00256160: 704c 6973 745f 636d 5374 7269 6e67 5f72 pList_cmString_r │ │ │ │ +00256170: 702c 202d 2d20 7365 6172 6368 2061 2070 p, -- search a p │ │ │ │ +00256180: 6174 6820 666f 7220 610a 2020 2020 6669 ath for a. fi │ │ │ │ +00256190: 6c65 0a2a 204d 656e 753a 0a0a 2a20 5072 le.* Menu:..* Pr │ │ │ │ +002561a0: 6f67 7261 6d3a 3a20 2020 2020 2020 2020 ogram:: │ │ │ │ +002561b0: 2020 2020 2020 2020 2020 2020 6578 7465 exte │ │ │ │ +002561c0: 726e 616c 2070 726f 6772 616d 206f 626a rnal program obj │ │ │ │ +002561d0: 6563 740a 2a20 7072 6f67 7261 6d50 6174 ect.* programPat │ │ │ │ +002561e0: 6873 3a3a 2020 2020 2020 2020 2020 2020 hs:: │ │ │ │ +002561f0: 2020 2020 7573 6572 2d64 6566 696e 6564 user-defined │ │ │ │ +00256200: 2065 7874 6572 6e61 6c20 7072 6f67 7261 external progra │ │ │ │ +00256210: 6d20 7061 7468 730a 0a57 6179 7320 746f m paths..Ways to │ │ │ │ +00256220: 2075 7365 2066 696e 6450 726f 6772 616d use findProgram │ │ │ │ +00256230: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00256240: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00256250: 2266 696e 6450 726f 6772 616d 2853 7472 "findProgram(Str │ │ │ │ +00256260: 696e 6729 220a 2020 2a20 2266 696e 6450 ing)". * "findP │ │ │ │ +00256270: 726f 6772 616d 2853 7472 696e 672c 4c69 rogram(String,Li │ │ │ │ +00256280: 7374 2922 0a20 202a 2022 6669 6e64 5072 st)". * "findPr │ │ │ │ +00256290: 6f67 7261 6d28 5374 7269 6e67 2c53 7472 ogram(String,Str │ │ │ │ +002562a0: 696e 6729 220a 0a46 6f72 2074 6865 2070 ing)"..For the p │ │ │ │ +002562b0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +002562c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +002562d0: 6520 6f62 6a65 6374 202a 6e6f 7465 2066 e object *note f │ │ │ │ +002562e0: 696e 6450 726f 6772 616d 3a20 6669 6e64 indProgram: find │ │ │ │ +002562f0: 5072 6f67 7261 6d2c 2069 7320 6120 2a6e Program, is a *n │ │ │ │ +00256300: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +00256310: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ +00256320: 3a20 4d65 7468 6f64 4675 6e63 7469 6f6e : MethodFunction │ │ │ │ +00256330: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ 00256340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00256350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00256360: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00256370: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00256380: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00256390: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -002563a0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -002563b0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -002563c0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -002563d0: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -002563e0: 6675 6e63 7469 6f6e 732f 6669 6e64 5072 functions/findPr │ │ │ │ -002563f0: 6f67 7261 6d2d 646f 632e 6d32 3a31 3734 ogram-doc.m2:174 │ │ │ │ -00256400: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ -00256410: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ -00256420: 6f64 653a 2050 726f 6772 616d 2c20 4e65 ode: Program, Ne │ │ │ │ -00256430: 7874 3a20 7072 6f67 7261 6d50 6174 6873 xt: programPaths │ │ │ │ -00256440: 2c20 5570 3a20 6669 6e64 5072 6f67 7261 , Up: findProgra │ │ │ │ -00256450: 6d0a 0a50 726f 6772 616d 202d 2d20 6578 m..Program -- ex │ │ │ │ -00256460: 7465 726e 616c 2070 726f 6772 616d 206f ternal program o │ │ │ │ -00256470: 626a 6563 740a 2a2a 2a2a 2a2a 2a2a 2a2a bject.********** │ │ │ │ -00256480: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00256490: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ -002564a0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -002564b0: 3d0a 0a41 2068 6173 6820 7461 626c 6520 =..A hash table │ │ │ │ -002564c0: 7265 7475 726e 6564 2062 7920 2a6e 6f74 returned by *not │ │ │ │ -002564d0: 6520 6669 6e64 5072 6f67 7261 6d3a 2066 e findProgram: f │ │ │ │ -002564e0: 696e 6450 726f 6772 616d 2c20 7769 7468 indProgram, with │ │ │ │ -002564f0: 2074 6865 2066 6f6c 6c6f 7769 6e67 0a73 the following.s │ │ │ │ -00256500: 7472 696e 6773 2061 7320 6b65 7973 3a0a trings as keys:. │ │ │ │ -00256510: 0a20 202a 2022 6e61 6d65 222c 2074 6865 . * "name", the │ │ │ │ -00256520: 206e 616d 6520 6f66 2074 6865 206c 6f61 name of the loa │ │ │ │ -00256530: 6465 6420 7072 6f67 7261 6d2e 2020 5468 ded program. Th │ │ │ │ -00256540: 6973 2063 6f6d 6573 2066 726f 6d20 7468 is comes from th │ │ │ │ -00256550: 6520 6669 7273 7420 6172 6775 6d65 6e74 e first argument │ │ │ │ -00256560: 0a20 2020 2070 6173 7365 6420 746f 202a . passed to * │ │ │ │ -00256570: 6e6f 7465 2066 696e 6450 726f 6772 616d note findProgram │ │ │ │ -00256580: 3a20 6669 6e64 5072 6f67 7261 6d2c 2e20 : findProgram,. │ │ │ │ -00256590: 2049 7420 6973 2061 6c73 6f20 7768 6174 It is also what │ │ │ │ -002565a0: 2069 7320 6469 7370 6c61 7965 640a 2020 is displayed. │ │ │ │ -002565b0: 2020 7768 656e 2070 7269 6e74 696e 6720 when printing │ │ │ │ -002565c0: 6120 5072 6f67 7261 6d2e 0a20 202a 2022 a Program.. * " │ │ │ │ -002565d0: 7061 7468 222c 2074 6865 2070 6174 6820 path", the path │ │ │ │ -002565e0: 746f 2074 6865 2070 726f 6772 616d 2061 to the program a │ │ │ │ -002565f0: 7320 6465 7465 726d 696e 6564 2062 7920 s determined by │ │ │ │ -00256600: 2a6e 6f74 6520 6669 6e64 5072 6f67 7261 *note findProgra │ │ │ │ -00256610: 6d3a 0a20 2020 2066 696e 6450 726f 6772 m:. findProgr │ │ │ │ -00256620: 616d 2c2e 0a20 202a 2022 7072 6566 6978 am,.. * "prefix │ │ │ │ -00256630: 222c 2061 2073 6571 7565 6e63 6520 6f66 ", a sequence of │ │ │ │ -00256640: 2074 776f 2073 7472 696e 6773 2069 6465 two strings ide │ │ │ │ -00256650: 6e74 6966 7969 6e67 2074 6865 2070 7265 ntifying the pre │ │ │ │ -00256660: 6669 7820 7072 6570 656e 6465 6420 746f fix prepended to │ │ │ │ -00256670: 2074 6865 0a20 2020 2062 696e 6172 7920 the. binary │ │ │ │ -00256680: 6578 6563 7574 6162 6c65 732e 2020 5365 executables. Se │ │ │ │ -00256690: 6520 2a6e 6f74 6520 6669 6e64 5072 6f67 e *note findProg │ │ │ │ -002566a0: 7261 6d3a 2066 696e 6450 726f 6772 616d ram: findProgram │ │ │ │ -002566b0: 2c2c 2073 7065 6369 6669 6361 6c6c 7920 ,, specifically │ │ │ │ -002566c0: 7468 650a 2020 2020 6465 7363 7269 7074 the. descript │ │ │ │ -002566d0: 696f 6e20 6f66 2074 6865 2050 7265 6669 ion of the Prefi │ │ │ │ -002566e0: 7820 6f70 7469 6f6e 2c20 666f 7220 6d6f x option, for mo │ │ │ │ -002566f0: 7265 2e0a 2020 2a20 2276 6572 7369 6f6e re.. * "version │ │ │ │ -00256700: 222c 2061 2073 7472 696e 6720 636f 6e74 ", a string cont │ │ │ │ -00256710: 6169 6e69 6e67 2074 6865 2076 6572 7369 aining the versi │ │ │ │ -00256720: 6f6e 206e 756d 6265 7220 6f66 2074 6865 on number of the │ │ │ │ -00256730: 2070 726f 6772 616d 2e20 204f 6e6c 790a program. Only. │ │ │ │ -00256740: 2020 2020 7072 6573 656e 7420 6966 202a present if * │ │ │ │ -00256750: 6e6f 7465 2066 696e 6450 726f 6772 616d note findProgram │ │ │ │ -00256760: 3a20 6669 6e64 5072 6f67 7261 6d2c 2077 : findProgram, w │ │ │ │ -00256770: 6173 2063 616c 6c65 6420 7769 7468 2074 as called with t │ │ │ │ -00256780: 6865 0a20 2020 204d 696e 696d 756d 5665 he. MinimumVe │ │ │ │ -00256790: 7273 696f 6e20 6f70 7469 6f6e 2e0a 0a53 rsion option...S │ │ │ │ -002567a0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -002567b0: 0a0a 2020 2a20 2a6e 6f74 6520 6669 6e64 .. * *note find │ │ │ │ -002567c0: 5072 6f67 7261 6d3a 2066 696e 6450 726f Program: findPro │ │ │ │ -002567d0: 6772 616d 2c20 2d2d 206c 6f61 6420 6578 gram, -- load ex │ │ │ │ -002567e0: 7465 726e 616c 2070 726f 6772 616d 0a20 ternal program. │ │ │ │ -002567f0: 202a 202a 6e6f 7465 2072 756e 5072 6f67 * *note runProg │ │ │ │ -00256800: 7261 6d3a 2072 756e 5072 6f67 7261 6d2c ram: runProgram, │ │ │ │ -00256810: 202d 2d20 7275 6e20 616e 2065 7874 6572 -- run an exter │ │ │ │ -00256820: 6e61 6c20 7072 6f67 7261 6d0a 2020 2a20 nal program. * │ │ │ │ -00256830: 2a6e 6f74 6520 7072 6f67 7261 6d50 6174 *note programPat │ │ │ │ -00256840: 6873 3a20 7072 6f67 7261 6d50 6174 6873 hs: programPaths │ │ │ │ -00256850: 2c20 2d2d 2075 7365 722d 6465 6669 6e65 , -- user-define │ │ │ │ -00256860: 6420 6578 7465 726e 616c 2070 726f 6772 d external progr │ │ │ │ -00256870: 616d 2070 6174 6873 0a0a 4675 6e63 7469 am paths..Functi │ │ │ │ -00256880: 6f6e 7320 616e 6420 6d65 7468 6f64 7320 ons and methods │ │ │ │ -00256890: 7265 7475 726e 696e 6720 616e 206f 626a returning an obj │ │ │ │ -002568a0: 6563 7420 6f66 2063 6c61 7373 2050 726f ect of class Pro │ │ │ │ -002568b0: 6772 616d 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d gram:.========== │ │ │ │ -002568c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002568d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00256360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00256390: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +002563a0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +002563b0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +002563c0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +002563d0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +002563e0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +002563f0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +00256400: 446f 632f 6675 6e63 7469 6f6e 732f 6669 Doc/functions/fi │ │ │ │ +00256410: 6e64 5072 6f67 7261 6d2d 646f 632e 6d32 ndProgram-doc.m2 │ │ │ │ +00256420: 3a31 3734 3a30 2e0a 1f0a 4669 6c65 3a20 :174:0....File: │ │ │ │ +00256430: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +00256440: 6f2c 204e 6f64 653a 2050 726f 6772 616d o, Node: Program │ │ │ │ +00256450: 2c20 4e65 7874 3a20 7072 6f67 7261 6d50 , Next: programP │ │ │ │ +00256460: 6174 6873 2c20 5570 3a20 6669 6e64 5072 aths, Up: findPr │ │ │ │ +00256470: 6f67 7261 6d0a 0a50 726f 6772 616d 202d ogram..Program - │ │ │ │ +00256480: 2d20 6578 7465 726e 616c 2070 726f 6772 - external progr │ │ │ │ +00256490: 616d 206f 626a 6563 740a 2a2a 2a2a 2a2a am object.****** │ │ │ │ +002564a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002564b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ +002564c0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +002564d0: 3d3d 3d3d 3d0a 0a41 2068 6173 6820 7461 =====..A hash ta │ │ │ │ +002564e0: 626c 6520 7265 7475 726e 6564 2062 7920 ble returned by │ │ │ │ +002564f0: 2a6e 6f74 6520 6669 6e64 5072 6f67 7261 *note findProgra │ │ │ │ +00256500: 6d3a 2066 696e 6450 726f 6772 616d 2c20 m: findProgram, │ │ │ │ +00256510: 7769 7468 2074 6865 2066 6f6c 6c6f 7769 with the followi │ │ │ │ +00256520: 6e67 0a73 7472 696e 6773 2061 7320 6b65 ng.strings as ke │ │ │ │ +00256530: 7973 3a0a 0a20 202a 2022 6e61 6d65 222c ys:.. * "name", │ │ │ │ +00256540: 2074 6865 206e 616d 6520 6f66 2074 6865 the name of the │ │ │ │ +00256550: 206c 6f61 6465 6420 7072 6f67 7261 6d2e loaded program. │ │ │ │ +00256560: 2020 5468 6973 2063 6f6d 6573 2066 726f This comes fro │ │ │ │ +00256570: 6d20 7468 6520 6669 7273 7420 6172 6775 m the first argu │ │ │ │ +00256580: 6d65 6e74 0a20 2020 2070 6173 7365 6420 ment. passed │ │ │ │ +00256590: 746f 202a 6e6f 7465 2066 696e 6450 726f to *note findPro │ │ │ │ +002565a0: 6772 616d 3a20 6669 6e64 5072 6f67 7261 gram: findProgra │ │ │ │ +002565b0: 6d2c 2e20 2049 7420 6973 2061 6c73 6f20 m,. It is also │ │ │ │ +002565c0: 7768 6174 2069 7320 6469 7370 6c61 7965 what is displaye │ │ │ │ +002565d0: 640a 2020 2020 7768 656e 2070 7269 6e74 d. when print │ │ │ │ +002565e0: 696e 6720 6120 5072 6f67 7261 6d2e 0a20 ing a Program.. │ │ │ │ +002565f0: 202a 2022 7061 7468 222c 2074 6865 2070 * "path", the p │ │ │ │ +00256600: 6174 6820 746f 2074 6865 2070 726f 6772 ath to the progr │ │ │ │ +00256610: 616d 2061 7320 6465 7465 726d 696e 6564 am as determined │ │ │ │ +00256620: 2062 7920 2a6e 6f74 6520 6669 6e64 5072 by *note findPr │ │ │ │ +00256630: 6f67 7261 6d3a 0a20 2020 2066 696e 6450 ogram:. findP │ │ │ │ +00256640: 726f 6772 616d 2c2e 0a20 202a 2022 7072 rogram,.. * "pr │ │ │ │ +00256650: 6566 6978 222c 2061 2073 6571 7565 6e63 efix", a sequenc │ │ │ │ +00256660: 6520 6f66 2074 776f 2073 7472 696e 6773 e of two strings │ │ │ │ +00256670: 2069 6465 6e74 6966 7969 6e67 2074 6865 identifying the │ │ │ │ +00256680: 2070 7265 6669 7820 7072 6570 656e 6465 prefix prepende │ │ │ │ +00256690: 6420 746f 2074 6865 0a20 2020 2062 696e d to the. bin │ │ │ │ +002566a0: 6172 7920 6578 6563 7574 6162 6c65 732e ary executables. │ │ │ │ +002566b0: 2020 5365 6520 2a6e 6f74 6520 6669 6e64 See *note find │ │ │ │ +002566c0: 5072 6f67 7261 6d3a 2066 696e 6450 726f Program: findPro │ │ │ │ +002566d0: 6772 616d 2c2c 2073 7065 6369 6669 6361 gram,, specifica │ │ │ │ +002566e0: 6c6c 7920 7468 650a 2020 2020 6465 7363 lly the. desc │ │ │ │ +002566f0: 7269 7074 696f 6e20 6f66 2074 6865 2050 ription of the P │ │ │ │ +00256700: 7265 6669 7820 6f70 7469 6f6e 2c20 666f refix option, fo │ │ │ │ +00256710: 7220 6d6f 7265 2e0a 2020 2a20 2276 6572 r more.. * "ver │ │ │ │ +00256720: 7369 6f6e 222c 2061 2073 7472 696e 6720 sion", a string │ │ │ │ +00256730: 636f 6e74 6169 6e69 6e67 2074 6865 2076 containing the v │ │ │ │ +00256740: 6572 7369 6f6e 206e 756d 6265 7220 6f66 ersion number of │ │ │ │ +00256750: 2074 6865 2070 726f 6772 616d 2e20 204f the program. O │ │ │ │ +00256760: 6e6c 790a 2020 2020 7072 6573 656e 7420 nly. present │ │ │ │ +00256770: 6966 202a 6e6f 7465 2066 696e 6450 726f if *note findPro │ │ │ │ +00256780: 6772 616d 3a20 6669 6e64 5072 6f67 7261 gram: findProgra │ │ │ │ +00256790: 6d2c 2077 6173 2063 616c 6c65 6420 7769 m, was called wi │ │ │ │ +002567a0: 7468 2074 6865 0a20 2020 204d 696e 696d th the. Minim │ │ │ │ +002567b0: 756d 5665 7273 696f 6e20 6f70 7469 6f6e umVersion option │ │ │ │ +002567c0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ +002567d0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +002567e0: 6669 6e64 5072 6f67 7261 6d3a 2066 696e findProgram: fin │ │ │ │ +002567f0: 6450 726f 6772 616d 2c20 2d2d 206c 6f61 dProgram, -- loa │ │ │ │ +00256800: 6420 6578 7465 726e 616c 2070 726f 6772 d external progr │ │ │ │ +00256810: 616d 0a20 202a 202a 6e6f 7465 2072 756e am. * *note run │ │ │ │ +00256820: 5072 6f67 7261 6d3a 2072 756e 5072 6f67 Program: runProg │ │ │ │ +00256830: 7261 6d2c 202d 2d20 7275 6e20 616e 2065 ram, -- run an e │ │ │ │ +00256840: 7874 6572 6e61 6c20 7072 6f67 7261 6d0a xternal program. │ │ │ │ +00256850: 2020 2a20 2a6e 6f74 6520 7072 6f67 7261 * *note progra │ │ │ │ +00256860: 6d50 6174 6873 3a20 7072 6f67 7261 6d50 mPaths: programP │ │ │ │ +00256870: 6174 6873 2c20 2d2d 2075 7365 722d 6465 aths, -- user-de │ │ │ │ +00256880: 6669 6e65 6420 6578 7465 726e 616c 2070 fined external p │ │ │ │ +00256890: 726f 6772 616d 2070 6174 6873 0a0a 4675 rogram paths..Fu │ │ │ │ +002568a0: 6e63 7469 6f6e 7320 616e 6420 6d65 7468 nctions and meth │ │ │ │ +002568b0: 6f64 7320 7265 7475 726e 696e 6720 616e ods returning an │ │ │ │ +002568c0: 206f 626a 6563 7420 6f66 2063 6c61 7373 object of class │ │ │ │ +002568d0: 2050 726f 6772 616d 3a0a 3d3d 3d3d 3d3d Program:.====== │ │ │ │ 002568e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002568f0: 3d0a 0a20 202a 202a 6e6f 7465 2066 696e =.. * *note fin │ │ │ │ -00256900: 6450 726f 6772 616d 3a20 6669 6e64 5072 dProgram: findPr │ │ │ │ -00256910: 6f67 7261 6d2c 202d 2d20 6c6f 6164 2065 ogram, -- load e │ │ │ │ -00256920: 7874 6572 6e61 6c20 7072 6f67 7261 6d0a xternal program. │ │ │ │ -00256930: 0a4d 6574 686f 6473 2074 6861 7420 7573 .Methods that us │ │ │ │ -00256940: 6520 616e 206f 626a 6563 7420 6f66 2063 e an object of c │ │ │ │ -00256950: 6c61 7373 2050 726f 6772 616d 3a0a 3d3d lass Program:.== │ │ │ │ -00256960: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00256970: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00256980: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00256990: 2a6e 6f74 6520 5072 6f67 7261 6d20 3c3c *note Program << │ │ │ │ -002569a0: 2054 6869 6e67 3a20 5072 6f67 7261 6d20 Thing: Program │ │ │ │ -002569b0: 3c3c 2054 6869 6e67 2c20 2d2d 2072 756e << Thing, -- run │ │ │ │ -002569c0: 2070 726f 6772 616d 2077 6974 6820 696e program with in │ │ │ │ -002569d0: 7075 740a 2020 2020 7265 6469 7265 6374 put. redirect │ │ │ │ -002569e0: 696f 6e0a 2020 2a20 2272 756e 5072 6f67 ion. * "runProg │ │ │ │ -002569f0: 7261 6d28 5072 6f67 7261 6d2c 5374 7269 ram(Program,Stri │ │ │ │ -00256a00: 6e67 2922 202d 2d20 7365 6520 2a6e 6f74 ng)" -- see *not │ │ │ │ -00256a10: 6520 7275 6e50 726f 6772 616d 3a20 7275 e runProgram: ru │ │ │ │ -00256a20: 6e50 726f 6772 616d 2c20 2d2d 2072 756e nProgram, -- run │ │ │ │ -00256a30: 2061 6e0a 2020 2020 6578 7465 726e 616c an. external │ │ │ │ -00256a40: 2070 726f 6772 616d 0a20 202a 2022 7275 program. * "ru │ │ │ │ -00256a50: 6e50 726f 6772 616d 2850 726f 6772 616d nProgram(Program │ │ │ │ -00256a60: 2c53 7472 696e 672c 5374 7269 6e67 2922 ,String,String)" │ │ │ │ -00256a70: 202d 2d20 7365 6520 2a6e 6f74 6520 7275 -- see *note ru │ │ │ │ -00256a80: 6e50 726f 6772 616d 3a20 7275 6e50 726f nProgram: runPro │ │ │ │ -00256a90: 6772 616d 2c20 2d2d 0a20 2020 2072 756e gram, --. run │ │ │ │ -00256aa0: 2061 6e20 6578 7465 726e 616c 2070 726f an external pro │ │ │ │ -00256ab0: 6772 616d 0a0a 466f 7220 7468 6520 7072 gram..For the pr │ │ │ │ -00256ac0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00256ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -00256ae0: 206f 626a 6563 7420 2a6e 6f74 6520 5072 object *note Pr │ │ │ │ -00256af0: 6f67 7261 6d3a 2050 726f 6772 616d 2c20 ogram: Program, │ │ │ │ -00256b00: 6973 2061 202a 6e6f 7465 2074 7970 653a is a *note type: │ │ │ │ -00256b10: 2054 7970 652c 2c20 7769 7468 2061 6e63 Type,, with anc │ │ │ │ -00256b20: 6573 746f 720a 636c 6173 7365 7320 2a6e estor.classes *n │ │ │ │ -00256b30: 6f74 6520 4861 7368 5461 626c 653a 2048 ote HashTable: H │ │ │ │ -00256b40: 6173 6854 6162 6c65 2c20 3c20 2a6e 6f74 ashTable, < *not │ │ │ │ -00256b50: 6520 5468 696e 673a 2054 6869 6e67 2c2e e Thing: Thing,. │ │ │ │ -00256b60: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00256b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00256b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002568f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00256900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00256910: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00256920: 2066 696e 6450 726f 6772 616d 3a20 6669 findProgram: fi │ │ │ │ +00256930: 6e64 5072 6f67 7261 6d2c 202d 2d20 6c6f ndProgram, -- lo │ │ │ │ +00256940: 6164 2065 7874 6572 6e61 6c20 7072 6f67 ad external prog │ │ │ │ +00256950: 7261 6d0a 0a4d 6574 686f 6473 2074 6861 ram..Methods tha │ │ │ │ +00256960: 7420 7573 6520 616e 206f 626a 6563 7420 t use an object │ │ │ │ +00256970: 6f66 2063 6c61 7373 2050 726f 6772 616d of class Program │ │ │ │ +00256980: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00256990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002569a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +002569b0: 2020 2a20 2a6e 6f74 6520 5072 6f67 7261 * *note Progra │ │ │ │ +002569c0: 6d20 3c3c 2054 6869 6e67 3a20 5072 6f67 m << Thing: Prog │ │ │ │ +002569d0: 7261 6d20 3c3c 2054 6869 6e67 2c20 2d2d ram << Thing, -- │ │ │ │ +002569e0: 2072 756e 2070 726f 6772 616d 2077 6974 run program wit │ │ │ │ +002569f0: 6820 696e 7075 740a 2020 2020 7265 6469 h input. redi │ │ │ │ +00256a00: 7265 6374 696f 6e0a 2020 2a20 2272 756e rection. * "run │ │ │ │ +00256a10: 5072 6f67 7261 6d28 5072 6f67 7261 6d2c Program(Program, │ │ │ │ +00256a20: 5374 7269 6e67 2922 202d 2d20 7365 6520 String)" -- see │ │ │ │ +00256a30: 2a6e 6f74 6520 7275 6e50 726f 6772 616d *note runProgram │ │ │ │ +00256a40: 3a20 7275 6e50 726f 6772 616d 2c20 2d2d : runProgram, -- │ │ │ │ +00256a50: 2072 756e 2061 6e0a 2020 2020 6578 7465 run an. exte │ │ │ │ +00256a60: 726e 616c 2070 726f 6772 616d 0a20 202a rnal program. * │ │ │ │ +00256a70: 2022 7275 6e50 726f 6772 616d 2850 726f "runProgram(Pro │ │ │ │ +00256a80: 6772 616d 2c53 7472 696e 672c 5374 7269 gram,String,Stri │ │ │ │ +00256a90: 6e67 2922 202d 2d20 7365 6520 2a6e 6f74 ng)" -- see *not │ │ │ │ +00256aa0: 6520 7275 6e50 726f 6772 616d 3a20 7275 e runProgram: ru │ │ │ │ +00256ab0: 6e50 726f 6772 616d 2c20 2d2d 0a20 2020 nProgram, --. │ │ │ │ +00256ac0: 2072 756e 2061 6e20 6578 7465 726e 616c run an external │ │ │ │ +00256ad0: 2070 726f 6772 616d 0a0a 466f 7220 7468 program..For th │ │ │ │ +00256ae0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00256af0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00256b00: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00256b10: 6520 5072 6f67 7261 6d3a 2050 726f 6772 e Program: Progr │ │ │ │ +00256b20: 616d 2c20 6973 2061 202a 6e6f 7465 2074 am, is a *note t │ │ │ │ +00256b30: 7970 653a 2054 7970 652c 2c20 7769 7468 ype: Type,, with │ │ │ │ +00256b40: 2061 6e63 6573 746f 720a 636c 6173 7365 ancestor.classe │ │ │ │ +00256b50: 7320 2a6e 6f74 6520 4861 7368 5461 626c s *note HashTabl │ │ │ │ +00256b60: 653a 2048 6173 6854 6162 6c65 2c20 3c20 e: HashTable, < │ │ │ │ +00256b70: 2a6e 6f74 6520 5468 696e 673a 2054 6869 *note Thing: Thi │ │ │ │ +00256b80: 6e67 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ng,...---------- │ │ │ │ 00256b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00256ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00256bb0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00256bc0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00256bd0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00256be0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00256bf0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00256c00: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00256c10: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00256c20: 6179 3244 6f63 2f66 756e 6374 696f 6e73 ay2Doc/functions │ │ │ │ -00256c30: 2f66 696e 6450 726f 6772 616d 2d64 6f63 /findProgram-doc │ │ │ │ -00256c40: 2e6d 323a 3330 3a30 2e0a 1f0a 4669 6c65 .m2:30:0....File │ │ │ │ -00256c50: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00256c60: 6e66 6f2c 204e 6f64 653a 2070 726f 6772 nfo, Node: progr │ │ │ │ -00256c70: 616d 5061 7468 732c 2050 7265 763a 2050 amPaths, Prev: P │ │ │ │ -00256c80: 726f 6772 616d 2c20 5570 3a20 6669 6e64 rogram, Up: find │ │ │ │ -00256c90: 5072 6f67 7261 6d0a 0a70 726f 6772 616d Program..program │ │ │ │ -00256ca0: 5061 7468 7320 2d2d 2075 7365 722d 6465 Paths -- user-de │ │ │ │ -00256cb0: 6669 6e65 6420 6578 7465 726e 616c 2070 fined external p │ │ │ │ -00256cc0: 726f 6772 616d 2070 6174 6873 0a2a 2a2a rogram paths.*** │ │ │ │ -00256cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00256ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00256cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00256d00: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00256d10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 206d 7574 =========..A mut │ │ │ │ -00256d20: 6162 6c65 2068 6173 6820 7461 626c 6520 able hash table │ │ │ │ -00256d30: 636f 6e74 6169 6e69 6e67 2075 7365 722d containing user- │ │ │ │ -00256d40: 6465 6669 6e65 6420 7061 7468 7320 746f defined paths to │ │ │ │ -00256d50: 2065 7874 6572 6e61 6c20 7072 6f67 7261 external progra │ │ │ │ -00256d60: 6d73 2075 7365 6420 6279 0a4d 6163 6175 ms used by.Macau │ │ │ │ -00256d70: 6c61 7932 2e20 2049 7473 206b 6579 7320 lay2. Its keys │ │ │ │ -00256d80: 6172 6520 7374 7269 6e67 7320 636f 6e74 are strings cont │ │ │ │ -00256d90: 6169 6e69 6e67 2074 6865 206e 616d 6573 aining the names │ │ │ │ -00256da0: 206f 6620 7072 6f67 7261 6d73 2061 6e64 of programs and │ │ │ │ -00256db0: 206d 7573 740a 636f 696e 6369 6465 2077 must.coincide w │ │ │ │ -00256dc0: 6974 6820 7468 6520 6669 7273 7420 6172 ith the first ar │ │ │ │ -00256dd0: 6775 6d65 6e74 206f 6620 2a6e 6f74 6520 gument of *note │ │ │ │ -00256de0: 6669 6e64 5072 6f67 7261 6d3a 2066 696e findProgram: fin │ │ │ │ -00256df0: 6450 726f 6772 616d 2c2e 0a0a 4974 2069 dProgram,...It i │ │ │ │ -00256e00: 7320 6f6e 6c79 206e 6563 6573 7361 7279 s only necessary │ │ │ │ -00256e10: 2074 6f20 6465 6669 6e65 2061 2070 6174 to define a pat │ │ │ │ -00256e20: 6820 696e 2074 6869 7320 7761 7920 6966 h in this way if │ │ │ │ -00256e30: 2061 2070 726f 6772 616d 2069 7320 696e a program is in │ │ │ │ -00256e40: 7374 616c 6c65 6420 696e 0a61 206e 6f6e stalled in.a non │ │ │ │ -00256e50: 2d73 7461 6e64 6172 6420 6c6f 6361 7469 -standard locati │ │ │ │ -00256e60: 6f6e 2e20 2049 6e20 7061 7274 6963 756c on. In particul │ │ │ │ -00256e70: 6172 2c20 2a6e 6f74 6520 6669 6e64 5072 ar, *note findPr │ │ │ │ -00256e80: 6f67 7261 6d3a 2066 696e 6450 726f 6772 ogram: findProgr │ │ │ │ -00256e90: 616d 2c0a 616c 7265 6164 7920 6368 6563 am,.already chec │ │ │ │ -00256ea0: 6b73 2070 7265 6669 7844 6972 6563 746f ks prefixDirecto │ │ │ │ -00256eb0: 7279 207c 2063 7572 7265 6e74 4c61 796f ry | currentLayo │ │ │ │ -00256ec0: 7574 2322 7072 6f67 7261 6d73 222c 2028 ut#"programs", ( │ │ │ │ -00256ed0: 7768 6572 6520 7468 6520 7072 6f67 7261 where the progra │ │ │ │ -00256ee0: 6d73 0a73 6869 7070 6564 2077 6974 6820 ms.shipped with │ │ │ │ -00256ef0: 4d61 6361 756c 6179 3220 6172 6520 696e Macaulay2 are in │ │ │ │ -00256f00: 7374 616c 6c65 6429 2061 6e64 2061 6c6c stalled) and all │ │ │ │ -00256f10: 206f 6620 7468 6520 6469 7265 6374 6f72 of the director │ │ │ │ -00256f20: 6965 7320 696e 2074 6865 2075 7365 7227 ies in the user' │ │ │ │ -00256f30: 730a 5041 5448 2065 6e76 6972 6f6e 6d65 s.PATH environme │ │ │ │ -00256f40: 6e74 2076 6172 6961 626c 652e 0a0a 4966 nt variable...If │ │ │ │ -00256f50: 2079 6f75 2075 7365 2061 2070 6172 7469 you use a parti │ │ │ │ -00256f60: 6375 6c61 7220 7072 6f67 7261 6d20 6672 cular program fr │ │ │ │ -00256f70: 6571 7565 6e74 6c79 2061 6e64 2069 7420 equently and it │ │ │ │ -00256f80: 6973 2069 6e73 7461 6c6c 6564 2069 6e20 is installed in │ │ │ │ -00256f90: 610a 6e6f 6e2d 7374 616e 6461 7264 206c a.non-standard l │ │ │ │ -00256fa0: 6f63 6174 696f 6e2c 2074 6865 6e20 6974 ocation, then it │ │ │ │ -00256fb0: 206d 6179 2062 6520 7573 6566 756c 2074 may be useful t │ │ │ │ -00256fc0: 6f20 6164 6420 6120 6c69 6e65 2074 6f20 o add a line to │ │ │ │ -00256fd0: 796f 7572 202a 6e6f 7465 0a69 6e69 7469 your *note.initi │ │ │ │ -00256fe0: 616c 697a 6174 696f 6e20 6669 6c65 3a20 alization file: │ │ │ │ -00256ff0: 696e 6974 6961 6c69 7a61 7469 6f6e 2066 initialization f │ │ │ │ -00257000: 696c 652c 2064 6566 696e 696e 6720 6974 ile, defining it │ │ │ │ -00257010: 7320 7061 7468 2069 6e20 7468 6973 2077 s path in this w │ │ │ │ -00257020: 6179 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ay...See also.== │ │ │ │ -00257030: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00257040: 6520 5072 6f67 7261 6d3a 2050 726f 6772 e Program: Progr │ │ │ │ -00257050: 616d 2c20 2d2d 2065 7874 6572 6e61 6c20 am, -- external │ │ │ │ -00257060: 7072 6f67 7261 6d20 6f62 6a65 6374 0a20 program object. │ │ │ │ -00257070: 202a 202a 6e6f 7465 2070 6174 683a 2070 * *note path: p │ │ │ │ -00257080: 6174 682c 202d 2d20 6c69 7374 206f 6620 ath, -- list of │ │ │ │ -00257090: 6469 7265 6374 6f72 6965 7320 746f 206c directories to l │ │ │ │ -002570a0: 6f6f 6b20 696e 0a0a 466f 7220 7468 6520 ook in..For the │ │ │ │ -002570b0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -002570c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -002570d0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -002570e0: 7072 6f67 7261 6d50 6174 6873 3a20 7072 programPaths: pr │ │ │ │ -002570f0: 6f67 7261 6d50 6174 6873 2c20 6973 2061 ogramPaths, is a │ │ │ │ -00257100: 202a 6e6f 7465 206d 7574 6162 6c65 2068 *note mutable h │ │ │ │ -00257110: 6173 6820 7461 626c 653a 0a4d 7574 6162 ash table:.Mutab │ │ │ │ -00257120: 6c65 4861 7368 5461 626c 652c 2e0a 0a2d leHashTable,...- │ │ │ │ -00257130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00256bd0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00256be0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00256bf0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00256c00: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00256c10: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00256c20: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00256c30: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +00256c40: 6361 756c 6179 3244 6f63 2f66 756e 6374 caulay2Doc/funct │ │ │ │ +00256c50: 696f 6e73 2f66 696e 6450 726f 6772 616d ions/findProgram │ │ │ │ +00256c60: 2d64 6f63 2e6d 323a 3330 3a30 2e0a 1f0a -doc.m2:30:0.... │ │ │ │ +00256c70: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +00256c80: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2070 oc.info, Node: p │ │ │ │ +00256c90: 726f 6772 616d 5061 7468 732c 2050 7265 rogramPaths, Pre │ │ │ │ +00256ca0: 763a 2050 726f 6772 616d 2c20 5570 3a20 v: Program, Up: │ │ │ │ +00256cb0: 6669 6e64 5072 6f67 7261 6d0a 0a70 726f findProgram..pro │ │ │ │ +00256cc0: 6772 616d 5061 7468 7320 2d2d 2075 7365 gramPaths -- use │ │ │ │ +00256cd0: 722d 6465 6669 6e65 6420 6578 7465 726e r-defined extern │ │ │ │ +00256ce0: 616c 2070 726f 6772 616d 2070 6174 6873 al program paths │ │ │ │ +00256cf0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +00256d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00256d10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00256d20: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +00256d30: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 n.===========..A │ │ │ │ +00256d40: 206d 7574 6162 6c65 2068 6173 6820 7461 mutable hash ta │ │ │ │ +00256d50: 626c 6520 636f 6e74 6169 6e69 6e67 2075 ble containing u │ │ │ │ +00256d60: 7365 722d 6465 6669 6e65 6420 7061 7468 ser-defined path │ │ │ │ +00256d70: 7320 746f 2065 7874 6572 6e61 6c20 7072 s to external pr │ │ │ │ +00256d80: 6f67 7261 6d73 2075 7365 6420 6279 0a4d ograms used by.M │ │ │ │ +00256d90: 6163 6175 6c61 7932 2e20 2049 7473 206b acaulay2. Its k │ │ │ │ +00256da0: 6579 7320 6172 6520 7374 7269 6e67 7320 eys are strings │ │ │ │ +00256db0: 636f 6e74 6169 6e69 6e67 2074 6865 206e containing the n │ │ │ │ +00256dc0: 616d 6573 206f 6620 7072 6f67 7261 6d73 ames of programs │ │ │ │ +00256dd0: 2061 6e64 206d 7573 740a 636f 696e 6369 and must.coinci │ │ │ │ +00256de0: 6465 2077 6974 6820 7468 6520 6669 7273 de with the firs │ │ │ │ +00256df0: 7420 6172 6775 6d65 6e74 206f 6620 2a6e t argument of *n │ │ │ │ +00256e00: 6f74 6520 6669 6e64 5072 6f67 7261 6d3a ote findProgram: │ │ │ │ +00256e10: 2066 696e 6450 726f 6772 616d 2c2e 0a0a findProgram,... │ │ │ │ +00256e20: 4974 2069 7320 6f6e 6c79 206e 6563 6573 It is only neces │ │ │ │ +00256e30: 7361 7279 2074 6f20 6465 6669 6e65 2061 sary to define a │ │ │ │ +00256e40: 2070 6174 6820 696e 2074 6869 7320 7761 path in this wa │ │ │ │ +00256e50: 7920 6966 2061 2070 726f 6772 616d 2069 y if a program i │ │ │ │ +00256e60: 7320 696e 7374 616c 6c65 6420 696e 0a61 s installed in.a │ │ │ │ +00256e70: 206e 6f6e 2d73 7461 6e64 6172 6420 6c6f non-standard lo │ │ │ │ +00256e80: 6361 7469 6f6e 2e20 2049 6e20 7061 7274 cation. In part │ │ │ │ +00256e90: 6963 756c 6172 2c20 2a6e 6f74 6520 6669 icular, *note fi │ │ │ │ +00256ea0: 6e64 5072 6f67 7261 6d3a 2066 696e 6450 ndProgram: findP │ │ │ │ +00256eb0: 726f 6772 616d 2c0a 616c 7265 6164 7920 rogram,.already │ │ │ │ +00256ec0: 6368 6563 6b73 2070 7265 6669 7844 6972 checks prefixDir │ │ │ │ +00256ed0: 6563 746f 7279 207c 2063 7572 7265 6e74 ectory | current │ │ │ │ +00256ee0: 4c61 796f 7574 2322 7072 6f67 7261 6d73 Layout#"programs │ │ │ │ +00256ef0: 222c 2028 7768 6572 6520 7468 6520 7072 ", (where the pr │ │ │ │ +00256f00: 6f67 7261 6d73 0a73 6869 7070 6564 2077 ograms.shipped w │ │ │ │ +00256f10: 6974 6820 4d61 6361 756c 6179 3220 6172 ith Macaulay2 ar │ │ │ │ +00256f20: 6520 696e 7374 616c 6c65 6429 2061 6e64 e installed) and │ │ │ │ +00256f30: 2061 6c6c 206f 6620 7468 6520 6469 7265 all of the dire │ │ │ │ +00256f40: 6374 6f72 6965 7320 696e 2074 6865 2075 ctories in the u │ │ │ │ +00256f50: 7365 7227 730a 5041 5448 2065 6e76 6972 ser's.PATH envir │ │ │ │ +00256f60: 6f6e 6d65 6e74 2076 6172 6961 626c 652e onment variable. │ │ │ │ +00256f70: 0a0a 4966 2079 6f75 2075 7365 2061 2070 ..If you use a p │ │ │ │ +00256f80: 6172 7469 6375 6c61 7220 7072 6f67 7261 articular progra │ │ │ │ +00256f90: 6d20 6672 6571 7565 6e74 6c79 2061 6e64 m frequently and │ │ │ │ +00256fa0: 2069 7420 6973 2069 6e73 7461 6c6c 6564 it is installed │ │ │ │ +00256fb0: 2069 6e20 610a 6e6f 6e2d 7374 616e 6461 in a.non-standa │ │ │ │ +00256fc0: 7264 206c 6f63 6174 696f 6e2c 2074 6865 rd location, the │ │ │ │ +00256fd0: 6e20 6974 206d 6179 2062 6520 7573 6566 n it may be usef │ │ │ │ +00256fe0: 756c 2074 6f20 6164 6420 6120 6c69 6e65 ul to add a line │ │ │ │ +00256ff0: 2074 6f20 796f 7572 202a 6e6f 7465 0a69 to your *note.i │ │ │ │ +00257000: 6e69 7469 616c 697a 6174 696f 6e20 6669 nitialization fi │ │ │ │ +00257010: 6c65 3a20 696e 6974 6961 6c69 7a61 7469 le: initializati │ │ │ │ +00257020: 6f6e 2066 696c 652c 2064 6566 696e 696e on file, definin │ │ │ │ +00257030: 6720 6974 7320 7061 7468 2069 6e20 7468 g its path in th │ │ │ │ +00257040: 6973 2077 6179 2e0a 0a53 6565 2061 6c73 is way...See als │ │ │ │ +00257050: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00257060: 2a6e 6f74 6520 5072 6f67 7261 6d3a 2050 *note Program: P │ │ │ │ +00257070: 726f 6772 616d 2c20 2d2d 2065 7874 6572 rogram, -- exter │ │ │ │ +00257080: 6e61 6c20 7072 6f67 7261 6d20 6f62 6a65 nal program obje │ │ │ │ +00257090: 6374 0a20 202a 202a 6e6f 7465 2070 6174 ct. * *note pat │ │ │ │ +002570a0: 683a 2070 6174 682c 202d 2d20 6c69 7374 h: path, -- list │ │ │ │ +002570b0: 206f 6620 6469 7265 6374 6f72 6965 7320 of directories │ │ │ │ +002570c0: 746f 206c 6f6f 6b20 696e 0a0a 466f 7220 to look in..For │ │ │ │ +002570d0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +002570e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002570f0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +00257100: 6f74 6520 7072 6f67 7261 6d50 6174 6873 ote programPaths │ │ │ │ +00257110: 3a20 7072 6f67 7261 6d50 6174 6873 2c20 : programPaths, │ │ │ │ +00257120: 6973 2061 202a 6e6f 7465 206d 7574 6162 is a *note mutab │ │ │ │ +00257130: 6c65 2068 6173 6820 7461 626c 653a 0a4d le hash table:.M │ │ │ │ +00257140: 7574 6162 6c65 4861 7368 5461 626c 652c utableHashTable, │ │ │ │ +00257150: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00257160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00257180: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00257190: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -002571a0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -002571b0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -002571c0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -002571d0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -002571e0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -002571f0: 446f 632f 6675 6e63 7469 6f6e 732f 6669 Doc/functions/fi │ │ │ │ -00257200: 6e64 5072 6f67 7261 6d2d 646f 632e 6d32 ndProgram-doc.m2 │ │ │ │ -00257210: 3a35 383a 302e 0a1f 0a46 696c 653a 204d :58:0....File: M │ │ │ │ -00257220: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -00257230: 2c20 4e6f 6465 3a20 7275 6e50 726f 6772 , Node: runProgr │ │ │ │ -00257240: 616d 2c20 4e65 7874 3a20 5072 6f67 7261 am, Next: Progra │ │ │ │ -00257250: 6d20 3c3c 2054 6869 6e67 2c20 5072 6576 m << Thing, Prev │ │ │ │ -00257260: 3a20 6669 6e64 5072 6f67 7261 6d2c 2055 : findProgram, U │ │ │ │ -00257270: 703a 2063 6f6d 6d75 6e69 6361 7469 6e67 p: communicating │ │ │ │ -00257280: 2077 6974 6820 7072 6f67 7261 6d73 0a0a with programs.. │ │ │ │ -00257290: 7275 6e50 726f 6772 616d 202d 2d20 7275 runProgram -- ru │ │ │ │ -002572a0: 6e20 616e 2065 7874 6572 6e61 6c20 7072 n an external pr │ │ │ │ -002572b0: 6f67 7261 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a ogram.********** │ │ │ │ -002572c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002572d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -002572e0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -002572f0: 2072 756e 5072 6f67 7261 6d28 7072 6f67 runProgram(prog │ │ │ │ -00257300: 7261 6d2c 2061 7267 7329 0a20 2020 2020 ram, args). │ │ │ │ -00257310: 2020 2072 756e 5072 6f67 7261 6d28 7072 runProgram(pr │ │ │ │ -00257320: 6f67 7261 6d2c 2065 7865 2c20 6172 6773 ogram, exe, args │ │ │ │ -00257330: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00257340: 2020 2020 2a20 7072 6f67 7261 6d2c 2061 * program, a │ │ │ │ -00257350: 6e20 696e 7374 616e 6365 206f 6620 7468 n instance of th │ │ │ │ -00257360: 6520 7479 7065 202a 6e6f 7465 2050 726f e type *note Pro │ │ │ │ -00257370: 6772 616d 3a20 5072 6f67 7261 6d2c 2c20 gram: Program,, │ │ │ │ -00257380: 7468 6520 7072 6f67 7261 6d0a 2020 2020 the program. │ │ │ │ -00257390: 2020 2020 746f 2072 756e 2c20 6765 6e65 to run, gene │ │ │ │ -002573a0: 7261 7465 6420 6279 202a 6e6f 7465 2066 rated by *note f │ │ │ │ -002573b0: 696e 6450 726f 6772 616d 3a20 6669 6e64 indProgram: find │ │ │ │ -002573c0: 5072 6f67 7261 6d2c 2e0a 2020 2020 2020 Program,.. │ │ │ │ -002573d0: 2a20 6578 652c 2061 202a 6e6f 7465 2073 * exe, a *note s │ │ │ │ -002573e0: 7472 696e 673a 2053 7472 696e 672c 2c20 tring: String,, │ │ │ │ -002573f0: 7468 6520 7370 6563 6966 6963 2065 7865 the specific exe │ │ │ │ -00257400: 6375 7461 626c 6520 6669 6c65 2074 6f20 cutable file to │ │ │ │ -00257410: 7275 6e2e 2054 6869 730a 2020 2020 2020 run. This. │ │ │ │ -00257420: 2020 6973 206f 6e6c 7920 6e65 6365 7373 is only necess │ │ │ │ -00257430: 6172 7920 6966 2074 6865 2070 726f 6772 ary if the progr │ │ │ │ -00257440: 616d 2063 6f6e 7369 7374 7320 6f66 206d am consists of m │ │ │ │ -00257450: 756c 7469 706c 6520 7375 6368 2066 696c ultiple such fil │ │ │ │ -00257460: 6573 2e20 2049 660a 2020 2020 2020 2020 es. If. │ │ │ │ -00257470: 6e6f 7420 6769 7665 6e2c 2074 6865 6e20 not given, then │ │ │ │ -00257480: 7072 6f67 7261 6d23 226e 616d 6522 2069 program#"name" i │ │ │ │ -00257490: 7320 7573 6564 2e0a 2020 2020 2020 2a20 s used.. * │ │ │ │ -002574a0: 6172 6773 2c20 6120 2a6e 6f74 6520 7374 args, a *note st │ │ │ │ -002574b0: 7269 6e67 3a20 5374 7269 6e67 2c2c 2074 ring: String,, t │ │ │ │ -002574c0: 6865 2063 6f6d 6d61 6e64 206c 696e 6520 he command line │ │ │ │ -002574d0: 6172 6775 6d65 6e74 7320 7061 7373 6564 arguments passed │ │ │ │ -002574e0: 2074 6f20 7468 650a 2020 2020 2020 2020 to the. │ │ │ │ -002574f0: 7072 6f67 7261 6d2e 0a20 202a 202a 6e6f program.. * *no │ │ │ │ -00257500: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ -00257510: 7473 3a20 7573 696e 6720 6675 6e63 7469 ts: using functi │ │ │ │ -00257520: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00257530: 6c20 696e 7075 7473 2c3a 0a20 2020 2020 l inputs,:. │ │ │ │ -00257540: 202a 204b 6565 7046 696c 6573 203d 3e20 * KeepFiles => │ │ │ │ -00257550: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ -00257560: 7661 6c75 653a 2042 6f6f 6c65 616e 2c2c value: Boolean,, │ │ │ │ -00257570: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ -00257580: 616c 7365 2c0a 2020 2020 2020 2020 7768 alse,. wh │ │ │ │ -00257590: 6574 6865 7220 746f 206b 6565 7020 7468 ether to keep th │ │ │ │ -002575a0: 6520 7465 6d70 6f72 6172 7920 6669 6c65 e temporary file │ │ │ │ -002575b0: 7320 636f 6e74 6169 6e69 6e67 2074 6865 s containing the │ │ │ │ -002575c0: 2070 726f 6772 616d 2773 206f 7574 7075 program's outpu │ │ │ │ -002575d0: 742e 0a20 2020 2020 202a 2052 6169 7365 t.. * Raise │ │ │ │ -002575e0: 4572 726f 7220 3d3e 2061 202a 6e6f 7465 Error => a *note │ │ │ │ -002575f0: 2042 6f6f 6c65 616e 2076 616c 7565 3a20 Boolean value: │ │ │ │ -00257600: 426f 6f6c 6561 6e2c 2c20 6465 6661 756c Boolean,, defaul │ │ │ │ -00257610: 7420 7661 6c75 6520 7472 7565 2c0a 2020 t value true,. │ │ │ │ -00257620: 2020 2020 2020 7768 6574 6865 7220 746f whether to │ │ │ │ -00257630: 2072 6169 7365 2061 6e20 6572 726f 7220 raise an error │ │ │ │ -00257640: 6966 2074 6865 2070 726f 6772 616d 2072 if the program r │ │ │ │ -00257650: 6574 7572 6e73 2061 206e 6f6e 7a65 726f eturns a nonzero │ │ │ │ -00257660: 2076 616c 7565 2e0a 2020 2020 2020 2a20 value.. * │ │ │ │ -00257670: 5275 6e44 6972 6563 746f 7279 203d 3e20 RunDirectory => │ │ │ │ -00257680: 6120 2a6e 6f74 6520 7374 7269 6e67 3a20 a *note string: │ │ │ │ -00257690: 5374 7269 6e67 2c2c 2064 6566 6175 6c74 String,, default │ │ │ │ -002576a0: 2076 616c 7565 206e 756c 6c2c 2074 6865 value null, the │ │ │ │ -002576b0: 0a20 2020 2020 2020 2064 6972 6563 746f . directo │ │ │ │ -002576c0: 7279 2066 726f 6d20 7768 6963 6820 746f ry from which to │ │ │ │ -002576d0: 2072 756e 2074 6865 2070 726f 6772 616d run the program │ │ │ │ -002576e0: 2e20 2049 6620 6974 2064 6f65 7320 6e6f . If it does no │ │ │ │ -002576f0: 7420 6578 6973 742c 2074 6865 6e20 6974 t exist, then it │ │ │ │ -00257700: 0a20 2020 2020 2020 2077 696c 6c20 6265 . will be │ │ │ │ -00257710: 2063 7265 6174 6564 2e20 2049 6620 2a6e created. If *n │ │ │ │ -00257720: 6f74 6520 6e75 6c6c 3a20 6e75 6c6c 2c2c ote null: null,, │ │ │ │ -00257730: 2074 6865 6e20 7468 6520 7072 6f67 7261 then the progra │ │ │ │ -00257740: 6d20 7769 6c6c 2062 6520 7275 6e0a 2020 m will be run. │ │ │ │ -00257750: 2020 2020 2020 6672 6f6d 2074 6865 2063 from the c │ │ │ │ -00257760: 7572 7265 6e74 2077 6f72 6b69 6e67 2064 urrent working d │ │ │ │ -00257770: 6972 6563 746f 7279 2028 7365 6520 2a6e irectory (see *n │ │ │ │ -00257780: 6f74 6520 6375 7272 656e 7444 6972 6563 ote currentDirec │ │ │ │ -00257790: 746f 7279 3a0a 2020 2020 2020 2020 6375 tory:. cu │ │ │ │ -002577a0: 7272 656e 7444 6972 6563 746f 7279 2c29 rrentDirectory,) │ │ │ │ -002577b0: 2e0a 2020 2020 2020 2a20 5665 7262 6f73 .. * Verbos │ │ │ │ -002577c0: 6520 3d3e 2061 202a 6e6f 7465 2042 6f6f e => a *note Boo │ │ │ │ -002577d0: 6c65 616e 2076 616c 7565 3a20 426f 6f6c lean value: Bool │ │ │ │ -002577e0: 6561 6e2c 2c20 6465 6661 756c 7420 7661 ean,, default va │ │ │ │ -002577f0: 6c75 6520 6661 6c73 652c 0a20 2020 2020 lue false,. │ │ │ │ -00257800: 2020 2077 6865 7468 6572 2074 6f20 7072 whether to pr │ │ │ │ -00257810: 696e 7420 7468 6520 636f 6d6d 616e 6420 int the command │ │ │ │ -00257820: 6c69 6e65 2069 6e70 7574 2061 6e64 2074 line input and t │ │ │ │ -00257830: 6865 2070 726f 6772 616d 2773 206f 7574 he program's out │ │ │ │ -00257840: 7075 742e 0a0a 4465 7363 7269 7074 696f put...Descriptio │ │ │ │ -00257850: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ -00257860: 6869 7320 6d65 7468 6f64 2072 756e 7320 his method runs │ │ │ │ -00257870: 616e 2065 7874 6572 6e61 6c20 7072 6f67 an external prog │ │ │ │ -00257880: 7261 6d20 7768 6963 6820 6861 7320 616c ram which has al │ │ │ │ -00257890: 7265 6164 7920 6265 656e 206c 6f61 6465 ready been loade │ │ │ │ -002578a0: 6420 7573 696e 6720 2a6e 6f74 650a 6669 d using *note.fi │ │ │ │ -002578b0: 6e64 5072 6f67 7261 6d3a 2066 696e 6450 ndProgram: findP │ │ │ │ -002578c0: 726f 6772 616d 2c2e 2020 5468 6520 7265 rogram,. The re │ │ │ │ -002578d0: 7375 6c74 7320 6f66 2074 6869 7320 7275 sults of this ru │ │ │ │ -002578e0: 6e20 6172 6520 6176 6169 6c61 626c 6520 n are available │ │ │ │ -002578f0: 696e 2061 202a 6e6f 7465 0a50 726f 6772 in a *note.Progr │ │ │ │ -00257900: 616d 5275 6e3a 2050 726f 6772 616d 5275 amRun: ProgramRu │ │ │ │ -00257910: 6e2c 206f 626a 6563 742e 0a0a 2b2d 2d2d n, object...+--- │ │ │ │ -00257920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257950: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6766 ------+.|i1 : gf │ │ │ │ -00257960: 616e 203d 2066 696e 6450 726f 6772 616d an = findProgram │ │ │ │ -00257970: 2822 6766 616e 222c 2022 6766 616e 202d ("gfan", "gfan - │ │ │ │ -00257980: 2d68 656c 7022 2920 2020 2020 2020 2020 -help") │ │ │ │ -00257990: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -002579a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002579b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002579c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002579d0: 7c6f 3120 3d20 6766 616e 2020 2020 2020 |o1 = gfan │ │ │ │ +00257170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002571a0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +002571b0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +002571c0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +002571d0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +002571e0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +002571f0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00257200: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +00257210: 6c61 7932 446f 632f 6675 6e63 7469 6f6e lay2Doc/function │ │ │ │ +00257220: 732f 6669 6e64 5072 6f67 7261 6d2d 646f s/findProgram-do │ │ │ │ +00257230: 632e 6d32 3a35 383a 302e 0a1f 0a46 696c c.m2:58:0....Fil │ │ │ │ +00257240: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +00257250: 696e 666f 2c20 4e6f 6465 3a20 7275 6e50 info, Node: runP │ │ │ │ +00257260: 726f 6772 616d 2c20 4e65 7874 3a20 5072 rogram, Next: Pr │ │ │ │ +00257270: 6f67 7261 6d20 3c3c 2054 6869 6e67 2c20 ogram << Thing, │ │ │ │ +00257280: 5072 6576 3a20 6669 6e64 5072 6f67 7261 Prev: findProgra │ │ │ │ +00257290: 6d2c 2055 703a 2063 6f6d 6d75 6e69 6361 m, Up: communica │ │ │ │ +002572a0: 7469 6e67 2077 6974 6820 7072 6f67 7261 ting with progra │ │ │ │ +002572b0: 6d73 0a0a 7275 6e50 726f 6772 616d 202d ms..runProgram - │ │ │ │ +002572c0: 2d20 7275 6e20 616e 2065 7874 6572 6e61 - run an externa │ │ │ │ +002572d0: 6c20 7072 6f67 7261 6d0a 2a2a 2a2a 2a2a l program.****** │ │ │ │ +002572e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002572f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00257300: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00257310: 2020 2020 2072 756e 5072 6f67 7261 6d28 runProgram( │ │ │ │ +00257320: 7072 6f67 7261 6d2c 2061 7267 7329 0a20 program, args). │ │ │ │ +00257330: 2020 2020 2020 2072 756e 5072 6f67 7261 runProgra │ │ │ │ +00257340: 6d28 7072 6f67 7261 6d2c 2065 7865 2c20 m(program, exe, │ │ │ │ +00257350: 6172 6773 290a 2020 2a20 496e 7075 7473 args). * Inputs │ │ │ │ +00257360: 3a0a 2020 2020 2020 2a20 7072 6f67 7261 :. * progra │ │ │ │ +00257370: 6d2c 2061 6e20 696e 7374 616e 6365 206f m, an instance o │ │ │ │ +00257380: 6620 7468 6520 7479 7065 202a 6e6f 7465 f the type *note │ │ │ │ +00257390: 2050 726f 6772 616d 3a20 5072 6f67 7261 Program: Progra │ │ │ │ +002573a0: 6d2c 2c20 7468 6520 7072 6f67 7261 6d0a m,, the program. │ │ │ │ +002573b0: 2020 2020 2020 2020 746f 2072 756e 2c20 to run, │ │ │ │ +002573c0: 6765 6e65 7261 7465 6420 6279 202a 6e6f generated by *no │ │ │ │ +002573d0: 7465 2066 696e 6450 726f 6772 616d 3a20 te findProgram: │ │ │ │ +002573e0: 6669 6e64 5072 6f67 7261 6d2c 2e0a 2020 findProgram,.. │ │ │ │ +002573f0: 2020 2020 2a20 6578 652c 2061 202a 6e6f * exe, a *no │ │ │ │ +00257400: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ +00257410: 672c 2c20 7468 6520 7370 6563 6966 6963 g,, the specific │ │ │ │ +00257420: 2065 7865 6375 7461 626c 6520 6669 6c65 executable file │ │ │ │ +00257430: 2074 6f20 7275 6e2e 2054 6869 730a 2020 to run. This. │ │ │ │ +00257440: 2020 2020 2020 6973 206f 6e6c 7920 6e65 is only ne │ │ │ │ +00257450: 6365 7373 6172 7920 6966 2074 6865 2070 cessary if the p │ │ │ │ +00257460: 726f 6772 616d 2063 6f6e 7369 7374 7320 rogram consists │ │ │ │ +00257470: 6f66 206d 756c 7469 706c 6520 7375 6368 of multiple such │ │ │ │ +00257480: 2066 696c 6573 2e20 2049 660a 2020 2020 files. If. │ │ │ │ +00257490: 2020 2020 6e6f 7420 6769 7665 6e2c 2074 not given, t │ │ │ │ +002574a0: 6865 6e20 7072 6f67 7261 6d23 226e 616d hen program#"nam │ │ │ │ +002574b0: 6522 2069 7320 7573 6564 2e0a 2020 2020 e" is used.. │ │ │ │ +002574c0: 2020 2a20 6172 6773 2c20 6120 2a6e 6f74 * args, a *not │ │ │ │ +002574d0: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ +002574e0: 2c2c 2074 6865 2063 6f6d 6d61 6e64 206c ,, the command l │ │ │ │ +002574f0: 696e 6520 6172 6775 6d65 6e74 7320 7061 ine arguments pa │ │ │ │ +00257500: 7373 6564 2074 6f20 7468 650a 2020 2020 ssed to the. │ │ │ │ +00257510: 2020 2020 7072 6f67 7261 6d2e 0a20 202a program.. * │ │ │ │ +00257520: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +00257530: 696e 7075 7473 3a20 7573 696e 6720 6675 inputs: using fu │ │ │ │ +00257540: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00257550: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00257560: 2020 2020 202a 204b 6565 7046 696c 6573 * KeepFiles │ │ │ │ +00257570: 203d 3e20 6120 2a6e 6f74 6520 426f 6f6c => a *note Bool │ │ │ │ +00257580: 6561 6e20 7661 6c75 653a 2042 6f6f 6c65 ean value: Boole │ │ │ │ +00257590: 616e 2c2c 2064 6566 6175 6c74 2076 616c an,, default val │ │ │ │ +002575a0: 7565 2066 616c 7365 2c0a 2020 2020 2020 ue false,. │ │ │ │ +002575b0: 2020 7768 6574 6865 7220 746f 206b 6565 whether to kee │ │ │ │ +002575c0: 7020 7468 6520 7465 6d70 6f72 6172 7920 p the temporary │ │ │ │ +002575d0: 6669 6c65 7320 636f 6e74 6169 6e69 6e67 files containing │ │ │ │ +002575e0: 2074 6865 2070 726f 6772 616d 2773 206f the program's o │ │ │ │ +002575f0: 7574 7075 742e 0a20 2020 2020 202a 2052 utput.. * R │ │ │ │ +00257600: 6169 7365 4572 726f 7220 3d3e 2061 202a aiseError => a * │ │ │ │ +00257610: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ +00257620: 7565 3a20 426f 6f6c 6561 6e2c 2c20 6465 ue: Boolean,, de │ │ │ │ +00257630: 6661 756c 7420 7661 6c75 6520 7472 7565 fault value true │ │ │ │ +00257640: 2c0a 2020 2020 2020 2020 7768 6574 6865 ,. whethe │ │ │ │ +00257650: 7220 746f 2072 6169 7365 2061 6e20 6572 r to raise an er │ │ │ │ +00257660: 726f 7220 6966 2074 6865 2070 726f 6772 ror if the progr │ │ │ │ +00257670: 616d 2072 6574 7572 6e73 2061 206e 6f6e am returns a non │ │ │ │ +00257680: 7a65 726f 2076 616c 7565 2e0a 2020 2020 zero value.. │ │ │ │ +00257690: 2020 2a20 5275 6e44 6972 6563 746f 7279 * RunDirectory │ │ │ │ +002576a0: 203d 3e20 6120 2a6e 6f74 6520 7374 7269 => a *note stri │ │ │ │ +002576b0: 6e67 3a20 5374 7269 6e67 2c2c 2064 6566 ng: String,, def │ │ │ │ +002576c0: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ +002576d0: 2074 6865 0a20 2020 2020 2020 2064 6972 the. dir │ │ │ │ +002576e0: 6563 746f 7279 2066 726f 6d20 7768 6963 ectory from whic │ │ │ │ +002576f0: 6820 746f 2072 756e 2074 6865 2070 726f h to run the pro │ │ │ │ +00257700: 6772 616d 2e20 2049 6620 6974 2064 6f65 gram. If it doe │ │ │ │ +00257710: 7320 6e6f 7420 6578 6973 742c 2074 6865 s not exist, the │ │ │ │ +00257720: 6e20 6974 0a20 2020 2020 2020 2077 696c n it. wil │ │ │ │ +00257730: 6c20 6265 2063 7265 6174 6564 2e20 2049 l be created. I │ │ │ │ +00257740: 6620 2a6e 6f74 6520 6e75 6c6c 3a20 6e75 f *note null: nu │ │ │ │ +00257750: 6c6c 2c2c 2074 6865 6e20 7468 6520 7072 ll,, then the pr │ │ │ │ +00257760: 6f67 7261 6d20 7769 6c6c 2062 6520 7275 ogram will be ru │ │ │ │ +00257770: 6e0a 2020 2020 2020 2020 6672 6f6d 2074 n. from t │ │ │ │ +00257780: 6865 2063 7572 7265 6e74 2077 6f72 6b69 he current worki │ │ │ │ +00257790: 6e67 2064 6972 6563 746f 7279 2028 7365 ng directory (se │ │ │ │ +002577a0: 6520 2a6e 6f74 6520 6375 7272 656e 7444 e *note currentD │ │ │ │ +002577b0: 6972 6563 746f 7279 3a0a 2020 2020 2020 irectory:. │ │ │ │ +002577c0: 2020 6375 7272 656e 7444 6972 6563 746f currentDirecto │ │ │ │ +002577d0: 7279 2c29 2e0a 2020 2020 2020 2a20 5665 ry,).. * Ve │ │ │ │ +002577e0: 7262 6f73 6520 3d3e 2061 202a 6e6f 7465 rbose => a *note │ │ │ │ +002577f0: 2042 6f6f 6c65 616e 2076 616c 7565 3a20 Boolean value: │ │ │ │ +00257800: 426f 6f6c 6561 6e2c 2c20 6465 6661 756c Boolean,, defaul │ │ │ │ +00257810: 7420 7661 6c75 6520 6661 6c73 652c 0a20 t value false,. │ │ │ │ +00257820: 2020 2020 2020 2077 6865 7468 6572 2074 whether t │ │ │ │ +00257830: 6f20 7072 696e 7420 7468 6520 636f 6d6d o print the comm │ │ │ │ +00257840: 616e 6420 6c69 6e65 2069 6e70 7574 2061 and line input a │ │ │ │ +00257850: 6e64 2074 6865 2070 726f 6772 616d 2773 nd the program's │ │ │ │ +00257860: 206f 7574 7075 742e 0a0a 4465 7363 7269 output...Descri │ │ │ │ +00257870: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00257880: 3d0a 0a54 6869 7320 6d65 7468 6f64 2072 =..This method r │ │ │ │ +00257890: 756e 7320 616e 2065 7874 6572 6e61 6c20 uns an external │ │ │ │ +002578a0: 7072 6f67 7261 6d20 7768 6963 6820 6861 program which ha │ │ │ │ +002578b0: 7320 616c 7265 6164 7920 6265 656e 206c s already been l │ │ │ │ +002578c0: 6f61 6465 6420 7573 696e 6720 2a6e 6f74 oaded using *not │ │ │ │ +002578d0: 650a 6669 6e64 5072 6f67 7261 6d3a 2066 e.findProgram: f │ │ │ │ +002578e0: 696e 6450 726f 6772 616d 2c2e 2020 5468 indProgram,. Th │ │ │ │ +002578f0: 6520 7265 7375 6c74 7320 6f66 2074 6869 e results of thi │ │ │ │ +00257900: 7320 7275 6e20 6172 6520 6176 6169 6c61 s run are availa │ │ │ │ +00257910: 626c 6520 696e 2061 202a 6e6f 7465 0a50 ble in a *note.P │ │ │ │ +00257920: 726f 6772 616d 5275 6e3a 2050 726f 6772 rogramRun: Progr │ │ │ │ +00257930: 616d 5275 6e2c 206f 626a 6563 742e 0a0a amRun, object... │ │ │ │ +00257940: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00257950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257970: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +00257980: 3a20 6766 616e 203d 2066 696e 6450 726f : gfan = findPro │ │ │ │ +00257990: 6772 616d 2822 6766 616e 222c 2022 6766 gram("gfan", "gf │ │ │ │ +002579a0: 616e 202d 2d68 656c 7022 2920 2020 2020 an --help") │ │ │ │ +002579b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +002579c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002579d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002579e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002579f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +002579f0: 2020 7c0a 7c6f 3120 3d20 6766 616e 2020 |.|o1 = gfan │ │ │ │ +00257a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a40: 2020 2020 2020 7c0a 7c6f 3120 3a20 5072 |.|o1 : Pr │ │ │ │ -00257a50: 6f67 7261 6d20 2020 2020 2020 2020 2020 ogram │ │ │ │ -00257a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257a80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00257a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00257ac0: 7c69 3220 3a20 7275 6e50 726f 6772 616d |i2 : runProgram │ │ │ │ -00257ad0: 2867 6661 6e2c 2022 5f76 6572 7369 6f6e (gfan, "_version │ │ │ │ -00257ae0: 2229 2020 2020 2020 2020 2020 2020 2020 ") │ │ │ │ -00257af0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00257b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b30: 2020 2020 2020 7c0a 7c6f 3220 3d20 3020 |.|o2 = 0 │ │ │ │ +00257a20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257a30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00257a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257a60: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00257a70: 3a20 5072 6f67 7261 6d20 2020 2020 2020 : Program │ │ │ │ +00257a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257aa0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00257ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257ae0: 2d2d 2b0a 7c69 3220 3a20 7275 6e50 726f --+.|i2 : runPro │ │ │ │ +00257af0: 6772 616d 2867 6661 6e2c 2022 5f76 6572 gram(gfan, "_ver │ │ │ │ +00257b00: 7369 6f6e 2229 2020 2020 2020 2020 2020 sion") │ │ │ │ +00257b10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257b20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00257b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00257b50: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00257b60: 3d20 3020 2020 2020 2020 2020 2020 2020 = 0 │ │ │ │ +00257b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00257bb0: 7c6f 3220 3a20 5072 6f67 7261 6d52 756e |o2 : ProgramRun │ │ │ │ +00257b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00257ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257be0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00257bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257c20: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 6f6f ------+.|i3 : oo │ │ │ │ -00257c30: 2322 6f75 7470 7574 2220 2020 2020 2020 #"output" │ │ │ │ -00257c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257c60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00257bd0: 2020 7c0a 7c6f 3220 3a20 5072 6f67 7261 |.|o2 : Progra │ │ │ │ +00257be0: 6d52 756e 2020 2020 2020 2020 2020 2020 mRun │ │ │ │ +00257bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257c00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257c10: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00257c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +00257c50: 3a20 6f6f 2322 6f75 7470 7574 2220 2020 : oo#"output" │ │ │ │ +00257c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257c90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00257ca0: 7c6f 3320 3d20 4766 616e 2076 6572 7369 |o3 = Gfan versi │ │ │ │ -00257cb0: 6f6e 3a20 2020 2020 2020 2020 2020 2020 on: │ │ │ │ -00257cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257cd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00257ce0: 2020 6766 616e 302e 3720 2020 2020 2020 gfan0.7 │ │ │ │ -00257cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00257c80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00257c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257cc0: 2020 7c0a 7c6f 3320 3d20 4766 616e 2076 |.|o3 = Gfan v │ │ │ │ +00257cd0: 6572 7369 6f6e 3a20 2020 2020 2020 2020 ersion: │ │ │ │ +00257ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257cf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257d00: 7c20 2020 2020 6766 616e 302e 3720 2020 | gfan0.7 │ │ │ │ +00257d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00257d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257d30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00257d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257d50: 2020 7c0a 7c20 2020 2020 466f 726b 6564 |.| Forked │ │ │ │ -00257d60: 2066 726f 6d20 736f 7572 6365 2074 7265 from source tre │ │ │ │ -00257d70: 6520 6f6e 3a20 2020 2020 2020 2020 2020 e on: │ │ │ │ -00257d80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00257d90: 7c20 2020 2020 3137 3233 3437 3834 3135 | 1723478415 │ │ │ │ -00257da0: 204d 6f6e 2041 7567 2031 3220 3138 3a30 Mon Aug 12 18:0 │ │ │ │ -00257db0: 303a 3135 2032 3032 3420 2020 2020 2020 0:15 2024 │ │ │ │ -00257dc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00257dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257e00: 2020 2020 2020 7c0a 7c20 2020 2020 4c69 |.| Li │ │ │ │ -00257e10: 6e6b 6564 206c 6962 7261 7269 6573 3a20 nked libraries: │ │ │ │ -00257e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257e40: 2020 7c0a 7c20 2020 2020 474d 5020 362e |.| GMP 6. │ │ │ │ -00257e50: 332e 3020 2020 2020 2020 2020 2020 2020 3.0 │ │ │ │ -00257e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257e70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00257e80: 7c20 2020 2020 4364 646c 6962 2020 2020 | Cddlib │ │ │ │ -00257e90: 2020 2059 4553 2020 2020 2020 2020 2020 YES │ │ │ │ -00257ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257eb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00257ec0: 2020 536f 506c 6578 2020 2020 2020 2020 SoPlex │ │ │ │ -00257ed0: 4e4f 2020 2020 2020 2020 2020 2020 2020 NO │ │ │ │ -00257ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257ef0: 2020 2020 2020 7c0a 7c20 2020 2020 5369 |.| Si │ │ │ │ -00257f00: 6e67 756c 6172 2020 2020 2020 4e4f 2020 ngular NO │ │ │ │ -00257f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257f30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00257f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00257f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00257f70: 7c69 3420 3a20 7275 6e50 726f 6772 616d |i4 : runProgram │ │ │ │ -00257f80: 2867 6661 6e2c 2022 5f66 6f6f 222c 2052 (gfan, "_foo", R │ │ │ │ -00257f90: 6169 7365 4572 726f 7220 3d3e 2066 616c aiseError => fal │ │ │ │ -00257fa0: 7365 2920 2020 2020 2020 7c0a 7c20 2020 se) |.| │ │ │ │ -00257fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00257fe0: 2020 2020 2020 7c0a 7c6f 3420 3d20 3235 |.|o4 = 25 │ │ │ │ -00257ff0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00258000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00257d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257d70: 2020 2020 2020 7c0a 7c20 2020 2020 466f |.| Fo │ │ │ │ +00257d80: 726b 6564 2066 726f 6d20 736f 7572 6365 rked from source │ │ │ │ +00257d90: 2074 7265 6520 6f6e 3a20 2020 2020 2020 tree on: │ │ │ │ +00257da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257db0: 2020 7c0a 7c20 2020 2020 3137 3233 3437 |.| 172347 │ │ │ │ +00257dc0: 3834 3135 204d 6f6e 2041 7567 2031 3220 8415 Mon Aug 12 │ │ │ │ +00257dd0: 3138 3a30 303a 3135 2032 3032 3420 2020 18:00:15 2024 │ │ │ │ +00257de0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257df0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00257e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257e20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00257e30: 2020 4c69 6e6b 6564 206c 6962 7261 7269 Linked librari │ │ │ │ +00257e40: 6573 3a20 2020 2020 2020 2020 2020 2020 es: │ │ │ │ +00257e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257e60: 2020 2020 2020 7c0a 7c20 2020 2020 474d |.| GM │ │ │ │ +00257e70: 5020 362e 332e 3020 2020 2020 2020 2020 P 6.3.0 │ │ │ │ +00257e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257ea0: 2020 7c0a 7c20 2020 2020 4364 646c 6962 |.| Cddlib │ │ │ │ +00257eb0: 2020 2020 2020 2059 4553 2020 2020 2020 YES │ │ │ │ +00257ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257ed0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00257ee0: 7c20 2020 2020 536f 506c 6578 2020 2020 | SoPlex │ │ │ │ +00257ef0: 2020 2020 4e4f 2020 2020 2020 2020 2020 NO │ │ │ │ +00257f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257f10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00257f20: 2020 5369 6e67 756c 6172 2020 2020 2020 Singular │ │ │ │ +00257f30: 4e4f 2020 2020 2020 2020 2020 2020 2020 NO │ │ │ │ +00257f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257f50: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00257f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00257f90: 2d2d 2b0a 7c69 3420 3a20 7275 6e50 726f --+.|i4 : runPro │ │ │ │ +00257fa0: 6772 616d 2867 6661 6e2c 2022 5f66 6f6f gram(gfan, "_foo │ │ │ │ +00257fb0: 222c 2052 6169 7365 4572 726f 7220 3d3e ", RaiseError => │ │ │ │ +00257fc0: 2066 616c 7365 2920 2020 2020 2020 7c0a false) |. │ │ │ │ +00257fd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00257fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00257ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258000: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00258010: 3d20 3235 3620 2020 2020 2020 2020 2020 = 256 │ │ │ │ +00258020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00258060: 7c6f 3420 3a20 5072 6f67 7261 6d52 756e |o4 : ProgramRun │ │ │ │ +00258040: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00258050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258090: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -002580a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002580b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002580c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002580d0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 6f6f ------+.|i5 : oo │ │ │ │ -002580e0: 2322 6572 726f 7222 2020 2020 2020 2020 #"error" │ │ │ │ -002580f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258110: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258080: 2020 7c0a 7c6f 3420 3a20 5072 6f67 7261 |.|o4 : Progra │ │ │ │ +00258090: 6d52 756e 2020 2020 2020 2020 2020 2020 mRun │ │ │ │ +002580a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002580b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +002580c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +002580d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002580e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002580f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +00258100: 3a20 6f6f 2322 6572 726f 7222 2020 2020 : oo#"error" │ │ │ │ +00258110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00258150: 7c6f 3520 3d20 554e 4b4e 4f57 4e20 4f50 |o5 = UNKNOWN OP │ │ │ │ -00258160: 5449 4f4e 3a20 5f66 6f6f 2e20 2020 2020 TION: _foo. │ │ │ │ -00258170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258180: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00258190: 2020 5553 4520 2d2d 6865 6c70 2041 5320 USE --help AS │ │ │ │ -002581a0: 4120 5349 4e47 4c45 204f 5054 494f 4e20 A SINGLE OPTION │ │ │ │ -002581b0: 544f 2056 4945 5720 5448 4520 4845 4c50 TO VIEW THE HELP │ │ │ │ -002581c0: 2054 4558 542e 7c0a 2b2d 2d2d 2d2d 2d2d TEXT.|.+------- │ │ │ │ -002581d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002581e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258130: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00258140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258170: 2020 7c0a 7c6f 3520 3d20 554e 4b4e 4f57 |.|o5 = UNKNOW │ │ │ │ +00258180: 4e20 4f50 5449 4f4e 3a20 5f66 6f6f 2e20 N OPTION: _foo. │ │ │ │ +00258190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002581a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +002581b0: 7c20 2020 2020 5553 4520 2d2d 6865 6c70 | USE --help │ │ │ │ +002581c0: 2041 5320 4120 5349 4e47 4c45 204f 5054 AS A SINGLE OPT │ │ │ │ +002581d0: 494f 4e20 544f 2056 4945 5720 5448 4520 ION TO VIEW THE │ │ │ │ +002581e0: 4845 4c50 2054 4558 542e 7c0a 2b2d 2d2d HELP TEXT.|.+--- │ │ │ │ 002581f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258200: 2d2d 2b0a 0a54 6865 2076 616c 7565 2063 --+..The value c │ │ │ │ -00258210: 6f72 7265 7370 6f6e 6469 6e67 2074 6f20 orresponding to │ │ │ │ -00258220: 7468 6520 226f 7574 7075 7422 206b 6579 the "output" key │ │ │ │ -00258230: 206d 6179 2061 6c73 6f20 6265 206f 6274 may also be obt │ │ │ │ -00258240: 6169 6e65 6420 7573 696e 6720 2a6e 6f74 ained using *not │ │ │ │ -00258250: 650a 746f 5374 7269 6e67 3a20 746f 5374 e.toString: toSt │ │ │ │ -00258260: 7269 6e67 2c2e 0a0a 2b2d 2d2d 2d2d 2d2d ring,...+------- │ │ │ │ -00258270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258290: 2d2d 2d2b 0a7c 6936 203a 2074 6f53 7472 ---+.|i6 : toStr │ │ │ │ -002582a0: 696e 6720 7275 6e50 726f 6772 616d 2867 ing runProgram(g │ │ │ │ -002582b0: 6661 6e2c 2022 5f76 6572 7369 6f6e 2229 fan, "_version") │ │ │ │ -002582c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -002582d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002582e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002582f0: 6f36 203d 2047 6661 6e20 7665 7273 696f o6 = Gfan versio │ │ │ │ -00258300: 6e3a 2020 2020 2020 2020 2020 2020 2020 n: │ │ │ │ -00258310: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00258320: 2020 6766 616e 302e 3720 2020 2020 2020 gfan0.7 │ │ │ │ -00258330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258340: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00258200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258220: 2d2d 2d2d 2d2d 2b0a 0a54 6865 2076 616c ------+..The val │ │ │ │ +00258230: 7565 2063 6f72 7265 7370 6f6e 6469 6e67 ue corresponding │ │ │ │ +00258240: 2074 6f20 7468 6520 226f 7574 7075 7422 to the "output" │ │ │ │ +00258250: 206b 6579 206d 6179 2061 6c73 6f20 6265 key may also be │ │ │ │ +00258260: 206f 6274 6169 6e65 6420 7573 696e 6720 obtained using │ │ │ │ +00258270: 2a6e 6f74 650a 746f 5374 7269 6e67 3a20 *note.toString: │ │ │ │ +00258280: 746f 5374 7269 6e67 2c2e 0a0a 2b2d 2d2d toString,...+--- │ │ │ │ +00258290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002582a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002582b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 -------+.|i6 : t │ │ │ │ +002582c0: 6f53 7472 696e 6720 7275 6e50 726f 6772 oString runProgr │ │ │ │ +002582d0: 616d 2867 6661 6e2c 2022 5f76 6572 7369 am(gfan, "_versi │ │ │ │ +002582e0: 6f6e 2229 7c0a 7c20 2020 2020 2020 2020 on")|.| │ │ │ │ +002582f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258310: 207c 0a7c 6f36 203d 2047 6661 6e20 7665 |.|o6 = Gfan ve │ │ │ │ +00258320: 7273 696f 6e3a 2020 2020 2020 2020 2020 rsion: │ │ │ │ +00258330: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00258340: 7c20 2020 2020 6766 616e 302e 3720 2020 | gfan0.7 │ │ │ │ 00258350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258370: 2020 2020 7c0a 7c20 2020 2020 466f 726b |.| Fork │ │ │ │ -00258380: 6564 2066 726f 6d20 736f 7572 6365 2074 ed from source t │ │ │ │ -00258390: 7265 6520 6f6e 3a20 2020 2020 2020 2020 ree on: │ │ │ │ -002583a0: 207c 0a7c 2020 2020 2031 3732 3334 3738 |.| 1723478 │ │ │ │ -002583b0: 3431 3520 4d6f 6e20 4175 6720 3132 2031 415 Mon Aug 12 1 │ │ │ │ -002583c0: 383a 3030 3a31 3520 3230 3234 2020 7c0a 8:00:15 2024 |. │ │ │ │ -002583d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -002583e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002583f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00258400: 2020 204c 696e 6b65 6420 6c69 6272 6172 Linked librar │ │ │ │ -00258410: 6965 733a 2020 2020 2020 2020 2020 2020 ies: │ │ │ │ -00258420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00258430: 474d 5020 362e 332e 3020 2020 2020 2020 GMP 6.3.0 │ │ │ │ -00258440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258450: 2020 2020 207c 0a7c 2020 2020 2043 6464 |.| Cdd │ │ │ │ -00258460: 6c69 6220 2020 2020 2020 5945 5320 2020 lib YES │ │ │ │ -00258470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258480: 2020 7c0a 7c20 2020 2020 536f 506c 6578 |.| SoPlex │ │ │ │ -00258490: 2020 2020 2020 2020 4e4f 2020 2020 2020 NO │ │ │ │ -002584a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -002584b0: 0a7c 2020 2020 2053 696e 6775 6c61 7220 .| Singular │ │ │ │ -002584c0: 2020 2020 204e 4f20 2020 2020 2020 2020 NO │ │ │ │ -002584d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -002584e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002584f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258500: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4974 2069 ---------+..It i │ │ │ │ -00258510: 7320 616c 736f 2070 6f73 7369 626c 6520 s also possible │ │ │ │ -00258520: 746f 2073 6b69 7020 2a6e 6f74 6520 6669 to skip *note fi │ │ │ │ -00258530: 6e64 5072 6f67 7261 6d3a 2066 696e 6450 ndProgram: findP │ │ │ │ -00258540: 726f 6772 616d 2c20 616e 6420 6a75 7374 rogram, and just │ │ │ │ -00258550: 2070 726f 7669 6465 0a74 776f 2073 7472 provide.two str │ │ │ │ -00258560: 696e 6773 3a20 7468 6520 6e61 6d65 206f ings: the name o │ │ │ │ -00258570: 6620 7468 6520 7072 6f67 7261 6d20 616e f the program an │ │ │ │ -00258580: 6420 7468 6520 636f 6d6d 616e 6420 6c69 d the command li │ │ │ │ -00258590: 6e65 2061 7267 756d 656e 7473 2e0a 0a2b ne arguments...+ │ │ │ │ -002585a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002585b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002585c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00258370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +002583a0: 466f 726b 6564 2066 726f 6d20 736f 7572 Forked from sour │ │ │ │ +002583b0: 6365 2074 7265 6520 6f6e 3a20 2020 2020 ce tree on: │ │ │ │ +002583c0: 2020 2020 207c 0a7c 2020 2020 2031 3732 |.| 172 │ │ │ │ +002583d0: 3334 3738 3431 3520 4d6f 6e20 4175 6720 3478415 Mon Aug │ │ │ │ +002583e0: 3132 2031 383a 3030 3a31 3520 3230 3234 12 18:00:15 2024 │ │ │ │ +002583f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00258420: 0a7c 2020 2020 204c 696e 6b65 6420 6c69 .| Linked li │ │ │ │ +00258430: 6272 6172 6965 733a 2020 2020 2020 2020 braries: │ │ │ │ +00258440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00258450: 2020 2020 474d 5020 362e 332e 3020 2020 GMP 6.3.0 │ │ │ │ +00258460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00258480: 2043 6464 6c69 6220 2020 2020 2020 5945 Cddlib YE │ │ │ │ +00258490: 5320 2020 2020 2020 2020 2020 2020 2020 S │ │ │ │ +002584a0: 2020 2020 2020 7c0a 7c20 2020 2020 536f |.| So │ │ │ │ +002584b0: 506c 6578 2020 2020 2020 2020 4e4f 2020 Plex NO │ │ │ │ +002584c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002584d0: 2020 207c 0a7c 2020 2020 2053 696e 6775 |.| Singu │ │ │ │ +002584e0: 6c61 7220 2020 2020 204e 4f20 2020 2020 lar NO │ │ │ │ +002584f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258500: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00258510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00258530: 4974 2069 7320 616c 736f 2070 6f73 7369 It is also possi │ │ │ │ +00258540: 626c 6520 746f 2073 6b69 7020 2a6e 6f74 ble to skip *not │ │ │ │ +00258550: 6520 6669 6e64 5072 6f67 7261 6d3a 2066 e findProgram: f │ │ │ │ +00258560: 696e 6450 726f 6772 616d 2c20 616e 6420 indProgram, and │ │ │ │ +00258570: 6a75 7374 2070 726f 7669 6465 0a74 776f just provide.two │ │ │ │ +00258580: 2073 7472 696e 6773 3a20 7468 6520 6e61 strings: the na │ │ │ │ +00258590: 6d65 206f 6620 7468 6520 7072 6f67 7261 me of the progra │ │ │ │ +002585a0: 6d20 616e 6420 7468 6520 636f 6d6d 616e m and the comman │ │ │ │ +002585b0: 6420 6c69 6e65 2061 7267 756d 656e 7473 d line arguments │ │ │ │ +002585c0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 002585d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002585e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -002585f0: 6937 203a 2072 756e 5072 6f67 7261 6d28 i7 : runProgram( │ │ │ │ -00258600: 226e 6f72 6d61 6c69 7a22 2c20 222d 2d76 "normaliz", "--v │ │ │ │ -00258610: 6572 7369 6f6e 2229 2020 2020 2020 2020 ersion") │ │ │ │ -00258620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258630: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002585e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002585f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258610: 2d2b 0a7c 6937 203a 2072 756e 5072 6f67 -+.|i7 : runProg │ │ │ │ +00258620: 7261 6d28 226e 6f72 6d61 6c69 7a22 2c20 ram("normaliz", │ │ │ │ +00258630: 222d 2d76 6572 7369 6f6e 2229 2020 2020 "--version") │ │ │ │ 00258640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258690: 6f37 203d 2030 2020 2020 2020 2020 2020 o7 = 0 │ │ │ │ +00258680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002586a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002586b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002586b0: 207c 0a7c 6f37 203d 2030 2020 2020 2020 |.|o7 = 0 │ │ │ │ 002586c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002586d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002586d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002586e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002586f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258730: 6f37 203a 2050 726f 6772 616d 5275 6e20 o7 : ProgramRun │ │ │ │ +00258720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258770: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00258780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002587a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258750: 207c 0a7c 6f37 203a 2050 726f 6772 616d |.|o7 : Program │ │ │ │ +00258760: 5275 6e20 2020 2020 2020 2020 2020 2020 Run │ │ │ │ +00258770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002587a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 002587b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002587c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -002587d0: 6938 203a 2070 6565 6b20 6f6f 2020 2020 i8 : peek oo │ │ │ │ -002587e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002587f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002587c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002587d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002587e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002587f0: 2d2b 0a7c 6938 203a 2070 6565 6b20 6f6f -+.|i8 : peek oo │ │ │ │ 00258800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258870: 6f38 203d 2050 726f 6772 616d 5275 6e7b o8 = ProgramRun{ │ │ │ │ -00258880: 636f 6d6d 616e 6420 3d3e 202f 7573 722f command => /usr/ │ │ │ │ -00258890: 6269 6e2f 6e6f 726d 616c 697a 202d 2d76 bin/normaliz --v │ │ │ │ -002588a0: 6572 7369 6f6e 2020 2020 2020 2020 2020 ersion │ │ │ │ -002588b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002588c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002588d0: 6572 726f 7220 3d3e 2020 2020 2020 2020 error => │ │ │ │ -002588e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002588f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258890: 207c 0a7c 6f38 203d 2050 726f 6772 616d |.|o8 = Program │ │ │ │ +002588a0: 5275 6e7b 636f 6d6d 616e 6420 3d3e 202f Run{command => / │ │ │ │ +002588b0: 7573 722f 6269 6e2f 6e6f 726d 616c 697a usr/bin/normaliz │ │ │ │ +002588c0: 202d 2d76 6572 7369 6f6e 2020 2020 2020 --version │ │ │ │ +002588d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002588e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002588f0: 2020 2020 6572 726f 7220 3d3e 2020 2020 error => │ │ │ │ +00258900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258920: 6f75 7470 7574 203d 3e20 4e6f 726d 616c output => Normal │ │ │ │ -00258930: 697a 2033 2e31 312e 3020 2020 2020 2020 iz 3.11.0 │ │ │ │ -00258940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258940: 2020 2020 6f75 7470 7574 203d 3e20 4e6f output => No │ │ │ │ +00258950: 726d 616c 697a 2033 2e31 312e 3020 2020 rmaliz 3.11.0 │ │ │ │ 00258960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258970: 2020 2020 2020 2020 2020 2d2d 2d2d 2d2d ------ │ │ │ │ -00258980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002589a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -002589b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002589c0: 2020 2020 2020 2020 2020 7769 7468 2070 with p │ │ │ │ -002589d0: 6163 6b61 6765 2873 2920 466c 696e 7420 ackage(s) Flint │ │ │ │ -002589e0: 652d 616e 7469 6320 6e61 7574 7920 2020 e-antic nauty │ │ │ │ -002589f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258a10: 2020 2020 2020 2020 2020 436f 7079 7269 Copyri │ │ │ │ -00258a20: 6768 7420 2843 2920 3230 3037 2d32 3032 ght (C) 2007-202 │ │ │ │ -00258a30: 3520 2054 6865 204e 6f72 6d61 6c69 7a20 5 The Normaliz │ │ │ │ -00258a40: 5465 616d 2c20 556e 6976 6572 737c 0a7c Team, Univers|.| │ │ │ │ -00258a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258a60: 2020 2020 2020 2020 2020 5468 6973 2070 This p │ │ │ │ -00258a70: 726f 6772 616d 2063 6f6d 6573 2077 6974 rogram comes wit │ │ │ │ -00258a80: 6820 4142 534f 4c55 5445 4c59 204e 4f20 h ABSOLUTELY NO │ │ │ │ -00258a90: 5741 5252 414e 5459 3b20 5468 697c 0a7c WARRANTY; Thi|.| │ │ │ │ -00258aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258ab0: 2020 2020 2020 2020 2020 616e 6420 796f and yo │ │ │ │ -00258ac0: 7520 6172 6520 7765 6c63 6f6d 6520 746f u are welcome to │ │ │ │ -00258ad0: 2072 6564 6973 7472 6962 7574 6520 6974 redistribute it │ │ │ │ -00258ae0: 2075 6e64 6572 2063 6572 7461 697c 0a7c under certai|.| │ │ │ │ -00258af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258b00: 2020 2020 2020 2020 2020 5365 6520 434f See CO │ │ │ │ -00258b10: 5059 494e 4720 666f 7220 6465 7461 696c PYING for detail │ │ │ │ -00258b20: 732e 2020 2020 2020 2020 2020 2020 2020 s. │ │ │ │ -00258b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258990: 2020 2020 2020 2020 2020 2020 2020 2d2d -- │ │ │ │ +002589a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002589b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002589c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002589d0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +002589e0: 2020 2020 2020 2020 2020 2020 2020 7769 wi │ │ │ │ +002589f0: 7468 2070 6163 6b61 6765 2873 2920 466c th package(s) Fl │ │ │ │ +00258a00: 696e 7420 652d 616e 7469 6320 6e61 7574 int e-antic naut │ │ │ │ +00258a10: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00258a20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258a30: 2020 2020 2020 2020 2020 2020 2020 436f Co │ │ │ │ +00258a40: 7079 7269 6768 7420 2843 2920 3230 3037 pyright (C) 2007 │ │ │ │ +00258a50: 2d32 3032 3520 2054 6865 204e 6f72 6d61 -2025 The Norma │ │ │ │ +00258a60: 6c69 7a20 5465 616d 2c20 556e 6976 6572 liz Team, Univer │ │ │ │ +00258a70: 737c 0a7c 2020 2020 2020 2020 2020 2020 s|.| │ │ │ │ +00258a80: 2020 2020 2020 2020 2020 2020 2020 5468 Th │ │ │ │ +00258a90: 6973 2070 726f 6772 616d 2063 6f6d 6573 is program comes │ │ │ │ +00258aa0: 2077 6974 6820 4142 534f 4c55 5445 4c59 with ABSOLUTELY │ │ │ │ +00258ab0: 204e 4f20 5741 5252 414e 5459 3b20 5468 NO WARRANTY; Th │ │ │ │ +00258ac0: 697c 0a7c 2020 2020 2020 2020 2020 2020 i|.| │ │ │ │ +00258ad0: 2020 2020 2020 2020 2020 2020 2020 616e an │ │ │ │ +00258ae0: 6420 796f 7520 6172 6520 7765 6c63 6f6d d you are welcom │ │ │ │ +00258af0: 6520 746f 2072 6564 6973 7472 6962 7574 e to redistribut │ │ │ │ +00258b00: 6520 6974 2075 6e64 6572 2063 6572 7461 e it under certa │ │ │ │ +00258b10: 697c 0a7c 2020 2020 2020 2020 2020 2020 i|.| │ │ │ │ +00258b20: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ +00258b30: 6520 434f 5059 494e 4720 666f 7220 6465 e COPYING for de │ │ │ │ +00258b40: 7461 696c 732e 2020 2020 2020 2020 2020 tails. │ │ │ │ 00258b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258b60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258b80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258ba0: 7265 7475 726e 2076 616c 7565 203d 3e20 return value => │ │ │ │ -00258bb0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00258bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00258bc0: 2020 2020 7265 7475 726e 2076 616c 7565 return value │ │ │ │ +00258bd0: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +00258be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258c00: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00258c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00258c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258c40: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00258c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258c50: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00258c60: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +00258c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258ca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258d20: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ +00258d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258d40: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d20 2020 |.|--------- │ │ │ │ 00258d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00258d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258d90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00258da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258db0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258dc0: 6974 7920 6f66 204f 736e 6162 7275 6563 ity of Osnabruec │ │ │ │ -00258dd0: 6b2e 2020 2020 2020 2020 2020 2020 2020 k. │ │ │ │ -00258de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258e00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258e10: 7320 6973 2066 7265 6520 736f 6674 7761 s is free softwa │ │ │ │ -00258e20: 7265 2c20 2020 2020 2020 2020 2020 2020 re, │ │ │ │ -00258e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00258e60: 6e20 636f 6e64 6974 696f 6e73 3b20 2020 n conditions; │ │ │ │ +00258db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258de0: 207c 0a7c 6974 7920 6f66 204f 736e 6162 |.|ity of Osnab │ │ │ │ +00258df0: 7275 6563 6b2e 2020 2020 2020 2020 2020 rueck. │ │ │ │ +00258e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258e30: 207c 0a7c 7320 6973 2066 7265 6520 736f |.|s is free so │ │ │ │ +00258e40: 6674 7761 7265 2c20 2020 2020 2020 2020 ftware, │ │ │ │ +00258e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00258e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00258ea0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00258eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258e80: 207c 0a7c 6e20 636f 6e64 6974 696f 6e73 |.|n conditions │ │ │ │ +00258e90: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00258ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00258ed0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00258ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00258ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00258f00: 496e 7465 726e 616c 6c79 2c20 7468 6973 Internally, this │ │ │ │ -00258f10: 2072 6f75 7469 6e65 2075 7365 7320 2a6e routine uses *n │ │ │ │ -00258f20: 6f74 6520 7275 6e3a 2072 756e 2c2e 2041 ote run: run,. A │ │ │ │ -00258f30: 6e6f 7468 6572 2077 6179 2074 6f20 696e nother way to in │ │ │ │ -00258f40: 7465 7261 6374 2077 6974 680a 7072 6f67 teract with.prog │ │ │ │ -00258f50: 7261 6d73 2069 7320 746f 2070 6173 7320 rams is to pass │ │ │ │ -00258f60: 6120 7374 7269 6e67 2062 6567 696e 6e69 a string beginni │ │ │ │ -00258f70: 6e67 2077 6974 6820 2221 2220 746f 202a ng with "!" to * │ │ │ │ -00258f80: 6e6f 7465 2067 6574 3a20 6765 742c 2c20 note get: get,, │ │ │ │ -00258f90: 2a6e 6f74 650a 6f70 656e 496e 3a20 6f70 *note.openIn: op │ │ │ │ -00258fa0: 656e 496e 5f6c 7053 7472 696e 675f 7270 enIn_lpString_rp │ │ │ │ -00258fb0: 2c2c 202a 6e6f 7465 206f 7065 6e4f 7574 ,, *note openOut │ │ │ │ -00258fc0: 3a20 6f70 656e 4f75 745f 6c70 5374 7269 : openOut_lpStri │ │ │ │ -00258fd0: 6e67 5f72 702c 2c20 6f72 202a 6e6f 7465 ng_rp,, or *note │ │ │ │ -00258fe0: 0a6f 7065 6e49 6e4f 7574 3a20 6f70 656e .openInOut: open │ │ │ │ -00258ff0: 496e 4f75 742c 2e0a 0a53 6565 2061 6c73 InOut,...See als │ │ │ │ -00259000: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00259010: 2a6e 6f74 6520 5072 6f67 7261 6d3a 2050 *note Program: P │ │ │ │ -00259020: 726f 6772 616d 2c20 2d2d 2065 7874 6572 rogram, -- exter │ │ │ │ -00259030: 6e61 6c20 7072 6f67 7261 6d20 6f62 6a65 nal program obje │ │ │ │ -00259040: 6374 0a20 202a 202a 6e6f 7465 2066 696e ct. * *note fin │ │ │ │ -00259050: 6450 726f 6772 616d 3a20 6669 6e64 5072 dProgram: findPr │ │ │ │ -00259060: 6f67 7261 6d2c 202d 2d20 6c6f 6164 2065 ogram, -- load e │ │ │ │ -00259070: 7874 6572 6e61 6c20 7072 6f67 7261 6d0a xternal program. │ │ │ │ -00259080: 2020 2a20 2a6e 6f74 6520 7374 6174 7573 * *note status │ │ │ │ -00259090: 2850 726f 6772 616d 5275 6e29 3a20 7374 (ProgramRun): st │ │ │ │ -002590a0: 6174 7573 5f6c 7050 726f 6772 616d 5275 atus_lpProgramRu │ │ │ │ -002590b0: 6e5f 7270 2c20 2d2d 2067 6574 2074 6865 n_rp, -- get the │ │ │ │ -002590c0: 2072 6574 7572 6e20 7374 6174 7573 0a20 return status. │ │ │ │ -002590d0: 2020 206f 6620 6120 7072 6f67 7261 6d20 of a program │ │ │ │ -002590e0: 7275 6e0a 2020 2a20 2a6e 6f74 6520 7275 run. * *note ru │ │ │ │ -002590f0: 6e3a 2072 756e 2c20 2d2d 2072 756e 2061 n: run, -- run a │ │ │ │ -00259100: 6e20 6578 7465 726e 616c 2063 6f6d 6d61 n external comma │ │ │ │ -00259110: 6e64 0a20 202a 202a 6e6f 7465 2067 6574 nd. * *note get │ │ │ │ -00259120: 3a20 6765 742c 202d 2d20 6765 7420 7468 : get, -- get th │ │ │ │ -00259130: 6520 636f 6e74 656e 7473 206f 6620 6120 e contents of a │ │ │ │ -00259140: 6669 6c65 0a2a 204d 656e 753a 0a0a 2a20 file.* Menu:..* │ │ │ │ -00259150: 5072 6f67 7261 6d52 756e 3a3a 2020 2020 ProgramRun:: │ │ │ │ -00259160: 2020 2020 2020 2020 2020 2020 2020 7265 re │ │ │ │ -00259170: 7375 6c74 206f 6620 7275 6e6e 696e 6720 sult of running │ │ │ │ -00259180: 616e 2065 7874 6572 6e61 6c20 7072 6f67 an external prog │ │ │ │ -00259190: 7261 6d0a 0a57 6179 7320 746f 2075 7365 ram..Ways to use │ │ │ │ -002591a0: 2072 756e 5072 6f67 7261 6d3a 0a3d 3d3d runProgram:.=== │ │ │ │ -002591b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002591c0: 3d3d 3d3d 0a0a 2020 2a20 2272 756e 5072 ====.. * "runPr │ │ │ │ -002591d0: 6f67 7261 6d28 5072 6f67 7261 6d2c 5374 ogram(Program,St │ │ │ │ -002591e0: 7269 6e67 2922 0a20 202a 2022 7275 6e50 ring)". * "runP │ │ │ │ -002591f0: 726f 6772 616d 2850 726f 6772 616d 2c53 rogram(Program,S │ │ │ │ -00259200: 7472 696e 672c 5374 7269 6e67 2922 0a20 tring,String)". │ │ │ │ -00259210: 202a 2022 7275 6e50 726f 6772 616d 2853 * "runProgram(S │ │ │ │ -00259220: 7472 696e 672c 5374 7269 6e67 2922 0a0a tring,String)".. │ │ │ │ -00259230: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00259240: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00259250: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00259260: 7420 2a6e 6f74 6520 7275 6e50 726f 6772 t *note runProgr │ │ │ │ -00259270: 616d 3a20 7275 6e50 726f 6772 616d 2c20 am: runProgram, │ │ │ │ -00259280: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ -00259290: 6420 6675 6e63 7469 6f6e 2077 6974 680a d function with. │ │ │ │ -002592a0: 6f70 7469 6f6e 733a 204d 6574 686f 6446 options: MethodF │ │ │ │ -002592b0: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ -002592c0: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ -002592d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002592e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00258f20: 2d2b 0a0a 496e 7465 726e 616c 6c79 2c20 -+..Internally, │ │ │ │ +00258f30: 7468 6973 2072 6f75 7469 6e65 2075 7365 this routine use │ │ │ │ +00258f40: 7320 2a6e 6f74 6520 7275 6e3a 2072 756e s *note run: run │ │ │ │ +00258f50: 2c2e 2041 6e6f 7468 6572 2077 6179 2074 ,. Another way t │ │ │ │ +00258f60: 6f20 696e 7465 7261 6374 2077 6974 680a o interact with. │ │ │ │ +00258f70: 7072 6f67 7261 6d73 2069 7320 746f 2070 programs is to p │ │ │ │ +00258f80: 6173 7320 6120 7374 7269 6e67 2062 6567 ass a string beg │ │ │ │ +00258f90: 696e 6e69 6e67 2077 6974 6820 2221 2220 inning with "!" │ │ │ │ +00258fa0: 746f 202a 6e6f 7465 2067 6574 3a20 6765 to *note get: ge │ │ │ │ +00258fb0: 742c 2c20 2a6e 6f74 650a 6f70 656e 496e t,, *note.openIn │ │ │ │ +00258fc0: 3a20 6f70 656e 496e 5f6c 7053 7472 696e : openIn_lpStrin │ │ │ │ +00258fd0: 675f 7270 2c2c 202a 6e6f 7465 206f 7065 g_rp,, *note ope │ │ │ │ +00258fe0: 6e4f 7574 3a20 6f70 656e 4f75 745f 6c70 nOut: openOut_lp │ │ │ │ +00258ff0: 5374 7269 6e67 5f72 702c 2c20 6f72 202a String_rp,, or * │ │ │ │ +00259000: 6e6f 7465 0a6f 7065 6e49 6e4f 7574 3a20 note.openInOut: │ │ │ │ +00259010: 6f70 656e 496e 4f75 742c 2e0a 0a53 6565 openInOut,...See │ │ │ │ +00259020: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +00259030: 2020 2a20 2a6e 6f74 6520 5072 6f67 7261 * *note Progra │ │ │ │ +00259040: 6d3a 2050 726f 6772 616d 2c20 2d2d 2065 m: Program, -- e │ │ │ │ +00259050: 7874 6572 6e61 6c20 7072 6f67 7261 6d20 xternal program │ │ │ │ +00259060: 6f62 6a65 6374 0a20 202a 202a 6e6f 7465 object. * *note │ │ │ │ +00259070: 2066 696e 6450 726f 6772 616d 3a20 6669 findProgram: fi │ │ │ │ +00259080: 6e64 5072 6f67 7261 6d2c 202d 2d20 6c6f ndProgram, -- lo │ │ │ │ +00259090: 6164 2065 7874 6572 6e61 6c20 7072 6f67 ad external prog │ │ │ │ +002590a0: 7261 6d0a 2020 2a20 2a6e 6f74 6520 7374 ram. * *note st │ │ │ │ +002590b0: 6174 7573 2850 726f 6772 616d 5275 6e29 atus(ProgramRun) │ │ │ │ +002590c0: 3a20 7374 6174 7573 5f6c 7050 726f 6772 : status_lpProgr │ │ │ │ +002590d0: 616d 5275 6e5f 7270 2c20 2d2d 2067 6574 amRun_rp, -- get │ │ │ │ +002590e0: 2074 6865 2072 6574 7572 6e20 7374 6174 the return stat │ │ │ │ +002590f0: 7573 0a20 2020 206f 6620 6120 7072 6f67 us. of a prog │ │ │ │ +00259100: 7261 6d20 7275 6e0a 2020 2a20 2a6e 6f74 ram run. * *not │ │ │ │ +00259110: 6520 7275 6e3a 2072 756e 2c20 2d2d 2072 e run: run, -- r │ │ │ │ +00259120: 756e 2061 6e20 6578 7465 726e 616c 2063 un an external c │ │ │ │ +00259130: 6f6d 6d61 6e64 0a20 202a 202a 6e6f 7465 ommand. * *note │ │ │ │ +00259140: 2067 6574 3a20 6765 742c 202d 2d20 6765 get: get, -- ge │ │ │ │ +00259150: 7420 7468 6520 636f 6e74 656e 7473 206f t the contents o │ │ │ │ +00259160: 6620 6120 6669 6c65 0a2a 204d 656e 753a f a file.* Menu: │ │ │ │ +00259170: 0a0a 2a20 5072 6f67 7261 6d52 756e 3a3a ..* ProgramRun:: │ │ │ │ +00259180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00259190: 2020 7265 7375 6c74 206f 6620 7275 6e6e result of runn │ │ │ │ +002591a0: 696e 6720 616e 2065 7874 6572 6e61 6c20 ing an external │ │ │ │ +002591b0: 7072 6f67 7261 6d0a 0a57 6179 7320 746f program..Ways to │ │ │ │ +002591c0: 2075 7365 2072 756e 5072 6f67 7261 6d3a use runProgram: │ │ │ │ +002591d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +002591e0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2272 ========.. * "r │ │ │ │ +002591f0: 756e 5072 6f67 7261 6d28 5072 6f67 7261 unProgram(Progra │ │ │ │ +00259200: 6d2c 5374 7269 6e67 2922 0a20 202a 2022 m,String)". * " │ │ │ │ +00259210: 7275 6e50 726f 6772 616d 2850 726f 6772 runProgram(Progr │ │ │ │ +00259220: 616d 2c53 7472 696e 672c 5374 7269 6e67 am,String,String │ │ │ │ +00259230: 2922 0a20 202a 2022 7275 6e50 726f 6772 )". * "runProgr │ │ │ │ +00259240: 616d 2853 7472 696e 672c 5374 7269 6e67 am(String,String │ │ │ │ +00259250: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ +00259260: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00259270: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00259280: 626a 6563 7420 2a6e 6f74 6520 7275 6e50 bject *note runP │ │ │ │ +00259290: 726f 6772 616d 3a20 7275 6e50 726f 6772 rogram: runProgr │ │ │ │ +002592a0: 616d 2c20 6973 2061 202a 6e6f 7465 206d am, is a *note m │ │ │ │ +002592b0: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ +002592c0: 6974 680a 6f70 7469 6f6e 733a 204d 6574 ith.options: Met │ │ │ │ +002592d0: 686f 6446 756e 6374 696f 6e57 6974 684f hodFunctionWithO │ │ │ │ +002592e0: 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d ptions,...------ │ │ │ │ 002592f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00259300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00259310: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00259320: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00259330: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00259340: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00259350: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00259360: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00259370: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00259380: 6361 756c 6179 3244 6f63 2f66 756e 6374 caulay2Doc/funct │ │ │ │ -00259390: 696f 6e73 2f72 756e 5072 6f67 7261 6d2d ions/runProgram- │ │ │ │ -002593a0: 646f 632e 6d32 3a31 3037 3a30 2e0a 1f0a doc.m2:107:0.... │ │ │ │ -002593b0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -002593c0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2050 oc.info, Node: P │ │ │ │ -002593d0: 726f 6772 616d 5275 6e2c 2055 703a 2072 rogramRun, Up: r │ │ │ │ -002593e0: 756e 5072 6f67 7261 6d0a 0a50 726f 6772 unProgram..Progr │ │ │ │ -002593f0: 616d 5275 6e20 2d2d 2072 6573 756c 7420 amRun -- result │ │ │ │ -00259400: 6f66 2072 756e 6e69 6e67 2061 6e20 6578 of running an ex │ │ │ │ -00259410: 7465 726e 616c 2070 726f 6772 616d 0a2a ternal program.* │ │ │ │ -00259420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259450: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -00259460: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 2068 ===========..A h │ │ │ │ -00259470: 6173 6820 7461 626c 6520 7265 7475 726e ash table return │ │ │ │ -00259480: 6564 2062 7920 2a6e 6f74 6520 7275 6e50 ed by *note runP │ │ │ │ -00259490: 726f 6772 616d 3a20 7275 6e50 726f 6772 rogram: runProgr │ │ │ │ -002594a0: 616d 2c20 7769 7468 2074 6865 2066 6f6c am, with the fol │ │ │ │ -002594b0: 6c6f 7769 6e67 0a73 7472 696e 6773 2061 lowing.strings a │ │ │ │ -002594c0: 7320 6b65 7973 3a0a 0a20 202a 2022 636f s keys:.. * "co │ │ │ │ -002594d0: 6d6d 616e 6422 2c20 7468 6520 636f 6d6d mmand", the comm │ │ │ │ -002594e0: 616e 6420 7468 6174 2077 6173 2075 7365 and that was use │ │ │ │ -002594f0: 6420 746f 2072 756e 2074 6865 2070 726f d to run the pro │ │ │ │ -00259500: 6772 616d 2e0a 2020 2a20 226f 7574 7075 gram.. * "outpu │ │ │ │ -00259510: 7422 2c20 7468 6520 6f75 7470 7574 206f t", the output o │ │ │ │ -00259520: 6620 7468 6520 7072 6f67 7261 6d20 746f f the program to │ │ │ │ -00259530: 2073 7464 6f75 742e 0a20 202a 2022 6572 stdout.. * "er │ │ │ │ -00259540: 726f 7222 2c20 7468 6520 6f75 7470 7574 ror", the output │ │ │ │ -00259550: 206f 6620 7468 6520 7072 6f67 7261 6d20 of the program │ │ │ │ -00259560: 746f 2073 7464 6572 722e 0a20 202a 2022 to stderr.. * " │ │ │ │ -00259570: 7265 7475 726e 2076 616c 7565 222c 2074 return value", t │ │ │ │ -00259580: 6865 2072 6574 7572 6e20 7661 6c75 6520 he return value │ │ │ │ -00259590: 6f66 2074 6865 2070 726f 6772 616d 2c20 of the program, │ │ │ │ -002595a0: 706f 7373 6962 6c79 206d 756c 7469 706c possibly multipl │ │ │ │ -002595b0: 6965 6420 6279 2032 3536 0a20 2020 2028 ied by 256. ( │ │ │ │ -002595c0: 7365 6520 2a6e 6f74 6520 7275 6e3a 2072 see *note run: r │ │ │ │ -002595d0: 756e 2c29 2e20 204e 6f74 6520 7468 6174 un,). Note that │ │ │ │ -002595e0: 2074 6869 7320 6973 2077 6861 7420 6973 this is what is │ │ │ │ -002595f0: 2064 6973 706c 6179 6564 2077 6865 6e20 displayed when │ │ │ │ -00259600: 7072 696e 7469 6e67 2061 0a20 2020 2050 printing a. P │ │ │ │ -00259610: 726f 6772 616d 5275 6e20 6f62 6a65 6374 rogramRun object │ │ │ │ -00259620: 2e0a 0a49 6e20 6164 6469 7469 6f6e 2c20 ...In addition, │ │ │ │ -00259630: 6966 202a 6e6f 7465 2072 756e 5072 6f67 if *note runProg │ │ │ │ -00259640: 7261 6d3a 2072 756e 5072 6f67 7261 6d2c ram: runProgram, │ │ │ │ -00259650: 2069 7320 6361 6c6c 6564 2077 6974 6820 is called with │ │ │ │ -00259660: 7468 6520 4b65 6570 4669 6c65 730a 6f70 the KeepFiles.op │ │ │ │ -00259670: 7469 6f6e 2073 6574 2074 6f20 2a6e 6f74 tion set to *not │ │ │ │ -00259680: 6520 7472 7565 3a20 7472 7565 2c2c 2074 e true: true,, t │ │ │ │ -00259690: 6865 6e20 7468 6520 666f 6c6c 6f77 696e hen the followin │ │ │ │ -002596a0: 6720 6b65 7973 2077 696c 6c20 6265 2070 g keys will be p │ │ │ │ -002596b0: 7265 7365 6e74 3a0a 0a20 202a 2022 6f75 resent:.. * "ou │ │ │ │ -002596c0: 7470 7574 2066 696c 6522 2c20 7468 6520 tput file", the │ │ │ │ -002596d0: 7061 7468 2074 6f20 6120 6669 6c65 2063 path to a file c │ │ │ │ -002596e0: 6f6e 7461 696e 696e 6720 7468 6520 6f75 ontaining the ou │ │ │ │ -002596f0: 7470 7574 206f 6620 7468 6520 7072 6f67 tput of the prog │ │ │ │ -00259700: 7261 6d20 746f 0a20 2020 2073 7464 6f75 ram to. stdou │ │ │ │ -00259710: 742e 0a20 202a 2022 6572 726f 7220 6669 t.. * "error fi │ │ │ │ -00259720: 6c65 222c 2074 6865 2070 6174 6820 746f le", the path to │ │ │ │ -00259730: 2061 2066 696c 6520 636f 6e74 6169 6e69 a file containi │ │ │ │ -00259740: 6e67 2074 6865 206f 7574 7075 7420 6f66 ng the output of │ │ │ │ -00259750: 2074 6865 2070 726f 6772 616d 2074 6f0a the program to. │ │ │ │ -00259760: 2020 2020 7374 6465 7272 2e0a 0a53 6565 stderr...See │ │ │ │ -00259770: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -00259780: 2020 2a20 2a6e 6f74 6520 7275 6e50 726f * *note runPro │ │ │ │ -00259790: 6772 616d 3a20 7275 6e50 726f 6772 616d gram: runProgram │ │ │ │ -002597a0: 2c20 2d2d 2072 756e 2061 6e20 6578 7465 , -- run an exte │ │ │ │ -002597b0: 726e 616c 2070 726f 6772 616d 0a20 202a rnal program. * │ │ │ │ -002597c0: 202a 6e6f 7465 2050 726f 6772 616d 203c *note Program < │ │ │ │ -002597d0: 3c20 5468 696e 673a 2050 726f 6772 616d < Thing: Program │ │ │ │ -002597e0: 203c 3c20 5468 696e 672c 202d 2d20 7275 << Thing, -- ru │ │ │ │ -002597f0: 6e20 7072 6f67 7261 6d20 7769 7468 2069 n program with i │ │ │ │ -00259800: 6e70 7574 0a20 2020 2072 6564 6972 6563 nput. redirec │ │ │ │ -00259810: 7469 6f6e 0a20 202a 202a 6e6f 7465 2050 tion. * *note P │ │ │ │ -00259820: 726f 6772 616d 3a20 5072 6f67 7261 6d2c rogram: Program, │ │ │ │ -00259830: 202d 2d20 6578 7465 726e 616c 2070 726f -- external pro │ │ │ │ -00259840: 6772 616d 206f 626a 6563 740a 2a20 4d65 gram object.* Me │ │ │ │ -00259850: 6e75 3a0a 0a2a 2073 7461 7475 7328 5072 nu:..* status(Pr │ │ │ │ -00259860: 6f67 7261 6d52 756e 293a 2073 7461 7475 ogramRun): statu │ │ │ │ -00259870: 735f 6c70 5072 6f67 7261 6d52 756e 5f72 s_lpProgramRun_r │ │ │ │ -00259880: 702e 2020 6765 7420 7468 6520 7265 7475 p. get the retu │ │ │ │ -00259890: 726e 2073 7461 7475 7320 6f66 2061 2070 rn status of a p │ │ │ │ -002598a0: 726f 6772 616d 2072 756e 0a0a 4675 6e63 rogram run..Func │ │ │ │ -002598b0: 7469 6f6e 7320 616e 6420 6d65 7468 6f64 tions and method │ │ │ │ -002598c0: 7320 7265 7475 726e 696e 6720 616e 206f s returning an o │ │ │ │ -002598d0: 626a 6563 7420 6f66 2063 6c61 7373 2050 bject of class P │ │ │ │ -002598e0: 726f 6772 616d 5275 6e3a 0a3d 3d3d 3d3d rogramRun:.===== │ │ │ │ -002598f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00259900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00259310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259330: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00259340: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00259350: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00259360: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00259370: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00259380: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00259390: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +002593a0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f66 /.Macaulay2Doc/f │ │ │ │ +002593b0: 756e 6374 696f 6e73 2f72 756e 5072 6f67 unctions/runProg │ │ │ │ +002593c0: 7261 6d2d 646f 632e 6d32 3a31 3037 3a30 ram-doc.m2:107:0 │ │ │ │ +002593d0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +002593e0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +002593f0: 653a 2050 726f 6772 616d 5275 6e2c 2055 e: ProgramRun, U │ │ │ │ +00259400: 703a 2072 756e 5072 6f67 7261 6d0a 0a50 p: runProgram..P │ │ │ │ +00259410: 726f 6772 616d 5275 6e20 2d2d 2072 6573 rogramRun -- res │ │ │ │ +00259420: 756c 7420 6f66 2072 756e 6e69 6e67 2061 ult of running a │ │ │ │ +00259430: 6e20 6578 7465 726e 616c 2070 726f 6772 n external progr │ │ │ │ +00259440: 616d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a am.************* │ │ │ │ +00259450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00259460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00259470: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00259480: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00259490: 0a41 2068 6173 6820 7461 626c 6520 7265 .A hash table re │ │ │ │ +002594a0: 7475 726e 6564 2062 7920 2a6e 6f74 6520 turned by *note │ │ │ │ +002594b0: 7275 6e50 726f 6772 616d 3a20 7275 6e50 runProgram: runP │ │ │ │ +002594c0: 726f 6772 616d 2c20 7769 7468 2074 6865 rogram, with the │ │ │ │ +002594d0: 2066 6f6c 6c6f 7769 6e67 0a73 7472 696e following.strin │ │ │ │ +002594e0: 6773 2061 7320 6b65 7973 3a0a 0a20 202a gs as keys:.. * │ │ │ │ +002594f0: 2022 636f 6d6d 616e 6422 2c20 7468 6520 "command", the │ │ │ │ +00259500: 636f 6d6d 616e 6420 7468 6174 2077 6173 command that was │ │ │ │ +00259510: 2075 7365 6420 746f 2072 756e 2074 6865 used to run the │ │ │ │ +00259520: 2070 726f 6772 616d 2e0a 2020 2a20 226f program.. * "o │ │ │ │ +00259530: 7574 7075 7422 2c20 7468 6520 6f75 7470 utput", the outp │ │ │ │ +00259540: 7574 206f 6620 7468 6520 7072 6f67 7261 ut of the progra │ │ │ │ +00259550: 6d20 746f 2073 7464 6f75 742e 0a20 202a m to stdout.. * │ │ │ │ +00259560: 2022 6572 726f 7222 2c20 7468 6520 6f75 "error", the ou │ │ │ │ +00259570: 7470 7574 206f 6620 7468 6520 7072 6f67 tput of the prog │ │ │ │ +00259580: 7261 6d20 746f 2073 7464 6572 722e 0a20 ram to stderr.. │ │ │ │ +00259590: 202a 2022 7265 7475 726e 2076 616c 7565 * "return value │ │ │ │ +002595a0: 222c 2074 6865 2072 6574 7572 6e20 7661 ", the return va │ │ │ │ +002595b0: 6c75 6520 6f66 2074 6865 2070 726f 6772 lue of the progr │ │ │ │ +002595c0: 616d 2c20 706f 7373 6962 6c79 206d 756c am, possibly mul │ │ │ │ +002595d0: 7469 706c 6965 6420 6279 2032 3536 0a20 tiplied by 256. │ │ │ │ +002595e0: 2020 2028 7365 6520 2a6e 6f74 6520 7275 (see *note ru │ │ │ │ +002595f0: 6e3a 2072 756e 2c29 2e20 204e 6f74 6520 n: run,). Note │ │ │ │ +00259600: 7468 6174 2074 6869 7320 6973 2077 6861 that this is wha │ │ │ │ +00259610: 7420 6973 2064 6973 706c 6179 6564 2077 t is displayed w │ │ │ │ +00259620: 6865 6e20 7072 696e 7469 6e67 2061 0a20 hen printing a. │ │ │ │ +00259630: 2020 2050 726f 6772 616d 5275 6e20 6f62 ProgramRun ob │ │ │ │ +00259640: 6a65 6374 2e0a 0a49 6e20 6164 6469 7469 ject...In additi │ │ │ │ +00259650: 6f6e 2c20 6966 202a 6e6f 7465 2072 756e on, if *note run │ │ │ │ +00259660: 5072 6f67 7261 6d3a 2072 756e 5072 6f67 Program: runProg │ │ │ │ +00259670: 7261 6d2c 2069 7320 6361 6c6c 6564 2077 ram, is called w │ │ │ │ +00259680: 6974 6820 7468 6520 4b65 6570 4669 6c65 ith the KeepFile │ │ │ │ +00259690: 730a 6f70 7469 6f6e 2073 6574 2074 6f20 s.option set to │ │ │ │ +002596a0: 2a6e 6f74 6520 7472 7565 3a20 7472 7565 *note true: true │ │ │ │ +002596b0: 2c2c 2074 6865 6e20 7468 6520 666f 6c6c ,, then the foll │ │ │ │ +002596c0: 6f77 696e 6720 6b65 7973 2077 696c 6c20 owing keys will │ │ │ │ +002596d0: 6265 2070 7265 7365 6e74 3a0a 0a20 202a be present:.. * │ │ │ │ +002596e0: 2022 6f75 7470 7574 2066 696c 6522 2c20 "output file", │ │ │ │ +002596f0: 7468 6520 7061 7468 2074 6f20 6120 6669 the path to a fi │ │ │ │ +00259700: 6c65 2063 6f6e 7461 696e 696e 6720 7468 le containing th │ │ │ │ +00259710: 6520 6f75 7470 7574 206f 6620 7468 6520 e output of the │ │ │ │ +00259720: 7072 6f67 7261 6d20 746f 0a20 2020 2073 program to. s │ │ │ │ +00259730: 7464 6f75 742e 0a20 202a 2022 6572 726f tdout.. * "erro │ │ │ │ +00259740: 7220 6669 6c65 222c 2074 6865 2070 6174 r file", the pat │ │ │ │ +00259750: 6820 746f 2061 2066 696c 6520 636f 6e74 h to a file cont │ │ │ │ +00259760: 6169 6e69 6e67 2074 6865 206f 7574 7075 aining the outpu │ │ │ │ +00259770: 7420 6f66 2074 6865 2070 726f 6772 616d t of the program │ │ │ │ +00259780: 2074 6f0a 2020 2020 7374 6465 7272 2e0a to. stderr.. │ │ │ │ +00259790: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +002597a0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7275 ==.. * *note ru │ │ │ │ +002597b0: 6e50 726f 6772 616d 3a20 7275 6e50 726f nProgram: runPro │ │ │ │ +002597c0: 6772 616d 2c20 2d2d 2072 756e 2061 6e20 gram, -- run an │ │ │ │ +002597d0: 6578 7465 726e 616c 2070 726f 6772 616d external program │ │ │ │ +002597e0: 0a20 202a 202a 6e6f 7465 2050 726f 6772 . * *note Progr │ │ │ │ +002597f0: 616d 203c 3c20 5468 696e 673a 2050 726f am << Thing: Pro │ │ │ │ +00259800: 6772 616d 203c 3c20 5468 696e 672c 202d gram << Thing, - │ │ │ │ +00259810: 2d20 7275 6e20 7072 6f67 7261 6d20 7769 - run program wi │ │ │ │ +00259820: 7468 2069 6e70 7574 0a20 2020 2072 6564 th input. red │ │ │ │ +00259830: 6972 6563 7469 6f6e 0a20 202a 202a 6e6f irection. * *no │ │ │ │ +00259840: 7465 2050 726f 6772 616d 3a20 5072 6f67 te Program: Prog │ │ │ │ +00259850: 7261 6d2c 202d 2d20 6578 7465 726e 616c ram, -- external │ │ │ │ +00259860: 2070 726f 6772 616d 206f 626a 6563 740a program object. │ │ │ │ +00259870: 2a20 4d65 6e75 3a0a 0a2a 2073 7461 7475 * Menu:..* statu │ │ │ │ +00259880: 7328 5072 6f67 7261 6d52 756e 293a 2073 s(ProgramRun): s │ │ │ │ +00259890: 7461 7475 735f 6c70 5072 6f67 7261 6d52 tatus_lpProgramR │ │ │ │ +002598a0: 756e 5f72 702e 2020 6765 7420 7468 6520 un_rp. get the │ │ │ │ +002598b0: 7265 7475 726e 2073 7461 7475 7320 6f66 return status of │ │ │ │ +002598c0: 2061 2070 726f 6772 616d 2072 756e 0a0a a program run.. │ │ │ │ +002598d0: 4675 6e63 7469 6f6e 7320 616e 6420 6d65 Functions and me │ │ │ │ +002598e0: 7468 6f64 7320 7265 7475 726e 696e 6720 thods returning │ │ │ │ +002598f0: 616e 206f 626a 6563 7420 6f66 2063 6c61 an object of cla │ │ │ │ +00259900: 7373 2050 726f 6772 616d 5275 6e3a 0a3d ss ProgramRun:.= │ │ │ │ 00259910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00259920: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ -00259930: 6e6f 7465 2072 756e 5072 6f67 7261 6d3a note runProgram: │ │ │ │ -00259940: 2072 756e 5072 6f67 7261 6d2c 202d 2d20 runProgram, -- │ │ │ │ -00259950: 7275 6e20 616e 2065 7874 6572 6e61 6c20 run an external │ │ │ │ -00259960: 7072 6f67 7261 6d0a 0a4d 6574 686f 6473 program..Methods │ │ │ │ -00259970: 2074 6861 7420 7573 6520 616e 206f 626a that use an obj │ │ │ │ -00259980: 6563 7420 6f66 2063 6c61 7373 2050 726f ect of class Pro │ │ │ │ -00259990: 6772 616d 5275 6e3a 0a3d 3d3d 3d3d 3d3d gramRun:.======= │ │ │ │ -002599a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002599b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002599c0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -002599d0: 6f74 6520 7374 6174 7573 2850 726f 6772 ote status(Progr │ │ │ │ -002599e0: 616d 5275 6e29 3a20 7374 6174 7573 5f6c amRun): status_l │ │ │ │ -002599f0: 7050 726f 6772 616d 5275 6e5f 7270 2c20 pProgramRun_rp, │ │ │ │ -00259a00: 2d2d 2067 6574 2074 6865 2072 6574 7572 -- get the retur │ │ │ │ -00259a10: 6e20 7374 6174 7573 0a20 2020 206f 6620 n status. of │ │ │ │ -00259a20: 6120 7072 6f67 7261 6d20 7275 6e0a 0a46 a program run..F │ │ │ │ -00259a30: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00259a40: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00259a50: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00259a60: 202a 6e6f 7465 2050 726f 6772 616d 5275 *note ProgramRu │ │ │ │ -00259a70: 6e3a 2050 726f 6772 616d 5275 6e2c 2069 n: ProgramRun, i │ │ │ │ -00259a80: 7320 6120 2a6e 6f74 6520 7479 7065 3a20 s a *note type: │ │ │ │ -00259a90: 5479 7065 2c2c 2077 6974 6820 616e 6365 Type,, with ance │ │ │ │ -00259aa0: 7374 6f72 0a63 6c61 7373 6573 202a 6e6f stor.classes *no │ │ │ │ -00259ab0: 7465 2048 6173 6854 6162 6c65 3a20 4861 te HashTable: Ha │ │ │ │ -00259ac0: 7368 5461 626c 652c 203c 202a 6e6f 7465 shTable, < *note │ │ │ │ -00259ad0: 2054 6869 6e67 3a20 5468 696e 672c 2e0a Thing: Thing,.. │ │ │ │ -00259ae0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00259af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00259b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259920: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00259930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00259940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00259950: 202a 202a 6e6f 7465 2072 756e 5072 6f67 * *note runProg │ │ │ │ +00259960: 7261 6d3a 2072 756e 5072 6f67 7261 6d2c ram: runProgram, │ │ │ │ +00259970: 202d 2d20 7275 6e20 616e 2065 7874 6572 -- run an exter │ │ │ │ +00259980: 6e61 6c20 7072 6f67 7261 6d0a 0a4d 6574 nal program..Met │ │ │ │ +00259990: 686f 6473 2074 6861 7420 7573 6520 616e hods that use an │ │ │ │ +002599a0: 206f 626a 6563 7420 6f66 2063 6c61 7373 object of class │ │ │ │ +002599b0: 2050 726f 6772 616d 5275 6e3a 0a3d 3d3d ProgramRun:.=== │ │ │ │ +002599c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002599d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002599e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +002599f0: 2a20 2a6e 6f74 6520 7374 6174 7573 2850 * *note status(P │ │ │ │ +00259a00: 726f 6772 616d 5275 6e29 3a20 7374 6174 rogramRun): stat │ │ │ │ +00259a10: 7573 5f6c 7050 726f 6772 616d 5275 6e5f us_lpProgramRun_ │ │ │ │ +00259a20: 7270 2c20 2d2d 2067 6574 2074 6865 2072 rp, -- get the r │ │ │ │ +00259a30: 6574 7572 6e20 7374 6174 7573 0a20 2020 eturn status. │ │ │ │ +00259a40: 206f 6620 6120 7072 6f67 7261 6d20 7275 of a program ru │ │ │ │ +00259a50: 6e0a 0a46 6f72 2074 6865 2070 726f 6772 n..For the progr │ │ │ │ +00259a60: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00259a70: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00259a80: 6a65 6374 202a 6e6f 7465 2050 726f 6772 ject *note Progr │ │ │ │ +00259a90: 616d 5275 6e3a 2050 726f 6772 616d 5275 amRun: ProgramRu │ │ │ │ +00259aa0: 6e2c 2069 7320 6120 2a6e 6f74 6520 7479 n, is a *note ty │ │ │ │ +00259ab0: 7065 3a20 5479 7065 2c2c 2077 6974 6820 pe: Type,, with │ │ │ │ +00259ac0: 616e 6365 7374 6f72 0a63 6c61 7373 6573 ancestor.classes │ │ │ │ +00259ad0: 202a 6e6f 7465 2048 6173 6854 6162 6c65 *note HashTable │ │ │ │ +00259ae0: 3a20 4861 7368 5461 626c 652c 203c 202a : HashTable, < * │ │ │ │ +00259af0: 6e6f 7465 2054 6869 6e67 3a20 5468 696e note Thing: Thin │ │ │ │ +00259b00: 672c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d g,...----------- │ │ │ │ 00259b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00259b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00259b30: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00259b40: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00259b50: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00259b60: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00259b70: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00259b80: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00259b90: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -00259ba0: 7932 446f 632f 6675 6e63 7469 6f6e 732f y2Doc/functions/ │ │ │ │ -00259bb0: 7275 6e50 726f 6772 616d 2d64 6f63 2e6d runProgram-doc.m │ │ │ │ -00259bc0: 323a 3335 3a30 2e0a 1f0a 4669 6c65 3a20 2:35:0....File: │ │ │ │ -00259bd0: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -00259be0: 6f2c 204e 6f64 653a 2073 7461 7475 735f o, Node: status_ │ │ │ │ -00259bf0: 6c70 5072 6f67 7261 6d52 756e 5f72 702c lpProgramRun_rp, │ │ │ │ -00259c00: 2055 703a 2050 726f 6772 616d 5275 6e0a Up: ProgramRun. │ │ │ │ -00259c10: 0a73 7461 7475 7328 5072 6f67 7261 6d52 .status(ProgramR │ │ │ │ -00259c20: 756e 2920 2d2d 2067 6574 2074 6865 2072 un) -- get the r │ │ │ │ -00259c30: 6574 7572 6e20 7374 6174 7573 206f 6620 eturn status of │ │ │ │ -00259c40: 6120 7072 6f67 7261 6d20 7275 6e0a 2a2a a program run.** │ │ │ │ -00259c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00259c80: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00259c90: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ -00259ca0: 7374 6174 7573 3a20 7374 6174 7573 2c0a status: status,. │ │ │ │ -00259cb0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00259cc0: 2020 2020 7374 6174 7573 2070 720a 2020 status pr. │ │ │ │ -00259cd0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00259ce0: 2a20 7072 2c20 616e 2069 6e73 7461 6e63 * pr, an instanc │ │ │ │ -00259cf0: 6520 6f66 2074 6865 2074 7970 6520 2a6e e of the type *n │ │ │ │ -00259d00: 6f74 6520 5072 6f67 7261 6d52 756e 3a20 ote ProgramRun: │ │ │ │ -00259d10: 5072 6f67 7261 6d52 756e 2c2c 200a 2020 ProgramRun,, . │ │ │ │ -00259d20: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ -00259d30: 2069 6e70 7574 733a 2075 7369 6e67 2066 inputs: using f │ │ │ │ -00259d40: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -00259d50: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -00259d60: 2020 2020 2020 2a20 2a6e 6f74 6520 4d6f * *note Mo │ │ │ │ -00259d70: 6e6f 6d69 616c 733a 2028 4f6c 6443 6861 nomials: (OldCha │ │ │ │ -00259d80: 696e 436f 6d70 6c65 7865 7329 7374 6174 inComplexes)stat │ │ │ │ -00259d90: 7573 5f6c 7043 6861 696e 436f 6d70 6c65 us_lpChainComple │ │ │ │ -00259da0: 785f 7270 2c20 3d3e 202e 2e2e 2c0a 2020 x_rp, => ...,. │ │ │ │ -00259db0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ -00259dc0: 6c75 6520 6661 6c73 652c 0a20 2020 2020 lue false,. │ │ │ │ -00259dd0: 202a 202a 6e6f 7465 2050 6169 7273 5265 * *note PairsRe │ │ │ │ -00259de0: 6d61 696e 696e 673a 2028 4f6c 6443 6861 maining: (OldCha │ │ │ │ -00259df0: 696e 436f 6d70 6c65 7865 7329 7374 6174 inComplexes)stat │ │ │ │ -00259e00: 7573 5f6c 7043 6861 696e 436f 6d70 6c65 us_lpChainComple │ │ │ │ -00259e10: 785f 7270 2c20 3d3e 0a20 2020 2020 2020 x_rp, =>. │ │ │ │ -00259e20: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -00259e30: 6c75 6520 6661 6c73 652c 0a20 2020 2020 lue false,. │ │ │ │ -00259e40: 202a 202a 6e6f 7465 2054 6f74 616c 5061 * *note TotalPa │ │ │ │ -00259e50: 6972 733a 2028 4f6c 6443 6861 696e 436f irs: (OldChainCo │ │ │ │ -00259e60: 6d70 6c65 7865 7329 7374 6174 7573 5f6c mplexes)status_l │ │ │ │ -00259e70: 7043 6861 696e 436f 6d70 6c65 785f 7270 pChainComplex_rp │ │ │ │ -00259e80: 2c20 3d3e 202e 2e2e 2c0a 2020 2020 2020 , => ...,. │ │ │ │ -00259e90: 2020 6465 6661 756c 7420 7661 6c75 6520 default value │ │ │ │ -00259ea0: 7472 7565 2c0a 2020 2a20 4f75 7470 7574 true,. * Output │ │ │ │ -00259eb0: 733a 0a20 2020 2020 202a 2061 6e20 2a6e s:. * an *n │ │ │ │ -00259ec0: 6f74 6520 696e 7465 6765 723a 205a 5a2c ote integer: ZZ, │ │ │ │ -00259ed0: 2c20 0a0a 4465 7363 7269 7074 696f 6e0a , ..Description. │ │ │ │ -00259ee0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a47 6574 ===========..Get │ │ │ │ -00259ef0: 2074 6865 2072 6574 7572 6e20 7374 6174 the return stat │ │ │ │ -00259f00: 7573 206f 6620 6120 7072 6f67 7261 6d20 us of a program │ │ │ │ -00259f10: 7275 6e2e 2020 5573 7561 6c6c 792c 2030 run. Usually, 0 │ │ │ │ -00259f20: 206d 6561 6e73 2074 6861 7420 6974 2077 means that it w │ │ │ │ -00259f30: 6173 0a73 7563 6365 7373 6675 6c2e 0a0a as.successful... │ │ │ │ -00259f40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00259f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00259f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00259f70: 7c69 3120 3a20 6e6f 726d 616c 697a 203d |i1 : normaliz = │ │ │ │ -00259f80: 2066 696e 6450 726f 6772 616d 2022 6e6f findProgram "no │ │ │ │ -00259f90: 726d 616c 697a 2220 2020 2020 2020 7c0a rmaliz" |. │ │ │ │ -00259fa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00259fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00259fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00259fd0: 7c6f 3120 3d20 6e6f 726d 616c 697a 2020 |o1 = normaliz │ │ │ │ +00259b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259b50: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00259b60: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00259b70: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00259b80: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00259b90: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00259ba0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00259bb0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ +00259bc0: 6175 6c61 7932 446f 632f 6675 6e63 7469 aulay2Doc/functi │ │ │ │ +00259bd0: 6f6e 732f 7275 6e50 726f 6772 616d 2d64 ons/runProgram-d │ │ │ │ +00259be0: 6f63 2e6d 323a 3335 3a30 2e0a 1f0a 4669 oc.m2:35:0....Fi │ │ │ │ +00259bf0: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00259c00: 2e69 6e66 6f2c 204e 6f64 653a 2073 7461 .info, Node: sta │ │ │ │ +00259c10: 7475 735f 6c70 5072 6f67 7261 6d52 756e tus_lpProgramRun │ │ │ │ +00259c20: 5f72 702c 2055 703a 2050 726f 6772 616d _rp, Up: Program │ │ │ │ +00259c30: 5275 6e0a 0a73 7461 7475 7328 5072 6f67 Run..status(Prog │ │ │ │ +00259c40: 7261 6d52 756e 2920 2d2d 2067 6574 2074 ramRun) -- get t │ │ │ │ +00259c50: 6865 2072 6574 7572 6e20 7374 6174 7573 he return status │ │ │ │ +00259c60: 206f 6620 6120 7072 6f67 7261 6d20 7275 of a program ru │ │ │ │ +00259c70: 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a n.************** │ │ │ │ +00259c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00259c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00259ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00259cb0: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ +00259cc0: 6f74 6520 7374 6174 7573 3a20 7374 6174 ote status: stat │ │ │ │ +00259cd0: 7573 2c0a 2020 2a20 5573 6167 653a 200a us,. * Usage: . │ │ │ │ +00259ce0: 2020 2020 2020 2020 7374 6174 7573 2070 status p │ │ │ │ +00259cf0: 720a 2020 2a20 496e 7075 7473 3a0a 2020 r. * Inputs:. │ │ │ │ +00259d00: 2020 2020 2a20 7072 2c20 616e 2069 6e73 * pr, an ins │ │ │ │ +00259d10: 7461 6e63 6520 6f66 2074 6865 2074 7970 tance of the typ │ │ │ │ +00259d20: 6520 2a6e 6f74 6520 5072 6f67 7261 6d52 e *note ProgramR │ │ │ │ +00259d30: 756e 3a20 5072 6f67 7261 6d52 756e 2c2c un: ProgramRun,, │ │ │ │ +00259d40: 200a 2020 2a20 2a6e 6f74 6520 4f70 7469 . * *note Opti │ │ │ │ +00259d50: 6f6e 616c 2069 6e70 7574 733a 2075 7369 onal inputs: usi │ │ │ │ +00259d60: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +00259d70: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00259d80: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ +00259d90: 6520 4d6f 6e6f 6d69 616c 733a 2028 4f6c e Monomials: (Ol │ │ │ │ +00259da0: 6443 6861 696e 436f 6d70 6c65 7865 7329 dChainComplexes) │ │ │ │ +00259db0: 7374 6174 7573 5f6c 7043 6861 696e 436f status_lpChainCo │ │ │ │ +00259dc0: 6d70 6c65 785f 7270 2c20 3d3e 202e 2e2e mplex_rp, => ... │ │ │ │ +00259dd0: 2c0a 2020 2020 2020 2020 6465 6661 756c ,. defaul │ │ │ │ +00259de0: 7420 7661 6c75 6520 6661 6c73 652c 0a20 t value false,. │ │ │ │ +00259df0: 2020 2020 202a 202a 6e6f 7465 2050 6169 * *note Pai │ │ │ │ +00259e00: 7273 5265 6d61 696e 696e 673a 2028 4f6c rsRemaining: (Ol │ │ │ │ +00259e10: 6443 6861 696e 436f 6d70 6c65 7865 7329 dChainComplexes) │ │ │ │ +00259e20: 7374 6174 7573 5f6c 7043 6861 696e 436f status_lpChainCo │ │ │ │ +00259e30: 6d70 6c65 785f 7270 2c20 3d3e 0a20 2020 mplex_rp, =>. │ │ │ │ +00259e40: 2020 2020 202e 2e2e 2c20 6465 6661 756c ..., defaul │ │ │ │ +00259e50: 7420 7661 6c75 6520 6661 6c73 652c 0a20 t value false,. │ │ │ │ +00259e60: 2020 2020 202a 202a 6e6f 7465 2054 6f74 * *note Tot │ │ │ │ +00259e70: 616c 5061 6972 733a 2028 4f6c 6443 6861 alPairs: (OldCha │ │ │ │ +00259e80: 696e 436f 6d70 6c65 7865 7329 7374 6174 inComplexes)stat │ │ │ │ +00259e90: 7573 5f6c 7043 6861 696e 436f 6d70 6c65 us_lpChainComple │ │ │ │ +00259ea0: 785f 7270 2c20 3d3e 202e 2e2e 2c0a 2020 x_rp, => ...,. │ │ │ │ +00259eb0: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +00259ec0: 6c75 6520 7472 7565 2c0a 2020 2a20 4f75 lue true,. * Ou │ │ │ │ +00259ed0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +00259ee0: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ +00259ef0: 205a 5a2c 2c20 0a0a 4465 7363 7269 7074 ZZ,, ..Descript │ │ │ │ +00259f00: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00259f10: 0a47 6574 2074 6865 2072 6574 7572 6e20 .Get the return │ │ │ │ +00259f20: 7374 6174 7573 206f 6620 6120 7072 6f67 status of a prog │ │ │ │ +00259f30: 7261 6d20 7275 6e2e 2020 5573 7561 6c6c ram run. Usuall │ │ │ │ +00259f40: 792c 2030 206d 6561 6e73 2074 6861 7420 y, 0 means that │ │ │ │ +00259f50: 6974 2077 6173 0a73 7563 6365 7373 6675 it was.successfu │ │ │ │ +00259f60: 6c2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d l...+----------- │ │ │ │ +00259f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00259f90: 2d2d 2b0a 7c69 3120 3a20 6e6f 726d 616c --+.|i1 : normal │ │ │ │ +00259fa0: 697a 203d 2066 696e 6450 726f 6772 616d iz = findProgram │ │ │ │ +00259fb0: 2022 6e6f 726d 616c 697a 2220 2020 2020 "normaliz" │ │ │ │ +00259fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00259fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00259fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00259ff0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a000: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00259ff0: 2020 7c0a 7c6f 3120 3d20 6e6f 726d 616c |.|o1 = normal │ │ │ │ +0025a000: 697a 2020 2020 2020 2020 2020 2020 2020 iz │ │ │ │ 0025a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a030: 7c6f 3120 3a20 5072 6f67 7261 6d20 2020 |o1 : Program │ │ │ │ +0025a020: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a060: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0025a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0025a090: 7c69 3220 3a20 7374 6174 7573 2072 756e |i2 : status run │ │ │ │ -0025a0a0: 5072 6f67 7261 6d28 6e6f 726d 616c 697a Program(normaliz │ │ │ │ -0025a0b0: 2c20 222d 2d76 6572 7369 6f6e 2229 7c0a , "--version")|. │ │ │ │ -0025a0c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0025a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a0e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a0f0: 7c6f 3220 3d20 3020 2020 2020 2020 2020 |o2 = 0 │ │ │ │ +0025a050: 2020 7c0a 7c6f 3120 3a20 5072 6f67 7261 |.|o1 : Progra │ │ │ │ +0025a060: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ +0025a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a080: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0025a090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a0b0: 2d2d 2b0a 7c69 3220 3a20 7374 6174 7573 --+.|i2 : status │ │ │ │ +0025a0c0: 2072 756e 5072 6f67 7261 6d28 6e6f 726d runProgram(norm │ │ │ │ +0025a0d0: 616c 697a 2c20 222d 2d76 6572 7369 6f6e aliz, "--version │ │ │ │ +0025a0e0: 2229 7c0a 7c20 2020 2020 2020 2020 2020 ")|.| │ │ │ │ +0025a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a120: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0025a130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0025a150: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0025a160: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6669 ==.. * *note fi │ │ │ │ -0025a170: 6e64 5072 6f67 7261 6d3a 2066 696e 6450 ndProgram: findP │ │ │ │ -0025a180: 726f 6772 616d 2c20 2d2d 206c 6f61 6420 rogram, -- load │ │ │ │ -0025a190: 6578 7465 726e 616c 2070 726f 6772 616d external program │ │ │ │ -0025a1a0: 0a20 202a 202a 6e6f 7465 2072 756e 5072 . * *note runPr │ │ │ │ -0025a1b0: 6f67 7261 6d3a 2072 756e 5072 6f67 7261 ogram: runProgra │ │ │ │ -0025a1c0: 6d2c 202d 2d20 7275 6e20 616e 2065 7874 m, -- run an ext │ │ │ │ -0025a1d0: 6572 6e61 6c20 7072 6f67 7261 6d0a 0a57 ernal program..W │ │ │ │ -0025a1e0: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -0025a1f0: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -0025a200: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0025a210: 0a0a 2020 2a20 2a6e 6f74 6520 7374 6174 .. * *note stat │ │ │ │ -0025a220: 7573 2850 726f 6772 616d 5275 6e29 3a20 us(ProgramRun): │ │ │ │ -0025a230: 7374 6174 7573 5f6c 7050 726f 6772 616d status_lpProgram │ │ │ │ -0025a240: 5275 6e5f 7270 2c20 2d2d 2067 6574 2074 Run_rp, -- get t │ │ │ │ -0025a250: 6865 2072 6574 7572 6e20 7374 6174 7573 he return status │ │ │ │ -0025a260: 0a20 2020 206f 6620 6120 7072 6f67 7261 . of a progra │ │ │ │ -0025a270: 6d20 7275 6e0a 2d2d 2d2d 2d2d 2d2d 2d2d m run.---------- │ │ │ │ -0025a280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a110: 2020 7c0a 7c6f 3220 3d20 3020 2020 2020 |.|o2 = 0 │ │ │ │ +0025a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a140: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0025a150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a170: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +0025a180: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +0025a190: 6520 6669 6e64 5072 6f67 7261 6d3a 2066 e findProgram: f │ │ │ │ +0025a1a0: 696e 6450 726f 6772 616d 2c20 2d2d 206c indProgram, -- l │ │ │ │ +0025a1b0: 6f61 6420 6578 7465 726e 616c 2070 726f oad external pro │ │ │ │ +0025a1c0: 6772 616d 0a20 202a 202a 6e6f 7465 2072 gram. * *note r │ │ │ │ +0025a1d0: 756e 5072 6f67 7261 6d3a 2072 756e 5072 unProgram: runPr │ │ │ │ +0025a1e0: 6f67 7261 6d2c 202d 2d20 7275 6e20 616e ogram, -- run an │ │ │ │ +0025a1f0: 2065 7874 6572 6e61 6c20 7072 6f67 7261 external progra │ │ │ │ +0025a200: 6d0a 0a57 6179 7320 746f 2075 7365 2074 m..Ways to use t │ │ │ │ +0025a210: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ +0025a220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025a230: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0025a240: 7374 6174 7573 2850 726f 6772 616d 5275 status(ProgramRu │ │ │ │ +0025a250: 6e29 3a20 7374 6174 7573 5f6c 7050 726f n): status_lpPro │ │ │ │ +0025a260: 6772 616d 5275 6e5f 7270 2c20 2d2d 2067 gramRun_rp, -- g │ │ │ │ +0025a270: 6574 2074 6865 2072 6574 7572 6e20 7374 et the return st │ │ │ │ +0025a280: 6174 7573 0a20 2020 206f 6620 6120 7072 atus. of a pr │ │ │ │ +0025a290: 6f67 7261 6d20 7275 6e0a 2d2d 2d2d 2d2d ogram run.------ │ │ │ │ 0025a2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025a2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a2c0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0025a2d0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0025a2e0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0025a2f0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0025a300: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0025a310: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0025a320: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -0025a330: 6361 756c 6179 3244 6f63 2f66 756e 6374 caulay2Doc/funct │ │ │ │ -0025a340: 696f 6e73 2f72 756e 5072 6f67 7261 6d2d ions/runProgram- │ │ │ │ -0025a350: 646f 632e 6d32 3a31 3330 3a30 2e0a 1f0a doc.m2:130:0.... │ │ │ │ -0025a360: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -0025a370: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2050 oc.info, Node: P │ │ │ │ -0025a380: 726f 6772 616d 203c 3c20 5468 696e 672c rogram << Thing, │ │ │ │ -0025a390: 2050 7265 763a 2072 756e 5072 6f67 7261 Prev: runProgra │ │ │ │ -0025a3a0: 6d2c 2055 703a 2063 6f6d 6d75 6e69 6361 m, Up: communica │ │ │ │ -0025a3b0: 7469 6e67 2077 6974 6820 7072 6f67 7261 ting with progra │ │ │ │ -0025a3c0: 6d73 0a0a 5072 6f67 7261 6d20 3c3c 2054 ms..Program << T │ │ │ │ -0025a3d0: 6869 6e67 202d 2d20 7275 6e20 7072 6f67 hing -- run prog │ │ │ │ -0025a3e0: 7261 6d20 7769 7468 2069 6e70 7574 2072 ram with input r │ │ │ │ -0025a3f0: 6564 6972 6563 7469 6f6e 0a2a 2a2a 2a2a edirection.***** │ │ │ │ -0025a400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025a410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a2e0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0025a2f0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0025a300: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0025a310: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0025a320: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0025a330: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0025a340: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0025a350: 2f0a 4d61 6361 756c 6179 3244 6f63 2f66 /.Macaulay2Doc/f │ │ │ │ +0025a360: 756e 6374 696f 6e73 2f72 756e 5072 6f67 unctions/runProg │ │ │ │ +0025a370: 7261 6d2d 646f 632e 6d32 3a31 3330 3a30 ram-doc.m2:130:0 │ │ │ │ +0025a380: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +0025a390: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +0025a3a0: 653a 2050 726f 6772 616d 203c 3c20 5468 e: Program << Th │ │ │ │ +0025a3b0: 696e 672c 2050 7265 763a 2072 756e 5072 ing, Prev: runPr │ │ │ │ +0025a3c0: 6f67 7261 6d2c 2055 703a 2063 6f6d 6d75 ogram, Up: commu │ │ │ │ +0025a3d0: 6e69 6361 7469 6e67 2077 6974 6820 7072 nicating with pr │ │ │ │ +0025a3e0: 6f67 7261 6d73 0a0a 5072 6f67 7261 6d20 ograms..Program │ │ │ │ +0025a3f0: 3c3c 2054 6869 6e67 202d 2d20 7275 6e20 << Thing -- run │ │ │ │ +0025a400: 7072 6f67 7261 6d20 7769 7468 2069 6e70 program with inp │ │ │ │ +0025a410: 7574 2072 6564 6972 6563 7469 6f6e 0a2a ut redirection.* │ │ │ │ 0025a420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025a430: 2a0a 0a20 202a 204f 7065 7261 746f 723a *.. * Operator: │ │ │ │ -0025a440: 202a 6e6f 7465 203c 3c3a 203c 3c2c 0a20 *note <<: <<,. │ │ │ │ -0025a450: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0025a460: 2020 2070 726f 6720 3c3c 2078 0a20 202a prog << x. * │ │ │ │ -0025a470: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0025a480: 2070 726f 672c 2061 6e20 696e 7374 616e prog, an instan │ │ │ │ -0025a490: 6365 206f 6620 7468 6520 7479 7065 202a ce of the type * │ │ │ │ -0025a4a0: 6e6f 7465 2050 726f 6772 616d 3a20 5072 note Program: Pr │ │ │ │ -0025a4b0: 6f67 7261 6d2c 2c20 0a20 2020 2020 202a ogram,, . * │ │ │ │ -0025a4c0: 2078 2c20 6120 2a6e 6f74 6520 7468 696e x, a *note thin │ │ │ │ -0025a4d0: 673a 2054 6869 6e67 2c2c 200a 2020 2a20 g: Thing,, . * │ │ │ │ -0025a4e0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -0025a4f0: 2061 6e20 696e 7374 616e 6365 206f 6620 an instance of │ │ │ │ -0025a500: 7468 6520 7479 7065 202a 6e6f 7465 2050 the type *note P │ │ │ │ -0025a510: 726f 6772 616d 5275 6e3a 2050 726f 6772 rogramRun: Progr │ │ │ │ -0025a520: 616d 5275 6e2c 2c20 0a0a 4465 7363 7269 amRun,, ..Descri │ │ │ │ -0025a530: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0025a540: 3d0a 0a57 7269 7465 2078 2074 6f20 6120 =..Write x to a │ │ │ │ -0025a550: 7465 6d70 6f72 6172 7920 6669 6c65 2061 temporary file a │ │ │ │ -0025a560: 6e64 2072 756e 2070 726f 6720 7769 7468 nd run prog with │ │ │ │ -0025a570: 2074 6869 7320 6669 6c65 2061 7320 696e this file as in │ │ │ │ -0025a580: 7075 7420 7573 696e 6720 696e 7075 740a put using input. │ │ │ │ -0025a590: 7265 6469 7265 6374 696f 6e20 2874 6865 redirection (the │ │ │ │ -0025a5a0: 203c 206f 7065 7261 746f 7220 696e 2061 < operator in a │ │ │ │ -0025a5b0: 2050 4f53 4958 2073 6865 6c6c 292e 0a0a POSIX shell)... │ │ │ │ -0025a5c0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0025a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a5e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -0025a5f0: 4d32 203d 2066 696e 6450 726f 6772 616d M2 = findProgram │ │ │ │ -0025a600: 2022 4d32 2220 2020 2020 2020 2020 2020 "M2" │ │ │ │ -0025a610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a630: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0025a640: 3120 3d20 4d32 2020 2020 2020 2020 2020 1 = M2 │ │ │ │ +0025a430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025a440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025a450: 2a2a 2a2a 2a0a 0a20 202a 204f 7065 7261 *****.. * Opera │ │ │ │ +0025a460: 746f 723a 202a 6e6f 7465 203c 3c3a 203c tor: *note <<: < │ │ │ │ +0025a470: 3c2c 0a20 202a 2055 7361 6765 3a20 0a20 <,. * Usage: . │ │ │ │ +0025a480: 2020 2020 2020 2070 726f 6720 3c3c 2078 prog << x │ │ │ │ +0025a490: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0025a4a0: 2020 202a 2070 726f 672c 2061 6e20 696e * prog, an in │ │ │ │ +0025a4b0: 7374 616e 6365 206f 6620 7468 6520 7479 stance of the ty │ │ │ │ +0025a4c0: 7065 202a 6e6f 7465 2050 726f 6772 616d pe *note Program │ │ │ │ +0025a4d0: 3a20 5072 6f67 7261 6d2c 2c20 0a20 2020 : Program,, . │ │ │ │ +0025a4e0: 2020 202a 2078 2c20 6120 2a6e 6f74 6520 * x, a *note │ │ │ │ +0025a4f0: 7468 696e 673a 2054 6869 6e67 2c2c 200a thing: Thing,, . │ │ │ │ +0025a500: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +0025a510: 2020 202a 2061 6e20 696e 7374 616e 6365 * an instance │ │ │ │ +0025a520: 206f 6620 7468 6520 7479 7065 202a 6e6f of the type *no │ │ │ │ +0025a530: 7465 2050 726f 6772 616d 5275 6e3a 2050 te ProgramRun: P │ │ │ │ +0025a540: 726f 6772 616d 5275 6e2c 2c20 0a0a 4465 rogramRun,, ..De │ │ │ │ +0025a550: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0025a560: 3d3d 3d3d 3d0a 0a57 7269 7465 2078 2074 =====..Write x t │ │ │ │ +0025a570: 6f20 6120 7465 6d70 6f72 6172 7920 6669 o a temporary fi │ │ │ │ +0025a580: 6c65 2061 6e64 2072 756e 2070 726f 6720 le and run prog │ │ │ │ +0025a590: 7769 7468 2074 6869 7320 6669 6c65 2061 with this file a │ │ │ │ +0025a5a0: 7320 696e 7075 7420 7573 696e 6720 696e s input using in │ │ │ │ +0025a5b0: 7075 740a 7265 6469 7265 6374 696f 6e20 put.redirection │ │ │ │ +0025a5c0: 2874 6865 203c 206f 7065 7261 746f 7220 (the < operator │ │ │ │ +0025a5d0: 696e 2061 2050 4f53 4958 2073 6865 6c6c in a POSIX shell │ │ │ │ +0025a5e0: 292e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d )...+----------- │ │ │ │ +0025a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0025a610: 3120 3a20 4d32 203d 2066 696e 6450 726f 1 : M2 = findPro │ │ │ │ +0025a620: 6772 616d 2022 4d32 2220 2020 2020 2020 gram "M2" │ │ │ │ +0025a630: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a660: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025a660: 7c0a 7c6f 3120 3d20 4d32 2020 2020 2020 |.|o1 = M2 │ │ │ │ 0025a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a690: 7c0a 7c6f 3120 3a20 5072 6f67 7261 6d20 |.|o1 : Program │ │ │ │ +0025a680: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0025a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a6b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0025a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a6e0: 2d2d 2d2d 2b0a 7c69 3220 3a20 4d32 203c ----+.|i2 : M2 < │ │ │ │ -0025a6f0: 3c20 2232 202b 2032 2220 2020 2020 2020 < "2 + 2" │ │ │ │ -0025a700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025a710: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025a6b0: 2020 2020 7c0a 7c6f 3120 3a20 5072 6f67 |.|o1 : Prog │ │ │ │ +0025a6c0: 7261 6d20 2020 2020 2020 2020 2020 2020 ram │ │ │ │ +0025a6d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0025a6e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0025a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a700: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0025a710: 4d32 203c 3c20 2232 202b 2032 2220 2020 M2 << "2 + 2" │ │ │ │ 0025a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a730: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0025a740: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0025a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025a730: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a750: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0025a760: 3220 3d20 3020 2020 2020 2020 2020 2020 2 = 0 │ │ │ │ 0025a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a780: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0025a790: 3220 3a20 5072 6f67 7261 6d52 756e 2020 2 : ProgramRun │ │ │ │ +0025a780: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a7b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0025a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a7e0: 2b0a 7c69 3320 3a20 746f 5374 7269 6e67 +.|i3 : toString │ │ │ │ -0025a7f0: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ -0025a800: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0025a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a830: 2020 2020 7c0a 7c6f 3320 3d20 5479 7065 |.|o3 = Type │ │ │ │ -0025a840: 2022 6865 6c70 2220 746f 2073 6565 2075 "help" to see u │ │ │ │ -0025a850: 7365 6675 6c20 636f 6d6d 616e 6473 7c0a seful commands|. │ │ │ │ -0025a860: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0025a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0025a890: 6931 203a 2032 202b 2032 2020 2020 2020 i1 : 2 + 2 │ │ │ │ -0025a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a8b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025a7b0: 7c0a 7c6f 3220 3a20 5072 6f67 7261 6d52 |.|o2 : ProgramR │ │ │ │ +0025a7c0: 756e 2020 2020 2020 2020 2020 2020 2020 un │ │ │ │ +0025a7d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0025a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a800: 2d2d 2d2d 2b0a 7c69 3320 3a20 746f 5374 ----+.|i3 : toSt │ │ │ │ +0025a810: 7269 6e67 206f 6f20 2020 2020 2020 2020 ring oo │ │ │ │ +0025a820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0025a830: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a850: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0025a860: 5479 7065 2022 6865 6c70 2220 746f 2073 Type "help" to s │ │ │ │ +0025a870: 6565 2075 7365 6675 6c20 636f 6d6d 616e ee useful comman │ │ │ │ +0025a880: 6473 7c0a 7c20 2020 2020 2020 2020 2020 ds|.| │ │ │ │ +0025a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a8a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0025a8b0: 2020 2020 6931 203a 2032 202b 2032 2020 i1 : 2 + 2 │ │ │ │ 0025a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0025a8e0: 2020 2020 6f31 203d 2034 2020 2020 2020 o1 = 4 │ │ │ │ +0025a8d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025a900: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0025a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025a930: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -0025a940: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0025a950: 6669 6e64 5072 6f67 7261 6d3a 2066 696e findProgram: fin │ │ │ │ -0025a960: 6450 726f 6772 616d 2c20 2d2d 206c 6f61 dProgram, -- loa │ │ │ │ -0025a970: 6420 6578 7465 726e 616c 2070 726f 6772 d external progr │ │ │ │ -0025a980: 616d 0a20 202a 202a 6e6f 7465 2072 756e am. * *note run │ │ │ │ -0025a990: 5072 6f67 7261 6d3a 2072 756e 5072 6f67 Program: runProg │ │ │ │ -0025a9a0: 7261 6d2c 202d 2d20 7275 6e20 616e 2065 ram, -- run an e │ │ │ │ -0025a9b0: 7874 6572 6e61 6c20 7072 6f67 7261 6d0a xternal program. │ │ │ │ -0025a9c0: 2020 2a20 2a6e 6f74 6520 6765 743a 2067 * *note get: g │ │ │ │ -0025a9d0: 6574 2c20 2d2d 2067 6574 2074 6865 2063 et, -- get the c │ │ │ │ -0025a9e0: 6f6e 7465 6e74 7320 6f66 2061 2066 696c ontents of a fil │ │ │ │ -0025a9f0: 650a 0a57 6179 7320 746f 2075 7365 2074 e..Ways to use t │ │ │ │ -0025aa00: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -0025aa10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0025aa20: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0025aa30: 5072 6f67 7261 6d20 3c3c 2054 6869 6e67 Program << Thing │ │ │ │ -0025aa40: 3a20 5072 6f67 7261 6d20 3c3c 2054 6869 : Program << Thi │ │ │ │ -0025aa50: 6e67 2c20 2d2d 2072 756e 2070 726f 6772 ng, -- run progr │ │ │ │ -0025aa60: 616d 2077 6974 6820 696e 7075 740a 2020 am with input. │ │ │ │ -0025aa70: 2020 7265 6469 7265 6374 696f 6e0a 2d2d redirection.-- │ │ │ │ -0025aa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025aa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a900: 7c0a 7c20 2020 2020 6f31 203d 2034 2020 |.| o1 = 4 │ │ │ │ +0025a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025a920: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0025a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025a950: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ +0025a960: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0025a970: 6f74 6520 6669 6e64 5072 6f67 7261 6d3a ote findProgram: │ │ │ │ +0025a980: 2066 696e 6450 726f 6772 616d 2c20 2d2d findProgram, -- │ │ │ │ +0025a990: 206c 6f61 6420 6578 7465 726e 616c 2070 load external p │ │ │ │ +0025a9a0: 726f 6772 616d 0a20 202a 202a 6e6f 7465 rogram. * *note │ │ │ │ +0025a9b0: 2072 756e 5072 6f67 7261 6d3a 2072 756e runProgram: run │ │ │ │ +0025a9c0: 5072 6f67 7261 6d2c 202d 2d20 7275 6e20 Program, -- run │ │ │ │ +0025a9d0: 616e 2065 7874 6572 6e61 6c20 7072 6f67 an external prog │ │ │ │ +0025a9e0: 7261 6d0a 2020 2a20 2a6e 6f74 6520 6765 ram. * *note ge │ │ │ │ +0025a9f0: 743a 2067 6574 2c20 2d2d 2067 6574 2074 t: get, -- get t │ │ │ │ +0025aa00: 6865 2063 6f6e 7465 6e74 7320 6f66 2061 he contents of a │ │ │ │ +0025aa10: 2066 696c 650a 0a57 6179 7320 746f 2075 file..Ways to u │ │ │ │ +0025aa20: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +0025aa30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025aa40: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0025aa50: 6f74 6520 5072 6f67 7261 6d20 3c3c 2054 ote Program << T │ │ │ │ +0025aa60: 6869 6e67 3a20 5072 6f67 7261 6d20 3c3c hing: Program << │ │ │ │ +0025aa70: 2054 6869 6e67 2c20 2d2d 2072 756e 2070 Thing, -- run p │ │ │ │ +0025aa80: 726f 6772 616d 2077 6974 6820 696e 7075 rogram with inpu │ │ │ │ +0025aa90: 740a 2020 2020 7265 6469 7265 6374 696f t. redirectio │ │ │ │ +0025aaa0: 6e0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d n.-------------- │ │ │ │ 0025aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0025aad0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0025aae0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0025aaf0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0025ab00: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0025ab10: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0025ab20: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0025ab30: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ -0025ab40: 6f63 2f66 756e 6374 696f 6e73 2f72 756e oc/functions/run │ │ │ │ -0025ab50: 5072 6f67 7261 6d2d 646f 632e 6d32 3a31 Program-doc.m2:1 │ │ │ │ -0025ab60: 3537 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 57:0....File: Ma │ │ │ │ -0025ab70: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ -0025ab80: 204e 6f64 653a 2075 7369 6e67 2073 6f63 Node: using soc │ │ │ │ -0025ab90: 6b65 7473 2c20 4e65 7874 3a20 6e6f 7469 kets, Next: noti │ │ │ │ -0025aba0: 6679 2c20 5072 6576 3a20 636f 6d6d 756e fy, Prev: commun │ │ │ │ -0025abb0: 6963 6174 696e 6720 7769 7468 2070 726f icating with pro │ │ │ │ -0025abc0: 6772 616d 732c 2055 703a 2073 7973 7465 grams, Up: syste │ │ │ │ -0025abd0: 6d20 6661 6369 6c69 7469 6573 0a0a 7573 m facilities..us │ │ │ │ -0025abe0: 696e 6720 736f 636b 6574 730a 2a2a 2a2a ing sockets.**** │ │ │ │ -0025abf0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a49 7427 7320 *********..It's │ │ │ │ -0025ac00: 6561 7379 2074 6f20 7573 6520 736f 636b easy to use sock │ │ │ │ -0025ac10: 6574 7320 6173 2074 686f 7567 6820 7468 ets as though th │ │ │ │ -0025ac20: 6579 2077 6572 6520 6669 6c65 732e 2020 ey were files. │ │ │ │ -0025ac30: 5369 6d70 6c79 2072 6570 6c61 6365 2074 Simply replace t │ │ │ │ -0025ac40: 6865 2066 696c 650a 6e61 6d65 2062 7920 he file.name by │ │ │ │ -0025ac50: 6120 7374 7269 6e67 206f 6620 7468 6520 a string of the │ │ │ │ -0025ac60: 666f 726d 2024 686f 7374 3a73 6572 7669 form $host:servi │ │ │ │ -0025ac70: 6365 2077 6865 7265 2068 6f73 7420 6973 ce where host is │ │ │ │ -0025ac80: 2074 6865 206e 616d 6520 6f66 2049 5020 the name of IP │ │ │ │ -0025ac90: 6e75 6d62 6572 0a6f 6620 686f 7374 2074 number.of host t │ │ │ │ -0025aca0: 6f20 636f 6e74 6163 742c 2061 6e64 2073 o contact, and s │ │ │ │ -0025acb0: 6572 7669 6365 2069 7320 7468 6520 706f ervice is the po │ │ │ │ -0025acc0: 7274 206e 756d 6265 7220 6f72 206e 616d rt number or nam │ │ │ │ -0025acd0: 6520 746f 2075 7365 2e20 2049 6620 7365 e to use. If se │ │ │ │ -0025ace0: 7276 6963 650a 6973 206f 6d69 7474 6564 rvice.is omitted │ │ │ │ -0025acf0: 2c20 7468 656e 2070 6f72 7420 3235 3030 , then port 2500 │ │ │ │ -0025ad00: 2069 7320 7573 6564 2e20 2049 6620 686f is used. If ho │ │ │ │ -0025ad10: 7374 2069 7320 6f6d 6974 7465 642c 2074 st is omitted, t │ │ │ │ -0025ad20: 6865 6e20 616e 2069 6e63 6f6d 696e 670a hen an incoming. │ │ │ │ -0025ad30: 636f 6e6e 6563 7469 6f6e 2077 696c 6c20 connection will │ │ │ │ -0025ad40: 6265 206c 6973 7465 6e65 6420 666f 722e be listened for. │ │ │ │ -0025ad50: 0a0a 5468 6520 666f 6c6c 6f77 696e 6720 ..The following │ │ │ │ -0025ad60: 636f 6465 2077 696c 6c20 696c 6c75 7374 code will illust │ │ │ │ -0025ad70: 7261 7465 2074 776f 2d77 6179 2063 6f6d rate two-way com │ │ │ │ -0025ad80: 6d75 6e69 6361 7469 6f6e 2075 7369 6e67 munication using │ │ │ │ -0025ad90: 2073 6f63 6b65 7473 2073 696d 696c 6172 sockets similar │ │ │ │ -0025ada0: 0a74 6f20 7468 6520 696e 7465 7261 6374 .to the interact │ │ │ │ -0025adb0: 696f 6e20 7573 6564 2062 7920 7765 6220 ion used by web │ │ │ │ -0025adc0: 7365 7276 6572 732c 2061 6e64 2079 6f75 servers, and you │ │ │ │ -0025add0: 206d 6179 2074 7279 2069 7420 6f75 7420 may try it out │ │ │ │ -0025ade0: 6f6e 2079 6f75 7220 6d61 6368 696e 652c on your machine, │ │ │ │ -0025adf0: 0a75 6e6c 6573 7320 6120 6669 7265 7761 .unless a firewa │ │ │ │ -0025ae00: 6c6c 2070 7265 7665 6e74 7320 6974 2e0a ll prevents it.. │ │ │ │ -0025ae10: 0a69 6620 2870 6964 203d 2066 6f72 6b28 .if (pid = fork( │ │ │ │ -0025ae20: 2929 203d 3d20 3020 7468 656e 2028 0a20 )) == 0 then (. │ │ │ │ -0025ae30: 2020 2020 7472 7920 2224 3a37 3530 3022 try "$:7500" │ │ │ │ -0025ae40: 203c 3c20 2268 6920 7468 6572 6522 203c << "hi there" < │ │ │ │ -0025ae50: 3c20 636c 6f73 653b 0a20 2020 2020 6578 < close;. ex │ │ │ │ -0025ae60: 6974 2030 3b0a 2020 2020 2029 0a73 6c65 it 0;. ).sle │ │ │ │ -0025ae70: 6570 2032 0a67 6574 2022 246c 6f63 616c ep 2.get "$local │ │ │ │ -0025ae80: 686f 7374 3a37 3530 3022 0a77 6169 7420 host:7500".wait │ │ │ │ -0025ae90: 7069 640a 0a54 6865 2063 6f64 6520 7573 pid..The code us │ │ │ │ -0025aea0: 6573 202a 6e6f 7465 2066 6f72 6b3a 2066 es *note fork: f │ │ │ │ -0025aeb0: 6f72 6b2c 2074 6f20 6372 6561 7465 2061 ork, to create a │ │ │ │ -0025aec0: 2073 6570 6172 6174 6520 7072 6f63 6573 separate proces │ │ │ │ -0025aed0: 7320 7468 6174 2077 696c 6c20 6c69 7374 s that will list │ │ │ │ -0025aee0: 656e 0a66 6f72 2061 2063 6f6e 6e65 6374 en.for a connect │ │ │ │ -0025aef0: 696f 6e20 6f6e 2070 6f72 7420 3735 3030 ion on port 7500 │ │ │ │ -0025af00: 2061 6e64 2074 6865 6e20 7365 6e64 2075 and then send u │ │ │ │ -0025af10: 7320 6120 6d65 7373 6167 652e 2020 5468 s a message. Th │ │ │ │ -0025af20: 6520 2a6e 6f74 6520 736c 6565 703a 0a73 e *note sleep:.s │ │ │ │ -0025af30: 6c65 6570 2c20 636f 6d6d 616e 6420 7061 leep, command pa │ │ │ │ -0025af40: 7573 6573 2066 6f72 2061 2077 6869 6c65 uses for a while │ │ │ │ -0025af50: 2074 6f20 6d61 6b65 2073 7572 6520 7468 to make sure th │ │ │ │ -0025af60: 6520 6368 696c 6420 7072 6f63 6573 7320 e child process │ │ │ │ -0025af70: 6861 7320 6861 6420 7469 6d65 0a74 6f20 has had time.to │ │ │ │ -0025af80: 7374 6172 7420 6c69 7374 656e 696e 672e start listening. │ │ │ │ -0025af90: 2054 6865 6e20 7765 2075 7365 2061 6e20 Then we use an │ │ │ │ -0025afa0: 6f72 6469 6e61 7279 2069 6e70 7574 2063 ordinary input c │ │ │ │ -0025afb0: 6f6d 6d61 6e64 2c20 6e61 6d65 6c79 202a ommand, namely * │ │ │ │ -0025afc0: 6e6f 7465 2067 6574 3a0a 6765 742c 2c20 note get:.get,, │ │ │ │ -0025afd0: 746f 206f 6274 6169 6e20 7468 6520 6d65 to obtain the me │ │ │ │ -0025afe0: 7373 6167 652e 2046 696e 616c 6c79 2c20 ssage. Finally, │ │ │ │ -0025aff0: 7765 202a 6e6f 7465 2077 6169 743a 2077 we *note wait: w │ │ │ │ -0025b000: 6169 742c 2066 6f72 2074 6865 2063 6869 ait, for the chi │ │ │ │ -0025b010: 6c64 0a70 726f 6365 7373 2074 6f20 6669 ld.process to fi │ │ │ │ -0025b020: 6e69 7368 2c20 6173 2077 6520 7368 6f75 nish, as we shou │ │ │ │ -0025b030: 6c64 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ld...See also.== │ │ │ │ -0025b040: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -0025b050: 6520 6765 7457 5757 3a20 6765 7457 5757 e getWWW: getWWW │ │ │ │ -0025b060: 2c20 2d2d 2067 6574 2061 2077 6562 2070 , -- get a web p │ │ │ │ -0025b070: 6167 650a 2a20 4d65 6e75 3a0a 0a0a 4372 age.* Menu:...Cr │ │ │ │ -0025b080: 6561 7469 6e67 2061 2073 6f63 6b65 740a eating a socket. │ │ │ │ -0025b090: 2a20 6f70 656e 4c69 7374 656e 6572 3a20 * openListener: │ │ │ │ -0025b0a0: 6f70 656e 4c69 7374 656e 6572 5f6c 7053 openListener_lpS │ │ │ │ -0025b0b0: 7472 696e 675f 7270 2e20 206f 7065 6e20 tring_rp. open │ │ │ │ -0025b0c0: 6120 706f 7274 2066 6f72 206c 6973 7465 a port for liste │ │ │ │ -0025b0d0: 6e69 6e67 0a2a 206f 7065 6e49 6e3a 206f ning.* openIn: o │ │ │ │ -0025b0e0: 7065 6e49 6e5f 6c70 5374 7269 6e67 5f72 penIn_lpString_r │ │ │ │ -0025b0f0: 702e 2020 206f 7065 6e20 616e 2069 6e70 p. open an inp │ │ │ │ -0025b100: 7574 2066 696c 650a 2a20 6f70 656e 496e ut file.* openIn │ │ │ │ -0025b110: 4f75 743a 3a20 2020 2020 2020 2020 2020 Out:: │ │ │ │ -0025b120: 2020 2020 2020 2020 6f70 656e 2061 6e20 open an │ │ │ │ -0025b130: 696e 7075 7420 6f75 7470 7574 2066 696c input output fil │ │ │ │ -0025b140: 650a 2a20 6f70 656e 4f75 743a 206f 7065 e.* openOut: ope │ │ │ │ -0025b150: 6e4f 7574 5f6c 7053 7472 696e 675f 7270 nOut_lpString_rp │ │ │ │ -0025b160: 2e20 206f 7065 6e20 616e 206f 7574 7075 . open an outpu │ │ │ │ -0025b170: 7420 6669 6c65 0a2a 206f 7065 6e4f 7574 t file.* openOut │ │ │ │ -0025b180: 4170 7065 6e64 3a20 6f70 656e 4f75 7441 Append: openOutA │ │ │ │ -0025b190: 7070 656e 645f 6c70 5374 7269 6e67 5f72 ppend_lpString_r │ │ │ │ -0025b1a0: 702e 2020 6f70 656e 2061 6e20 6f75 7470 p. open an outp │ │ │ │ -0025b1b0: 7574 2066 696c 6520 666f 7220 6170 7065 ut file for appe │ │ │ │ -0025b1c0: 6e64 696e 670a 0a4d 616e 6970 756c 6174 nding..Manipulat │ │ │ │ -0025b1d0: 696e 6720 6120 736f 636b 6574 0a2a 2065 ing a socket.* e │ │ │ │ -0025b1e0: 6e64 6c3a 3a20 2020 2020 2020 2020 2020 ndl:: │ │ │ │ -0025b1f0: 2020 2020 2020 2020 2020 2020 2065 6e64 end │ │ │ │ -0025b200: 2061 6e20 6f75 7470 7574 206c 696e 650a an output line. │ │ │ │ -0025b210: 2a20 666c 7573 683a 3a20 2020 2020 2020 * flush:: │ │ │ │ -0025b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b230: 666c 7573 6820 6f75 7470 7574 2074 6f20 flush output to │ │ │ │ -0025b240: 6669 6c65 0a2a 2063 6c6f 7365 3a3a 2020 file.* close:: │ │ │ │ -0025b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b260: 2020 2020 2063 6c6f 7365 2061 2066 696c close a fil │ │ │ │ -0025b270: 650a 2a20 636c 6f73 6549 6e3a 3a20 2020 e.* closeIn:: │ │ │ │ -0025b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b290: 2020 636c 6f73 6520 616e 2069 6e70 7574 close an input │ │ │ │ -0025b2a0: 2066 696c 650a 2a20 636c 6f73 654f 7574 file.* closeOut │ │ │ │ -0025b2b0: 3a3a 2020 2020 2020 2020 2020 2020 2020 :: │ │ │ │ -0025b2c0: 2020 2020 2020 636c 6f73 6520 616e 206f close an o │ │ │ │ -0025b2d0: 7574 7075 7420 6669 6c65 0a0a 496e 7465 utput file..Inte │ │ │ │ -0025b2e0: 7261 6374 696e 6720 6120 736f 636b 6574 racting a socket │ │ │ │ -0025b2f0: 0a2a 2067 6574 3a3a 2020 2020 2020 2020 .* get:: │ │ │ │ -0025b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b310: 2067 6574 2074 6865 2063 6f6e 7465 6e74 get the content │ │ │ │ -0025b320: 7320 6f66 2061 2066 696c 650a 2a20 6765 s of a file.* ge │ │ │ │ -0025b330: 7463 3a3a 2020 2020 2020 2020 2020 2020 tc:: │ │ │ │ -0025b340: 2020 2020 2020 2020 2020 2020 6765 7420 get │ │ │ │ -0025b350: 6120 6279 7465 0a2a 2072 6561 643a 3a20 a byte.* read:: │ │ │ │ +0025aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025aad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025aae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025aaf0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0025ab00: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0025ab10: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0025ab20: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0025ab30: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0025ab40: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0025ab50: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ +0025ab60: 6179 3244 6f63 2f66 756e 6374 696f 6e73 ay2Doc/functions │ │ │ │ +0025ab70: 2f72 756e 5072 6f67 7261 6d2d 646f 632e /runProgram-doc. │ │ │ │ +0025ab80: 6d32 3a31 3537 3a30 2e0a 1f0a 4669 6c65 m2:157:0....File │ │ │ │ +0025ab90: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ +0025aba0: 6e66 6f2c 204e 6f64 653a 2075 7369 6e67 nfo, Node: using │ │ │ │ +0025abb0: 2073 6f63 6b65 7473 2c20 4e65 7874 3a20 sockets, Next: │ │ │ │ +0025abc0: 6e6f 7469 6679 2c20 5072 6576 3a20 636f notify, Prev: co │ │ │ │ +0025abd0: 6d6d 756e 6963 6174 696e 6720 7769 7468 mmunicating with │ │ │ │ +0025abe0: 2070 726f 6772 616d 732c 2055 703a 2073 programs, Up: s │ │ │ │ +0025abf0: 7973 7465 6d20 6661 6369 6c69 7469 6573 ystem facilities │ │ │ │ +0025ac00: 0a0a 7573 696e 6720 736f 636b 6574 730a ..using sockets. │ │ │ │ +0025ac10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a49 *************..I │ │ │ │ +0025ac20: 7427 7320 6561 7379 2074 6f20 7573 6520 t's easy to use │ │ │ │ +0025ac30: 736f 636b 6574 7320 6173 2074 686f 7567 sockets as thoug │ │ │ │ +0025ac40: 6820 7468 6579 2077 6572 6520 6669 6c65 h they were file │ │ │ │ +0025ac50: 732e 2020 5369 6d70 6c79 2072 6570 6c61 s. Simply repla │ │ │ │ +0025ac60: 6365 2074 6865 2066 696c 650a 6e61 6d65 ce the file.name │ │ │ │ +0025ac70: 2062 7920 6120 7374 7269 6e67 206f 6620 by a string of │ │ │ │ +0025ac80: 7468 6520 666f 726d 2024 686f 7374 3a73 the form $host:s │ │ │ │ +0025ac90: 6572 7669 6365 2077 6865 7265 2068 6f73 ervice where hos │ │ │ │ +0025aca0: 7420 6973 2074 6865 206e 616d 6520 6f66 t is the name of │ │ │ │ +0025acb0: 2049 5020 6e75 6d62 6572 0a6f 6620 686f IP number.of ho │ │ │ │ +0025acc0: 7374 2074 6f20 636f 6e74 6163 742c 2061 st to contact, a │ │ │ │ +0025acd0: 6e64 2073 6572 7669 6365 2069 7320 7468 nd service is th │ │ │ │ +0025ace0: 6520 706f 7274 206e 756d 6265 7220 6f72 e port number or │ │ │ │ +0025acf0: 206e 616d 6520 746f 2075 7365 2e20 2049 name to use. I │ │ │ │ +0025ad00: 6620 7365 7276 6963 650a 6973 206f 6d69 f service.is omi │ │ │ │ +0025ad10: 7474 6564 2c20 7468 656e 2070 6f72 7420 tted, then port │ │ │ │ +0025ad20: 3235 3030 2069 7320 7573 6564 2e20 2049 2500 is used. I │ │ │ │ +0025ad30: 6620 686f 7374 2069 7320 6f6d 6974 7465 f host is omitte │ │ │ │ +0025ad40: 642c 2074 6865 6e20 616e 2069 6e63 6f6d d, then an incom │ │ │ │ +0025ad50: 696e 670a 636f 6e6e 6563 7469 6f6e 2077 ing.connection w │ │ │ │ +0025ad60: 696c 6c20 6265 206c 6973 7465 6e65 6420 ill be listened │ │ │ │ +0025ad70: 666f 722e 0a0a 5468 6520 666f 6c6c 6f77 for...The follow │ │ │ │ +0025ad80: 696e 6720 636f 6465 2077 696c 6c20 696c ing code will il │ │ │ │ +0025ad90: 6c75 7374 7261 7465 2074 776f 2d77 6179 lustrate two-way │ │ │ │ +0025ada0: 2063 6f6d 6d75 6e69 6361 7469 6f6e 2075 communication u │ │ │ │ +0025adb0: 7369 6e67 2073 6f63 6b65 7473 2073 696d sing sockets sim │ │ │ │ +0025adc0: 696c 6172 0a74 6f20 7468 6520 696e 7465 ilar.to the inte │ │ │ │ +0025add0: 7261 6374 696f 6e20 7573 6564 2062 7920 raction used by │ │ │ │ +0025ade0: 7765 6220 7365 7276 6572 732c 2061 6e64 web servers, and │ │ │ │ +0025adf0: 2079 6f75 206d 6179 2074 7279 2069 7420 you may try it │ │ │ │ +0025ae00: 6f75 7420 6f6e 2079 6f75 7220 6d61 6368 out on your mach │ │ │ │ +0025ae10: 696e 652c 0a75 6e6c 6573 7320 6120 6669 ine,.unless a fi │ │ │ │ +0025ae20: 7265 7761 6c6c 2070 7265 7665 6e74 7320 rewall prevents │ │ │ │ +0025ae30: 6974 2e0a 0a69 6620 2870 6964 203d 2066 it...if (pid = f │ │ │ │ +0025ae40: 6f72 6b28 2929 203d 3d20 3020 7468 656e ork()) == 0 then │ │ │ │ +0025ae50: 2028 0a20 2020 2020 7472 7920 2224 3a37 (. try "$:7 │ │ │ │ +0025ae60: 3530 3022 203c 3c20 2268 6920 7468 6572 500" << "hi ther │ │ │ │ +0025ae70: 6522 203c 3c20 636c 6f73 653b 0a20 2020 e" << close;. │ │ │ │ +0025ae80: 2020 6578 6974 2030 3b0a 2020 2020 2029 exit 0;. ) │ │ │ │ +0025ae90: 0a73 6c65 6570 2032 0a67 6574 2022 246c .sleep 2.get "$l │ │ │ │ +0025aea0: 6f63 616c 686f 7374 3a37 3530 3022 0a77 ocalhost:7500".w │ │ │ │ +0025aeb0: 6169 7420 7069 640a 0a54 6865 2063 6f64 ait pid..The cod │ │ │ │ +0025aec0: 6520 7573 6573 202a 6e6f 7465 2066 6f72 e uses *note for │ │ │ │ +0025aed0: 6b3a 2066 6f72 6b2c 2074 6f20 6372 6561 k: fork, to crea │ │ │ │ +0025aee0: 7465 2061 2073 6570 6172 6174 6520 7072 te a separate pr │ │ │ │ +0025aef0: 6f63 6573 7320 7468 6174 2077 696c 6c20 ocess that will │ │ │ │ +0025af00: 6c69 7374 656e 0a66 6f72 2061 2063 6f6e listen.for a con │ │ │ │ +0025af10: 6e65 6374 696f 6e20 6f6e 2070 6f72 7420 nection on port │ │ │ │ +0025af20: 3735 3030 2061 6e64 2074 6865 6e20 7365 7500 and then se │ │ │ │ +0025af30: 6e64 2075 7320 6120 6d65 7373 6167 652e nd us a message. │ │ │ │ +0025af40: 2020 5468 6520 2a6e 6f74 6520 736c 6565 The *note slee │ │ │ │ +0025af50: 703a 0a73 6c65 6570 2c20 636f 6d6d 616e p:.sleep, comman │ │ │ │ +0025af60: 6420 7061 7573 6573 2066 6f72 2061 2077 d pauses for a w │ │ │ │ +0025af70: 6869 6c65 2074 6f20 6d61 6b65 2073 7572 hile to make sur │ │ │ │ +0025af80: 6520 7468 6520 6368 696c 6420 7072 6f63 e the child proc │ │ │ │ +0025af90: 6573 7320 6861 7320 6861 6420 7469 6d65 ess has had time │ │ │ │ +0025afa0: 0a74 6f20 7374 6172 7420 6c69 7374 656e .to start listen │ │ │ │ +0025afb0: 696e 672e 2054 6865 6e20 7765 2075 7365 ing. Then we use │ │ │ │ +0025afc0: 2061 6e20 6f72 6469 6e61 7279 2069 6e70 an ordinary inp │ │ │ │ +0025afd0: 7574 2063 6f6d 6d61 6e64 2c20 6e61 6d65 ut command, name │ │ │ │ +0025afe0: 6c79 202a 6e6f 7465 2067 6574 3a0a 6765 ly *note get:.ge │ │ │ │ +0025aff0: 742c 2c20 746f 206f 6274 6169 6e20 7468 t,, to obtain th │ │ │ │ +0025b000: 6520 6d65 7373 6167 652e 2046 696e 616c e message. Final │ │ │ │ +0025b010: 6c79 2c20 7765 202a 6e6f 7465 2077 6169 ly, we *note wai │ │ │ │ +0025b020: 743a 2077 6169 742c 2066 6f72 2074 6865 t: wait, for the │ │ │ │ +0025b030: 2063 6869 6c64 0a70 726f 6365 7373 2074 child.process t │ │ │ │ +0025b040: 6f20 6669 6e69 7368 2c20 6173 2077 6520 o finish, as we │ │ │ │ +0025b050: 7368 6f75 6c64 2e0a 0a53 6565 2061 6c73 should...See als │ │ │ │ +0025b060: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0025b070: 2a6e 6f74 6520 6765 7457 5757 3a20 6765 *note getWWW: ge │ │ │ │ +0025b080: 7457 5757 2c20 2d2d 2067 6574 2061 2077 tWWW, -- get a w │ │ │ │ +0025b090: 6562 2070 6167 650a 2a20 4d65 6e75 3a0a eb page.* Menu:. │ │ │ │ +0025b0a0: 0a0a 4372 6561 7469 6e67 2061 2073 6f63 ..Creating a soc │ │ │ │ +0025b0b0: 6b65 740a 2a20 6f70 656e 4c69 7374 656e ket.* openListen │ │ │ │ +0025b0c0: 6572 3a20 6f70 656e 4c69 7374 656e 6572 er: openListener │ │ │ │ +0025b0d0: 5f6c 7053 7472 696e 675f 7270 2e20 206f _lpString_rp. o │ │ │ │ +0025b0e0: 7065 6e20 6120 706f 7274 2066 6f72 206c pen a port for l │ │ │ │ +0025b0f0: 6973 7465 6e69 6e67 0a2a 206f 7065 6e49 istening.* openI │ │ │ │ +0025b100: 6e3a 206f 7065 6e49 6e5f 6c70 5374 7269 n: openIn_lpStri │ │ │ │ +0025b110: 6e67 5f72 702e 2020 206f 7065 6e20 616e ng_rp. open an │ │ │ │ +0025b120: 2069 6e70 7574 2066 696c 650a 2a20 6f70 input file.* op │ │ │ │ +0025b130: 656e 496e 4f75 743a 3a20 2020 2020 2020 enInOut:: │ │ │ │ +0025b140: 2020 2020 2020 2020 2020 2020 6f70 656e open │ │ │ │ +0025b150: 2061 6e20 696e 7075 7420 6f75 7470 7574 an input output │ │ │ │ +0025b160: 2066 696c 650a 2a20 6f70 656e 4f75 743a file.* openOut: │ │ │ │ +0025b170: 206f 7065 6e4f 7574 5f6c 7053 7472 696e openOut_lpStrin │ │ │ │ +0025b180: 675f 7270 2e20 206f 7065 6e20 616e 206f g_rp. open an o │ │ │ │ +0025b190: 7574 7075 7420 6669 6c65 0a2a 206f 7065 utput file.* ope │ │ │ │ +0025b1a0: 6e4f 7574 4170 7065 6e64 3a20 6f70 656e nOutAppend: open │ │ │ │ +0025b1b0: 4f75 7441 7070 656e 645f 6c70 5374 7269 OutAppend_lpStri │ │ │ │ +0025b1c0: 6e67 5f72 702e 2020 6f70 656e 2061 6e20 ng_rp. open an │ │ │ │ +0025b1d0: 6f75 7470 7574 2066 696c 6520 666f 7220 output file for │ │ │ │ +0025b1e0: 6170 7065 6e64 696e 670a 0a4d 616e 6970 appending..Manip │ │ │ │ +0025b1f0: 756c 6174 696e 6720 6120 736f 636b 6574 ulating a socket │ │ │ │ +0025b200: 0a2a 2065 6e64 6c3a 3a20 2020 2020 2020 .* endl:: │ │ │ │ +0025b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025b220: 2065 6e64 2061 6e20 6f75 7470 7574 206c end an output l │ │ │ │ +0025b230: 696e 650a 2a20 666c 7573 683a 3a20 2020 ine.* flush:: │ │ │ │ +0025b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025b250: 2020 2020 666c 7573 6820 6f75 7470 7574 flush output │ │ │ │ +0025b260: 2074 6f20 6669 6c65 0a2a 2063 6c6f 7365 to file.* close │ │ │ │ +0025b270: 3a3a 2020 2020 2020 2020 2020 2020 2020 :: │ │ │ │ +0025b280: 2020 2020 2020 2020 2063 6c6f 7365 2061 close a │ │ │ │ +0025b290: 2066 696c 650a 2a20 636c 6f73 6549 6e3a file.* closeIn: │ │ │ │ +0025b2a0: 3a20 2020 2020 2020 2020 2020 2020 2020 : │ │ │ │ +0025b2b0: 2020 2020 2020 636c 6f73 6520 616e 2069 close an i │ │ │ │ +0025b2c0: 6e70 7574 2066 696c 650a 2a20 636c 6f73 nput file.* clos │ │ │ │ +0025b2d0: 654f 7574 3a3a 2020 2020 2020 2020 2020 eOut:: │ │ │ │ +0025b2e0: 2020 2020 2020 2020 2020 636c 6f73 6520 close │ │ │ │ +0025b2f0: 616e 206f 7574 7075 7420 6669 6c65 0a0a an output file.. │ │ │ │ +0025b300: 496e 7465 7261 6374 696e 6720 6120 736f Interacting a so │ │ │ │ +0025b310: 636b 6574 0a2a 2067 6574 3a3a 2020 2020 cket.* get:: │ │ │ │ +0025b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025b330: 2020 2020 2067 6574 2074 6865 2063 6f6e get the con │ │ │ │ +0025b340: 7465 6e74 7320 6f66 2061 2066 696c 650a tents of a file. │ │ │ │ +0025b350: 2a20 6765 7463 3a3a 2020 2020 2020 2020 * getc:: │ │ │ │ 0025b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b370: 2020 2020 2020 2072 6561 6420 6672 6f6d read from │ │ │ │ -0025b380: 2061 2066 696c 650a 2a20 7363 616e 4c69 a file.* scanLi │ │ │ │ -0025b390: 6e65 733a 3a20 2020 2020 2020 2020 2020 nes:: │ │ │ │ -0025b3a0: 2020 2020 2020 2020 6170 706c 7920 6120 apply a │ │ │ │ -0025b3b0: 6675 6e63 7469 6f6e 2074 6f20 6561 6368 function to each │ │ │ │ -0025b3c0: 206c 696e 6520 6f66 2061 2066 696c 650a line of a file. │ │ │ │ -0025b3d0: 2a20 6669 6c65 4c65 6e67 7468 3a3a 2020 * fileLength:: │ │ │ │ -0025b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025b3f0: 7468 6520 6c65 6e67 7468 206f 6620 6120 the length of a │ │ │ │ -0025b400: 6669 6c65 0a2a 2068 6569 6768 7428 4669 file.* height(Fi │ │ │ │ -0025b410: 6c65 293a 2068 6569 6768 745f 6c70 4669 le): height_lpFi │ │ │ │ -0025b420: 6c65 5f72 702e 2020 6765 7420 7769 6e64 le_rp. get wind │ │ │ │ -0025b430: 6f77 2068 6569 6768 740a 2a20 7769 6474 ow height.* widt │ │ │ │ -0025b440: 6828 4669 6c65 293a 2077 6964 7468 5f6c h(File): width_l │ │ │ │ -0025b450: 7046 696c 655f 7270 2e20 2067 6574 2077 pFile_rp. get w │ │ │ │ -0025b460: 696e 646f 7720 7769 6474 680a 2a20 6174 indow width.* at │ │ │ │ -0025b470: 456e 644f 6646 696c 653a 2061 7445 6e64 EndOfFile: atEnd │ │ │ │ -0025b480: 4f66 4669 6c65 5f6c 7046 696c 655f 7270 OfFile_lpFile_rp │ │ │ │ -0025b490: 2e20 2074 6573 7420 666f 7220 656e 6420 . test for end │ │ │ │ -0025b4a0: 6f66 2066 696c 650a 2a20 6563 686f 4f6e of file.* echoOn │ │ │ │ -0025b4b0: 3a3a 2020 2020 2020 2020 2020 2020 2020 :: │ │ │ │ -0025b4c0: 2020 2020 2020 2020 7475 726e 206f 6e20 turn on │ │ │ │ -0025b4d0: 6563 686f 696e 670a 2a20 6563 686f 4f66 echoing.* echoOf │ │ │ │ -0025b4e0: 663a 3a20 2020 2020 2020 2020 2020 2020 f:: │ │ │ │ -0025b4f0: 2020 2020 2020 2020 7475 726e 206f 6666 turn off │ │ │ │ -0025b500: 2065 6368 6f69 6e67 0a2a 2069 734f 7065 echoing.* isOpe │ │ │ │ -0025b510: 6e3a 3a20 2020 2020 2020 2020 2020 2020 n:: │ │ │ │ -0025b520: 2020 2020 2020 2020 2077 6865 7468 6572 whether │ │ │ │ -0025b530: 2061 2066 696c 6520 6f72 2064 6174 6162 a file or datab │ │ │ │ -0025b540: 6173 6520 6973 206f 7065 6e0a 2a20 6973 ase is open.* is │ │ │ │ -0025b550: 5265 6164 793a 2069 7352 6561 6479 5f6c Ready: isReady_l │ │ │ │ -0025b560: 7046 696c 655f 7270 2e20 2020 7768 6574 pFile_rp. whet │ │ │ │ -0025b570: 6865 7220 6120 6669 6c65 2068 6173 2064 her a file has d │ │ │ │ -0025b580: 6174 6120 6176 6169 6c61 626c 6520 666f ata available fo │ │ │ │ -0025b590: 7220 7265 6164 696e 670a 2a20 6973 4f75 r reading.* isOu │ │ │ │ -0025b5a0: 7470 7574 4669 6c65 3a20 6973 4f75 7470 tputFile: isOutp │ │ │ │ -0025b5b0: 7574 4669 6c65 5f6c 7046 696c 655f 7270 utFile_lpFile_rp │ │ │ │ -0025b5c0: 2e20 2077 6865 7468 6572 2061 2066 696c . whether a fil │ │ │ │ -0025b5d0: 6520 6973 206f 7065 6e20 666f 7220 6f75 e is open for ou │ │ │ │ -0025b5e0: 7470 7574 0a2a 2069 7349 6e70 7574 4669 tput.* isInputFi │ │ │ │ -0025b5f0: 6c65 3a20 6973 496e 7075 7446 696c 655f le: isInputFile_ │ │ │ │ -0025b600: 6c70 4669 6c65 5f72 702e 2020 7768 6574 lpFile_rp. whet │ │ │ │ -0025b610: 6865 7220 6120 6669 6c65 2069 7320 6f70 her a file is op │ │ │ │ -0025b620: 656e 2066 6f72 2069 6e70 7574 0a2a 2069 en for input.* i │ │ │ │ -0025b630: 734c 6973 7465 6e65 723a 2069 734c 6973 sListener: isLis │ │ │ │ -0025b640: 7465 6e65 725f 6c70 4669 6c65 5f72 702e tener_lpFile_rp. │ │ │ │ -0025b650: 2020 7768 6574 6865 7220 6120 6669 6c65 whether a file │ │ │ │ -0025b660: 2069 7320 6f70 656e 2066 6f72 206c 6973 is open for lis │ │ │ │ -0025b670: 7465 6e69 6e67 0a2a 206f 7065 6e46 696c tening.* openFil │ │ │ │ -0025b680: 6573 3a3a 2020 2020 2020 2020 2020 2020 es:: │ │ │ │ -0025b690: 2020 2020 2020 206c 6973 7420 7468 6520 list the │ │ │ │ -0025b6a0: 6f70 656e 2066 696c 6573 0a2a 2063 6f6e open files.* con │ │ │ │ -0025b6b0: 6e65 6374 696f 6e43 6f75 6e74 3a3a 2020 nectionCount:: │ │ │ │ -0025b6c0: 2020 2020 2020 2020 2020 2074 6865 206e the n │ │ │ │ -0025b6d0: 756d 6265 7220 6f66 2063 6f6e 6e65 6374 umber of connect │ │ │ │ -0025b6e0: 696f 6e73 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d ions.----------- │ │ │ │ -0025b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025b700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025b370: 6765 7420 6120 6279 7465 0a2a 2072 6561 get a byte.* rea │ │ │ │ +0025b380: 643a 3a20 2020 2020 2020 2020 2020 2020 d:: │ │ │ │ +0025b390: 2020 2020 2020 2020 2020 2072 6561 6420 read │ │ │ │ +0025b3a0: 6672 6f6d 2061 2066 696c 650a 2a20 7363 from a file.* sc │ │ │ │ +0025b3b0: 616e 4c69 6e65 733a 3a20 2020 2020 2020 anLines:: │ │ │ │ +0025b3c0: 2020 2020 2020 2020 2020 2020 6170 706c appl │ │ │ │ +0025b3d0: 7920 6120 6675 6e63 7469 6f6e 2074 6f20 y a function to │ │ │ │ +0025b3e0: 6561 6368 206c 696e 6520 6f66 2061 2066 each line of a f │ │ │ │ +0025b3f0: 696c 650a 2a20 6669 6c65 4c65 6e67 7468 ile.* fileLength │ │ │ │ +0025b400: 3a3a 2020 2020 2020 2020 2020 2020 2020 :: │ │ │ │ +0025b410: 2020 2020 7468 6520 6c65 6e67 7468 206f the length o │ │ │ │ +0025b420: 6620 6120 6669 6c65 0a2a 2068 6569 6768 f a file.* heigh │ │ │ │ +0025b430: 7428 4669 6c65 293a 2068 6569 6768 745f t(File): height_ │ │ │ │ +0025b440: 6c70 4669 6c65 5f72 702e 2020 6765 7420 lpFile_rp. get │ │ │ │ +0025b450: 7769 6e64 6f77 2068 6569 6768 740a 2a20 window height.* │ │ │ │ +0025b460: 7769 6474 6828 4669 6c65 293a 2077 6964 width(File): wid │ │ │ │ +0025b470: 7468 5f6c 7046 696c 655f 7270 2e20 2067 th_lpFile_rp. g │ │ │ │ +0025b480: 6574 2077 696e 646f 7720 7769 6474 680a et window width. │ │ │ │ +0025b490: 2a20 6174 456e 644f 6646 696c 653a 2061 * atEndOfFile: a │ │ │ │ +0025b4a0: 7445 6e64 4f66 4669 6c65 5f6c 7046 696c tEndOfFile_lpFil │ │ │ │ +0025b4b0: 655f 7270 2e20 2074 6573 7420 666f 7220 e_rp. test for │ │ │ │ +0025b4c0: 656e 6420 6f66 2066 696c 650a 2a20 6563 end of file.* ec │ │ │ │ +0025b4d0: 686f 4f6e 3a3a 2020 2020 2020 2020 2020 hoOn:: │ │ │ │ +0025b4e0: 2020 2020 2020 2020 2020 2020 7475 726e turn │ │ │ │ +0025b4f0: 206f 6e20 6563 686f 696e 670a 2a20 6563 on echoing.* ec │ │ │ │ +0025b500: 686f 4f66 663a 3a20 2020 2020 2020 2020 hoOff:: │ │ │ │ +0025b510: 2020 2020 2020 2020 2020 2020 7475 726e turn │ │ │ │ +0025b520: 206f 6666 2065 6368 6f69 6e67 0a2a 2069 off echoing.* i │ │ │ │ +0025b530: 734f 7065 6e3a 3a20 2020 2020 2020 2020 sOpen:: │ │ │ │ +0025b540: 2020 2020 2020 2020 2020 2020 2077 6865 whe │ │ │ │ +0025b550: 7468 6572 2061 2066 696c 6520 6f72 2064 ther a file or d │ │ │ │ +0025b560: 6174 6162 6173 6520 6973 206f 7065 6e0a atabase is open. │ │ │ │ +0025b570: 2a20 6973 5265 6164 793a 2069 7352 6561 * isReady: isRea │ │ │ │ +0025b580: 6479 5f6c 7046 696c 655f 7270 2e20 2020 dy_lpFile_rp. │ │ │ │ +0025b590: 7768 6574 6865 7220 6120 6669 6c65 2068 whether a file h │ │ │ │ +0025b5a0: 6173 2064 6174 6120 6176 6169 6c61 626c as data availabl │ │ │ │ +0025b5b0: 6520 666f 7220 7265 6164 696e 670a 2a20 e for reading.* │ │ │ │ +0025b5c0: 6973 4f75 7470 7574 4669 6c65 3a20 6973 isOutputFile: is │ │ │ │ +0025b5d0: 4f75 7470 7574 4669 6c65 5f6c 7046 696c OutputFile_lpFil │ │ │ │ +0025b5e0: 655f 7270 2e20 2077 6865 7468 6572 2061 e_rp. whether a │ │ │ │ +0025b5f0: 2066 696c 6520 6973 206f 7065 6e20 666f file is open fo │ │ │ │ +0025b600: 7220 6f75 7470 7574 0a2a 2069 7349 6e70 r output.* isInp │ │ │ │ +0025b610: 7574 4669 6c65 3a20 6973 496e 7075 7446 utFile: isInputF │ │ │ │ +0025b620: 696c 655f 6c70 4669 6c65 5f72 702e 2020 ile_lpFile_rp. │ │ │ │ +0025b630: 7768 6574 6865 7220 6120 6669 6c65 2069 whether a file i │ │ │ │ +0025b640: 7320 6f70 656e 2066 6f72 2069 6e70 7574 s open for input │ │ │ │ +0025b650: 0a2a 2069 734c 6973 7465 6e65 723a 2069 .* isListener: i │ │ │ │ +0025b660: 734c 6973 7465 6e65 725f 6c70 4669 6c65 sListener_lpFile │ │ │ │ +0025b670: 5f72 702e 2020 7768 6574 6865 7220 6120 _rp. whether a │ │ │ │ +0025b680: 6669 6c65 2069 7320 6f70 656e 2066 6f72 file is open for │ │ │ │ +0025b690: 206c 6973 7465 6e69 6e67 0a2a 206f 7065 listening.* ope │ │ │ │ +0025b6a0: 6e46 696c 6573 3a3a 2020 2020 2020 2020 nFiles:: │ │ │ │ +0025b6b0: 2020 2020 2020 2020 2020 206c 6973 7420 list │ │ │ │ +0025b6c0: 7468 6520 6f70 656e 2066 696c 6573 0a2a the open files.* │ │ │ │ +0025b6d0: 2063 6f6e 6e65 6374 696f 6e43 6f75 6e74 connectionCount │ │ │ │ +0025b6e0: 3a3a 2020 2020 2020 2020 2020 2020 2074 :: t │ │ │ │ +0025b6f0: 6865 206e 756d 6265 7220 6f66 2063 6f6e he number of con │ │ │ │ +0025b700: 6e65 6374 696f 6e73 0a2d 2d2d 2d2d 2d2d nections.------- │ │ │ │ 0025b710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025b720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025b730: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0025b740: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0025b750: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0025b760: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0025b770: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0025b780: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0025b790: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0025b7a0: 6175 6c61 7932 446f 632f 6f76 5f66 696c aulay2Doc/ov_fil │ │ │ │ -0025b7b0: 6573 2e6d 323a 3530 393a 302e 0a1f 0a46 es.m2:509:0....F │ │ │ │ -0025b7c0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -0025b7d0: 632e 696e 666f 2c20 4e6f 6465 3a20 6f70 c.info, Node: op │ │ │ │ -0025b7e0: 656e 4c69 7374 656e 6572 5f6c 7053 7472 enListener_lpStr │ │ │ │ -0025b7f0: 696e 675f 7270 2c20 4e65 7874 3a20 6f70 ing_rp, Next: op │ │ │ │ -0025b800: 656e 496e 5f6c 7053 7472 696e 675f 7270 enIn_lpString_rp │ │ │ │ -0025b810: 2c20 5570 3a20 7573 696e 6720 736f 636b , Up: using sock │ │ │ │ -0025b820: 6574 730a 0a6f 7065 6e4c 6973 7465 6e65 ets..openListene │ │ │ │ -0025b830: 7228 5374 7269 6e67 2920 2d2d 206f 7065 r(String) -- ope │ │ │ │ -0025b840: 6e20 6120 706f 7274 2066 6f72 206c 6973 n a port for lis │ │ │ │ -0025b850: 7465 6e69 6e67 0a2a 2a2a 2a2a 2a2a 2a2a tening.********* │ │ │ │ -0025b860: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025b870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025b880: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -0025b890: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 6f70 nction: *note op │ │ │ │ -0025b8a0: 656e 4c69 7374 656e 6572 3a20 6f70 656e enListener: open │ │ │ │ -0025b8b0: 4c69 7374 656e 6572 5f6c 7053 7472 696e Listener_lpStrin │ │ │ │ -0025b8c0: 675f 7270 2c0a 2020 2a20 5573 6167 653a g_rp,. * Usage: │ │ │ │ -0025b8d0: 200a 2020 2020 2020 2020 6620 3d20 6f70 . f = op │ │ │ │ -0025b8e0: 656e 4c69 7374 656e 6572 2073 0a20 202a enListener s. * │ │ │ │ -0025b8f0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0025b900: 2073 2c20 6120 2a6e 6f74 6520 7374 7269 s, a *note stri │ │ │ │ -0025b910: 6e67 3a20 5374 7269 6e67 2c2c 206f 6620 ng: String,, of │ │ │ │ -0025b920: 7468 6520 666f 726d 2022 2469 6e74 6572 the form "$inter │ │ │ │ -0025b930: 6661 6365 3a70 6f72 7422 2e20 2042 6f74 face:port". Bot │ │ │ │ -0025b940: 6820 7061 7274 730a 2020 2020 2020 2020 h parts. │ │ │ │ -0025b950: 6172 6520 6f70 7469 6f6e 616c 2e20 2049 are optional. I │ │ │ │ -0025b960: 6620 7468 6520 706f 7274 2069 7320 6f6d f the port is om │ │ │ │ -0025b970: 6974 7465 642c 2074 6865 2063 6f6c 6f6e itted, the colon │ │ │ │ -0025b980: 2069 7320 6f70 7469 6f6e 616c 2e0a 2020 is optional.. │ │ │ │ -0025b990: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0025b9a0: 202a 2066 2c20 6120 2a6e 6f74 6520 6669 * f, a *note fi │ │ │ │ -0025b9b0: 6c65 3a20 4669 6c65 2c2c 2061 6e20 6f70 le: File,, an op │ │ │ │ -0025b9c0: 656e 206c 6973 7465 6e65 7220 6f6e 2074 en listener on t │ │ │ │ -0025b9d0: 6865 2073 7065 6369 6669 6564 2069 6e74 he specified int │ │ │ │ -0025b9e0: 6572 6661 6365 206f 660a 2020 2020 2020 erface of. │ │ │ │ -0025b9f0: 2020 7468 6520 6c6f 6361 6c20 686f 7374 the local host │ │ │ │ -0025ba00: 2061 7420 7468 6520 7370 6563 6966 6965 at the specifie │ │ │ │ -0025ba10: 6420 7365 7276 6963 6520 706f 7274 2e20 d service port. │ │ │ │ -0025ba20: 4966 2074 6865 2070 6f72 7420 6973 206f If the port is o │ │ │ │ -0025ba30: 6d69 7474 6564 2c0a 2020 2020 2020 2020 mitted,. │ │ │ │ -0025ba40: 6974 2069 7320 7461 6b65 6e20 746f 2062 it is taken to b │ │ │ │ -0025ba50: 6520 706f 7274 2032 3530 302e 2020 4966 e port 2500. If │ │ │ │ -0025ba60: 2074 6865 2069 6e74 6572 6661 6365 2069 the interface i │ │ │ │ -0025ba70: 7320 6f6d 6974 7465 642c 2074 6865 206c s omitted, the l │ │ │ │ -0025ba80: 6973 7465 6e65 720a 2020 2020 2020 2020 istener. │ │ │ │ -0025ba90: 6163 6365 7074 7320 636f 6e6e 6563 7469 accepts connecti │ │ │ │ -0025baa0: 6f6e 7320 6f6e 2061 6c6c 2069 6e74 6572 ons on all inter │ │ │ │ -0025bab0: 6661 6365 732e 0a0a 4465 7363 7269 7074 faces...Descript │ │ │ │ -0025bac0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0025bad0: 0a55 7365 206f 7065 6e49 6e4f 7574 2066 .Use openInOut f │ │ │ │ -0025bae0: 2074 6f20 6163 6365 7074 2061 6e20 696e to accept an in │ │ │ │ -0025baf0: 636f 6d69 6e67 2063 6f6e 6e65 6374 696f coming connectio │ │ │ │ -0025bb00: 6e20 6f6e 2074 6865 206c 6973 7465 6e65 n on the listene │ │ │ │ -0025bb10: 722c 2072 6574 7572 6e69 6e67 2061 0a6e r, returning a.n │ │ │ │ -0025bb20: 6577 2069 6e70 7574 206f 7574 7075 7420 ew input output │ │ │ │ -0025bb30: 6669 6c65 2074 6861 7420 7365 7276 6573 file that serves │ │ │ │ -0025bb40: 2061 7320 7468 6520 636f 6e6e 6563 7469 as the connecti │ │ │ │ -0025bb50: 6f6e 2e20 2054 6865 2066 756e 6374 696f on. The functio │ │ │ │ -0025bb60: 6e20 2a6e 6f74 650a 6973 5265 6164 793a n *note.isReady: │ │ │ │ -0025bb70: 2069 7352 6561 6479 5f6c 7046 696c 655f isReady_lpFile_ │ │ │ │ -0025bb80: 7270 2c20 6361 6e20 6265 2075 7365 6420 rp, can be used │ │ │ │ -0025bb90: 746f 2064 6574 6572 6d69 6e65 2077 6865 to determine whe │ │ │ │ -0025bba0: 7468 6572 2061 6e20 696e 636f 6d69 6e67 ther an incoming │ │ │ │ -0025bbb0: 0a63 6f6e 6e65 6374 696f 6e20 6861 7320 .connection has │ │ │ │ -0025bbc0: 6172 7269 7665 642c 2077 6974 686f 7574 arrived, without │ │ │ │ -0025bbd0: 2062 6c6f 636b 696e 672e 0a0a 5365 6520 blocking...See │ │ │ │ -0025bbe0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0025bbf0: 202a 202a 6e6f 7465 206f 7065 6e49 6e4f * *note openInO │ │ │ │ -0025bc00: 7574 3a20 6f70 656e 496e 4f75 742c 202d ut: openInOut, - │ │ │ │ -0025bc10: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ -0025bc20: 6f75 7470 7574 2066 696c 650a 2020 2a20 output file. * │ │ │ │ -0025bc30: 2a6e 6f74 6520 6973 5265 6164 793a 2069 *note isReady: i │ │ │ │ -0025bc40: 7352 6561 6479 5f6c 7046 696c 655f 7270 sReady_lpFile_rp │ │ │ │ -0025bc50: 2c20 2d2d 2077 6865 7468 6572 2061 2066 , -- whether a f │ │ │ │ -0025bc60: 696c 6520 6861 7320 6461 7461 2061 7661 ile has data ava │ │ │ │ -0025bc70: 696c 6162 6c65 2066 6f72 0a20 2020 2072 ilable for. r │ │ │ │ -0025bc80: 6561 6469 6e67 0a0a 5761 7973 2074 6f20 eading..Ways to │ │ │ │ -0025bc90: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ -0025bca0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0025bcb0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ -0025bcc0: 6e6f 7465 206f 7065 6e4c 6973 7465 6e65 note openListene │ │ │ │ -0025bcd0: 7228 5374 7269 6e67 293a 206f 7065 6e4c r(String): openL │ │ │ │ -0025bce0: 6973 7465 6e65 725f 6c70 5374 7269 6e67 istener_lpString │ │ │ │ -0025bcf0: 5f72 702c 202d 2d20 6f70 656e 2061 2070 _rp, -- open a p │ │ │ │ -0025bd00: 6f72 7420 666f 720a 2020 2020 6c69 7374 ort for. list │ │ │ │ -0025bd10: 656e 696e 670a 2d2d 2d2d 2d2d 2d2d 2d2d ening.---------- │ │ │ │ -0025bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025b730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025b740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025b750: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0025b760: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0025b770: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0025b780: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0025b790: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0025b7a0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0025b7b0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0025b7c0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +0025b7d0: 5f66 696c 6573 2e6d 323a 3530 393a 302e _files.m2:509:0. │ │ │ │ +0025b7e0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +0025b7f0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +0025b800: 3a20 6f70 656e 4c69 7374 656e 6572 5f6c : openListener_l │ │ │ │ +0025b810: 7053 7472 696e 675f 7270 2c20 4e65 7874 pString_rp, Next │ │ │ │ +0025b820: 3a20 6f70 656e 496e 5f6c 7053 7472 696e : openIn_lpStrin │ │ │ │ +0025b830: 675f 7270 2c20 5570 3a20 7573 696e 6720 g_rp, Up: using │ │ │ │ +0025b840: 736f 636b 6574 730a 0a6f 7065 6e4c 6973 sockets..openLis │ │ │ │ +0025b850: 7465 6e65 7228 5374 7269 6e67 2920 2d2d tener(String) -- │ │ │ │ +0025b860: 206f 7065 6e20 6120 706f 7274 2066 6f72 open a port for │ │ │ │ +0025b870: 206c 6973 7465 6e69 6e67 0a2a 2a2a 2a2a listening.***** │ │ │ │ +0025b880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025b890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025b8a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +0025b8b0: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ +0025b8c0: 6520 6f70 656e 4c69 7374 656e 6572 3a20 e openListener: │ │ │ │ +0025b8d0: 6f70 656e 4c69 7374 656e 6572 5f6c 7053 openListener_lpS │ │ │ │ +0025b8e0: 7472 696e 675f 7270 2c0a 2020 2a20 5573 tring_rp,. * Us │ │ │ │ +0025b8f0: 6167 653a 200a 2020 2020 2020 2020 6620 age: . f │ │ │ │ +0025b900: 3d20 6f70 656e 4c69 7374 656e 6572 2073 = openListener s │ │ │ │ +0025b910: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0025b920: 2020 202a 2073 2c20 6120 2a6e 6f74 6520 * s, a *note │ │ │ │ +0025b930: 7374 7269 6e67 3a20 5374 7269 6e67 2c2c string: String,, │ │ │ │ +0025b940: 206f 6620 7468 6520 666f 726d 2022 2469 of the form "$i │ │ │ │ +0025b950: 6e74 6572 6661 6365 3a70 6f72 7422 2e20 nterface:port". │ │ │ │ +0025b960: 2042 6f74 6820 7061 7274 730a 2020 2020 Both parts. │ │ │ │ +0025b970: 2020 2020 6172 6520 6f70 7469 6f6e 616c are optional │ │ │ │ +0025b980: 2e20 2049 6620 7468 6520 706f 7274 2069 . If the port i │ │ │ │ +0025b990: 7320 6f6d 6974 7465 642c 2074 6865 2063 s omitted, the c │ │ │ │ +0025b9a0: 6f6c 6f6e 2069 7320 6f70 7469 6f6e 616c olon is optional │ │ │ │ +0025b9b0: 2e0a 2020 2a20 4f75 7470 7574 733a 0a20 .. * Outputs:. │ │ │ │ +0025b9c0: 2020 2020 202a 2066 2c20 6120 2a6e 6f74 * f, a *not │ │ │ │ +0025b9d0: 6520 6669 6c65 3a20 4669 6c65 2c2c 2061 e file: File,, a │ │ │ │ +0025b9e0: 6e20 6f70 656e 206c 6973 7465 6e65 7220 n open listener │ │ │ │ +0025b9f0: 6f6e 2074 6865 2073 7065 6369 6669 6564 on the specified │ │ │ │ +0025ba00: 2069 6e74 6572 6661 6365 206f 660a 2020 interface of. │ │ │ │ +0025ba10: 2020 2020 2020 7468 6520 6c6f 6361 6c20 the local │ │ │ │ +0025ba20: 686f 7374 2061 7420 7468 6520 7370 6563 host at the spec │ │ │ │ +0025ba30: 6966 6965 6420 7365 7276 6963 6520 706f ified service po │ │ │ │ +0025ba40: 7274 2e20 4966 2074 6865 2070 6f72 7420 rt. If the port │ │ │ │ +0025ba50: 6973 206f 6d69 7474 6564 2c0a 2020 2020 is omitted,. │ │ │ │ +0025ba60: 2020 2020 6974 2069 7320 7461 6b65 6e20 it is taken │ │ │ │ +0025ba70: 746f 2062 6520 706f 7274 2032 3530 302e to be port 2500. │ │ │ │ +0025ba80: 2020 4966 2074 6865 2069 6e74 6572 6661 If the interfa │ │ │ │ +0025ba90: 6365 2069 7320 6f6d 6974 7465 642c 2074 ce is omitted, t │ │ │ │ +0025baa0: 6865 206c 6973 7465 6e65 720a 2020 2020 he listener. │ │ │ │ +0025bab0: 2020 2020 6163 6365 7074 7320 636f 6e6e accepts conn │ │ │ │ +0025bac0: 6563 7469 6f6e 7320 6f6e 2061 6c6c 2069 ections on all i │ │ │ │ +0025bad0: 6e74 6572 6661 6365 732e 0a0a 4465 7363 nterfaces...Desc │ │ │ │ +0025bae0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0025baf0: 3d3d 3d0a 0a55 7365 206f 7065 6e49 6e4f ===..Use openInO │ │ │ │ +0025bb00: 7574 2066 2074 6f20 6163 6365 7074 2061 ut f to accept a │ │ │ │ +0025bb10: 6e20 696e 636f 6d69 6e67 2063 6f6e 6e65 n incoming conne │ │ │ │ +0025bb20: 6374 696f 6e20 6f6e 2074 6865 206c 6973 ction on the lis │ │ │ │ +0025bb30: 7465 6e65 722c 2072 6574 7572 6e69 6e67 tener, returning │ │ │ │ +0025bb40: 2061 0a6e 6577 2069 6e70 7574 206f 7574 a.new input out │ │ │ │ +0025bb50: 7075 7420 6669 6c65 2074 6861 7420 7365 put file that se │ │ │ │ +0025bb60: 7276 6573 2061 7320 7468 6520 636f 6e6e rves as the conn │ │ │ │ +0025bb70: 6563 7469 6f6e 2e20 2054 6865 2066 756e ection. The fun │ │ │ │ +0025bb80: 6374 696f 6e20 2a6e 6f74 650a 6973 5265 ction *note.isRe │ │ │ │ +0025bb90: 6164 793a 2069 7352 6561 6479 5f6c 7046 ady: isReady_lpF │ │ │ │ +0025bba0: 696c 655f 7270 2c20 6361 6e20 6265 2075 ile_rp, can be u │ │ │ │ +0025bbb0: 7365 6420 746f 2064 6574 6572 6d69 6e65 sed to determine │ │ │ │ +0025bbc0: 2077 6865 7468 6572 2061 6e20 696e 636f whether an inco │ │ │ │ +0025bbd0: 6d69 6e67 0a63 6f6e 6e65 6374 696f 6e20 ming.connection │ │ │ │ +0025bbe0: 6861 7320 6172 7269 7665 642c 2077 6974 has arrived, wit │ │ │ │ +0025bbf0: 686f 7574 2062 6c6f 636b 696e 672e 0a0a hout blocking... │ │ │ │ +0025bc00: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0025bc10: 3d0a 0a20 202a 202a 6e6f 7465 206f 7065 =.. * *note ope │ │ │ │ +0025bc20: 6e49 6e4f 7574 3a20 6f70 656e 496e 4f75 nInOut: openInOu │ │ │ │ +0025bc30: 742c 202d 2d20 6f70 656e 2061 6e20 696e t, -- open an in │ │ │ │ +0025bc40: 7075 7420 6f75 7470 7574 2066 696c 650a put output file. │ │ │ │ +0025bc50: 2020 2a20 2a6e 6f74 6520 6973 5265 6164 * *note isRead │ │ │ │ +0025bc60: 793a 2069 7352 6561 6479 5f6c 7046 696c y: isReady_lpFil │ │ │ │ +0025bc70: 655f 7270 2c20 2d2d 2077 6865 7468 6572 e_rp, -- whether │ │ │ │ +0025bc80: 2061 2066 696c 6520 6861 7320 6461 7461 a file has data │ │ │ │ +0025bc90: 2061 7661 696c 6162 6c65 2066 6f72 0a20 available for. │ │ │ │ +0025bca0: 2020 2072 6561 6469 6e67 0a0a 5761 7973 reading..Ways │ │ │ │ +0025bcb0: 2074 6f20 7573 6520 7468 6973 206d 6574 to use this met │ │ │ │ +0025bcc0: 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d hod:.=========== │ │ │ │ +0025bcd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0025bce0: 202a 202a 6e6f 7465 206f 7065 6e4c 6973 * *note openLis │ │ │ │ +0025bcf0: 7465 6e65 7228 5374 7269 6e67 293a 206f tener(String): o │ │ │ │ +0025bd00: 7065 6e4c 6973 7465 6e65 725f 6c70 5374 penListener_lpSt │ │ │ │ +0025bd10: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ +0025bd20: 2061 2070 6f72 7420 666f 720a 2020 2020 a port for. │ │ │ │ +0025bd30: 6c69 7374 656e 696e 670a 2d2d 2d2d 2d2d listening.------ │ │ │ │ 0025bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025bd60: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0025bd70: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0025bd80: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0025bd90: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0025bda0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0025bdb0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0025bdc0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -0025bdd0: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -0025bde0: 7374 656d 2e6d 323a 3432 323a 302e 0a1f stem.m2:422:0... │ │ │ │ -0025bdf0: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -0025be00: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -0025be10: 6f70 656e 496e 5f6c 7053 7472 696e 675f openIn_lpString_ │ │ │ │ -0025be20: 7270 2c20 4e65 7874 3a20 6f70 656e 496e rp, Next: openIn │ │ │ │ -0025be30: 4f75 742c 2050 7265 763a 206f 7065 6e4c Out, Prev: openL │ │ │ │ -0025be40: 6973 7465 6e65 725f 6c70 5374 7269 6e67 istener_lpString │ │ │ │ -0025be50: 5f72 702c 2055 703a 2075 7369 6e67 2073 _rp, Up: using s │ │ │ │ -0025be60: 6f63 6b65 7473 0a0a 6f70 656e 496e 2853 ockets..openIn(S │ │ │ │ -0025be70: 7472 696e 6729 202d 2d20 6f70 656e 2061 tring) -- open a │ │ │ │ -0025be80: 6e20 696e 7075 7420 6669 6c65 0a2a 2a2a n input file.*** │ │ │ │ -0025be90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025bea0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025beb0: 2a0a 0a20 202a 2046 756e 6374 696f 6e3a *.. * Function: │ │ │ │ -0025bec0: 202a 6e6f 7465 206f 7065 6e49 6e3a 206f *note openIn: o │ │ │ │ -0025bed0: 7065 6e49 6e5f 6c70 5374 7269 6e67 5f72 penIn_lpString_r │ │ │ │ -0025bee0: 702c 0a20 202a 2055 7361 6765 3a20 0a20 p,. * Usage: . │ │ │ │ -0025bef0: 2020 2020 2020 206f 7065 6e49 6e20 666e openIn fn │ │ │ │ -0025bf00: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -0025bf10: 2020 202a 2066 6e2c 2061 202a 6e6f 7465 * fn, a *note │ │ │ │ -0025bf20: 2073 7472 696e 673a 2053 7472 696e 672c string: String, │ │ │ │ -0025bf30: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0025bf40: 2020 2020 2a20 6120 2a6e 6f74 6520 6669 * a *note fi │ │ │ │ -0025bf50: 6c65 3a20 4669 6c65 2c2c 2061 6e20 6f70 le: File,, an op │ │ │ │ -0025bf60: 656e 2069 6e70 7574 2066 696c 6520 7768 en input file wh │ │ │ │ -0025bf70: 6f73 6520 6669 6c65 6e61 6d65 2069 7320 ose filename is │ │ │ │ -0025bf80: 666e 2e20 4669 6c65 6e61 6d65 730a 2020 fn. Filenames. │ │ │ │ -0025bf90: 2020 2020 2020 7374 6172 7469 6e67 2077 starting w │ │ │ │ -0025bfa0: 6974 6820 2120 6f72 2077 6974 6820 2420 ith ! or with $ │ │ │ │ -0025bfb0: 6172 6520 7472 6561 7465 6420 7370 6563 are treated spec │ │ │ │ -0025bfc0: 6961 6c6c 792c 2073 6565 202a 6e6f 7465 ially, see *note │ │ │ │ -0025bfd0: 206f 7065 6e49 6e4f 7574 3a0a 2020 2020 openInOut:. │ │ │ │ -0025bfe0: 2020 2020 6f70 656e 496e 4f75 742c 2e0a openInOut,.. │ │ │ │ -0025bff0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -0025c000: 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d ========..+----- │ │ │ │ -0025c010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c030: 2d2d 2d2b 0a7c 6931 203a 2022 7465 7374 ---+.|i1 : "test │ │ │ │ -0025c040: 2d66 696c 6522 203c 3c20 2268 6920 7468 -file" << "hi th │ │ │ │ -0025c050: 6572 6522 203c 3c20 636c 6f73 653b 7c0a ere" << close;|. │ │ │ │ -0025c060: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0025c070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c080: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0025c090: 2067 203d 206f 7065 6e49 6e20 2274 6573 g = openIn "tes │ │ │ │ -0025c0a0: 742d 6669 6c65 2220 2020 2020 2020 2020 t-file" │ │ │ │ -0025c0b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0025c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c0d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0025c0e0: 0a7c 6f32 203d 2074 6573 742d 6669 6c65 .|o2 = test-file │ │ │ │ +0025bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025bd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025bd80: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0025bd90: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0025bda0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0025bdb0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0025bdc0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0025bdd0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0025bde0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0025bdf0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +0025be00: 765f 7379 7374 656d 2e6d 323a 3432 323a v_system.m2:422: │ │ │ │ +0025be10: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +0025be20: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +0025be30: 6465 3a20 6f70 656e 496e 5f6c 7053 7472 de: openIn_lpStr │ │ │ │ +0025be40: 696e 675f 7270 2c20 4e65 7874 3a20 6f70 ing_rp, Next: op │ │ │ │ +0025be50: 656e 496e 4f75 742c 2050 7265 763a 206f enInOut, Prev: o │ │ │ │ +0025be60: 7065 6e4c 6973 7465 6e65 725f 6c70 5374 penListener_lpSt │ │ │ │ +0025be70: 7269 6e67 5f72 702c 2055 703a 2075 7369 ring_rp, Up: usi │ │ │ │ +0025be80: 6e67 2073 6f63 6b65 7473 0a0a 6f70 656e ng sockets..open │ │ │ │ +0025be90: 496e 2853 7472 696e 6729 202d 2d20 6f70 In(String) -- op │ │ │ │ +0025bea0: 656e 2061 6e20 696e 7075 7420 6669 6c65 en an input file │ │ │ │ +0025beb0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0025bec0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025bed0: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ +0025bee0: 696f 6e3a 202a 6e6f 7465 206f 7065 6e49 ion: *note openI │ │ │ │ +0025bef0: 6e3a 206f 7065 6e49 6e5f 6c70 5374 7269 n: openIn_lpStri │ │ │ │ +0025bf00: 6e67 5f72 702c 0a20 202a 2055 7361 6765 ng_rp,. * Usage │ │ │ │ +0025bf10: 3a20 0a20 2020 2020 2020 206f 7065 6e49 : . openI │ │ │ │ +0025bf20: 6e20 666e 0a20 202a 2049 6e70 7574 733a n fn. * Inputs: │ │ │ │ +0025bf30: 0a20 2020 2020 202a 2066 6e2c 2061 202a . * fn, a * │ │ │ │ +0025bf40: 6e6f 7465 2073 7472 696e 673a 2053 7472 note string: Str │ │ │ │ +0025bf50: 696e 672c 0a20 202a 204f 7574 7075 7473 ing,. * Outputs │ │ │ │ +0025bf60: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ +0025bf70: 6520 6669 6c65 3a20 4669 6c65 2c2c 2061 e file: File,, a │ │ │ │ +0025bf80: 6e20 6f70 656e 2069 6e70 7574 2066 696c n open input fil │ │ │ │ +0025bf90: 6520 7768 6f73 6520 6669 6c65 6e61 6d65 e whose filename │ │ │ │ +0025bfa0: 2069 7320 666e 2e20 4669 6c65 6e61 6d65 is fn. Filename │ │ │ │ +0025bfb0: 730a 2020 2020 2020 2020 7374 6172 7469 s. starti │ │ │ │ +0025bfc0: 6e67 2077 6974 6820 2120 6f72 2077 6974 ng with ! or wit │ │ │ │ +0025bfd0: 6820 2420 6172 6520 7472 6561 7465 6420 h $ are treated │ │ │ │ +0025bfe0: 7370 6563 6961 6c6c 792c 2073 6565 202a specially, see * │ │ │ │ +0025bff0: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a0a note openInOut:. │ │ │ │ +0025c000: 2020 2020 2020 2020 6f70 656e 496e 4f75 openInOu │ │ │ │ +0025c010: 742c 2e0a 0a44 6573 6372 6970 7469 6f6e t,...Description │ │ │ │ +0025c020: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ +0025c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c050: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2022 -------+.|i1 : " │ │ │ │ +0025c060: 7465 7374 2d66 696c 6522 203c 3c20 2268 test-file" << "h │ │ │ │ +0025c070: 6920 7468 6572 6522 203c 3c20 636c 6f73 i there" << clos │ │ │ │ +0025c080: 653b 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e;|.+----------- │ │ │ │ +0025c090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025c0b0: 6932 203a 2067 203d 206f 7065 6e49 6e20 i2 : g = openIn │ │ │ │ +0025c0c0: 2274 6573 742d 6669 6c65 2220 2020 2020 "test-file" │ │ │ │ +0025c0d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0025c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0025c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c130: 2020 2020 207c 0a7c 6f32 203a 2046 696c |.|o2 : Fil │ │ │ │ -0025c140: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0025c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c160: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0025c170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -0025c190: 203a 2066 696c 654c 656e 6774 6820 6720 : fileLength g │ │ │ │ -0025c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c1b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0025c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c1e0: 207c 0a7c 6f33 203d 2038 2020 2020 2020 |.|o3 = 8 │ │ │ │ +0025c100: 2020 207c 0a7c 6f32 203d 2074 6573 742d |.|o2 = test- │ │ │ │ +0025c110: 6669 6c65 2020 2020 2020 2020 2020 2020 file │ │ │ │ +0025c120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0025c130: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c150: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +0025c160: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ +0025c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c180: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0025c190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0025c1b0: 0a7c 6933 203a 2066 696c 654c 656e 6774 .|i3 : fileLengt │ │ │ │ +0025c1c0: 6820 6720 2020 2020 2020 2020 2020 2020 h g │ │ │ │ +0025c1d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0025c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c200: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0025c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c230: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2061 -------+.|i4 : a │ │ │ │ -0025c240: 7445 6e64 4f66 4669 6c65 2067 2020 2020 tEndOfFile g │ │ │ │ -0025c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025c200: 2020 2020 207c 0a7c 6f33 203d 2038 2020 |.|o3 = 8 │ │ │ │ +0025c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c230: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0025c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0025c260: 203a 2061 7445 6e64 4f66 4669 6c65 2067 : atEndOfFile g │ │ │ │ 0025c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0025c290: 6f34 203d 2066 616c 7365 2020 2020 2020 o4 = false │ │ │ │ +0025c280: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0025c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c2b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0025c2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c2e0: 2d2d 2d2b 0a7c 6935 203a 2072 6561 6420 ---+.|i5 : read │ │ │ │ -0025c2f0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -0025c300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025c310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025c2b0: 207c 0a7c 6f34 203d 2066 616c 7365 2020 |.|o4 = false │ │ │ │ +0025c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c2d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0025c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c300: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2072 -------+.|i5 : r │ │ │ │ +0025c310: 6561 6420 6720 2020 2020 2020 2020 2020 ead g │ │ │ │ 0025c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c330: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -0025c340: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ -0025c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c360: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0025c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0025c390: 0a7c 6936 203a 2061 7445 6e64 4f66 4669 .|i6 : atEndOfFi │ │ │ │ -0025c3a0: 6c65 2067 2020 2020 2020 2020 2020 2020 le g │ │ │ │ -0025c3b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0025c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c3e0: 2020 2020 207c 0a7c 6f36 203d 2074 7275 |.|o6 = tru │ │ │ │ -0025c3f0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0025c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c410: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0025c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -0025c440: 203a 2063 6c6f 7365 2067 2020 2020 2020 : close g │ │ │ │ -0025c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025c330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c350: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025c360: 6f35 203d 2068 6920 7468 6572 6520 2020 o5 = hi there │ │ │ │ +0025c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c380: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0025c390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c3b0: 2d2d 2d2b 0a7c 6936 203a 2061 7445 6e64 ---+.|i6 : atEnd │ │ │ │ +0025c3c0: 4f66 4669 6c65 2067 2020 2020 2020 2020 OfFile g │ │ │ │ +0025c3d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0025c3e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c400: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +0025c410: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +0025c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c430: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0025c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0025c460: 0a7c 6937 203a 2063 6c6f 7365 2067 2020 .|i7 : close g │ │ │ │ 0025c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c490: 207c 0a7c 6f37 203d 2074 6573 742d 6669 |.|o7 = test-fi │ │ │ │ -0025c4a0: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ -0025c4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0025c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0025c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c4b0: 2020 2020 207c 0a7c 6f37 203d 2074 6573 |.|o7 = tes │ │ │ │ +0025c4c0: 742d 6669 6c65 2020 2020 2020 2020 2020 t-file │ │ │ │ 0025c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c4e0: 2020 2020 2020 207c 0a7c 6f37 203a 2046 |.|o7 : F │ │ │ │ -0025c4f0: 696c 6520 2020 2020 2020 2020 2020 2020 ile │ │ │ │ -0025c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025c510: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0025c520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0025c540: 6938 203a 2072 656d 6f76 6546 696c 6520 i8 : removeFile │ │ │ │ -0025c550: 2274 6573 742d 6669 6c65 2220 2020 2020 "test-file" │ │ │ │ -0025c560: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0025c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c590: 2d2d 2d2b 0a0a 4120 6669 6c65 6e61 6d65 ---+..A filename │ │ │ │ -0025c5a0: 2073 7461 7274 696e 6720 7769 7468 207e starting with ~ │ │ │ │ -0025c5b0: 2f20 7769 6c6c 2068 6176 6520 7468 6520 / will have the │ │ │ │ -0025c5c0: 7469 6c64 6520 7265 706c 6163 6564 2062 tilde replaced b │ │ │ │ -0025c5d0: 7920 7468 6520 7573 6572 2773 2068 6f6d y the user's hom │ │ │ │ -0025c5e0: 650a 6469 7265 6374 6f72 792e 0a0a 5365 e.directory...Se │ │ │ │ -0025c5f0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -0025c600: 0a20 202a 202a 6e6f 7465 206f 7065 6e4f . * *note openO │ │ │ │ -0025c610: 7574 3a20 6f70 656e 4f75 745f 6c70 5374 ut: openOut_lpSt │ │ │ │ -0025c620: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ -0025c630: 2061 6e20 6f75 7470 7574 2066 696c 650a an output file. │ │ │ │ -0025c640: 2020 2a20 2a6e 6f74 6520 6f70 656e 4f75 * *note openOu │ │ │ │ -0025c650: 7441 7070 656e 643a 206f 7065 6e4f 7574 tAppend: openOut │ │ │ │ -0025c660: 4170 7065 6e64 5f6c 7053 7472 696e 675f Append_lpString_ │ │ │ │ -0025c670: 7270 2c20 2d2d 206f 7065 6e20 616e 206f rp, -- open an o │ │ │ │ -0025c680: 7574 7075 7420 6669 6c65 2066 6f72 0a20 utput file for. │ │ │ │ -0025c690: 2020 2061 7070 656e 6469 6e67 0a20 202a appending. * │ │ │ │ -0025c6a0: 202a 6e6f 7465 206f 7065 6e49 6e4f 7574 *note openInOut │ │ │ │ -0025c6b0: 3a20 6f70 656e 496e 4f75 742c 202d 2d20 : openInOut, -- │ │ │ │ -0025c6c0: 6f70 656e 2061 6e20 696e 7075 7420 6f75 open an input ou │ │ │ │ -0025c6d0: 7470 7574 2066 696c 650a 2020 2a20 2a6e tput file. * *n │ │ │ │ -0025c6e0: 6f74 6520 6669 6c65 4c65 6e67 7468 3a20 ote fileLength: │ │ │ │ -0025c6f0: 6669 6c65 4c65 6e67 7468 2c20 2d2d 2074 fileLength, -- t │ │ │ │ -0025c700: 6865 206c 656e 6774 6820 6f66 2061 2066 he length of a f │ │ │ │ -0025c710: 696c 650a 2020 2a20 2a6e 6f74 6520 7265 ile. * *note re │ │ │ │ -0025c720: 6164 3a20 7265 6164 2c20 2d2d 2072 6561 ad: read, -- rea │ │ │ │ -0025c730: 6420 6672 6f6d 2061 2066 696c 650a 2020 d from a file. │ │ │ │ -0025c740: 2a20 2a6e 6f74 6520 636c 6f73 653a 2063 * *note close: c │ │ │ │ -0025c750: 6c6f 7365 2c20 2d2d 2063 6c6f 7365 2061 lose, -- close a │ │ │ │ -0025c760: 2066 696c 650a 2020 2a20 2a6e 6f74 6520 file. * *note │ │ │ │ -0025c770: 6174 456e 644f 6646 696c 653a 2061 7445 atEndOfFile: atE │ │ │ │ -0025c780: 6e64 4f66 4669 6c65 5f6c 7046 696c 655f ndOfFile_lpFile_ │ │ │ │ -0025c790: 7270 2c20 2d2d 2074 6573 7420 666f 7220 rp, -- test for │ │ │ │ -0025c7a0: 656e 6420 6f66 2066 696c 650a 2020 2a20 end of file. * │ │ │ │ -0025c7b0: 2a6e 6f74 6520 4669 6c65 203c 3c20 5468 *note File << Th │ │ │ │ -0025c7c0: 696e 673a 2070 7269 6e74 696e 6720 746f ing: printing to │ │ │ │ -0025c7d0: 2061 2066 696c 652c 202d 2d20 7072 696e a file, -- prin │ │ │ │ -0025c7e0: 7420 746f 2061 2066 696c 650a 0a57 6179 t to a file..Way │ │ │ │ -0025c7f0: 7320 746f 2075 7365 2074 6869 7320 6d65 s to use this me │ │ │ │ -0025c800: 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d thod:.========== │ │ │ │ -0025c810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0025c820: 2020 2a20 2a6e 6f74 6520 6f70 656e 496e * *note openIn │ │ │ │ -0025c830: 2853 7472 696e 6729 3a20 6f70 656e 496e (String): openIn │ │ │ │ -0025c840: 5f6c 7053 7472 696e 675f 7270 2c20 2d2d _lpString_rp, -- │ │ │ │ -0025c850: 206f 7065 6e20 616e 2069 6e70 7574 2066 open an input f │ │ │ │ -0025c860: 696c 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ile.------------ │ │ │ │ -0025c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c4e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c500: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +0025c510: 203a 2046 696c 6520 2020 2020 2020 2020 : File │ │ │ │ +0025c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025c530: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0025c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c560: 2d2b 0a7c 6938 203a 2072 656d 6f76 6546 -+.|i8 : removeF │ │ │ │ +0025c570: 696c 6520 2274 6573 742d 6669 6c65 2220 ile "test-file" │ │ │ │ +0025c580: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0025c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c5b0: 2d2d 2d2d 2d2d 2d2b 0a0a 4120 6669 6c65 -------+..A file │ │ │ │ +0025c5c0: 6e61 6d65 2073 7461 7274 696e 6720 7769 name starting wi │ │ │ │ +0025c5d0: 7468 207e 2f20 7769 6c6c 2068 6176 6520 th ~/ will have │ │ │ │ +0025c5e0: 7468 6520 7469 6c64 6520 7265 706c 6163 the tilde replac │ │ │ │ +0025c5f0: 6564 2062 7920 7468 6520 7573 6572 2773 ed by the user's │ │ │ │ +0025c600: 2068 6f6d 650a 6469 7265 6374 6f72 792e home.directory. │ │ │ │ +0025c610: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0025c620: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206f ===.. * *note o │ │ │ │ +0025c630: 7065 6e4f 7574 3a20 6f70 656e 4f75 745f penOut: openOut_ │ │ │ │ +0025c640: 6c70 5374 7269 6e67 5f72 702c 202d 2d20 lpString_rp, -- │ │ │ │ +0025c650: 6f70 656e 2061 6e20 6f75 7470 7574 2066 open an output f │ │ │ │ +0025c660: 696c 650a 2020 2a20 2a6e 6f74 6520 6f70 ile. * *note op │ │ │ │ +0025c670: 656e 4f75 7441 7070 656e 643a 206f 7065 enOutAppend: ope │ │ │ │ +0025c680: 6e4f 7574 4170 7065 6e64 5f6c 7053 7472 nOutAppend_lpStr │ │ │ │ +0025c690: 696e 675f 7270 2c20 2d2d 206f 7065 6e20 ing_rp, -- open │ │ │ │ +0025c6a0: 616e 206f 7574 7075 7420 6669 6c65 2066 an output file f │ │ │ │ +0025c6b0: 6f72 0a20 2020 2061 7070 656e 6469 6e67 or. appending │ │ │ │ +0025c6c0: 0a20 202a 202a 6e6f 7465 206f 7065 6e49 . * *note openI │ │ │ │ +0025c6d0: 6e4f 7574 3a20 6f70 656e 496e 4f75 742c nOut: openInOut, │ │ │ │ +0025c6e0: 202d 2d20 6f70 656e 2061 6e20 696e 7075 -- open an inpu │ │ │ │ +0025c6f0: 7420 6f75 7470 7574 2066 696c 650a 2020 t output file. │ │ │ │ +0025c700: 2a20 2a6e 6f74 6520 6669 6c65 4c65 6e67 * *note fileLeng │ │ │ │ +0025c710: 7468 3a20 6669 6c65 4c65 6e67 7468 2c20 th: fileLength, │ │ │ │ +0025c720: 2d2d 2074 6865 206c 656e 6774 6820 6f66 -- the length of │ │ │ │ +0025c730: 2061 2066 696c 650a 2020 2a20 2a6e 6f74 a file. * *not │ │ │ │ +0025c740: 6520 7265 6164 3a20 7265 6164 2c20 2d2d e read: read, -- │ │ │ │ +0025c750: 2072 6561 6420 6672 6f6d 2061 2066 696c read from a fil │ │ │ │ +0025c760: 650a 2020 2a20 2a6e 6f74 6520 636c 6f73 e. * *note clos │ │ │ │ +0025c770: 653a 2063 6c6f 7365 2c20 2d2d 2063 6c6f e: close, -- clo │ │ │ │ +0025c780: 7365 2061 2066 696c 650a 2020 2a20 2a6e se a file. * *n │ │ │ │ +0025c790: 6f74 6520 6174 456e 644f 6646 696c 653a ote atEndOfFile: │ │ │ │ +0025c7a0: 2061 7445 6e64 4f66 4669 6c65 5f6c 7046 atEndOfFile_lpF │ │ │ │ +0025c7b0: 696c 655f 7270 2c20 2d2d 2074 6573 7420 ile_rp, -- test │ │ │ │ +0025c7c0: 666f 7220 656e 6420 6f66 2066 696c 650a for end of file. │ │ │ │ +0025c7d0: 2020 2a20 2a6e 6f74 6520 4669 6c65 203c * *note File < │ │ │ │ +0025c7e0: 3c20 5468 696e 673a 2070 7269 6e74 696e < Thing: printin │ │ │ │ +0025c7f0: 6720 746f 2061 2066 696c 652c 202d 2d20 g to a file, -- │ │ │ │ +0025c800: 7072 696e 7420 746f 2061 2066 696c 650a print to a file. │ │ │ │ +0025c810: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +0025c820: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ +0025c830: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025c840: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6f70 ==.. * *note op │ │ │ │ +0025c850: 656e 496e 2853 7472 696e 6729 3a20 6f70 enIn(String): op │ │ │ │ +0025c860: 656e 496e 5f6c 7053 7472 696e 675f 7270 enIn_lpString_rp │ │ │ │ +0025c870: 2c20 2d2d 206f 7065 6e20 616e 2069 6e70 , -- open an inp │ │ │ │ +0025c880: 7574 2066 696c 650a 2d2d 2d2d 2d2d 2d2d ut file.-------- │ │ │ │ 0025c890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025c8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025c8b0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0025c8c0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0025c8d0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0025c8e0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0025c8f0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0025c900: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0025c910: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -0025c920: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -0025c930: 656d 2e6d 323a 3434 343a 302e 0a1f 0a46 em.m2:444:0....F │ │ │ │ -0025c940: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -0025c950: 632e 696e 666f 2c20 4e6f 6465 3a20 6f70 c.info, Node: op │ │ │ │ -0025c960: 656e 496e 4f75 742c 204e 6578 743a 206f enInOut, Next: o │ │ │ │ -0025c970: 7065 6e4f 7574 5f6c 7053 7472 696e 675f penOut_lpString_ │ │ │ │ -0025c980: 7270 2c20 5072 6576 3a20 6f70 656e 496e rp, Prev: openIn │ │ │ │ -0025c990: 5f6c 7053 7472 696e 675f 7270 2c20 5570 _lpString_rp, Up │ │ │ │ -0025c9a0: 3a20 7573 696e 6720 736f 636b 6574 730a : using sockets. │ │ │ │ -0025c9b0: 0a6f 7065 6e49 6e4f 7574 202d 2d20 6f70 .openInOut -- op │ │ │ │ -0025c9c0: 656e 2061 6e20 696e 7075 7420 6f75 7470 en an input outp │ │ │ │ -0025c9d0: 7574 2066 696c 650a 2a2a 2a2a 2a2a 2a2a ut file.******** │ │ │ │ -0025c9e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025c9f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0025ca00: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -0025ca10: 2020 2020 6f70 656e 496e 4f75 7420 660a openInOut f. │ │ │ │ -0025ca20: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0025ca30: 2020 2a20 662c 2061 202a 6e6f 7465 2073 * f, a *note s │ │ │ │ -0025ca40: 7472 696e 673a 2053 7472 696e 672c 206f tring: String, o │ │ │ │ -0025ca50: 7220 6120 2a6e 6f74 6520 6669 6c65 3a20 r a *note file: │ │ │ │ -0025ca60: 4669 6c65 2c0a 2020 2a20 4f75 7470 7574 File,. * Output │ │ │ │ -0025ca70: 733a 0a20 2020 2020 202a 2061 6e20 6f70 s:. * an op │ │ │ │ -0025ca80: 656e 2069 6e70 7574 206f 7574 7075 7420 en input output │ │ │ │ -0025ca90: 6669 6c65 0a0a 4465 7363 7269 7074 696f file..Descriptio │ │ │ │ -0025caa0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ -0025cab0: 6865 7265 2061 7265 2076 6172 696f 7573 here are various │ │ │ │ -0025cac0: 206f 7074 696f 6e73 2066 6f72 2074 6865 options for the │ │ │ │ -0025cad0: 2061 7267 756d 656e 7420 662e 0a0a 2020 argument f... │ │ │ │ -0025cae0: 2a20 6120 7374 7269 6e67 206e 6f74 2073 * a string not s │ │ │ │ -0025caf0: 7461 7274 696e 6720 7769 7468 2021 206f tarting with ! o │ │ │ │ -0025cb00: 7220 243a 2074 6865 2073 7472 696e 6720 r $: the string │ │ │ │ -0025cb10: 6973 2074 616b 656e 2061 7320 7468 6520 is taken as the │ │ │ │ -0025cb20: 6e61 6d65 206f 6620 616e 0a20 2020 2069 name of an. i │ │ │ │ -0025cb30: 6e70 7574 206f 7574 7075 7420 6669 6c65 nput output file │ │ │ │ -0025cb40: 2074 6f20 6f70 656e 2e20 2046 6f72 2065 to open. For e │ │ │ │ -0025cb50: 7861 6d70 6c65 2c20 696e 2055 6e69 782c xample, in Unix, │ │ │ │ -0025cb60: 2069 7420 6d69 6768 7420 6265 2061 206e it might be a n │ │ │ │ -0025cb70: 616d 6564 2070 6970 652e 0a20 2020 2041 amed pipe.. A │ │ │ │ -0025cb80: 2066 696c 656e 616d 6520 7374 6172 7469 filename starti │ │ │ │ -0025cb90: 6e67 2077 6974 6820 7e2f 2077 696c 6c20 ng with ~/ will │ │ │ │ -0025cba0: 6861 7665 2074 6865 2074 696c 6465 2072 have the tilde r │ │ │ │ -0025cbb0: 6570 6c61 6365 6420 6279 2074 6865 2075 eplaced by the u │ │ │ │ -0025cbc0: 7365 7227 7320 686f 6d65 0a20 2020 2064 ser's home. d │ │ │ │ -0025cbd0: 6972 6563 746f 7279 2e0a 2020 2a20 6120 irectory.. * a │ │ │ │ -0025cbe0: 7374 7269 6e67 206f 6620 7468 6520 666f string of the fo │ │ │ │ -0025cbf0: 726d 2022 2163 6d64 223a 2074 6865 2063 rm "!cmd": the c │ │ │ │ -0025cc00: 6f6d 6d61 6e64 2063 6d64 2077 696c 6c20 ommand cmd will │ │ │ │ -0025cc10: 6265 2073 7461 7274 6564 2c20 616e 6420 be started, and │ │ │ │ -0025cc20: 7477 6f20 7069 7065 730a 2020 2020 7769 two pipes. wi │ │ │ │ -0025cc30: 6c6c 2062 6520 6f70 656e 6564 2c20 636f ll be opened, co │ │ │ │ -0025cc40: 6e6e 6563 7465 6420 746f 2069 7473 2073 nnected to its s │ │ │ │ -0025cc50: 7461 6e64 6172 6420 696e 7075 7420 616e tandard input an │ │ │ │ -0025cc60: 6420 7374 616e 6461 7264 206f 7574 7075 d standard outpu │ │ │ │ -0025cc70: 7420 6669 6c65 0a20 2020 2064 6573 6372 t file. descr │ │ │ │ -0025cc80: 6970 746f 7273 2e20 5761 726e 696e 673a iptors. Warning: │ │ │ │ -0025cc90: 2070 6970 6573 2068 6f6c 6420 6f6e 6c79 pipes hold only │ │ │ │ -0025cca0: 2034 3039 3620 6269 7465 732c 2073 6f20 4096 bites, so │ │ │ │ -0025ccb0: 6966 2079 6f75 2077 7269 7465 206d 6f72 if you write mor │ │ │ │ -0025ccc0: 6520 7468 616e 0a20 2020 2074 6861 7420 e than. that │ │ │ │ -0025ccd0: 746f 2074 6865 2072 6573 756c 7469 6e67 to the resulting │ │ │ │ -0025cce0: 2069 6e70 7574 206f 7574 7075 7420 6669 input output fi │ │ │ │ -0025ccf0: 6c65 2028 6173 2069 6e70 7574 2066 6f72 le (as input for │ │ │ │ -0025cd00: 2074 6865 2063 6f6d 6d61 6e64 2920 7769 the command) wi │ │ │ │ -0025cd10: 7468 6f75 740a 2020 2020 7265 6164 696e thout. readin │ │ │ │ -0025cd20: 6720 616e 7920 6461 7461 2c20 796f 7520 g any data, you │ │ │ │ -0025cd30: 6d61 7920 626c 6f63 6b20 7768 696c 6520 may block while │ │ │ │ -0025cd40: 7468 6520 636f 6d6d 616e 6420 6973 2062 the command is b │ │ │ │ -0025cd50: 6c6f 636b 6564 2077 6169 7469 6e67 2074 locked waiting t │ │ │ │ -0025cd60: 6f0a 2020 2020 7772 6974 6520 6d6f 7265 o. write more │ │ │ │ -0025cd70: 206f 7574 7075 743b 2069 6e20 7468 6973 output; in this │ │ │ │ -0025cd80: 2063 6173 652c 204d 6163 6175 6c61 7932 case, Macaulay2 │ │ │ │ -0025cd90: 2077 696c 6c20 6170 7065 6172 2074 6f20 will appear to │ │ │ │ -0025cda0: 6861 6e67 2e0a 2020 2a20 6120 7374 7269 hang.. * a stri │ │ │ │ -0025cdb0: 6e67 206f 6620 7468 6520 666f 726d 2022 ng of the form " │ │ │ │ -0025cdc0: 2468 6f73 746e 616d 653a 7365 7276 6963 $hostname:servic │ │ │ │ -0025cdd0: 6522 3a20 6120 636f 6e6e 6563 7469 6f6e e": a connection │ │ │ │ -0025cde0: 2077 696c 6c20 6265 206d 6164 6520 746f will be made to │ │ │ │ -0025cdf0: 2074 6865 0a20 2020 2073 7065 6369 6669 the. specifi │ │ │ │ -0025ce00: 6564 2073 6572 7669 6365 2061 7420 7468 ed service at th │ │ │ │ -0025ce10: 6520 7370 6563 6966 6965 6420 686f 7374 e specified host │ │ │ │ -0025ce20: 2e20 2049 6620 7468 6520 7365 7276 6963 . If the servic │ │ │ │ -0025ce30: 6520 706f 7274 2069 7320 6f6d 6974 7465 e port is omitte │ │ │ │ -0025ce40: 642c 0a20 2020 2061 6c6f 6e67 2077 6974 d,. along wit │ │ │ │ -0025ce50: 6820 7468 6520 636f 6c6f 6e2c 2074 6865 h the colon, the │ │ │ │ -0025ce60: 6e20 706f 7274 2032 3530 3020 6973 2075 n port 2500 is u │ │ │ │ -0025ce70: 7365 642e 2020 4966 2074 6865 2068 6f73 sed. If the hos │ │ │ │ -0025ce80: 746e 616d 6520 6973 206f 6d69 7474 6564 tname is omitted │ │ │ │ -0025ce90: 2c0a 2020 2020 616e 2069 6e63 6f6d 696e ,. an incomin │ │ │ │ -0025cea0: 6720 636f 6e6e 6563 7469 6f6e 2077 696c g connection wil │ │ │ │ -0025ceb0: 6c20 6265 2077 6169 7465 6420 666f 722e l be waited for. │ │ │ │ -0025cec0: 0a20 202a 2061 206c 6973 7465 6e65 7220 . * a listener │ │ │ │ -0025ced0: 6372 6561 7465 6420 7072 6576 696f 7573 created previous │ │ │ │ -0025cee0: 6c79 2062 7920 2a6e 6f74 6520 6f70 656e ly by *note open │ │ │ │ -0025cef0: 4c69 7374 656e 6572 3a0a 2020 2020 6f70 Listener:. op │ │ │ │ -0025cf00: 656e 4c69 7374 656e 6572 5f6c 7053 7472 enListener_lpStr │ │ │ │ -0025cf10: 696e 675f 7270 2c3a 2061 206e 6577 2063 ing_rp,: a new c │ │ │ │ -0025cf20: 6f6e 6e65 6374 696f 6e20 7769 6c6c 2062 onnection will b │ │ │ │ -0025cf30: 6520 6372 6561 7465 642e 2020 546f 2061 e created. To a │ │ │ │ -0025cf40: 766f 6964 0a20 2020 2062 6c6f 636b 696e void. blockin │ │ │ │ -0025cf50: 6720 7468 6520 4d61 6361 756c 6179 3220 g the Macaulay2 │ │ │ │ -0025cf60: 7072 6f63 6573 7320 7768 696c 6520 7761 process while wa │ │ │ │ -0025cf70: 6974 696e 6720 666f 7220 7468 6520 696e iting for the in │ │ │ │ -0025cf80: 636f 6d69 6e67 2063 6f6e 6e65 6374 696f coming connectio │ │ │ │ -0025cf90: 6e2c 0a20 2020 2075 7365 202a 6e6f 7465 n,. use *note │ │ │ │ -0025cfa0: 2069 7352 6561 6479 3a20 6973 5265 6164 isReady: isRead │ │ │ │ -0025cfb0: 795f 6c70 4669 6c65 5f72 702c 2e0a 0a49 y_lpFile_rp,...I │ │ │ │ -0025cfc0: 6e20 6f72 6465 7220 746f 206f 7065 6e20 n order to open │ │ │ │ -0025cfd0: 6120 736f 636b 6574 2073 7563 6365 7373 a socket success │ │ │ │ -0025cfe0: 6675 6c6c 792c 2074 6865 7265 206d 7573 fully, there mus │ │ │ │ -0025cff0: 7420 6265 2061 2070 726f 6365 7373 2061 t be a process a │ │ │ │ -0025d000: 6363 6570 7469 6e67 0a63 6f6e 6e65 6374 ccepting.connect │ │ │ │ -0025d010: 696f 6e73 2066 6f72 2074 6865 2064 6573 ions for the des │ │ │ │ -0025d020: 6972 6564 2073 6572 7669 6365 206f 6e20 ired service on │ │ │ │ -0025d030: 7468 6520 7370 6563 6966 6965 6420 686f the specified ho │ │ │ │ -0025d040: 7374 2e0a 0a54 6865 2076 6172 696f 7573 st...The various │ │ │ │ -0025d050: 2066 6f72 6d73 206c 6973 7465 6420 6162 forms listed ab │ │ │ │ -0025d060: 6f76 6520 6361 6e20 6265 2075 7365 6420 ove can be used │ │ │ │ -0025d070: 616c 736f 2077 6974 6820 616c 6c20 6f74 also with all ot │ │ │ │ -0025d080: 6865 7220 696e 7075 7420 6f75 7470 7574 her input output │ │ │ │ -0025d090: 0a6f 7065 7261 7469 6f6e 7320 7468 6174 .operations that │ │ │ │ -0025d0a0: 206f 7065 6e20 6669 6c65 732c 2073 7563 open files, suc │ │ │ │ -0025d0b0: 6820 6173 202a 6e6f 7465 206f 7065 6e49 h as *note openI │ │ │ │ -0025d0c0: 6e3a 206f 7065 6e49 6e5f 6c70 5374 7269 n: openIn_lpStri │ │ │ │ -0025d0d0: 6e67 5f72 702c 2c20 2a6e 6f74 650a 6f70 ng_rp,, *note.op │ │ │ │ -0025d0e0: 656e 4f75 743a 206f 7065 6e4f 7574 5f6c enOut: openOut_l │ │ │ │ -0025d0f0: 7053 7472 696e 675f 7270 2c2c 202a 6e6f pString_rp,, *no │ │ │ │ -0025d100: 7465 2067 6574 3a20 6765 742c 2c20 616e te get: get,, an │ │ │ │ -0025d110: 6420 2a6e 6f74 6520 3c3c 3a20 3c3c 2c2c d *note <<: <<,, │ │ │ │ -0025d120: 2077 6974 6820 6461 7461 0a74 7261 6e73 with data.trans │ │ │ │ -0025d130: 6665 7220 706f 7373 6962 6c65 206f 6e6c fer possible onl │ │ │ │ -0025d140: 7920 696e 2074 6865 2064 6972 6563 7469 y in the directi │ │ │ │ -0025d150: 6f6e 2073 7065 6369 6669 6564 2e20 2041 on specified. A │ │ │ │ -0025d160: 2070 6f73 7369 626c 7920 636f 6e66 7573 possibly confus │ │ │ │ -0025d170: 696e 670a 6173 796d 6d65 7472 7920 6973 ing.asymmetry is │ │ │ │ -0025d180: 2074 6861 7420 7769 7468 206f 7065 6e49 that with openI │ │ │ │ -0025d190: 6e20 2221 666f 6f22 206f 7220 7769 7468 n "!foo" or with │ │ │ │ -0025d1a0: 2067 6574 2022 2166 6f6f 2220 7468 6520 get "!foo" the │ │ │ │ -0025d1b0: 7374 616e 6461 7264 2069 6e70 7574 206f standard input o │ │ │ │ -0025d1c0: 660a 7468 6520 636f 6d6d 616e 6420 666f f.the command fo │ │ │ │ -0025d1d0: 6f20 6973 2063 6c6f 7365 642c 2062 7574 o is closed, but │ │ │ │ -0025d1e0: 2077 6974 6820 6f70 656e 4f75 7420 2221 with openOut "! │ │ │ │ -0025d1f0: 666f 6f22 2074 6865 2073 7461 6e64 6172 foo" the standar │ │ │ │ -0025d200: 6420 6f75 7470 7574 206f 6620 7468 650a d output of the. │ │ │ │ -0025d210: 636f 6d6d 616e 6420 666f 6f20 6973 2063 command foo is c │ │ │ │ -0025d220: 6f6e 6e65 6374 6564 2074 6f20 7468 6520 onnected to the │ │ │ │ -0025d230: 7374 616e 6461 7264 206f 7574 7075 7420 standard output │ │ │ │ -0025d240: 6f66 2074 6865 2070 6172 656e 7420 4d61 of the parent Ma │ │ │ │ -0025d250: 6361 756c 6179 320a 7072 6f63 6573 732e caulay2.process. │ │ │ │ -0025d260: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0025d270: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206f ===.. * *note o │ │ │ │ -0025d280: 7065 6e49 6e3a 206f 7065 6e49 6e5f 6c70 penIn: openIn_lp │ │ │ │ -0025d290: 5374 7269 6e67 5f72 702c 202d 2d20 6f70 String_rp, -- op │ │ │ │ -0025d2a0: 656e 2061 6e20 696e 7075 7420 6669 6c65 en an input file │ │ │ │ -0025d2b0: 0a20 202a 202a 6e6f 7465 206f 7065 6e4f . * *note openO │ │ │ │ -0025d2c0: 7574 3a20 6f70 656e 4f75 745f 6c70 5374 ut: openOut_lpSt │ │ │ │ -0025d2d0: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ -0025d2e0: 2061 6e20 6f75 7470 7574 2066 696c 650a an output file. │ │ │ │ -0025d2f0: 2020 2a20 2a6e 6f74 6520 6f70 656e 4c69 * *note openLi │ │ │ │ -0025d300: 7374 656e 6572 3a20 6f70 656e 4c69 7374 stener: openList │ │ │ │ -0025d310: 656e 6572 5f6c 7053 7472 696e 675f 7270 ener_lpString_rp │ │ │ │ -0025d320: 2c20 2d2d 206f 7065 6e20 6120 706f 7274 , -- open a port │ │ │ │ -0025d330: 2066 6f72 206c 6973 7465 6e69 6e67 0a0a for listening.. │ │ │ │ -0025d340: 5761 7973 2074 6f20 7573 6520 6f70 656e Ways to use open │ │ │ │ -0025d350: 496e 4f75 743a 0a3d 3d3d 3d3d 3d3d 3d3d InOut:.========= │ │ │ │ -0025d360: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0025d370: 202a 2022 6f70 656e 496e 4f75 7428 4669 * "openInOut(Fi │ │ │ │ -0025d380: 6c65 2922 0a20 202a 2022 6f70 656e 496e le)". * "openIn │ │ │ │ -0025d390: 4f75 7428 5374 7269 6e67 2922 0a0a 466f Out(String)"..Fo │ │ │ │ -0025d3a0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0025d3b0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0025d3c0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0025d3d0: 2a6e 6f74 6520 6f70 656e 496e 4f75 743a *note openInOut: │ │ │ │ -0025d3e0: 206f 7065 6e49 6e4f 7574 2c20 6973 2061 openInOut, is a │ │ │ │ -0025d3f0: 202a 6e6f 7465 2063 6f6d 7069 6c65 6420 *note compiled │ │ │ │ -0025d400: 6675 6e63 7469 6f6e 3a0a 436f 6d70 696c function:.Compil │ │ │ │ -0025d410: 6564 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d edFunction,...-- │ │ │ │ -0025d420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025c8d0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0025c8e0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0025c8f0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0025c900: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0025c910: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0025c920: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0025c930: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +0025c940: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +0025c950: 7379 7374 656d 2e6d 323a 3434 343a 302e system.m2:444:0. │ │ │ │ +0025c960: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +0025c970: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +0025c980: 3a20 6f70 656e 496e 4f75 742c 204e 6578 : openInOut, Nex │ │ │ │ +0025c990: 743a 206f 7065 6e4f 7574 5f6c 7053 7472 t: openOut_lpStr │ │ │ │ +0025c9a0: 696e 675f 7270 2c20 5072 6576 3a20 6f70 ing_rp, Prev: op │ │ │ │ +0025c9b0: 656e 496e 5f6c 7053 7472 696e 675f 7270 enIn_lpString_rp │ │ │ │ +0025c9c0: 2c20 5570 3a20 7573 696e 6720 736f 636b , Up: using sock │ │ │ │ +0025c9d0: 6574 730a 0a6f 7065 6e49 6e4f 7574 202d ets..openInOut - │ │ │ │ +0025c9e0: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ +0025c9f0: 6f75 7470 7574 2066 696c 650a 2a2a 2a2a output file.**** │ │ │ │ +0025ca00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025ca10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025ca20: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +0025ca30: 2020 2020 2020 2020 6f70 656e 496e 4f75 openInOu │ │ │ │ +0025ca40: 7420 660a 2020 2a20 496e 7075 7473 3a0a t f. * Inputs:. │ │ │ │ +0025ca50: 2020 2020 2020 2a20 662c 2061 202a 6e6f * f, a *no │ │ │ │ +0025ca60: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ +0025ca70: 672c 206f 7220 6120 2a6e 6f74 6520 6669 g, or a *note fi │ │ │ │ +0025ca80: 6c65 3a20 4669 6c65 2c0a 2020 2a20 4f75 le: File,. * Ou │ │ │ │ +0025ca90: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0025caa0: 6e20 6f70 656e 2069 6e70 7574 206f 7574 n open input out │ │ │ │ +0025cab0: 7075 7420 6669 6c65 0a0a 4465 7363 7269 put file..Descri │ │ │ │ +0025cac0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0025cad0: 3d0a 0a54 6865 7265 2061 7265 2076 6172 =..There are var │ │ │ │ +0025cae0: 696f 7573 206f 7074 696f 6e73 2066 6f72 ious options for │ │ │ │ +0025caf0: 2074 6865 2061 7267 756d 656e 7420 662e the argument f. │ │ │ │ +0025cb00: 0a0a 2020 2a20 6120 7374 7269 6e67 206e .. * a string n │ │ │ │ +0025cb10: 6f74 2073 7461 7274 696e 6720 7769 7468 ot starting with │ │ │ │ +0025cb20: 2021 206f 7220 243a 2074 6865 2073 7472 ! or $: the str │ │ │ │ +0025cb30: 696e 6720 6973 2074 616b 656e 2061 7320 ing is taken as │ │ │ │ +0025cb40: 7468 6520 6e61 6d65 206f 6620 616e 0a20 the name of an. │ │ │ │ +0025cb50: 2020 2069 6e70 7574 206f 7574 7075 7420 input output │ │ │ │ +0025cb60: 6669 6c65 2074 6f20 6f70 656e 2e20 2046 file to open. F │ │ │ │ +0025cb70: 6f72 2065 7861 6d70 6c65 2c20 696e 2055 or example, in U │ │ │ │ +0025cb80: 6e69 782c 2069 7420 6d69 6768 7420 6265 nix, it might be │ │ │ │ +0025cb90: 2061 206e 616d 6564 2070 6970 652e 0a20 a named pipe.. │ │ │ │ +0025cba0: 2020 2041 2066 696c 656e 616d 6520 7374 A filename st │ │ │ │ +0025cbb0: 6172 7469 6e67 2077 6974 6820 7e2f 2077 arting with ~/ w │ │ │ │ +0025cbc0: 696c 6c20 6861 7665 2074 6865 2074 696c ill have the til │ │ │ │ +0025cbd0: 6465 2072 6570 6c61 6365 6420 6279 2074 de replaced by t │ │ │ │ +0025cbe0: 6865 2075 7365 7227 7320 686f 6d65 0a20 he user's home. │ │ │ │ +0025cbf0: 2020 2064 6972 6563 746f 7279 2e0a 2020 directory.. │ │ │ │ +0025cc00: 2a20 6120 7374 7269 6e67 206f 6620 7468 * a string of th │ │ │ │ +0025cc10: 6520 666f 726d 2022 2163 6d64 223a 2074 e form "!cmd": t │ │ │ │ +0025cc20: 6865 2063 6f6d 6d61 6e64 2063 6d64 2077 he command cmd w │ │ │ │ +0025cc30: 696c 6c20 6265 2073 7461 7274 6564 2c20 ill be started, │ │ │ │ +0025cc40: 616e 6420 7477 6f20 7069 7065 730a 2020 and two pipes. │ │ │ │ +0025cc50: 2020 7769 6c6c 2062 6520 6f70 656e 6564 will be opened │ │ │ │ +0025cc60: 2c20 636f 6e6e 6563 7465 6420 746f 2069 , connected to i │ │ │ │ +0025cc70: 7473 2073 7461 6e64 6172 6420 696e 7075 ts standard inpu │ │ │ │ +0025cc80: 7420 616e 6420 7374 616e 6461 7264 206f t and standard o │ │ │ │ +0025cc90: 7574 7075 7420 6669 6c65 0a20 2020 2064 utput file. d │ │ │ │ +0025cca0: 6573 6372 6970 746f 7273 2e20 5761 726e escriptors. Warn │ │ │ │ +0025ccb0: 696e 673a 2070 6970 6573 2068 6f6c 6420 ing: pipes hold │ │ │ │ +0025ccc0: 6f6e 6c79 2034 3039 3620 6269 7465 732c only 4096 bites, │ │ │ │ +0025ccd0: 2073 6f20 6966 2079 6f75 2077 7269 7465 so if you write │ │ │ │ +0025cce0: 206d 6f72 6520 7468 616e 0a20 2020 2074 more than. t │ │ │ │ +0025ccf0: 6861 7420 746f 2074 6865 2072 6573 756c hat to the resul │ │ │ │ +0025cd00: 7469 6e67 2069 6e70 7574 206f 7574 7075 ting input outpu │ │ │ │ +0025cd10: 7420 6669 6c65 2028 6173 2069 6e70 7574 t file (as input │ │ │ │ +0025cd20: 2066 6f72 2074 6865 2063 6f6d 6d61 6e64 for the command │ │ │ │ +0025cd30: 2920 7769 7468 6f75 740a 2020 2020 7265 ) without. re │ │ │ │ +0025cd40: 6164 696e 6720 616e 7920 6461 7461 2c20 ading any data, │ │ │ │ +0025cd50: 796f 7520 6d61 7920 626c 6f63 6b20 7768 you may block wh │ │ │ │ +0025cd60: 696c 6520 7468 6520 636f 6d6d 616e 6420 ile the command │ │ │ │ +0025cd70: 6973 2062 6c6f 636b 6564 2077 6169 7469 is blocked waiti │ │ │ │ +0025cd80: 6e67 2074 6f0a 2020 2020 7772 6974 6520 ng to. write │ │ │ │ +0025cd90: 6d6f 7265 206f 7574 7075 743b 2069 6e20 more output; in │ │ │ │ +0025cda0: 7468 6973 2063 6173 652c 204d 6163 6175 this case, Macau │ │ │ │ +0025cdb0: 6c61 7932 2077 696c 6c20 6170 7065 6172 lay2 will appear │ │ │ │ +0025cdc0: 2074 6f20 6861 6e67 2e0a 2020 2a20 6120 to hang.. * a │ │ │ │ +0025cdd0: 7374 7269 6e67 206f 6620 7468 6520 666f string of the fo │ │ │ │ +0025cde0: 726d 2022 2468 6f73 746e 616d 653a 7365 rm "$hostname:se │ │ │ │ +0025cdf0: 7276 6963 6522 3a20 6120 636f 6e6e 6563 rvice": a connec │ │ │ │ +0025ce00: 7469 6f6e 2077 696c 6c20 6265 206d 6164 tion will be mad │ │ │ │ +0025ce10: 6520 746f 2074 6865 0a20 2020 2073 7065 e to the. spe │ │ │ │ +0025ce20: 6369 6669 6564 2073 6572 7669 6365 2061 cified service a │ │ │ │ +0025ce30: 7420 7468 6520 7370 6563 6966 6965 6420 t the specified │ │ │ │ +0025ce40: 686f 7374 2e20 2049 6620 7468 6520 7365 host. If the se │ │ │ │ +0025ce50: 7276 6963 6520 706f 7274 2069 7320 6f6d rvice port is om │ │ │ │ +0025ce60: 6974 7465 642c 0a20 2020 2061 6c6f 6e67 itted,. along │ │ │ │ +0025ce70: 2077 6974 6820 7468 6520 636f 6c6f 6e2c with the colon, │ │ │ │ +0025ce80: 2074 6865 6e20 706f 7274 2032 3530 3020 then port 2500 │ │ │ │ +0025ce90: 6973 2075 7365 642e 2020 4966 2074 6865 is used. If the │ │ │ │ +0025cea0: 2068 6f73 746e 616d 6520 6973 206f 6d69 hostname is omi │ │ │ │ +0025ceb0: 7474 6564 2c0a 2020 2020 616e 2069 6e63 tted,. an inc │ │ │ │ +0025cec0: 6f6d 696e 6720 636f 6e6e 6563 7469 6f6e oming connection │ │ │ │ +0025ced0: 2077 696c 6c20 6265 2077 6169 7465 6420 will be waited │ │ │ │ +0025cee0: 666f 722e 0a20 202a 2061 206c 6973 7465 for.. * a liste │ │ │ │ +0025cef0: 6e65 7220 6372 6561 7465 6420 7072 6576 ner created prev │ │ │ │ +0025cf00: 696f 7573 6c79 2062 7920 2a6e 6f74 6520 iously by *note │ │ │ │ +0025cf10: 6f70 656e 4c69 7374 656e 6572 3a0a 2020 openListener:. │ │ │ │ +0025cf20: 2020 6f70 656e 4c69 7374 656e 6572 5f6c openListener_l │ │ │ │ +0025cf30: 7053 7472 696e 675f 7270 2c3a 2061 206e pString_rp,: a n │ │ │ │ +0025cf40: 6577 2063 6f6e 6e65 6374 696f 6e20 7769 ew connection wi │ │ │ │ +0025cf50: 6c6c 2062 6520 6372 6561 7465 642e 2020 ll be created. │ │ │ │ +0025cf60: 546f 2061 766f 6964 0a20 2020 2062 6c6f To avoid. blo │ │ │ │ +0025cf70: 636b 696e 6720 7468 6520 4d61 6361 756c cking the Macaul │ │ │ │ +0025cf80: 6179 3220 7072 6f63 6573 7320 7768 696c ay2 process whil │ │ │ │ +0025cf90: 6520 7761 6974 696e 6720 666f 7220 7468 e waiting for th │ │ │ │ +0025cfa0: 6520 696e 636f 6d69 6e67 2063 6f6e 6e65 e incoming conne │ │ │ │ +0025cfb0: 6374 696f 6e2c 0a20 2020 2075 7365 202a ction,. use * │ │ │ │ +0025cfc0: 6e6f 7465 2069 7352 6561 6479 3a20 6973 note isReady: is │ │ │ │ +0025cfd0: 5265 6164 795f 6c70 4669 6c65 5f72 702c Ready_lpFile_rp, │ │ │ │ +0025cfe0: 2e0a 0a49 6e20 6f72 6465 7220 746f 206f ...In order to o │ │ │ │ +0025cff0: 7065 6e20 6120 736f 636b 6574 2073 7563 pen a socket suc │ │ │ │ +0025d000: 6365 7373 6675 6c6c 792c 2074 6865 7265 cessfully, there │ │ │ │ +0025d010: 206d 7573 7420 6265 2061 2070 726f 6365 must be a proce │ │ │ │ +0025d020: 7373 2061 6363 6570 7469 6e67 0a63 6f6e ss accepting.con │ │ │ │ +0025d030: 6e65 6374 696f 6e73 2066 6f72 2074 6865 nections for the │ │ │ │ +0025d040: 2064 6573 6972 6564 2073 6572 7669 6365 desired service │ │ │ │ +0025d050: 206f 6e20 7468 6520 7370 6563 6966 6965 on the specifie │ │ │ │ +0025d060: 6420 686f 7374 2e0a 0a54 6865 2076 6172 d host...The var │ │ │ │ +0025d070: 696f 7573 2066 6f72 6d73 206c 6973 7465 ious forms liste │ │ │ │ +0025d080: 6420 6162 6f76 6520 6361 6e20 6265 2075 d above can be u │ │ │ │ +0025d090: 7365 6420 616c 736f 2077 6974 6820 616c sed also with al │ │ │ │ +0025d0a0: 6c20 6f74 6865 7220 696e 7075 7420 6f75 l other input ou │ │ │ │ +0025d0b0: 7470 7574 0a6f 7065 7261 7469 6f6e 7320 tput.operations │ │ │ │ +0025d0c0: 7468 6174 206f 7065 6e20 6669 6c65 732c that open files, │ │ │ │ +0025d0d0: 2073 7563 6820 6173 202a 6e6f 7465 206f such as *note o │ │ │ │ +0025d0e0: 7065 6e49 6e3a 206f 7065 6e49 6e5f 6c70 penIn: openIn_lp │ │ │ │ +0025d0f0: 5374 7269 6e67 5f72 702c 2c20 2a6e 6f74 String_rp,, *not │ │ │ │ +0025d100: 650a 6f70 656e 4f75 743a 206f 7065 6e4f e.openOut: openO │ │ │ │ +0025d110: 7574 5f6c 7053 7472 696e 675f 7270 2c2c ut_lpString_rp,, │ │ │ │ +0025d120: 202a 6e6f 7465 2067 6574 3a20 6765 742c *note get: get, │ │ │ │ +0025d130: 2c20 616e 6420 2a6e 6f74 6520 3c3c 3a20 , and *note <<: │ │ │ │ +0025d140: 3c3c 2c2c 2077 6974 6820 6461 7461 0a74 <<,, with data.t │ │ │ │ +0025d150: 7261 6e73 6665 7220 706f 7373 6962 6c65 ransfer possible │ │ │ │ +0025d160: 206f 6e6c 7920 696e 2074 6865 2064 6972 only in the dir │ │ │ │ +0025d170: 6563 7469 6f6e 2073 7065 6369 6669 6564 ection specified │ │ │ │ +0025d180: 2e20 2041 2070 6f73 7369 626c 7920 636f . A possibly co │ │ │ │ +0025d190: 6e66 7573 696e 670a 6173 796d 6d65 7472 nfusing.asymmetr │ │ │ │ +0025d1a0: 7920 6973 2074 6861 7420 7769 7468 206f y is that with o │ │ │ │ +0025d1b0: 7065 6e49 6e20 2221 666f 6f22 206f 7220 penIn "!foo" or │ │ │ │ +0025d1c0: 7769 7468 2067 6574 2022 2166 6f6f 2220 with get "!foo" │ │ │ │ +0025d1d0: 7468 6520 7374 616e 6461 7264 2069 6e70 the standard inp │ │ │ │ +0025d1e0: 7574 206f 660a 7468 6520 636f 6d6d 616e ut of.the comman │ │ │ │ +0025d1f0: 6420 666f 6f20 6973 2063 6c6f 7365 642c d foo is closed, │ │ │ │ +0025d200: 2062 7574 2077 6974 6820 6f70 656e 4f75 but with openOu │ │ │ │ +0025d210: 7420 2221 666f 6f22 2074 6865 2073 7461 t "!foo" the sta │ │ │ │ +0025d220: 6e64 6172 6420 6f75 7470 7574 206f 6620 ndard output of │ │ │ │ +0025d230: 7468 650a 636f 6d6d 616e 6420 666f 6f20 the.command foo │ │ │ │ +0025d240: 6973 2063 6f6e 6e65 6374 6564 2074 6f20 is connected to │ │ │ │ +0025d250: 7468 6520 7374 616e 6461 7264 206f 7574 the standard out │ │ │ │ +0025d260: 7075 7420 6f66 2074 6865 2070 6172 656e put of the paren │ │ │ │ +0025d270: 7420 4d61 6361 756c 6179 320a 7072 6f63 t Macaulay2.proc │ │ │ │ +0025d280: 6573 732e 0a0a 5365 6520 616c 736f 0a3d ess...See also.= │ │ │ │ +0025d290: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0025d2a0: 7465 206f 7065 6e49 6e3a 206f 7065 6e49 te openIn: openI │ │ │ │ +0025d2b0: 6e5f 6c70 5374 7269 6e67 5f72 702c 202d n_lpString_rp, - │ │ │ │ +0025d2c0: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ +0025d2d0: 6669 6c65 0a20 202a 202a 6e6f 7465 206f file. * *note o │ │ │ │ +0025d2e0: 7065 6e4f 7574 3a20 6f70 656e 4f75 745f penOut: openOut_ │ │ │ │ +0025d2f0: 6c70 5374 7269 6e67 5f72 702c 202d 2d20 lpString_rp, -- │ │ │ │ +0025d300: 6f70 656e 2061 6e20 6f75 7470 7574 2066 open an output f │ │ │ │ +0025d310: 696c 650a 2020 2a20 2a6e 6f74 6520 6f70 ile. * *note op │ │ │ │ +0025d320: 656e 4c69 7374 656e 6572 3a20 6f70 656e enListener: open │ │ │ │ +0025d330: 4c69 7374 656e 6572 5f6c 7053 7472 696e Listener_lpStrin │ │ │ │ +0025d340: 675f 7270 2c20 2d2d 206f 7065 6e20 6120 g_rp, -- open a │ │ │ │ +0025d350: 706f 7274 2066 6f72 206c 6973 7465 6e69 port for listeni │ │ │ │ +0025d360: 6e67 0a0a 5761 7973 2074 6f20 7573 6520 ng..Ways to use │ │ │ │ +0025d370: 6f70 656e 496e 4f75 743a 0a3d 3d3d 3d3d openInOut:.===== │ │ │ │ +0025d380: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025d390: 3d0a 0a20 202a 2022 6f70 656e 496e 4f75 =.. * "openInOu │ │ │ │ +0025d3a0: 7428 4669 6c65 2922 0a20 202a 2022 6f70 t(File)". * "op │ │ │ │ +0025d3b0: 656e 496e 4f75 7428 5374 7269 6e67 2922 enInOut(String)" │ │ │ │ +0025d3c0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0025d3d0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0025d3e0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0025d3f0: 6563 7420 2a6e 6f74 6520 6f70 656e 496e ect *note openIn │ │ │ │ +0025d400: 4f75 743a 206f 7065 6e49 6e4f 7574 2c20 Out: openInOut, │ │ │ │ +0025d410: 6973 2061 202a 6e6f 7465 2063 6f6d 7069 is a *note compi │ │ │ │ +0025d420: 6c65 6420 6675 6e63 7469 6f6e 3a0a 436f led function:.Co │ │ │ │ +0025d430: 6d70 696c 6564 4675 6e63 7469 6f6e 2c2e mpiledFunction,. │ │ │ │ +0025d440: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 0025d450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0025d470: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0025d480: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0025d490: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0025d4a0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0025d4b0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0025d4c0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0025d4d0: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ -0025d4e0: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ -0025d4f0: 3533 373a 302e 0a1f 0a46 696c 653a 204d 537:0....File: M │ │ │ │ -0025d500: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -0025d510: 2c20 4e6f 6465 3a20 6f70 656e 4f75 745f , Node: openOut_ │ │ │ │ -0025d520: 6c70 5374 7269 6e67 5f72 702c 204e 6578 lpString_rp, Nex │ │ │ │ -0025d530: 743a 206f 7065 6e4f 7574 4170 7065 6e64 t: openOutAppend │ │ │ │ -0025d540: 5f6c 7053 7472 696e 675f 7270 2c20 5072 _lpString_rp, Pr │ │ │ │ -0025d550: 6576 3a20 6f70 656e 496e 4f75 742c 2055 ev: openInOut, U │ │ │ │ -0025d560: 703a 2075 7369 6e67 2073 6f63 6b65 7473 p: using sockets │ │ │ │ -0025d570: 0a0a 6f70 656e 4f75 7428 5374 7269 6e67 ..openOut(String │ │ │ │ -0025d580: 2920 2d2d 206f 7065 6e20 616e 206f 7574 ) -- open an out │ │ │ │ -0025d590: 7075 7420 6669 6c65 0a2a 2a2a 2a2a 2a2a put file.******* │ │ │ │ -0025d5a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025d5b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0025d5c0: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -0025d5d0: 6e6f 7465 206f 7065 6e4f 7574 3a20 6f70 note openOut: op │ │ │ │ -0025d5e0: 656e 4f75 745f 6c70 5374 7269 6e67 5f72 enOut_lpString_r │ │ │ │ -0025d5f0: 702c 0a20 202a 2055 7361 6765 3a20 0a20 p,. * Usage: . │ │ │ │ -0025d600: 2020 2020 2020 206f 7065 6e4f 7574 2066 openOut f │ │ │ │ -0025d610: 6e0a 2020 2a20 496e 7075 7473 3a0a 2020 n. * Inputs:. │ │ │ │ -0025d620: 2020 2020 2a20 666e 2c20 6120 2a6e 6f74 * fn, a *not │ │ │ │ -0025d630: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ -0025d640: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ -0025d650: 2020 2020 202a 2061 202a 6e6f 7465 2066 * a *note f │ │ │ │ -0025d660: 696c 653a 2046 696c 652c 2c20 616e 206f ile: File,, an o │ │ │ │ -0025d670: 7065 6e20 6f75 7470 7574 2066 696c 6520 pen output file │ │ │ │ -0025d680: 7768 6f73 6520 6669 6c65 6e61 6d65 2069 whose filename i │ │ │ │ -0025d690: 7320 666e 2e0a 2020 2020 2020 2020 4669 s fn.. Fi │ │ │ │ -0025d6a0: 6c65 6e61 6d65 7320 7374 6172 7469 6e67 lenames starting │ │ │ │ -0025d6b0: 2077 6974 6820 2120 6f72 2077 6974 6820 with ! or with │ │ │ │ -0025d6c0: 2420 6172 6520 7472 6561 7465 6420 7370 $ are treated sp │ │ │ │ -0025d6d0: 6563 6961 6c6c 792c 2073 6565 202a 6e6f ecially, see *no │ │ │ │ -0025d6e0: 7465 0a20 2020 2020 2020 206f 7065 6e49 te. openI │ │ │ │ -0025d6f0: 6e4f 7574 3a20 6f70 656e 496e 4f75 742c nOut: openInOut, │ │ │ │ -0025d700: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ -0025d710: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ -0025d720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d730: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0025d740: 2067 203d 206f 7065 6e4f 7574 2022 7465 g = openOut "te │ │ │ │ -0025d750: 7374 2d66 696c 6522 7c0a 7c20 2020 2020 st-file"|.| │ │ │ │ -0025d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d770: 2020 2020 2020 207c 0a7c 6f31 203d 2074 |.|o1 = t │ │ │ │ -0025d780: 6573 742d 6669 6c65 2020 2020 2020 2020 est-file │ │ │ │ -0025d790: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0025d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d7b0: 2020 2020 207c 0a7c 6f31 203a 2046 696c |.|o1 : Fil │ │ │ │ -0025d7c0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0025d7d0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0025d7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d7f0: 2d2d 2d2b 0a7c 6932 203a 2067 203c 3c20 ---+.|i2 : g << │ │ │ │ -0025d800: 2268 6920 7468 6572 6522 2020 2020 2020 "hi there" │ │ │ │ -0025d810: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d830: 207c 0a7c 6f32 203d 2074 6573 742d 6669 |.|o2 = test-fi │ │ │ │ -0025d840: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ -0025d850: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025d860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0025d870: 0a7c 6f32 203a 2046 696c 6520 2020 2020 .|o2 : File │ │ │ │ -0025d880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0025d890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0025d8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0025d8b0: 6933 203a 2067 203c 3c20 636c 6f73 6520 i3 : g << close │ │ │ │ -0025d8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0025d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d8e0: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -0025d8f0: 203d 2074 6573 742d 6669 6c65 2020 2020 = test-file │ │ │ │ -0025d900: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0025d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d920: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0025d930: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -0025d940: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0025d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d960: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2067 -------+.|i4 : g │ │ │ │ -0025d970: 6574 2022 7465 7374 2d66 696c 6522 2020 et "test-file" │ │ │ │ -0025d980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0025d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025d9a0: 2020 2020 207c 0a7c 6f34 203d 2068 6920 |.|o4 = hi │ │ │ │ -0025d9b0: 7468 6572 6520 2020 2020 2020 2020 2020 there │ │ │ │ -0025d9c0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0025d9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025d9e0: 2d2d 2d2b 0a7c 6935 203a 2072 656d 6f76 ---+.|i5 : remov │ │ │ │ -0025d9f0: 6546 696c 6520 2274 6573 742d 6669 6c65 eFile "test-file │ │ │ │ -0025da00: 2220 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d " |.+----------- │ │ │ │ -0025da10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025da20: 2d2b 0a0a 4120 6669 6c65 6e61 6d65 2073 -+..A filename s │ │ │ │ -0025da30: 7461 7274 696e 6720 7769 7468 207e 2f20 tarting with ~/ │ │ │ │ -0025da40: 7769 6c6c 2068 6176 6520 7468 6520 7469 will have the ti │ │ │ │ -0025da50: 6c64 6520 7265 706c 6163 6564 2062 7920 lde replaced by │ │ │ │ -0025da60: 7468 6520 7573 6572 2773 2068 6f6d 650a the user's home. │ │ │ │ -0025da70: 6469 7265 6374 6f72 792e 0a0a 5365 6520 directory...See │ │ │ │ -0025da80: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0025da90: 202a 202a 6e6f 7465 206f 7065 6e49 6e3a * *note openIn: │ │ │ │ -0025daa0: 206f 7065 6e49 6e5f 6c70 5374 7269 6e67 openIn_lpString │ │ │ │ -0025dab0: 5f72 702c 202d 2d20 6f70 656e 2061 6e20 _rp, -- open an │ │ │ │ -0025dac0: 696e 7075 7420 6669 6c65 0a20 202a 202a input file. * * │ │ │ │ -0025dad0: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a20 note openInOut: │ │ │ │ -0025dae0: 6f70 656e 496e 4f75 742c 202d 2d20 6f70 openInOut, -- op │ │ │ │ -0025daf0: 656e 2061 6e20 696e 7075 7420 6f75 7470 en an input outp │ │ │ │ -0025db00: 7574 2066 696c 650a 2020 2a20 2a6e 6f74 ut file. * *not │ │ │ │ -0025db10: 6520 6f70 656e 4f75 7441 7070 656e 643a e openOutAppend: │ │ │ │ -0025db20: 206f 7065 6e4f 7574 4170 7065 6e64 5f6c openOutAppend_l │ │ │ │ -0025db30: 7053 7472 696e 675f 7270 2c20 2d2d 206f pString_rp, -- o │ │ │ │ -0025db40: 7065 6e20 616e 206f 7574 7075 7420 6669 pen an output fi │ │ │ │ -0025db50: 6c65 2066 6f72 0a20 2020 2061 7070 656e le for. appen │ │ │ │ -0025db60: 6469 6e67 0a20 202a 202a 6e6f 7465 2067 ding. * *note g │ │ │ │ -0025db70: 6574 3a20 6765 742c 202d 2d20 6765 7420 et: get, -- get │ │ │ │ -0025db80: 7468 6520 636f 6e74 656e 7473 206f 6620 the contents of │ │ │ │ -0025db90: 6120 6669 6c65 0a20 202a 202a 6e6f 7465 a file. * *note │ │ │ │ -0025dba0: 2072 656d 6f76 6546 696c 653a 2072 656d removeFile: rem │ │ │ │ -0025dbb0: 6f76 6546 696c 652c 202d 2d20 7265 6d6f oveFile, -- remo │ │ │ │ -0025dbc0: 7665 2061 2066 696c 650a 2020 2a20 2a6e ve a file. * *n │ │ │ │ -0025dbd0: 6f74 6520 636c 6f73 653a 2063 6c6f 7365 ote close: close │ │ │ │ -0025dbe0: 2c20 2d2d 2063 6c6f 7365 2061 2066 696c , -- close a fil │ │ │ │ -0025dbf0: 650a 2020 2a20 2a6e 6f74 6520 4669 6c65 e. * *note File │ │ │ │ -0025dc00: 203c 3c20 5468 696e 673a 2070 7269 6e74 << Thing: print │ │ │ │ -0025dc10: 696e 6720 746f 2061 2066 696c 652c 202d ing to a file, - │ │ │ │ -0025dc20: 2d20 7072 696e 7420 746f 2061 2066 696c - print to a fil │ │ │ │ -0025dc30: 650a 0a57 6179 7320 746f 2075 7365 2074 e..Ways to use t │ │ │ │ -0025dc40: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -0025dc50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0025dc60: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0025dc70: 6f70 656e 4f75 7428 5374 7269 6e67 293a openOut(String): │ │ │ │ -0025dc80: 206f 7065 6e4f 7574 5f6c 7053 7472 696e openOut_lpStrin │ │ │ │ -0025dc90: 675f 7270 2c20 2d2d 206f 7065 6e20 616e g_rp, -- open an │ │ │ │ -0025dca0: 206f 7574 7075 7420 6669 6c65 0a2d 2d2d output file.--- │ │ │ │ -0025dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025dcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025dcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d490: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0025d4a0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0025d4b0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0025d4c0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0025d4d0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0025d4e0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0025d4f0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ +0025d500: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ +0025d510: 2e6d 323a 3533 373a 302e 0a1f 0a46 696c .m2:537:0....Fil │ │ │ │ +0025d520: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +0025d530: 696e 666f 2c20 4e6f 6465 3a20 6f70 656e info, Node: open │ │ │ │ +0025d540: 4f75 745f 6c70 5374 7269 6e67 5f72 702c Out_lpString_rp, │ │ │ │ +0025d550: 204e 6578 743a 206f 7065 6e4f 7574 4170 Next: openOutAp │ │ │ │ +0025d560: 7065 6e64 5f6c 7053 7472 696e 675f 7270 pend_lpString_rp │ │ │ │ +0025d570: 2c20 5072 6576 3a20 6f70 656e 496e 4f75 , Prev: openInOu │ │ │ │ +0025d580: 742c 2055 703a 2075 7369 6e67 2073 6f63 t, Up: using soc │ │ │ │ +0025d590: 6b65 7473 0a0a 6f70 656e 4f75 7428 5374 kets..openOut(St │ │ │ │ +0025d5a0: 7269 6e67 2920 2d2d 206f 7065 6e20 616e ring) -- open an │ │ │ │ +0025d5b0: 206f 7574 7075 7420 6669 6c65 0a2a 2a2a output file.*** │ │ │ │ +0025d5c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025d5d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025d5e0: 2a2a 2a0a 0a20 202a 2046 756e 6374 696f ***.. * Functio │ │ │ │ +0025d5f0: 6e3a 202a 6e6f 7465 206f 7065 6e4f 7574 n: *note openOut │ │ │ │ +0025d600: 3a20 6f70 656e 4f75 745f 6c70 5374 7269 : openOut_lpStri │ │ │ │ +0025d610: 6e67 5f72 702c 0a20 202a 2055 7361 6765 ng_rp,. * Usage │ │ │ │ +0025d620: 3a20 0a20 2020 2020 2020 206f 7065 6e4f : . openO │ │ │ │ +0025d630: 7574 2066 6e0a 2020 2a20 496e 7075 7473 ut fn. * Inputs │ │ │ │ +0025d640: 3a0a 2020 2020 2020 2a20 666e 2c20 6120 :. * fn, a │ │ │ │ +0025d650: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +0025d660: 7269 6e67 2c0a 2020 2a20 4f75 7470 7574 ring,. * Output │ │ │ │ +0025d670: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ +0025d680: 7465 2066 696c 653a 2046 696c 652c 2c20 te file: File,, │ │ │ │ +0025d690: 616e 206f 7065 6e20 6f75 7470 7574 2066 an open output f │ │ │ │ +0025d6a0: 696c 6520 7768 6f73 6520 6669 6c65 6e61 ile whose filena │ │ │ │ +0025d6b0: 6d65 2069 7320 666e 2e0a 2020 2020 2020 me is fn.. │ │ │ │ +0025d6c0: 2020 4669 6c65 6e61 6d65 7320 7374 6172 Filenames star │ │ │ │ +0025d6d0: 7469 6e67 2077 6974 6820 2120 6f72 2077 ting with ! or w │ │ │ │ +0025d6e0: 6974 6820 2420 6172 6520 7472 6561 7465 ith $ are treate │ │ │ │ +0025d6f0: 6420 7370 6563 6961 6c6c 792c 2073 6565 d specially, see │ │ │ │ +0025d700: 202a 6e6f 7465 0a20 2020 2020 2020 206f *note. o │ │ │ │ +0025d710: 7065 6e49 6e4f 7574 3a20 6f70 656e 496e penInOut: openIn │ │ │ │ +0025d720: 4f75 742c 2e0a 0a44 6573 6372 6970 7469 Out,...Descripti │ │ │ │ +0025d730: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0025d740: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0025d750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025d760: 6931 203a 2067 203d 206f 7065 6e4f 7574 i1 : g = openOut │ │ │ │ +0025d770: 2022 7465 7374 2d66 696c 6522 7c0a 7c20 "test-file"|.| │ │ │ │ +0025d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d790: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0025d7a0: 203d 2074 6573 742d 6669 6c65 2020 2020 = test-file │ │ │ │ +0025d7b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0025d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d7d0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ +0025d7e0: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ +0025d7f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0025d800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d810: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2067 -------+.|i2 : g │ │ │ │ +0025d820: 203c 3c20 2268 6920 7468 6572 6522 2020 << "hi there" │ │ │ │ +0025d830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0025d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d850: 2020 2020 207c 0a7c 6f32 203d 2074 6573 |.|o2 = tes │ │ │ │ +0025d860: 742d 6669 6c65 2020 2020 2020 2020 2020 t-file │ │ │ │ +0025d870: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0025d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d890: 2020 207c 0a7c 6f32 203a 2046 696c 6520 |.|o2 : File │ │ │ │ +0025d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d8b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0025d8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d8d0: 2d2b 0a7c 6933 203a 2067 203c 3c20 636c -+.|i3 : g << cl │ │ │ │ +0025d8e0: 6f73 6520 2020 2020 2020 2020 2020 2020 ose │ │ │ │ +0025d8f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025d900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0025d910: 0a7c 6f33 203d 2074 6573 742d 6669 6c65 .|o3 = test-file │ │ │ │ +0025d920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0025d930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0025d940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025d950: 6f33 203a 2046 696c 6520 2020 2020 2020 o3 : File │ │ │ │ +0025d960: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0025d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0025d990: 203a 2067 6574 2022 7465 7374 2d66 696c : get "test-fil │ │ │ │ +0025d9a0: 6522 2020 2020 2020 2020 7c0a 7c20 2020 e" |.| │ │ │ │ +0025d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025d9c0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0025d9d0: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ +0025d9e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0025d9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025da00: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2072 -------+.|i5 : r │ │ │ │ +0025da10: 656d 6f76 6546 696c 6520 2274 6573 742d emoveFile "test- │ │ │ │ +0025da20: 6669 6c65 2220 7c0a 2b2d 2d2d 2d2d 2d2d file" |.+------- │ │ │ │ +0025da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025da40: 2d2d 2d2d 2d2b 0a0a 4120 6669 6c65 6e61 -----+..A filena │ │ │ │ +0025da50: 6d65 2073 7461 7274 696e 6720 7769 7468 me starting with │ │ │ │ +0025da60: 207e 2f20 7769 6c6c 2068 6176 6520 7468 ~/ will have th │ │ │ │ +0025da70: 6520 7469 6c64 6520 7265 706c 6163 6564 e tilde replaced │ │ │ │ +0025da80: 2062 7920 7468 6520 7573 6572 2773 2068 by the user's h │ │ │ │ +0025da90: 6f6d 650a 6469 7265 6374 6f72 792e 0a0a ome.directory... │ │ │ │ +0025daa0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0025dab0: 3d0a 0a20 202a 202a 6e6f 7465 206f 7065 =.. * *note ope │ │ │ │ +0025dac0: 6e49 6e3a 206f 7065 6e49 6e5f 6c70 5374 nIn: openIn_lpSt │ │ │ │ +0025dad0: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ +0025dae0: 2061 6e20 696e 7075 7420 6669 6c65 0a20 an input file. │ │ │ │ +0025daf0: 202a 202a 6e6f 7465 206f 7065 6e49 6e4f * *note openInO │ │ │ │ +0025db00: 7574 3a20 6f70 656e 496e 4f75 742c 202d ut: openInOut, - │ │ │ │ +0025db10: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ +0025db20: 6f75 7470 7574 2066 696c 650a 2020 2a20 output file. * │ │ │ │ +0025db30: 2a6e 6f74 6520 6f70 656e 4f75 7441 7070 *note openOutApp │ │ │ │ +0025db40: 656e 643a 206f 7065 6e4f 7574 4170 7065 end: openOutAppe │ │ │ │ +0025db50: 6e64 5f6c 7053 7472 696e 675f 7270 2c20 nd_lpString_rp, │ │ │ │ +0025db60: 2d2d 206f 7065 6e20 616e 206f 7574 7075 -- open an outpu │ │ │ │ +0025db70: 7420 6669 6c65 2066 6f72 0a20 2020 2061 t file for. a │ │ │ │ +0025db80: 7070 656e 6469 6e67 0a20 202a 202a 6e6f ppending. * *no │ │ │ │ +0025db90: 7465 2067 6574 3a20 6765 742c 202d 2d20 te get: get, -- │ │ │ │ +0025dba0: 6765 7420 7468 6520 636f 6e74 656e 7473 get the contents │ │ │ │ +0025dbb0: 206f 6620 6120 6669 6c65 0a20 202a 202a of a file. * * │ │ │ │ +0025dbc0: 6e6f 7465 2072 656d 6f76 6546 696c 653a note removeFile: │ │ │ │ +0025dbd0: 2072 656d 6f76 6546 696c 652c 202d 2d20 removeFile, -- │ │ │ │ +0025dbe0: 7265 6d6f 7665 2061 2066 696c 650a 2020 remove a file. │ │ │ │ +0025dbf0: 2a20 2a6e 6f74 6520 636c 6f73 653a 2063 * *note close: c │ │ │ │ +0025dc00: 6c6f 7365 2c20 2d2d 2063 6c6f 7365 2061 lose, -- close a │ │ │ │ +0025dc10: 2066 696c 650a 2020 2a20 2a6e 6f74 6520 file. * *note │ │ │ │ +0025dc20: 4669 6c65 203c 3c20 5468 696e 673a 2070 File << Thing: p │ │ │ │ +0025dc30: 7269 6e74 696e 6720 746f 2061 2066 696c rinting to a fil │ │ │ │ +0025dc40: 652c 202d 2d20 7072 696e 7420 746f 2061 e, -- print to a │ │ │ │ +0025dc50: 2066 696c 650a 0a57 6179 7320 746f 2075 file..Ways to u │ │ │ │ +0025dc60: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +0025dc70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025dc80: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0025dc90: 6f74 6520 6f70 656e 4f75 7428 5374 7269 ote openOut(Stri │ │ │ │ +0025dca0: 6e67 293a 206f 7065 6e4f 7574 5f6c 7053 ng): openOut_lpS │ │ │ │ +0025dcb0: 7472 696e 675f 7270 2c20 2d2d 206f 7065 tring_rp, -- ope │ │ │ │ +0025dcc0: 6e20 616e 206f 7574 7075 7420 6669 6c65 n an output file │ │ │ │ +0025dcd0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0025dce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0025dd00: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0025dd10: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0025dd20: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0025dd30: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0025dd40: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0025dd50: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0025dd60: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ -0025dd70: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a34 c/ov_system.m2:4 │ │ │ │ -0025dd80: 3633 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 63:0....File: Ma │ │ │ │ -0025dd90: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ -0025dda0: 204e 6f64 653a 206f 7065 6e4f 7574 4170 Node: openOutAp │ │ │ │ -0025ddb0: 7065 6e64 5f6c 7053 7472 696e 675f 7270 pend_lpString_rp │ │ │ │ -0025ddc0: 2c20 4e65 7874 3a20 656e 646c 2c20 5072 , Next: endl, Pr │ │ │ │ -0025ddd0: 6576 3a20 6f70 656e 4f75 745f 6c70 5374 ev: openOut_lpSt │ │ │ │ -0025dde0: 7269 6e67 5f72 702c 2055 703a 2075 7369 ring_rp, Up: usi │ │ │ │ -0025ddf0: 6e67 2073 6f63 6b65 7473 0a0a 6f70 656e ng sockets..open │ │ │ │ -0025de00: 4f75 7441 7070 656e 6428 5374 7269 6e67 OutAppend(String │ │ │ │ -0025de10: 2920 2d2d 206f 7065 6e20 616e 206f 7574 ) -- open an out │ │ │ │ -0025de20: 7075 7420 6669 6c65 2066 6f72 2061 7070 put file for app │ │ │ │ -0025de30: 656e 6469 6e67 0a2a 2a2a 2a2a 2a2a 2a2a ending.********* │ │ │ │ -0025de40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025de50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025dd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025dd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025dd20: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0025dd30: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0025dd40: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0025dd50: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0025dd60: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0025dd70: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0025dd80: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +0025dd90: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ +0025dda0: 6d32 3a34 3633 3a30 2e0a 1f0a 4669 6c65 m2:463:0....File │ │ │ │ +0025ddb0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ +0025ddc0: 6e66 6f2c 204e 6f64 653a 206f 7065 6e4f nfo, Node: openO │ │ │ │ +0025ddd0: 7574 4170 7065 6e64 5f6c 7053 7472 696e utAppend_lpStrin │ │ │ │ +0025dde0: 675f 7270 2c20 4e65 7874 3a20 656e 646c g_rp, Next: endl │ │ │ │ +0025ddf0: 2c20 5072 6576 3a20 6f70 656e 4f75 745f , Prev: openOut_ │ │ │ │ +0025de00: 6c70 5374 7269 6e67 5f72 702c 2055 703a lpString_rp, Up: │ │ │ │ +0025de10: 2075 7369 6e67 2073 6f63 6b65 7473 0a0a using sockets.. │ │ │ │ +0025de20: 6f70 656e 4f75 7441 7070 656e 6428 5374 openOutAppend(St │ │ │ │ +0025de30: 7269 6e67 2920 2d2d 206f 7065 6e20 616e ring) -- open an │ │ │ │ +0025de40: 206f 7574 7075 7420 6669 6c65 2066 6f72 output file for │ │ │ │ +0025de50: 2061 7070 656e 6469 6e67 0a2a 2a2a 2a2a appending.***** │ │ │ │ 0025de60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025de70: 2a0a 0a20 202a 2046 756e 6374 696f 6e3a *.. * Function: │ │ │ │ -0025de80: 202a 6e6f 7465 206f 7065 6e4f 7574 4170 *note openOutAp │ │ │ │ -0025de90: 7065 6e64 3a20 6f70 656e 4f75 7441 7070 pend: openOutApp │ │ │ │ -0025dea0: 656e 645f 6c70 5374 7269 6e67 5f72 702c end_lpString_rp, │ │ │ │ -0025deb0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0025dec0: 2020 2020 206f 7065 6e4f 7574 4170 7065 openOutAppe │ │ │ │ -0025ded0: 6e64 2066 6e0a 2020 2a20 496e 7075 7473 nd fn. * Inputs │ │ │ │ -0025dee0: 3a0a 2020 2020 2020 2a20 666e 2c20 6120 :. * fn, a │ │ │ │ -0025def0: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ -0025df00: 7269 6e67 2c0a 2020 2a20 4f75 7470 7574 ring,. * Output │ │ │ │ -0025df10: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -0025df20: 7465 2066 696c 653a 2046 696c 652c 2c20 te file: File,, │ │ │ │ -0025df30: 616e 206f 7065 6e20 6f75 7470 7574 2066 an open output f │ │ │ │ -0025df40: 696c 6520 7768 6f73 6520 6669 6c65 6e61 ile whose filena │ │ │ │ -0025df50: 6d65 2069 7320 666e 0a0a 4465 7363 7269 me is fn..Descri │ │ │ │ -0025df60: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0025df70: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ -0025df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025df90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0025dfa0: 2067 203d 206f 7065 6e4f 7574 2022 7465 g = openOut "te │ │ │ │ -0025dfb0: 7374 2d66 696c 6522 2020 2020 2020 2020 st-file" │ │ │ │ -0025dfc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025dfe0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0025dff0: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ -0025e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e010: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025de70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025de80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025de90: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ +0025dea0: 696f 6e3a 202a 6e6f 7465 206f 7065 6e4f ion: *note openO │ │ │ │ +0025deb0: 7574 4170 7065 6e64 3a20 6f70 656e 4f75 utAppend: openOu │ │ │ │ +0025dec0: 7441 7070 656e 645f 6c70 5374 7269 6e67 tAppend_lpString │ │ │ │ +0025ded0: 5f72 702c 0a20 202a 2055 7361 6765 3a20 _rp,. * Usage: │ │ │ │ +0025dee0: 0a20 2020 2020 2020 206f 7065 6e4f 7574 . openOut │ │ │ │ +0025def0: 4170 7065 6e64 2066 6e0a 2020 2a20 496e Append fn. * In │ │ │ │ +0025df00: 7075 7473 3a0a 2020 2020 2020 2a20 666e puts:. * fn │ │ │ │ +0025df10: 2c20 6120 2a6e 6f74 6520 7374 7269 6e67 , a *note string │ │ │ │ +0025df20: 3a20 5374 7269 6e67 2c0a 2020 2a20 4f75 : String,. * Ou │ │ │ │ +0025df30: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0025df40: 202a 6e6f 7465 2066 696c 653a 2046 696c *note file: Fil │ │ │ │ +0025df50: 652c 2c20 616e 206f 7065 6e20 6f75 7470 e,, an open outp │ │ │ │ +0025df60: 7574 2066 696c 6520 7768 6f73 6520 6669 ut file whose fi │ │ │ │ +0025df70: 6c65 6e61 6d65 2069 7320 666e 0a0a 4465 lename is fn..De │ │ │ │ +0025df80: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0025df90: 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d =====..+-------- │ │ │ │ +0025dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025dfc0: 6931 203a 2067 203d 206f 7065 6e4f 7574 i1 : g = openOut │ │ │ │ +0025dfd0: 2022 7465 7374 2d66 696c 6522 2020 2020 "test-file" │ │ │ │ +0025dfe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e010: 6f31 203d 2074 6573 742d 6669 6c65 2020 o1 = test-file │ │ │ │ 0025e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e030: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -0025e040: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -0025e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e060: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0025e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e080: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0025e090: 2067 203c 3c20 2268 6920 7468 6572 6522 g << "hi there" │ │ │ │ -0025e0a0: 203c 3c20 656e 646c 203c 3c20 636c 6f73 << endl << clos │ │ │ │ -0025e0b0: 657c 0a7c 2020 2020 2020 2020 2020 2020 e|.| │ │ │ │ -0025e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e0d0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0025e0e0: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ -0025e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025e030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e060: 6f31 203a 2046 696c 6520 2020 2020 2020 o1 : File │ │ │ │ +0025e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e080: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0025e090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025e0b0: 6932 203a 2067 203c 3c20 2268 6920 7468 i2 : g << "hi th │ │ │ │ +0025e0c0: 6572 6522 203c 3c20 656e 646c 203c 3c20 ere" << endl << │ │ │ │ +0025e0d0: 636c 6f73 657c 0a7c 2020 2020 2020 2020 close|.| │ │ │ │ +0025e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e0f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e100: 6f32 203d 2074 6573 742d 6669 6c65 2020 o2 = test-file │ │ │ │ 0025e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e120: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -0025e130: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -0025e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e150: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0025e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e170: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0025e180: 2068 203d 206f 7065 6e4f 7574 4170 7065 h = openOutAppe │ │ │ │ -0025e190: 6e64 2022 7465 7374 2d66 696c 6522 2020 nd "test-file" │ │ │ │ -0025e1a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e1c0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -0025e1d0: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ -0025e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e1f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025e120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e150: 6f32 203a 2046 696c 6520 2020 2020 2020 o2 : File │ │ │ │ +0025e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e170: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0025e180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025e1a0: 6933 203a 2068 203d 206f 7065 6e4f 7574 i3 : h = openOut │ │ │ │ +0025e1b0: 4170 7065 6e64 2022 7465 7374 2d66 696c Append "test-fil │ │ │ │ +0025e1c0: 6522 2020 207c 0a7c 2020 2020 2020 2020 e" |.| │ │ │ │ +0025e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e1f0: 6f33 203d 2074 6573 742d 6669 6c65 2020 o3 = test-file │ │ │ │ 0025e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e210: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ -0025e220: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -0025e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e240: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0025e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e260: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -0025e270: 2068 203c 3c20 2268 6f20 7468 6572 6522 h << "ho there" │ │ │ │ -0025e280: 203c 3c20 656e 646c 203c 3c20 636c 6f73 << endl << clos │ │ │ │ -0025e290: 657c 0a7c 2020 2020 2020 2020 2020 2020 e|.| │ │ │ │ -0025e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e2b0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0025e2c0: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ -0025e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e2e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0025e210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e240: 6f33 203a 2046 696c 6520 2020 2020 2020 o3 : File │ │ │ │ +0025e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e260: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0025e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025e290: 6934 203a 2068 203c 3c20 2268 6f20 7468 i4 : h << "ho th │ │ │ │ +0025e2a0: 6572 6522 203c 3c20 656e 646c 203c 3c20 ere" << endl << │ │ │ │ +0025e2b0: 636c 6f73 657c 0a7c 2020 2020 2020 2020 close|.| │ │ │ │ +0025e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e2d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e2e0: 6f34 203d 2074 6573 742d 6669 6c65 2020 o4 = test-file │ │ │ │ 0025e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e300: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ -0025e310: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -0025e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e330: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0025e340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e350: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -0025e360: 2067 6574 2022 7465 7374 2d66 696c 6522 get "test-file" │ │ │ │ -0025e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e380: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0025e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e3a0: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ -0025e3b0: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ -0025e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0025e3d0: 207c 0a7c 2020 2020 2068 6f20 7468 6572 |.| ho ther │ │ │ │ -0025e3e0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0025e3f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0025e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e420: 2d2b 0a7c 6936 203a 2072 656d 6f76 6546 -+.|i6 : removeF │ │ │ │ -0025e430: 696c 6520 2274 6573 742d 6669 6c65 2220 ile "test-file" │ │ │ │ -0025e440: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0025e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e470: 2d2b 0a0a 4120 6669 6c65 6e61 6d65 2073 -+..A filename s │ │ │ │ -0025e480: 7461 7274 696e 6720 7769 7468 207e 2f20 tarting with ~/ │ │ │ │ -0025e490: 7769 6c6c 2068 6176 6520 7468 6520 7469 will have the ti │ │ │ │ -0025e4a0: 6c64 6520 7265 706c 6163 6564 2062 7920 lde replaced by │ │ │ │ -0025e4b0: 7468 6520 7573 6572 2773 2068 6f6d 650a the user's home. │ │ │ │ -0025e4c0: 6469 7265 6374 6f72 792e 0a0a 5365 6520 directory...See │ │ │ │ -0025e4d0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0025e4e0: 202a 202a 6e6f 7465 206f 7065 6e49 6e3a * *note openIn: │ │ │ │ -0025e4f0: 206f 7065 6e49 6e5f 6c70 5374 7269 6e67 openIn_lpString │ │ │ │ -0025e500: 5f72 702c 202d 2d20 6f70 656e 2061 6e20 _rp, -- open an │ │ │ │ -0025e510: 696e 7075 7420 6669 6c65 0a20 202a 202a input file. * * │ │ │ │ -0025e520: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a20 note openInOut: │ │ │ │ -0025e530: 6f70 656e 496e 4f75 742c 202d 2d20 6f70 openInOut, -- op │ │ │ │ -0025e540: 656e 2061 6e20 696e 7075 7420 6f75 7470 en an input outp │ │ │ │ -0025e550: 7574 2066 696c 650a 2020 2a20 2a6e 6f74 ut file. * *not │ │ │ │ -0025e560: 6520 6f70 656e 4f75 743a 206f 7065 6e4f e openOut: openO │ │ │ │ -0025e570: 7574 5f6c 7053 7472 696e 675f 7270 2c20 ut_lpString_rp, │ │ │ │ -0025e580: 2d2d 206f 7065 6e20 616e 206f 7574 7075 -- open an outpu │ │ │ │ -0025e590: 7420 6669 6c65 0a20 202a 202a 6e6f 7465 t file. * *note │ │ │ │ -0025e5a0: 2046 696c 653a 2046 696c 652c 202d 2d20 File: File, -- │ │ │ │ -0025e5b0: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ -0025e5c0: 2066 696c 6573 0a20 202a 202a 6e6f 7465 files. * *note │ │ │ │ -0025e5d0: 2067 6574 3a20 6765 742c 202d 2d20 6765 get: get, -- ge │ │ │ │ -0025e5e0: 7420 7468 6520 636f 6e74 656e 7473 206f t the contents o │ │ │ │ -0025e5f0: 6620 6120 6669 6c65 0a20 202a 202a 6e6f f a file. * *no │ │ │ │ -0025e600: 7465 2072 656d 6f76 6546 696c 653a 2072 te removeFile: r │ │ │ │ -0025e610: 656d 6f76 6546 696c 652c 202d 2d20 7265 emoveFile, -- re │ │ │ │ -0025e620: 6d6f 7665 2061 2066 696c 650a 2020 2a20 move a file. * │ │ │ │ -0025e630: 2a6e 6f74 6520 4669 6c65 203c 3c20 5468 *note File << Th │ │ │ │ -0025e640: 696e 673a 2070 7269 6e74 696e 6720 746f ing: printing to │ │ │ │ -0025e650: 2061 2066 696c 652c 202d 2d20 7072 696e a file, -- prin │ │ │ │ -0025e660: 7420 746f 2061 2066 696c 650a 0a57 6179 t to a file..Way │ │ │ │ -0025e670: 7320 746f 2075 7365 2074 6869 7320 6d65 s to use this me │ │ │ │ -0025e680: 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d thod:.========== │ │ │ │ -0025e690: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0025e6a0: 2020 2a20 2a6e 6f74 6520 6f70 656e 4f75 * *note openOu │ │ │ │ -0025e6b0: 7441 7070 656e 6428 5374 7269 6e67 293a tAppend(String): │ │ │ │ -0025e6c0: 206f 7065 6e4f 7574 4170 7065 6e64 5f6c openOutAppend_l │ │ │ │ -0025e6d0: 7053 7472 696e 675f 7270 2c20 2d2d 206f pString_rp, -- o │ │ │ │ -0025e6e0: 7065 6e20 616e 206f 7574 7075 740a 2020 pen an output. │ │ │ │ -0025e6f0: 2020 6669 6c65 2066 6f72 2061 7070 656e file for appen │ │ │ │ -0025e700: 6469 6e67 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d ding.----------- │ │ │ │ -0025e710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e330: 6f34 203a 2046 696c 6520 2020 2020 2020 o4 : File │ │ │ │ +0025e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e350: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0025e360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0025e380: 6935 203a 2067 6574 2022 7465 7374 2d66 i5 : get "test-f │ │ │ │ +0025e390: 696c 6522 2020 2020 2020 2020 2020 2020 ile" │ │ │ │ +0025e3a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0025e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0025e3d0: 6f35 203d 2068 6920 7468 6572 6520 2020 o5 = hi there │ │ │ │ +0025e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0025e3f0: 2020 2020 207c 0a7c 2020 2020 2068 6f20 |.| ho │ │ │ │ +0025e400: 7468 6572 6520 2020 2020 2020 2020 2020 there │ │ │ │ +0025e410: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0025e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e440: 2d2d 2d2d 2d2b 0a7c 6936 203a 2072 656d -----+.|i6 : rem │ │ │ │ +0025e450: 6f76 6546 696c 6520 2274 6573 742d 6669 oveFile "test-fi │ │ │ │ +0025e460: 6c65 2220 2020 2020 2020 2020 207c 0a2b le" |.+ │ │ │ │ +0025e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e490: 2d2d 2d2d 2d2b 0a0a 4120 6669 6c65 6e61 -----+..A filena │ │ │ │ +0025e4a0: 6d65 2073 7461 7274 696e 6720 7769 7468 me starting with │ │ │ │ +0025e4b0: 207e 2f20 7769 6c6c 2068 6176 6520 7468 ~/ will have th │ │ │ │ +0025e4c0: 6520 7469 6c64 6520 7265 706c 6163 6564 e tilde replaced │ │ │ │ +0025e4d0: 2062 7920 7468 6520 7573 6572 2773 2068 by the user's h │ │ │ │ +0025e4e0: 6f6d 650a 6469 7265 6374 6f72 792e 0a0a ome.directory... │ │ │ │ +0025e4f0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0025e500: 3d0a 0a20 202a 202a 6e6f 7465 206f 7065 =.. * *note ope │ │ │ │ +0025e510: 6e49 6e3a 206f 7065 6e49 6e5f 6c70 5374 nIn: openIn_lpSt │ │ │ │ +0025e520: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ +0025e530: 2061 6e20 696e 7075 7420 6669 6c65 0a20 an input file. │ │ │ │ +0025e540: 202a 202a 6e6f 7465 206f 7065 6e49 6e4f * *note openInO │ │ │ │ +0025e550: 7574 3a20 6f70 656e 496e 4f75 742c 202d ut: openInOut, - │ │ │ │ +0025e560: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ +0025e570: 6f75 7470 7574 2066 696c 650a 2020 2a20 output file. * │ │ │ │ +0025e580: 2a6e 6f74 6520 6f70 656e 4f75 743a 206f *note openOut: o │ │ │ │ +0025e590: 7065 6e4f 7574 5f6c 7053 7472 696e 675f penOut_lpString_ │ │ │ │ +0025e5a0: 7270 2c20 2d2d 206f 7065 6e20 616e 206f rp, -- open an o │ │ │ │ +0025e5b0: 7574 7075 7420 6669 6c65 0a20 202a 202a utput file. * * │ │ │ │ +0025e5c0: 6e6f 7465 2046 696c 653a 2046 696c 652c note File: File, │ │ │ │ +0025e5d0: 202d 2d20 7468 6520 636c 6173 7320 6f66 -- the class of │ │ │ │ +0025e5e0: 2061 6c6c 2066 696c 6573 0a20 202a 202a all files. * * │ │ │ │ +0025e5f0: 6e6f 7465 2067 6574 3a20 6765 742c 202d note get: get, - │ │ │ │ +0025e600: 2d20 6765 7420 7468 6520 636f 6e74 656e - get the conten │ │ │ │ +0025e610: 7473 206f 6620 6120 6669 6c65 0a20 202a ts of a file. * │ │ │ │ +0025e620: 202a 6e6f 7465 2072 656d 6f76 6546 696c *note removeFil │ │ │ │ +0025e630: 653a 2072 656d 6f76 6546 696c 652c 202d e: removeFile, - │ │ │ │ +0025e640: 2d20 7265 6d6f 7665 2061 2066 696c 650a - remove a file. │ │ │ │ +0025e650: 2020 2a20 2a6e 6f74 6520 4669 6c65 203c * *note File < │ │ │ │ +0025e660: 3c20 5468 696e 673a 2070 7269 6e74 696e < Thing: printin │ │ │ │ +0025e670: 6720 746f 2061 2066 696c 652c 202d 2d20 g to a file, -- │ │ │ │ +0025e680: 7072 696e 7420 746f 2061 2066 696c 650a print to a file. │ │ │ │ +0025e690: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +0025e6a0: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ +0025e6b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0025e6c0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6f70 ==.. * *note op │ │ │ │ +0025e6d0: 656e 4f75 7441 7070 656e 6428 5374 7269 enOutAppend(Stri │ │ │ │ +0025e6e0: 6e67 293a 206f 7065 6e4f 7574 4170 7065 ng): openOutAppe │ │ │ │ +0025e6f0: 6e64 5f6c 7053 7472 696e 675f 7270 2c20 nd_lpString_rp, │ │ │ │ +0025e700: 2d2d 206f 7065 6e20 616e 206f 7574 7075 -- open an outpu │ │ │ │ +0025e710: 740a 2020 2020 6669 6c65 2066 6f72 2061 t. file for a │ │ │ │ +0025e720: 7070 656e 6469 6e67 0a2d 2d2d 2d2d 2d2d ppending.------- │ │ │ │ 0025e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025e750: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0025e760: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0025e770: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0025e780: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0025e790: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0025e7a0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0025e7b0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0025e7c0: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -0025e7d0: 7465 6d2e 6d32 3a34 3832 3a30 2e0a 1f0a tem.m2:482:0.... │ │ │ │ -0025e7e0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -0025e7f0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2065 oc.info, Node: e │ │ │ │ -0025e800: 6e64 6c2c 204e 6578 743a 2066 6c75 7368 ndl, Next: flush │ │ │ │ -0025e810: 2c20 5072 6576 3a20 6f70 656e 4f75 7441 , Prev: openOutA │ │ │ │ -0025e820: 7070 656e 645f 6c70 5374 7269 6e67 5f72 ppend_lpString_r │ │ │ │ -0025e830: 702c 2055 703a 2075 7369 6e67 2073 6f63 p, Up: using soc │ │ │ │ -0025e840: 6b65 7473 0a0a 656e 646c 202d 2d20 656e kets..endl -- en │ │ │ │ -0025e850: 6420 616e 206f 7574 7075 7420 6c69 6e65 d an output line │ │ │ │ -0025e860: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -0025e870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -0025e880: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0025e890: 3d3d 3d3d 0a0a 6620 3c3c 2065 6e64 6c20 ====..f << endl │ │ │ │ -0025e8a0: 2d2d 2065 6e64 7320 7468 6520 6c69 6e65 -- ends the line │ │ │ │ -0025e8b0: 2063 7572 7265 6e74 6c79 2062 6569 6e67 currently being │ │ │ │ -0025e8c0: 2070 7574 206f 7574 2074 6f20 7468 6520 put out to the │ │ │ │ -0025e8d0: 6669 6c65 2066 2e0a 0a0a 4974 2069 7320 file f....It is │ │ │ │ -0025e8e0: 616e 2065 7373 656e 7469 616c 2070 6f72 an essential por │ │ │ │ -0025e8f0: 7461 626c 6520 7072 6f67 7261 6d6d 696e table programmin │ │ │ │ -0025e900: 6720 7072 6163 7469 6365 2074 6f20 7573 g practice to us │ │ │ │ -0025e910: 6520 656e 646c 2061 6c77 6179 732c 2066 e endl always, f │ │ │ │ -0025e920: 6f72 0a77 7269 7469 6e67 206e 6577 6c69 or.writing newli │ │ │ │ -0025e930: 6e65 2063 6861 7261 6374 6572 7320 2873 ne characters (s │ │ │ │ -0025e940: 6565 202a 6e6f 7465 206e 6577 6c69 6e65 ee *note newline │ │ │ │ -0025e950: 3a20 6e65 776c 696e 652c 2920 746f 2061 : newline,) to a │ │ │ │ -0025e960: 2066 696c 6520 7769 6c6c 206e 6f74 0a74 file will not.t │ │ │ │ -0025e970: 6572 6d69 6e61 7465 2061 206c 696e 6520 erminate a line │ │ │ │ -0025e980: 636f 6e74 6169 6e69 6e67 206e 6574 7320 containing nets │ │ │ │ -0025e990: 7072 6f70 6572 6c79 2c20 616e 6420 6974 properly, and it │ │ │ │ -0025e9a0: 2077 696c 6c20 6e6f 7420 666c 7573 6820 will not flush │ │ │ │ -0025e9b0: 7468 6520 6f75 7470 7574 0a62 7566 6665 the output.buffe │ │ │ │ -0025e9c0: 722e 0a0a 5761 7973 2074 6f20 7573 6520 r...Ways to use │ │ │ │ -0025e9d0: 656e 646c 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d endl:.========== │ │ │ │ -0025e9e0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 4d61 =======.. * "Ma │ │ │ │ -0025e9f0: 6e69 7075 6c61 746f 7220 4461 7461 6261 nipulator Databa │ │ │ │ -0025ea00: 7365 2220 2d2d 2073 6565 202a 6e6f 7465 se" -- see *note │ │ │ │ -0025ea10: 204d 616e 6970 756c 6174 6f72 3a20 4d61 Manipulator: Ma │ │ │ │ -0025ea20: 6e69 7075 6c61 746f 722c 202d 2d20 7468 nipulator, -- th │ │ │ │ -0025ea30: 6520 636c 6173 730a 2020 2020 6f66 2061 e class. of a │ │ │ │ -0025ea40: 6c6c 2066 696c 6520 6d61 6e69 7075 6c61 ll file manipula │ │ │ │ -0025ea50: 746f 7273 0a20 202a 2022 4d61 6e69 7075 tors. * "Manipu │ │ │ │ -0025ea60: 6c61 746f 7220 4669 6c65 2220 2d2d 2073 lator File" -- s │ │ │ │ -0025ea70: 6565 202a 6e6f 7465 204d 616e 6970 756c ee *note Manipul │ │ │ │ -0025ea80: 6174 6f72 3a20 4d61 6e69 7075 6c61 746f ator: Manipulato │ │ │ │ -0025ea90: 722c 202d 2d20 7468 6520 636c 6173 7320 r, -- the class │ │ │ │ -0025eaa0: 6f66 0a20 2020 2061 6c6c 2066 696c 6520 of. all file │ │ │ │ -0025eab0: 6d61 6e69 7075 6c61 746f 7273 0a20 202a manipulators. * │ │ │ │ -0025eac0: 2022 4d61 6e69 7075 6c61 746f 7220 4e6f "Manipulator No │ │ │ │ -0025ead0: 7468 696e 6722 202d 2d20 7365 6520 2a6e thing" -- see *n │ │ │ │ -0025eae0: 6f74 6520 4d61 6e69 7075 6c61 746f 723a ote Manipulator: │ │ │ │ -0025eaf0: 204d 616e 6970 756c 6174 6f72 2c20 2d2d Manipulator, -- │ │ │ │ -0025eb00: 2074 6865 2063 6c61 7373 0a20 2020 206f the class. o │ │ │ │ -0025eb10: 6620 616c 6c20 6669 6c65 206d 616e 6970 f all file manip │ │ │ │ -0025eb20: 756c 6174 6f72 730a 2020 2a20 226e 6577 ulators. * "new │ │ │ │ -0025eb30: 204d 616e 6970 756c 6174 6f72 2066 726f Manipulator fro │ │ │ │ -0025eb40: 6d20 4675 6e63 7469 6f6e 2220 2d2d 2073 m Function" -- s │ │ │ │ -0025eb50: 6565 202a 6e6f 7465 204d 616e 6970 756c ee *note Manipul │ │ │ │ -0025eb60: 6174 6f72 3a20 4d61 6e69 7075 6c61 746f ator: Manipulato │ │ │ │ -0025eb70: 722c 202d 2d0a 2020 2020 7468 6520 636c r, --. the cl │ │ │ │ -0025eb80: 6173 7320 6f66 2061 6c6c 2066 696c 6520 ass of all file │ │ │ │ -0025eb90: 6d61 6e69 7075 6c61 746f 7273 0a20 202a manipulators. * │ │ │ │ -0025eba0: 2022 6d65 7468 6f64 7328 4d61 6e69 7075 "methods(Manipu │ │ │ │ -0025ebb0: 6c61 746f 7229 2220 2d2d 2073 6565 202a lator)" -- see * │ │ │ │ -0025ebc0: 6e6f 7465 206d 6574 686f 6473 3a20 6d65 note methods: me │ │ │ │ -0025ebd0: 7468 6f64 732c 202d 2d20 6c69 7374 206d thods, -- list m │ │ │ │ -0025ebe0: 6574 686f 6473 0a20 202a 2022 4d61 6e69 ethods. * "Mani │ │ │ │ -0025ebf0: 7075 6c61 746f 7220 4e65 7446 696c 6522 pulator NetFile" │ │ │ │ -0025ec00: 202d 2d20 7365 6520 2a6e 6f74 6520 4e65 -- see *note Ne │ │ │ │ -0025ec10: 7446 696c 653a 204e 6574 4669 6c65 2c20 tFile: NetFile, │ │ │ │ -0025ec20: 2d2d 2074 6865 2063 6c61 7373 206f 6620 -- the class of │ │ │ │ -0025ec30: 616c 6c0a 2020 2020 6e65 7420 6669 6c65 all. net file │ │ │ │ -0025ec40: 730a 2020 2a20 224e 6574 4669 6c65 203c s. * "NetFile < │ │ │ │ -0025ec50: 3c20 4d61 6e69 7075 6c61 746f 7222 202d < Manipulator" - │ │ │ │ -0025ec60: 2d20 7365 6520 2a6e 6f74 6520 4e65 7446 - see *note NetF │ │ │ │ -0025ec70: 696c 653a 204e 6574 4669 6c65 2c20 2d2d ile: NetFile, -- │ │ │ │ -0025ec80: 2074 6865 2063 6c61 7373 206f 6620 616c the class of al │ │ │ │ -0025ec90: 6c0a 2020 2020 6e65 7420 6669 6c65 730a l. net files. │ │ │ │ -0025eca0: 2020 2a20 2246 696c 6520 3c3c 204d 616e * "File << Man │ │ │ │ -0025ecb0: 6970 756c 6174 6f72 2220 2d2d 2073 6565 ipulator" -- see │ │ │ │ -0025ecc0: 202a 6e6f 7465 2070 7269 6e74 696e 6720 *note printing │ │ │ │ -0025ecd0: 746f 2061 2066 696c 653a 2070 7269 6e74 to a file: print │ │ │ │ -0025ece0: 696e 6720 746f 2061 2066 696c 652c 0a20 ing to a file,. │ │ │ │ -0025ecf0: 2020 202d 2d20 7072 696e 7420 746f 2061 -- print to a │ │ │ │ -0025ed00: 2066 696c 650a 2020 2a20 224e 6f74 6869 file. * "Nothi │ │ │ │ -0025ed10: 6e67 203c 3c20 4d61 6e69 7075 6c61 746f ng << Manipulato │ │ │ │ -0025ed20: 7222 202d 2d20 7365 6520 2a6e 6f74 6520 r" -- see *note │ │ │ │ -0025ed30: 7072 696e 7469 6e67 2074 6f20 6120 6669 printing to a fi │ │ │ │ -0025ed40: 6c65 3a20 7072 696e 7469 6e67 2074 6f20 le: printing to │ │ │ │ -0025ed50: 610a 2020 2020 6669 6c65 2c20 2d2d 2070 a. file, -- p │ │ │ │ -0025ed60: 7269 6e74 2074 6f20 6120 6669 6c65 0a0a rint to a file.. │ │ │ │ -0025ed70: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0025ed80: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0025ed90: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0025eda0: 7420 2a6e 6f74 6520 656e 646c 3a20 656e t *note endl: en │ │ │ │ -0025edb0: 646c 2c20 6973 2061 202a 6e6f 7465 206d dl, is a *note m │ │ │ │ -0025edc0: 616e 6970 756c 6174 6f72 3a20 4d61 6e69 anipulator: Mani │ │ │ │ -0025edd0: 7075 6c61 746f 722c 2e0a 0a2d 2d2d 2d2d pulator,...----- │ │ │ │ -0025ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025e770: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0025e780: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0025e790: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0025e7a0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0025e7b0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0025e7c0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0025e7d0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0025e7e0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +0025e7f0: 5f73 7973 7465 6d2e 6d32 3a34 3832 3a30 _system.m2:482:0 │ │ │ │ +0025e800: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +0025e810: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +0025e820: 653a 2065 6e64 6c2c 204e 6578 743a 2066 e: endl, Next: f │ │ │ │ +0025e830: 6c75 7368 2c20 5072 6576 3a20 6f70 656e lush, Prev: open │ │ │ │ +0025e840: 4f75 7441 7070 656e 645f 6c70 5374 7269 OutAppend_lpStri │ │ │ │ +0025e850: 6e67 5f72 702c 2055 703a 2075 7369 6e67 ng_rp, Up: using │ │ │ │ +0025e860: 2073 6f63 6b65 7473 0a0a 656e 646c 202d sockets..endl - │ │ │ │ +0025e870: 2d20 656e 6420 616e 206f 7574 7075 7420 - end an output │ │ │ │ +0025e880: 6c69 6e65 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a line.*********** │ │ │ │ +0025e890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0025e8a0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0025e8b0: 3d3d 3d3d 3d3d 3d3d 0a0a 6620 3c3c 2065 ========..f << e │ │ │ │ +0025e8c0: 6e64 6c20 2d2d 2065 6e64 7320 7468 6520 ndl -- ends the │ │ │ │ +0025e8d0: 6c69 6e65 2063 7572 7265 6e74 6c79 2062 line currently b │ │ │ │ +0025e8e0: 6569 6e67 2070 7574 206f 7574 2074 6f20 eing put out to │ │ │ │ +0025e8f0: 7468 6520 6669 6c65 2066 2e0a 0a0a 4974 the file f....It │ │ │ │ +0025e900: 2069 7320 616e 2065 7373 656e 7469 616c is an essential │ │ │ │ +0025e910: 2070 6f72 7461 626c 6520 7072 6f67 7261 portable progra │ │ │ │ +0025e920: 6d6d 696e 6720 7072 6163 7469 6365 2074 mming practice t │ │ │ │ +0025e930: 6f20 7573 6520 656e 646c 2061 6c77 6179 o use endl alway │ │ │ │ +0025e940: 732c 2066 6f72 0a77 7269 7469 6e67 206e s, for.writing n │ │ │ │ +0025e950: 6577 6c69 6e65 2063 6861 7261 6374 6572 ewline character │ │ │ │ +0025e960: 7320 2873 6565 202a 6e6f 7465 206e 6577 s (see *note new │ │ │ │ +0025e970: 6c69 6e65 3a20 6e65 776c 696e 652c 2920 line: newline,) │ │ │ │ +0025e980: 746f 2061 2066 696c 6520 7769 6c6c 206e to a file will n │ │ │ │ +0025e990: 6f74 0a74 6572 6d69 6e61 7465 2061 206c ot.terminate a l │ │ │ │ +0025e9a0: 696e 6520 636f 6e74 6169 6e69 6e67 206e ine containing n │ │ │ │ +0025e9b0: 6574 7320 7072 6f70 6572 6c79 2c20 616e ets properly, an │ │ │ │ +0025e9c0: 6420 6974 2077 696c 6c20 6e6f 7420 666c d it will not fl │ │ │ │ +0025e9d0: 7573 6820 7468 6520 6f75 7470 7574 0a62 ush the output.b │ │ │ │ +0025e9e0: 7566 6665 722e 0a0a 5761 7973 2074 6f20 uffer...Ways to │ │ │ │ +0025e9f0: 7573 6520 656e 646c 3a0a 3d3d 3d3d 3d3d use endl:.====== │ │ │ │ +0025ea00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0025ea10: 2022 4d61 6e69 7075 6c61 746f 7220 4461 "Manipulator Da │ │ │ │ +0025ea20: 7461 6261 7365 2220 2d2d 2073 6565 202a tabase" -- see * │ │ │ │ +0025ea30: 6e6f 7465 204d 616e 6970 756c 6174 6f72 note Manipulator │ │ │ │ +0025ea40: 3a20 4d61 6e69 7075 6c61 746f 722c 202d : Manipulator, - │ │ │ │ +0025ea50: 2d20 7468 6520 636c 6173 730a 2020 2020 - the class. │ │ │ │ +0025ea60: 6f66 2061 6c6c 2066 696c 6520 6d61 6e69 of all file mani │ │ │ │ +0025ea70: 7075 6c61 746f 7273 0a20 202a 2022 4d61 pulators. * "Ma │ │ │ │ +0025ea80: 6e69 7075 6c61 746f 7220 4669 6c65 2220 nipulator File" │ │ │ │ +0025ea90: 2d2d 2073 6565 202a 6e6f 7465 204d 616e -- see *note Man │ │ │ │ +0025eaa0: 6970 756c 6174 6f72 3a20 4d61 6e69 7075 ipulator: Manipu │ │ │ │ +0025eab0: 6c61 746f 722c 202d 2d20 7468 6520 636c lator, -- the cl │ │ │ │ +0025eac0: 6173 7320 6f66 0a20 2020 2061 6c6c 2066 ass of. all f │ │ │ │ +0025ead0: 696c 6520 6d61 6e69 7075 6c61 746f 7273 ile manipulators │ │ │ │ +0025eae0: 0a20 202a 2022 4d61 6e69 7075 6c61 746f . * "Manipulato │ │ │ │ +0025eaf0: 7220 4e6f 7468 696e 6722 202d 2d20 7365 r Nothing" -- se │ │ │ │ +0025eb00: 6520 2a6e 6f74 6520 4d61 6e69 7075 6c61 e *note Manipula │ │ │ │ +0025eb10: 746f 723a 204d 616e 6970 756c 6174 6f72 tor: Manipulator │ │ │ │ +0025eb20: 2c20 2d2d 2074 6865 2063 6c61 7373 0a20 , -- the class. │ │ │ │ +0025eb30: 2020 206f 6620 616c 6c20 6669 6c65 206d of all file m │ │ │ │ +0025eb40: 616e 6970 756c 6174 6f72 730a 2020 2a20 anipulators. * │ │ │ │ +0025eb50: 226e 6577 204d 616e 6970 756c 6174 6f72 "new Manipulator │ │ │ │ +0025eb60: 2066 726f 6d20 4675 6e63 7469 6f6e 2220 from Function" │ │ │ │ +0025eb70: 2d2d 2073 6565 202a 6e6f 7465 204d 616e -- see *note Man │ │ │ │ +0025eb80: 6970 756c 6174 6f72 3a20 4d61 6e69 7075 ipulator: Manipu │ │ │ │ +0025eb90: 6c61 746f 722c 202d 2d0a 2020 2020 7468 lator, --. th │ │ │ │ +0025eba0: 6520 636c 6173 7320 6f66 2061 6c6c 2066 e class of all f │ │ │ │ +0025ebb0: 696c 6520 6d61 6e69 7075 6c61 746f 7273 ile manipulators │ │ │ │ +0025ebc0: 0a20 202a 2022 6d65 7468 6f64 7328 4d61 . * "methods(Ma │ │ │ │ +0025ebd0: 6e69 7075 6c61 746f 7229 2220 2d2d 2073 nipulator)" -- s │ │ │ │ +0025ebe0: 6565 202a 6e6f 7465 206d 6574 686f 6473 ee *note methods │ │ │ │ +0025ebf0: 3a20 6d65 7468 6f64 732c 202d 2d20 6c69 : methods, -- li │ │ │ │ +0025ec00: 7374 206d 6574 686f 6473 0a20 202a 2022 st methods. * " │ │ │ │ +0025ec10: 4d61 6e69 7075 6c61 746f 7220 4e65 7446 Manipulator NetF │ │ │ │ +0025ec20: 696c 6522 202d 2d20 7365 6520 2a6e 6f74 ile" -- see *not │ │ │ │ +0025ec30: 6520 4e65 7446 696c 653a 204e 6574 4669 e NetFile: NetFi │ │ │ │ +0025ec40: 6c65 2c20 2d2d 2074 6865 2063 6c61 7373 le, -- the class │ │ │ │ +0025ec50: 206f 6620 616c 6c0a 2020 2020 6e65 7420 of all. net │ │ │ │ +0025ec60: 6669 6c65 730a 2020 2a20 224e 6574 4669 files. * "NetFi │ │ │ │ +0025ec70: 6c65 203c 3c20 4d61 6e69 7075 6c61 746f le << Manipulato │ │ │ │ +0025ec80: 7222 202d 2d20 7365 6520 2a6e 6f74 6520 r" -- see *note │ │ │ │ +0025ec90: 4e65 7446 696c 653a 204e 6574 4669 6c65 NetFile: NetFile │ │ │ │ +0025eca0: 2c20 2d2d 2074 6865 2063 6c61 7373 206f , -- the class o │ │ │ │ +0025ecb0: 6620 616c 6c0a 2020 2020 6e65 7420 6669 f all. net fi │ │ │ │ +0025ecc0: 6c65 730a 2020 2a20 2246 696c 6520 3c3c les. * "File << │ │ │ │ +0025ecd0: 204d 616e 6970 756c 6174 6f72 2220 2d2d Manipulator" -- │ │ │ │ +0025ece0: 2073 6565 202a 6e6f 7465 2070 7269 6e74 see *note print │ │ │ │ +0025ecf0: 696e 6720 746f 2061 2066 696c 653a 2070 ing to a file: p │ │ │ │ +0025ed00: 7269 6e74 696e 6720 746f 2061 2066 696c rinting to a fil │ │ │ │ +0025ed10: 652c 0a20 2020 202d 2d20 7072 696e 7420 e,. -- print │ │ │ │ +0025ed20: 746f 2061 2066 696c 650a 2020 2a20 224e to a file. * "N │ │ │ │ +0025ed30: 6f74 6869 6e67 203c 3c20 4d61 6e69 7075 othing << Manipu │ │ │ │ +0025ed40: 6c61 746f 7222 202d 2d20 7365 6520 2a6e lator" -- see *n │ │ │ │ +0025ed50: 6f74 6520 7072 696e 7469 6e67 2074 6f20 ote printing to │ │ │ │ +0025ed60: 6120 6669 6c65 3a20 7072 696e 7469 6e67 a file: printing │ │ │ │ +0025ed70: 2074 6f20 610a 2020 2020 6669 6c65 2c20 to a. file, │ │ │ │ +0025ed80: 2d2d 2070 7269 6e74 2074 6f20 6120 6669 -- print to a fi │ │ │ │ +0025ed90: 6c65 0a0a 466f 7220 7468 6520 7072 6f67 le..For the prog │ │ │ │ +0025eda0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +0025edb0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +0025edc0: 626a 6563 7420 2a6e 6f74 6520 656e 646c bject *note endl │ │ │ │ +0025edd0: 3a20 656e 646c 2c20 6973 2061 202a 6e6f : endl, is a *no │ │ │ │ +0025ede0: 7465 206d 616e 6970 756c 6174 6f72 3a20 te manipulator: │ │ │ │ +0025edf0: 4d61 6e69 7075 6c61 746f 722c 2e0a 0a2d Manipulator,...- │ │ │ │ 0025ee00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025ee10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025ee20: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0025ee30: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0025ee40: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0025ee50: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0025ee60: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0025ee70: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0025ee80: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0025ee90: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -0025eea0: 6f76 5f73 7973 7465 6d2e 6d32 3a31 3535 ov_system.m2:155 │ │ │ │ -0025eeb0: 333a 302e 0a1f 0a46 696c 653a 204d 6163 3:0....File: Mac │ │ │ │ -0025eec0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ -0025eed0: 4e6f 6465 3a20 666c 7573 682c 204e 6578 Node: flush, Nex │ │ │ │ -0025eee0: 743a 2063 6c6f 7365 2c20 5072 6576 3a20 t: close, Prev: │ │ │ │ -0025eef0: 656e 646c 2c20 5570 3a20 7573 696e 6720 endl, Up: using │ │ │ │ -0025ef00: 736f 636b 6574 730a 0a66 6c75 7368 202d sockets..flush - │ │ │ │ -0025ef10: 2d20 666c 7573 6820 6f75 7470 7574 2074 - flush output t │ │ │ │ -0025ef20: 6f20 6669 6c65 0a2a 2a2a 2a2a 2a2a 2a2a o file.********* │ │ │ │ -0025ef30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025ef40: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ -0025ef50: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a66 n.===========..f │ │ │ │ -0025ef60: 203c 3c20 666c 7573 6820 2d2d 2077 7269 << flush -- wri │ │ │ │ -0025ef70: 7465 7320 6f75 7420 616e 7920 6275 6666 tes out any buff │ │ │ │ -0025ef80: 6572 6564 206f 7574 7075 7420 666f 7220 ered output for │ │ │ │ -0025ef90: 7468 6520 6f75 7470 7574 2066 696c 6520 the output file │ │ │ │ -0025efa0: 662e 0a0a 5761 7973 2074 6f20 7573 6520 f...Ways to use │ │ │ │ -0025efb0: 666c 7573 683a 0a3d 3d3d 3d3d 3d3d 3d3d flush:.========= │ │ │ │ -0025efc0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0025efd0: 4d61 6e69 7075 6c61 746f 7220 4461 7461 Manipulator Data │ │ │ │ -0025efe0: 6261 7365 2220 2d2d 2073 6565 202a 6e6f base" -- see *no │ │ │ │ -0025eff0: 7465 204d 616e 6970 756c 6174 6f72 3a20 te Manipulator: │ │ │ │ -0025f000: 4d61 6e69 7075 6c61 746f 722c 202d 2d20 Manipulator, -- │ │ │ │ -0025f010: 7468 6520 636c 6173 730a 2020 2020 6f66 the class. of │ │ │ │ -0025f020: 2061 6c6c 2066 696c 6520 6d61 6e69 7075 all file manipu │ │ │ │ -0025f030: 6c61 746f 7273 0a20 202a 2022 4d61 6e69 lators. * "Mani │ │ │ │ -0025f040: 7075 6c61 746f 7220 4669 6c65 2220 2d2d pulator File" -- │ │ │ │ -0025f050: 2073 6565 202a 6e6f 7465 204d 616e 6970 see *note Manip │ │ │ │ -0025f060: 756c 6174 6f72 3a20 4d61 6e69 7075 6c61 ulator: Manipula │ │ │ │ -0025f070: 746f 722c 202d 2d20 7468 6520 636c 6173 tor, -- the clas │ │ │ │ -0025f080: 7320 6f66 0a20 2020 2061 6c6c 2066 696c s of. all fil │ │ │ │ -0025f090: 6520 6d61 6e69 7075 6c61 746f 7273 0a20 e manipulators. │ │ │ │ -0025f0a0: 202a 2022 4d61 6e69 7075 6c61 746f 7220 * "Manipulator │ │ │ │ -0025f0b0: 4e6f 7468 696e 6722 202d 2d20 7365 6520 Nothing" -- see │ │ │ │ -0025f0c0: 2a6e 6f74 6520 4d61 6e69 7075 6c61 746f *note Manipulato │ │ │ │ -0025f0d0: 723a 204d 616e 6970 756c 6174 6f72 2c20 r: Manipulator, │ │ │ │ -0025f0e0: 2d2d 2074 6865 2063 6c61 7373 0a20 2020 -- the class. │ │ │ │ -0025f0f0: 206f 6620 616c 6c20 6669 6c65 206d 616e of all file man │ │ │ │ -0025f100: 6970 756c 6174 6f72 730a 2020 2a20 226e ipulators. * "n │ │ │ │ -0025f110: 6577 204d 616e 6970 756c 6174 6f72 2066 ew Manipulator f │ │ │ │ -0025f120: 726f 6d20 4675 6e63 7469 6f6e 2220 2d2d rom Function" -- │ │ │ │ -0025f130: 2073 6565 202a 6e6f 7465 204d 616e 6970 see *note Manip │ │ │ │ -0025f140: 756c 6174 6f72 3a20 4d61 6e69 7075 6c61 ulator: Manipula │ │ │ │ -0025f150: 746f 722c 202d 2d0a 2020 2020 7468 6520 tor, --. the │ │ │ │ -0025f160: 636c 6173 7320 6f66 2061 6c6c 2066 696c class of all fil │ │ │ │ -0025f170: 6520 6d61 6e69 7075 6c61 746f 7273 0a20 e manipulators. │ │ │ │ -0025f180: 202a 2022 6d65 7468 6f64 7328 4d61 6e69 * "methods(Mani │ │ │ │ -0025f190: 7075 6c61 746f 7229 2220 2d2d 2073 6565 pulator)" -- see │ │ │ │ -0025f1a0: 202a 6e6f 7465 206d 6574 686f 6473 3a20 *note methods: │ │ │ │ -0025f1b0: 6d65 7468 6f64 732c 202d 2d20 6c69 7374 methods, -- list │ │ │ │ -0025f1c0: 206d 6574 686f 6473 0a20 202a 2022 4d61 methods. * "Ma │ │ │ │ -0025f1d0: 6e69 7075 6c61 746f 7220 4e65 7446 696c nipulator NetFil │ │ │ │ -0025f1e0: 6522 202d 2d20 7365 6520 2a6e 6f74 6520 e" -- see *note │ │ │ │ -0025f1f0: 4e65 7446 696c 653a 204e 6574 4669 6c65 NetFile: NetFile │ │ │ │ -0025f200: 2c20 2d2d 2074 6865 2063 6c61 7373 206f , -- the class o │ │ │ │ -0025f210: 6620 616c 6c0a 2020 2020 6e65 7420 6669 f all. net fi │ │ │ │ -0025f220: 6c65 730a 2020 2a20 224e 6574 4669 6c65 les. * "NetFile │ │ │ │ -0025f230: 203c 3c20 4d61 6e69 7075 6c61 746f 7222 << Manipulator" │ │ │ │ -0025f240: 202d 2d20 7365 6520 2a6e 6f74 6520 4e65 -- see *note Ne │ │ │ │ -0025f250: 7446 696c 653a 204e 6574 4669 6c65 2c20 tFile: NetFile, │ │ │ │ -0025f260: 2d2d 2074 6865 2063 6c61 7373 206f 6620 -- the class of │ │ │ │ -0025f270: 616c 6c0a 2020 2020 6e65 7420 6669 6c65 all. net file │ │ │ │ -0025f280: 730a 2020 2a20 2246 696c 6520 3c3c 204d s. * "File << M │ │ │ │ -0025f290: 616e 6970 756c 6174 6f72 2220 2d2d 2073 anipulator" -- s │ │ │ │ -0025f2a0: 6565 202a 6e6f 7465 2070 7269 6e74 696e ee *note printin │ │ │ │ -0025f2b0: 6720 746f 2061 2066 696c 653a 2070 7269 g to a file: pri │ │ │ │ -0025f2c0: 6e74 696e 6720 746f 2061 2066 696c 652c nting to a file, │ │ │ │ -0025f2d0: 0a20 2020 202d 2d20 7072 696e 7420 746f . -- print to │ │ │ │ -0025f2e0: 2061 2066 696c 650a 2020 2a20 224e 6f74 a file. * "Not │ │ │ │ -0025f2f0: 6869 6e67 203c 3c20 4d61 6e69 7075 6c61 hing << Manipula │ │ │ │ -0025f300: 746f 7222 202d 2d20 7365 6520 2a6e 6f74 tor" -- see *not │ │ │ │ -0025f310: 6520 7072 696e 7469 6e67 2074 6f20 6120 e printing to a │ │ │ │ -0025f320: 6669 6c65 3a20 7072 696e 7469 6e67 2074 file: printing t │ │ │ │ -0025f330: 6f20 610a 2020 2020 6669 6c65 2c20 2d2d o a. file, -- │ │ │ │ -0025f340: 2070 7269 6e74 2074 6f20 6120 6669 6c65 print to a file │ │ │ │ -0025f350: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0025f360: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0025f370: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0025f380: 6563 7420 2a6e 6f74 6520 666c 7573 683a ect *note flush: │ │ │ │ -0025f390: 2066 6c75 7368 2c20 6973 2061 202a 6e6f flush, is a *no │ │ │ │ -0025f3a0: 7465 206d 616e 6970 756c 6174 6f72 3a20 te manipulator: │ │ │ │ -0025f3b0: 4d61 6e69 7075 6c61 746f 722c 2e0a 0a2d Manipulator,...- │ │ │ │ -0025f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025ee20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025ee30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025ee40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0025ee50: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0025ee60: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0025ee70: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0025ee80: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0025ee90: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0025eea0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0025eeb0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0025eec0: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0025eed0: 3a31 3535 333a 302e 0a1f 0a46 696c 653a :1553:0....File: │ │ │ │ +0025eee0: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +0025eef0: 666f 2c20 4e6f 6465 3a20 666c 7573 682c fo, Node: flush, │ │ │ │ +0025ef00: 204e 6578 743a 2063 6c6f 7365 2c20 5072 Next: close, Pr │ │ │ │ +0025ef10: 6576 3a20 656e 646c 2c20 5570 3a20 7573 ev: endl, Up: us │ │ │ │ +0025ef20: 696e 6720 736f 636b 6574 730a 0a66 6c75 ing sockets..flu │ │ │ │ +0025ef30: 7368 202d 2d20 666c 7573 6820 6f75 7470 sh -- flush outp │ │ │ │ +0025ef40: 7574 2074 6f20 6669 6c65 0a2a 2a2a 2a2a ut to file.***** │ │ │ │ +0025ef50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0025ef60: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0025ef70: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0025ef80: 3d0a 0a66 203c 3c20 666c 7573 6820 2d2d =..f << flush -- │ │ │ │ +0025ef90: 2077 7269 7465 7320 6f75 7420 616e 7920 writes out any │ │ │ │ +0025efa0: 6275 6666 6572 6564 206f 7574 7075 7420 buffered output │ │ │ │ +0025efb0: 666f 7220 7468 6520 6f75 7470 7574 2066 for the output f │ │ │ │ +0025efc0: 696c 6520 662e 0a0a 5761 7973 2074 6f20 ile f...Ways to │ │ │ │ +0025efd0: 7573 6520 666c 7573 683a 0a3d 3d3d 3d3d use flush:.===== │ │ │ │ +0025efe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0025eff0: 202a 2022 4d61 6e69 7075 6c61 746f 7220 * "Manipulator │ │ │ │ +0025f000: 4461 7461 6261 7365 2220 2d2d 2073 6565 Database" -- see │ │ │ │ +0025f010: 202a 6e6f 7465 204d 616e 6970 756c 6174 *note Manipulat │ │ │ │ +0025f020: 6f72 3a20 4d61 6e69 7075 6c61 746f 722c or: Manipulator, │ │ │ │ +0025f030: 202d 2d20 7468 6520 636c 6173 730a 2020 -- the class. │ │ │ │ +0025f040: 2020 6f66 2061 6c6c 2066 696c 6520 6d61 of all file ma │ │ │ │ +0025f050: 6e69 7075 6c61 746f 7273 0a20 202a 2022 nipulators. * " │ │ │ │ +0025f060: 4d61 6e69 7075 6c61 746f 7220 4669 6c65 Manipulator File │ │ │ │ +0025f070: 2220 2d2d 2073 6565 202a 6e6f 7465 204d " -- see *note M │ │ │ │ +0025f080: 616e 6970 756c 6174 6f72 3a20 4d61 6e69 anipulator: Mani │ │ │ │ +0025f090: 7075 6c61 746f 722c 202d 2d20 7468 6520 pulator, -- the │ │ │ │ +0025f0a0: 636c 6173 7320 6f66 0a20 2020 2061 6c6c class of. all │ │ │ │ +0025f0b0: 2066 696c 6520 6d61 6e69 7075 6c61 746f file manipulato │ │ │ │ +0025f0c0: 7273 0a20 202a 2022 4d61 6e69 7075 6c61 rs. * "Manipula │ │ │ │ +0025f0d0: 746f 7220 4e6f 7468 696e 6722 202d 2d20 tor Nothing" -- │ │ │ │ +0025f0e0: 7365 6520 2a6e 6f74 6520 4d61 6e69 7075 see *note Manipu │ │ │ │ +0025f0f0: 6c61 746f 723a 204d 616e 6970 756c 6174 lator: Manipulat │ │ │ │ +0025f100: 6f72 2c20 2d2d 2074 6865 2063 6c61 7373 or, -- the class │ │ │ │ +0025f110: 0a20 2020 206f 6620 616c 6c20 6669 6c65 . of all file │ │ │ │ +0025f120: 206d 616e 6970 756c 6174 6f72 730a 2020 manipulators. │ │ │ │ +0025f130: 2a20 226e 6577 204d 616e 6970 756c 6174 * "new Manipulat │ │ │ │ +0025f140: 6f72 2066 726f 6d20 4675 6e63 7469 6f6e or from Function │ │ │ │ +0025f150: 2220 2d2d 2073 6565 202a 6e6f 7465 204d " -- see *note M │ │ │ │ +0025f160: 616e 6970 756c 6174 6f72 3a20 4d61 6e69 anipulator: Mani │ │ │ │ +0025f170: 7075 6c61 746f 722c 202d 2d0a 2020 2020 pulator, --. │ │ │ │ +0025f180: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ +0025f190: 2066 696c 6520 6d61 6e69 7075 6c61 746f file manipulato │ │ │ │ +0025f1a0: 7273 0a20 202a 2022 6d65 7468 6f64 7328 rs. * "methods( │ │ │ │ +0025f1b0: 4d61 6e69 7075 6c61 746f 7229 2220 2d2d Manipulator)" -- │ │ │ │ +0025f1c0: 2073 6565 202a 6e6f 7465 206d 6574 686f see *note metho │ │ │ │ +0025f1d0: 6473 3a20 6d65 7468 6f64 732c 202d 2d20 ds: methods, -- │ │ │ │ +0025f1e0: 6c69 7374 206d 6574 686f 6473 0a20 202a list methods. * │ │ │ │ +0025f1f0: 2022 4d61 6e69 7075 6c61 746f 7220 4e65 "Manipulator Ne │ │ │ │ +0025f200: 7446 696c 6522 202d 2d20 7365 6520 2a6e tFile" -- see *n │ │ │ │ +0025f210: 6f74 6520 4e65 7446 696c 653a 204e 6574 ote NetFile: Net │ │ │ │ +0025f220: 4669 6c65 2c20 2d2d 2074 6865 2063 6c61 File, -- the cla │ │ │ │ +0025f230: 7373 206f 6620 616c 6c0a 2020 2020 6e65 ss of all. ne │ │ │ │ +0025f240: 7420 6669 6c65 730a 2020 2a20 224e 6574 t files. * "Net │ │ │ │ +0025f250: 4669 6c65 203c 3c20 4d61 6e69 7075 6c61 File << Manipula │ │ │ │ +0025f260: 746f 7222 202d 2d20 7365 6520 2a6e 6f74 tor" -- see *not │ │ │ │ +0025f270: 6520 4e65 7446 696c 653a 204e 6574 4669 e NetFile: NetFi │ │ │ │ +0025f280: 6c65 2c20 2d2d 2074 6865 2063 6c61 7373 le, -- the class │ │ │ │ +0025f290: 206f 6620 616c 6c0a 2020 2020 6e65 7420 of all. net │ │ │ │ +0025f2a0: 6669 6c65 730a 2020 2a20 2246 696c 6520 files. * "File │ │ │ │ +0025f2b0: 3c3c 204d 616e 6970 756c 6174 6f72 2220 << Manipulator" │ │ │ │ +0025f2c0: 2d2d 2073 6565 202a 6e6f 7465 2070 7269 -- see *note pri │ │ │ │ +0025f2d0: 6e74 696e 6720 746f 2061 2066 696c 653a nting to a file: │ │ │ │ +0025f2e0: 2070 7269 6e74 696e 6720 746f 2061 2066 printing to a f │ │ │ │ +0025f2f0: 696c 652c 0a20 2020 202d 2d20 7072 696e ile,. -- prin │ │ │ │ +0025f300: 7420 746f 2061 2066 696c 650a 2020 2a20 t to a file. * │ │ │ │ +0025f310: 224e 6f74 6869 6e67 203c 3c20 4d61 6e69 "Nothing << Mani │ │ │ │ +0025f320: 7075 6c61 746f 7222 202d 2d20 7365 6520 pulator" -- see │ │ │ │ +0025f330: 2a6e 6f74 6520 7072 696e 7469 6e67 2074 *note printing t │ │ │ │ +0025f340: 6f20 6120 6669 6c65 3a20 7072 696e 7469 o a file: printi │ │ │ │ +0025f350: 6e67 2074 6f20 610a 2020 2020 6669 6c65 ng to a. file │ │ │ │ +0025f360: 2c20 2d2d 2070 7269 6e74 2074 6f20 6120 , -- print to a │ │ │ │ +0025f370: 6669 6c65 0a0a 466f 7220 7468 6520 7072 file..For the pr │ │ │ │ +0025f380: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0025f390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0025f3a0: 206f 626a 6563 7420 2a6e 6f74 6520 666c object *note fl │ │ │ │ +0025f3b0: 7573 683a 2066 6c75 7368 2c20 6973 2061 ush: flush, is a │ │ │ │ +0025f3c0: 202a 6e6f 7465 206d 616e 6970 756c 6174 *note manipulat │ │ │ │ +0025f3d0: 6f72 3a20 4d61 6e69 7075 6c61 746f 722c or: Manipulator, │ │ │ │ +0025f3e0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 0025f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0025f410: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0025f420: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0025f430: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0025f440: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0025f450: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0025f460: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0025f470: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -0025f480: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -0025f490: 3a31 3534 313a 302e 0a1f 0a46 696c 653a :1541:0....File: │ │ │ │ -0025f4a0: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -0025f4b0: 666f 2c20 4e6f 6465 3a20 636c 6f73 652c fo, Node: close, │ │ │ │ -0025f4c0: 204e 6578 743a 2063 6c6f 7365 496e 2c20 Next: closeIn, │ │ │ │ -0025f4d0: 5072 6576 3a20 666c 7573 682c 2055 703a Prev: flush, Up: │ │ │ │ -0025f4e0: 2075 7369 6e67 2073 6f63 6b65 7473 0a0a using sockets.. │ │ │ │ -0025f4f0: 636c 6f73 6520 2d2d 2063 6c6f 7365 2061 close -- close a │ │ │ │ -0025f500: 2066 696c 650a 2a2a 2a2a 2a2a 2a2a 2a2a file.********** │ │ │ │ -0025f510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -0025f520: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0025f530: 3d3d 3d3d 0a0a 6620 3c3c 2063 6c6f 7365 ====..f << close │ │ │ │ -0025f540: 202d 2d20 636c 6f73 6573 2074 6865 2066 -- closes the f │ │ │ │ -0025f550: 696c 6520 662e 0a63 6c6f 7365 2066 202d ile f..close f - │ │ │ │ -0025f560: 2d20 636c 6f73 6573 2074 6865 2066 696c - closes the fil │ │ │ │ -0025f570: 6520 662e 0a0a 0a49 6e20 7468 6520 6361 e f....In the ca │ │ │ │ -0025f580: 7365 206f 6620 616e 206f 7574 7075 7420 se of an output │ │ │ │ -0025f590: 6669 6c65 2c20 616e 7920 6275 6666 6572 file, any buffer │ │ │ │ -0025f5a0: 6564 206f 7574 7075 7420 6973 2066 6972 ed output is fir │ │ │ │ -0025f5b0: 7374 2077 7269 7474 656e 2074 6f20 7468 st written to th │ │ │ │ -0025f5c0: 650a 6669 6c65 2c20 616e 6420 7468 6520 e.file, and the │ │ │ │ -0025f5d0: 7265 7475 726e 2076 616c 7565 2069 7320 return value is │ │ │ │ -0025f5e0: 616e 2069 6e74 6567 6572 2c20 6e6f 726d an integer, norm │ │ │ │ -0025f5f0: 616c 6c79 2030 2c20 6f72 202d 3120 6f6e ally 0, or -1 on │ │ │ │ -0025f600: 2065 7272 6f72 2c20 6f72 2074 6865 0a72 error, or the.r │ │ │ │ -0025f610: 6574 7572 6e20 7374 6174 7573 206f 6620 eturn status of │ │ │ │ -0025f620: 7468 6520 6368 696c 6420 7072 6f63 6573 the child proces │ │ │ │ -0025f630: 7320 696e 2063 6173 6520 7468 6520 6669 s in case the fi │ │ │ │ -0025f640: 6c65 2077 6173 2061 2070 6970 652e 0a0a le was a pipe... │ │ │ │ -0025f650: 0a49 6620 7468 6520 6669 6c65 2077 6173 .If the file was │ │ │ │ -0025f660: 206f 7065 6e20 666f 7220 626f 7468 2069 open for both i │ │ │ │ -0025f670: 6e70 7574 2061 6e64 206f 7574 7075 742c nput and output, │ │ │ │ -0025f680: 2062 6f74 6820 6469 7265 6374 696f 6e73 both directions │ │ │ │ -0025f690: 2061 7265 2063 6c6f 7365 642e 0a0a 0a49 are closed....I │ │ │ │ -0025f6a0: 6620 7468 6520 6669 6c65 2069 7320 6120 f the file is a │ │ │ │ -0025f6b0: 7069 7065 2074 6f20 616e 6f74 6865 7220 pipe to another │ │ │ │ -0025f6c0: 7072 6f63 6573 732c 2069 2e65 2e2c 2074 process, i.e., t │ │ │ │ -0025f6d0: 6865 2066 696c 656e 616d 6520 6265 6761 he filename bega │ │ │ │ -0025f6e0: 6e20 7769 7468 2074 6865 0a63 6861 7261 n with the.chara │ │ │ │ -0025f6f0: 6374 6572 2021 2c20 7765 2077 696c 6c20 cter !, we will │ │ │ │ -0025f700: 7761 6974 2066 6f72 2074 6865 2070 726f wait for the pro │ │ │ │ -0025f710: 6365 7373 2074 6f20 7465 726d 696e 6174 cess to terminat │ │ │ │ -0025f720: 652e 2020 4966 2079 6f75 2064 6f6e 2774 e. If you don't │ │ │ │ -0025f730: 2077 616e 7420 746f 0a77 6169 7420 666f want to.wait fo │ │ │ │ -0025f740: 7220 7468 6520 7072 6f63 6573 7320 746f r the process to │ │ │ │ -0025f750: 2074 6572 6d69 6e61 7465 2c20 6f70 656e terminate, open │ │ │ │ -0025f760: 2074 6865 2066 696c 6520 7769 7468 202a the file with * │ │ │ │ -0025f770: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a0a note openInOut:. │ │ │ │ -0025f780: 6f70 656e 496e 4f75 742c 2c20 616e 6420 openInOut,, and │ │ │ │ -0025f790: 6966 206e 6563 6573 7361 7279 2c20 7573 if necessary, us │ │ │ │ -0025f7a0: 6520 2a6e 6f74 6520 636c 6f73 6549 6e3a e *note closeIn: │ │ │ │ -0025f7b0: 2063 6c6f 7365 496e 2c20 746f 2063 6c6f closeIn, to clo │ │ │ │ -0025f7c0: 7365 2069 742c 2074 6f0a 696e 6469 6361 se it, to.indica │ │ │ │ -0025f7d0: 7465 2074 6861 7420 6974 2068 6173 2072 te that it has r │ │ │ │ -0025f7e0: 6563 6569 7665 6420 616c 6c20 6974 7320 eceived all its │ │ │ │ -0025f7f0: 696e 7075 742e 0a0a 0a49 6620 7468 6520 input....If the │ │ │ │ -0025f800: 6669 6c65 2069 7320 7374 6469 6f20 7468 file is stdio th │ │ │ │ -0025f810: 656e 2069 7420 6973 206c 6566 7420 6f70 en it is left op │ │ │ │ -0025f820: 656e 2c20 616e 6420 6e6f 2065 7272 6f72 en, and no error │ │ │ │ -0025f830: 2069 7320 7369 676e 616c 6564 2e0a 0a57 is signaled...W │ │ │ │ -0025f840: 6179 7320 746f 2075 7365 2063 6c6f 7365 ays to use close │ │ │ │ -0025f850: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0025f860: 3d3d 3d3d 0a0a 2020 2a20 224d 616e 6970 ====.. * "Manip │ │ │ │ -0025f870: 756c 6174 6f72 2044 6174 6162 6173 6522 ulator Database" │ │ │ │ -0025f880: 202d 2d20 7365 6520 2a6e 6f74 6520 4d61 -- see *note Ma │ │ │ │ -0025f890: 6e69 7075 6c61 746f 723a 204d 616e 6970 nipulator: Manip │ │ │ │ -0025f8a0: 756c 6174 6f72 2c20 2d2d 2074 6865 2063 ulator, -- the c │ │ │ │ -0025f8b0: 6c61 7373 0a20 2020 206f 6620 616c 6c20 lass. of all │ │ │ │ -0025f8c0: 6669 6c65 206d 616e 6970 756c 6174 6f72 file manipulator │ │ │ │ -0025f8d0: 730a 2020 2a20 224d 616e 6970 756c 6174 s. * "Manipulat │ │ │ │ -0025f8e0: 6f72 2046 696c 6522 202d 2d20 7365 6520 or File" -- see │ │ │ │ -0025f8f0: 2a6e 6f74 6520 4d61 6e69 7075 6c61 746f *note Manipulato │ │ │ │ -0025f900: 723a 204d 616e 6970 756c 6174 6f72 2c20 r: Manipulator, │ │ │ │ -0025f910: 2d2d 2074 6865 2063 6c61 7373 206f 660a -- the class of. │ │ │ │ -0025f920: 2020 2020 616c 6c20 6669 6c65 206d 616e all file man │ │ │ │ -0025f930: 6970 756c 6174 6f72 730a 2020 2a20 224d ipulators. * "M │ │ │ │ -0025f940: 616e 6970 756c 6174 6f72 204e 6f74 6869 anipulator Nothi │ │ │ │ -0025f950: 6e67 2220 2d2d 2073 6565 202a 6e6f 7465 ng" -- see *note │ │ │ │ -0025f960: 204d 616e 6970 756c 6174 6f72 3a20 4d61 Manipulator: Ma │ │ │ │ -0025f970: 6e69 7075 6c61 746f 722c 202d 2d20 7468 nipulator, -- th │ │ │ │ -0025f980: 6520 636c 6173 730a 2020 2020 6f66 2061 e class. of a │ │ │ │ -0025f990: 6c6c 2066 696c 6520 6d61 6e69 7075 6c61 ll file manipula │ │ │ │ -0025f9a0: 746f 7273 0a20 202a 2022 6e65 7720 4d61 tors. * "new Ma │ │ │ │ -0025f9b0: 6e69 7075 6c61 746f 7220 6672 6f6d 2046 nipulator from F │ │ │ │ -0025f9c0: 756e 6374 696f 6e22 202d 2d20 7365 6520 unction" -- see │ │ │ │ -0025f9d0: 2a6e 6f74 6520 4d61 6e69 7075 6c61 746f *note Manipulato │ │ │ │ -0025f9e0: 723a 204d 616e 6970 756c 6174 6f72 2c20 r: Manipulator, │ │ │ │ -0025f9f0: 2d2d 0a20 2020 2074 6865 2063 6c61 7373 --. the class │ │ │ │ -0025fa00: 206f 6620 616c 6c20 6669 6c65 206d 616e of all file man │ │ │ │ -0025fa10: 6970 756c 6174 6f72 730a 2020 2a20 226d ipulators. * "m │ │ │ │ -0025fa20: 6574 686f 6473 284d 616e 6970 756c 6174 ethods(Manipulat │ │ │ │ -0025fa30: 6f72 2922 202d 2d20 7365 6520 2a6e 6f74 or)" -- see *not │ │ │ │ -0025fa40: 6520 6d65 7468 6f64 733a 206d 6574 686f e methods: metho │ │ │ │ -0025fa50: 6473 2c20 2d2d 206c 6973 7420 6d65 7468 ds, -- list meth │ │ │ │ -0025fa60: 6f64 730a 2020 2a20 224d 616e 6970 756c ods. * "Manipul │ │ │ │ -0025fa70: 6174 6f72 204e 6574 4669 6c65 2220 2d2d ator NetFile" -- │ │ │ │ -0025fa80: 2073 6565 202a 6e6f 7465 204e 6574 4669 see *note NetFi │ │ │ │ -0025fa90: 6c65 3a20 4e65 7446 696c 652c 202d 2d20 le: NetFile, -- │ │ │ │ -0025faa0: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ -0025fab0: 0a20 2020 206e 6574 2066 696c 6573 0a20 . net files. │ │ │ │ -0025fac0: 202a 2022 4e65 7446 696c 6520 3c3c 204d * "NetFile << M │ │ │ │ -0025fad0: 616e 6970 756c 6174 6f72 2220 2d2d 2073 anipulator" -- s │ │ │ │ -0025fae0: 6565 202a 6e6f 7465 204e 6574 4669 6c65 ee *note NetFile │ │ │ │ -0025faf0: 3a20 4e65 7446 696c 652c 202d 2d20 7468 : NetFile, -- th │ │ │ │ -0025fb00: 6520 636c 6173 7320 6f66 2061 6c6c 0a20 e class of all. │ │ │ │ -0025fb10: 2020 206e 6574 2066 696c 6573 0a20 202a net files. * │ │ │ │ -0025fb20: 2022 4669 6c65 203c 3c20 4d61 6e69 7075 "File << Manipu │ │ │ │ -0025fb30: 6c61 746f 7222 202d 2d20 7365 6520 2a6e lator" -- see *n │ │ │ │ -0025fb40: 6f74 6520 7072 696e 7469 6e67 2074 6f20 ote printing to │ │ │ │ -0025fb50: 6120 6669 6c65 3a20 7072 696e 7469 6e67 a file: printing │ │ │ │ -0025fb60: 2074 6f20 6120 6669 6c65 2c0a 2020 2020 to a file,. │ │ │ │ -0025fb70: 2d2d 2070 7269 6e74 2074 6f20 6120 6669 -- print to a fi │ │ │ │ -0025fb80: 6c65 0a20 202a 2022 4e6f 7468 696e 6720 le. * "Nothing │ │ │ │ -0025fb90: 3c3c 204d 616e 6970 756c 6174 6f72 2220 << Manipulator" │ │ │ │ -0025fba0: 2d2d 2073 6565 202a 6e6f 7465 2070 7269 -- see *note pri │ │ │ │ -0025fbb0: 6e74 696e 6720 746f 2061 2066 696c 653a nting to a file: │ │ │ │ -0025fbc0: 2070 7269 6e74 696e 6720 746f 2061 0a20 printing to a. │ │ │ │ -0025fbd0: 2020 2066 696c 652c 202d 2d20 7072 696e file, -- prin │ │ │ │ -0025fbe0: 7420 746f 2061 2066 696c 650a 0a46 6f72 t to a file..For │ │ │ │ -0025fbf0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0025fc00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0025fc10: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0025fc20: 6e6f 7465 2063 6c6f 7365 3a20 636c 6f73 note close: clos │ │ │ │ -0025fc30: 652c 2069 7320 6120 2a6e 6f74 6520 6d61 e, is a *note ma │ │ │ │ -0025fc40: 6e69 7075 6c61 746f 723a 204d 616e 6970 nipulator: Manip │ │ │ │ -0025fc50: 756c 6174 6f72 2c2e 0a0a 2d2d 2d2d 2d2d ulator,...------ │ │ │ │ -0025fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025fc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025f430: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0025f440: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0025f450: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0025f460: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0025f470: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0025f480: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0025f490: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +0025f4a0: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +0025f4b0: 6d2e 6d32 3a31 3534 313a 302e 0a1f 0a46 m.m2:1541:0....F │ │ │ │ +0025f4c0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +0025f4d0: 632e 696e 666f 2c20 4e6f 6465 3a20 636c c.info, Node: cl │ │ │ │ +0025f4e0: 6f73 652c 204e 6578 743a 2063 6c6f 7365 ose, Next: close │ │ │ │ +0025f4f0: 496e 2c20 5072 6576 3a20 666c 7573 682c In, Prev: flush, │ │ │ │ +0025f500: 2055 703a 2075 7369 6e67 2073 6f63 6b65 Up: using socke │ │ │ │ +0025f510: 7473 0a0a 636c 6f73 6520 2d2d 2063 6c6f ts..close -- clo │ │ │ │ +0025f520: 7365 2061 2066 696c 650a 2a2a 2a2a 2a2a se a file.****** │ │ │ │ +0025f530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0025f540: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0025f550: 3d3d 3d3d 3d3d 3d3d 0a0a 6620 3c3c 2063 ========..f << c │ │ │ │ +0025f560: 6c6f 7365 202d 2d20 636c 6f73 6573 2074 lose -- closes t │ │ │ │ +0025f570: 6865 2066 696c 6520 662e 0a63 6c6f 7365 he file f..close │ │ │ │ +0025f580: 2066 202d 2d20 636c 6f73 6573 2074 6865 f -- closes the │ │ │ │ +0025f590: 2066 696c 6520 662e 0a0a 0a49 6e20 7468 file f....In th │ │ │ │ +0025f5a0: 6520 6361 7365 206f 6620 616e 206f 7574 e case of an out │ │ │ │ +0025f5b0: 7075 7420 6669 6c65 2c20 616e 7920 6275 put file, any bu │ │ │ │ +0025f5c0: 6666 6572 6564 206f 7574 7075 7420 6973 ffered output is │ │ │ │ +0025f5d0: 2066 6972 7374 2077 7269 7474 656e 2074 first written t │ │ │ │ +0025f5e0: 6f20 7468 650a 6669 6c65 2c20 616e 6420 o the.file, and │ │ │ │ +0025f5f0: 7468 6520 7265 7475 726e 2076 616c 7565 the return value │ │ │ │ +0025f600: 2069 7320 616e 2069 6e74 6567 6572 2c20 is an integer, │ │ │ │ +0025f610: 6e6f 726d 616c 6c79 2030 2c20 6f72 202d normally 0, or - │ │ │ │ +0025f620: 3120 6f6e 2065 7272 6f72 2c20 6f72 2074 1 on error, or t │ │ │ │ +0025f630: 6865 0a72 6574 7572 6e20 7374 6174 7573 he.return status │ │ │ │ +0025f640: 206f 6620 7468 6520 6368 696c 6420 7072 of the child pr │ │ │ │ +0025f650: 6f63 6573 7320 696e 2063 6173 6520 7468 ocess in case th │ │ │ │ +0025f660: 6520 6669 6c65 2077 6173 2061 2070 6970 e file was a pip │ │ │ │ +0025f670: 652e 0a0a 0a49 6620 7468 6520 6669 6c65 e....If the file │ │ │ │ +0025f680: 2077 6173 206f 7065 6e20 666f 7220 626f was open for bo │ │ │ │ +0025f690: 7468 2069 6e70 7574 2061 6e64 206f 7574 th input and out │ │ │ │ +0025f6a0: 7075 742c 2062 6f74 6820 6469 7265 6374 put, both direct │ │ │ │ +0025f6b0: 696f 6e73 2061 7265 2063 6c6f 7365 642e ions are closed. │ │ │ │ +0025f6c0: 0a0a 0a49 6620 7468 6520 6669 6c65 2069 ...If the file i │ │ │ │ +0025f6d0: 7320 6120 7069 7065 2074 6f20 616e 6f74 s a pipe to anot │ │ │ │ +0025f6e0: 6865 7220 7072 6f63 6573 732c 2069 2e65 her process, i.e │ │ │ │ +0025f6f0: 2e2c 2074 6865 2066 696c 656e 616d 6520 ., the filename │ │ │ │ +0025f700: 6265 6761 6e20 7769 7468 2074 6865 0a63 began with the.c │ │ │ │ +0025f710: 6861 7261 6374 6572 2021 2c20 7765 2077 haracter !, we w │ │ │ │ +0025f720: 696c 6c20 7761 6974 2066 6f72 2074 6865 ill wait for the │ │ │ │ +0025f730: 2070 726f 6365 7373 2074 6f20 7465 726d process to term │ │ │ │ +0025f740: 696e 6174 652e 2020 4966 2079 6f75 2064 inate. If you d │ │ │ │ +0025f750: 6f6e 2774 2077 616e 7420 746f 0a77 6169 on't want to.wai │ │ │ │ +0025f760: 7420 666f 7220 7468 6520 7072 6f63 6573 t for the proces │ │ │ │ +0025f770: 7320 746f 2074 6572 6d69 6e61 7465 2c20 s to terminate, │ │ │ │ +0025f780: 6f70 656e 2074 6865 2066 696c 6520 7769 open the file wi │ │ │ │ +0025f790: 7468 202a 6e6f 7465 206f 7065 6e49 6e4f th *note openInO │ │ │ │ +0025f7a0: 7574 3a0a 6f70 656e 496e 4f75 742c 2c20 ut:.openInOut,, │ │ │ │ +0025f7b0: 616e 6420 6966 206e 6563 6573 7361 7279 and if necessary │ │ │ │ +0025f7c0: 2c20 7573 6520 2a6e 6f74 6520 636c 6f73 , use *note clos │ │ │ │ +0025f7d0: 6549 6e3a 2063 6c6f 7365 496e 2c20 746f eIn: closeIn, to │ │ │ │ +0025f7e0: 2063 6c6f 7365 2069 742c 2074 6f0a 696e close it, to.in │ │ │ │ +0025f7f0: 6469 6361 7465 2074 6861 7420 6974 2068 dicate that it h │ │ │ │ +0025f800: 6173 2072 6563 6569 7665 6420 616c 6c20 as received all │ │ │ │ +0025f810: 6974 7320 696e 7075 742e 0a0a 0a49 6620 its input....If │ │ │ │ +0025f820: 7468 6520 6669 6c65 2069 7320 7374 6469 the file is stdi │ │ │ │ +0025f830: 6f20 7468 656e 2069 7420 6973 206c 6566 o then it is lef │ │ │ │ +0025f840: 7420 6f70 656e 2c20 616e 6420 6e6f 2065 t open, and no e │ │ │ │ +0025f850: 7272 6f72 2069 7320 7369 676e 616c 6564 rror is signaled │ │ │ │ +0025f860: 2e0a 0a57 6179 7320 746f 2075 7365 2063 ...Ways to use c │ │ │ │ +0025f870: 6c6f 7365 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d lose:.========== │ │ │ │ +0025f880: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 224d ========.. * "M │ │ │ │ +0025f890: 616e 6970 756c 6174 6f72 2044 6174 6162 anipulator Datab │ │ │ │ +0025f8a0: 6173 6522 202d 2d20 7365 6520 2a6e 6f74 ase" -- see *not │ │ │ │ +0025f8b0: 6520 4d61 6e69 7075 6c61 746f 723a 204d e Manipulator: M │ │ │ │ +0025f8c0: 616e 6970 756c 6174 6f72 2c20 2d2d 2074 anipulator, -- t │ │ │ │ +0025f8d0: 6865 2063 6c61 7373 0a20 2020 206f 6620 he class. of │ │ │ │ +0025f8e0: 616c 6c20 6669 6c65 206d 616e 6970 756c all file manipul │ │ │ │ +0025f8f0: 6174 6f72 730a 2020 2a20 224d 616e 6970 ators. * "Manip │ │ │ │ +0025f900: 756c 6174 6f72 2046 696c 6522 202d 2d20 ulator File" -- │ │ │ │ +0025f910: 7365 6520 2a6e 6f74 6520 4d61 6e69 7075 see *note Manipu │ │ │ │ +0025f920: 6c61 746f 723a 204d 616e 6970 756c 6174 lator: Manipulat │ │ │ │ +0025f930: 6f72 2c20 2d2d 2074 6865 2063 6c61 7373 or, -- the class │ │ │ │ +0025f940: 206f 660a 2020 2020 616c 6c20 6669 6c65 of. all file │ │ │ │ +0025f950: 206d 616e 6970 756c 6174 6f72 730a 2020 manipulators. │ │ │ │ +0025f960: 2a20 224d 616e 6970 756c 6174 6f72 204e * "Manipulator N │ │ │ │ +0025f970: 6f74 6869 6e67 2220 2d2d 2073 6565 202a othing" -- see * │ │ │ │ +0025f980: 6e6f 7465 204d 616e 6970 756c 6174 6f72 note Manipulator │ │ │ │ +0025f990: 3a20 4d61 6e69 7075 6c61 746f 722c 202d : Manipulator, - │ │ │ │ +0025f9a0: 2d20 7468 6520 636c 6173 730a 2020 2020 - the class. │ │ │ │ +0025f9b0: 6f66 2061 6c6c 2066 696c 6520 6d61 6e69 of all file mani │ │ │ │ +0025f9c0: 7075 6c61 746f 7273 0a20 202a 2022 6e65 pulators. * "ne │ │ │ │ +0025f9d0: 7720 4d61 6e69 7075 6c61 746f 7220 6672 w Manipulator fr │ │ │ │ +0025f9e0: 6f6d 2046 756e 6374 696f 6e22 202d 2d20 om Function" -- │ │ │ │ +0025f9f0: 7365 6520 2a6e 6f74 6520 4d61 6e69 7075 see *note Manipu │ │ │ │ +0025fa00: 6c61 746f 723a 204d 616e 6970 756c 6174 lator: Manipulat │ │ │ │ +0025fa10: 6f72 2c20 2d2d 0a20 2020 2074 6865 2063 or, --. the c │ │ │ │ +0025fa20: 6c61 7373 206f 6620 616c 6c20 6669 6c65 lass of all file │ │ │ │ +0025fa30: 206d 616e 6970 756c 6174 6f72 730a 2020 manipulators. │ │ │ │ +0025fa40: 2a20 226d 6574 686f 6473 284d 616e 6970 * "methods(Manip │ │ │ │ +0025fa50: 756c 6174 6f72 2922 202d 2d20 7365 6520 ulator)" -- see │ │ │ │ +0025fa60: 2a6e 6f74 6520 6d65 7468 6f64 733a 206d *note methods: m │ │ │ │ +0025fa70: 6574 686f 6473 2c20 2d2d 206c 6973 7420 ethods, -- list │ │ │ │ +0025fa80: 6d65 7468 6f64 730a 2020 2a20 224d 616e methods. * "Man │ │ │ │ +0025fa90: 6970 756c 6174 6f72 204e 6574 4669 6c65 ipulator NetFile │ │ │ │ +0025faa0: 2220 2d2d 2073 6565 202a 6e6f 7465 204e " -- see *note N │ │ │ │ +0025fab0: 6574 4669 6c65 3a20 4e65 7446 696c 652c etFile: NetFile, │ │ │ │ +0025fac0: 202d 2d20 7468 6520 636c 6173 7320 6f66 -- the class of │ │ │ │ +0025fad0: 2061 6c6c 0a20 2020 206e 6574 2066 696c all. net fil │ │ │ │ +0025fae0: 6573 0a20 202a 2022 4e65 7446 696c 6520 es. * "NetFile │ │ │ │ +0025faf0: 3c3c 204d 616e 6970 756c 6174 6f72 2220 << Manipulator" │ │ │ │ +0025fb00: 2d2d 2073 6565 202a 6e6f 7465 204e 6574 -- see *note Net │ │ │ │ +0025fb10: 4669 6c65 3a20 4e65 7446 696c 652c 202d File: NetFile, - │ │ │ │ +0025fb20: 2d20 7468 6520 636c 6173 7320 6f66 2061 - the class of a │ │ │ │ +0025fb30: 6c6c 0a20 2020 206e 6574 2066 696c 6573 ll. net files │ │ │ │ +0025fb40: 0a20 202a 2022 4669 6c65 203c 3c20 4d61 . * "File << Ma │ │ │ │ +0025fb50: 6e69 7075 6c61 746f 7222 202d 2d20 7365 nipulator" -- se │ │ │ │ +0025fb60: 6520 2a6e 6f74 6520 7072 696e 7469 6e67 e *note printing │ │ │ │ +0025fb70: 2074 6f20 6120 6669 6c65 3a20 7072 696e to a file: prin │ │ │ │ +0025fb80: 7469 6e67 2074 6f20 6120 6669 6c65 2c0a ting to a file,. │ │ │ │ +0025fb90: 2020 2020 2d2d 2070 7269 6e74 2074 6f20 -- print to │ │ │ │ +0025fba0: 6120 6669 6c65 0a20 202a 2022 4e6f 7468 a file. * "Noth │ │ │ │ +0025fbb0: 696e 6720 3c3c 204d 616e 6970 756c 6174 ing << Manipulat │ │ │ │ +0025fbc0: 6f72 2220 2d2d 2073 6565 202a 6e6f 7465 or" -- see *note │ │ │ │ +0025fbd0: 2070 7269 6e74 696e 6720 746f 2061 2066 printing to a f │ │ │ │ +0025fbe0: 696c 653a 2070 7269 6e74 696e 6720 746f ile: printing to │ │ │ │ +0025fbf0: 2061 0a20 2020 2066 696c 652c 202d 2d20 a. file, -- │ │ │ │ +0025fc00: 7072 696e 7420 746f 2061 2066 696c 650a print to a file. │ │ │ │ +0025fc10: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0025fc20: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0025fc30: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0025fc40: 6374 202a 6e6f 7465 2063 6c6f 7365 3a20 ct *note close: │ │ │ │ +0025fc50: 636c 6f73 652c 2069 7320 6120 2a6e 6f74 close, is a *not │ │ │ │ +0025fc60: 6520 6d61 6e69 7075 6c61 746f 723a 204d e manipulator: M │ │ │ │ +0025fc70: 616e 6970 756c 6174 6f72 2c2e 0a0a 2d2d anipulator,...-- │ │ │ │ 0025fc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0025fc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0025fca0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0025fcb0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0025fcc0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0025fcd0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0025fce0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0025fcf0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0025fd00: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0025fd10: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -0025fd20: 765f 7379 7374 656d 2e6d 323a 3134 3833 v_system.m2:1483 │ │ │ │ -0025fd30: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ -0025fd40: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ -0025fd50: 6f64 653a 2063 6c6f 7365 496e 2c20 4e65 ode: closeIn, Ne │ │ │ │ -0025fd60: 7874 3a20 636c 6f73 654f 7574 2c20 5072 xt: closeOut, Pr │ │ │ │ -0025fd70: 6576 3a20 636c 6f73 652c 2055 703a 2075 ev: close, Up: u │ │ │ │ -0025fd80: 7369 6e67 2073 6f63 6b65 7473 0a0a 636c sing sockets..cl │ │ │ │ -0025fd90: 6f73 6549 6e20 2d2d 2063 6c6f 7365 2061 oseIn -- close a │ │ │ │ -0025fda0: 6e20 696e 7075 7420 6669 6c65 0a2a 2a2a n input file.*** │ │ │ │ -0025fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0025fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -0025fdd0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0025fde0: 3d3d 3d3d 0a0a 6620 3c3c 2063 6c6f 7365 ====..f << close │ │ │ │ -0025fdf0: 496e 202d 2d20 636c 6f73 6573 2074 6865 In -- closes the │ │ │ │ -0025fe00: 2069 6e70 7574 2066 696c 6520 662e 0a63 input file f..c │ │ │ │ -0025fe10: 6c6f 7365 496e 2066 202d 2d20 636c 6f73 loseIn f -- clos │ │ │ │ -0025fe20: 6573 2074 6865 2069 6e70 7574 2066 696c es the input fil │ │ │ │ -0025fe30: 6520 662e 0a0a 0a49 6620 7468 6520 6669 e f....If the fi │ │ │ │ -0025fe40: 6c65 2077 6173 206f 7065 6e20 6f6e 6c79 le was open only │ │ │ │ -0025fe50: 2066 6f72 2069 6e70 7574 2c20 7468 656e for input, then │ │ │ │ -0025fe60: 202a 6e6f 7465 2063 6c6f 7365 3a20 636c *note close: cl │ │ │ │ -0025fe70: 6f73 652c 2069 7320 6561 7369 6572 2074 ose, is easier t │ │ │ │ -0025fe80: 6f20 7573 650a 616e 6420 6861 7320 7468 o use.and has th │ │ │ │ -0025fe90: 6520 7361 6d65 2065 6666 6563 742e 0a0a e same effect... │ │ │ │ -0025fea0: 0a49 6620 7468 6520 6669 6c65 2077 6173 .If the file was │ │ │ │ -0025feb0: 206f 7065 6e20 666f 7220 626f 7468 2069 open for both i │ │ │ │ -0025fec0: 6e70 7574 2061 6e64 206f 7574 7075 742c nput and output, │ │ │ │ -0025fed0: 2069 7420 7265 6d61 696e 7320 6f70 656e it remains open │ │ │ │ -0025fee0: 2066 6f72 206f 7574 7075 742e 0a0a 5761 for output...Wa │ │ │ │ -0025fef0: 7973 2074 6f20 7573 6520 636c 6f73 6549 ys to use closeI │ │ │ │ -0025ff00: 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d n:.============= │ │ │ │ -0025ff10: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 4d61 =======.. * "Ma │ │ │ │ -0025ff20: 6e69 7075 6c61 746f 7220 4461 7461 6261 nipulator Databa │ │ │ │ -0025ff30: 7365 2220 2d2d 2073 6565 202a 6e6f 7465 se" -- see *note │ │ │ │ -0025ff40: 204d 616e 6970 756c 6174 6f72 3a20 4d61 Manipulator: Ma │ │ │ │ -0025ff50: 6e69 7075 6c61 746f 722c 202d 2d20 7468 nipulator, -- th │ │ │ │ -0025ff60: 6520 636c 6173 730a 2020 2020 6f66 2061 e class. of a │ │ │ │ -0025ff70: 6c6c 2066 696c 6520 6d61 6e69 7075 6c61 ll file manipula │ │ │ │ -0025ff80: 746f 7273 0a20 202a 2022 4d61 6e69 7075 tors. * "Manipu │ │ │ │ -0025ff90: 6c61 746f 7220 4669 6c65 2220 2d2d 2073 lator File" -- s │ │ │ │ -0025ffa0: 6565 202a 6e6f 7465 204d 616e 6970 756c ee *note Manipul │ │ │ │ -0025ffb0: 6174 6f72 3a20 4d61 6e69 7075 6c61 746f ator: Manipulato │ │ │ │ -0025ffc0: 722c 202d 2d20 7468 6520 636c 6173 7320 r, -- the class │ │ │ │ -0025ffd0: 6f66 0a20 2020 2061 6c6c 2066 696c 6520 of. all file │ │ │ │ -0025ffe0: 6d61 6e69 7075 6c61 746f 7273 0a20 202a manipulators. * │ │ │ │ -0025fff0: 2022 4d61 6e69 7075 6c61 746f 7220 4e6f "Manipulator No │ │ │ │ -00260000: 7468 696e 6722 202d 2d20 7365 6520 2a6e thing" -- see *n │ │ │ │ -00260010: 6f74 6520 4d61 6e69 7075 6c61 746f 723a ote Manipulator: │ │ │ │ -00260020: 204d 616e 6970 756c 6174 6f72 2c20 2d2d Manipulator, -- │ │ │ │ -00260030: 2074 6865 2063 6c61 7373 0a20 2020 206f the class. o │ │ │ │ -00260040: 6620 616c 6c20 6669 6c65 206d 616e 6970 f all file manip │ │ │ │ -00260050: 756c 6174 6f72 730a 2020 2a20 226e 6577 ulators. * "new │ │ │ │ -00260060: 204d 616e 6970 756c 6174 6f72 2066 726f Manipulator fro │ │ │ │ -00260070: 6d20 4675 6e63 7469 6f6e 2220 2d2d 2073 m Function" -- s │ │ │ │ -00260080: 6565 202a 6e6f 7465 204d 616e 6970 756c ee *note Manipul │ │ │ │ -00260090: 6174 6f72 3a20 4d61 6e69 7075 6c61 746f ator: Manipulato │ │ │ │ -002600a0: 722c 202d 2d0a 2020 2020 7468 6520 636c r, --. the cl │ │ │ │ -002600b0: 6173 7320 6f66 2061 6c6c 2066 696c 6520 ass of all file │ │ │ │ -002600c0: 6d61 6e69 7075 6c61 746f 7273 0a20 202a manipulators. * │ │ │ │ -002600d0: 2022 6d65 7468 6f64 7328 4d61 6e69 7075 "methods(Manipu │ │ │ │ -002600e0: 6c61 746f 7229 2220 2d2d 2073 6565 202a lator)" -- see * │ │ │ │ -002600f0: 6e6f 7465 206d 6574 686f 6473 3a20 6d65 note methods: me │ │ │ │ -00260100: 7468 6f64 732c 202d 2d20 6c69 7374 206d thods, -- list m │ │ │ │ -00260110: 6574 686f 6473 0a20 202a 2022 4d61 6e69 ethods. * "Mani │ │ │ │ -00260120: 7075 6c61 746f 7220 4e65 7446 696c 6522 pulator NetFile" │ │ │ │ -00260130: 202d 2d20 7365 6520 2a6e 6f74 6520 4e65 -- see *note Ne │ │ │ │ -00260140: 7446 696c 653a 204e 6574 4669 6c65 2c20 tFile: NetFile, │ │ │ │ -00260150: 2d2d 2074 6865 2063 6c61 7373 206f 6620 -- the class of │ │ │ │ -00260160: 616c 6c0a 2020 2020 6e65 7420 6669 6c65 all. net file │ │ │ │ -00260170: 730a 2020 2a20 224e 6574 4669 6c65 203c s. * "NetFile < │ │ │ │ -00260180: 3c20 4d61 6e69 7075 6c61 746f 7222 202d < Manipulator" - │ │ │ │ -00260190: 2d20 7365 6520 2a6e 6f74 6520 4e65 7446 - see *note NetF │ │ │ │ -002601a0: 696c 653a 204e 6574 4669 6c65 2c20 2d2d ile: NetFile, -- │ │ │ │ -002601b0: 2074 6865 2063 6c61 7373 206f 6620 616c the class of al │ │ │ │ -002601c0: 6c0a 2020 2020 6e65 7420 6669 6c65 730a l. net files. │ │ │ │ -002601d0: 2020 2a20 2246 696c 6520 3c3c 204d 616e * "File << Man │ │ │ │ -002601e0: 6970 756c 6174 6f72 2220 2d2d 2073 6565 ipulator" -- see │ │ │ │ -002601f0: 202a 6e6f 7465 2070 7269 6e74 696e 6720 *note printing │ │ │ │ -00260200: 746f 2061 2066 696c 653a 2070 7269 6e74 to a file: print │ │ │ │ -00260210: 696e 6720 746f 2061 2066 696c 652c 0a20 ing to a file,. │ │ │ │ -00260220: 2020 202d 2d20 7072 696e 7420 746f 2061 -- print to a │ │ │ │ -00260230: 2066 696c 650a 2020 2a20 224e 6f74 6869 file. * "Nothi │ │ │ │ -00260240: 6e67 203c 3c20 4d61 6e69 7075 6c61 746f ng << Manipulato │ │ │ │ -00260250: 7222 202d 2d20 7365 6520 2a6e 6f74 6520 r" -- see *note │ │ │ │ -00260260: 7072 696e 7469 6e67 2074 6f20 6120 6669 printing to a fi │ │ │ │ -00260270: 6c65 3a20 7072 696e 7469 6e67 2074 6f20 le: printing to │ │ │ │ -00260280: 610a 2020 2020 6669 6c65 2c20 2d2d 2070 a. file, -- p │ │ │ │ -00260290: 7269 6e74 2074 6f20 6120 6669 6c65 0a0a rint to a file.. │ │ │ │ -002602a0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -002602b0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -002602c0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -002602d0: 7420 2a6e 6f74 6520 636c 6f73 6549 6e3a t *note closeIn: │ │ │ │ -002602e0: 2063 6c6f 7365 496e 2c20 6973 2061 202a closeIn, is a * │ │ │ │ -002602f0: 6e6f 7465 206d 616e 6970 756c 6174 6f72 note manipulator │ │ │ │ -00260300: 3a20 4d61 6e69 7075 6c61 746f 722c 2e0a : Manipulator,.. │ │ │ │ -00260310: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00260320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025fca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025fcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0025fcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +0025fcd0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +0025fce0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +0025fcf0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +0025fd00: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +0025fd10: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +0025fd20: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +0025fd30: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +0025fd40: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ +0025fd50: 3134 3833 3a30 2e0a 1f0a 4669 6c65 3a20 1483:0....File: │ │ │ │ +0025fd60: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +0025fd70: 6f2c 204e 6f64 653a 2063 6c6f 7365 496e o, Node: closeIn │ │ │ │ +0025fd80: 2c20 4e65 7874 3a20 636c 6f73 654f 7574 , Next: closeOut │ │ │ │ +0025fd90: 2c20 5072 6576 3a20 636c 6f73 652c 2055 , Prev: close, U │ │ │ │ +0025fda0: 703a 2075 7369 6e67 2073 6f63 6b65 7473 p: using sockets │ │ │ │ +0025fdb0: 0a0a 636c 6f73 6549 6e20 2d2d 2063 6c6f ..closeIn -- clo │ │ │ │ +0025fdc0: 7365 2061 6e20 696e 7075 7420 6669 6c65 se an input file │ │ │ │ +0025fdd0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +0025fde0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0025fdf0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0025fe00: 3d3d 3d3d 3d3d 3d3d 0a0a 6620 3c3c 2063 ========..f << c │ │ │ │ +0025fe10: 6c6f 7365 496e 202d 2d20 636c 6f73 6573 loseIn -- closes │ │ │ │ +0025fe20: 2074 6865 2069 6e70 7574 2066 696c 6520 the input file │ │ │ │ +0025fe30: 662e 0a63 6c6f 7365 496e 2066 202d 2d20 f..closeIn f -- │ │ │ │ +0025fe40: 636c 6f73 6573 2074 6865 2069 6e70 7574 closes the input │ │ │ │ +0025fe50: 2066 696c 6520 662e 0a0a 0a49 6620 7468 file f....If th │ │ │ │ +0025fe60: 6520 6669 6c65 2077 6173 206f 7065 6e20 e file was open │ │ │ │ +0025fe70: 6f6e 6c79 2066 6f72 2069 6e70 7574 2c20 only for input, │ │ │ │ +0025fe80: 7468 656e 202a 6e6f 7465 2063 6c6f 7365 then *note close │ │ │ │ +0025fe90: 3a20 636c 6f73 652c 2069 7320 6561 7369 : close, is easi │ │ │ │ +0025fea0: 6572 2074 6f20 7573 650a 616e 6420 6861 er to use.and ha │ │ │ │ +0025feb0: 7320 7468 6520 7361 6d65 2065 6666 6563 s the same effec │ │ │ │ +0025fec0: 742e 0a0a 0a49 6620 7468 6520 6669 6c65 t....If the file │ │ │ │ +0025fed0: 2077 6173 206f 7065 6e20 666f 7220 626f was open for bo │ │ │ │ +0025fee0: 7468 2069 6e70 7574 2061 6e64 206f 7574 th input and out │ │ │ │ +0025fef0: 7075 742c 2069 7420 7265 6d61 696e 7320 put, it remains │ │ │ │ +0025ff00: 6f70 656e 2066 6f72 206f 7574 7075 742e open for output. │ │ │ │ +0025ff10: 0a0a 5761 7973 2074 6f20 7573 6520 636c ..Ways to use cl │ │ │ │ +0025ff20: 6f73 6549 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d oseIn:.========= │ │ │ │ +0025ff30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0025ff40: 2022 4d61 6e69 7075 6c61 746f 7220 4461 "Manipulator Da │ │ │ │ +0025ff50: 7461 6261 7365 2220 2d2d 2073 6565 202a tabase" -- see * │ │ │ │ +0025ff60: 6e6f 7465 204d 616e 6970 756c 6174 6f72 note Manipulator │ │ │ │ +0025ff70: 3a20 4d61 6e69 7075 6c61 746f 722c 202d : Manipulator, - │ │ │ │ +0025ff80: 2d20 7468 6520 636c 6173 730a 2020 2020 - the class. │ │ │ │ +0025ff90: 6f66 2061 6c6c 2066 696c 6520 6d61 6e69 of all file mani │ │ │ │ +0025ffa0: 7075 6c61 746f 7273 0a20 202a 2022 4d61 pulators. * "Ma │ │ │ │ +0025ffb0: 6e69 7075 6c61 746f 7220 4669 6c65 2220 nipulator File" │ │ │ │ +0025ffc0: 2d2d 2073 6565 202a 6e6f 7465 204d 616e -- see *note Man │ │ │ │ +0025ffd0: 6970 756c 6174 6f72 3a20 4d61 6e69 7075 ipulator: Manipu │ │ │ │ +0025ffe0: 6c61 746f 722c 202d 2d20 7468 6520 636c lator, -- the cl │ │ │ │ +0025fff0: 6173 7320 6f66 0a20 2020 2061 6c6c 2066 ass of. all f │ │ │ │ +00260000: 696c 6520 6d61 6e69 7075 6c61 746f 7273 ile manipulators │ │ │ │ +00260010: 0a20 202a 2022 4d61 6e69 7075 6c61 746f . * "Manipulato │ │ │ │ +00260020: 7220 4e6f 7468 696e 6722 202d 2d20 7365 r Nothing" -- se │ │ │ │ +00260030: 6520 2a6e 6f74 6520 4d61 6e69 7075 6c61 e *note Manipula │ │ │ │ +00260040: 746f 723a 204d 616e 6970 756c 6174 6f72 tor: Manipulator │ │ │ │ +00260050: 2c20 2d2d 2074 6865 2063 6c61 7373 0a20 , -- the class. │ │ │ │ +00260060: 2020 206f 6620 616c 6c20 6669 6c65 206d of all file m │ │ │ │ +00260070: 616e 6970 756c 6174 6f72 730a 2020 2a20 anipulators. * │ │ │ │ +00260080: 226e 6577 204d 616e 6970 756c 6174 6f72 "new Manipulator │ │ │ │ +00260090: 2066 726f 6d20 4675 6e63 7469 6f6e 2220 from Function" │ │ │ │ +002600a0: 2d2d 2073 6565 202a 6e6f 7465 204d 616e -- see *note Man │ │ │ │ +002600b0: 6970 756c 6174 6f72 3a20 4d61 6e69 7075 ipulator: Manipu │ │ │ │ +002600c0: 6c61 746f 722c 202d 2d0a 2020 2020 7468 lator, --. th │ │ │ │ +002600d0: 6520 636c 6173 7320 6f66 2061 6c6c 2066 e class of all f │ │ │ │ +002600e0: 696c 6520 6d61 6e69 7075 6c61 746f 7273 ile manipulators │ │ │ │ +002600f0: 0a20 202a 2022 6d65 7468 6f64 7328 4d61 . * "methods(Ma │ │ │ │ +00260100: 6e69 7075 6c61 746f 7229 2220 2d2d 2073 nipulator)" -- s │ │ │ │ +00260110: 6565 202a 6e6f 7465 206d 6574 686f 6473 ee *note methods │ │ │ │ +00260120: 3a20 6d65 7468 6f64 732c 202d 2d20 6c69 : methods, -- li │ │ │ │ +00260130: 7374 206d 6574 686f 6473 0a20 202a 2022 st methods. * " │ │ │ │ +00260140: 4d61 6e69 7075 6c61 746f 7220 4e65 7446 Manipulator NetF │ │ │ │ +00260150: 696c 6522 202d 2d20 7365 6520 2a6e 6f74 ile" -- see *not │ │ │ │ +00260160: 6520 4e65 7446 696c 653a 204e 6574 4669 e NetFile: NetFi │ │ │ │ +00260170: 6c65 2c20 2d2d 2074 6865 2063 6c61 7373 le, -- the class │ │ │ │ +00260180: 206f 6620 616c 6c0a 2020 2020 6e65 7420 of all. net │ │ │ │ +00260190: 6669 6c65 730a 2020 2a20 224e 6574 4669 files. * "NetFi │ │ │ │ +002601a0: 6c65 203c 3c20 4d61 6e69 7075 6c61 746f le << Manipulato │ │ │ │ +002601b0: 7222 202d 2d20 7365 6520 2a6e 6f74 6520 r" -- see *note │ │ │ │ +002601c0: 4e65 7446 696c 653a 204e 6574 4669 6c65 NetFile: NetFile │ │ │ │ +002601d0: 2c20 2d2d 2074 6865 2063 6c61 7373 206f , -- the class o │ │ │ │ +002601e0: 6620 616c 6c0a 2020 2020 6e65 7420 6669 f all. net fi │ │ │ │ +002601f0: 6c65 730a 2020 2a20 2246 696c 6520 3c3c les. * "File << │ │ │ │ +00260200: 204d 616e 6970 756c 6174 6f72 2220 2d2d Manipulator" -- │ │ │ │ +00260210: 2073 6565 202a 6e6f 7465 2070 7269 6e74 see *note print │ │ │ │ +00260220: 696e 6720 746f 2061 2066 696c 653a 2070 ing to a file: p │ │ │ │ +00260230: 7269 6e74 696e 6720 746f 2061 2066 696c rinting to a fil │ │ │ │ +00260240: 652c 0a20 2020 202d 2d20 7072 696e 7420 e,. -- print │ │ │ │ +00260250: 746f 2061 2066 696c 650a 2020 2a20 224e to a file. * "N │ │ │ │ +00260260: 6f74 6869 6e67 203c 3c20 4d61 6e69 7075 othing << Manipu │ │ │ │ +00260270: 6c61 746f 7222 202d 2d20 7365 6520 2a6e lator" -- see *n │ │ │ │ +00260280: 6f74 6520 7072 696e 7469 6e67 2074 6f20 ote printing to │ │ │ │ +00260290: 6120 6669 6c65 3a20 7072 696e 7469 6e67 a file: printing │ │ │ │ +002602a0: 2074 6f20 610a 2020 2020 6669 6c65 2c20 to a. file, │ │ │ │ +002602b0: 2d2d 2070 7269 6e74 2074 6f20 6120 6669 -- print to a fi │ │ │ │ +002602c0: 6c65 0a0a 466f 7220 7468 6520 7072 6f67 le..For the prog │ │ │ │ +002602d0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +002602e0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +002602f0: 626a 6563 7420 2a6e 6f74 6520 636c 6f73 bject *note clos │ │ │ │ +00260300: 6549 6e3a 2063 6c6f 7365 496e 2c20 6973 eIn: closeIn, is │ │ │ │ +00260310: 2061 202a 6e6f 7465 206d 616e 6970 756c a *note manipul │ │ │ │ +00260320: 6174 6f72 3a20 4d61 6e69 7075 6c61 746f ator: Manipulato │ │ │ │ +00260330: 722c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d r,...----------- │ │ │ │ 00260340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00260350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260360: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00260370: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00260380: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00260390: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -002603a0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -002603b0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -002603c0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -002603d0: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ -002603e0: 6d32 3a31 3531 363a 302e 0a1f 0a46 696c m2:1516:0....Fil │ │ │ │ -002603f0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -00260400: 696e 666f 2c20 4e6f 6465 3a20 636c 6f73 info, Node: clos │ │ │ │ -00260410: 654f 7574 2c20 4e65 7874 3a20 6765 742c eOut, Next: get, │ │ │ │ -00260420: 2050 7265 763a 2063 6c6f 7365 496e 2c20 Prev: closeIn, │ │ │ │ -00260430: 5570 3a20 7573 696e 6720 736f 636b 6574 Up: using socket │ │ │ │ -00260440: 730a 0a63 6c6f 7365 4f75 7420 2d2d 2063 s..closeOut -- c │ │ │ │ -00260450: 6c6f 7365 2061 6e20 6f75 7470 7574 2066 lose an output f │ │ │ │ -00260460: 696c 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ile.************ │ │ │ │ -00260470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00260480: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ -00260490: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a66 n.===========..f │ │ │ │ -002604a0: 203c 3c20 636c 6f73 654f 7574 202d 2d20 << closeOut -- │ │ │ │ -002604b0: 636c 6f73 6573 2074 6865 206f 7574 7075 closes the outpu │ │ │ │ -002604c0: 7420 6669 6c65 2066 2e0a 636c 6f73 654f t file f..closeO │ │ │ │ -002604d0: 7574 2066 202d 2d20 636c 6f73 6573 2074 ut f -- closes t │ │ │ │ -002604e0: 6865 206f 7574 7075 7420 6669 6c65 2066 he output file f │ │ │ │ -002604f0: 2e0a 0a0a 416e 7920 6275 6666 6572 6564 ....Any buffered │ │ │ │ -00260500: 206f 7574 7075 7420 6973 2066 6972 7374 output is first │ │ │ │ -00260510: 2077 7269 7474 656e 2074 6f20 7468 6520 written to the │ │ │ │ -00260520: 6669 6c65 2c20 616e 6420 7468 6520 7265 file, and the re │ │ │ │ -00260530: 7475 726e 2076 616c 7565 2069 7320 616e turn value is an │ │ │ │ -00260540: 0a69 6e74 6567 6572 2c20 6e6f 726d 616c .integer, normal │ │ │ │ -00260550: 6c79 2030 2c20 6f72 202d 3120 6f6e 2065 ly 0, or -1 on e │ │ │ │ -00260560: 7272 6f72 2c20 6f72 2074 6865 2072 6574 rror, or the ret │ │ │ │ -00260570: 7572 6e20 7374 6174 7573 206f 6620 7468 urn status of th │ │ │ │ -00260580: 6520 6368 696c 6420 7072 6f63 6573 730a e child process. │ │ │ │ -00260590: 696e 2063 6173 6520 7468 6520 6669 6c65 in case the file │ │ │ │ -002605a0: 2077 6173 2061 2070 6970 652e 0a0a 0a49 was a pipe....I │ │ │ │ -002605b0: 6620 7468 6520 6669 6c65 2077 6173 206f f the file was o │ │ │ │ -002605c0: 7065 6e20 6f6e 6c79 2066 6f72 206f 7574 pen only for out │ │ │ │ -002605d0: 7075 742c 2074 6865 6e20 2a6e 6f74 6520 put, then *note │ │ │ │ -002605e0: 636c 6f73 653a 2063 6c6f 7365 2c20 6973 close: close, is │ │ │ │ -002605f0: 2065 6173 6965 7220 746f 2075 7365 0a61 easier to use.a │ │ │ │ -00260600: 6e64 2068 6173 2074 6865 2073 616d 6520 nd has the same │ │ │ │ -00260610: 6566 6665 6374 2e0a 0a0a 4966 2074 6865 effect....If the │ │ │ │ -00260620: 2066 696c 6520 7761 7320 6f70 656e 2066 file was open f │ │ │ │ -00260630: 6f72 2062 6f74 6820 696e 7075 7420 616e or both input an │ │ │ │ -00260640: 6420 6f75 7470 7574 2c20 6974 2072 656d d output, it rem │ │ │ │ -00260650: 6169 6e73 206f 7065 6e20 666f 7220 696e ains open for in │ │ │ │ -00260660: 7075 742e 0a0a 5761 7973 2074 6f20 7573 put...Ways to us │ │ │ │ -00260670: 6520 636c 6f73 654f 7574 3a0a 3d3d 3d3d e closeOut:.==== │ │ │ │ -00260680: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00260690: 3d0a 0a20 202a 2022 4d61 6e69 7075 6c61 =.. * "Manipula │ │ │ │ -002606a0: 746f 7220 4461 7461 6261 7365 2220 2d2d tor Database" -- │ │ │ │ -002606b0: 2073 6565 202a 6e6f 7465 204d 616e 6970 see *note Manip │ │ │ │ -002606c0: 756c 6174 6f72 3a20 4d61 6e69 7075 6c61 ulator: Manipula │ │ │ │ -002606d0: 746f 722c 202d 2d20 7468 6520 636c 6173 tor, -- the clas │ │ │ │ -002606e0: 730a 2020 2020 6f66 2061 6c6c 2066 696c s. of all fil │ │ │ │ -002606f0: 6520 6d61 6e69 7075 6c61 746f 7273 0a20 e manipulators. │ │ │ │ -00260700: 202a 2022 4d61 6e69 7075 6c61 746f 7220 * "Manipulator │ │ │ │ -00260710: 4669 6c65 2220 2d2d 2073 6565 202a 6e6f File" -- see *no │ │ │ │ -00260720: 7465 204d 616e 6970 756c 6174 6f72 3a20 te Manipulator: │ │ │ │ -00260730: 4d61 6e69 7075 6c61 746f 722c 202d 2d20 Manipulator, -- │ │ │ │ -00260740: 7468 6520 636c 6173 7320 6f66 0a20 2020 the class of. │ │ │ │ -00260750: 2061 6c6c 2066 696c 6520 6d61 6e69 7075 all file manipu │ │ │ │ -00260760: 6c61 746f 7273 0a20 202a 2022 4d61 6e69 lators. * "Mani │ │ │ │ -00260770: 7075 6c61 746f 7220 4e6f 7468 696e 6722 pulator Nothing" │ │ │ │ -00260780: 202d 2d20 7365 6520 2a6e 6f74 6520 4d61 -- see *note Ma │ │ │ │ -00260790: 6e69 7075 6c61 746f 723a 204d 616e 6970 nipulator: Manip │ │ │ │ -002607a0: 756c 6174 6f72 2c20 2d2d 2074 6865 2063 ulator, -- the c │ │ │ │ -002607b0: 6c61 7373 0a20 2020 206f 6620 616c 6c20 lass. of all │ │ │ │ -002607c0: 6669 6c65 206d 616e 6970 756c 6174 6f72 file manipulator │ │ │ │ -002607d0: 730a 2020 2a20 226e 6577 204d 616e 6970 s. * "new Manip │ │ │ │ -002607e0: 756c 6174 6f72 2066 726f 6d20 4675 6e63 ulator from Func │ │ │ │ -002607f0: 7469 6f6e 2220 2d2d 2073 6565 202a 6e6f tion" -- see *no │ │ │ │ -00260800: 7465 204d 616e 6970 756c 6174 6f72 3a20 te Manipulator: │ │ │ │ -00260810: 4d61 6e69 7075 6c61 746f 722c 202d 2d0a Manipulator, --. │ │ │ │ -00260820: 2020 2020 7468 6520 636c 6173 7320 6f66 the class of │ │ │ │ -00260830: 2061 6c6c 2066 696c 6520 6d61 6e69 7075 all file manipu │ │ │ │ -00260840: 6c61 746f 7273 0a20 202a 2022 6d65 7468 lators. * "meth │ │ │ │ -00260850: 6f64 7328 4d61 6e69 7075 6c61 746f 7229 ods(Manipulator) │ │ │ │ -00260860: 2220 2d2d 2073 6565 202a 6e6f 7465 206d " -- see *note m │ │ │ │ -00260870: 6574 686f 6473 3a20 6d65 7468 6f64 732c ethods: methods, │ │ │ │ -00260880: 202d 2d20 6c69 7374 206d 6574 686f 6473 -- list methods │ │ │ │ -00260890: 0a20 202a 2022 4d61 6e69 7075 6c61 746f . * "Manipulato │ │ │ │ -002608a0: 7220 4e65 7446 696c 6522 202d 2d20 7365 r NetFile" -- se │ │ │ │ -002608b0: 6520 2a6e 6f74 6520 4e65 7446 696c 653a e *note NetFile: │ │ │ │ -002608c0: 204e 6574 4669 6c65 2c20 2d2d 2074 6865 NetFile, -- the │ │ │ │ -002608d0: 2063 6c61 7373 206f 6620 616c 6c0a 2020 class of all. │ │ │ │ -002608e0: 2020 6e65 7420 6669 6c65 730a 2020 2a20 net files. * │ │ │ │ -002608f0: 224e 6574 4669 6c65 203c 3c20 4d61 6e69 "NetFile << Mani │ │ │ │ -00260900: 7075 6c61 746f 7222 202d 2d20 7365 6520 pulator" -- see │ │ │ │ -00260910: 2a6e 6f74 6520 4e65 7446 696c 653a 204e *note NetFile: N │ │ │ │ -00260920: 6574 4669 6c65 2c20 2d2d 2074 6865 2063 etFile, -- the c │ │ │ │ -00260930: 6c61 7373 206f 6620 616c 6c0a 2020 2020 lass of all. │ │ │ │ -00260940: 6e65 7420 6669 6c65 730a 2020 2a20 2246 net files. * "F │ │ │ │ -00260950: 696c 6520 3c3c 204d 616e 6970 756c 6174 ile << Manipulat │ │ │ │ -00260960: 6f72 2220 2d2d 2073 6565 202a 6e6f 7465 or" -- see *note │ │ │ │ -00260970: 2070 7269 6e74 696e 6720 746f 2061 2066 printing to a f │ │ │ │ -00260980: 696c 653a 2070 7269 6e74 696e 6720 746f ile: printing to │ │ │ │ -00260990: 2061 2066 696c 652c 0a20 2020 202d 2d20 a file,. -- │ │ │ │ -002609a0: 7072 696e 7420 746f 2061 2066 696c 650a print to a file. │ │ │ │ -002609b0: 2020 2a20 224e 6f74 6869 6e67 203c 3c20 * "Nothing << │ │ │ │ -002609c0: 4d61 6e69 7075 6c61 746f 7222 202d 2d20 Manipulator" -- │ │ │ │ -002609d0: 7365 6520 2a6e 6f74 6520 7072 696e 7469 see *note printi │ │ │ │ -002609e0: 6e67 2074 6f20 6120 6669 6c65 3a20 7072 ng to a file: pr │ │ │ │ -002609f0: 696e 7469 6e67 2074 6f20 610a 2020 2020 inting to a. │ │ │ │ -00260a00: 6669 6c65 2c20 2d2d 2070 7269 6e74 2074 file, -- print t │ │ │ │ -00260a10: 6f20 6120 6669 6c65 0a0a 466f 7220 7468 o a file..For th │ │ │ │ -00260a20: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00260a30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00260a40: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00260a50: 6520 636c 6f73 654f 7574 3a20 636c 6f73 e closeOut: clos │ │ │ │ -00260a60: 654f 7574 2c20 6973 2061 202a 6e6f 7465 eOut, is a *note │ │ │ │ -00260a70: 206d 616e 6970 756c 6174 6f72 3a20 4d61 manipulator: Ma │ │ │ │ -00260a80: 6e69 7075 6c61 746f 722c 2e0a 0a2d 2d2d nipulator,...--- │ │ │ │ -00260a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260380: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00260390: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +002603a0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +002603b0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +002603c0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +002603d0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +002603e0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ +002603f0: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ +00260400: 7465 6d2e 6d32 3a31 3531 363a 302e 0a1f tem.m2:1516:0... │ │ │ │ +00260410: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +00260420: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +00260430: 636c 6f73 654f 7574 2c20 4e65 7874 3a20 closeOut, Next: │ │ │ │ +00260440: 6765 742c 2050 7265 763a 2063 6c6f 7365 get, Prev: close │ │ │ │ +00260450: 496e 2c20 5570 3a20 7573 696e 6720 736f In, Up: using so │ │ │ │ +00260460: 636b 6574 730a 0a63 6c6f 7365 4f75 7420 ckets..closeOut │ │ │ │ +00260470: 2d2d 2063 6c6f 7365 2061 6e20 6f75 7470 -- close an outp │ │ │ │ +00260480: 7574 2066 696c 650a 2a2a 2a2a 2a2a 2a2a ut file.******** │ │ │ │ +00260490: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002604a0: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +002604b0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +002604c0: 3d0a 0a66 203c 3c20 636c 6f73 654f 7574 =..f << closeOut │ │ │ │ +002604d0: 202d 2d20 636c 6f73 6573 2074 6865 206f -- closes the o │ │ │ │ +002604e0: 7574 7075 7420 6669 6c65 2066 2e0a 636c utput file f..cl │ │ │ │ +002604f0: 6f73 654f 7574 2066 202d 2d20 636c 6f73 oseOut f -- clos │ │ │ │ +00260500: 6573 2074 6865 206f 7574 7075 7420 6669 es the output fi │ │ │ │ +00260510: 6c65 2066 2e0a 0a0a 416e 7920 6275 6666 le f....Any buff │ │ │ │ +00260520: 6572 6564 206f 7574 7075 7420 6973 2066 ered output is f │ │ │ │ +00260530: 6972 7374 2077 7269 7474 656e 2074 6f20 irst written to │ │ │ │ +00260540: 7468 6520 6669 6c65 2c20 616e 6420 7468 the file, and th │ │ │ │ +00260550: 6520 7265 7475 726e 2076 616c 7565 2069 e return value i │ │ │ │ +00260560: 7320 616e 0a69 6e74 6567 6572 2c20 6e6f s an.integer, no │ │ │ │ +00260570: 726d 616c 6c79 2030 2c20 6f72 202d 3120 rmally 0, or -1 │ │ │ │ +00260580: 6f6e 2065 7272 6f72 2c20 6f72 2074 6865 on error, or the │ │ │ │ +00260590: 2072 6574 7572 6e20 7374 6174 7573 206f return status o │ │ │ │ +002605a0: 6620 7468 6520 6368 696c 6420 7072 6f63 f the child proc │ │ │ │ +002605b0: 6573 730a 696e 2063 6173 6520 7468 6520 ess.in case the │ │ │ │ +002605c0: 6669 6c65 2077 6173 2061 2070 6970 652e file was a pipe. │ │ │ │ +002605d0: 0a0a 0a49 6620 7468 6520 6669 6c65 2077 ...If the file w │ │ │ │ +002605e0: 6173 206f 7065 6e20 6f6e 6c79 2066 6f72 as open only for │ │ │ │ +002605f0: 206f 7574 7075 742c 2074 6865 6e20 2a6e output, then *n │ │ │ │ +00260600: 6f74 6520 636c 6f73 653a 2063 6c6f 7365 ote close: close │ │ │ │ +00260610: 2c20 6973 2065 6173 6965 7220 746f 2075 , is easier to u │ │ │ │ +00260620: 7365 0a61 6e64 2068 6173 2074 6865 2073 se.and has the s │ │ │ │ +00260630: 616d 6520 6566 6665 6374 2e0a 0a0a 4966 ame effect....If │ │ │ │ +00260640: 2074 6865 2066 696c 6520 7761 7320 6f70 the file was op │ │ │ │ +00260650: 656e 2066 6f72 2062 6f74 6820 696e 7075 en for both inpu │ │ │ │ +00260660: 7420 616e 6420 6f75 7470 7574 2c20 6974 t and output, it │ │ │ │ +00260670: 2072 656d 6169 6e73 206f 7065 6e20 666f remains open fo │ │ │ │ +00260680: 7220 696e 7075 742e 0a0a 5761 7973 2074 r input...Ways t │ │ │ │ +00260690: 6f20 7573 6520 636c 6f73 654f 7574 3a0a o use closeOut:. │ │ │ │ +002606a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002606b0: 3d3d 3d3d 3d0a 0a20 202a 2022 4d61 6e69 =====.. * "Mani │ │ │ │ +002606c0: 7075 6c61 746f 7220 4461 7461 6261 7365 pulator Database │ │ │ │ +002606d0: 2220 2d2d 2073 6565 202a 6e6f 7465 204d " -- see *note M │ │ │ │ +002606e0: 616e 6970 756c 6174 6f72 3a20 4d61 6e69 anipulator: Mani │ │ │ │ +002606f0: 7075 6c61 746f 722c 202d 2d20 7468 6520 pulator, -- the │ │ │ │ +00260700: 636c 6173 730a 2020 2020 6f66 2061 6c6c class. of all │ │ │ │ +00260710: 2066 696c 6520 6d61 6e69 7075 6c61 746f file manipulato │ │ │ │ +00260720: 7273 0a20 202a 2022 4d61 6e69 7075 6c61 rs. * "Manipula │ │ │ │ +00260730: 746f 7220 4669 6c65 2220 2d2d 2073 6565 tor File" -- see │ │ │ │ +00260740: 202a 6e6f 7465 204d 616e 6970 756c 6174 *note Manipulat │ │ │ │ +00260750: 6f72 3a20 4d61 6e69 7075 6c61 746f 722c or: Manipulator, │ │ │ │ +00260760: 202d 2d20 7468 6520 636c 6173 7320 6f66 -- the class of │ │ │ │ +00260770: 0a20 2020 2061 6c6c 2066 696c 6520 6d61 . all file ma │ │ │ │ +00260780: 6e69 7075 6c61 746f 7273 0a20 202a 2022 nipulators. * " │ │ │ │ +00260790: 4d61 6e69 7075 6c61 746f 7220 4e6f 7468 Manipulator Noth │ │ │ │ +002607a0: 696e 6722 202d 2d20 7365 6520 2a6e 6f74 ing" -- see *not │ │ │ │ +002607b0: 6520 4d61 6e69 7075 6c61 746f 723a 204d e Manipulator: M │ │ │ │ +002607c0: 616e 6970 756c 6174 6f72 2c20 2d2d 2074 anipulator, -- t │ │ │ │ +002607d0: 6865 2063 6c61 7373 0a20 2020 206f 6620 he class. of │ │ │ │ +002607e0: 616c 6c20 6669 6c65 206d 616e 6970 756c all file manipul │ │ │ │ +002607f0: 6174 6f72 730a 2020 2a20 226e 6577 204d ators. * "new M │ │ │ │ +00260800: 616e 6970 756c 6174 6f72 2066 726f 6d20 anipulator from │ │ │ │ +00260810: 4675 6e63 7469 6f6e 2220 2d2d 2073 6565 Function" -- see │ │ │ │ +00260820: 202a 6e6f 7465 204d 616e 6970 756c 6174 *note Manipulat │ │ │ │ +00260830: 6f72 3a20 4d61 6e69 7075 6c61 746f 722c or: Manipulator, │ │ │ │ +00260840: 202d 2d0a 2020 2020 7468 6520 636c 6173 --. the clas │ │ │ │ +00260850: 7320 6f66 2061 6c6c 2066 696c 6520 6d61 s of all file ma │ │ │ │ +00260860: 6e69 7075 6c61 746f 7273 0a20 202a 2022 nipulators. * " │ │ │ │ +00260870: 6d65 7468 6f64 7328 4d61 6e69 7075 6c61 methods(Manipula │ │ │ │ +00260880: 746f 7229 2220 2d2d 2073 6565 202a 6e6f tor)" -- see *no │ │ │ │ +00260890: 7465 206d 6574 686f 6473 3a20 6d65 7468 te methods: meth │ │ │ │ +002608a0: 6f64 732c 202d 2d20 6c69 7374 206d 6574 ods, -- list met │ │ │ │ +002608b0: 686f 6473 0a20 202a 2022 4d61 6e69 7075 hods. * "Manipu │ │ │ │ +002608c0: 6c61 746f 7220 4e65 7446 696c 6522 202d lator NetFile" - │ │ │ │ +002608d0: 2d20 7365 6520 2a6e 6f74 6520 4e65 7446 - see *note NetF │ │ │ │ +002608e0: 696c 653a 204e 6574 4669 6c65 2c20 2d2d ile: NetFile, -- │ │ │ │ +002608f0: 2074 6865 2063 6c61 7373 206f 6620 616c the class of al │ │ │ │ +00260900: 6c0a 2020 2020 6e65 7420 6669 6c65 730a l. net files. │ │ │ │ +00260910: 2020 2a20 224e 6574 4669 6c65 203c 3c20 * "NetFile << │ │ │ │ +00260920: 4d61 6e69 7075 6c61 746f 7222 202d 2d20 Manipulator" -- │ │ │ │ +00260930: 7365 6520 2a6e 6f74 6520 4e65 7446 696c see *note NetFil │ │ │ │ +00260940: 653a 204e 6574 4669 6c65 2c20 2d2d 2074 e: NetFile, -- t │ │ │ │ +00260950: 6865 2063 6c61 7373 206f 6620 616c 6c0a he class of all. │ │ │ │ +00260960: 2020 2020 6e65 7420 6669 6c65 730a 2020 net files. │ │ │ │ +00260970: 2a20 2246 696c 6520 3c3c 204d 616e 6970 * "File << Manip │ │ │ │ +00260980: 756c 6174 6f72 2220 2d2d 2073 6565 202a ulator" -- see * │ │ │ │ +00260990: 6e6f 7465 2070 7269 6e74 696e 6720 746f note printing to │ │ │ │ +002609a0: 2061 2066 696c 653a 2070 7269 6e74 696e a file: printin │ │ │ │ +002609b0: 6720 746f 2061 2066 696c 652c 0a20 2020 g to a file,. │ │ │ │ +002609c0: 202d 2d20 7072 696e 7420 746f 2061 2066 -- print to a f │ │ │ │ +002609d0: 696c 650a 2020 2a20 224e 6f74 6869 6e67 ile. * "Nothing │ │ │ │ +002609e0: 203c 3c20 4d61 6e69 7075 6c61 746f 7222 << Manipulator" │ │ │ │ +002609f0: 202d 2d20 7365 6520 2a6e 6f74 6520 7072 -- see *note pr │ │ │ │ +00260a00: 696e 7469 6e67 2074 6f20 6120 6669 6c65 inting to a file │ │ │ │ +00260a10: 3a20 7072 696e 7469 6e67 2074 6f20 610a : printing to a. │ │ │ │ +00260a20: 2020 2020 6669 6c65 2c20 2d2d 2070 7269 file, -- pri │ │ │ │ +00260a30: 6e74 2074 6f20 6120 6669 6c65 0a0a 466f nt to a file..Fo │ │ │ │ +00260a40: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00260a50: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00260a60: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00260a70: 2a6e 6f74 6520 636c 6f73 654f 7574 3a20 *note closeOut: │ │ │ │ +00260a80: 636c 6f73 654f 7574 2c20 6973 2061 202a closeOut, is a * │ │ │ │ +00260a90: 6e6f 7465 206d 616e 6970 756c 6174 6f72 note manipulator │ │ │ │ +00260aa0: 3a20 4d61 6e69 7075 6c61 746f 722c 2e0a : Manipulator,.. │ │ │ │ +00260ab0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00260ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -00260ae0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -00260af0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00260b00: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00260b10: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00260b20: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00260b30: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00260b40: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ -00260b50: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a31 c/ov_system.m2:1 │ │ │ │ -00260b60: 3533 353a 302e 0a1f 0a46 696c 653a 204d 535:0....File: M │ │ │ │ -00260b70: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -00260b80: 2c20 4e6f 6465 3a20 6765 742c 204e 6578 , Node: get, Nex │ │ │ │ -00260b90: 743a 2067 6574 632c 2050 7265 763a 2063 t: getc, Prev: c │ │ │ │ -00260ba0: 6c6f 7365 4f75 742c 2055 703a 2075 7369 loseOut, Up: usi │ │ │ │ -00260bb0: 6e67 2073 6f63 6b65 7473 0a0a 6765 7420 ng sockets..get │ │ │ │ -00260bc0: 2d2d 2067 6574 2074 6865 2063 6f6e 7465 -- get the conte │ │ │ │ -00260bd0: 6e74 7320 6f66 2061 2066 696c 650a 2a2a nts of a file.** │ │ │ │ -00260be0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00260bf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00260c00: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00260c10: 2020 2020 2067 6574 2066 0a20 202a 2049 get f. * I │ │ │ │ -00260c20: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -00260c30: 2c20 6120 2a6e 6f74 6520 6669 6c65 3a20 , a *note file: │ │ │ │ -00260c40: 4669 6c65 2c20 6f72 2061 202a 6e6f 7465 File, or a *note │ │ │ │ -00260c50: 2073 7472 696e 673a 2053 7472 696e 672c string: String, │ │ │ │ -00260c60: 2e20 2049 6620 6620 6973 2061 2073 7472 . If f is a str │ │ │ │ -00260c70: 696e 672c 0a20 2020 2020 2020 2074 6865 ing,. the │ │ │ │ -00260c80: 6e20 6974 2069 7320 6f70 656e 6564 2c20 n it is opened, │ │ │ │ -00260c90: 6173 2077 6974 6820 2a6e 6f74 6520 6f70 as with *note op │ │ │ │ -00260ca0: 656e 496e 3a20 6f70 656e 496e 5f6c 7053 enIn: openIn_lpS │ │ │ │ -00260cb0: 7472 696e 675f 7270 2c2e 0a20 2020 2020 tring_rp,.. │ │ │ │ -00260cc0: 2020 2046 696c 656e 616d 6573 2073 7461 Filenames sta │ │ │ │ -00260cd0: 7274 696e 6720 7769 7468 2021 206f 7220 rting with ! or │ │ │ │ -00260ce0: 7769 7468 2024 2061 7265 2074 7265 6174 with $ are treat │ │ │ │ -00260cf0: 6564 2073 7065 6369 616c 6c79 2c20 7365 ed specially, se │ │ │ │ -00260d00: 6520 2a6e 6f74 650a 2020 2020 2020 2020 e *note. │ │ │ │ -00260d10: 6f70 656e 496e 4f75 743a 206f 7065 6e49 openInOut: openI │ │ │ │ -00260d20: 6e4f 7574 2c2e 0a20 202a 204f 7574 7075 nOut,.. * Outpu │ │ │ │ -00260d30: 7473 3a0a 2020 2020 2020 2a20 6120 7374 ts:. * a st │ │ │ │ -00260d40: 7269 6e67 2063 6f6e 7461 696e 696e 6720 ring containing │ │ │ │ -00260d50: 7468 6520 636f 6e74 656e 7473 206f 6620 the contents of │ │ │ │ -00260d60: 7468 6520 6669 6c65 2e20 2049 6620 7468 the file. If th │ │ │ │ -00260d70: 6520 6669 6c65 2077 6173 2061 6c72 6561 e file was alrea │ │ │ │ -00260d80: 6479 0a20 2020 2020 2020 206f 7065 6e20 dy. open │ │ │ │ -00260d90: 616e 6420 7061 7274 6961 6c6c 7920 7265 and partially re │ │ │ │ -00260da0: 6164 2c20 7468 6520 7265 6d61 696e 6465 ad, the remainde │ │ │ │ -00260db0: 7220 6f66 2074 6865 2063 6f6e 7465 6e74 r of the content │ │ │ │ -00260dc0: 7320 6f66 2074 6865 2066 696c 6520 6172 s of the file ar │ │ │ │ -00260dd0: 650a 2020 2020 2020 2020 7265 7475 726e e. return │ │ │ │ -00260de0: 6564 2e0a 2020 2a20 436f 6e73 6571 7565 ed.. * Conseque │ │ │ │ -00260df0: 6e63 6573 3a0a 2020 2020 2020 2a20 496e nces:. * In │ │ │ │ -00260e00: 2074 6865 2063 6173 6520 7768 6572 6520 the case where │ │ │ │ -00260e10: 6620 6973 2061 2066 696c 652c 2069 7473 f is a file, its │ │ │ │ -00260e20: 2069 6e70 7574 2073 6964 6520 6973 2063 input side is c │ │ │ │ -00260e30: 6c6f 7365 642e 0a0a 4465 7363 7269 7074 losed...Descript │ │ │ │ -00260e40: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00260e50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00260e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260e70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -00260e80: 2022 7465 7374 2d66 696c 6522 203c 3c20 "test-file" << │ │ │ │ -00260e90: 2268 6920 7468 6572 6522 203c 3c20 636c "hi there" << cl │ │ │ │ -00260ea0: 6f73 657c 0a7c 2020 2020 2020 2020 2020 ose|.| │ │ │ │ -00260eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00260ed0: 6f31 203d 2074 6573 742d 6669 6c65 2020 o1 = test-file │ │ │ │ +00260ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260b00: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00260b10: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00260b20: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00260b30: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00260b40: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00260b50: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00260b60: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +00260b70: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ +00260b80: 6d32 3a31 3533 353a 302e 0a1f 0a46 696c m2:1535:0....Fil │ │ │ │ +00260b90: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +00260ba0: 696e 666f 2c20 4e6f 6465 3a20 6765 742c info, Node: get, │ │ │ │ +00260bb0: 204e 6578 743a 2067 6574 632c 2050 7265 Next: getc, Pre │ │ │ │ +00260bc0: 763a 2063 6c6f 7365 4f75 742c 2055 703a v: closeOut, Up: │ │ │ │ +00260bd0: 2075 7369 6e67 2073 6f63 6b65 7473 0a0a using sockets.. │ │ │ │ +00260be0: 6765 7420 2d2d 2067 6574 2074 6865 2063 get -- get the c │ │ │ │ +00260bf0: 6f6e 7465 6e74 7320 6f66 2061 2066 696c ontents of a fil │ │ │ │ +00260c00: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ +00260c10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00260c20: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00260c30: 0a20 2020 2020 2020 2067 6574 2066 0a20 . get f. │ │ │ │ +00260c40: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00260c50: 202a 2066 2c20 6120 2a6e 6f74 6520 6669 * f, a *note fi │ │ │ │ +00260c60: 6c65 3a20 4669 6c65 2c20 6f72 2061 202a le: File, or a * │ │ │ │ +00260c70: 6e6f 7465 2073 7472 696e 673a 2053 7472 note string: Str │ │ │ │ +00260c80: 696e 672c 2e20 2049 6620 6620 6973 2061 ing,. If f is a │ │ │ │ +00260c90: 2073 7472 696e 672c 0a20 2020 2020 2020 string,. │ │ │ │ +00260ca0: 2074 6865 6e20 6974 2069 7320 6f70 656e then it is open │ │ │ │ +00260cb0: 6564 2c20 6173 2077 6974 6820 2a6e 6f74 ed, as with *not │ │ │ │ +00260cc0: 6520 6f70 656e 496e 3a20 6f70 656e 496e e openIn: openIn │ │ │ │ +00260cd0: 5f6c 7053 7472 696e 675f 7270 2c2e 0a20 _lpString_rp,.. │ │ │ │ +00260ce0: 2020 2020 2020 2046 696c 656e 616d 6573 Filenames │ │ │ │ +00260cf0: 2073 7461 7274 696e 6720 7769 7468 2021 starting with ! │ │ │ │ +00260d00: 206f 7220 7769 7468 2024 2061 7265 2074 or with $ are t │ │ │ │ +00260d10: 7265 6174 6564 2073 7065 6369 616c 6c79 reated specially │ │ │ │ +00260d20: 2c20 7365 6520 2a6e 6f74 650a 2020 2020 , see *note. │ │ │ │ +00260d30: 2020 2020 6f70 656e 496e 4f75 743a 206f openInOut: o │ │ │ │ +00260d40: 7065 6e49 6e4f 7574 2c2e 0a20 202a 204f penInOut,.. * O │ │ │ │ +00260d50: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00260d60: 6120 7374 7269 6e67 2063 6f6e 7461 696e a string contain │ │ │ │ +00260d70: 696e 6720 7468 6520 636f 6e74 656e 7473 ing the contents │ │ │ │ +00260d80: 206f 6620 7468 6520 6669 6c65 2e20 2049 of the file. I │ │ │ │ +00260d90: 6620 7468 6520 6669 6c65 2077 6173 2061 f the file was a │ │ │ │ +00260da0: 6c72 6561 6479 0a20 2020 2020 2020 206f lready. o │ │ │ │ +00260db0: 7065 6e20 616e 6420 7061 7274 6961 6c6c pen and partiall │ │ │ │ +00260dc0: 7920 7265 6164 2c20 7468 6520 7265 6d61 y read, the rema │ │ │ │ +00260dd0: 696e 6465 7220 6f66 2074 6865 2063 6f6e inder of the con │ │ │ │ +00260de0: 7465 6e74 7320 6f66 2074 6865 2066 696c tents of the fil │ │ │ │ +00260df0: 6520 6172 650a 2020 2020 2020 2020 7265 e are. re │ │ │ │ +00260e00: 7475 726e 6564 2e0a 2020 2a20 436f 6e73 turned.. * Cons │ │ │ │ +00260e10: 6571 7565 6e63 6573 3a0a 2020 2020 2020 equences:. │ │ │ │ +00260e20: 2a20 496e 2074 6865 2063 6173 6520 7768 * In the case wh │ │ │ │ +00260e30: 6572 6520 6620 6973 2061 2066 696c 652c ere f is a file, │ │ │ │ +00260e40: 2069 7473 2069 6e70 7574 2073 6964 6520 its input side │ │ │ │ +00260e50: 6973 2063 6c6f 7365 642e 0a0a 4465 7363 is closed...Desc │ │ │ │ +00260e60: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00260e70: 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ===..+---------- │ │ │ │ +00260e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00260ea0: 6931 203a 2022 7465 7374 2d66 696c 6522 i1 : "test-file" │ │ │ │ +00260eb0: 203c 3c20 2268 6920 7468 6572 6522 203c << "hi there" < │ │ │ │ +00260ec0: 3c20 636c 6f73 657c 0a7c 2020 2020 2020 < close|.| │ │ │ │ +00260ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00260ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260ef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00260f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260f20: 207c 0a7c 6f31 203a 2046 696c 6520 2020 |.|o1 : File │ │ │ │ +00260ef0: 207c 0a7c 6f31 203d 2074 6573 742d 6669 |.|o1 = test-fi │ │ │ │ +00260f00: 6c65 2020 2020 2020 2020 2020 2020 2020 le │ │ │ │ +00260f10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00260f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00260f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260f40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00260f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00260f70: 2d2d 2d2d 2d2b 0a7c 6932 203a 2067 6574 -----+.|i2 : get │ │ │ │ -00260f80: 2022 7465 7374 2d66 696c 6522 2020 2020 "test-file" │ │ │ │ -00260f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00260fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00260f40: 2020 2020 207c 0a7c 6f31 203a 2046 696c |.|o1 : Fil │ │ │ │ +00260f50: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00260f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00260f70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00260f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260f90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00260fa0: 2067 6574 2022 7465 7374 2d66 696c 6522 get "test-file" │ │ │ │ 00260fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260fc0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -00260fd0: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ -00260fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00260ff0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00261000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00261020: 6933 203a 2072 656d 6f76 6546 696c 6520 i3 : removeFile │ │ │ │ -00261030: 2274 6573 742d 6669 6c65 2220 2020 2020 "test-file" │ │ │ │ -00261040: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00261050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261070: 2d2b 0a7c 6934 203a 2067 6574 2022 2164 -+.|i4 : get "!d │ │ │ │ -00261080: 6174 6522 2020 2020 2020 2020 2020 2020 ate" │ │ │ │ -00261090: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -002610a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002610b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002610c0: 2020 2020 207c 0a7c 6f34 203d 2053 756e |.|o4 = Sun │ │ │ │ -002610d0: 2044 6563 2031 3420 3135 3a32 373a 3232 Dec 14 15:27:22 │ │ │ │ -002610e0: 2055 5443 2032 3032 3520 2020 2020 207c UTC 2025 | │ │ │ │ -002610f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00261100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261110: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -00261120: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00261130: 202a 202a 6e6f 7465 2072 6561 643a 2072 * *note read: r │ │ │ │ -00261140: 6561 642c 202d 2d20 7265 6164 2066 726f ead, -- read fro │ │ │ │ -00261150: 6d20 6120 6669 6c65 0a20 202a 202a 6e6f m a file. * *no │ │ │ │ -00261160: 7465 2072 656d 6f76 6546 696c 653a 2072 te removeFile: r │ │ │ │ -00261170: 656d 6f76 6546 696c 652c 202d 2d20 7265 emoveFile, -- re │ │ │ │ -00261180: 6d6f 7665 2061 2066 696c 650a 2020 2a20 move a file. * │ │ │ │ -00261190: 2a6e 6f74 6520 636c 6f73 653a 2063 6c6f *note close: clo │ │ │ │ -002611a0: 7365 2c20 2d2d 2063 6c6f 7365 2061 2066 se, -- close a f │ │ │ │ -002611b0: 696c 650a 2020 2a20 2a6e 6f74 6520 4669 ile. * *note Fi │ │ │ │ -002611c0: 6c65 203c 3c20 5468 696e 673a 2070 7269 le << Thing: pri │ │ │ │ -002611d0: 6e74 696e 6720 746f 2061 2066 696c 652c nting to a file, │ │ │ │ -002611e0: 202d 2d20 7072 696e 7420 746f 2061 2066 -- print to a f │ │ │ │ -002611f0: 696c 650a 0a57 6179 7320 746f 2075 7365 ile..Ways to use │ │ │ │ -00261200: 2067 6574 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d get:.========== │ │ │ │ -00261210: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2267 6574 ======.. * "get │ │ │ │ -00261220: 2846 696c 6529 220a 2020 2a20 2267 6574 (File)". * "get │ │ │ │ -00261230: 2853 7472 696e 6729 220a 0a46 6f72 2074 (String)"..For t │ │ │ │ -00261240: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00261250: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00261260: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00261270: 7465 2067 6574 3a20 6765 742c 2069 7320 te get: get, is │ │ │ │ -00261280: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ -00261290: 2066 756e 6374 696f 6e3a 2043 6f6d 7069 function: Compi │ │ │ │ -002612a0: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ -002612b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002612c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002612d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00260fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00260fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00260fe0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00260ff0: 6f32 203d 2068 6920 7468 6572 6520 2020 o2 = hi there │ │ │ │ +00261000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00261010: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00261020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261040: 2d2b 0a7c 6933 203a 2072 656d 6f76 6546 -+.|i3 : removeF │ │ │ │ +00261050: 696c 6520 2274 6573 742d 6669 6c65 2220 ile "test-file" │ │ │ │ +00261060: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00261070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261090: 2d2d 2d2d 2d2b 0a7c 6934 203a 2067 6574 -----+.|i4 : get │ │ │ │ +002610a0: 2022 2164 6174 6522 2020 2020 2020 2020 "!date" │ │ │ │ +002610b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002610c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002610d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002610e0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +002610f0: 2054 6875 204a 616e 2020 3120 3131 3a30 Thu Jan 1 11:0 │ │ │ │ +00261100: 323a 3438 2055 5443 2032 3032 3620 2020 2:48 UTC 2026 │ │ │ │ +00261110: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00261120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00261140: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +00261150: 3d0a 0a20 202a 202a 6e6f 7465 2072 6561 =.. * *note rea │ │ │ │ +00261160: 643a 2072 6561 642c 202d 2d20 7265 6164 d: read, -- read │ │ │ │ +00261170: 2066 726f 6d20 6120 6669 6c65 0a20 202a from a file. * │ │ │ │ +00261180: 202a 6e6f 7465 2072 656d 6f76 6546 696c *note removeFil │ │ │ │ +00261190: 653a 2072 656d 6f76 6546 696c 652c 202d e: removeFile, - │ │ │ │ +002611a0: 2d20 7265 6d6f 7665 2061 2066 696c 650a - remove a file. │ │ │ │ +002611b0: 2020 2a20 2a6e 6f74 6520 636c 6f73 653a * *note close: │ │ │ │ +002611c0: 2063 6c6f 7365 2c20 2d2d 2063 6c6f 7365 close, -- close │ │ │ │ +002611d0: 2061 2066 696c 650a 2020 2a20 2a6e 6f74 a file. * *not │ │ │ │ +002611e0: 6520 4669 6c65 203c 3c20 5468 696e 673a e File << Thing: │ │ │ │ +002611f0: 2070 7269 6e74 696e 6720 746f 2061 2066 printing to a f │ │ │ │ +00261200: 696c 652c 202d 2d20 7072 696e 7420 746f ile, -- print to │ │ │ │ +00261210: 2061 2066 696c 650a 0a57 6179 7320 746f a file..Ways to │ │ │ │ +00261220: 2075 7365 2067 6574 3a0a 3d3d 3d3d 3d3d use get:.====== │ │ │ │ +00261230: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00261240: 2267 6574 2846 696c 6529 220a 2020 2a20 "get(File)". * │ │ │ │ +00261250: 2267 6574 2853 7472 696e 6729 220a 0a46 "get(String)"..F │ │ │ │ +00261260: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00261270: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00261280: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00261290: 202a 6e6f 7465 2067 6574 3a20 6765 742c *note get: get, │ │ │ │ +002612a0: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ +002612b0: 696c 6564 2066 756e 6374 696f 6e3a 2043 iled function: C │ │ │ │ +002612c0: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ +002612d0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 002612e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002612f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00261300: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00261310: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00261320: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00261330: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00261340: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00261350: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00261360: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -00261370: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -00261380: 3a33 3430 3a30 2e0a 1f0a 4669 6c65 3a20 :340:0....File: │ │ │ │ -00261390: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -002613a0: 6f2c 204e 6f64 653a 2067 6574 632c 204e o, Node: getc, N │ │ │ │ -002613b0: 6578 743a 2072 6561 642c 2050 7265 763a ext: read, Prev: │ │ │ │ -002613c0: 2067 6574 2c20 5570 3a20 7573 696e 6720 get, Up: using │ │ │ │ -002613d0: 736f 636b 6574 730a 0a67 6574 6320 2d2d sockets..getc -- │ │ │ │ -002613e0: 2067 6574 2061 2062 7974 650a 2a2a 2a2a get a byte.**** │ │ │ │ -002613f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00261400: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00261410: 3d3d 3d3d 3d3d 3d0a 0a67 6574 6320 6620 =======..getc f │ │ │ │ -00261420: 6f62 7461 696e 7320 6f6e 6520 6279 7465 obtains one byte │ │ │ │ -00261430: 2066 726f 6d20 7468 6520 696e 7075 7420 from the input │ │ │ │ -00261440: 6669 6c65 2066 2061 6e64 2070 726f 7669 file f and provi │ │ │ │ -00261450: 6465 7320 6974 2061 7320 6120 7374 7269 des it as a stri │ │ │ │ -00261460: 6e67 206f 660a 6c65 6e67 7468 2031 2e20 ng of.length 1. │ │ │ │ -00261470: 204f 6e20 656e 6420 6f66 2066 696c 6520 On end of file │ │ │ │ -00261480: 616e 2065 6d70 7479 2073 7472 696e 6720 an empty string │ │ │ │ -00261490: 6f66 2069 7320 7265 7475 726e 6564 2e0a of is returned.. │ │ │ │ -002614a0: 0a0a 0a42 7567 3a20 7468 6520 6e61 6d65 ...Bug: the name │ │ │ │ -002614b0: 2069 7320 6372 7970 7469 6320 616e 6420 is cryptic and │ │ │ │ -002614c0: 7368 6f75 6c64 2062 6520 6368 616e 6765 should be change │ │ │ │ -002614d0: 642e 0a0a 5365 6520 616c 736f 0a3d 3d3d d...See also.=== │ │ │ │ -002614e0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -002614f0: 2046 696c 653a 2046 696c 652c 202d 2d20 File: File, -- │ │ │ │ -00261500: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ -00261510: 2066 696c 6573 0a0a 5761 7973 2074 6f20 files..Ways to │ │ │ │ -00261520: 7573 6520 6765 7463 3a0a 3d3d 3d3d 3d3d use getc:.====== │ │ │ │ -00261530: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00261540: 2022 6765 7463 2846 696c 6529 220a 0a46 "getc(File)"..F │ │ │ │ -00261550: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00261560: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00261570: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00261580: 202a 6e6f 7465 2067 6574 633a 2067 6574 *note getc: get │ │ │ │ -00261590: 632c 2069 7320 6120 2a6e 6f74 6520 636f c, is a *note co │ │ │ │ -002615a0: 6d70 696c 6564 2066 756e 6374 696f 6e3a mpiled function: │ │ │ │ -002615b0: 2043 6f6d 7069 6c65 6446 756e 6374 696f CompiledFunctio │ │ │ │ -002615c0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -002615d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002615e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002612f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261320: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00261330: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00261340: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00261350: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00261360: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00261370: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00261380: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +00261390: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +002613a0: 6d2e 6d32 3a33 3430 3a30 2e0a 1f0a 4669 m.m2:340:0....Fi │ │ │ │ +002613b0: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +002613c0: 2e69 6e66 6f2c 204e 6f64 653a 2067 6574 .info, Node: get │ │ │ │ +002613d0: 632c 204e 6578 743a 2072 6561 642c 2050 c, Next: read, P │ │ │ │ +002613e0: 7265 763a 2067 6574 2c20 5570 3a20 7573 rev: get, Up: us │ │ │ │ +002613f0: 696e 6720 736f 636b 6574 730a 0a67 6574 ing sockets..get │ │ │ │ +00261400: 6320 2d2d 2067 6574 2061 2062 7974 650a c -- get a byte. │ │ │ │ +00261410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00261420: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ +00261430: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a67 6574 ===========..get │ │ │ │ +00261440: 6320 6620 6f62 7461 696e 7320 6f6e 6520 c f obtains one │ │ │ │ +00261450: 6279 7465 2066 726f 6d20 7468 6520 696e byte from the in │ │ │ │ +00261460: 7075 7420 6669 6c65 2066 2061 6e64 2070 put file f and p │ │ │ │ +00261470: 726f 7669 6465 7320 6974 2061 7320 6120 rovides it as a │ │ │ │ +00261480: 7374 7269 6e67 206f 660a 6c65 6e67 7468 string of.length │ │ │ │ +00261490: 2031 2e20 204f 6e20 656e 6420 6f66 2066 1. On end of f │ │ │ │ +002614a0: 696c 6520 616e 2065 6d70 7479 2073 7472 ile an empty str │ │ │ │ +002614b0: 696e 6720 6f66 2069 7320 7265 7475 726e ing of is return │ │ │ │ +002614c0: 6564 2e0a 0a0a 0a42 7567 3a20 7468 6520 ed.....Bug: the │ │ │ │ +002614d0: 6e61 6d65 2069 7320 6372 7970 7469 6320 name is cryptic │ │ │ │ +002614e0: 616e 6420 7368 6f75 6c64 2062 6520 6368 and should be ch │ │ │ │ +002614f0: 616e 6765 642e 0a0a 5365 6520 616c 736f anged...See also │ │ │ │ +00261500: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00261510: 6e6f 7465 2046 696c 653a 2046 696c 652c note File: File, │ │ │ │ +00261520: 202d 2d20 7468 6520 636c 6173 7320 6f66 -- the class of │ │ │ │ +00261530: 2061 6c6c 2066 696c 6573 0a0a 5761 7973 all files..Ways │ │ │ │ +00261540: 2074 6f20 7573 6520 6765 7463 3a0a 3d3d to use getc:.== │ │ │ │ +00261550: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00261560: 0a20 202a 2022 6765 7463 2846 696c 6529 . * "getc(File) │ │ │ │ +00261570: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00261580: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00261590: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +002615a0: 6a65 6374 202a 6e6f 7465 2067 6574 633a ject *note getc: │ │ │ │ +002615b0: 2067 6574 632c 2069 7320 6120 2a6e 6f74 getc, is a *not │ │ │ │ +002615c0: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ +002615d0: 696f 6e3a 2043 6f6d 7069 6c65 6446 756e ion: CompiledFun │ │ │ │ +002615e0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ 002615f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00261600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261610: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00261620: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00261630: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00261640: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00261650: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00261660: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00261670: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -00261680: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -00261690: 7465 6d2e 6d32 3a35 3438 3a30 2e0a 1f0a tem.m2:548:0.... │ │ │ │ -002616a0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -002616b0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2072 oc.info, Node: r │ │ │ │ -002616c0: 6561 642c 204e 6578 743a 2073 6361 6e4c ead, Next: scanL │ │ │ │ -002616d0: 696e 6573 2c20 5072 6576 3a20 6765 7463 ines, Prev: getc │ │ │ │ -002616e0: 2c20 5570 3a20 7573 696e 6720 736f 636b , Up: using sock │ │ │ │ -002616f0: 6574 730a 0a72 6561 6420 2d2d 2072 6561 ets..read -- rea │ │ │ │ -00261700: 6420 6672 6f6d 2061 2066 696c 650a 2a2a d from a file.** │ │ │ │ -00261710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00261720: 2a2a 2a2a 2a2a 0a0a 2a20 4d65 6e75 3a0a ******..* Menu:. │ │ │ │ -00261730: 0a2a 2072 6561 6428 5365 7175 656e 6365 .* read(Sequence │ │ │ │ -00261740: 293a 2072 6561 645f 6c70 5365 7175 656e ): read_lpSequen │ │ │ │ -00261750: 6365 5f72 702e 2020 7265 6164 2066 726f ce_rp. read fro │ │ │ │ -00261760: 6d20 6120 6669 6c65 0a2a 2072 6561 6428 m a file.* read( │ │ │ │ -00261770: 5374 7269 6e67 293a 2072 6561 645f 6c70 String): read_lp │ │ │ │ -00261780: 5374 7269 6e67 5f72 702e 2020 7265 6164 String_rp. read │ │ │ │ -00261790: 2066 726f 6d20 6120 6669 6c65 0a2a 2072 from a file.* r │ │ │ │ -002617a0: 6561 6428 4669 6c65 293a 2072 6561 645f ead(File): read_ │ │ │ │ -002617b0: 6c70 4669 6c65 5f72 702e 2020 2072 6561 lpFile_rp. rea │ │ │ │ -002617c0: 6420 6672 6f6d 2061 2066 696c 650a 2a20 d from a file.* │ │ │ │ -002617d0: 7265 6164 2846 696c 652c 5a5a 293a 2072 read(File,ZZ): r │ │ │ │ -002617e0: 6561 645f 6c70 4669 6c65 5f63 6d5a 5a5f ead_lpFile_cmZZ_ │ │ │ │ -002617f0: 7270 2e20 2072 6561 6420 6672 6f6d 2061 rp. read from a │ │ │ │ -00261800: 2066 696c 650a 0a57 6179 7320 746f 2075 file..Ways to u │ │ │ │ -00261810: 7365 2072 6561 643a 0a3d 3d3d 3d3d 3d3d se read:.======= │ │ │ │ -00261820: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00261830: 2a6e 6f74 6520 7265 6164 2846 696c 6529 *note read(File) │ │ │ │ -00261840: 3a20 7265 6164 5f6c 7046 696c 655f 7270 : read_lpFile_rp │ │ │ │ -00261850: 2c20 2d2d 2072 6561 6420 6672 6f6d 2061 , -- read from a │ │ │ │ -00261860: 2066 696c 650a 2020 2a20 2a6e 6f74 6520 file. * *note │ │ │ │ -00261870: 7265 6164 2846 696c 652c 5a5a 293a 2072 read(File,ZZ): r │ │ │ │ -00261880: 6561 645f 6c70 4669 6c65 5f63 6d5a 5a5f ead_lpFile_cmZZ_ │ │ │ │ -00261890: 7270 2c20 2d2d 2072 6561 6420 6672 6f6d rp, -- read from │ │ │ │ -002618a0: 2061 2066 696c 650a 2020 2a20 2a6e 6f74 a file. * *not │ │ │ │ -002618b0: 6520 7265 6164 2853 6571 7565 6e63 6529 e read(Sequence) │ │ │ │ -002618c0: 3a20 7265 6164 5f6c 7053 6571 7565 6e63 : read_lpSequenc │ │ │ │ -002618d0: 655f 7270 2c20 2d2d 2072 6561 6420 6672 e_rp, -- read fr │ │ │ │ -002618e0: 6f6d 2061 2066 696c 650a 2020 2a20 2a6e om a file. * *n │ │ │ │ -002618f0: 6f74 6520 7265 6164 2853 7472 696e 6729 ote read(String) │ │ │ │ -00261900: 3a20 7265 6164 5f6c 7053 7472 696e 675f : read_lpString_ │ │ │ │ -00261910: 7270 2c20 2d2d 2072 6561 6420 6672 6f6d rp, -- read from │ │ │ │ -00261920: 2061 2066 696c 650a 0a46 6f72 2074 6865 a file..For the │ │ │ │ -00261930: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00261940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00261950: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00261960: 2072 6561 643a 2072 6561 642c 2069 7320 read: read, is │ │ │ │ -00261970: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ -00261980: 2066 756e 6374 696f 6e3a 2043 6f6d 7069 function: Compi │ │ │ │ -00261990: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ -002619a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002619b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002619c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261630: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00261640: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00261650: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00261660: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00261670: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00261680: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00261690: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +002616a0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +002616b0: 5f73 7973 7465 6d2e 6d32 3a35 3438 3a30 _system.m2:548:0 │ │ │ │ +002616c0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +002616d0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +002616e0: 653a 2072 6561 642c 204e 6578 743a 2073 e: read, Next: s │ │ │ │ +002616f0: 6361 6e4c 696e 6573 2c20 5072 6576 3a20 canLines, Prev: │ │ │ │ +00261700: 6765 7463 2c20 5570 3a20 7573 696e 6720 getc, Up: using │ │ │ │ +00261710: 736f 636b 6574 730a 0a72 6561 6420 2d2d sockets..read -- │ │ │ │ +00261720: 2072 6561 6420 6672 6f6d 2061 2066 696c read from a fil │ │ │ │ +00261730: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ +00261740: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2a20 4d65 **********..* Me │ │ │ │ +00261750: 6e75 3a0a 0a2a 2072 6561 6428 5365 7175 nu:..* read(Sequ │ │ │ │ +00261760: 656e 6365 293a 2072 6561 645f 6c70 5365 ence): read_lpSe │ │ │ │ +00261770: 7175 656e 6365 5f72 702e 2020 7265 6164 quence_rp. read │ │ │ │ +00261780: 2066 726f 6d20 6120 6669 6c65 0a2a 2072 from a file.* r │ │ │ │ +00261790: 6561 6428 5374 7269 6e67 293a 2072 6561 ead(String): rea │ │ │ │ +002617a0: 645f 6c70 5374 7269 6e67 5f72 702e 2020 d_lpString_rp. │ │ │ │ +002617b0: 7265 6164 2066 726f 6d20 6120 6669 6c65 read from a file │ │ │ │ +002617c0: 0a2a 2072 6561 6428 4669 6c65 293a 2072 .* read(File): r │ │ │ │ +002617d0: 6561 645f 6c70 4669 6c65 5f72 702e 2020 ead_lpFile_rp. │ │ │ │ +002617e0: 2072 6561 6420 6672 6f6d 2061 2066 696c read from a fil │ │ │ │ +002617f0: 650a 2a20 7265 6164 2846 696c 652c 5a5a e.* read(File,ZZ │ │ │ │ +00261800: 293a 2072 6561 645f 6c70 4669 6c65 5f63 ): read_lpFile_c │ │ │ │ +00261810: 6d5a 5a5f 7270 2e20 2072 6561 6420 6672 mZZ_rp. read fr │ │ │ │ +00261820: 6f6d 2061 2066 696c 650a 0a57 6179 7320 om a file..Ways │ │ │ │ +00261830: 746f 2075 7365 2072 6561 643a 0a3d 3d3d to use read:.=== │ │ │ │ +00261840: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00261850: 2020 2a20 2a6e 6f74 6520 7265 6164 2846 * *note read(F │ │ │ │ +00261860: 696c 6529 3a20 7265 6164 5f6c 7046 696c ile): read_lpFil │ │ │ │ +00261870: 655f 7270 2c20 2d2d 2072 6561 6420 6672 e_rp, -- read fr │ │ │ │ +00261880: 6f6d 2061 2066 696c 650a 2020 2a20 2a6e om a file. * *n │ │ │ │ +00261890: 6f74 6520 7265 6164 2846 696c 652c 5a5a ote read(File,ZZ │ │ │ │ +002618a0: 293a 2072 6561 645f 6c70 4669 6c65 5f63 ): read_lpFile_c │ │ │ │ +002618b0: 6d5a 5a5f 7270 2c20 2d2d 2072 6561 6420 mZZ_rp, -- read │ │ │ │ +002618c0: 6672 6f6d 2061 2066 696c 650a 2020 2a20 from a file. * │ │ │ │ +002618d0: 2a6e 6f74 6520 7265 6164 2853 6571 7565 *note read(Seque │ │ │ │ +002618e0: 6e63 6529 3a20 7265 6164 5f6c 7053 6571 nce): read_lpSeq │ │ │ │ +002618f0: 7565 6e63 655f 7270 2c20 2d2d 2072 6561 uence_rp, -- rea │ │ │ │ +00261900: 6420 6672 6f6d 2061 2066 696c 650a 2020 d from a file. │ │ │ │ +00261910: 2a20 2a6e 6f74 6520 7265 6164 2853 7472 * *note read(Str │ │ │ │ +00261920: 696e 6729 3a20 7265 6164 5f6c 7053 7472 ing): read_lpStr │ │ │ │ +00261930: 696e 675f 7270 2c20 2d2d 2072 6561 6420 ing_rp, -- read │ │ │ │ +00261940: 6672 6f6d 2061 2066 696c 650a 0a46 6f72 from a file..For │ │ │ │ +00261950: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00261960: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00261970: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00261980: 6e6f 7465 2072 6561 643a 2072 6561 642c note read: read, │ │ │ │ +00261990: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ +002619a0: 696c 6564 2066 756e 6374 696f 6e3a 2043 iled function: C │ │ │ │ +002619b0: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ +002619c0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 002619d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002619e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -002619f0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00261a00: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00261a10: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00261a20: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00261a30: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00261a40: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00261a50: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -00261a60: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -00261a70: 3a32 3632 3a30 2e0a 1f0a 4669 6c65 3a20 :262:0....File: │ │ │ │ -00261a80: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -00261a90: 6f2c 204e 6f64 653a 2072 6561 645f 6c70 o, Node: read_lp │ │ │ │ -00261aa0: 5365 7175 656e 6365 5f72 702c 204e 6578 Sequence_rp, Nex │ │ │ │ -00261ab0: 743a 2072 6561 645f 6c70 5374 7269 6e67 t: read_lpString │ │ │ │ -00261ac0: 5f72 702c 2055 703a 2072 6561 640a 0a72 _rp, Up: read..r │ │ │ │ -00261ad0: 6561 6428 5365 7175 656e 6365 2920 2d2d ead(Sequence) -- │ │ │ │ -00261ae0: 2072 6561 6420 6672 6f6d 2061 2066 696c read from a fil │ │ │ │ -00261af0: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ -00261b00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00261b10: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ -00261b20: 6f6e 3a20 2a6e 6f74 6520 7265 6164 3a20 on: *note read: │ │ │ │ -00261b30: 7265 6164 2c0a 2020 2a20 5573 6167 653a read,. * Usage: │ │ │ │ -00261b40: 200a 2020 2020 2020 2020 7265 6164 2829 . read() │ │ │ │ -00261b50: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -00261b60: 2020 202a 2061 202a 6e6f 7465 2073 6571 * a *note seq │ │ │ │ -00261b70: 7565 6e63 653a 2053 6571 7565 6e63 652c uence: Sequence, │ │ │ │ -00261b80: 2c20 2829 0a20 202a 204f 7574 7075 7473 , (). * Outputs │ │ │ │ -00261b90: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -00261ba0: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ -00261bb0: 2c2c 2061 2073 7472 696e 6720 6f62 7461 ,, a string obta │ │ │ │ -00261bc0: 696e 6564 2062 7920 7265 6164 696e 6720 ined by reading │ │ │ │ -00261bd0: 6120 6c69 6e65 2066 726f 6d20 7468 650a a line from the. │ │ │ │ -00261be0: 2020 2020 2020 2020 7374 616e 6461 7264 standard │ │ │ │ -00261bf0: 2069 6e70 7574 2066 696c 652c 202a 6e6f input file, *no │ │ │ │ -00261c00: 7465 2073 7464 696f 3a20 7374 6469 6f2c te stdio: stdio, │ │ │ │ -00261c10: 2e0a 0a57 6179 7320 746f 2075 7365 2074 ...Ways to use t │ │ │ │ -00261c20: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -00261c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00261c40: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00261c50: 7265 6164 2853 6571 7565 6e63 6529 3a20 read(Sequence): │ │ │ │ -00261c60: 7265 6164 5f6c 7053 6571 7565 6e63 655f read_lpSequence_ │ │ │ │ -00261c70: 7270 2c20 2d2d 2072 6561 6420 6672 6f6d rp, -- read from │ │ │ │ -00261c80: 2061 2066 696c 650a 2d2d 2d2d 2d2d 2d2d a file.-------- │ │ │ │ -00261c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002619e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002619f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261a10: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00261a20: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00261a30: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00261a40: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00261a50: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00261a60: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00261a70: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +00261a80: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +00261a90: 6d2e 6d32 3a32 3632 3a30 2e0a 1f0a 4669 m.m2:262:0....Fi │ │ │ │ +00261aa0: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00261ab0: 2e69 6e66 6f2c 204e 6f64 653a 2072 6561 .info, Node: rea │ │ │ │ +00261ac0: 645f 6c70 5365 7175 656e 6365 5f72 702c d_lpSequence_rp, │ │ │ │ +00261ad0: 204e 6578 743a 2072 6561 645f 6c70 5374 Next: read_lpSt │ │ │ │ +00261ae0: 7269 6e67 5f72 702c 2055 703a 2072 6561 ring_rp, Up: rea │ │ │ │ +00261af0: 640a 0a72 6561 6428 5365 7175 656e 6365 d..read(Sequence │ │ │ │ +00261b00: 2920 2d2d 2072 6561 6420 6672 6f6d 2061 ) -- read from a │ │ │ │ +00261b10: 2066 696c 650a 2a2a 2a2a 2a2a 2a2a 2a2a file.********** │ │ │ │ +00261b20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00261b30: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ +00261b40: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 7265 nction: *note re │ │ │ │ +00261b50: 6164 3a20 7265 6164 2c0a 2020 2a20 5573 ad: read,. * Us │ │ │ │ +00261b60: 6167 653a 200a 2020 2020 2020 2020 7265 age: . re │ │ │ │ +00261b70: 6164 2829 0a20 202a 2049 6e70 7574 733a ad(). * Inputs: │ │ │ │ +00261b80: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ +00261b90: 2073 6571 7565 6e63 653a 2053 6571 7565 sequence: Seque │ │ │ │ +00261ba0: 6e63 652c 2c20 2829 0a20 202a 204f 7574 nce,, (). * Out │ │ │ │ +00261bb0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ +00261bc0: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +00261bd0: 7269 6e67 2c2c 2061 2073 7472 696e 6720 ring,, a string │ │ │ │ +00261be0: 6f62 7461 696e 6564 2062 7920 7265 6164 obtained by read │ │ │ │ +00261bf0: 696e 6720 6120 6c69 6e65 2066 726f 6d20 ing a line from │ │ │ │ +00261c00: 7468 650a 2020 2020 2020 2020 7374 616e the. stan │ │ │ │ +00261c10: 6461 7264 2069 6e70 7574 2066 696c 652c dard input file, │ │ │ │ +00261c20: 202a 6e6f 7465 2073 7464 696f 3a20 7374 *note stdio: st │ │ │ │ +00261c30: 6469 6f2c 2e0a 0a57 6179 7320 746f 2075 dio,...Ways to u │ │ │ │ +00261c40: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00261c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00261c60: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00261c70: 6f74 6520 7265 6164 2853 6571 7565 6e63 ote read(Sequenc │ │ │ │ +00261c80: 6529 3a20 7265 6164 5f6c 7053 6571 7565 e): read_lpSeque │ │ │ │ +00261c90: 6e63 655f 7270 2c20 2d2d 2072 6561 6420 nce_rp, -- read │ │ │ │ +00261ca0: 6672 6f6d 2061 2066 696c 650a 2d2d 2d2d from a file.---- │ │ │ │ 00261cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00261cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261cd0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00261ce0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00261cf0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00261d00: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00261d10: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00261d20: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00261d30: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00261d40: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -00261d50: 7379 7374 656d 2e6d 323a 3237 323a 302e system.m2:272:0. │ │ │ │ -00261d60: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -00261d70: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -00261d80: 3a20 7265 6164 5f6c 7053 7472 696e 675f : read_lpString_ │ │ │ │ -00261d90: 7270 2c20 4e65 7874 3a20 7265 6164 5f6c rp, Next: read_l │ │ │ │ -00261da0: 7046 696c 655f 7270 2c20 5072 6576 3a20 pFile_rp, Prev: │ │ │ │ -00261db0: 7265 6164 5f6c 7053 6571 7565 6e63 655f read_lpSequence_ │ │ │ │ -00261dc0: 7270 2c20 5570 3a20 7265 6164 0a0a 7265 rp, Up: read..re │ │ │ │ -00261dd0: 6164 2853 7472 696e 6729 202d 2d20 7265 ad(String) -- re │ │ │ │ -00261de0: 6164 2066 726f 6d20 6120 6669 6c65 0a2a ad from a file.* │ │ │ │ -00261df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00261e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00261e10: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -00261e20: 6e6f 7465 2072 6561 643a 2072 6561 642c note read: read, │ │ │ │ -00261e30: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00261e40: 2020 2020 2072 6561 6420 700a 2020 2a20 read p. * │ │ │ │ -00261e50: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00261e60: 702c 2061 202a 6e6f 7465 2073 7472 696e p, a *note strin │ │ │ │ -00261e70: 673a 2053 7472 696e 672c 2c20 6120 7374 g: String,, a st │ │ │ │ -00261e80: 7269 6e67 2063 6f6e 7461 696e 696e 6720 ring containing │ │ │ │ -00261e90: 6120 7072 6f6d 7074 2074 6f20 6265 0a20 a prompt to be. │ │ │ │ -00261ea0: 2020 2020 2020 2064 6973 706c 6179 6564 displayed │ │ │ │ -00261eb0: 2066 6f72 2074 6865 2075 7365 720a 2020 for the user. │ │ │ │ -00261ec0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -00261ed0: 202a 2061 202a 6e6f 7465 2073 7472 696e * a *note strin │ │ │ │ -00261ee0: 673a 2053 7472 696e 672c 2c20 6120 7374 g: String,, a st │ │ │ │ -00261ef0: 7269 6e67 206f 6274 6169 6e65 6420 6279 ring obtained by │ │ │ │ -00261f00: 2072 6561 6469 6e67 2066 726f 6d20 7468 reading from th │ │ │ │ -00261f10: 6520 7374 616e 6461 7264 0a20 2020 2020 e standard. │ │ │ │ -00261f20: 2020 2069 6e70 7574 2066 696c 6520 2a6e input file *n │ │ │ │ -00261f30: 6f74 6520 7374 6469 6f3a 2073 7464 696f ote stdio: stdio │ │ │ │ -00261f40: 2c0a 0a57 6179 7320 746f 2075 7365 2074 ,..Ways to use t │ │ │ │ -00261f50: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -00261f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00261f70: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00261f80: 7265 6164 2853 7472 696e 6729 3a20 7265 read(String): re │ │ │ │ -00261f90: 6164 5f6c 7053 7472 696e 675f 7270 2c20 ad_lpString_rp, │ │ │ │ -00261fa0: 2d2d 2072 6561 6420 6672 6f6d 2061 2066 -- read from a f │ │ │ │ -00261fb0: 696c 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ile.------------ │ │ │ │ -00261fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00261fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00261cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00261d00: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00261d10: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00261d20: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00261d30: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00261d40: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00261d50: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00261d60: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +00261d70: 2f6f 765f 7379 7374 656d 2e6d 323a 3237 /ov_system.m2:27 │ │ │ │ +00261d80: 323a 302e 0a1f 0a46 696c 653a 204d 6163 2:0....File: Mac │ │ │ │ +00261d90: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +00261da0: 4e6f 6465 3a20 7265 6164 5f6c 7053 7472 Node: read_lpStr │ │ │ │ +00261db0: 696e 675f 7270 2c20 4e65 7874 3a20 7265 ing_rp, Next: re │ │ │ │ +00261dc0: 6164 5f6c 7046 696c 655f 7270 2c20 5072 ad_lpFile_rp, Pr │ │ │ │ +00261dd0: 6576 3a20 7265 6164 5f6c 7053 6571 7565 ev: read_lpSeque │ │ │ │ +00261de0: 6e63 655f 7270 2c20 5570 3a20 7265 6164 nce_rp, Up: read │ │ │ │ +00261df0: 0a0a 7265 6164 2853 7472 696e 6729 202d ..read(String) - │ │ │ │ +00261e00: 2d20 7265 6164 2066 726f 6d20 6120 6669 - read from a fi │ │ │ │ +00261e10: 6c65 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a le.************* │ │ │ │ +00261e20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00261e30: 2a2a 2a0a 0a20 202a 2046 756e 6374 696f ***.. * Functio │ │ │ │ +00261e40: 6e3a 202a 6e6f 7465 2072 6561 643a 2072 n: *note read: r │ │ │ │ +00261e50: 6561 642c 0a20 202a 2055 7361 6765 3a20 ead,. * Usage: │ │ │ │ +00261e60: 0a20 2020 2020 2020 2072 6561 6420 700a . read p. │ │ │ │ +00261e70: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00261e80: 2020 2a20 702c 2061 202a 6e6f 7465 2073 * p, a *note s │ │ │ │ +00261e90: 7472 696e 673a 2053 7472 696e 672c 2c20 tring: String,, │ │ │ │ +00261ea0: 6120 7374 7269 6e67 2063 6f6e 7461 696e a string contain │ │ │ │ +00261eb0: 696e 6720 6120 7072 6f6d 7074 2074 6f20 ing a prompt to │ │ │ │ +00261ec0: 6265 0a20 2020 2020 2020 2064 6973 706c be. displ │ │ │ │ +00261ed0: 6179 6564 2066 6f72 2074 6865 2075 7365 ayed for the use │ │ │ │ +00261ee0: 720a 2020 2a20 4f75 7470 7574 733a 0a20 r. * Outputs:. │ │ │ │ +00261ef0: 2020 2020 202a 2061 202a 6e6f 7465 2073 * a *note s │ │ │ │ +00261f00: 7472 696e 673a 2053 7472 696e 672c 2c20 tring: String,, │ │ │ │ +00261f10: 6120 7374 7269 6e67 206f 6274 6169 6e65 a string obtaine │ │ │ │ +00261f20: 6420 6279 2072 6561 6469 6e67 2066 726f d by reading fro │ │ │ │ +00261f30: 6d20 7468 6520 7374 616e 6461 7264 0a20 m the standard. │ │ │ │ +00261f40: 2020 2020 2020 2069 6e70 7574 2066 696c input fil │ │ │ │ +00261f50: 6520 2a6e 6f74 6520 7374 6469 6f3a 2073 e *note stdio: s │ │ │ │ +00261f60: 7464 696f 2c0a 0a57 6179 7320 746f 2075 tdio,..Ways to u │ │ │ │ +00261f70: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00261f80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00261f90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00261fa0: 6f74 6520 7265 6164 2853 7472 696e 6729 ote read(String) │ │ │ │ +00261fb0: 3a20 7265 6164 5f6c 7053 7472 696e 675f : read_lpString_ │ │ │ │ +00261fc0: 7270 2c20 2d2d 2072 6561 6420 6672 6f6d rp, -- read from │ │ │ │ +00261fd0: 2061 2066 696c 650a 2d2d 2d2d 2d2d 2d2d a file.-------- │ │ │ │ 00261fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00261ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262000: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -00262010: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -00262020: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00262030: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00262040: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00262050: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00262060: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00262070: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -00262080: 656d 2e6d 323a 3238 323a 302e 0a1f 0a46 em.m2:282:0....F │ │ │ │ -00262090: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -002620a0: 632e 696e 666f 2c20 4e6f 6465 3a20 7265 c.info, Node: re │ │ │ │ -002620b0: 6164 5f6c 7046 696c 655f 7270 2c20 4e65 ad_lpFile_rp, Ne │ │ │ │ -002620c0: 7874 3a20 7265 6164 5f6c 7046 696c 655f xt: read_lpFile_ │ │ │ │ -002620d0: 636d 5a5a 5f72 702c 2050 7265 763a 2072 cmZZ_rp, Prev: r │ │ │ │ -002620e0: 6561 645f 6c70 5374 7269 6e67 5f72 702c ead_lpString_rp, │ │ │ │ -002620f0: 2055 703a 2072 6561 640a 0a72 6561 6428 Up: read..read( │ │ │ │ -00262100: 4669 6c65 2920 2d2d 2072 6561 6420 6672 File) -- read fr │ │ │ │ -00262110: 6f6d 2061 2066 696c 650a 2a2a 2a2a 2a2a om a file.****** │ │ │ │ -00262120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00262130: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -00262140: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 7265 nction: *note re │ │ │ │ -00262150: 6164 3a20 7265 6164 2c0a 2020 2a20 5573 ad: read,. * Us │ │ │ │ -00262160: 6167 653a 200a 2020 2020 2020 2020 7265 age: . re │ │ │ │ -00262170: 6164 2066 0a20 202a 2049 6e70 7574 733a ad f. * Inputs: │ │ │ │ -00262180: 0a20 2020 2020 202a 2066 2c20 6120 2a6e . * f, a *n │ │ │ │ -00262190: 6f74 6520 6669 6c65 3a20 4669 6c65 2c2c ote file: File,, │ │ │ │ -002621a0: 2061 6e20 696e 7075 7420 6669 6c65 0a20 an input file. │ │ │ │ -002621b0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -002621c0: 2020 2a20 6120 2a6e 6f74 6520 7374 7269 * a *note stri │ │ │ │ -002621d0: 6e67 3a20 5374 7269 6e67 2c2c 2061 2073 ng: String,, a s │ │ │ │ -002621e0: 7472 696e 6720 6f62 7461 696e 6564 2062 tring obtained b │ │ │ │ -002621f0: 7920 7265 6164 696e 6720 6672 6f6d 2066 y reading from f │ │ │ │ -00262200: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ -00262210: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ -00262220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00262240: 203a 2066 203d 206f 7065 6e49 6e4f 7574 : f = openInOut │ │ │ │ -00262250: 2022 2163 6174 2220 2020 2020 7c0a 7c20 "!cat" |.| │ │ │ │ -00262260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00262280: 6f31 203d 2021 6361 7420 2020 2020 2020 o1 = !cat │ │ │ │ -00262290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002622a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -002622b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -002622c0: 0a7c 6f31 203a 2046 696c 6520 2020 2020 .|o1 : File │ │ │ │ +00262000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262020: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00262030: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00262040: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00262050: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00262060: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00262070: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00262080: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00262090: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +002620a0: 7379 7374 656d 2e6d 323a 3238 323a 302e system.m2:282:0. │ │ │ │ +002620b0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +002620c0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +002620d0: 3a20 7265 6164 5f6c 7046 696c 655f 7270 : read_lpFile_rp │ │ │ │ +002620e0: 2c20 4e65 7874 3a20 7265 6164 5f6c 7046 , Next: read_lpF │ │ │ │ +002620f0: 696c 655f 636d 5a5a 5f72 702c 2050 7265 ile_cmZZ_rp, Pre │ │ │ │ +00262100: 763a 2072 6561 645f 6c70 5374 7269 6e67 v: read_lpString │ │ │ │ +00262110: 5f72 702c 2055 703a 2072 6561 640a 0a72 _rp, Up: read..r │ │ │ │ +00262120: 6561 6428 4669 6c65 2920 2d2d 2072 6561 ead(File) -- rea │ │ │ │ +00262130: 6420 6672 6f6d 2061 2066 696c 650a 2a2a d from a file.** │ │ │ │ +00262140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00262150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00262160: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ +00262170: 6520 7265 6164 3a20 7265 6164 2c0a 2020 e read: read,. │ │ │ │ +00262180: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00262190: 2020 7265 6164 2066 0a20 202a 2049 6e70 read f. * Inp │ │ │ │ +002621a0: 7574 733a 0a20 2020 2020 202a 2066 2c20 uts:. * f, │ │ │ │ +002621b0: 6120 2a6e 6f74 6520 6669 6c65 3a20 4669 a *note file: Fi │ │ │ │ +002621c0: 6c65 2c2c 2061 6e20 696e 7075 7420 6669 le,, an input fi │ │ │ │ +002621d0: 6c65 0a20 202a 204f 7574 7075 7473 3a0a le. * Outputs:. │ │ │ │ +002621e0: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +002621f0: 7374 7269 6e67 3a20 5374 7269 6e67 2c2c string: String,, │ │ │ │ +00262200: 2061 2073 7472 696e 6720 6f62 7461 696e a string obtain │ │ │ │ +00262210: 6564 2062 7920 7265 6164 696e 6720 6672 ed by reading fr │ │ │ │ +00262220: 6f6d 2066 2e0a 0a44 6573 6372 6970 7469 om f...Descripti │ │ │ │ +00262230: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00262240: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00262250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00262260: 0a7c 6931 203a 2066 203d 206f 7065 6e49 .|i1 : f = openI │ │ │ │ +00262270: 6e4f 7574 2022 2163 6174 2220 2020 2020 nOut "!cat" │ │ │ │ +00262280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00262290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002622a0: 207c 0a7c 6f31 203d 2021 6361 7420 2020 |.|o1 = !cat │ │ │ │ +002622b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002622c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 002622d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002622e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -002622f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262300: 2d2b 0a7c 6932 203a 2069 7352 6561 6479 -+.|i2 : isReady │ │ │ │ -00262310: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ -00262320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00262330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262340: 2020 207c 0a7c 6f32 203d 2066 616c 7365 |.|o2 = false │ │ │ │ +002622e0: 2020 207c 0a7c 6f31 203a 2046 696c 6520 |.|o1 : File │ │ │ │ +002622f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00262300: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00262310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262320: 2d2d 2d2d 2d2b 0a7c 6932 203a 2069 7352 -----+.|i2 : isR │ │ │ │ +00262330: 6561 6479 2066 2020 2020 2020 2020 2020 eady f │ │ │ │ +00262340: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00262350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262360: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00262370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262380: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 203c -----+.|i3 : f < │ │ │ │ -00262390: 3c20 2268 6920 7468 6572 6522 203c 3c20 < "hi there" << │ │ │ │ -002623a0: 666c 7573 683b 7c0a 2b2d 2d2d 2d2d 2d2d flush;|.+------- │ │ │ │ -002623b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002623c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2069 -------+.|i4 : i │ │ │ │ -002623d0: 7352 6561 6479 2066 2020 2020 2020 2020 sReady f │ │ │ │ -002623e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -002623f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262400: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -00262410: 2066 616c 7365 2020 2020 2020 2020 2020 false │ │ │ │ -00262420: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00262430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00262450: 203a 2072 6561 6420 6620 2020 2020 2020 : read f │ │ │ │ -00262460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00262470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262480: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00262490: 6f35 203d 2068 6920 7468 6572 6520 2020 o5 = hi there │ │ │ │ -002624a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002624b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -002624c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -002624d0: 0a7c 6936 203a 2069 7352 6561 6479 2066 .|i6 : isReady f │ │ │ │ -002624e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002624f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00262500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262510: 207c 0a7c 6f36 203d 2066 616c 7365 2020 |.|o6 = false │ │ │ │ +00262360: 2020 2020 2020 207c 0a7c 6f32 203d 2066 |.|o2 = f │ │ │ │ +00262370: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +00262380: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00262390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002623a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +002623b0: 2066 203c 3c20 2268 6920 7468 6572 6522 f << "hi there" │ │ │ │ +002623c0: 203c 3c20 666c 7573 683b 7c0a 2b2d 2d2d << flush;|.+--- │ │ │ │ +002623d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002623e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +002623f0: 203a 2069 7352 6561 6479 2066 2020 2020 : isReady f │ │ │ │ +00262400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00262410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00262420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00262430: 6f34 203d 2066 616c 7365 2020 2020 2020 o4 = false │ │ │ │ +00262440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00262450: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00262460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00262470: 0a7c 6935 203a 2072 6561 6420 6620 2020 .|i5 : read f │ │ │ │ +00262480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00262490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002624a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002624b0: 207c 0a7c 6f35 203d 2068 6920 7468 6572 |.|o5 = hi ther │ │ │ │ +002624c0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +002624d0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +002624e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002624f0: 2d2d 2d2b 0a7c 6936 203a 2069 7352 6561 ---+.|i6 : isRea │ │ │ │ +00262500: 6479 2066 2020 2020 2020 2020 2020 2020 dy f │ │ │ │ +00262510: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00262520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00262530: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00262540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262550: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ -00262560: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00262570: 7465 206f 7065 6e49 6e3a 206f 7065 6e49 te openIn: openI │ │ │ │ -00262580: 6e5f 6c70 5374 7269 6e67 5f72 702c 202d n_lpString_rp, - │ │ │ │ -00262590: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ -002625a0: 6669 6c65 0a20 202a 202a 6e6f 7465 2067 file. * *note g │ │ │ │ -002625b0: 6574 3a20 6765 742c 202d 2d20 6765 7420 et: get, -- get │ │ │ │ -002625c0: 7468 6520 636f 6e74 656e 7473 206f 6620 the contents of │ │ │ │ -002625d0: 6120 6669 6c65 0a20 202a 202a 6e6f 7465 a file. * *note │ │ │ │ -002625e0: 2069 7352 6561 6479 3a20 6973 5265 6164 isReady: isRead │ │ │ │ -002625f0: 795f 6c70 4669 6c65 5f72 702c 202d 2d20 y_lpFile_rp, -- │ │ │ │ -00262600: 7768 6574 6865 7220 6120 6669 6c65 2068 whether a file h │ │ │ │ -00262610: 6173 2064 6174 6120 6176 6169 6c61 626c as data availabl │ │ │ │ -00262620: 6520 666f 720a 2020 2020 7265 6164 696e e for. readin │ │ │ │ -00262630: 670a 0a57 6179 7320 746f 2075 7365 2074 g..Ways to use t │ │ │ │ -00262640: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -00262650: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00262660: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00262670: 7265 6164 2846 696c 6529 3a20 7265 6164 read(File): read │ │ │ │ -00262680: 5f6c 7046 696c 655f 7270 2c20 2d2d 2072 _lpFile_rp, -- r │ │ │ │ -00262690: 6561 6420 6672 6f6d 2061 2066 696c 650a ead from a file. │ │ │ │ -002626a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002626b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002626c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262530: 2020 2020 207c 0a7c 6f36 203d 2066 616c |.|o6 = fal │ │ │ │ +00262540: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ +00262550: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00262560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262570: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +00262580: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +00262590: 202a 6e6f 7465 206f 7065 6e49 6e3a 206f *note openIn: o │ │ │ │ +002625a0: 7065 6e49 6e5f 6c70 5374 7269 6e67 5f72 penIn_lpString_r │ │ │ │ +002625b0: 702c 202d 2d20 6f70 656e 2061 6e20 696e p, -- open an in │ │ │ │ +002625c0: 7075 7420 6669 6c65 0a20 202a 202a 6e6f put file. * *no │ │ │ │ +002625d0: 7465 2067 6574 3a20 6765 742c 202d 2d20 te get: get, -- │ │ │ │ +002625e0: 6765 7420 7468 6520 636f 6e74 656e 7473 get the contents │ │ │ │ +002625f0: 206f 6620 6120 6669 6c65 0a20 202a 202a of a file. * * │ │ │ │ +00262600: 6e6f 7465 2069 7352 6561 6479 3a20 6973 note isReady: is │ │ │ │ +00262610: 5265 6164 795f 6c70 4669 6c65 5f72 702c Ready_lpFile_rp, │ │ │ │ +00262620: 202d 2d20 7768 6574 6865 7220 6120 6669 -- whether a fi │ │ │ │ +00262630: 6c65 2068 6173 2064 6174 6120 6176 6169 le has data avai │ │ │ │ +00262640: 6c61 626c 6520 666f 720a 2020 2020 7265 lable for. re │ │ │ │ +00262650: 6164 696e 670a 0a57 6179 7320 746f 2075 ading..Ways to u │ │ │ │ +00262660: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00262670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00262680: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00262690: 6f74 6520 7265 6164 2846 696c 6529 3a20 ote read(File): │ │ │ │ +002626a0: 7265 6164 5f6c 7046 696c 655f 7270 2c20 read_lpFile_rp, │ │ │ │ +002626b0: 2d2d 2072 6561 6420 6672 6f6d 2061 2066 -- read from a f │ │ │ │ +002626c0: 696c 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ile.------------ │ │ │ │ 002626d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002626e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -002626f0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00262700: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00262710: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00262720: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00262730: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00262740: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -00262750: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -00262760: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ -00262770: 323a 3330 313a 302e 0a1f 0a46 696c 653a 2:301:0....File: │ │ │ │ -00262780: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -00262790: 666f 2c20 4e6f 6465 3a20 7265 6164 5f6c fo, Node: read_l │ │ │ │ -002627a0: 7046 696c 655f 636d 5a5a 5f72 702c 2050 pFile_cmZZ_rp, P │ │ │ │ -002627b0: 7265 763a 2072 6561 645f 6c70 4669 6c65 rev: read_lpFile │ │ │ │ -002627c0: 5f72 702c 2055 703a 2072 6561 640a 0a72 _rp, Up: read..r │ │ │ │ -002627d0: 6561 6428 4669 6c65 2c5a 5a29 202d 2d20 ead(File,ZZ) -- │ │ │ │ -002627e0: 7265 6164 2066 726f 6d20 6120 6669 6c65 read from a file │ │ │ │ -002627f0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00262800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00262810: 2a2a 0a0a 2020 2a20 4675 6e63 7469 6f6e **.. * Function │ │ │ │ -00262820: 3a20 2a6e 6f74 6520 7265 6164 3a20 7265 : *note read: re │ │ │ │ -00262830: 6164 2c0a 2020 2a20 5573 6167 653a 200a ad,. * Usage: . │ │ │ │ -00262840: 2020 2020 2020 2020 7265 6164 2866 2c6e read(f,n │ │ │ │ -00262850: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -00262860: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ -00262870: 2066 696c 653a 2046 696c 652c 2c20 6120 file: File,, a │ │ │ │ -00262880: 6669 6c65 0a20 2020 2020 202a 206e 2c20 file. * n, │ │ │ │ -00262890: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -002628a0: 3a20 5a5a 2c2c 2061 6e20 696e 7465 6765 : ZZ,, an intege │ │ │ │ -002628b0: 7220 7370 6563 6966 7969 6e67 2074 6865 r specifying the │ │ │ │ -002628c0: 206d 6178 696d 756d 206e 756d 6265 7220 maximum number │ │ │ │ -002628d0: 6f66 0a20 2020 2020 2020 2062 7974 6573 of. bytes │ │ │ │ -002628e0: 2074 6f20 7265 6164 0a20 202a 204f 7574 to read. * Out │ │ │ │ -002628f0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -00262900: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ -00262910: 7269 6e67 2c2c 2061 2073 7472 696e 6720 ring,, a string │ │ │ │ -00262920: 6f62 7461 696e 6564 2062 7920 7265 6164 obtained by read │ │ │ │ -00262930: 696e 6720 6672 6f6d 2066 0a0a 4465 7363 ing from f..Desc │ │ │ │ -00262940: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00262950: 3d3d 3d0a 0a49 6e70 7574 2066 696c 6573 ===..Input files │ │ │ │ -00262960: 2061 7265 2062 7566 6665 7265 642c 2073 are buffered, s │ │ │ │ -00262970: 6f20 7468 6520 6375 7272 656e 7420 636f o the current co │ │ │ │ -00262980: 6e74 656e 7473 206f 6620 7468 6520 6275 ntents of the bu │ │ │ │ -00262990: 6666 6572 2061 7265 2072 6574 7572 6e65 ffer are returne │ │ │ │ -002629a0: 6420 6966 0a74 6865 2062 7566 6665 7220 d if.the buffer │ │ │ │ -002629b0: 6973 206e 6f74 2065 6d70 7479 2c20 6f74 is not empty, ot │ │ │ │ -002629c0: 6865 7277 6973 6520 7265 6164 696e 6720 herwise reading │ │ │ │ -002629d0: 6672 6f6d 2074 6865 2066 696c 6520 6973 from the file is │ │ │ │ -002629e0: 2061 7474 656d 7074 6564 2066 6972 7374 attempted first │ │ │ │ -002629f0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -00262a00: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00262a10: 6f70 656e 496e 3a20 6f70 656e 496e 5f6c openIn: openIn_l │ │ │ │ -00262a20: 7053 7472 696e 675f 7270 2c20 2d2d 206f pString_rp, -- o │ │ │ │ -00262a30: 7065 6e20 616e 2069 6e70 7574 2066 696c pen an input fil │ │ │ │ -00262a40: 650a 2020 2a20 2a6e 6f74 6520 6765 743a e. * *note get: │ │ │ │ -00262a50: 2067 6574 2c20 2d2d 2067 6574 2074 6865 get, -- get the │ │ │ │ -00262a60: 2063 6f6e 7465 6e74 7320 6f66 2061 2066 contents of a f │ │ │ │ -00262a70: 696c 650a 2020 2a20 2a6e 6f74 6520 6973 ile. * *note is │ │ │ │ -00262a80: 5265 6164 793a 2069 7352 6561 6479 5f6c Ready: isReady_l │ │ │ │ -00262a90: 7046 696c 655f 7270 2c20 2d2d 2077 6865 pFile_rp, -- whe │ │ │ │ -00262aa0: 7468 6572 2061 2066 696c 6520 6861 7320 ther a file has │ │ │ │ -00262ab0: 6461 7461 2061 7661 696c 6162 6c65 2066 data available f │ │ │ │ -00262ac0: 6f72 0a20 2020 2072 6561 6469 6e67 0a0a or. reading.. │ │ │ │ -00262ad0: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ -00262ae0: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ -00262af0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00262b00: 3d0a 0a20 202a 202a 6e6f 7465 2072 6561 =.. * *note rea │ │ │ │ -00262b10: 6428 4669 6c65 2c5a 5a29 3a20 7265 6164 d(File,ZZ): read │ │ │ │ -00262b20: 5f6c 7046 696c 655f 636d 5a5a 5f72 702c _lpFile_cmZZ_rp, │ │ │ │ -00262b30: 202d 2d20 7265 6164 2066 726f 6d20 6120 -- read from a │ │ │ │ -00262b40: 6669 6c65 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d file.----------- │ │ │ │ -00262b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002626e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002626f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262710: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +00262720: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +00262730: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +00262740: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +00262750: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +00262760: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +00262770: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +00262780: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ +00262790: 656d 2e6d 323a 3330 313a 302e 0a1f 0a46 em.m2:301:0....F │ │ │ │ +002627a0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +002627b0: 632e 696e 666f 2c20 4e6f 6465 3a20 7265 c.info, Node: re │ │ │ │ +002627c0: 6164 5f6c 7046 696c 655f 636d 5a5a 5f72 ad_lpFile_cmZZ_r │ │ │ │ +002627d0: 702c 2050 7265 763a 2072 6561 645f 6c70 p, Prev: read_lp │ │ │ │ +002627e0: 4669 6c65 5f72 702c 2055 703a 2072 6561 File_rp, Up: rea │ │ │ │ +002627f0: 640a 0a72 6561 6428 4669 6c65 2c5a 5a29 d..read(File,ZZ) │ │ │ │ +00262800: 202d 2d20 7265 6164 2066 726f 6d20 6120 -- read from a │ │ │ │ +00262810: 6669 6c65 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a file.*********** │ │ │ │ +00262820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00262830: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ +00262840: 7469 6f6e 3a20 2a6e 6f74 6520 7265 6164 tion: *note read │ │ │ │ +00262850: 3a20 7265 6164 2c0a 2020 2a20 5573 6167 : read,. * Usag │ │ │ │ +00262860: 653a 200a 2020 2020 2020 2020 7265 6164 e: . read │ │ │ │ +00262870: 2866 2c6e 290a 2020 2a20 496e 7075 7473 (f,n). * Inputs │ │ │ │ +00262880: 3a0a 2020 2020 2020 2a20 662c 2061 202a :. * f, a * │ │ │ │ +00262890: 6e6f 7465 2066 696c 653a 2046 696c 652c note file: File, │ │ │ │ +002628a0: 2c20 6120 6669 6c65 0a20 2020 2020 202a , a file. * │ │ │ │ +002628b0: 206e 2c20 616e 202a 6e6f 7465 2069 6e74 n, an *note int │ │ │ │ +002628c0: 6567 6572 3a20 5a5a 2c2c 2061 6e20 696e eger: ZZ,, an in │ │ │ │ +002628d0: 7465 6765 7220 7370 6563 6966 7969 6e67 teger specifying │ │ │ │ +002628e0: 2074 6865 206d 6178 696d 756d 206e 756d the maximum num │ │ │ │ +002628f0: 6265 7220 6f66 0a20 2020 2020 2020 2062 ber of. b │ │ │ │ +00262900: 7974 6573 2074 6f20 7265 6164 0a20 202a ytes to read. * │ │ │ │ +00262910: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00262920: 2a20 6120 2a6e 6f74 6520 7374 7269 6e67 * a *note string │ │ │ │ +00262930: 3a20 5374 7269 6e67 2c2c 2061 2073 7472 : String,, a str │ │ │ │ +00262940: 696e 6720 6f62 7461 696e 6564 2062 7920 ing obtained by │ │ │ │ +00262950: 7265 6164 696e 6720 6672 6f6d 2066 0a0a reading from f.. │ │ │ │ +00262960: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00262970: 3d3d 3d3d 3d3d 3d0a 0a49 6e70 7574 2066 =======..Input f │ │ │ │ +00262980: 696c 6573 2061 7265 2062 7566 6665 7265 iles are buffere │ │ │ │ +00262990: 642c 2073 6f20 7468 6520 6375 7272 656e d, so the curren │ │ │ │ +002629a0: 7420 636f 6e74 656e 7473 206f 6620 7468 t contents of th │ │ │ │ +002629b0: 6520 6275 6666 6572 2061 7265 2072 6574 e buffer are ret │ │ │ │ +002629c0: 7572 6e65 6420 6966 0a74 6865 2062 7566 urned if.the buf │ │ │ │ +002629d0: 6665 7220 6973 206e 6f74 2065 6d70 7479 fer is not empty │ │ │ │ +002629e0: 2c20 6f74 6865 7277 6973 6520 7265 6164 , otherwise read │ │ │ │ +002629f0: 696e 6720 6672 6f6d 2074 6865 2066 696c ing from the fil │ │ │ │ +00262a00: 6520 6973 2061 7474 656d 7074 6564 2066 e is attempted f │ │ │ │ +00262a10: 6972 7374 2e0a 0a53 6565 2061 6c73 6f0a irst...See also. │ │ │ │ +00262a20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00262a30: 6f74 6520 6f70 656e 496e 3a20 6f70 656e ote openIn: open │ │ │ │ +00262a40: 496e 5f6c 7053 7472 696e 675f 7270 2c20 In_lpString_rp, │ │ │ │ +00262a50: 2d2d 206f 7065 6e20 616e 2069 6e70 7574 -- open an input │ │ │ │ +00262a60: 2066 696c 650a 2020 2a20 2a6e 6f74 6520 file. * *note │ │ │ │ +00262a70: 6765 743a 2067 6574 2c20 2d2d 2067 6574 get: get, -- get │ │ │ │ +00262a80: 2074 6865 2063 6f6e 7465 6e74 7320 6f66 the contents of │ │ │ │ +00262a90: 2061 2066 696c 650a 2020 2a20 2a6e 6f74 a file. * *not │ │ │ │ +00262aa0: 6520 6973 5265 6164 793a 2069 7352 6561 e isReady: isRea │ │ │ │ +00262ab0: 6479 5f6c 7046 696c 655f 7270 2c20 2d2d dy_lpFile_rp, -- │ │ │ │ +00262ac0: 2077 6865 7468 6572 2061 2066 696c 6520 whether a file │ │ │ │ +00262ad0: 6861 7320 6461 7461 2061 7661 696c 6162 has data availab │ │ │ │ +00262ae0: 6c65 2066 6f72 0a20 2020 2072 6561 6469 le for. readi │ │ │ │ +00262af0: 6e67 0a0a 5761 7973 2074 6f20 7573 6520 ng..Ways to use │ │ │ │ +00262b00: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ +00262b10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00262b20: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00262b30: 2072 6561 6428 4669 6c65 2c5a 5a29 3a20 read(File,ZZ): │ │ │ │ +00262b40: 7265 6164 5f6c 7046 696c 655f 636d 5a5a read_lpFile_cmZZ │ │ │ │ +00262b50: 5f72 702c 202d 2d20 7265 6164 2066 726f _rp, -- read fro │ │ │ │ +00262b60: 6d20 6120 6669 6c65 0a2d 2d2d 2d2d 2d2d m a file.------- │ │ │ │ 00262b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00262b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00262b90: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00262ba0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00262bb0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00262bc0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00262bd0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00262be0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00262bf0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -00262c00: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -00262c10: 7465 6d2e 6d32 3a33 3135 3a30 2e0a 1f0a tem.m2:315:0.... │ │ │ │ -00262c20: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -00262c30: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2073 oc.info, Node: s │ │ │ │ -00262c40: 6361 6e4c 696e 6573 2c20 4e65 7874 3a20 canLines, Next: │ │ │ │ -00262c50: 6669 6c65 4c65 6e67 7468 2c20 5072 6576 fileLength, Prev │ │ │ │ -00262c60: 3a20 7265 6164 2c20 5570 3a20 7573 696e : read, Up: usin │ │ │ │ -00262c70: 6720 736f 636b 6574 730a 0a73 6361 6e4c g sockets..scanL │ │ │ │ -00262c80: 696e 6573 202d 2d20 6170 706c 7920 6120 ines -- apply a │ │ │ │ -00262c90: 6675 6e63 7469 6f6e 2074 6f20 6561 6368 function to each │ │ │ │ -00262ca0: 206c 696e 6520 6f66 2061 2066 696c 650a line of a file. │ │ │ │ -00262cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00262cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00262cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00262ce0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00262cf0: 200a 2020 2020 2020 2020 7363 616e 4c69 . scanLi │ │ │ │ -00262d00: 6e65 7328 662c 666e 290a 2020 2a20 496e nes(f,fn). * In │ │ │ │ -00262d10: 7075 7473 3a0a 2020 2020 2020 2a20 660a puts:. * f. │ │ │ │ -00262d20: 2020 2020 2020 2a20 666e 2c20 7468 6520 * fn, the │ │ │ │ -00262d30: 6e61 6d65 206f 6620 6120 6669 6c65 2c20 name of a file, │ │ │ │ -00262d40: 6f72 2061 206c 6973 7420 6f66 206e 616d or a list of nam │ │ │ │ -00262d50: 6573 206f 6620 6669 6c65 730a 2020 2a20 es of files. * │ │ │ │ -00262d60: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00262d70: 2072 6574 7572 6e73 202a 6e6f 7465 206e returns *note n │ │ │ │ -00262d80: 756c 6c3a 206e 756c 6c2c 2075 6e6c 6573 ull: null, unles │ │ │ │ -00262d90: 7320 7468 6520 6675 6e63 7469 6f6e 2075 s the function u │ │ │ │ -00262da0: 7365 7320 6272 6561 6b20 7820 7769 7468 ses break x with │ │ │ │ -00262db0: 2061 0a20 2020 2020 2020 206e 6f6e 2d6e a. non-n │ │ │ │ -00262dc0: 756c 6c20 7661 6c75 6520 666f 7220 782c ull value for x, │ │ │ │ -00262dd0: 2069 6e20 7768 6963 6820 6361 7365 2073 in which case s │ │ │ │ -00262de0: 6361 6e6e 696e 6720 7374 6f70 7320 616e canning stops an │ │ │ │ -00262df0: 6420 7820 6973 2072 6574 7572 6e65 640a d x is returned. │ │ │ │ -00262e00: 2020 2020 2020 2020 696d 6d65 6469 6174 immediat │ │ │ │ -00262e10: 656c 790a 2020 2a20 436f 6e73 6571 7565 ely. * Conseque │ │ │ │ -00262e20: 6e63 6573 3a0a 2020 2020 2020 2a20 6170 nces:. * ap │ │ │ │ -00262e30: 706c 6965 7320 6620 746f 2065 6163 6820 plies f to each │ │ │ │ -00262e40: 6c69 6e65 206f 6620 7468 6520 6669 6c65 line of the file │ │ │ │ -00262e50: 2873 290a 0a44 6573 6372 6970 7469 6f6e (s)..Description │ │ │ │ -00262e60: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -00262e70: 6520 6669 6c65 2069 7320 7265 6164 2061 e file is read a │ │ │ │ -00262e80: 6e64 2070 726f 6365 7373 6564 206f 6e65 nd processed one │ │ │ │ -00262e90: 2062 6c6f 636b 2061 7420 6120 7469 6d65 block at a time │ │ │ │ -00262ea0: 2c20 6d61 6b69 6e67 2074 6869 7320 7072 , making this pr │ │ │ │ -00262eb0: 6f63 6564 7572 650a 706f 7465 6e74 6961 ocedure.potentia │ │ │ │ -00262ec0: 6c6c 7920 6d75 6368 2062 6574 7465 7220 lly much better │ │ │ │ -00262ed0: 6174 2063 6f6e 7365 7276 696e 6720 6d65 at conserving me │ │ │ │ -00262ee0: 6d6f 7279 2074 6861 6e20 7363 616e 286c mory than scan(l │ │ │ │ -00262ef0: 696e 6573 2067 6574 2066 6e2c 6629 2077 ines get fn,f) w │ │ │ │ -00262f00: 6865 6e20 7468 650a 6669 6c65 2069 7320 hen the.file is │ │ │ │ -00262f10: 7665 7279 206c 6172 6765 2e0a 0a57 6179 very large...Way │ │ │ │ -00262f20: 7320 746f 2075 7365 2073 6361 6e4c 696e s to use scanLin │ │ │ │ -00262f30: 6573 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d es:.============ │ │ │ │ -00262f40: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00262f50: 2273 6361 6e4c 696e 6573 2846 756e 6374 "scanLines(Funct │ │ │ │ -00262f60: 696f 6e2c 4c69 7374 2922 0a20 202a 2022 ion,List)". * " │ │ │ │ -00262f70: 7363 616e 4c69 6e65 7328 4675 6e63 7469 scanLines(Functi │ │ │ │ -00262f80: 6f6e 2c53 7472 696e 6729 220a 0a46 6f72 on,String)"..For │ │ │ │ -00262f90: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00262fa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00262fb0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00262fc0: 6e6f 7465 2073 6361 6e4c 696e 6573 3a20 note scanLines: │ │ │ │ -00262fd0: 7363 616e 4c69 6e65 732c 2069 7320 6120 scanLines, is a │ │ │ │ -00262fe0: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -00262ff0: 6374 696f 6e3a 0a4d 6574 686f 6446 756e ction:.MethodFun │ │ │ │ -00263000: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ -00263010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00262bb0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00262bc0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00262bd0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00262be0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00262bf0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00262c00: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00262c10: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00262c20: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +00262c30: 5f73 7973 7465 6d2e 6d32 3a33 3135 3a30 _system.m2:315:0 │ │ │ │ +00262c40: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +00262c50: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +00262c60: 653a 2073 6361 6e4c 696e 6573 2c20 4e65 e: scanLines, Ne │ │ │ │ +00262c70: 7874 3a20 6669 6c65 4c65 6e67 7468 2c20 xt: fileLength, │ │ │ │ +00262c80: 5072 6576 3a20 7265 6164 2c20 5570 3a20 Prev: read, Up: │ │ │ │ +00262c90: 7573 696e 6720 736f 636b 6574 730a 0a73 using sockets..s │ │ │ │ +00262ca0: 6361 6e4c 696e 6573 202d 2d20 6170 706c canLines -- appl │ │ │ │ +00262cb0: 7920 6120 6675 6e63 7469 6f6e 2074 6f20 y a function to │ │ │ │ +00262cc0: 6561 6368 206c 696e 6520 6f66 2061 2066 each line of a f │ │ │ │ +00262cd0: 696c 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ile.************ │ │ │ │ +00262ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00262cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00262d00: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +00262d10: 6167 653a 200a 2020 2020 2020 2020 7363 age: . sc │ │ │ │ +00262d20: 616e 4c69 6e65 7328 662c 666e 290a 2020 anLines(f,fn). │ │ │ │ +00262d30: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +00262d40: 2a20 660a 2020 2020 2020 2a20 666e 2c20 * f. * fn, │ │ │ │ +00262d50: 7468 6520 6e61 6d65 206f 6620 6120 6669 the name of a fi │ │ │ │ +00262d60: 6c65 2c20 6f72 2061 206c 6973 7420 6f66 le, or a list of │ │ │ │ +00262d70: 206e 616d 6573 206f 6620 6669 6c65 730a names of files. │ │ │ │ +00262d80: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00262d90: 2020 202a 2072 6574 7572 6e73 202a 6e6f * returns *no │ │ │ │ +00262da0: 7465 206e 756c 6c3a 206e 756c 6c2c 2075 te null: null, u │ │ │ │ +00262db0: 6e6c 6573 7320 7468 6520 6675 6e63 7469 nless the functi │ │ │ │ +00262dc0: 6f6e 2075 7365 7320 6272 6561 6b20 7820 on uses break x │ │ │ │ +00262dd0: 7769 7468 2061 0a20 2020 2020 2020 206e with a. n │ │ │ │ +00262de0: 6f6e 2d6e 756c 6c20 7661 6c75 6520 666f on-null value fo │ │ │ │ +00262df0: 7220 782c 2069 6e20 7768 6963 6820 6361 r x, in which ca │ │ │ │ +00262e00: 7365 2073 6361 6e6e 696e 6720 7374 6f70 se scanning stop │ │ │ │ +00262e10: 7320 616e 6420 7820 6973 2072 6574 7572 s and x is retur │ │ │ │ +00262e20: 6e65 640a 2020 2020 2020 2020 696d 6d65 ned. imme │ │ │ │ +00262e30: 6469 6174 656c 790a 2020 2a20 436f 6e73 diately. * Cons │ │ │ │ +00262e40: 6571 7565 6e63 6573 3a0a 2020 2020 2020 equences:. │ │ │ │ +00262e50: 2a20 6170 706c 6965 7320 6620 746f 2065 * applies f to e │ │ │ │ +00262e60: 6163 6820 6c69 6e65 206f 6620 7468 6520 ach line of the │ │ │ │ +00262e70: 6669 6c65 2873 290a 0a44 6573 6372 6970 file(s)..Descrip │ │ │ │ +00262e80: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00262e90: 0a0a 5468 6520 6669 6c65 2069 7320 7265 ..The file is re │ │ │ │ +00262ea0: 6164 2061 6e64 2070 726f 6365 7373 6564 ad and processed │ │ │ │ +00262eb0: 206f 6e65 2062 6c6f 636b 2061 7420 6120 one block at a │ │ │ │ +00262ec0: 7469 6d65 2c20 6d61 6b69 6e67 2074 6869 time, making thi │ │ │ │ +00262ed0: 7320 7072 6f63 6564 7572 650a 706f 7465 s procedure.pote │ │ │ │ +00262ee0: 6e74 6961 6c6c 7920 6d75 6368 2062 6574 ntially much bet │ │ │ │ +00262ef0: 7465 7220 6174 2063 6f6e 7365 7276 696e ter at conservin │ │ │ │ +00262f00: 6720 6d65 6d6f 7279 2074 6861 6e20 7363 g memory than sc │ │ │ │ +00262f10: 616e 286c 696e 6573 2067 6574 2066 6e2c an(lines get fn, │ │ │ │ +00262f20: 6629 2077 6865 6e20 7468 650a 6669 6c65 f) when the.file │ │ │ │ +00262f30: 2069 7320 7665 7279 206c 6172 6765 2e0a is very large.. │ │ │ │ +00262f40: 0a57 6179 7320 746f 2075 7365 2073 6361 .Ways to use sca │ │ │ │ +00262f50: 6e4c 696e 6573 3a0a 3d3d 3d3d 3d3d 3d3d nLines:.======== │ │ │ │ +00262f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00262f70: 2020 2a20 2273 6361 6e4c 696e 6573 2846 * "scanLines(F │ │ │ │ +00262f80: 756e 6374 696f 6e2c 4c69 7374 2922 0a20 unction,List)". │ │ │ │ +00262f90: 202a 2022 7363 616e 4c69 6e65 7328 4675 * "scanLines(Fu │ │ │ │ +00262fa0: 6e63 7469 6f6e 2c53 7472 696e 6729 220a nction,String)". │ │ │ │ +00262fb0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +00262fc0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +00262fd0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00262fe0: 6374 202a 6e6f 7465 2073 6361 6e4c 696e ct *note scanLin │ │ │ │ +00262ff0: 6573 3a20 7363 616e 4c69 6e65 732c 2069 es: scanLines, i │ │ │ │ +00263000: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +00263010: 2066 756e 6374 696f 6e3a 0a4d 6574 686f function:.Metho │ │ │ │ +00263020: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ 00263030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00263040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263050: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00263060: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00263070: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00263080: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00263090: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -002630a0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -002630b0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -002630c0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -002630d0: 5f73 7973 7465 6d2e 6d32 3a33 3539 3a30 _system.m2:359:0 │ │ │ │ -002630e0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ -002630f0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ -00263100: 653a 2066 696c 654c 656e 6774 682c 204e e: fileLength, N │ │ │ │ -00263110: 6578 743a 2068 6569 6768 745f 6c70 4669 ext: height_lpFi │ │ │ │ -00263120: 6c65 5f72 702c 2050 7265 763a 2073 6361 le_rp, Prev: sca │ │ │ │ -00263130: 6e4c 696e 6573 2c20 5570 3a20 7573 696e nLines, Up: usin │ │ │ │ -00263140: 6720 736f 636b 6574 730a 0a66 696c 654c g sockets..fileL │ │ │ │ -00263150: 656e 6774 6820 2d2d 2074 6865 206c 656e ength -- the len │ │ │ │ -00263160: 6774 6820 6f66 2061 2066 696c 650a 2a2a gth of a file.** │ │ │ │ -00263170: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00263180: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00263190: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -002631a0: 2020 2020 2020 6669 6c65 4c65 6e67 7468 fileLength │ │ │ │ -002631b0: 2066 0a20 202a 2049 6e70 7574 733a 0a20 f. * Inputs:. │ │ │ │ -002631c0: 2020 2020 202a 2066 2c20 6120 2a6e 6f74 * f, a *not │ │ │ │ -002631d0: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ -002631e0: 2c20 6f72 2061 202a 6e6f 7465 2066 696c , or a *note fil │ │ │ │ -002631f0: 653a 2046 696c 652c 0a20 202a 204f 7574 e: File,. * Out │ │ │ │ -00263200: 7075 7473 3a0a 2020 2020 2020 2a20 616e puts:. * an │ │ │ │ -00263210: 202a 6e6f 7465 2069 6e74 6567 6572 3a20 *note integer: │ │ │ │ -00263220: 5a5a 2c2c 2074 6865 206c 656e 6774 6820 ZZ,, the length │ │ │ │ -00263230: 6f66 2074 6865 2066 696c 6520 6620 6f72 of the file f or │ │ │ │ -00263240: 2074 6865 2066 696c 6520 7768 6f73 6520 the file whose │ │ │ │ -00263250: 6e61 6d65 0a20 2020 2020 2020 2069 7320 name. is │ │ │ │ -00263260: 660a 0a44 6573 6372 6970 7469 6f6e 0a3d f..Description.= │ │ │ │ -00263270: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00263280: 6c65 6e67 7468 206f 6620 616e 206f 7065 length of an ope │ │ │ │ -00263290: 6e20 6f75 7470 7574 2066 696c 6520 6973 n output file is │ │ │ │ -002632a0: 2064 6574 6572 6d69 6e65 6420 6672 6f6d determined from │ │ │ │ -002632b0: 2074 6865 2069 6e74 6572 6e61 6c20 636f the internal co │ │ │ │ -002632c0: 756e 7420 6f66 2074 6865 0a6e 756d 6265 unt of the.numbe │ │ │ │ -002632d0: 7220 6f66 2062 7974 6573 2077 7269 7474 r of bytes writt │ │ │ │ -002632e0: 656e 2073 6f20 6661 722e 0a0a 2b2d 2d2d en so far...+--- │ │ │ │ -002632f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263310: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2066 -------+.|i1 : f │ │ │ │ -00263320: 203d 2074 656d 706f 7261 7279 4669 6c65 = temporaryFile │ │ │ │ -00263330: 4e61 6d65 2829 203c 3c20 2268 6920 7468 Name() << "hi th │ │ │ │ -00263340: 6572 6522 7c0a 7c20 2020 2020 2020 2020 ere"|.| │ │ │ │ -00263350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263370: 207c 0a7c 6f31 203d 202f 746d 702f 4d32 |.|o1 = /tmp/M2 │ │ │ │ -00263380: 2d31 3231 3530 2d30 2f30 2020 2020 2020 -12150-0/0 │ │ │ │ -00263390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002633a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00263050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00263080: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00263090: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +002630a0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +002630b0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +002630c0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +002630d0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +002630e0: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +002630f0: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a33 c/ov_system.m2:3 │ │ │ │ +00263100: 3539 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 59:0....File: Ma │ │ │ │ +00263110: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ +00263120: 204e 6f64 653a 2066 696c 654c 656e 6774 Node: fileLengt │ │ │ │ +00263130: 682c 204e 6578 743a 2068 6569 6768 745f h, Next: height_ │ │ │ │ +00263140: 6c70 4669 6c65 5f72 702c 2050 7265 763a lpFile_rp, Prev: │ │ │ │ +00263150: 2073 6361 6e4c 696e 6573 2c20 5570 3a20 scanLines, Up: │ │ │ │ +00263160: 7573 696e 6720 736f 636b 6574 730a 0a66 using sockets..f │ │ │ │ +00263170: 696c 654c 656e 6774 6820 2d2d 2074 6865 ileLength -- the │ │ │ │ +00263180: 206c 656e 6774 6820 6f66 2061 2066 696c length of a fil │ │ │ │ +00263190: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ +002631a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002631b0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +002631c0: 200a 2020 2020 2020 2020 6669 6c65 4c65 . fileLe │ │ │ │ +002631d0: 6e67 7468 2066 0a20 202a 2049 6e70 7574 ngth f. * Input │ │ │ │ +002631e0: 733a 0a20 2020 2020 202a 2066 2c20 6120 s:. * f, a │ │ │ │ +002631f0: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +00263200: 7269 6e67 2c20 6f72 2061 202a 6e6f 7465 ring, or a *note │ │ │ │ +00263210: 2066 696c 653a 2046 696c 652c 0a20 202a file: File,. * │ │ │ │ +00263220: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00263230: 2a20 616e 202a 6e6f 7465 2069 6e74 6567 * an *note integ │ │ │ │ +00263240: 6572 3a20 5a5a 2c2c 2074 6865 206c 656e er: ZZ,, the len │ │ │ │ +00263250: 6774 6820 6f66 2074 6865 2066 696c 6520 gth of the file │ │ │ │ +00263260: 6620 6f72 2074 6865 2066 696c 6520 7768 f or the file wh │ │ │ │ +00263270: 6f73 6520 6e61 6d65 0a20 2020 2020 2020 ose name. │ │ │ │ +00263280: 2069 7320 660a 0a44 6573 6372 6970 7469 is f..Descripti │ │ │ │ +00263290: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +002632a0: 5468 6520 6c65 6e67 7468 206f 6620 616e The length of an │ │ │ │ +002632b0: 206f 7065 6e20 6f75 7470 7574 2066 696c open output fil │ │ │ │ +002632c0: 6520 6973 2064 6574 6572 6d69 6e65 6420 e is determined │ │ │ │ +002632d0: 6672 6f6d 2074 6865 2069 6e74 6572 6e61 from the interna │ │ │ │ +002632e0: 6c20 636f 756e 7420 6f66 2074 6865 0a6e l count of the.n │ │ │ │ +002632f0: 756d 6265 7220 6f66 2062 7974 6573 2077 umber of bytes w │ │ │ │ +00263300: 7269 7474 656e 2073 6f20 6661 722e 0a0a ritten so far... │ │ │ │ +00263310: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00263320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00263340: 203a 2066 203d 2074 656d 706f 7261 7279 : f = temporary │ │ │ │ +00263350: 4669 6c65 4e61 6d65 2829 203c 3c20 2268 FileName() << "h │ │ │ │ +00263360: 6920 7468 6572 6522 7c0a 7c20 2020 2020 i there"|.| │ │ │ │ +00263370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263390: 2020 2020 207c 0a7c 6f31 203d 202f 746d |.|o1 = /tm │ │ │ │ +002633a0: 702f 4d32 2d31 3432 3730 2d30 2f30 2020 p/M2-14270-0/0 │ │ │ │ 002633b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002633c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -002633d0: 203a 2046 696c 6520 2020 2020 2020 2020 : File │ │ │ │ -002633e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002633f0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00263400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263420: 2d2d 2d2d 2d2b 0a7c 6932 203a 2066 696c -----+.|i2 : fil │ │ │ │ -00263430: 654c 656e 6774 6820 6620 2020 2020 2020 eLength f │ │ │ │ -00263440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263450: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +002633c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +002633d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002633e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002633f0: 0a7c 6f31 203a 2046 696c 6520 2020 2020 .|o1 : File │ │ │ │ +00263400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263410: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00263420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263440: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00263450: 2066 696c 654c 656e 6774 6820 6620 2020 fileLength f │ │ │ │ 00263460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00263480: 0a7c 6f32 203d 2038 2020 2020 2020 2020 .|o2 = 8 │ │ │ │ +00263470: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00263480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00263490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002634a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -002634b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002634c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002634d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -002634e0: 2063 6c6f 7365 2066 2020 2020 2020 2020 close f │ │ │ │ -002634f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263500: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +002634a0: 2020 207c 0a7c 6f32 203d 2038 2020 2020 |.|o2 = 8 │ │ │ │ +002634b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002634c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002634d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +002634e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002634f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00263500: 6933 203a 2063 6c6f 7365 2066 2020 2020 i3 : close f │ │ │ │ 00263510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263530: 2020 207c 0a7c 6f33 203d 202f 746d 702f |.|o3 = /tmp/ │ │ │ │ -00263540: 4d32 2d31 3231 3530 2d30 2f30 2020 2020 M2-12150-0/0 │ │ │ │ -00263550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263560: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00263520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00263530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263550: 2020 2020 2020 207c 0a7c 6f33 203d 202f |.|o3 = / │ │ │ │ +00263560: 746d 702f 4d32 2d31 3432 3730 2d30 2f30 tmp/M2-14270-0/0 │ │ │ │ 00263570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263580: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00263590: 6f33 203a 2046 696c 6520 2020 2020 2020 o3 : File │ │ │ │ +00263580: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00263590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002635a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002635b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -002635c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002635d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002635e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2066 -------+.|i4 : f │ │ │ │ -002635f0: 696c 656e 616d 6520 3d20 746f 5374 7269 ilename = toStri │ │ │ │ -00263600: 6e67 2066 2020 2020 2020 2020 2020 2020 ng f │ │ │ │ -00263610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00263620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263640: 207c 0a7c 6f34 203d 202f 746d 702f 4d32 |.|o4 = /tmp/M2 │ │ │ │ -00263650: 2d31 3231 3530 2d30 2f30 2020 2020 2020 -12150-0/0 │ │ │ │ -00263660: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00263670: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00263680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -002636a0: 203a 2066 696c 654c 656e 6774 6820 6669 : fileLength fi │ │ │ │ -002636b0: 6c65 6e61 6d65 2020 2020 2020 2020 2020 lename │ │ │ │ -002636c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -002636d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002636e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002636f0: 2020 2020 207c 0a7c 6f35 203d 2038 2020 |.|o5 = 8 │ │ │ │ +002635b0: 207c 0a7c 6f33 203a 2046 696c 6520 2020 |.|o3 : File │ │ │ │ +002635c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002635d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +002635e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +002635f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00263610: 203a 2066 696c 656e 616d 6520 3d20 746f : filename = to │ │ │ │ +00263620: 5374 7269 6e67 2066 2020 2020 2020 2020 String f │ │ │ │ +00263630: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00263640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263660: 2020 2020 207c 0a7c 6f34 203d 202f 746d |.|o4 = /tm │ │ │ │ +00263670: 702f 4d32 2d31 3432 3730 2d30 2f30 2020 p/M2-14270-0/0 │ │ │ │ +00263680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263690: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +002636a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002636b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +002636c0: 0a7c 6935 203a 2066 696c 654c 656e 6774 .|i5 : fileLengt │ │ │ │ +002636d0: 6820 6669 6c65 6e61 6d65 2020 2020 2020 h filename │ │ │ │ +002636e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +002636f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00263700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263720: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00263730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00263750: 0a7c 6936 203a 2067 6574 2066 696c 656e .|i6 : get filen │ │ │ │ -00263760: 616d 6520 2020 2020 2020 2020 2020 2020 ame │ │ │ │ -00263770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00263780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263710: 2020 2020 2020 2020 207c 0a7c 6f35 203d |.|o5 = │ │ │ │ +00263720: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +00263730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00263740: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00263750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263770: 2d2d 2d2b 0a7c 6936 203a 2067 6574 2066 ---+.|i6 : get f │ │ │ │ +00263780: 696c 656e 616d 6520 2020 2020 2020 2020 ilename │ │ │ │ 00263790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002637a0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ -002637b0: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ -002637c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002637d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -002637e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002637f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263800: 2d2d 2d2b 0a7c 6937 203a 206c 656e 6774 ---+.|i7 : lengt │ │ │ │ -00263810: 6820 6f6f 2020 2020 2020 2020 2020 2020 h oo │ │ │ │ -00263820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263830: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002637a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002637b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002637c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002637d0: 6f36 203d 2068 6920 7468 6572 6520 2020 o6 = hi there │ │ │ │ +002637e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002637f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00263800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263820: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 206c -------+.|i7 : l │ │ │ │ +00263830: 656e 6774 6820 6f6f 2020 2020 2020 2020 ength oo │ │ │ │ 00263840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00263860: 6f37 203d 2038 2020 2020 2020 2020 2020 o7 = 8 │ │ │ │ +00263850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00263860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00263870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00263880: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00263890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002638a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002638b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2072 -------+.|i8 : r │ │ │ │ -002638c0: 656d 6f76 6546 696c 6520 6669 6c65 6e61 emoveFile filena │ │ │ │ -002638d0: 6d65 2020 2020 2020 2020 2020 2020 2020 me │ │ │ │ -002638e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -002638f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263910: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -00263920: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00263930: 2066 696c 6554 696d 653a 2066 696c 6554 fileTime: fileT │ │ │ │ -00263940: 696d 652c 202d 2d20 6765 7420 6f72 2073 ime, -- get or s │ │ │ │ -00263950: 6574 2066 696c 6520 6d6f 6469 6669 6564 et file modified │ │ │ │ -00263960: 2074 696d 650a 0a46 6f72 2074 6865 2070 time..For the p │ │ │ │ -00263970: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00263980: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00263990: 6520 6f62 6a65 6374 202a 6e6f 7465 2066 e object *note f │ │ │ │ -002639a0: 696c 654c 656e 6774 683a 2066 696c 654c ileLength: fileL │ │ │ │ -002639b0: 656e 6774 682c 2069 7320 6120 2a6e 6f74 ength, is a *not │ │ │ │ -002639c0: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ -002639d0: 696f 6e3a 0a43 6f6d 7069 6c65 6446 756e ion:.CompiledFun │ │ │ │ -002639e0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ -002639f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263880: 207c 0a7c 6f37 203d 2038 2020 2020 2020 |.|o7 = 8 │ │ │ │ +00263890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002638a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +002638b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +002638c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002638d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ +002638e0: 203a 2072 656d 6f76 6546 696c 6520 6669 : removeFile fi │ │ │ │ +002638f0: 6c65 6e61 6d65 2020 2020 2020 2020 2020 lename │ │ │ │ +00263900: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00263910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263930: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +00263940: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00263950: 6e6f 7465 2066 696c 6554 696d 653a 2066 note fileTime: f │ │ │ │ +00263960: 696c 6554 696d 652c 202d 2d20 6765 7420 ileTime, -- get │ │ │ │ +00263970: 6f72 2073 6574 2066 696c 6520 6d6f 6469 or set file modi │ │ │ │ +00263980: 6669 6564 2074 696d 650a 0a46 6f72 2074 fied time..For t │ │ │ │ +00263990: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +002639a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002639b0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +002639c0: 7465 2066 696c 654c 656e 6774 683a 2066 te fileLength: f │ │ │ │ +002639d0: 696c 654c 656e 6774 682c 2069 7320 6120 ileLength, is a │ │ │ │ +002639e0: 2a6e 6f74 6520 636f 6d70 696c 6564 2066 *note compiled f │ │ │ │ +002639f0: 756e 6374 696f 6e3a 0a43 6f6d 7069 6c65 unction:.Compile │ │ │ │ +00263a00: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ 00263a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00263a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263a30: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00263a40: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00263a50: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00263a60: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00263a70: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00263a80: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00263a90: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00263aa0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -00263ab0: 5f73 7973 7465 6d2e 6d32 3a31 3836 383a _system.m2:1868: │ │ │ │ -00263ac0: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ -00263ad0: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ -00263ae0: 6465 3a20 6865 6967 6874 5f6c 7046 696c de: height_lpFil │ │ │ │ -00263af0: 655f 7270 2c20 4e65 7874 3a20 7769 6474 e_rp, Next: widt │ │ │ │ -00263b00: 685f 6c70 4669 6c65 5f72 702c 2050 7265 h_lpFile_rp, Pre │ │ │ │ -00263b10: 763a 2066 696c 654c 656e 6774 682c 2055 v: fileLength, U │ │ │ │ -00263b20: 703a 2075 7369 6e67 2073 6f63 6b65 7473 p: using sockets │ │ │ │ -00263b30: 0a0a 6865 6967 6874 2846 696c 6529 202d ..height(File) - │ │ │ │ -00263b40: 2d20 6765 7420 7769 6e64 6f77 2068 6569 - get window hei │ │ │ │ -00263b50: 6768 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ght.************ │ │ │ │ -00263b60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00263b70: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ -00263b80: 696f 6e3a 202a 6e6f 7465 2068 6569 6768 ion: *note heigh │ │ │ │ -00263b90: 743a 2068 6569 6768 742c 0a20 202a 2055 t: height,. * U │ │ │ │ -00263ba0: 7361 6765 3a20 0a20 2020 2020 2020 2068 sage: . h │ │ │ │ -00263bb0: 6569 6768 7420 660a 2020 2a20 496e 7075 eight f. * Inpu │ │ │ │ -00263bc0: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ -00263bd0: 202a 6e6f 7465 2066 696c 653a 2046 696c *note file: Fil │ │ │ │ -00263be0: 652c 0a20 202a 204f 7574 7075 7473 3a0a e,. * Outputs:. │ │ │ │ -00263bf0: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ -00263c00: 2069 6e74 6567 6572 3a20 5a5a 2c2c 2074 integer: ZZ,, t │ │ │ │ -00263c10: 6865 2068 6569 6768 7420 6f66 2074 6865 he height of the │ │ │ │ -00263c20: 2077 696e 646f 7720 6f72 2074 6572 6d69 window or termi │ │ │ │ -00263c30: 6e61 6c20 6174 7461 6368 6564 2074 6f0a nal attached to. │ │ │ │ -00263c40: 2020 2020 2020 2020 7468 6520 6669 6c65 the file │ │ │ │ -00263c50: 2066 2c20 6966 2061 6e79 2c20 656c 7365 f, if any, else │ │ │ │ -00263c60: 2030 0a0a 5761 7973 2074 6f20 7573 6520 0..Ways to use │ │ │ │ -00263c70: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ -00263c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00263c90: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00263ca0: 2068 6569 6768 7428 4669 6c65 293a 2068 height(File): h │ │ │ │ -00263cb0: 6569 6768 745f 6c70 4669 6c65 5f72 702c eight_lpFile_rp, │ │ │ │ -00263cc0: 202d 2d20 6765 7420 7769 6e64 6f77 2068 -- get window h │ │ │ │ -00263cd0: 6569 6768 740a 2d2d 2d2d 2d2d 2d2d 2d2d eight.---------- │ │ │ │ -00263ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00263a60: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00263a70: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00263a80: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00263a90: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00263aa0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00263ab0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00263ac0: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +00263ad0: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a31 c/ov_system.m2:1 │ │ │ │ +00263ae0: 3836 383a 302e 0a1f 0a46 696c 653a 204d 868:0....File: M │ │ │ │ +00263af0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +00263b00: 2c20 4e6f 6465 3a20 6865 6967 6874 5f6c , Node: height_l │ │ │ │ +00263b10: 7046 696c 655f 7270 2c20 4e65 7874 3a20 pFile_rp, Next: │ │ │ │ +00263b20: 7769 6474 685f 6c70 4669 6c65 5f72 702c width_lpFile_rp, │ │ │ │ +00263b30: 2050 7265 763a 2066 696c 654c 656e 6774 Prev: fileLengt │ │ │ │ +00263b40: 682c 2055 703a 2075 7369 6e67 2073 6f63 h, Up: using soc │ │ │ │ +00263b50: 6b65 7473 0a0a 6865 6967 6874 2846 696c kets..height(Fil │ │ │ │ +00263b60: 6529 202d 2d20 6765 7420 7769 6e64 6f77 e) -- get window │ │ │ │ +00263b70: 2068 6569 6768 740a 2a2a 2a2a 2a2a 2a2a height.******** │ │ │ │ +00263b80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00263b90: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ +00263ba0: 756e 6374 696f 6e3a 202a 6e6f 7465 2068 unction: *note h │ │ │ │ +00263bb0: 6569 6768 743a 2068 6569 6768 742c 0a20 eight: height,. │ │ │ │ +00263bc0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00263bd0: 2020 2068 6569 6768 7420 660a 2020 2a20 height f. * │ │ │ │ +00263be0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00263bf0: 662c 2061 202a 6e6f 7465 2066 696c 653a f, a *note file: │ │ │ │ +00263c00: 2046 696c 652c 0a20 202a 204f 7574 7075 File,. * Outpu │ │ │ │ +00263c10: 7473 3a0a 2020 2020 2020 2a20 616e 202a ts:. * an * │ │ │ │ +00263c20: 6e6f 7465 2069 6e74 6567 6572 3a20 5a5a note integer: ZZ │ │ │ │ +00263c30: 2c2c 2074 6865 2068 6569 6768 7420 6f66 ,, the height of │ │ │ │ +00263c40: 2074 6865 2077 696e 646f 7720 6f72 2074 the window or t │ │ │ │ +00263c50: 6572 6d69 6e61 6c20 6174 7461 6368 6564 erminal attached │ │ │ │ +00263c60: 2074 6f0a 2020 2020 2020 2020 7468 6520 to. the │ │ │ │ +00263c70: 6669 6c65 2066 2c20 6966 2061 6e79 2c20 file f, if any, │ │ │ │ +00263c80: 656c 7365 2030 0a0a 5761 7973 2074 6f20 else 0..Ways to │ │ │ │ +00263c90: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ +00263ca0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00263cb0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ +00263cc0: 6e6f 7465 2068 6569 6768 7428 4669 6c65 note height(File │ │ │ │ +00263cd0: 293a 2068 6569 6768 745f 6c70 4669 6c65 ): height_lpFile │ │ │ │ +00263ce0: 5f72 702c 202d 2d20 6765 7420 7769 6e64 _rp, -- get wind │ │ │ │ +00263cf0: 6f77 2068 6569 6768 740a 2d2d 2d2d 2d2d ow height.------ │ │ │ │ 00263d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00263d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263d20: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00263d30: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00263d40: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00263d50: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00263d60: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00263d70: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00263d80: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00263d90: 6361 756c 6179 3244 6f63 2f6f 765f 7374 caulay2Doc/ov_st │ │ │ │ -00263da0: 7269 6e67 732e 6d32 3a33 3132 3a30 2e0a rings.m2:312:0.. │ │ │ │ -00263db0: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -00263dc0: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -00263dd0: 2077 6964 7468 5f6c 7046 696c 655f 7270 width_lpFile_rp │ │ │ │ -00263de0: 2c20 4e65 7874 3a20 6174 456e 644f 6646 , Next: atEndOfF │ │ │ │ -00263df0: 696c 655f 6c70 4669 6c65 5f72 702c 2050 ile_lpFile_rp, P │ │ │ │ -00263e00: 7265 763a 2068 6569 6768 745f 6c70 4669 rev: height_lpFi │ │ │ │ -00263e10: 6c65 5f72 702c 2055 703a 2075 7369 6e67 le_rp, Up: using │ │ │ │ -00263e20: 2073 6f63 6b65 7473 0a0a 7769 6474 6828 sockets..width( │ │ │ │ -00263e30: 4669 6c65 2920 2d2d 2067 6574 2077 696e File) -- get win │ │ │ │ -00263e40: 646f 7720 7769 6474 680a 2a2a 2a2a 2a2a dow width.****** │ │ │ │ -00263e50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00263e60: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ -00263e70: 756e 6374 696f 6e3a 202a 6e6f 7465 2077 unction: *note w │ │ │ │ -00263e80: 6964 7468 3a20 7769 6474 682c 0a20 202a idth: width,. * │ │ │ │ -00263e90: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00263ea0: 2077 6964 7468 2066 0a20 202a 2049 6e70 width f. * Inp │ │ │ │ -00263eb0: 7574 733a 0a20 2020 2020 202a 2066 2c20 uts:. * f, │ │ │ │ -00263ec0: 6120 2a6e 6f74 6520 6669 6c65 3a20 4669 a *note file: Fi │ │ │ │ -00263ed0: 6c65 2c0a 2020 2a20 4f75 7470 7574 733a le,. * Outputs: │ │ │ │ -00263ee0: 0a20 2020 2020 202a 2061 6e20 2a6e 6f74 . * an *not │ │ │ │ -00263ef0: 6520 696e 7465 6765 723a 205a 5a2c 2c20 e integer: ZZ,, │ │ │ │ -00263f00: 7468 6520 7769 6474 6820 6f66 2074 6865 the width of the │ │ │ │ -00263f10: 2077 696e 646f 7720 6f72 2074 6572 6d69 window or termi │ │ │ │ -00263f20: 6e61 6c20 6174 7461 6368 6564 2074 6f0a nal attached to. │ │ │ │ -00263f30: 2020 2020 2020 2020 7468 6520 6669 6c65 the file │ │ │ │ -00263f40: 2066 2c20 6966 2061 6e79 2c20 656c 7365 f, if any, else │ │ │ │ -00263f50: 2030 0a0a 5761 7973 2074 6f20 7573 6520 0..Ways to use │ │ │ │ -00263f60: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ -00263f70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00263f80: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00263f90: 2077 6964 7468 2846 696c 6529 3a20 7769 width(File): wi │ │ │ │ -00263fa0: 6474 685f 6c70 4669 6c65 5f72 702c 202d dth_lpFile_rp, - │ │ │ │ -00263fb0: 2d20 6765 7420 7769 6e64 6f77 2077 6964 - get window wid │ │ │ │ -00263fc0: 7468 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d th.------------- │ │ │ │ -00263fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00263fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00263d40: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00263d50: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00263d60: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00263d70: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00263d80: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00263d90: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00263da0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00263db0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00263dc0: 765f 7374 7269 6e67 732e 6d32 3a33 3132 v_strings.m2:312 │ │ │ │ +00263dd0: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00263de0: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +00263df0: 6f64 653a 2077 6964 7468 5f6c 7046 696c ode: width_lpFil │ │ │ │ +00263e00: 655f 7270 2c20 4e65 7874 3a20 6174 456e e_rp, Next: atEn │ │ │ │ +00263e10: 644f 6646 696c 655f 6c70 4669 6c65 5f72 dOfFile_lpFile_r │ │ │ │ +00263e20: 702c 2050 7265 763a 2068 6569 6768 745f p, Prev: height_ │ │ │ │ +00263e30: 6c70 4669 6c65 5f72 702c 2055 703a 2075 lpFile_rp, Up: u │ │ │ │ +00263e40: 7369 6e67 2073 6f63 6b65 7473 0a0a 7769 sing sockets..wi │ │ │ │ +00263e50: 6474 6828 4669 6c65 2920 2d2d 2067 6574 dth(File) -- get │ │ │ │ +00263e60: 2077 696e 646f 7720 7769 6474 680a 2a2a window width.** │ │ │ │ +00263e70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00263e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +00263e90: 202a 2046 756e 6374 696f 6e3a 202a 6e6f * Function: *no │ │ │ │ +00263ea0: 7465 2077 6964 7468 3a20 7769 6474 682c te width: width, │ │ │ │ +00263eb0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00263ec0: 2020 2020 2077 6964 7468 2066 0a20 202a width f. * │ │ │ │ +00263ed0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00263ee0: 2066 2c20 6120 2a6e 6f74 6520 6669 6c65 f, a *note file │ │ │ │ +00263ef0: 3a20 4669 6c65 2c0a 2020 2a20 4f75 7470 : File,. * Outp │ │ │ │ +00263f00: 7574 733a 0a20 2020 2020 202a 2061 6e20 uts:. * an │ │ │ │ +00263f10: 2a6e 6f74 6520 696e 7465 6765 723a 205a *note integer: Z │ │ │ │ +00263f20: 5a2c 2c20 7468 6520 7769 6474 6820 6f66 Z,, the width of │ │ │ │ +00263f30: 2074 6865 2077 696e 646f 7720 6f72 2074 the window or t │ │ │ │ +00263f40: 6572 6d69 6e61 6c20 6174 7461 6368 6564 erminal attached │ │ │ │ +00263f50: 2074 6f0a 2020 2020 2020 2020 7468 6520 to. the │ │ │ │ +00263f60: 6669 6c65 2066 2c20 6966 2061 6e79 2c20 file f, if any, │ │ │ │ +00263f70: 656c 7365 2030 0a0a 5761 7973 2074 6f20 else 0..Ways to │ │ │ │ +00263f80: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ +00263f90: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00263fa0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ +00263fb0: 6e6f 7465 2077 6964 7468 2846 696c 6529 note width(File) │ │ │ │ +00263fc0: 3a20 7769 6474 685f 6c70 4669 6c65 5f72 : width_lpFile_r │ │ │ │ +00263fd0: 702c 202d 2d20 6765 7420 7769 6e64 6f77 p, -- get window │ │ │ │ +00263fe0: 2077 6964 7468 0a2d 2d2d 2d2d 2d2d 2d2d width.--------- │ │ │ │ 00263ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00264000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264010: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00264020: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00264030: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00264040: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00264050: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00264060: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00264070: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -00264080: 6c61 7932 446f 632f 6f76 5f73 7472 696e lay2Doc/ov_strin │ │ │ │ -00264090: 6773 2e6d 323a 3331 373a 302e 0a1f 0a46 gs.m2:317:0....F │ │ │ │ -002640a0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -002640b0: 632e 696e 666f 2c20 4e6f 6465 3a20 6174 c.info, Node: at │ │ │ │ -002640c0: 456e 644f 6646 696c 655f 6c70 4669 6c65 EndOfFile_lpFile │ │ │ │ -002640d0: 5f72 702c 204e 6578 743a 2065 6368 6f4f _rp, Next: echoO │ │ │ │ -002640e0: 6e2c 2050 7265 763a 2077 6964 7468 5f6c n, Prev: width_l │ │ │ │ -002640f0: 7046 696c 655f 7270 2c20 5570 3a20 7573 pFile_rp, Up: us │ │ │ │ -00264100: 696e 6720 736f 636b 6574 730a 0a61 7445 ing sockets..atE │ │ │ │ -00264110: 6e64 4f66 4669 6c65 2846 696c 6529 202d ndOfFile(File) - │ │ │ │ -00264120: 2d20 7465 7374 2066 6f72 2065 6e64 206f - test for end o │ │ │ │ -00264130: 6620 6669 6c65 0a2a 2a2a 2a2a 2a2a 2a2a f file.********* │ │ │ │ -00264140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00264150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00264160: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -00264170: 2a6e 6f74 6520 6174 456e 644f 6646 696c *note atEndOfFil │ │ │ │ -00264180: 653a 2061 7445 6e64 4f66 4669 6c65 5f6c e: atEndOfFile_l │ │ │ │ -00264190: 7046 696c 655f 7270 2c0a 2020 2a20 5573 pFile_rp,. * Us │ │ │ │ -002641a0: 6167 653a 200a 2020 2020 2020 2020 6174 age: . at │ │ │ │ -002641b0: 456e 644f 6646 696c 6520 660a 2020 2a20 EndOfFile f. * │ │ │ │ -002641c0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -002641d0: 662c 2061 202a 6e6f 7465 2066 696c 653a f, a *note file: │ │ │ │ -002641e0: 2046 696c 652c 0a20 202a 204f 7574 7075 File,. * Outpu │ │ │ │ -002641f0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -00264200: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ -00264210: 653a 2042 6f6f 6c65 616e 2c2c 2077 6865 e: Boolean,, whe │ │ │ │ -00264220: 7468 6572 2074 6865 2069 6e70 7574 2066 ther the input f │ │ │ │ -00264230: 696c 6520 6620 6973 2061 7420 7468 6520 ile f is at the │ │ │ │ -00264240: 656e 640a 0a44 6573 6372 6970 7469 6f6e end..Description │ │ │ │ -00264250: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ -00264260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264280: 2b0a 7c69 3120 3a20 6620 3d20 6f70 656e +.|i1 : f = open │ │ │ │ -00264290: 496e 4f75 7420 2221 6361 7422 2020 2020 InOut "!cat" │ │ │ │ -002642a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -002642b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002642c0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -002642d0: 2163 6174 2020 2020 2020 2020 2020 2020 !cat │ │ │ │ -002642e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -002642f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264030: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00264040: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00264050: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00264060: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00264070: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00264080: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00264090: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ +002640a0: 6163 6175 6c61 7932 446f 632f 6f76 5f73 acaulay2Doc/ov_s │ │ │ │ +002640b0: 7472 696e 6773 2e6d 323a 3331 373a 302e trings.m2:317:0. │ │ │ │ +002640c0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +002640d0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +002640e0: 3a20 6174 456e 644f 6646 696c 655f 6c70 : atEndOfFile_lp │ │ │ │ +002640f0: 4669 6c65 5f72 702c 204e 6578 743a 2065 File_rp, Next: e │ │ │ │ +00264100: 6368 6f4f 6e2c 2050 7265 763a 2077 6964 choOn, Prev: wid │ │ │ │ +00264110: 7468 5f6c 7046 696c 655f 7270 2c20 5570 th_lpFile_rp, Up │ │ │ │ +00264120: 3a20 7573 696e 6720 736f 636b 6574 730a : using sockets. │ │ │ │ +00264130: 0a61 7445 6e64 4f66 4669 6c65 2846 696c .atEndOfFile(Fil │ │ │ │ +00264140: 6529 202d 2d20 7465 7374 2066 6f72 2065 e) -- test for e │ │ │ │ +00264150: 6e64 206f 6620 6669 6c65 0a2a 2a2a 2a2a nd of file.***** │ │ │ │ +00264160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00264170: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00264180: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +00264190: 6f6e 3a20 2a6e 6f74 6520 6174 456e 644f on: *note atEndO │ │ │ │ +002641a0: 6646 696c 653a 2061 7445 6e64 4f66 4669 fFile: atEndOfFi │ │ │ │ +002641b0: 6c65 5f6c 7046 696c 655f 7270 2c0a 2020 le_lpFile_rp,. │ │ │ │ +002641c0: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +002641d0: 2020 6174 456e 644f 6646 696c 6520 660a atEndOfFile f. │ │ │ │ +002641e0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +002641f0: 2020 2a20 662c 2061 202a 6e6f 7465 2066 * f, a *note f │ │ │ │ +00264200: 696c 653a 2046 696c 652c 0a20 202a 204f ile: File,. * O │ │ │ │ +00264210: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00264220: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ +00264230: 7661 6c75 653a 2042 6f6f 6c65 616e 2c2c value: Boolean,, │ │ │ │ +00264240: 2077 6865 7468 6572 2074 6865 2069 6e70 whether the inp │ │ │ │ +00264250: 7574 2066 696c 6520 6620 6973 2061 7420 ut file f is at │ │ │ │ +00264260: 7468 6520 656e 640a 0a44 6573 6372 6970 the end..Descrip │ │ │ │ +00264270: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00264280: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00264290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002642a0: 2d2d 2d2d 2b0a 7c69 3120 3a20 6620 3d20 ----+.|i1 : f = │ │ │ │ +002642b0: 6f70 656e 496e 4f75 7420 2221 6361 7422 openInOut "!cat" │ │ │ │ +002642c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +002642d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002642e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +002642f0: 3120 3d20 2163 6174 2020 2020 2020 2020 1 = !cat │ │ │ │ 00264300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264310: 7c0a 7c6f 3120 3a20 4669 6c65 2020 2020 |.|o1 : File │ │ │ │ +00264310: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00264320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264330: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00264340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264350: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00264360: 6620 3c3c 2022 6869 2074 6865 7265 2220 f << "hi there" │ │ │ │ -00264370: 3c3c 2063 6c6f 7365 4f75 743b 7c0a 2b2d << closeOut;|.+- │ │ │ │ -00264380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002643a0: 2b0a 7c69 3320 3a20 6174 456e 644f 6646 +.|i3 : atEndOfF │ │ │ │ -002643b0: 696c 6520 6620 2020 2020 2020 2020 2020 ile f │ │ │ │ -002643c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -002643d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002643e0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -002643f0: 6661 6c73 6520 2020 2020 2020 2020 2020 false │ │ │ │ -00264400: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00264410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264430: 2b0a 7c69 3420 3a20 7065 656b 2072 6561 +.|i4 : peek rea │ │ │ │ -00264440: 6420 6620 2020 2020 2020 2020 2020 2020 d f │ │ │ │ -00264450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00264460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264470: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -00264480: 2268 6920 7468 6572 6522 2020 2020 2020 "hi there" │ │ │ │ -00264490: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -002644a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002644b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002644c0: 2b0a 7c69 3520 3a20 6174 456e 644f 6646 +.|i5 : atEndOfF │ │ │ │ -002644d0: 696c 6520 6620 2020 2020 2020 2020 2020 ile f │ │ │ │ -002644e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -002644f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264500: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -00264510: 6661 6c73 6520 2020 2020 2020 2020 2020 false │ │ │ │ -00264520: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00264530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264550: 2b0a 0a57 6179 7320 746f 2075 7365 2074 +..Ways to use t │ │ │ │ -00264560: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -00264570: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00264580: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00264590: 6174 456e 644f 6646 696c 6528 4669 6c65 atEndOfFile(File │ │ │ │ -002645a0: 293a 2061 7445 6e64 4f66 4669 6c65 5f6c ): atEndOfFile_l │ │ │ │ -002645b0: 7046 696c 655f 7270 2c20 2d2d 2074 6573 pFile_rp, -- tes │ │ │ │ -002645c0: 7420 666f 7220 656e 6420 6f66 2066 696c t for end of fil │ │ │ │ -002645d0: 650a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d e.-------------- │ │ │ │ -002645e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002645f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264330: 2020 2020 7c0a 7c6f 3120 3a20 4669 6c65 |.|o1 : File │ │ │ │ +00264340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264350: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00264360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00264380: 3220 3a20 6620 3c3c 2022 6869 2074 6865 2 : f << "hi the │ │ │ │ +00264390: 7265 2220 3c3c 2063 6c6f 7365 4f75 743b re" << closeOut; │ │ │ │ +002643a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +002643b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002643c0: 2d2d 2d2d 2b0a 7c69 3320 3a20 6174 456e ----+.|i3 : atEn │ │ │ │ +002643d0: 644f 6646 696c 6520 6620 2020 2020 2020 dOfFile f │ │ │ │ +002643e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +002643f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264400: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00264410: 3320 3d20 6661 6c73 6520 2020 2020 2020 3 = false │ │ │ │ +00264420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264430: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00264440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264450: 2d2d 2d2d 2b0a 7c69 3420 3a20 7065 656b ----+.|i4 : peek │ │ │ │ +00264460: 2072 6561 6420 6620 2020 2020 2020 2020 read f │ │ │ │ +00264470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00264480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264490: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +002644a0: 3420 3d20 2268 6920 7468 6572 6522 2020 4 = "hi there" │ │ │ │ +002644b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002644c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +002644d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002644e0: 2d2d 2d2d 2b0a 7c69 3520 3a20 6174 456e ----+.|i5 : atEn │ │ │ │ +002644f0: 644f 6646 696c 6520 6620 2020 2020 2020 dOfFile f │ │ │ │ +00264500: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00264510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264520: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00264530: 3520 3d20 7472 7565 2020 2020 2020 2020 5 = true │ │ │ │ +00264540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264550: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00264560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264570: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +00264580: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00264590: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002645a0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +002645b0: 6f74 6520 6174 456e 644f 6646 696c 6528 ote atEndOfFile( │ │ │ │ +002645c0: 4669 6c65 293a 2061 7445 6e64 4f66 4669 File): atEndOfFi │ │ │ │ +002645d0: 6c65 5f6c 7046 696c 655f 7270 2c20 2d2d le_lpFile_rp, -- │ │ │ │ +002645e0: 2074 6573 7420 666f 7220 656e 6420 6f66 test for end of │ │ │ │ +002645f0: 2066 696c 650a 2d2d 2d2d 2d2d 2d2d 2d2d file.---------- │ │ │ │ 00264600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00264610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264620: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00264630: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00264640: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00264650: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00264660: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00264670: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00264680: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00264690: 6179 3244 6f63 2f6f 765f 6669 6c65 732e ay2Doc/ov_files. │ │ │ │ -002646a0: 6d32 3a33 3734 3a30 2e0a 1f0a 4669 6c65 m2:374:0....File │ │ │ │ -002646b0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -002646c0: 6e66 6f2c 204e 6f64 653a 2065 6368 6f4f nfo, Node: echoO │ │ │ │ -002646d0: 6e2c 204e 6578 743a 2065 6368 6f4f 6666 n, Next: echoOff │ │ │ │ -002646e0: 2c20 5072 6576 3a20 6174 456e 644f 6646 , Prev: atEndOfF │ │ │ │ -002646f0: 696c 655f 6c70 4669 6c65 5f72 702c 2055 ile_lpFile_rp, U │ │ │ │ -00264700: 703a 2075 7369 6e67 2073 6f63 6b65 7473 p: using sockets │ │ │ │ -00264710: 0a0a 6563 686f 4f6e 202d 2d20 7475 726e ..echoOn -- turn │ │ │ │ -00264720: 206f 6e20 6563 686f 696e 670a 2a2a 2a2a on echoing.**** │ │ │ │ -00264730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00264740: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -00264750: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00264760: 6563 686f 4f6e 2066 202d 2d20 7475 726e echoOn f -- turn │ │ │ │ -00264770: 7320 6f6e 2065 6368 6f69 6e67 2066 6f72 s on echoing for │ │ │ │ -00264780: 2074 6865 2066 696c 6520 662e 0a0a 5761 the file f...Wa │ │ │ │ -00264790: 7973 2074 6f20 7573 6520 6563 686f 4f6e ys to use echoOn │ │ │ │ -002647a0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -002647b0: 3d3d 3d3d 3d0a 0a20 202a 2022 6563 686f =====.. * "echo │ │ │ │ -002647c0: 4f6e 2846 696c 6529 220a 0a46 6f72 2074 On(File)"..For t │ │ │ │ -002647d0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -002647e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002647f0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00264800: 7465 2065 6368 6f4f 6e3a 2065 6368 6f4f te echoOn: echoO │ │ │ │ -00264810: 6e2c 2069 7320 6120 2a6e 6f74 6520 636f n, is a *note co │ │ │ │ -00264820: 6d70 696c 6564 2066 756e 6374 696f 6e3a mpiled function: │ │ │ │ -00264830: 0a43 6f6d 7069 6c65 6446 756e 6374 696f .CompiledFunctio │ │ │ │ -00264840: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -00264850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264640: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00264650: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00264660: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00264670: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00264680: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00264690: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +002646a0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +002646b0: 6361 756c 6179 3244 6f63 2f6f 765f 6669 caulay2Doc/ov_fi │ │ │ │ +002646c0: 6c65 732e 6d32 3a33 3734 3a30 2e0a 1f0a les.m2:374:0.... │ │ │ │ +002646d0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +002646e0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2065 oc.info, Node: e │ │ │ │ +002646f0: 6368 6f4f 6e2c 204e 6578 743a 2065 6368 choOn, Next: ech │ │ │ │ +00264700: 6f4f 6666 2c20 5072 6576 3a20 6174 456e oOff, Prev: atEn │ │ │ │ +00264710: 644f 6646 696c 655f 6c70 4669 6c65 5f72 dOfFile_lpFile_r │ │ │ │ +00264720: 702c 2055 703a 2075 7369 6e67 2073 6f63 p, Up: using soc │ │ │ │ +00264730: 6b65 7473 0a0a 6563 686f 4f6e 202d 2d20 kets..echoOn -- │ │ │ │ +00264740: 7475 726e 206f 6e20 6563 686f 696e 670a turn on echoing. │ │ │ │ +00264750: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00264760: 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 *********..Descr │ │ │ │ +00264770: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00264780: 3d3d 0a0a 6563 686f 4f6e 2066 202d 2d20 ==..echoOn f -- │ │ │ │ +00264790: 7475 726e 7320 6f6e 2065 6368 6f69 6e67 turns on echoing │ │ │ │ +002647a0: 2066 6f72 2074 6865 2066 696c 6520 662e for the file f. │ │ │ │ +002647b0: 0a0a 5761 7973 2074 6f20 7573 6520 6563 ..Ways to use ec │ │ │ │ +002647c0: 686f 4f6e 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d hoOn:.========== │ │ │ │ +002647d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +002647e0: 6563 686f 4f6e 2846 696c 6529 220a 0a46 echoOn(File)"..F │ │ │ │ +002647f0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00264800: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00264810: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00264820: 202a 6e6f 7465 2065 6368 6f4f 6e3a 2065 *note echoOn: e │ │ │ │ +00264830: 6368 6f4f 6e2c 2069 7320 6120 2a6e 6f74 choOn, is a *not │ │ │ │ +00264840: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ +00264850: 696f 6e3a 0a43 6f6d 7069 6c65 6446 756e ion:.CompiledFun │ │ │ │ +00264860: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ 00264870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00264880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264890: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -002648a0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -002648b0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -002648c0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -002648d0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -002648e0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -002648f0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -00264900: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -00264910: 7465 6d2e 6d32 3a31 3034 353a 302e 0a1f tem.m2:1045:0... │ │ │ │ -00264920: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -00264930: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -00264940: 6563 686f 4f66 662c 204e 6578 743a 2069 echoOff, Next: i │ │ │ │ -00264950: 734f 7065 6e2c 2050 7265 763a 2065 6368 sOpen, Prev: ech │ │ │ │ -00264960: 6f4f 6e2c 2055 703a 2075 7369 6e67 2073 oOn, Up: using s │ │ │ │ -00264970: 6f63 6b65 7473 0a0a 6563 686f 4f66 6620 ockets..echoOff │ │ │ │ -00264980: 2d2d 2074 7572 6e20 6f66 6620 6563 686f -- turn off echo │ │ │ │ -00264990: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ -002649a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -002649b0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -002649c0: 3d3d 3d3d 3d3d 3d3d 0a0a 6563 686f 4f66 ========..echoOf │ │ │ │ -002649d0: 6620 6620 2d2d 2074 7572 6e73 206f 6666 f f -- turns off │ │ │ │ -002649e0: 2065 6368 6f69 6e67 2066 6f72 2074 6865 echoing for the │ │ │ │ -002649f0: 2066 696c 6520 662e 0a0a 5761 7973 2074 file f...Ways t │ │ │ │ -00264a00: 6f20 7573 6520 6563 686f 4f66 663a 0a3d o use echoOff:.= │ │ │ │ -00264a10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00264a20: 3d3d 3d0a 0a20 202a 2022 6563 686f 4f66 ===.. * "echoOf │ │ │ │ -00264a30: 6628 4669 6c65 2922 0a0a 466f 7220 7468 f(File)"..For th │ │ │ │ -00264a40: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -00264a50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00264a60: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00264a70: 6520 6563 686f 4f66 663a 2065 6368 6f4f e echoOff: echoO │ │ │ │ -00264a80: 6666 2c20 6973 2061 202a 6e6f 7465 2063 ff, is a *note c │ │ │ │ -00264a90: 6f6d 7069 6c65 6420 6675 6e63 7469 6f6e ompiled function │ │ │ │ -00264aa0: 3a0a 436f 6d70 696c 6564 4675 6e63 7469 :.CompiledFuncti │ │ │ │ -00264ab0: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -00264ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002648a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002648b0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +002648c0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +002648d0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +002648e0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +002648f0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00264900: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00264910: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00264920: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +00264930: 5f73 7973 7465 6d2e 6d32 3a31 3034 353a _system.m2:1045: │ │ │ │ +00264940: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +00264950: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +00264960: 6465 3a20 6563 686f 4f66 662c 204e 6578 de: echoOff, Nex │ │ │ │ +00264970: 743a 2069 734f 7065 6e2c 2050 7265 763a t: isOpen, Prev: │ │ │ │ +00264980: 2065 6368 6f4f 6e2c 2055 703a 2075 7369 echoOn, Up: usi │ │ │ │ +00264990: 6e67 2073 6f63 6b65 7473 0a0a 6563 686f ng sockets..echo │ │ │ │ +002649a0: 4f66 6620 2d2d 2074 7572 6e20 6f66 6620 Off -- turn off │ │ │ │ +002649b0: 6563 686f 696e 670a 2a2a 2a2a 2a2a 2a2a echoing.******** │ │ │ │ +002649c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002649d0: 2a2a 2a0a 0a44 6573 6372 6970 7469 6f6e ***..Description │ │ │ │ +002649e0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 6563 .===========..ec │ │ │ │ +002649f0: 686f 4f66 6620 6620 2d2d 2074 7572 6e73 hoOff f -- turns │ │ │ │ +00264a00: 206f 6666 2065 6368 6f69 6e67 2066 6f72 off echoing for │ │ │ │ +00264a10: 2074 6865 2066 696c 6520 662e 0a0a 5761 the file f...Wa │ │ │ │ +00264a20: 7973 2074 6f20 7573 6520 6563 686f 4f66 ys to use echoOf │ │ │ │ +00264a30: 663a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d f:.============= │ │ │ │ +00264a40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6563 =======.. * "ec │ │ │ │ +00264a50: 686f 4f66 6628 4669 6c65 2922 0a0a 466f hoOff(File)"..Fo │ │ │ │ +00264a60: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00264a70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00264a80: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00264a90: 2a6e 6f74 6520 6563 686f 4f66 663a 2065 *note echoOff: e │ │ │ │ +00264aa0: 6368 6f4f 6666 2c20 6973 2061 202a 6e6f choOff, is a *no │ │ │ │ +00264ab0: 7465 2063 6f6d 7069 6c65 6420 6675 6e63 te compiled func │ │ │ │ +00264ac0: 7469 6f6e 3a0a 436f 6d70 696c 6564 4675 tion:.CompiledFu │ │ │ │ +00264ad0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ 00264ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00264af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264b00: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00264b10: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00264b20: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00264b30: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00264b40: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00264b50: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00264b60: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00264b70: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -00264b80: 7374 656d 2e6d 323a 3130 3531 3a30 2e0a stem.m2:1051:0.. │ │ │ │ -00264b90: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -00264ba0: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -00264bb0: 2069 734f 7065 6e2c 204e 6578 743a 2069 isOpen, Next: i │ │ │ │ -00264bc0: 7352 6561 6479 5f6c 7046 696c 655f 7270 sReady_lpFile_rp │ │ │ │ -00264bd0: 2c20 5072 6576 3a20 6563 686f 4f66 662c , Prev: echoOff, │ │ │ │ -00264be0: 2055 703a 2075 7369 6e67 2073 6f63 6b65 Up: using socke │ │ │ │ -00264bf0: 7473 0a0a 6973 4f70 656e 202d 2d20 7768 ts..isOpen -- wh │ │ │ │ -00264c00: 6574 6865 7220 6120 6669 6c65 206f 7220 ether a file or │ │ │ │ -00264c10: 6461 7461 6261 7365 2069 7320 6f70 656e database is open │ │ │ │ -00264c20: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00264c30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00264c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -00264c50: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -00264c60: 2020 2069 734f 7065 6e20 660a 2020 2a20 isOpen f. * │ │ │ │ -00264c70: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00264c80: 662c 2061 202a 6e6f 7465 2066 696c 653a f, a *note file: │ │ │ │ -00264c90: 2046 696c 652c 206f 7220 6120 2a6e 6f74 File, or a *not │ │ │ │ -00264ca0: 6520 6461 7461 6261 7365 3a20 4461 7461 e database: Data │ │ │ │ -00264cb0: 6261 7365 2c0a 2020 2a20 4f75 7470 7574 base,. * Output │ │ │ │ -00264cc0: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -00264cd0: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ -00264ce0: 3a20 426f 6f6c 6561 6e2c 2c20 2077 6865 : Boolean,, whe │ │ │ │ -00264cf0: 7468 6572 2066 2069 7320 616e 206f 7065 ther f is an ope │ │ │ │ -00264d00: 6e20 6669 6c65 206f 7220 6f70 656e 0a20 n file or open. │ │ │ │ -00264d10: 2020 2020 2020 2064 6174 6162 6173 650a database. │ │ │ │ -00264d20: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00264d30: 3d3d 3d3d 3d3d 3d3d 0a0a 416e 206f 7065 ========..An ope │ │ │ │ -00264d40: 6e20 6669 6c65 2069 7320 6569 7468 6572 n file is either │ │ │ │ -00264d50: 2061 6e20 696e 7075 7420 6669 6c65 2c20 an input file, │ │ │ │ -00264d60: 616e 206f 7574 7075 7420 6669 6c65 2c20 an output file, │ │ │ │ -00264d70: 616e 2069 6e70 7574 206f 7574 7075 7420 an input output │ │ │ │ -00264d80: 6669 6c65 2c20 6f72 0a61 206c 6973 7465 file, or.a liste │ │ │ │ -00264d90: 6e65 722e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ner...+--------- │ │ │ │ -00264da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264db0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -00264dc0: 2066 203d 2022 7465 7374 2d66 696c 6522 f = "test-file" │ │ │ │ -00264dd0: 203c 3c20 2268 6920 7468 6572 6522 7c0a << "hi there"|. │ │ │ │ -00264de0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00264df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264e00: 2020 207c 0a7c 6f31 203d 2074 6573 742d |.|o1 = test- │ │ │ │ -00264e10: 6669 6c65 2020 2020 2020 2020 2020 2020 file │ │ │ │ -00264e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00264e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264e40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00264e50: 6f31 203a 2046 696c 6520 2020 2020 2020 o1 : File │ │ │ │ +00264b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264b20: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00264b30: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00264b40: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00264b50: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00264b60: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00264b70: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00264b80: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00264b90: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00264ba0: 765f 7379 7374 656d 2e6d 323a 3130 3531 v_system.m2:1051 │ │ │ │ +00264bb0: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00264bc0: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +00264bd0: 6f64 653a 2069 734f 7065 6e2c 204e 6578 ode: isOpen, Nex │ │ │ │ +00264be0: 743a 2069 7352 6561 6479 5f6c 7046 696c t: isReady_lpFil │ │ │ │ +00264bf0: 655f 7270 2c20 5072 6576 3a20 6563 686f e_rp, Prev: echo │ │ │ │ +00264c00: 4f66 662c 2055 703a 2075 7369 6e67 2073 Off, Up: using s │ │ │ │ +00264c10: 6f63 6b65 7473 0a0a 6973 4f70 656e 202d ockets..isOpen - │ │ │ │ +00264c20: 2d20 7768 6574 6865 7220 6120 6669 6c65 - whether a file │ │ │ │ +00264c30: 206f 7220 6461 7461 6261 7365 2069 7320 or database is │ │ │ │ +00264c40: 6f70 656e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a open.*********** │ │ │ │ +00264c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00264c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00264c70: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00264c80: 2020 2020 2020 2069 734f 7065 6e20 660a isOpen f. │ │ │ │ +00264c90: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00264ca0: 2020 2a20 662c 2061 202a 6e6f 7465 2066 * f, a *note f │ │ │ │ +00264cb0: 696c 653a 2046 696c 652c 206f 7220 6120 ile: File, or a │ │ │ │ +00264cc0: 2a6e 6f74 6520 6461 7461 6261 7365 3a20 *note database: │ │ │ │ +00264cd0: 4461 7461 6261 7365 2c0a 2020 2a20 4f75 Database,. * Ou │ │ │ │ +00264ce0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +00264cf0: 202a 6e6f 7465 2042 6f6f 6c65 616e 2076 *note Boolean v │ │ │ │ +00264d00: 616c 7565 3a20 426f 6f6c 6561 6e2c 2c20 alue: Boolean,, │ │ │ │ +00264d10: 2077 6865 7468 6572 2066 2069 7320 616e whether f is an │ │ │ │ +00264d20: 206f 7065 6e20 6669 6c65 206f 7220 6f70 open file or op │ │ │ │ +00264d30: 656e 0a20 2020 2020 2020 2064 6174 6162 en. datab │ │ │ │ +00264d40: 6173 650a 0a44 6573 6372 6970 7469 6f6e ase..Description │ │ │ │ +00264d50: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 416e .===========..An │ │ │ │ +00264d60: 206f 7065 6e20 6669 6c65 2069 7320 6569 open file is ei │ │ │ │ +00264d70: 7468 6572 2061 6e20 696e 7075 7420 6669 ther an input fi │ │ │ │ +00264d80: 6c65 2c20 616e 206f 7574 7075 7420 6669 le, an output fi │ │ │ │ +00264d90: 6c65 2c20 616e 2069 6e70 7574 206f 7574 le, an input out │ │ │ │ +00264da0: 7075 7420 6669 6c65 2c20 6f72 0a61 206c put file, or.a l │ │ │ │ +00264db0: 6973 7465 6e65 722e 0a0a 2b2d 2d2d 2d2d istener...+----- │ │ │ │ +00264dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00264de0: 6931 203a 2066 203d 2022 7465 7374 2d66 i1 : f = "test-f │ │ │ │ +00264df0: 696c 6522 203c 3c20 2268 6920 7468 6572 ile" << "hi ther │ │ │ │ +00264e00: 6522 7c0a 7c20 2020 2020 2020 2020 2020 e"|.| │ │ │ │ +00264e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264e20: 2020 2020 2020 207c 0a7c 6f31 203d 2074 |.|o1 = t │ │ │ │ +00264e30: 6573 742d 6669 6c65 2020 2020 2020 2020 est-file │ │ │ │ +00264e40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00264e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00264e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264e70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00264e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264e90: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2069 -------+.|i2 : i │ │ │ │ -00264ea0: 734f 7065 6e20 6620 2020 2020 2020 2020 sOpen f │ │ │ │ -00264eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00264ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264e70: 207c 0a7c 6f31 203a 2046 696c 6520 2020 |.|o1 : File │ │ │ │ +00264e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264e90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00264ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00264ec0: 203a 2069 734f 7065 6e20 6620 2020 2020 : isOpen f │ │ │ │ 00264ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264ee0: 207c 0a7c 6f32 203d 2074 7275 6520 2020 |.|o2 = true │ │ │ │ +00264ee0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00264ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264f00: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00264f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00264f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -00264f30: 203a 2063 6c6f 7365 2066 2020 2020 2020 : close f │ │ │ │ -00264f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264f50: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00264f00: 2020 2020 207c 0a7c 6f32 203d 2074 7275 |.|o2 = tru │ │ │ │ +00264f10: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ +00264f20: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00264f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00264f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00264f50: 0a7c 6933 203a 2063 6c6f 7365 2066 2020 .|i3 : close f │ │ │ │ 00264f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264f70: 2020 2020 207c 0a7c 6f33 203d 2074 6573 |.|o3 = tes │ │ │ │ -00264f80: 742d 6669 6c65 2020 2020 2020 2020 2020 t-file │ │ │ │ -00264f90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00264fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00264fc0: 0a7c 6f33 203a 2046 696c 6520 2020 2020 .|o3 : File │ │ │ │ +00264f70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00264f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00264f90: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +00264fa0: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ +00264fb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00264fc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00264fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00264fe0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00264ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265000: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ -00265010: 2069 734f 7065 6e20 6620 2020 2020 2020 isOpen f │ │ │ │ -00265020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00265030: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00264fe0: 2020 207c 0a7c 6f33 203a 2046 696c 6520 |.|o3 : File │ │ │ │ +00264ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265000: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00265010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00265030: 6934 203a 2069 734f 7065 6e20 6620 2020 i4 : isOpen f │ │ │ │ 00265040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265050: 2020 207c 0a7c 6f34 203d 2066 616c 7365 |.|o4 = false │ │ │ │ +00265050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00265060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265070: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00265080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -002650a0: 6935 203a 2067 6574 2022 7465 7374 2d66 i5 : get "test-f │ │ │ │ -002650b0: 696c 6522 2020 2020 2020 2020 2020 2020 ile" │ │ │ │ -002650c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -002650d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002650e0: 2020 2020 2020 207c 0a7c 6f35 203d 2068 |.|o5 = h │ │ │ │ -002650f0: 6920 7468 6572 6520 2020 2020 2020 2020 i there │ │ │ │ -00265100: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -00265110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265130: 2d2b 0a7c 6936 203a 2072 656d 6f76 6546 -+.|i6 : removeF │ │ │ │ -00265140: 696c 6520 2274 6573 742d 6669 6c65 2220 ile "test-file" │ │ │ │ -00265150: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00265160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ -00265180: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00265190: 0a20 202a 202a 6e6f 7465 206f 7065 6e49 . * *note openI │ │ │ │ -002651a0: 6e3a 206f 7065 6e49 6e5f 6c70 5374 7269 n: openIn_lpStri │ │ │ │ -002651b0: 6e67 5f72 702c 202d 2d20 6f70 656e 2061 ng_rp, -- open a │ │ │ │ -002651c0: 6e20 696e 7075 7420 6669 6c65 0a20 202a n input file. * │ │ │ │ -002651d0: 202a 6e6f 7465 206f 7065 6e49 6e4f 7574 *note openInOut │ │ │ │ -002651e0: 3a20 6f70 656e 496e 4f75 742c 202d 2d20 : openInOut, -- │ │ │ │ -002651f0: 6f70 656e 2061 6e20 696e 7075 7420 6f75 open an input ou │ │ │ │ -00265200: 7470 7574 2066 696c 650a 2020 2a20 2a6e tput file. * *n │ │ │ │ -00265210: 6f74 6520 6f70 656e 4c69 7374 656e 6572 ote openListener │ │ │ │ -00265220: 3a20 6f70 656e 4c69 7374 656e 6572 5f6c : openListener_l │ │ │ │ -00265230: 7053 7472 696e 675f 7270 2c20 2d2d 206f pString_rp, -- o │ │ │ │ -00265240: 7065 6e20 6120 706f 7274 2066 6f72 206c pen a port for l │ │ │ │ -00265250: 6973 7465 6e69 6e67 0a20 202a 202a 6e6f istening. * *no │ │ │ │ -00265260: 7465 2063 6c6f 7365 3a20 636c 6f73 652c te close: close, │ │ │ │ -00265270: 202d 2d20 636c 6f73 6520 6120 6669 6c65 -- close a file │ │ │ │ -00265280: 0a20 202a 202a 6e6f 7465 2067 6574 3a20 . * *note get: │ │ │ │ -00265290: 6765 742c 202d 2d20 6765 7420 7468 6520 get, -- get the │ │ │ │ -002652a0: 636f 6e74 656e 7473 206f 6620 6120 6669 contents of a fi │ │ │ │ -002652b0: 6c65 0a20 202a 202a 6e6f 7465 2072 656d le. * *note rem │ │ │ │ -002652c0: 6f76 6546 696c 653a 2072 656d 6f76 6546 oveFile: removeF │ │ │ │ -002652d0: 696c 652c 202d 2d20 7265 6d6f 7665 2061 ile, -- remove a │ │ │ │ -002652e0: 2066 696c 650a 0a57 6179 7320 746f 2075 file..Ways to u │ │ │ │ -002652f0: 7365 2069 734f 7065 6e3a 0a3d 3d3d 3d3d se isOpen:.===== │ │ │ │ -00265300: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00265310: 2020 2a20 2269 734f 7065 6e28 4461 7461 * "isOpen(Data │ │ │ │ -00265320: 6261 7365 2922 0a20 202a 2022 6973 4f70 base)". * "isOp │ │ │ │ -00265330: 656e 2846 696c 6529 220a 0a46 6f72 2074 en(File)"..For t │ │ │ │ -00265340: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00265350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00265360: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00265370: 7465 2069 734f 7065 6e3a 2069 734f 7065 te isOpen: isOpe │ │ │ │ -00265380: 6e2c 2069 7320 6120 2a6e 6f74 6520 636f n, is a *note co │ │ │ │ -00265390: 6d70 696c 6564 2066 756e 6374 696f 6e3a mpiled function: │ │ │ │ -002653a0: 0a43 6f6d 7069 6c65 6446 756e 6374 696f .CompiledFunctio │ │ │ │ -002653b0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -002653c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002653d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265070: 2020 2020 2020 207c 0a7c 6f34 203d 2066 |.|o4 = f │ │ │ │ +00265080: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +00265090: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +002650a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002650b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002650c0: 2d2b 0a7c 6935 203a 2067 6574 2022 7465 -+.|i5 : get "te │ │ │ │ +002650d0: 7374 2d66 696c 6522 2020 2020 2020 2020 st-file" │ │ │ │ +002650e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +002650f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265100: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00265110: 203d 2068 6920 7468 6572 6520 2020 2020 = hi there │ │ │ │ +00265120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265130: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00265140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265150: 2d2d 2d2d 2d2b 0a7c 6936 203a 2072 656d -----+.|i6 : rem │ │ │ │ +00265160: 6f76 6546 696c 6520 2274 6573 742d 6669 oveFile "test-fi │ │ │ │ +00265170: 6c65 2220 2020 2020 2020 7c0a 2b2d 2d2d le" |.+--- │ │ │ │ +00265180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +002651a0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +002651b0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206f ===.. * *note o │ │ │ │ +002651c0: 7065 6e49 6e3a 206f 7065 6e49 6e5f 6c70 penIn: openIn_lp │ │ │ │ +002651d0: 5374 7269 6e67 5f72 702c 202d 2d20 6f70 String_rp, -- op │ │ │ │ +002651e0: 656e 2061 6e20 696e 7075 7420 6669 6c65 en an input file │ │ │ │ +002651f0: 0a20 202a 202a 6e6f 7465 206f 7065 6e49 . * *note openI │ │ │ │ +00265200: 6e4f 7574 3a20 6f70 656e 496e 4f75 742c nOut: openInOut, │ │ │ │ +00265210: 202d 2d20 6f70 656e 2061 6e20 696e 7075 -- open an inpu │ │ │ │ +00265220: 7420 6f75 7470 7574 2066 696c 650a 2020 t output file. │ │ │ │ +00265230: 2a20 2a6e 6f74 6520 6f70 656e 4c69 7374 * *note openList │ │ │ │ +00265240: 656e 6572 3a20 6f70 656e 4c69 7374 656e ener: openListen │ │ │ │ +00265250: 6572 5f6c 7053 7472 696e 675f 7270 2c20 er_lpString_rp, │ │ │ │ +00265260: 2d2d 206f 7065 6e20 6120 706f 7274 2066 -- open a port f │ │ │ │ +00265270: 6f72 206c 6973 7465 6e69 6e67 0a20 202a or listening. * │ │ │ │ +00265280: 202a 6e6f 7465 2063 6c6f 7365 3a20 636c *note close: cl │ │ │ │ +00265290: 6f73 652c 202d 2d20 636c 6f73 6520 6120 ose, -- close a │ │ │ │ +002652a0: 6669 6c65 0a20 202a 202a 6e6f 7465 2067 file. * *note g │ │ │ │ +002652b0: 6574 3a20 6765 742c 202d 2d20 6765 7420 et: get, -- get │ │ │ │ +002652c0: 7468 6520 636f 6e74 656e 7473 206f 6620 the contents of │ │ │ │ +002652d0: 6120 6669 6c65 0a20 202a 202a 6e6f 7465 a file. * *note │ │ │ │ +002652e0: 2072 656d 6f76 6546 696c 653a 2072 656d removeFile: rem │ │ │ │ +002652f0: 6f76 6546 696c 652c 202d 2d20 7265 6d6f oveFile, -- remo │ │ │ │ +00265300: 7665 2061 2066 696c 650a 0a57 6179 7320 ve a file..Ways │ │ │ │ +00265310: 746f 2075 7365 2069 734f 7065 6e3a 0a3d to use isOpen:.= │ │ │ │ +00265320: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00265330: 3d3d 0a0a 2020 2a20 2269 734f 7065 6e28 ==.. * "isOpen( │ │ │ │ +00265340: 4461 7461 6261 7365 2922 0a20 202a 2022 Database)". * " │ │ │ │ +00265350: 6973 4f70 656e 2846 696c 6529 220a 0a46 isOpen(File)"..F │ │ │ │ +00265360: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00265370: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00265380: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00265390: 202a 6e6f 7465 2069 734f 7065 6e3a 2069 *note isOpen: i │ │ │ │ +002653a0: 734f 7065 6e2c 2069 7320 6120 2a6e 6f74 sOpen, is a *not │ │ │ │ +002653b0: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ +002653c0: 696f 6e3a 0a43 6f6d 7069 6c65 6446 756e ion:.CompiledFun │ │ │ │ +002653d0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ 002653e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002653f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265400: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00265410: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00265420: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00265430: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00265440: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00265450: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00265460: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -00265470: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -00265480: 7465 6d2e 6d32 3a36 3131 3a30 2e0a 1f0a tem.m2:611:0.... │ │ │ │ -00265490: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -002654a0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2069 oc.info, Node: i │ │ │ │ -002654b0: 7352 6561 6479 5f6c 7046 696c 655f 7270 sReady_lpFile_rp │ │ │ │ -002654c0: 2c20 4e65 7874 3a20 6973 4f75 7470 7574 , Next: isOutput │ │ │ │ -002654d0: 4669 6c65 5f6c 7046 696c 655f 7270 2c20 File_lpFile_rp, │ │ │ │ -002654e0: 5072 6576 3a20 6973 4f70 656e 2c20 5570 Prev: isOpen, Up │ │ │ │ -002654f0: 3a20 7573 696e 6720 736f 636b 6574 730a : using sockets. │ │ │ │ -00265500: 0a69 7352 6561 6479 2846 696c 6529 202d .isReady(File) - │ │ │ │ -00265510: 2d20 7768 6574 6865 7220 6120 6669 6c65 - whether a file │ │ │ │ -00265520: 2068 6173 2064 6174 6120 6176 6169 6c61 has data availa │ │ │ │ -00265530: 626c 6520 666f 7220 7265 6164 696e 670a ble for reading. │ │ │ │ -00265540: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265550: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265560: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00265580: 2020 2a20 4675 6e63 7469 6f6e 3a20 2a6e * Function: *n │ │ │ │ -00265590: 6f74 6520 6973 5265 6164 793a 2069 7352 ote isReady: isR │ │ │ │ -002655a0: 6561 6479 5f6c 7046 696c 655f 7270 2c0a eady_lpFile_rp,. │ │ │ │ -002655b0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -002655c0: 2020 2020 6973 5265 6164 7920 660a 2020 isReady f. │ │ │ │ -002655d0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -002655e0: 2a20 6120 2a6e 6f74 6520 6669 6c65 3a20 * a *note file: │ │ │ │ -002655f0: 4669 6c65 2c0a 2020 2a20 4f75 7470 7574 File,. * Output │ │ │ │ -00265600: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -00265610: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ -00265620: 3a20 426f 6f6c 6561 6e2c 2c20 7768 6574 : Boolean,, whet │ │ │ │ -00265630: 6865 7220 7468 6520 696e 7075 7420 6669 her the input fi │ │ │ │ -00265640: 6c65 2066 2068 6173 2064 6174 610a 2020 le f has data. │ │ │ │ -00265650: 2020 2020 2020 6176 6169 6c61 626c 6520 available │ │ │ │ -00265660: 666f 7220 7265 6164 696e 670a 0a44 6573 for reading..Des │ │ │ │ -00265670: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00265680: 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ====..+--------- │ │ │ │ -00265690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002656a0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2066 203d -----+.|i1 : f = │ │ │ │ -002656b0: 206f 7065 6e49 6e4f 7574 2022 2163 6174 openInOut "!cat │ │ │ │ -002656c0: 2220 2020 2020 7c0a 7c20 2020 2020 2020 " |.| │ │ │ │ -002656d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002656e0: 2020 2020 2020 207c 0a7c 6f31 203d 2021 |.|o1 = ! │ │ │ │ -002656f0: 6361 7420 2020 2020 2020 2020 2020 2020 cat │ │ │ │ -00265700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00265710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265720: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00265730: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -00265740: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -00265750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00265770: 203a 2069 7352 6561 6479 2066 2020 2020 : isReady f │ │ │ │ -00265780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00265790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002657a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002657b0: 6f32 203d 2066 616c 7365 2020 2020 2020 o2 = false │ │ │ │ -002657c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002657d0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -002657e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -002657f0: 0a7c 6933 203a 2066 203c 3c20 2268 6920 .|i3 : f << "hi │ │ │ │ -00265800: 7468 6572 6522 203c 3c20 666c 7573 683b there" << flush; │ │ │ │ -00265810: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00265820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265830: 2d2b 0a7c 6934 203a 2069 7352 6561 6479 -+.|i4 : isReady │ │ │ │ -00265840: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ -00265850: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00265860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265870: 2020 207c 0a7c 6f34 203d 2066 616c 7365 |.|o4 = false │ │ │ │ +00265400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265420: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00265430: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00265440: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00265450: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00265460: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00265470: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00265480: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00265490: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +002654a0: 5f73 7973 7465 6d2e 6d32 3a36 3131 3a30 _system.m2:611:0 │ │ │ │ +002654b0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +002654c0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +002654d0: 653a 2069 7352 6561 6479 5f6c 7046 696c e: isReady_lpFil │ │ │ │ +002654e0: 655f 7270 2c20 4e65 7874 3a20 6973 4f75 e_rp, Next: isOu │ │ │ │ +002654f0: 7470 7574 4669 6c65 5f6c 7046 696c 655f tputFile_lpFile_ │ │ │ │ +00265500: 7270 2c20 5072 6576 3a20 6973 4f70 656e rp, Prev: isOpen │ │ │ │ +00265510: 2c20 5570 3a20 7573 696e 6720 736f 636b , Up: using sock │ │ │ │ +00265520: 6574 730a 0a69 7352 6561 6479 2846 696c ets..isReady(Fil │ │ │ │ +00265530: 6529 202d 2d20 7768 6574 6865 7220 6120 e) -- whether a │ │ │ │ +00265540: 6669 6c65 2068 6173 2064 6174 6120 6176 file has data av │ │ │ │ +00265550: 6169 6c61 626c 6520 666f 7220 7265 6164 ailable for read │ │ │ │ +00265560: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ +00265570: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00265580: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00265590: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002655a0: 2a2a 0a0a 2020 2a20 4675 6e63 7469 6f6e **.. * Function │ │ │ │ +002655b0: 3a20 2a6e 6f74 6520 6973 5265 6164 793a : *note isReady: │ │ │ │ +002655c0: 2069 7352 6561 6479 5f6c 7046 696c 655f isReady_lpFile_ │ │ │ │ +002655d0: 7270 2c0a 2020 2a20 5573 6167 653a 200a rp,. * Usage: . │ │ │ │ +002655e0: 2020 2020 2020 2020 6973 5265 6164 7920 isReady │ │ │ │ +002655f0: 660a 2020 2a20 496e 7075 7473 3a0a 2020 f. * Inputs:. │ │ │ │ +00265600: 2020 2020 2a20 6120 2a6e 6f74 6520 6669 * a *note fi │ │ │ │ +00265610: 6c65 3a20 4669 6c65 2c0a 2020 2a20 4f75 le: File,. * Ou │ │ │ │ +00265620: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +00265630: 202a 6e6f 7465 2042 6f6f 6c65 616e 2076 *note Boolean v │ │ │ │ +00265640: 616c 7565 3a20 426f 6f6c 6561 6e2c 2c20 alue: Boolean,, │ │ │ │ +00265650: 7768 6574 6865 7220 7468 6520 696e 7075 whether the inpu │ │ │ │ +00265660: 7420 6669 6c65 2066 2068 6173 2064 6174 t file f has dat │ │ │ │ +00265670: 610a 2020 2020 2020 2020 6176 6169 6c61 a. availa │ │ │ │ +00265680: 626c 6520 666f 7220 7265 6164 696e 670a ble for reading. │ │ │ │ +00265690: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +002656a0: 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d ========..+----- │ │ │ │ +002656b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002656c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +002656d0: 2066 203d 206f 7065 6e49 6e4f 7574 2022 f = openInOut " │ │ │ │ +002656e0: 2163 6174 2220 2020 2020 7c0a 7c20 2020 !cat" |.| │ │ │ │ +002656f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265700: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00265710: 203d 2021 6361 7420 2020 2020 2020 2020 = !cat │ │ │ │ +00265720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00265730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00265750: 6f31 203a 2046 696c 6520 2020 2020 2020 o1 : File │ │ │ │ +00265760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00265770: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00265780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00265790: 0a7c 6932 203a 2069 7352 6561 6479 2066 .|i2 : isReady f │ │ │ │ +002657a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002657b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002657c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002657d0: 207c 0a7c 6f32 203d 2066 616c 7365 2020 |.|o2 = false │ │ │ │ +002657e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002657f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00265800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265810: 2d2d 2d2b 0a7c 6933 203a 2066 203c 3c20 ---+.|i3 : f << │ │ │ │ +00265820: 2268 6920 7468 6572 6522 203c 3c20 666c "hi there" << fl │ │ │ │ +00265830: 7573 683b 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d ush;|.+--------- │ │ │ │ +00265840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265850: 2d2d 2d2d 2d2b 0a7c 6934 203a 2069 7352 -----+.|i4 : isR │ │ │ │ +00265860: 6561 6479 2066 2020 2020 2020 2020 2020 eady f │ │ │ │ +00265870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00265880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265890: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -002658a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002658b0: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ -002658c0: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ -002658d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -002658e0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ -002658f0: 6e6f 7465 2069 7352 6561 6479 2846 696c note isReady(Fil │ │ │ │ -00265900: 6529 3a20 6973 5265 6164 795f 6c70 4669 e): isReady_lpFi │ │ │ │ -00265910: 6c65 5f72 702c 202d 2d20 7768 6574 6865 le_rp, -- whethe │ │ │ │ -00265920: 7220 6120 6669 6c65 2068 6173 2064 6174 r a file has dat │ │ │ │ -00265930: 610a 2020 2020 6176 6169 6c61 626c 6520 a. available │ │ │ │ -00265940: 666f 7220 7265 6164 696e 670a 2d2d 2d2d for reading.---- │ │ │ │ -00265950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265890: 2020 2020 2020 207c 0a7c 6f34 203d 2066 |.|o4 = f │ │ │ │ +002658a0: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +002658b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +002658c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002658d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ +002658e0: 2074 6f20 7573 6520 7468 6973 206d 6574 to use this met │ │ │ │ +002658f0: 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d hod:.=========== │ │ │ │ +00265900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00265910: 202a 202a 6e6f 7465 2069 7352 6561 6479 * *note isReady │ │ │ │ +00265920: 2846 696c 6529 3a20 6973 5265 6164 795f (File): isReady_ │ │ │ │ +00265930: 6c70 4669 6c65 5f72 702c 202d 2d20 7768 lpFile_rp, -- wh │ │ │ │ +00265940: 6574 6865 7220 6120 6669 6c65 2068 6173 ether a file has │ │ │ │ +00265950: 2064 6174 610a 2020 2020 6176 6169 6c61 data. availa │ │ │ │ +00265960: 626c 6520 666f 7220 7265 6164 696e 670a ble for reading. │ │ │ │ 00265970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00265980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -002659a0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -002659b0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -002659c0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -002659d0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -002659e0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -002659f0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00265a00: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ -00265a10: 2f6f 765f 6669 6c65 732e 6d32 3a33 3539 /ov_files.m2:359 │ │ │ │ -00265a20: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ -00265a30: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ -00265a40: 6f64 653a 2069 734f 7574 7075 7446 696c ode: isOutputFil │ │ │ │ -00265a50: 655f 6c70 4669 6c65 5f72 702c 204e 6578 e_lpFile_rp, Nex │ │ │ │ -00265a60: 743a 2069 7349 6e70 7574 4669 6c65 5f6c t: isInputFile_l │ │ │ │ -00265a70: 7046 696c 655f 7270 2c20 5072 6576 3a20 pFile_rp, Prev: │ │ │ │ -00265a80: 6973 5265 6164 795f 6c70 4669 6c65 5f72 isReady_lpFile_r │ │ │ │ -00265a90: 702c 2055 703a 2075 7369 6e67 2073 6f63 p, Up: using soc │ │ │ │ -00265aa0: 6b65 7473 0a0a 6973 4f75 7470 7574 4669 kets..isOutputFi │ │ │ │ -00265ab0: 6c65 2846 696c 6529 202d 2d20 7768 6574 le(File) -- whet │ │ │ │ -00265ac0: 6865 7220 6120 6669 6c65 2069 7320 6f70 her a file is op │ │ │ │ -00265ad0: 656e 2066 6f72 206f 7574 7075 740a 2a2a en for output.** │ │ │ │ -00265ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265b00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00265b10: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ -00265b20: 696f 6e3a 202a 6e6f 7465 2069 734f 7574 ion: *note isOut │ │ │ │ -00265b30: 7075 7446 696c 653a 2069 734f 7574 7075 putFile: isOutpu │ │ │ │ -00265b40: 7446 696c 655f 6c70 4669 6c65 5f72 702c tFile_lpFile_rp, │ │ │ │ -00265b50: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00265b60: 2020 2020 2069 734f 7574 7075 7446 696c isOutputFil │ │ │ │ -00265b70: 6520 660a 2020 2a20 496e 7075 7473 3a0a e f. * Inputs:. │ │ │ │ -00265b80: 2020 2020 2020 2a20 662c 2061 202a 6e6f * f, a *no │ │ │ │ -00265b90: 7465 2066 696c 653a 2046 696c 652c 0a20 te file: File,. │ │ │ │ -00265ba0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00265bb0: 2020 2a20 6120 2a6e 6f74 6520 426f 6f6c * a *note Bool │ │ │ │ -00265bc0: 6561 6e20 7661 6c75 653a 2042 6f6f 6c65 ean value: Boole │ │ │ │ -00265bd0: 616e 2c2c 2020 7768 6574 6865 7220 6620 an,, whether f │ │ │ │ -00265be0: 6973 2061 6e20 6f70 656e 206f 7574 7075 is an open outpu │ │ │ │ -00265bf0: 7420 6669 6c65 0a0a 4465 7363 7269 7074 t file..Descript │ │ │ │ -00265c00: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00265c10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00265c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265c30: 2d2d 2d2d 2b0a 7c69 3120 3a20 6620 3d20 ----+.|i1 : f = │ │ │ │ -00265c40: 2274 6573 742d 6669 6c65 2220 3c3c 2022 "test-file" << " │ │ │ │ -00265c50: 6869 2074 6865 7265 227c 0a7c 2020 2020 hi there"|.| │ │ │ │ -00265c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265c70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00265c80: 7c6f 3120 3d20 7465 7374 2d66 696c 6520 |o1 = test-file │ │ │ │ +00265990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002659a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002659b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +002659c0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +002659d0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +002659e0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +002659f0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00265a00: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00265a10: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00265a20: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +00265a30: 3244 6f63 2f6f 765f 6669 6c65 732e 6d32 2Doc/ov_files.m2 │ │ │ │ +00265a40: 3a33 3539 3a30 2e0a 1f0a 4669 6c65 3a20 :359:0....File: │ │ │ │ +00265a50: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +00265a60: 6f2c 204e 6f64 653a 2069 734f 7574 7075 o, Node: isOutpu │ │ │ │ +00265a70: 7446 696c 655f 6c70 4669 6c65 5f72 702c tFile_lpFile_rp, │ │ │ │ +00265a80: 204e 6578 743a 2069 7349 6e70 7574 4669 Next: isInputFi │ │ │ │ +00265a90: 6c65 5f6c 7046 696c 655f 7270 2c20 5072 le_lpFile_rp, Pr │ │ │ │ +00265aa0: 6576 3a20 6973 5265 6164 795f 6c70 4669 ev: isReady_lpFi │ │ │ │ +00265ab0: 6c65 5f72 702c 2055 703a 2075 7369 6e67 le_rp, Up: using │ │ │ │ +00265ac0: 2073 6f63 6b65 7473 0a0a 6973 4f75 7470 sockets..isOutp │ │ │ │ +00265ad0: 7574 4669 6c65 2846 696c 6529 202d 2d20 utFile(File) -- │ │ │ │ +00265ae0: 7768 6574 6865 7220 6120 6669 6c65 2069 whether a file i │ │ │ │ +00265af0: 7320 6f70 656e 2066 6f72 206f 7574 7075 s open for outpu │ │ │ │ +00265b00: 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a t.************** │ │ │ │ +00265b10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00265b20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00265b30: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ +00265b40: 756e 6374 696f 6e3a 202a 6e6f 7465 2069 unction: *note i │ │ │ │ +00265b50: 734f 7574 7075 7446 696c 653a 2069 734f sOutputFile: isO │ │ │ │ +00265b60: 7574 7075 7446 696c 655f 6c70 4669 6c65 utputFile_lpFile │ │ │ │ +00265b70: 5f72 702c 0a20 202a 2055 7361 6765 3a20 _rp,. * Usage: │ │ │ │ +00265b80: 0a20 2020 2020 2020 2069 734f 7574 7075 . isOutpu │ │ │ │ +00265b90: 7446 696c 6520 660a 2020 2a20 496e 7075 tFile f. * Inpu │ │ │ │ +00265ba0: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ +00265bb0: 202a 6e6f 7465 2066 696c 653a 2046 696c *note file: Fil │ │ │ │ +00265bc0: 652c 0a20 202a 204f 7574 7075 7473 3a0a e,. * Outputs:. │ │ │ │ +00265bd0: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +00265be0: 426f 6f6c 6561 6e20 7661 6c75 653a 2042 Boolean value: B │ │ │ │ +00265bf0: 6f6f 6c65 616e 2c2c 2020 7768 6574 6865 oolean,, whethe │ │ │ │ +00265c00: 7220 6620 6973 2061 6e20 6f70 656e 206f r f is an open o │ │ │ │ +00265c10: 7574 7075 7420 6669 6c65 0a0a 4465 7363 utput file..Desc │ │ │ │ +00265c20: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00265c30: 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ===..+---------- │ │ │ │ +00265c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265c50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00265c60: 6620 3d20 2274 6573 742d 6669 6c65 2220 f = "test-file" │ │ │ │ +00265c70: 3c3c 2022 6869 2074 6865 7265 227c 0a7c << "hi there"|.| │ │ │ │ +00265c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00265c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00265cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265cc0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -00265cd0: 4669 6c65 2020 2020 2020 2020 2020 2020 File │ │ │ │ -00265ce0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00265cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265d10: 2d2d 2b0a 7c69 3220 3a20 6973 4f75 7470 --+.|i2 : isOutp │ │ │ │ -00265d20: 7574 4669 6c65 2066 2020 2020 2020 2020 utFile f │ │ │ │ -00265d30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00265d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265d50: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00265d60: 3220 3d20 7472 7565 2020 2020 2020 2020 2 = true │ │ │ │ +00265ca0: 2020 7c0a 7c6f 3120 3d20 7465 7374 2d66 |.|o1 = test-f │ │ │ │ +00265cb0: 696c 6520 2020 2020 2020 2020 2020 2020 ile │ │ │ │ +00265cc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00265cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265ce0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00265cf0: 3120 3a20 4669 6c65 2020 2020 2020 2020 1 : File │ │ │ │ +00265d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265d10: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00265d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265d30: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 6973 ------+.|i2 : is │ │ │ │ +00265d40: 4f75 7470 7574 4669 6c65 2066 2020 2020 OutputFile f │ │ │ │ +00265d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00265d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00265d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265d80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00265d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265da0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 636c ------+.|i3 : cl │ │ │ │ -00265db0: 6f73 6520 6620 2020 2020 2020 2020 2020 ose f │ │ │ │ -00265dc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00265dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265df0: 7c0a 7c6f 3320 3d20 7465 7374 2d66 696c |.|o3 = test-fil │ │ │ │ -00265e00: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00265e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00265e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265e30: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00265e40: 3a20 4669 6c65 2020 2020 2020 2020 2020 : File │ │ │ │ -00265e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00265e60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00265e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265e80: 2d2d 2d2d 2b0a 7c69 3420 3a20 6973 4f75 ----+.|i4 : isOu │ │ │ │ -00265e90: 7470 7574 4669 6c65 2066 2020 2020 2020 tputFile f │ │ │ │ -00265ea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00265eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265ec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00265ed0: 7c6f 3420 3d20 6661 6c73 6520 2020 2020 |o4 = false │ │ │ │ +00265d80: 7c0a 7c6f 3220 3d20 7472 7565 2020 2020 |.|o2 = true │ │ │ │ +00265d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265da0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00265db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +00265dd0: 3a20 636c 6f73 6520 6620 2020 2020 2020 : close f │ │ │ │ +00265de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00265df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00265e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265e10: 2020 2020 7c0a 7c6f 3320 3d20 7465 7374 |.|o3 = test │ │ │ │ +00265e20: 2d66 696c 6520 2020 2020 2020 2020 2020 -file │ │ │ │ +00265e30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00265e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00265e60: 7c6f 3320 3a20 4669 6c65 2020 2020 2020 |o3 : File │ │ │ │ +00265e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265e80: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00265e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265ea0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +00265eb0: 6973 4f75 7470 7574 4669 6c65 2066 2020 isOutputFile f │ │ │ │ +00265ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00265ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00265ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265ef0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00265f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265f10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -00265f20: 6765 7420 2274 6573 742d 6669 6c65 2220 get "test-file" │ │ │ │ -00265f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00265f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00265f60: 2020 7c0a 7c6f 3520 3d20 6869 2074 6865 |.|o5 = hi the │ │ │ │ -00265f70: 7265 2020 2020 2020 2020 2020 2020 2020 re │ │ │ │ -00265f80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00265f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00265fb0: 3620 3a20 7265 6d6f 7665 4669 6c65 2022 6 : removeFile " │ │ │ │ -00265fc0: 7465 7374 2d66 696c 6522 2020 2020 2020 test-file" │ │ │ │ -00265fd0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00265fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00265ff0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ -00266000: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00266010: 2a6e 6f74 6520 6f70 656e 4f75 743a 206f *note openOut: o │ │ │ │ -00266020: 7065 6e4f 7574 5f6c 7053 7472 696e 675f penOut_lpString_ │ │ │ │ -00266030: 7270 2c20 2d2d 206f 7065 6e20 616e 206f rp, -- open an o │ │ │ │ -00266040: 7574 7075 7420 6669 6c65 0a20 202a 202a utput file. * * │ │ │ │ -00266050: 6e6f 7465 206f 7065 6e49 6e4f 7574 3a20 note openInOut: │ │ │ │ -00266060: 6f70 656e 496e 4f75 742c 202d 2d20 6f70 openInOut, -- op │ │ │ │ -00266070: 656e 2061 6e20 696e 7075 7420 6f75 7470 en an input outp │ │ │ │ -00266080: 7574 2066 696c 650a 2020 2a20 2a6e 6f74 ut file. * *not │ │ │ │ -00266090: 6520 636c 6f73 653a 2063 6c6f 7365 2c20 e close: close, │ │ │ │ -002660a0: 2d2d 2063 6c6f 7365 2061 2066 696c 650a -- close a file. │ │ │ │ -002660b0: 2020 2a20 2a6e 6f74 6520 6765 743a 2067 * *note get: g │ │ │ │ -002660c0: 6574 2c20 2d2d 2067 6574 2074 6865 2063 et, -- get the c │ │ │ │ -002660d0: 6f6e 7465 6e74 7320 6f66 2061 2066 696c ontents of a fil │ │ │ │ -002660e0: 650a 2020 2a20 2a6e 6f74 6520 7265 6d6f e. * *note remo │ │ │ │ -002660f0: 7665 4669 6c65 3a20 7265 6d6f 7665 4669 veFile: removeFi │ │ │ │ -00266100: 6c65 2c20 2d2d 2072 656d 6f76 6520 6120 le, -- remove a │ │ │ │ -00266110: 6669 6c65 0a0a 5761 7973 2074 6f20 7573 file..Ways to us │ │ │ │ -00266120: 6520 7468 6973 206d 6574 686f 643a 0a3d e this method:.= │ │ │ │ -00266130: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00266140: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00266150: 7465 2069 734f 7574 7075 7446 696c 6528 te isOutputFile( │ │ │ │ -00266160: 4669 6c65 293a 2069 734f 7574 7075 7446 File): isOutputF │ │ │ │ -00266170: 696c 655f 6c70 4669 6c65 5f72 702c 202d ile_lpFile_rp, - │ │ │ │ -00266180: 2d20 7768 6574 6865 7220 6120 6669 6c65 - whether a file │ │ │ │ -00266190: 2069 7320 6f70 656e 0a20 2020 2066 6f72 is open. for │ │ │ │ -002661a0: 206f 7574 7075 740a 2d2d 2d2d 2d2d 2d2d output.-------- │ │ │ │ -002661b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002661c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265ef0: 2020 7c0a 7c6f 3420 3d20 6661 6c73 6520 |.|o4 = false │ │ │ │ +00265f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265f10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00265f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00265f40: 3520 3a20 6765 7420 2274 6573 742d 6669 5 : get "test-fi │ │ │ │ +00265f50: 6c65 2220 2020 2020 2020 2020 2020 2020 le" │ │ │ │ +00265f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00265f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00265f80: 2020 2020 2020 7c0a 7c6f 3520 3d20 6869 |.|o5 = hi │ │ │ │ +00265f90: 2074 6865 7265 2020 2020 2020 2020 2020 there │ │ │ │ +00265fa0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00265fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00265fd0: 2b0a 7c69 3620 3a20 7265 6d6f 7665 4669 +.|i6 : removeFi │ │ │ │ +00265fe0: 6c65 2022 7465 7374 2d66 696c 6522 2020 le "test-file" │ │ │ │ +00265ff0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00266000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266010: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ +00266020: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +00266030: 2020 2a20 2a6e 6f74 6520 6f70 656e 4f75 * *note openOu │ │ │ │ +00266040: 743a 206f 7065 6e4f 7574 5f6c 7053 7472 t: openOut_lpStr │ │ │ │ +00266050: 696e 675f 7270 2c20 2d2d 206f 7065 6e20 ing_rp, -- open │ │ │ │ +00266060: 616e 206f 7574 7075 7420 6669 6c65 0a20 an output file. │ │ │ │ +00266070: 202a 202a 6e6f 7465 206f 7065 6e49 6e4f * *note openInO │ │ │ │ +00266080: 7574 3a20 6f70 656e 496e 4f75 742c 202d ut: openInOut, - │ │ │ │ +00266090: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ +002660a0: 6f75 7470 7574 2066 696c 650a 2020 2a20 output file. * │ │ │ │ +002660b0: 2a6e 6f74 6520 636c 6f73 653a 2063 6c6f *note close: clo │ │ │ │ +002660c0: 7365 2c20 2d2d 2063 6c6f 7365 2061 2066 se, -- close a f │ │ │ │ +002660d0: 696c 650a 2020 2a20 2a6e 6f74 6520 6765 ile. * *note ge │ │ │ │ +002660e0: 743a 2067 6574 2c20 2d2d 2067 6574 2074 t: get, -- get t │ │ │ │ +002660f0: 6865 2063 6f6e 7465 6e74 7320 6f66 2061 he contents of a │ │ │ │ +00266100: 2066 696c 650a 2020 2a20 2a6e 6f74 6520 file. * *note │ │ │ │ +00266110: 7265 6d6f 7665 4669 6c65 3a20 7265 6d6f removeFile: remo │ │ │ │ +00266120: 7665 4669 6c65 2c20 2d2d 2072 656d 6f76 veFile, -- remov │ │ │ │ +00266130: 6520 6120 6669 6c65 0a0a 5761 7973 2074 e a file..Ways t │ │ │ │ +00266140: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ +00266150: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ +00266160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00266170: 202a 6e6f 7465 2069 734f 7574 7075 7446 *note isOutputF │ │ │ │ +00266180: 696c 6528 4669 6c65 293a 2069 734f 7574 ile(File): isOut │ │ │ │ +00266190: 7075 7446 696c 655f 6c70 4669 6c65 5f72 putFile_lpFile_r │ │ │ │ +002661a0: 702c 202d 2d20 7768 6574 6865 7220 6120 p, -- whether a │ │ │ │ +002661b0: 6669 6c65 2069 7320 6f70 656e 0a20 2020 file is open. │ │ │ │ +002661c0: 2066 6f72 206f 7574 7075 740a 2d2d 2d2d for output.---- │ │ │ │ 002661d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002661e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002661f0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00266200: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00266210: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00266220: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00266230: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00266240: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00266250: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00266260: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -00266270: 7379 7374 656d 2e6d 323a 3538 393a 302e system.m2:589:0. │ │ │ │ -00266280: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -00266290: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -002662a0: 3a20 6973 496e 7075 7446 696c 655f 6c70 : isInputFile_lp │ │ │ │ -002662b0: 4669 6c65 5f72 702c 204e 6578 743a 2069 File_rp, Next: i │ │ │ │ -002662c0: 734c 6973 7465 6e65 725f 6c70 4669 6c65 sListener_lpFile │ │ │ │ -002662d0: 5f72 702c 2050 7265 763a 2069 734f 7574 _rp, Prev: isOut │ │ │ │ -002662e0: 7075 7446 696c 655f 6c70 4669 6c65 5f72 putFile_lpFile_r │ │ │ │ -002662f0: 702c 2055 703a 2075 7369 6e67 2073 6f63 p, Up: using soc │ │ │ │ -00266300: 6b65 7473 0a0a 6973 496e 7075 7446 696c kets..isInputFil │ │ │ │ -00266310: 6528 4669 6c65 2920 2d2d 2077 6865 7468 e(File) -- wheth │ │ │ │ -00266320: 6572 2061 2066 696c 6520 6973 206f 7065 er a file is ope │ │ │ │ -00266330: 6e20 666f 7220 696e 7075 740a 2a2a 2a2a n for input.**** │ │ │ │ -00266340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00266350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002661f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00266220: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00266230: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00266240: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00266250: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00266260: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00266270: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00266280: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +00266290: 2f6f 765f 7379 7374 656d 2e6d 323a 3538 /ov_system.m2:58 │ │ │ │ +002662a0: 393a 302e 0a1f 0a46 696c 653a 204d 6163 9:0....File: Mac │ │ │ │ +002662b0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +002662c0: 4e6f 6465 3a20 6973 496e 7075 7446 696c Node: isInputFil │ │ │ │ +002662d0: 655f 6c70 4669 6c65 5f72 702c 204e 6578 e_lpFile_rp, Nex │ │ │ │ +002662e0: 743a 2069 734c 6973 7465 6e65 725f 6c70 t: isListener_lp │ │ │ │ +002662f0: 4669 6c65 5f72 702c 2050 7265 763a 2069 File_rp, Prev: i │ │ │ │ +00266300: 734f 7574 7075 7446 696c 655f 6c70 4669 sOutputFile_lpFi │ │ │ │ +00266310: 6c65 5f72 702c 2055 703a 2075 7369 6e67 le_rp, Up: using │ │ │ │ +00266320: 2073 6f63 6b65 7473 0a0a 6973 496e 7075 sockets..isInpu │ │ │ │ +00266330: 7446 696c 6528 4669 6c65 2920 2d2d 2077 tFile(File) -- w │ │ │ │ +00266340: 6865 7468 6572 2061 2066 696c 6520 6973 hether a file is │ │ │ │ +00266350: 206f 7065 6e20 666f 7220 696e 7075 740a open for input. │ │ │ │ 00266360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00266370: 2a0a 0a20 202a 2046 756e 6374 696f 6e3a *.. * Function: │ │ │ │ -00266380: 202a 6e6f 7465 2069 7349 6e70 7574 4669 *note isInputFi │ │ │ │ -00266390: 6c65 3a20 6973 496e 7075 7446 696c 655f le: isInputFile_ │ │ │ │ -002663a0: 6c70 4669 6c65 5f72 702c 0a20 202a 2055 lpFile_rp,. * U │ │ │ │ -002663b0: 7361 6765 3a20 0a20 2020 2020 2020 2069 sage: . i │ │ │ │ -002663c0: 7349 6e70 7574 4669 6c65 2066 0a20 202a sInputFile f. * │ │ │ │ -002663d0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -002663e0: 2066 2c20 6120 2a6e 6f74 6520 6669 6c65 f, a *note file │ │ │ │ -002663f0: 3a20 4669 6c65 2c0a 2020 2a20 4f75 7470 : File,. * Outp │ │ │ │ -00266400: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -00266410: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -00266420: 7565 3a20 426f 6f6c 6561 6e2c 2c20 2077 ue: Boolean,, w │ │ │ │ -00266430: 6865 7468 6572 2066 2069 7320 616e 206f hether f is an o │ │ │ │ -00266440: 7065 6e20 696e 7075 7420 6669 6c65 0a0a pen input file.. │ │ │ │ -00266450: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00266460: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ -00266470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266490: 2d2b 0a7c 6931 203a 2022 7465 7374 2d66 -+.|i1 : "test-f │ │ │ │ -002664a0: 696c 6522 203c 3c20 2268 6920 7468 6572 ile" << "hi ther │ │ │ │ -002664b0: 6522 203c 3c20 636c 6f73 657c 0a7c 2020 e" << close|.| │ │ │ │ -002664c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002664d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002664e0: 2020 2020 207c 0a7c 6f31 203d 2074 6573 |.|o1 = tes │ │ │ │ -002664f0: 742d 6669 6c65 2020 2020 2020 2020 2020 t-file │ │ │ │ -00266500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00266510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00266370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00266380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00266390: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ +002663a0: 696f 6e3a 202a 6e6f 7465 2069 7349 6e70 ion: *note isInp │ │ │ │ +002663b0: 7574 4669 6c65 3a20 6973 496e 7075 7446 utFile: isInputF │ │ │ │ +002663c0: 696c 655f 6c70 4669 6c65 5f72 702c 0a20 ile_lpFile_rp,. │ │ │ │ +002663d0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +002663e0: 2020 2069 7349 6e70 7574 4669 6c65 2066 isInputFile f │ │ │ │ +002663f0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00266400: 2020 202a 2066 2c20 6120 2a6e 6f74 6520 * f, a *note │ │ │ │ +00266410: 6669 6c65 3a20 4669 6c65 2c0a 2020 2a20 file: File,. * │ │ │ │ +00266420: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00266430: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ +00266440: 2076 616c 7565 3a20 426f 6f6c 6561 6e2c value: Boolean, │ │ │ │ +00266450: 2c20 2077 6865 7468 6572 2066 2069 7320 , whether f is │ │ │ │ +00266460: 616e 206f 7065 6e20 696e 7075 7420 6669 an open input fi │ │ │ │ +00266470: 6c65 0a0a 4465 7363 7269 7074 696f 6e0a le..Description. │ │ │ │ +00266480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ +00266490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002664a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002664b0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2022 7465 -----+.|i1 : "te │ │ │ │ +002664c0: 7374 2d66 696c 6522 203c 3c20 2268 6920 st-file" << "hi │ │ │ │ +002664d0: 7468 6572 6522 203c 3c20 636c 6f73 657c there" << close| │ │ │ │ +002664e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002664f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266500: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +00266510: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ 00266520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266530: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00266540: 2046 696c 6520 2020 2020 2020 2020 2020 File │ │ │ │ -00266550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266560: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00266570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00266590: 6932 203a 2069 7349 6e70 7574 4669 6c65 i2 : isInputFile │ │ │ │ -002665a0: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ -002665b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -002665c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002665d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002665e0: 207c 0a7c 6f32 203d 2066 616c 7365 2020 |.|o2 = false │ │ │ │ +00266530: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00266540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00266560: 6f31 203a 2046 696c 6520 2020 2020 2020 o1 : File │ │ │ │ +00266570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266580: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00266590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002665a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002665b0: 2d2b 0a7c 6932 203a 2069 7349 6e70 7574 -+.|i2 : isInput │ │ │ │ +002665c0: 4669 6c65 206f 6f20 2020 2020 2020 2020 File oo │ │ │ │ +002665d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +002665e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002665f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266600: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00266610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266630: 2d2d 2d2d 2d2b 0a7c 6933 203a 2066 203d -----+.|i3 : f = │ │ │ │ -00266640: 206f 7065 6e49 6e20 2274 6573 742d 6669 openIn "test-fi │ │ │ │ -00266650: 6c65 2220 2020 2020 2020 2020 2020 207c le" | │ │ │ │ -00266660: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00266670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266680: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -00266690: 2074 6573 742d 6669 6c65 2020 2020 2020 test-file │ │ │ │ -002666a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002666b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00266600: 2020 2020 207c 0a7c 6f32 203d 2066 616c |.|o2 = fal │ │ │ │ +00266610: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ +00266620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00266630: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00266640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266650: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00266660: 2066 203d 206f 7065 6e49 6e20 2274 6573 f = openIn "tes │ │ │ │ +00266670: 742d 6669 6c65 2220 2020 2020 2020 2020 t-file" │ │ │ │ +00266680: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00266690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002666a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002666b0: 6f33 203d 2074 6573 742d 6669 6c65 2020 o3 = test-file │ │ │ │ 002666c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002666d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002666e0: 6f33 203a 2046 696c 6520 2020 2020 2020 o3 : File │ │ │ │ +002666d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +002666e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002666f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266700: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00266710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266730: 2d2b 0a7c 6934 203a 2069 7349 6e70 7574 -+.|i4 : isInput │ │ │ │ -00266740: 4669 6c65 2066 2020 2020 2020 2020 2020 File f │ │ │ │ -00266750: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00266760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266780: 2020 2020 207c 0a7c 6f34 203d 2074 7275 |.|o4 = tru │ │ │ │ -00266790: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -002667a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -002667b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -002667c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002667d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -002667e0: 2069 734f 7065 6e20 6620 2020 2020 2020 isOpen f │ │ │ │ -002667f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00266700: 207c 0a7c 6f33 203a 2046 696c 6520 2020 |.|o3 : File │ │ │ │ +00266710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266720: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00266730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266750: 2d2d 2d2d 2d2b 0a7c 6934 203a 2069 7349 -----+.|i4 : isI │ │ │ │ +00266760: 6e70 7574 4669 6c65 2066 2020 2020 2020 nputFile f │ │ │ │ +00266770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00266780: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00266790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002667a0: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +002667b0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +002667c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002667d0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +002667e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002667f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00266800: 6935 203a 2069 734f 7065 6e20 6620 2020 i5 : isOpen f │ │ │ │ 00266810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00266830: 6f35 203d 2074 7275 6520 2020 2020 2020 o5 = true │ │ │ │ +00266820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00266830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00266840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266850: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -00266860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266880: 2d2b 0a7c 6936 203a 2067 6574 2066 2020 -+.|i6 : get f │ │ │ │ -00266890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002668a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -002668b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002668c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002668d0: 2020 2020 207c 0a7c 6f36 203d 2068 6920 |.|o6 = hi │ │ │ │ -002668e0: 7468 6572 6520 2020 2020 2020 2020 2020 there │ │ │ │ -002668f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00266900: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00266910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266920: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ -00266930: 2069 7349 6e70 7574 4669 6c65 2066 2020 isInputFile f │ │ │ │ -00266940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00266960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00266980: 6f37 203d 2066 616c 7365 2020 2020 2020 o7 = false │ │ │ │ +00266850: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ +00266860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266870: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00266880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002668a0: 2d2d 2d2d 2d2b 0a7c 6936 203a 2067 6574 -----+.|i6 : get │ │ │ │ +002668b0: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ +002668c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002668d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002668e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002668f0: 2020 2020 2020 2020 207c 0a7c 6f36 203d |.|o6 = │ │ │ │ +00266900: 2068 6920 7468 6572 6520 2020 2020 2020 hi there │ │ │ │ +00266910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266920: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00266930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00266950: 6937 203a 2069 7349 6e70 7574 4669 6c65 i7 : isInputFile │ │ │ │ +00266960: 2066 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ +00266970: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00266980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00266990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002669a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -002669b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002669c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002669d0: 2d2b 0a7c 6938 203a 2069 734f 7065 6e20 -+.|i8 : isOpen │ │ │ │ -002669e0: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ -002669f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00266a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00266a20: 2020 2020 207c 0a7c 6f38 203d 2066 616c |.|o8 = fal │ │ │ │ -00266a30: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ -00266a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00266a50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00266a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266a70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a ---------+.|i9 : │ │ │ │ -00266a80: 2072 656d 6f76 6546 696c 6520 2274 6573 removeFile "tes │ │ │ │ -00266a90: 742d 6669 6c65 2220 2020 2020 2020 2020 t-file" │ │ │ │ -00266aa0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00266ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00266ad0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -00266ae0: 3d0a 0a20 202a 202a 6e6f 7465 206f 7065 =.. * *note ope │ │ │ │ -00266af0: 6e49 6e3a 206f 7065 6e49 6e5f 6c70 5374 nIn: openIn_lpSt │ │ │ │ -00266b00: 7269 6e67 5f72 702c 202d 2d20 6f70 656e ring_rp, -- open │ │ │ │ -00266b10: 2061 6e20 696e 7075 7420 6669 6c65 0a20 an input file. │ │ │ │ -00266b20: 202a 202a 6e6f 7465 206f 7065 6e49 6e4f * *note openInO │ │ │ │ -00266b30: 7574 3a20 6f70 656e 496e 4f75 742c 202d ut: openInOut, - │ │ │ │ -00266b40: 2d20 6f70 656e 2061 6e20 696e 7075 7420 - open an input │ │ │ │ -00266b50: 6f75 7470 7574 2066 696c 650a 2020 2a20 output file. * │ │ │ │ -00266b60: 2a6e 6f74 6520 6765 743a 2067 6574 2c20 *note get: get, │ │ │ │ -00266b70: 2d2d 2067 6574 2074 6865 2063 6f6e 7465 -- get the conte │ │ │ │ -00266b80: 6e74 7320 6f66 2061 2066 696c 650a 2020 nts of a file. │ │ │ │ -00266b90: 2a20 2a6e 6f74 6520 6973 4f70 656e 3a20 * *note isOpen: │ │ │ │ -00266ba0: 6973 4f70 656e 2c20 2d2d 2077 6865 7468 isOpen, -- wheth │ │ │ │ -00266bb0: 6572 2061 2066 696c 6520 6f72 2064 6174 er a file or dat │ │ │ │ -00266bc0: 6162 6173 6520 6973 206f 7065 6e0a 2020 abase is open. │ │ │ │ -00266bd0: 2a20 2a6e 6f74 6520 636c 6f73 653a 2063 * *note close: c │ │ │ │ -00266be0: 6c6f 7365 2c20 2d2d 2063 6c6f 7365 2061 lose, -- close a │ │ │ │ -00266bf0: 2066 696c 650a 0a57 6179 7320 746f 2075 file..Ways to u │ │ │ │ -00266c00: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ -00266c10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00266c20: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00266c30: 6f74 6520 6973 496e 7075 7446 696c 6528 ote isInputFile( │ │ │ │ -00266c40: 4669 6c65 293a 2069 7349 6e70 7574 4669 File): isInputFi │ │ │ │ -00266c50: 6c65 5f6c 7046 696c 655f 7270 2c20 2d2d le_lpFile_rp, -- │ │ │ │ -00266c60: 2077 6865 7468 6572 2061 2066 696c 6520 whether a file │ │ │ │ -00266c70: 6973 206f 7065 6e0a 2020 2020 666f 7220 is open. for │ │ │ │ -00266c80: 696e 7075 740a 2d2d 2d2d 2d2d 2d2d 2d2d input.---------- │ │ │ │ -00266c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002669a0: 207c 0a7c 6f37 203d 2066 616c 7365 2020 |.|o7 = false │ │ │ │ +002669b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002669c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +002669d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002669e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002669f0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2069 734f -----+.|i8 : isO │ │ │ │ +00266a00: 7065 6e20 6620 2020 2020 2020 2020 2020 pen f │ │ │ │ +00266a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00266a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00266a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266a40: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ +00266a50: 2066 616c 7365 2020 2020 2020 2020 2020 false │ │ │ │ +00266a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00266a70: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00266a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00266aa0: 6939 203a 2072 656d 6f76 6546 696c 6520 i9 : removeFile │ │ │ │ +00266ab0: 2274 6573 742d 6669 6c65 2220 2020 2020 "test-file" │ │ │ │ +00266ac0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00266ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266af0: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ +00266b00: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00266b10: 206f 7065 6e49 6e3a 206f 7065 6e49 6e5f openIn: openIn_ │ │ │ │ +00266b20: 6c70 5374 7269 6e67 5f72 702c 202d 2d20 lpString_rp, -- │ │ │ │ +00266b30: 6f70 656e 2061 6e20 696e 7075 7420 6669 open an input fi │ │ │ │ +00266b40: 6c65 0a20 202a 202a 6e6f 7465 206f 7065 le. * *note ope │ │ │ │ +00266b50: 6e49 6e4f 7574 3a20 6f70 656e 496e 4f75 nInOut: openInOu │ │ │ │ +00266b60: 742c 202d 2d20 6f70 656e 2061 6e20 696e t, -- open an in │ │ │ │ +00266b70: 7075 7420 6f75 7470 7574 2066 696c 650a put output file. │ │ │ │ +00266b80: 2020 2a20 2a6e 6f74 6520 6765 743a 2067 * *note get: g │ │ │ │ +00266b90: 6574 2c20 2d2d 2067 6574 2074 6865 2063 et, -- get the c │ │ │ │ +00266ba0: 6f6e 7465 6e74 7320 6f66 2061 2066 696c ontents of a fil │ │ │ │ +00266bb0: 650a 2020 2a20 2a6e 6f74 6520 6973 4f70 e. * *note isOp │ │ │ │ +00266bc0: 656e 3a20 6973 4f70 656e 2c20 2d2d 2077 en: isOpen, -- w │ │ │ │ +00266bd0: 6865 7468 6572 2061 2066 696c 6520 6f72 hether a file or │ │ │ │ +00266be0: 2064 6174 6162 6173 6520 6973 206f 7065 database is ope │ │ │ │ +00266bf0: 6e0a 2020 2a20 2a6e 6f74 6520 636c 6f73 n. * *note clos │ │ │ │ +00266c00: 653a 2063 6c6f 7365 2c20 2d2d 2063 6c6f e: close, -- clo │ │ │ │ +00266c10: 7365 2061 2066 696c 650a 0a57 6179 7320 se a file..Ways │ │ │ │ +00266c20: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ +00266c30: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ +00266c40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00266c50: 2a20 2a6e 6f74 6520 6973 496e 7075 7446 * *note isInputF │ │ │ │ +00266c60: 696c 6528 4669 6c65 293a 2069 7349 6e70 ile(File): isInp │ │ │ │ +00266c70: 7574 4669 6c65 5f6c 7046 696c 655f 7270 utFile_lpFile_rp │ │ │ │ +00266c80: 2c20 2d2d 2077 6865 7468 6572 2061 2066 , -- whether a f │ │ │ │ +00266c90: 696c 6520 6973 206f 7065 6e0a 2020 2020 ile is open. │ │ │ │ +00266ca0: 666f 7220 696e 7075 740a 2d2d 2d2d 2d2d for input.------ │ │ │ │ 00266cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00266cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00266cd0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00266ce0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00266cf0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00266d00: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00266d10: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00266d20: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00266d30: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00266d40: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -00266d50: 7374 656d 2e6d 323a 3537 303a 302e 0a1f stem.m2:570:0... │ │ │ │ -00266d60: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -00266d70: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -00266d80: 6973 4c69 7374 656e 6572 5f6c 7046 696c isListener_lpFil │ │ │ │ -00266d90: 655f 7270 2c20 4e65 7874 3a20 6f70 656e e_rp, Next: open │ │ │ │ -00266da0: 4669 6c65 732c 2050 7265 763a 2069 7349 Files, Prev: isI │ │ │ │ -00266db0: 6e70 7574 4669 6c65 5f6c 7046 696c 655f nputFile_lpFile_ │ │ │ │ -00266dc0: 7270 2c20 5570 3a20 7573 696e 6720 736f rp, Up: using so │ │ │ │ -00266dd0: 636b 6574 730a 0a69 734c 6973 7465 6e65 ckets..isListene │ │ │ │ -00266de0: 7228 4669 6c65 2920 2d2d 2077 6865 7468 r(File) -- wheth │ │ │ │ -00266df0: 6572 2061 2066 696c 6520 6973 206f 7065 er a file is ope │ │ │ │ -00266e00: 6e20 666f 7220 6c69 7374 656e 696e 670a n for listening. │ │ │ │ -00266e10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00266e20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00266e30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00266e40: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -00266e50: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 6973 nction: *note is │ │ │ │ -00266e60: 4c69 7374 656e 6572 3a20 6973 4c69 7374 Listener: isList │ │ │ │ -00266e70: 656e 6572 5f6c 7046 696c 655f 7270 2c0a ener_lpFile_rp,. │ │ │ │ -00266e80: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00266e90: 2020 2020 6973 4c69 7374 656e 6572 2066 isListener f │ │ │ │ -00266ea0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -00266eb0: 2020 202a 2066 2c20 6120 2a6e 6f74 6520 * f, a *note │ │ │ │ -00266ec0: 6669 6c65 3a20 4669 6c65 2c0a 2020 2a20 file: File,. * │ │ │ │ -00266ed0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00266ee0: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ -00266ef0: 2076 616c 7565 3a20 426f 6f6c 6561 6e2c value: Boolean, │ │ │ │ -00266f00: 2c20 2077 6865 7468 6572 2066 2069 7320 , whether f is │ │ │ │ -00266f10: 616e 206f 7065 6e20 6c69 7374 656e 6572 an open listener │ │ │ │ -00266f20: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00266f30: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206f ===.. * *note o │ │ │ │ -00266f40: 7065 6e4c 6973 7465 6e65 723a 206f 7065 penListener: ope │ │ │ │ -00266f50: 6e4c 6973 7465 6e65 725f 6c70 5374 7269 nListener_lpStri │ │ │ │ -00266f60: 6e67 5f72 702c 202d 2d20 6f70 656e 2061 ng_rp, -- open a │ │ │ │ -00266f70: 2070 6f72 7420 666f 7220 6c69 7374 656e port for listen │ │ │ │ -00266f80: 696e 670a 0a57 6179 7320 746f 2075 7365 ing..Ways to use │ │ │ │ -00266f90: 2074 6869 7320 6d65 7468 6f64 3a0a 3d3d this method:.== │ │ │ │ -00266fa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00266fb0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00266fc0: 6520 6973 4c69 7374 656e 6572 2846 696c e isListener(Fil │ │ │ │ -00266fd0: 6529 3a20 6973 4c69 7374 656e 6572 5f6c e): isListener_l │ │ │ │ -00266fe0: 7046 696c 655f 7270 2c20 2d2d 2077 6865 pFile_rp, -- whe │ │ │ │ -00266ff0: 7468 6572 2061 2066 696c 6520 6973 206f ther a file is o │ │ │ │ -00267000: 7065 6e20 666f 720a 2020 2020 6c69 7374 pen for. list │ │ │ │ -00267010: 656e 696e 670a 2d2d 2d2d 2d2d 2d2d 2d2d ening.---------- │ │ │ │ -00267020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00266cf0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00266d00: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00266d10: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00266d20: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00266d30: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00266d40: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00266d50: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00266d60: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00266d70: 765f 7379 7374 656d 2e6d 323a 3537 303a v_system.m2:570: │ │ │ │ +00266d80: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +00266d90: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +00266da0: 6465 3a20 6973 4c69 7374 656e 6572 5f6c de: isListener_l │ │ │ │ +00266db0: 7046 696c 655f 7270 2c20 4e65 7874 3a20 pFile_rp, Next: │ │ │ │ +00266dc0: 6f70 656e 4669 6c65 732c 2050 7265 763a openFiles, Prev: │ │ │ │ +00266dd0: 2069 7349 6e70 7574 4669 6c65 5f6c 7046 isInputFile_lpF │ │ │ │ +00266de0: 696c 655f 7270 2c20 5570 3a20 7573 696e ile_rp, Up: usin │ │ │ │ +00266df0: 6720 736f 636b 6574 730a 0a69 734c 6973 g sockets..isLis │ │ │ │ +00266e00: 7465 6e65 7228 4669 6c65 2920 2d2d 2077 tener(File) -- w │ │ │ │ +00266e10: 6865 7468 6572 2061 2066 696c 6520 6973 hether a file is │ │ │ │ +00266e20: 206f 7065 6e20 666f 7220 6c69 7374 656e open for listen │ │ │ │ +00266e30: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ +00266e40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00266e50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00266e60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00266e70: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ +00266e80: 6520 6973 4c69 7374 656e 6572 3a20 6973 e isListener: is │ │ │ │ +00266e90: 4c69 7374 656e 6572 5f6c 7046 696c 655f Listener_lpFile_ │ │ │ │ +00266ea0: 7270 2c0a 2020 2a20 5573 6167 653a 200a rp,. * Usage: . │ │ │ │ +00266eb0: 2020 2020 2020 2020 6973 4c69 7374 656e isListen │ │ │ │ +00266ec0: 6572 2066 0a20 202a 2049 6e70 7574 733a er f. * Inputs: │ │ │ │ +00266ed0: 0a20 2020 2020 202a 2066 2c20 6120 2a6e . * f, a *n │ │ │ │ +00266ee0: 6f74 6520 6669 6c65 3a20 4669 6c65 2c0a ote file: File,. │ │ │ │ +00266ef0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00266f00: 2020 202a 2061 202a 6e6f 7465 2042 6f6f * a *note Boo │ │ │ │ +00266f10: 6c65 616e 2076 616c 7565 3a20 426f 6f6c lean value: Bool │ │ │ │ +00266f20: 6561 6e2c 2c20 2077 6865 7468 6572 2066 ean,, whether f │ │ │ │ +00266f30: 2069 7320 616e 206f 7065 6e20 6c69 7374 is an open list │ │ │ │ +00266f40: 656e 6572 0a0a 5365 6520 616c 736f 0a3d ener..See also.= │ │ │ │ +00266f50: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +00266f60: 7465 206f 7065 6e4c 6973 7465 6e65 723a te openListener: │ │ │ │ +00266f70: 206f 7065 6e4c 6973 7465 6e65 725f 6c70 openListener_lp │ │ │ │ +00266f80: 5374 7269 6e67 5f72 702c 202d 2d20 6f70 String_rp, -- op │ │ │ │ +00266f90: 656e 2061 2070 6f72 7420 666f 7220 6c69 en a port for li │ │ │ │ +00266fa0: 7374 656e 696e 670a 0a57 6179 7320 746f stening..Ways to │ │ │ │ +00266fb0: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ +00266fc0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00266fd0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00266fe0: 2a6e 6f74 6520 6973 4c69 7374 656e 6572 *note isListener │ │ │ │ +00266ff0: 2846 696c 6529 3a20 6973 4c69 7374 656e (File): isListen │ │ │ │ +00267000: 6572 5f6c 7046 696c 655f 7270 2c20 2d2d er_lpFile_rp, -- │ │ │ │ +00267010: 2077 6865 7468 6572 2061 2066 696c 6520 whether a file │ │ │ │ +00267020: 6973 206f 7065 6e20 666f 720a 2020 2020 is open for. │ │ │ │ +00267030: 6c69 7374 656e 696e 670a 2d2d 2d2d 2d2d listening.------ │ │ │ │ 00267040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267060: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00267070: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00267080: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00267090: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -002670a0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -002670b0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -002670c0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -002670d0: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -002670e0: 7374 656d 2e6d 323a 3632 323a 302e 0a1f stem.m2:622:0... │ │ │ │ -002670f0: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -00267100: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -00267110: 6f70 656e 4669 6c65 732c 204e 6578 743a openFiles, Next: │ │ │ │ -00267120: 2063 6f6e 6e65 6374 696f 6e43 6f75 6e74 connectionCount │ │ │ │ -00267130: 2c20 5072 6576 3a20 6973 4c69 7374 656e , Prev: isListen │ │ │ │ -00267140: 6572 5f6c 7046 696c 655f 7270 2c20 5570 er_lpFile_rp, Up │ │ │ │ -00267150: 3a20 7573 696e 6720 736f 636b 6574 730a : using sockets. │ │ │ │ -00267160: 0a6f 7065 6e46 696c 6573 202d 2d20 6c69 .openFiles -- li │ │ │ │ -00267170: 7374 2074 6865 206f 7065 6e20 6669 6c65 st the open file │ │ │ │ -00267180: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ -00267190: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002671a0: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -002671b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a6f 7065 ===========..ope │ │ │ │ -002671c0: 6e46 696c 6573 2829 2070 726f 6475 6365 nFiles() produce │ │ │ │ -002671d0: 7320 6120 6c69 7374 206f 6620 616c 6c20 s a list of all │ │ │ │ -002671e0: 6375 7272 656e 746c 7920 6f70 656e 2066 currently open f │ │ │ │ -002671f0: 696c 6573 2e0a 0a0a 5365 6520 616c 736f iles....See also │ │ │ │ -00267200: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00267210: 6e6f 7465 2046 696c 653a 2046 696c 652c note File: File, │ │ │ │ -00267220: 202d 2d20 7468 6520 636c 6173 7320 6f66 -- the class of │ │ │ │ -00267230: 2061 6c6c 2066 696c 6573 0a0a 466f 7220 all files..For │ │ │ │ -00267240: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00267250: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00267260: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00267270: 6f74 6520 6f70 656e 4669 6c65 733a 206f ote openFiles: o │ │ │ │ -00267280: 7065 6e46 696c 6573 2c20 6973 2061 202a penFiles, is a * │ │ │ │ -00267290: 6e6f 7465 2063 6f6d 7069 6c65 6420 6675 note compiled fu │ │ │ │ -002672a0: 6e63 7469 6f6e 3a0a 436f 6d70 696c 6564 nction:.Compiled │ │ │ │ -002672b0: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ -002672c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002672d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267080: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00267090: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +002670a0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +002670b0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +002670c0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +002670d0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +002670e0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +002670f0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00267100: 765f 7379 7374 656d 2e6d 323a 3632 323a v_system.m2:622: │ │ │ │ +00267110: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +00267120: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +00267130: 6465 3a20 6f70 656e 4669 6c65 732c 204e de: openFiles, N │ │ │ │ +00267140: 6578 743a 2063 6f6e 6e65 6374 696f 6e43 ext: connectionC │ │ │ │ +00267150: 6f75 6e74 2c20 5072 6576 3a20 6973 4c69 ount, Prev: isLi │ │ │ │ +00267160: 7374 656e 6572 5f6c 7046 696c 655f 7270 stener_lpFile_rp │ │ │ │ +00267170: 2c20 5570 3a20 7573 696e 6720 736f 636b , Up: using sock │ │ │ │ +00267180: 6574 730a 0a6f 7065 6e46 696c 6573 202d ets..openFiles - │ │ │ │ +00267190: 2d20 6c69 7374 2074 6865 206f 7065 6e20 - list the open │ │ │ │ +002671a0: 6669 6c65 730a 2a2a 2a2a 2a2a 2a2a 2a2a files.********** │ │ │ │ +002671b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002671c0: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +002671d0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +002671e0: 0a6f 7065 6e46 696c 6573 2829 2070 726f .openFiles() pro │ │ │ │ +002671f0: 6475 6365 7320 6120 6c69 7374 206f 6620 duces a list of │ │ │ │ +00267200: 616c 6c20 6375 7272 656e 746c 7920 6f70 all currently op │ │ │ │ +00267210: 656e 2066 696c 6573 2e0a 0a0a 5365 6520 en files....See │ │ │ │ +00267220: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +00267230: 202a 202a 6e6f 7465 2046 696c 653a 2046 * *note File: F │ │ │ │ +00267240: 696c 652c 202d 2d20 7468 6520 636c 6173 ile, -- the clas │ │ │ │ +00267250: 7320 6f66 2061 6c6c 2066 696c 6573 0a0a s of all files.. │ │ │ │ +00267260: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00267270: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00267280: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00267290: 7420 2a6e 6f74 6520 6f70 656e 4669 6c65 t *note openFile │ │ │ │ +002672a0: 733a 206f 7065 6e46 696c 6573 2c20 6973 s: openFiles, is │ │ │ │ +002672b0: 2061 202a 6e6f 7465 2063 6f6d 7069 6c65 a *note compile │ │ │ │ +002672c0: 6420 6675 6e63 7469 6f6e 3a0a 436f 6d70 d function:.Comp │ │ │ │ +002672d0: 696c 6564 4675 6e63 7469 6f6e 2c2e 0a0a iledFunction,... │ │ │ │ 002672e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002672f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00267310: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00267320: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00267330: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00267340: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00267350: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00267360: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00267370: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ -00267380: 2f6f 765f 7379 7374 656d 2e6d 323a 3336 /ov_system.m2:36 │ │ │ │ -00267390: 383a 302e 0a1f 0a46 696c 653a 204d 6163 8:0....File: Mac │ │ │ │ -002673a0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ -002673b0: 4e6f 6465 3a20 636f 6e6e 6563 7469 6f6e Node: connection │ │ │ │ -002673c0: 436f 756e 742c 2050 7265 763a 206f 7065 Count, Prev: ope │ │ │ │ -002673d0: 6e46 696c 6573 2c20 5570 3a20 7573 696e nFiles, Up: usin │ │ │ │ -002673e0: 6720 736f 636b 6574 730a 0a63 6f6e 6e65 g sockets..conne │ │ │ │ -002673f0: 6374 696f 6e43 6f75 6e74 202d 2d20 7468 ctionCount -- th │ │ │ │ -00267400: 6520 6e75 6d62 6572 206f 6620 636f 6e6e e number of conn │ │ │ │ -00267410: 6563 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a ections.******** │ │ │ │ -00267420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00267430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00267440: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ -00267450: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a63 n.===========..c │ │ │ │ -00267460: 6f6e 6e65 6374 696f 6e43 6f75 6e74 2066 onnectionCount f │ │ │ │ -00267470: 202d 2d20 7265 7475 726e 7320 7468 6520 -- returns the │ │ │ │ -00267480: 6e75 6d62 6572 206f 6620 636f 6e6e 6563 number of connec │ │ │ │ -00267490: 7469 6f6e 7320 6163 6365 7074 6564 2062 tions accepted b │ │ │ │ -002674a0: 7920 7468 6520 6c69 7374 656e 6572 0a66 y the listener.f │ │ │ │ -002674b0: 2073 6f20 6661 722e 0a0a 466f 7220 7468 so far...For th │ │ │ │ -002674c0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -002674d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -002674e0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -002674f0: 6520 636f 6e6e 6563 7469 6f6e 436f 756e e connectionCoun │ │ │ │ -00267500: 743a 2063 6f6e 6e65 6374 696f 6e43 6f75 t: connectionCou │ │ │ │ -00267510: 6e74 2c20 6973 2061 202a 6e6f 7465 2063 nt, is a *note c │ │ │ │ -00267520: 6f6d 7069 6c65 640a 6675 6e63 7469 6f6e ompiled.function │ │ │ │ -00267530: 3a20 436f 6d70 696c 6564 4675 6e63 7469 : CompiledFuncti │ │ │ │ -00267540: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -00267550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00267330: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00267340: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00267350: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00267360: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00267370: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00267380: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00267390: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +002673a0: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ +002673b0: 323a 3336 383a 302e 0a1f 0a46 696c 653a 2:368:0....File: │ │ │ │ +002673c0: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +002673d0: 666f 2c20 4e6f 6465 3a20 636f 6e6e 6563 fo, Node: connec │ │ │ │ +002673e0: 7469 6f6e 436f 756e 742c 2050 7265 763a tionCount, Prev: │ │ │ │ +002673f0: 206f 7065 6e46 696c 6573 2c20 5570 3a20 openFiles, Up: │ │ │ │ +00267400: 7573 696e 6720 736f 636b 6574 730a 0a63 using sockets..c │ │ │ │ +00267410: 6f6e 6e65 6374 696f 6e43 6f75 6e74 202d onnectionCount - │ │ │ │ +00267420: 2d20 7468 6520 6e75 6d62 6572 206f 6620 - the number of │ │ │ │ +00267430: 636f 6e6e 6563 7469 6f6e 730a 2a2a 2a2a connections.**** │ │ │ │ +00267440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00267450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00267460: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +00267470: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +00267480: 3d0a 0a63 6f6e 6e65 6374 696f 6e43 6f75 =..connectionCou │ │ │ │ +00267490: 6e74 2066 202d 2d20 7265 7475 726e 7320 nt f -- returns │ │ │ │ +002674a0: 7468 6520 6e75 6d62 6572 206f 6620 636f the number of co │ │ │ │ +002674b0: 6e6e 6563 7469 6f6e 7320 6163 6365 7074 nnections accept │ │ │ │ +002674c0: 6564 2062 7920 7468 6520 6c69 7374 656e ed by the listen │ │ │ │ +002674d0: 6572 0a66 2073 6f20 6661 722e 0a0a 466f er.f so far...Fo │ │ │ │ +002674e0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +002674f0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00267500: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00267510: 2a6e 6f74 6520 636f 6e6e 6563 7469 6f6e *note connection │ │ │ │ +00267520: 436f 756e 743a 2063 6f6e 6e65 6374 696f Count: connectio │ │ │ │ +00267530: 6e43 6f75 6e74 2c20 6973 2061 202a 6e6f nCount, is a *no │ │ │ │ +00267540: 7465 2063 6f6d 7069 6c65 640a 6675 6e63 te compiled.func │ │ │ │ +00267550: 7469 6f6e 3a20 436f 6d70 696c 6564 4675 tion: CompiledFu │ │ │ │ +00267560: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ 00267570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267590: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -002675a0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -002675b0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -002675c0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -002675d0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -002675e0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -002675f0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00267600: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -00267610: 7374 656d 2e6d 323a 3130 3339 3a30 2e0a stem.m2:1039:0.. │ │ │ │ -00267620: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -00267630: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -00267640: 206e 6f74 6966 792c 204e 6578 743a 2061 notify, Next: a │ │ │ │ -00267650: 7574 6f6c 6f61 642c 2050 7265 763a 2075 utoload, Prev: u │ │ │ │ -00267660: 7369 6e67 2073 6f63 6b65 7473 2c20 5570 sing sockets, Up │ │ │ │ -00267670: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ -00267680: 6965 730a 0a6e 6f74 6966 7920 2d2d 2077 ies..notify -- w │ │ │ │ -00267690: 6865 7468 6572 2074 6f20 6e6f 7469 6679 hether to notify │ │ │ │ -002676a0: 2074 6865 2075 7365 7220 7768 656e 2061 the user when a │ │ │ │ -002676b0: 2066 696c 6520 6973 206c 6f61 6465 640a file is loaded. │ │ │ │ -002676c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002676d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002676e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002676f0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00267700: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00267710: 6e6f 7469 6679 203d 2074 7275 650a 2020 notify = true. │ │ │ │ -00267720: 2020 2020 2020 6e6f 7469 6679 203d 2066 notify = f │ │ │ │ -00267730: 616c 7365 0a20 202a 2043 6f6e 7365 7175 alse. * Consequ │ │ │ │ -00267740: 656e 6365 733a 0a20 2020 2020 202a 2049 ences:. * I │ │ │ │ -00267750: 6620 2a6e 6f74 6520 6e6f 7469 6679 3a20 f *note notify: │ │ │ │ -00267760: 6e6f 7469 6679 2c20 6973 2073 6574 2074 notify, is set t │ │ │ │ -00267770: 6f20 2a6e 6f74 6520 7472 7565 3a20 7472 o *note true: tr │ │ │ │ -00267780: 7565 2c2c 2074 6865 6e20 6561 6368 2074 ue,, then each t │ │ │ │ -00267790: 696d 6520 610a 2020 2020 2020 2020 6669 ime a. fi │ │ │ │ -002677a0: 6c65 206f 7220 6120 7061 636b 6167 6520 le or a package │ │ │ │ -002677b0: 6973 206c 6f61 6465 642c 2061 206d 6573 is loaded, a mes │ │ │ │ -002677c0: 7361 6765 2077 696c 6c20 6265 2064 6973 sage will be dis │ │ │ │ -002677d0: 706c 6179 6564 2e0a 0a44 6573 6372 6970 played...Descrip │ │ │ │ -002677e0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -002677f0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -00267800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002675a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002675b0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +002675c0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +002675d0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +002675e0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +002675f0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00267600: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00267610: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00267620: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00267630: 765f 7379 7374 656d 2e6d 323a 3130 3339 v_system.m2:1039 │ │ │ │ +00267640: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00267650: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +00267660: 6f64 653a 206e 6f74 6966 792c 204e 6578 ode: notify, Nex │ │ │ │ +00267670: 743a 2061 7574 6f6c 6f61 642c 2050 7265 t: autoload, Pre │ │ │ │ +00267680: 763a 2075 7369 6e67 2073 6f63 6b65 7473 v: using sockets │ │ │ │ +00267690: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +002676a0: 696c 6974 6965 730a 0a6e 6f74 6966 7920 ilities..notify │ │ │ │ +002676b0: 2d2d 2077 6865 7468 6572 2074 6f20 6e6f -- whether to no │ │ │ │ +002676c0: 7469 6679 2074 6865 2075 7365 7220 7768 tify the user wh │ │ │ │ +002676d0: 656e 2061 2066 696c 6520 6973 206c 6f61 en a file is loa │ │ │ │ +002676e0: 6465 640a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ded.************ │ │ │ │ +002676f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00267700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00267710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00267720: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00267730: 2020 2020 6e6f 7469 6679 203d 2074 7275 notify = tru │ │ │ │ +00267740: 650a 2020 2020 2020 2020 6e6f 7469 6679 e. notify │ │ │ │ +00267750: 203d 2066 616c 7365 0a20 202a 2043 6f6e = false. * Con │ │ │ │ +00267760: 7365 7175 656e 6365 733a 0a20 2020 2020 sequences:. │ │ │ │ +00267770: 202a 2049 6620 2a6e 6f74 6520 6e6f 7469 * If *note noti │ │ │ │ +00267780: 6679 3a20 6e6f 7469 6679 2c20 6973 2073 fy: notify, is s │ │ │ │ +00267790: 6574 2074 6f20 2a6e 6f74 6520 7472 7565 et to *note true │ │ │ │ +002677a0: 3a20 7472 7565 2c2c 2074 6865 6e20 6561 : true,, then ea │ │ │ │ +002677b0: 6368 2074 696d 6520 610a 2020 2020 2020 ch time a. │ │ │ │ +002677c0: 2020 6669 6c65 206f 7220 6120 7061 636b file or a pack │ │ │ │ +002677d0: 6167 6520 6973 206c 6f61 6465 642c 2061 age is loaded, a │ │ │ │ +002677e0: 206d 6573 7361 6765 2077 696c 6c20 6265 message will be │ │ │ │ +002677f0: 2064 6973 706c 6179 6564 2e0a 0a44 6573 displayed...Des │ │ │ │ +00267800: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00267810: 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ====..+--------- │ │ │ │ 00267820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267840: 2b0a 7c69 3120 3a20 6e6f 7469 6679 203d +.|i1 : notify = │ │ │ │ -00267850: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ -00267860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267860: 2d2d 2d2d 2b0a 7c69 3120 3a20 6e6f 7469 ----+.|i1 : noti │ │ │ │ +00267870: 6679 203d 2074 7275 6520 2020 2020 2020 fy = true │ │ │ │ 00267880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267890: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00267890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002678a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002678b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002678b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 002678c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002678d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002678e0: 7c0a 7c6f 3120 3d20 7472 7565 2020 2020 |.|o1 = true │ │ │ │ +002678e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002678f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267900: 2020 2020 7c0a 7c6f 3120 3d20 7472 7565 |.|o1 = true │ │ │ │ 00267910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00267920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267930: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00267940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267950: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00267960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267980: 2b0a 7c69 3220 3a20 6c6f 6164 5061 636b +.|i2 : loadPack │ │ │ │ -00267990: 6167 6520 2246 6972 7374 5061 636b 6167 age "FirstPackag │ │ │ │ -002679a0: 6522 2020 2020 2020 2020 2020 2020 2020 e" │ │ │ │ -002679b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002679c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002679d0: 7c0a 7c20 2d2d 206c 6f61 6469 6e67 2046 |.| -- loading F │ │ │ │ -002679e0: 6972 7374 5061 636b 6167 652e 6d32 2020 irstPackage.m2 │ │ │ │ -002679f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267a20: 7c0a 7c20 2d2d 206f 7065 6e69 6e67 2064 |.| -- opening d │ │ │ │ -00267a30: 6174 6162 6173 6520 2f75 7372 2f6c 6962 atabase /usr/lib │ │ │ │ -00267a40: 2f78 3836 5f36 342d 6c69 6e75 782d 676e /x86_64-linux-gn │ │ │ │ -00267a50: 752f 4d61 6361 756c 6179 322f 4669 7273 u/Macaulay2/Firs │ │ │ │ -00267a60: 7450 6163 6b61 6765 2f63 6163 6865 2f20 tPackage/cache/ │ │ │ │ -00267a70: 7c0a 7c20 2d2d 2062 6567 696e 446f 6375 |.| -- beginDocu │ │ │ │ -00267a80: 6d65 6e74 6174 696f 6e3a 2075 7369 6e67 mentation: using │ │ │ │ -00267a90: 2064 6f63 756d 656e 7461 7469 6f6e 2064 documentation d │ │ │ │ -00267aa0: 6174 6162 6173 652c 2073 6b69 7070 696e atabase, skippin │ │ │ │ -00267ab0: 6720 7468 6520 7265 7374 206f 6620 2f20 g the rest of / │ │ │ │ -00267ac0: 7c0a 7c20 2d2d 2070 6163 6b61 6765 2022 |.| -- package " │ │ │ │ -00267ad0: 4669 7273 7450 6163 6b61 6765 2220 6c6f FirstPackage" lo │ │ │ │ -00267ae0: 6164 6564 2020 2020 2020 2020 2020 2020 aded │ │ │ │ -00267af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267b10: 7c0a 7c20 2d2d 206c 6f61 6465 6420 2f75 |.| -- loaded /u │ │ │ │ -00267b20: 7372 2f73 6861 7265 2f4d 6163 6175 6c61 sr/share/Macaula │ │ │ │ -00267b30: 7932 2f46 6972 7374 5061 636b 6167 652e y2/FirstPackage. │ │ │ │ -00267b40: 6d32 2020 2020 2020 2020 2020 2020 2020 m2 │ │ │ │ -00267b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267b60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00267980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002679a0: 2d2d 2d2d 2b0a 7c69 3220 3a20 6c6f 6164 ----+.|i2 : load │ │ │ │ +002679b0: 5061 636b 6167 6520 2246 6972 7374 5061 Package "FirstPa │ │ │ │ +002679c0: 636b 6167 6522 2020 2020 2020 2020 2020 ckage" │ │ │ │ +002679d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002679e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002679f0: 2020 2020 7c0a 7c20 2d2d 206c 6f61 6469 |.| -- loadi │ │ │ │ +00267a00: 6e67 2046 6972 7374 5061 636b 6167 652e ng FirstPackage. │ │ │ │ +00267a10: 6d32 2020 2020 2020 2020 2020 2020 2020 m2 │ │ │ │ +00267a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267a40: 2020 2020 7c0a 7c20 2d2d 206f 7065 6e69 |.| -- openi │ │ │ │ +00267a50: 6e67 2064 6174 6162 6173 6520 2f75 7372 ng database /usr │ │ │ │ +00267a60: 2f6c 6962 2f78 3836 5f36 342d 6c69 6e75 /lib/x86_64-linu │ │ │ │ +00267a70: 782d 676e 752f 4d61 6361 756c 6179 322f x-gnu/Macaulay2/ │ │ │ │ +00267a80: 4669 7273 7450 6163 6b61 6765 2f63 6163 FirstPackage/cac │ │ │ │ +00267a90: 6865 2f20 7c0a 7c20 2d2d 2062 6567 696e he/ |.| -- begin │ │ │ │ +00267aa0: 446f 6375 6d65 6e74 6174 696f 6e3a 2075 Documentation: u │ │ │ │ +00267ab0: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +00267ac0: 6f6e 2064 6174 6162 6173 652c 2073 6b69 on database, ski │ │ │ │ +00267ad0: 7070 696e 6720 7468 6520 7265 7374 206f pping the rest o │ │ │ │ +00267ae0: 6620 2f20 7c0a 7c20 2d2d 2070 6163 6b61 f / |.| -- packa │ │ │ │ +00267af0: 6765 2022 4669 7273 7450 6163 6b61 6765 ge "FirstPackage │ │ │ │ +00267b00: 2220 6c6f 6164 6564 2020 2020 2020 2020 " loaded │ │ │ │ +00267b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267b30: 2020 2020 7c0a 7c20 2d2d 206c 6f61 6465 |.| -- loade │ │ │ │ +00267b40: 6420 2f75 7372 2f73 6861 7265 2f4d 6163 d /usr/share/Mac │ │ │ │ +00267b50: 6175 6c61 7932 2f46 6972 7374 5061 636b aulay2/FirstPack │ │ │ │ +00267b60: 6167 652e 6d32 2020 2020 2020 2020 2020 age.m2 │ │ │ │ 00267b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267b80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00267b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00267ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267bb0: 7c0a 7c6f 3220 3d20 4669 7273 7450 6163 |.|o2 = FirstPac │ │ │ │ -00267bc0: 6b61 6765 2020 2020 2020 2020 2020 2020 kage │ │ │ │ -00267bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267bd0: 2020 2020 7c0a 7c6f 3220 3d20 4669 7273 |.|o2 = Firs │ │ │ │ +00267be0: 7450 6163 6b61 6765 2020 2020 2020 2020 tPackage │ │ │ │ 00267bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267c00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00267c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00267c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267c20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00267c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00267c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267c50: 7c0a 7c6f 3220 3a20 5061 636b 6167 6520 |.|o2 : Package │ │ │ │ +00267c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00267c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267c70: 2020 2020 7c0a 7c6f 3220 3a20 5061 636b |.|o2 : Pack │ │ │ │ +00267c80: 6167 6520 2020 2020 2020 2020 2020 2020 age │ │ │ │ 00267c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267ca0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ -00267cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267cc0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ 00267cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267cf0: 7c0a 7c72 6177 646f 6375 6d65 6e74 6174 |.|rawdocumentat │ │ │ │ -00267d00: 696f 6e2d 6463 6261 2d38 2e64 6220 2020 ion-dcba-8.db │ │ │ │ -00267d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267d40: 7c0a 7c75 7372 2f73 6861 7265 2f4d 6163 |.|usr/share/Mac │ │ │ │ -00267d50: 6175 6c61 7932 2f46 6972 7374 5061 636b aulay2/FirstPack │ │ │ │ -00267d60: 6167 652e 6d32 2020 2020 2020 2020 2020 age.m2 │ │ │ │ -00267d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00267d90: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00267da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267d10: 2d2d 2d2d 7c0a 7c72 6177 646f 6375 6d65 ----|.|rawdocume │ │ │ │ +00267d20: 6e74 6174 696f 6e2d 6463 6261 2d38 2e64 ntation-dcba-8.d │ │ │ │ +00267d30: 6220 2020 2020 2020 2020 2020 2020 2020 b │ │ │ │ +00267d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267d60: 2020 2020 7c0a 7c75 7372 2f73 6861 7265 |.|usr/share │ │ │ │ +00267d70: 2f4d 6163 6175 6c61 7932 2f46 6972 7374 /Macaulay2/First │ │ │ │ +00267d80: 5061 636b 6167 652e 6d32 2020 2020 2020 Package.m2 │ │ │ │ +00267d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00267db0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00267dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267de0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -00267df0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00267e00: 6c6f 6164 3a20 6c6f 6164 2c20 2d2d 2072 load: load, -- r │ │ │ │ -00267e10: 6561 6420 4d61 6361 756c 6179 3220 636f ead Macaulay2 co │ │ │ │ -00267e20: 6d6d 616e 6473 0a20 202a 202a 6e6f 7465 mmands. * *note │ │ │ │ -00267e30: 206e 6565 6473 3a20 6e65 6564 732c 202d needs: needs, - │ │ │ │ -00267e40: 2d20 7265 6164 204d 6163 6175 6c61 7932 - read Macaulay2 │ │ │ │ -00267e50: 2063 6f6d 6d61 6e64 7320 6966 206e 6563 commands if nec │ │ │ │ -00267e60: 6573 7361 7279 0a20 202a 202a 6e6f 7465 essary. * *note │ │ │ │ -00267e70: 206c 6f61 6450 6163 6b61 6765 3a20 6c6f loadPackage: lo │ │ │ │ -00267e80: 6164 5061 636b 6167 652c 202d 2d20 6c6f adPackage, -- lo │ │ │ │ -00267e90: 6164 2061 2070 6163 6b61 6765 0a20 202a ad a package. * │ │ │ │ -00267ea0: 202a 6e6f 7465 206e 6565 6473 5061 636b *note needsPack │ │ │ │ -00267eb0: 6167 653a 206e 6565 6473 5061 636b 6167 age: needsPackag │ │ │ │ -00267ec0: 652c 202d 2d20 6c6f 6164 2061 2070 6163 e, -- load a pac │ │ │ │ -00267ed0: 6b61 6765 2069 6620 6e6f 7420 616c 7265 kage if not alre │ │ │ │ -00267ee0: 6164 7920 6c6f 6164 6564 0a0a 466f 7220 ady loaded..For │ │ │ │ -00267ef0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00267f00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00267f10: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00267f20: 6f74 6520 6e6f 7469 6679 3a20 6e6f 7469 ote notify: noti │ │ │ │ -00267f30: 6679 2c20 6973 2061 202a 6e6f 7465 2042 fy, is a *note B │ │ │ │ -00267f40: 6f6f 6c65 616e 2076 616c 7565 3a20 426f oolean value: Bo │ │ │ │ -00267f50: 6f6c 6561 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d olean,...------- │ │ │ │ -00267f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267e00: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ +00267e10: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00267e20: 6f74 6520 6c6f 6164 3a20 6c6f 6164 2c20 ote load: load, │ │ │ │ +00267e30: 2d2d 2072 6561 6420 4d61 6361 756c 6179 -- read Macaulay │ │ │ │ +00267e40: 3220 636f 6d6d 616e 6473 0a20 202a 202a 2 commands. * * │ │ │ │ +00267e50: 6e6f 7465 206e 6565 6473 3a20 6e65 6564 note needs: need │ │ │ │ +00267e60: 732c 202d 2d20 7265 6164 204d 6163 6175 s, -- read Macau │ │ │ │ +00267e70: 6c61 7932 2063 6f6d 6d61 6e64 7320 6966 lay2 commands if │ │ │ │ +00267e80: 206e 6563 6573 7361 7279 0a20 202a 202a necessary. * * │ │ │ │ +00267e90: 6e6f 7465 206c 6f61 6450 6163 6b61 6765 note loadPackage │ │ │ │ +00267ea0: 3a20 6c6f 6164 5061 636b 6167 652c 202d : loadPackage, - │ │ │ │ +00267eb0: 2d20 6c6f 6164 2061 2070 6163 6b61 6765 - load a package │ │ │ │ +00267ec0: 0a20 202a 202a 6e6f 7465 206e 6565 6473 . * *note needs │ │ │ │ +00267ed0: 5061 636b 6167 653a 206e 6565 6473 5061 Package: needsPa │ │ │ │ +00267ee0: 636b 6167 652c 202d 2d20 6c6f 6164 2061 ckage, -- load a │ │ │ │ +00267ef0: 2070 6163 6b61 6765 2069 6620 6e6f 7420 package if not │ │ │ │ +00267f00: 616c 7265 6164 7920 6c6f 6164 6564 0a0a already loaded.. │ │ │ │ +00267f10: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00267f20: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00267f30: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00267f40: 7420 2a6e 6f74 6520 6e6f 7469 6679 3a20 t *note notify: │ │ │ │ +00267f50: 6e6f 7469 6679 2c20 6973 2061 202a 6e6f notify, is a *no │ │ │ │ +00267f60: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ +00267f70: 3a20 426f 6f6c 6561 6e2c 2e0a 0a2d 2d2d : Boolean,...--- │ │ │ │ 00267f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00267f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00267fa0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00267fb0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00267fc0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00267fd0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00267fe0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00267ff0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00268000: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00268010: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -00268020: 5f64 6562 7567 6769 6e67 2e6d 323a 3235 _debugging.m2:25 │ │ │ │ -00268030: 383a 302e 0a1f 0a46 696c 653a 204d 6163 8:0....File: Mac │ │ │ │ -00268040: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ -00268050: 4e6f 6465 3a20 6175 746f 6c6f 6164 2c20 Node: autoload, │ │ │ │ -00268060: 4e65 7874 3a20 696e 6974 6961 6c69 7a61 Next: initializa │ │ │ │ -00268070: 7469 6f6e 2066 696c 652c 2050 7265 763a tion file, Prev: │ │ │ │ -00268080: 206e 6f74 6966 792c 2055 703a 2073 7973 notify, Up: sys │ │ │ │ -00268090: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -002680a0: 6175 746f 6c6f 6164 202d 2d20 6172 7261 autoload -- arra │ │ │ │ -002680b0: 6e67 6520 666f 7220 6120 6675 6e63 7469 nge for a functi │ │ │ │ -002680c0: 6f6e 2074 6f20 6265 206c 6f61 6465 6420 on to be loaded │ │ │ │ -002680d0: 6175 746f 6d61 7469 6361 6c6c 790a 2a2a automatically.** │ │ │ │ -002680e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002680f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00268100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00268110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -00268120: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00268130: 2061 7574 6f6c 6f61 6428 662c 7829 0a20 autoload(f,x). │ │ │ │ -00268140: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00268150: 202a 2066 0a20 2020 2020 202a 2078 0a20 * f. * x. │ │ │ │ -00268160: 202a 2043 6f6e 7365 7175 656e 6365 733a * Consequences: │ │ │ │ -00268170: 0a20 2020 2020 202a 2061 7272 616e 6765 . * arrange │ │ │ │ -00268180: 7320 666f 7220 6120 6675 6e63 7469 6f6e s for a function │ │ │ │ -00268190: 206e 616d 6564 2066 2074 6f20 6265 2061 named f to be a │ │ │ │ -002681a0: 7574 6f6d 6174 6963 616c 6c79 206c 6f61 utomatically loa │ │ │ │ -002681b0: 6465 6420 6672 6f6d 2074 6865 0a20 2020 ded from the. │ │ │ │ -002681c0: 2020 2020 2066 696c 6520 7820 7468 6520 file x the │ │ │ │ -002681d0: 6669 7273 7420 7469 6d65 2069 7420 6973 first time it is │ │ │ │ -002681e0: 2075 7365 642e 2054 6869 7320 6973 2061 used. This is a │ │ │ │ -002681f0: 6363 6f6d 706c 6973 6865 6420 6279 2063 ccomplished by c │ │ │ │ -00268200: 7265 6174 696e 6720 610a 2020 2020 2020 reating a. │ │ │ │ -00268210: 2020 7375 6974 6162 6c65 2066 756e 6374 suitable funct │ │ │ │ -00268220: 696f 6e20 7468 6174 2077 696c 6c20 6c6f ion that will lo │ │ │ │ -00268230: 6164 2074 6865 2066 696c 6520 616e 6420 ad the file and │ │ │ │ -00268240: 6173 7369 676e 696e 6720 7468 6520 6675 assigning the fu │ │ │ │ -00268250: 6e63 7469 6f6e 2074 6f0a 2020 2020 2020 nction to. │ │ │ │ -00268260: 2020 662e 0a0a 4465 7363 7269 7074 696f f...Descriptio │ │ │ │ -00268270: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b n.===========..+ │ │ │ │ -00268280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002682a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00267fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00267fd0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00267fe0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00267ff0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00268000: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00268010: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00268020: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00268030: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +00268040: 632f 6f76 5f64 6562 7567 6769 6e67 2e6d c/ov_debugging.m │ │ │ │ +00268050: 323a 3235 383a 302e 0a1f 0a46 696c 653a 2:258:0....File: │ │ │ │ +00268060: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +00268070: 666f 2c20 4e6f 6465 3a20 6175 746f 6c6f fo, Node: autolo │ │ │ │ +00268080: 6164 2c20 4e65 7874 3a20 696e 6974 6961 ad, Next: initia │ │ │ │ +00268090: 6c69 7a61 7469 6f6e 2066 696c 652c 2050 lization file, P │ │ │ │ +002680a0: 7265 763a 206e 6f74 6966 792c 2055 703a rev: notify, Up: │ │ │ │ +002680b0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +002680c0: 6573 0a0a 6175 746f 6c6f 6164 202d 2d20 es..autoload -- │ │ │ │ +002680d0: 6172 7261 6e67 6520 666f 7220 6120 6675 arrange for a fu │ │ │ │ +002680e0: 6e63 7469 6f6e 2074 6f20 6265 206c 6f61 nction to be loa │ │ │ │ +002680f0: 6465 6420 6175 746f 6d61 7469 6361 6c6c ded automaticall │ │ │ │ +00268100: 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a y.************** │ │ │ │ +00268110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00268120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00268130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00268140: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00268150: 2020 2020 2061 7574 6f6c 6f61 6428 662c autoload(f, │ │ │ │ +00268160: 7829 0a20 202a 2049 6e70 7574 733a 0a20 x). * Inputs:. │ │ │ │ +00268170: 2020 2020 202a 2066 0a20 2020 2020 202a * f. * │ │ │ │ +00268180: 2078 0a20 202a 2043 6f6e 7365 7175 656e x. * Consequen │ │ │ │ +00268190: 6365 733a 0a20 2020 2020 202a 2061 7272 ces:. * arr │ │ │ │ +002681a0: 616e 6765 7320 666f 7220 6120 6675 6e63 anges for a func │ │ │ │ +002681b0: 7469 6f6e 206e 616d 6564 2066 2074 6f20 tion named f to │ │ │ │ +002681c0: 6265 2061 7574 6f6d 6174 6963 616c 6c79 be automatically │ │ │ │ +002681d0: 206c 6f61 6465 6420 6672 6f6d 2074 6865 loaded from the │ │ │ │ +002681e0: 0a20 2020 2020 2020 2066 696c 6520 7820 . file x │ │ │ │ +002681f0: 7468 6520 6669 7273 7420 7469 6d65 2069 the first time i │ │ │ │ +00268200: 7420 6973 2075 7365 642e 2054 6869 7320 t is used. This │ │ │ │ +00268210: 6973 2061 6363 6f6d 706c 6973 6865 6420 is accomplished │ │ │ │ +00268220: 6279 2063 7265 6174 696e 6720 610a 2020 by creating a. │ │ │ │ +00268230: 2020 2020 2020 7375 6974 6162 6c65 2066 suitable f │ │ │ │ +00268240: 756e 6374 696f 6e20 7468 6174 2077 696c unction that wil │ │ │ │ +00268250: 6c20 6c6f 6164 2074 6865 2066 696c 6520 l load the file │ │ │ │ +00268260: 616e 6420 6173 7369 676e 696e 6720 7468 and assigning th │ │ │ │ +00268270: 6520 6675 6e63 7469 6f6e 2074 6f0a 2020 e function to. │ │ │ │ +00268280: 2020 2020 2020 662e 0a0a 4465 7363 7269 f...Descri │ │ │ │ +00268290: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +002682a0: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ 002682b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002682c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -002682d0: 6931 203a 2066 6e20 3d20 7465 6d70 6f72 i1 : fn = tempor │ │ │ │ -002682e0: 6172 7946 696c 654e 616d 6528 2920 2020 aryFileName() │ │ │ │ -002682f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002682c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002682d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002682e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002682f0: 2d2b 0a7c 6931 203a 2066 6e20 3d20 7465 -+.|i1 : fn = te │ │ │ │ +00268300: 6d70 6f72 6172 7946 696c 654e 616d 6528 mporaryFileName( │ │ │ │ +00268310: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00268320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268370: 6f31 203d 202f 746d 702f 4d32 2d33 3130 o1 = /tmp/M2-310 │ │ │ │ -00268380: 3236 3337 2d30 2f30 2020 2020 2020 2020 2637-0/0 │ │ │ │ -00268390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002683a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002683b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -002683c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002683d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002683e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268390: 207c 0a7c 6f31 203d 202f 746d 702f 4d32 |.|o1 = /tmp/M2 │ │ │ │ +002683a0: 2d33 3130 3236 3337 2d30 2f30 2020 2020 -3102637-0/0 │ │ │ │ +002683b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002683c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002683d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002683e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 002683f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00268410: 6932 203a 2066 6e20 3c3c 2022 6620 3d20 i2 : fn << "f = │ │ │ │ -00268420: 7820 2d3e 2078 2b31 5c6e 2220 3c3c 2063 x -> x+1\n" << c │ │ │ │ -00268430: 6c6f 7365 2020 2020 2020 2020 2020 2020 lose │ │ │ │ -00268440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268430: 2d2b 0a7c 6932 203a 2066 6e20 3c3c 2022 -+.|i2 : fn << " │ │ │ │ +00268440: 6620 3d20 7820 2d3e 2078 2b31 5c6e 2220 f = x -> x+1\n" │ │ │ │ +00268450: 3c3c 2063 6c6f 7365 2020 2020 2020 2020 << close │ │ │ │ 00268460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002684a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002684b0: 6f32 203d 202f 746d 702f 4d32 2d33 3130 o2 = /tmp/M2-310 │ │ │ │ -002684c0: 3236 3337 2d30 2f30 2020 2020 2020 2020 2637-0/0 │ │ │ │ -002684d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002684e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002684f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002684a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002684b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002684c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002684d0: 207c 0a7c 6f32 203d 202f 746d 702f 4d32 |.|o2 = /tmp/M2 │ │ │ │ +002684e0: 2d33 3130 3236 3337 2d30 2f30 2020 2020 -3102637-0/0 │ │ │ │ +002684f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268550: 6f32 203a 2046 696c 6520 2020 2020 2020 o2 : File │ │ │ │ +00268540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268570: 207c 0a7c 6f32 203a 2046 696c 6520 2020 |.|o2 : File │ │ │ │ 00268580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -002685a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002685b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002685c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002685a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002685b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002685c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 002685d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002685e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -002685f0: 6933 203a 2061 7574 6f6c 6f61 6428 662c i3 : autoload(f, │ │ │ │ -00268600: 666e 2920 2020 2020 2020 2020 2020 2020 fn) │ │ │ │ -00268610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268630: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00268640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002685e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002685f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268610: 2d2b 0a7c 6933 203a 2061 7574 6f6c 6f61 -+.|i3 : autoloa │ │ │ │ +00268620: 6428 662c 666e 2920 2020 2020 2020 2020 d(f,fn) │ │ │ │ +00268630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268660: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00268670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00268690: 6934 203a 2063 6f64 6520 6620 2020 2020 i4 : code f │ │ │ │ -002686a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002686b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002686a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002686b0: 2d2b 0a7c 6934 203a 2063 6f64 6520 6620 -+.|i4 : code f │ │ │ │ 002686c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002686d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002686d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002686e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002686f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268730: 6f34 203d 202f 7573 722f 7368 6172 652f o4 = /usr/share/ │ │ │ │ -00268740: 4d61 6361 756c 6179 322f 436f 7265 2f61 Macaulay2/Core/a │ │ │ │ -00268750: 7574 6f6c 6f61 642e 6d32 3a38 3a31 392d utoload.m2:8:19- │ │ │ │ -00268760: 3132 3a32 323a 202d 2d73 6f75 7263 6520 12:22: --source │ │ │ │ -00268770: 636f 6465 3a20 2020 2020 2020 207c 0a7c code: |.| │ │ │ │ -00268780: 2020 2020 2020 2020 2020 7379 6d20 3c2d sym <- │ │ │ │ -00268790: 2066 203a 3d20 7820 2d3e 2028 2020 2020 f := x -> ( │ │ │ │ -002687a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002687b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002687c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002687d0: 2020 2020 2020 2020 2020 2020 2020 206c l │ │ │ │ -002687e0: 6f61 6420 6669 6c65 6e61 6d65 3b20 2020 oad filename; │ │ │ │ -002687f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268810: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268820: 2020 2020 2020 2020 2020 2020 2020 2069 i │ │ │ │ -00268830: 6620 6620 3d3d 3d20 7661 6c75 6520 7379 f f === value sy │ │ │ │ -00268840: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -00268850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268870: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00268880: 6865 6e20 6572 726f 7228 2273 796d 626f hen error("symbo │ │ │ │ -00268890: 6c20 2722 2c20 746f 5374 7269 6e67 2073 l '", toString s │ │ │ │ -002688a0: 796d 2c20 2227 2064 6964 6e27 7420 6163 ym, "' didn't ac │ │ │ │ -002688b0: 7175 6972 6520 6120 2020 2020 207c 0a7c quire a |.| │ │ │ │ -002688c0: 2020 2020 2020 2020 2020 2020 2020 2028 ( │ │ │ │ -002688d0: 7661 6c75 6520 7379 6d29 2078 2020 2020 value sym) x │ │ │ │ -002688e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002688f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268900: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268910: 2020 2020 2020 2020 2020 2020 2020 2029 ) │ │ │ │ -00268920: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00268930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268960: 2020 2020 2020 2020 2020 2920 2020 2020 ) │ │ │ │ +00268720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268750: 207c 0a7c 6f34 203d 202f 7573 722f 7368 |.|o4 = /usr/sh │ │ │ │ +00268760: 6172 652f 4d61 6361 756c 6179 322f 436f are/Macaulay2/Co │ │ │ │ +00268770: 7265 2f61 7574 6f6c 6f61 642e 6d32 3a38 re/autoload.m2:8 │ │ │ │ +00268780: 3a31 392d 3132 3a32 323a 202d 2d73 6f75 :19-12:22: --sou │ │ │ │ +00268790: 7263 6520 636f 6465 3a20 2020 2020 2020 rce code: │ │ │ │ +002687a0: 207c 0a7c 2020 2020 2020 2020 2020 7379 |.| sy │ │ │ │ +002687b0: 6d20 3c2d 2066 203a 3d20 7820 2d3e 2028 m <- f := x -> ( │ │ │ │ +002687c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002687d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002687e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002687f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268800: 2020 206c 6f61 6420 6669 6c65 6e61 6d65 load filename │ │ │ │ +00268810: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00268820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268850: 2020 2069 6620 6620 3d3d 3d20 7661 6c75 if f === valu │ │ │ │ +00268860: 6520 7379 6d20 2020 2020 2020 2020 2020 e sym │ │ │ │ +00268870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002688a0: 2020 2074 6865 6e20 6572 726f 7228 2273 then error("s │ │ │ │ +002688b0: 796d 626f 6c20 2722 2c20 746f 5374 7269 ymbol '", toStri │ │ │ │ +002688c0: 6e67 2073 796d 2c20 2227 2064 6964 6e27 ng sym, "' didn' │ │ │ │ +002688d0: 7420 6163 7175 6972 6520 6120 2020 2020 t acquire a │ │ │ │ +002688e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002688f0: 2020 2028 7661 6c75 6520 7379 6d29 2078 (value sym) x │ │ │ │ +00268900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268940: 2020 2029 3b20 2020 2020 2020 2020 2020 ); │ │ │ │ +00268950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268980: 207c 0a7c 2020 2020 2020 2020 2020 2920 |.| ) │ │ │ │ 00268990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002689a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002689b0: 2020 2020 207c 2073 796d 626f 6c20 2020 | symbol │ │ │ │ -002689c0: 2063 6c61 7373 2020 2020 2020 2020 2020 class │ │ │ │ -002689d0: 2020 7661 6c75 6520 2020 2020 2020 2020 value │ │ │ │ -002689e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002689f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268a00: 2020 2020 207c 202d 2d2d 2d2d 2d20 2020 | ------ │ │ │ │ -00268a10: 202d 2d2d 2d2d 2020 2020 2020 2020 2020 ----- │ │ │ │ -00268a20: 2020 2d2d 2d2d 2d20 2020 2020 2020 2020 ----- │ │ │ │ -00268a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268a40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268a50: 2020 2020 207c 2066 2020 2020 2020 2020 | f │ │ │ │ -00268a60: 2046 756e 6374 696f 6e43 6c6f 7375 7265 FunctionClosure │ │ │ │ -00268a70: 2020 2d2a 4675 6e63 7469 6f6e 5b2f 7573 -*Function[/us │ │ │ │ -00268a80: 722f 7368 6172 652f 4d61 6361 756c 6179 r/share/Macaulay │ │ │ │ -00268a90: 322f 436f 7265 2f20 2020 2020 207c 0a7c 2/Core/ |.| │ │ │ │ -00268aa0: 2020 2020 207c 2073 796d 2020 2020 2020 | sym │ │ │ │ -00268ab0: 2053 796d 626f 6c20 2020 2020 2020 2020 Symbol │ │ │ │ -00268ac0: 2020 6620 2020 2020 2020 2020 2020 2020 f │ │ │ │ -00268ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268af0: 2020 2020 207c 2066 696c 656e 616d 6520 | filename │ │ │ │ -00268b00: 2053 7472 696e 6720 2020 2020 2020 2020 String │ │ │ │ -00268b10: 2020 222f 746d 702f 4d32 2d33 3130 3236 "/tmp/M2-31026 │ │ │ │ -00268b20: 3337 2d30 2f30 2220 2020 2020 2020 2020 37-0/0" │ │ │ │ -00268b30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002689a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002689b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002689c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002689d0: 207c 0a7c 2020 2020 207c 2073 796d 626f |.| | symbo │ │ │ │ +002689e0: 6c20 2020 2063 6c61 7373 2020 2020 2020 l class │ │ │ │ +002689f0: 2020 2020 2020 7661 6c75 6520 2020 2020 value │ │ │ │ +00268a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268a20: 207c 0a7c 2020 2020 207c 202d 2d2d 2d2d |.| | ----- │ │ │ │ +00268a30: 2d20 2020 202d 2d2d 2d2d 2020 2020 2020 - ----- │ │ │ │ +00268a40: 2020 2020 2020 2d2d 2d2d 2d20 2020 2020 ----- │ │ │ │ +00268a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268a70: 207c 0a7c 2020 2020 207c 2066 2020 2020 |.| | f │ │ │ │ +00268a80: 2020 2020 2046 756e 6374 696f 6e43 6c6f FunctionClo │ │ │ │ +00268a90: 7375 7265 2020 2d2a 4675 6e63 7469 6f6e sure -*Function │ │ │ │ +00268aa0: 5b2f 7573 722f 7368 6172 652f 4d61 6361 [/usr/share/Maca │ │ │ │ +00268ab0: 756c 6179 322f 436f 7265 2f20 2020 2020 ulay2/Core/ │ │ │ │ +00268ac0: 207c 0a7c 2020 2020 207c 2073 796d 2020 |.| | sym │ │ │ │ +00268ad0: 2020 2020 2053 796d 626f 6c20 2020 2020 Symbol │ │ │ │ +00268ae0: 2020 2020 2020 6620 2020 2020 2020 2020 f │ │ │ │ +00268af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268b10: 207c 0a7c 2020 2020 207c 2066 696c 656e |.| | filen │ │ │ │ +00268b20: 616d 6520 2053 7472 696e 6720 2020 2020 ame String │ │ │ │ +00268b30: 2020 2020 2020 222f 746d 702f 4d32 2d33 "/tmp/M2-3 │ │ │ │ +00268b40: 3130 3236 3337 2d30 2f30 2220 2020 2020 102637-0/0" │ │ │ │ +00268b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268b60: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00268b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00268b90: 206e 6577 2076 616c 7565 2069 6e20 6669 new value in fi │ │ │ │ -00268ba0: 6c65 2027 222c 2066 696c 656e 616d 652c le '", filename, │ │ │ │ -00268bb0: 2022 2722 293b 2020 2020 2020 2020 2020 "'"); │ │ │ │ -00268bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268bd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268bb0: 2d7c 0a7c 206e 6577 2076 616c 7565 2069 -|.| new value i │ │ │ │ +00268bc0: 6e20 6669 6c65 2027 222c 2066 696c 656e n file '", filen │ │ │ │ +00268bd0: 616d 652c 2022 2722 293b 2020 2020 2020 ame, "'"); │ │ │ │ 00268be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268c00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268c50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268ca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268cc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268ce0: 2020 2020 6c6f 6361 7469 6f6e 206f 6620 location of │ │ │ │ -00268cf0: 7379 6d62 6f6c 2020 2020 2020 2020 2020 symbol │ │ │ │ -00268d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268d00: 2020 2020 2020 2020 6c6f 6361 7469 6f6e location │ │ │ │ +00268d10: 206f 6620 7379 6d62 6f6c 2020 2020 2020 of symbol │ │ │ │ 00268d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268d30: 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------ │ │ │ │ -00268d40: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ -00268d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268d70: 6175 746f 6c6f 6164 2e6d 323a 383a 3139 autoload.m2:8:19 │ │ │ │ -00268d80: 2d2e 2020 2f75 7372 2f73 6861 7265 2f4d -. /usr/share/M │ │ │ │ -00268d90: 6163 6175 6c61 7932 2f43 6f72 652f 6175 acaulay2/Core/au │ │ │ │ -00268da0: 746f 6c6f 6164 2e6d 323a 383a 3132 2d38 toload.m2:8:12-8 │ │ │ │ -00268db0: 3a31 3320 2020 2020 2020 2020 207c 0a7c :13 |.| │ │ │ │ -00268dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268dd0: 2020 2020 2f75 7372 2f73 6861 7265 2f4d /usr/share/M │ │ │ │ -00268de0: 6163 6175 6c61 7932 2f43 6f72 652f 6175 acaulay2/Core/au │ │ │ │ -00268df0: 746f 6c6f 6164 2e6d 323a 363a 3238 2d36 toload.m2:6:28-6 │ │ │ │ -00268e00: 3a33 3120 2020 2020 2020 2020 207c 0a7c :31 |.| │ │ │ │ -00268e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268e20: 2020 2020 2f75 7372 2f73 6861 7265 2f4d /usr/share/M │ │ │ │ -00268e30: 6163 6175 6c61 7932 2f43 6f72 652f 6175 acaulay2/Core/au │ │ │ │ -00268e40: 746f 6c6f 6164 2e6d 323a 363a 3332 2d36 toload.m2:6:32-6 │ │ │ │ -00268e50: 3a34 3020 2020 2020 2020 2020 207c 0a2b :40 |.+ │ │ │ │ -00268e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268d40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268d50: 2020 2020 2020 2020 2d2d 2d2d 2d2d 2d2d -------- │ │ │ │ +00268d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ +00268d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268d90: 207c 0a7c 6175 746f 6c6f 6164 2e6d 323a |.|autoload.m2: │ │ │ │ +00268da0: 383a 3139 2d2e 2020 2f75 7372 2f73 6861 8:19-. /usr/sha │ │ │ │ +00268db0: 7265 2f4d 6163 6175 6c61 7932 2f43 6f72 re/Macaulay2/Cor │ │ │ │ +00268dc0: 652f 6175 746f 6c6f 6164 2e6d 323a 383a e/autoload.m2:8: │ │ │ │ +00268dd0: 3132 2d38 3a31 3320 2020 2020 2020 2020 12-8:13 │ │ │ │ +00268de0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268df0: 2020 2020 2020 2020 2f75 7372 2f73 6861 /usr/sha │ │ │ │ +00268e00: 7265 2f4d 6163 6175 6c61 7932 2f43 6f72 re/Macaulay2/Cor │ │ │ │ +00268e10: 652f 6175 746f 6c6f 6164 2e6d 323a 363a e/autoload.m2:6: │ │ │ │ +00268e20: 3238 2d36 3a33 3120 2020 2020 2020 2020 28-6:31 │ │ │ │ +00268e30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00268e40: 2020 2020 2020 2020 2f75 7372 2f73 6861 /usr/sha │ │ │ │ +00268e50: 7265 2f4d 6163 6175 6c61 7932 2f43 6f72 re/Macaulay2/Cor │ │ │ │ +00268e60: 652f 6175 746f 6c6f 6164 2e6d 323a 363a e/autoload.m2:6: │ │ │ │ +00268e70: 3332 2d36 3a34 3020 2020 2020 2020 2020 32-6:40 │ │ │ │ +00268e80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00268e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00268eb0: 6935 203a 2066 2034 2020 2020 2020 2020 i5 : f 4 │ │ │ │ -00268ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268ed0: 2d2b 0a7c 6935 203a 2066 2034 2020 2020 -+.|i5 : f 4 │ │ │ │ 00268ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00268ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268f20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00268f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00268f50: 6f35 203d 2035 2020 2020 2020 2020 2020 o5 = 5 │ │ │ │ +00268f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00268f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268f70: 207c 0a7c 6f35 203d 2035 2020 2020 2020 |.|o5 = 5 │ │ │ │ 00268f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00268f90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00268fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00268fc0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00268fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00268fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00268ff0: 6936 203a 2072 656d 6f76 6546 696c 6520 i6 : removeFile │ │ │ │ -00269000: 666e 2020 2020 2020 2020 2020 2020 2020 fn │ │ │ │ -00269010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00269020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00269030: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00269040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00268ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269010: 2d2b 0a7c 6936 203a 2072 656d 6f76 6546 -+.|i6 : removeF │ │ │ │ +00269020: 696c 6520 666e 2020 2020 2020 2020 2020 ile fn │ │ │ │ +00269030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00269040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00269050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00269060: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00269070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00269090: 5761 7973 2074 6f20 7573 6520 6175 746f Ways to use auto │ │ │ │ -002690a0: 6c6f 6164 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d load:.========== │ │ │ │ -002690b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -002690c0: 2022 6175 746f 6c6f 6164 2853 796d 626f "autoload(Symbo │ │ │ │ -002690d0: 6c2c 5374 7269 6e67 2922 0a0a 466f 7220 l,String)"..For │ │ │ │ -002690e0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -002690f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00269100: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00269110: 6f74 6520 6175 746f 6c6f 6164 3a20 6175 ote autoload: au │ │ │ │ -00269120: 746f 6c6f 6164 2c20 6973 2061 202a 6e6f toload, is a *no │ │ │ │ -00269130: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ -00269140: 6f6e 3a0a 4d65 7468 6f64 4675 6e63 7469 on:.MethodFuncti │ │ │ │ -00269150: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -00269160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002690a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002690b0: 2d2b 0a0a 5761 7973 2074 6f20 7573 6520 -+..Ways to use │ │ │ │ +002690c0: 6175 746f 6c6f 6164 3a0a 3d3d 3d3d 3d3d autoload:.====== │ │ │ │ +002690d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +002690e0: 0a20 202a 2022 6175 746f 6c6f 6164 2853 . * "autoload(S │ │ │ │ +002690f0: 796d 626f 6c2c 5374 7269 6e67 2922 0a0a ymbol,String)".. │ │ │ │ +00269100: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00269110: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00269120: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00269130: 7420 2a6e 6f74 6520 6175 746f 6c6f 6164 t *note autoload │ │ │ │ +00269140: 3a20 6175 746f 6c6f 6164 2c20 6973 2061 : autoload, is a │ │ │ │ +00269150: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +00269160: 6e63 7469 6f6e 3a0a 4d65 7468 6f64 4675 nction:.MethodFu │ │ │ │ +00269170: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ 00269180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00269190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002691a0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -002691b0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -002691c0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -002691d0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -002691e0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -002691f0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00269200: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00269210: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -00269220: 7374 656d 2e6d 323a 3133 383a 302e 0a1f stem.m2:138:0... │ │ │ │ -00269230: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -00269240: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -00269250: 696e 6974 6961 6c69 7a61 7469 6f6e 2066 initialization f │ │ │ │ -00269260: 696c 652c 204e 6578 743a 2069 6e70 7574 ile, Next: input │ │ │ │ -00269270: 2c20 5072 6576 3a20 6175 746f 6c6f 6164 , Prev: autoload │ │ │ │ -00269280: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ -00269290: 696c 6974 6965 730a 0a69 6e69 7469 616c ilities..initial │ │ │ │ -002692a0: 697a 6174 696f 6e20 6669 6c65 0a2a 2a2a ization file.*** │ │ │ │ -002692b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002692c0: 0a0a 5468 6520 6669 6c65 2069 6e69 742e ..The file init. │ │ │ │ -002692d0: 6d32 2069 7320 6c6f 6164 6564 2061 7574 m2 is loaded aut │ │ │ │ -002692e0: 6f6d 6174 6963 616c 6c79 2077 6865 6e20 omatically when │ │ │ │ -002692f0: 7468 6520 7072 6f67 7261 6d20 6973 2073 the program is s │ │ │ │ -00269300: 7461 7274 6564 2c20 6966 2069 740a 6578 tarted, if it.ex │ │ │ │ -00269310: 6973 7473 2e0a 0a4f 6e20 6d6f 7374 2073 ists...On most s │ │ │ │ -00269320: 7973 7465 6d73 2074 6865 2066 696c 6520 ystems the file │ │ │ │ -00269330: 6973 2073 6f75 6768 7420 696e 2074 6865 is sought in the │ │ │ │ -00269340: 2064 6972 6563 746f 7279 2024 484f 4d45 directory $HOME │ │ │ │ -00269350: 2f2e 4d61 6361 756c 6179 322f 2c20 7768 /.Macaulay2/, wh │ │ │ │ -00269360: 6572 650a 2448 4f4d 4520 6973 2072 6570 ere.$HOME is rep │ │ │ │ -00269370: 6c61 6365 6420 6279 2074 6865 2070 6174 laced by the pat │ │ │ │ -00269380: 6820 746f 2074 6865 2075 7365 7227 7320 h to the user's │ │ │ │ -00269390: 686f 6d65 2064 6972 6563 746f 7279 2e0a home directory.. │ │ │ │ -002693a0: 0a55 6e64 6572 204d 6163 204f 5320 582c .Under Mac OS X, │ │ │ │ -002693b0: 2074 6865 2066 696c 6520 6973 2073 6f75 the file is sou │ │ │ │ -002693c0: 6768 7420 696e 7374 6561 6420 696e 2074 ght instead in t │ │ │ │ -002693d0: 6865 2064 6972 6563 746f 7279 0a24 484f he directory.$HO │ │ │ │ -002693e0: 4d45 2f4c 6962 7261 7279 2f41 7070 6c69 ME/Library/Appli │ │ │ │ -002693f0: 6361 7469 6f6e 2053 7570 706f 7274 2f4d cation Support/M │ │ │ │ -00269400: 6163 6175 6c61 7932 2f2e 0a0a 4966 2074 acaulay2/...If t │ │ │ │ -00269410: 6865 2075 7365 7220 7761 6e74 7320 6120 he user wants a │ │ │ │ -00269420: 6669 6c65 2063 616c 6c65 642c 2073 6179 file called, say │ │ │ │ -00269430: 2c20 7374 6172 742e 6d32 2069 6e20 7468 , start.m2 in th │ │ │ │ -00269440: 6520 6375 7272 656e 7420 6469 7265 6374 e current direct │ │ │ │ -00269450: 6f72 7920 746f 2062 650a 6c6f 6164 6564 ory to be.loaded │ │ │ │ -00269460: 2061 7574 6f6d 6174 6963 616c 6c79 2077 automatically w │ │ │ │ -00269470: 6865 6e20 7468 6520 7072 6f67 7261 6d20 hen the program │ │ │ │ -00269480: 6973 2073 7461 7274 6564 2c20 7468 656e is started, then │ │ │ │ -00269490: 2074 6865 2066 6f6c 6c6f 7769 6e67 206c the following l │ │ │ │ -002694a0: 696e 6520 6f66 0a63 6f64 6520 6361 6e20 ine of.code can │ │ │ │ -002694b0: 6265 2070 6c61 6365 6420 696e 2074 6865 be placed in the │ │ │ │ -002694c0: 2066 696c 6520 696e 6974 2e6d 322e 0a0a file init.m2... │ │ │ │ -002694d0: 6966 2066 696c 6545 7869 7374 7320 2273 if fileExists "s │ │ │ │ -002694e0: 7461 7274 2e6d 3222 2074 6865 6e20 6c6f tart.m2" then lo │ │ │ │ -002694f0: 6164 2863 7572 7265 6e74 4469 7265 6374 ad(currentDirect │ │ │ │ -00269500: 6f72 7928 297c 2273 7461 7274 2e6d 3222 ory()|"start.m2" │ │ │ │ -00269510: 290a 0a57 6172 6e69 6e67 3a20 666f 726d )..Warning: form │ │ │ │ -00269520: 6572 2076 6572 7369 6f6e 7320 6f66 2074 er versions of t │ │ │ │ -00269530: 6865 2070 726f 6772 616d 2077 6f75 6c64 he program would │ │ │ │ -00269540: 2061 6c73 6f20 6c6f 6164 2061 2066 696c also load a fil │ │ │ │ -00269550: 6520 6e61 6d65 6420 696e 6974 2e6d 320a e named init.m2. │ │ │ │ -00269560: 666f 756e 6420 696e 2074 6865 2063 7572 found in the cur │ │ │ │ -00269570: 7265 6e74 2064 6972 6563 746f 7279 2e0a rent directory.. │ │ │ │ -00269580: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00269590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002695a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002691a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002691b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002691c0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +002691d0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +002691e0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +002691f0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00269200: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00269210: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00269220: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00269230: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00269240: 765f 7379 7374 656d 2e6d 323a 3133 383a v_system.m2:138: │ │ │ │ +00269250: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +00269260: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +00269270: 6465 3a20 696e 6974 6961 6c69 7a61 7469 de: initializati │ │ │ │ +00269280: 6f6e 2066 696c 652c 204e 6578 743a 2069 on file, Next: i │ │ │ │ +00269290: 6e70 7574 2c20 5072 6576 3a20 6175 746f nput, Prev: auto │ │ │ │ +002692a0: 6c6f 6164 2c20 5570 3a20 7379 7374 656d load, Up: system │ │ │ │ +002692b0: 2066 6163 696c 6974 6965 730a 0a69 6e69 facilities..ini │ │ │ │ +002692c0: 7469 616c 697a 6174 696f 6e20 6669 6c65 tialization file │ │ │ │ +002692d0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +002692e0: 2a2a 2a2a 0a0a 5468 6520 6669 6c65 2069 ****..The file i │ │ │ │ +002692f0: 6e69 742e 6d32 2069 7320 6c6f 6164 6564 nit.m2 is loaded │ │ │ │ +00269300: 2061 7574 6f6d 6174 6963 616c 6c79 2077 automatically w │ │ │ │ +00269310: 6865 6e20 7468 6520 7072 6f67 7261 6d20 hen the program │ │ │ │ +00269320: 6973 2073 7461 7274 6564 2c20 6966 2069 is started, if i │ │ │ │ +00269330: 740a 6578 6973 7473 2e0a 0a4f 6e20 6d6f t.exists...On mo │ │ │ │ +00269340: 7374 2073 7973 7465 6d73 2074 6865 2066 st systems the f │ │ │ │ +00269350: 696c 6520 6973 2073 6f75 6768 7420 696e ile is sought in │ │ │ │ +00269360: 2074 6865 2064 6972 6563 746f 7279 2024 the directory $ │ │ │ │ +00269370: 484f 4d45 2f2e 4d61 6361 756c 6179 322f HOME/.Macaulay2/ │ │ │ │ +00269380: 2c20 7768 6572 650a 2448 4f4d 4520 6973 , where.$HOME is │ │ │ │ +00269390: 2072 6570 6c61 6365 6420 6279 2074 6865 replaced by the │ │ │ │ +002693a0: 2070 6174 6820 746f 2074 6865 2075 7365 path to the use │ │ │ │ +002693b0: 7227 7320 686f 6d65 2064 6972 6563 746f r's home directo │ │ │ │ +002693c0: 7279 2e0a 0a55 6e64 6572 204d 6163 204f ry...Under Mac O │ │ │ │ +002693d0: 5320 582c 2074 6865 2066 696c 6520 6973 S X, the file is │ │ │ │ +002693e0: 2073 6f75 6768 7420 696e 7374 6561 6420 sought instead │ │ │ │ +002693f0: 696e 2074 6865 2064 6972 6563 746f 7279 in the directory │ │ │ │ +00269400: 0a24 484f 4d45 2f4c 6962 7261 7279 2f41 .$HOME/Library/A │ │ │ │ +00269410: 7070 6c69 6361 7469 6f6e 2053 7570 706f pplication Suppo │ │ │ │ +00269420: 7274 2f4d 6163 6175 6c61 7932 2f2e 0a0a rt/Macaulay2/... │ │ │ │ +00269430: 4966 2074 6865 2075 7365 7220 7761 6e74 If the user want │ │ │ │ +00269440: 7320 6120 6669 6c65 2063 616c 6c65 642c s a file called, │ │ │ │ +00269450: 2073 6179 2c20 7374 6172 742e 6d32 2069 say, start.m2 i │ │ │ │ +00269460: 6e20 7468 6520 6375 7272 656e 7420 6469 n the current di │ │ │ │ +00269470: 7265 6374 6f72 7920 746f 2062 650a 6c6f rectory to be.lo │ │ │ │ +00269480: 6164 6564 2061 7574 6f6d 6174 6963 616c aded automatical │ │ │ │ +00269490: 6c79 2077 6865 6e20 7468 6520 7072 6f67 ly when the prog │ │ │ │ +002694a0: 7261 6d20 6973 2073 7461 7274 6564 2c20 ram is started, │ │ │ │ +002694b0: 7468 656e 2074 6865 2066 6f6c 6c6f 7769 then the followi │ │ │ │ +002694c0: 6e67 206c 696e 6520 6f66 0a63 6f64 6520 ng line of.code │ │ │ │ +002694d0: 6361 6e20 6265 2070 6c61 6365 6420 696e can be placed in │ │ │ │ +002694e0: 2074 6865 2066 696c 6520 696e 6974 2e6d the file init.m │ │ │ │ +002694f0: 322e 0a0a 6966 2066 696c 6545 7869 7374 2...if fileExist │ │ │ │ +00269500: 7320 2273 7461 7274 2e6d 3222 2074 6865 s "start.m2" the │ │ │ │ +00269510: 6e20 6c6f 6164 2863 7572 7265 6e74 4469 n load(currentDi │ │ │ │ +00269520: 7265 6374 6f72 7928 297c 2273 7461 7274 rectory()|"start │ │ │ │ +00269530: 2e6d 3222 290a 0a57 6172 6e69 6e67 3a20 .m2")..Warning: │ │ │ │ +00269540: 666f 726d 6572 2076 6572 7369 6f6e 7320 former versions │ │ │ │ +00269550: 6f66 2074 6865 2070 726f 6772 616d 2077 of the program w │ │ │ │ +00269560: 6f75 6c64 2061 6c73 6f20 6c6f 6164 2061 ould also load a │ │ │ │ +00269570: 2066 696c 6520 6e61 6d65 6420 696e 6974 file named init │ │ │ │ +00269580: 2e6d 320a 666f 756e 6420 696e 2074 6865 .m2.found in the │ │ │ │ +00269590: 2063 7572 7265 6e74 2064 6972 6563 746f current directo │ │ │ │ +002695a0: 7279 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d ry...----------- │ │ │ │ 002695b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002695c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002695d0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -002695e0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -002695f0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00269600: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00269610: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00269620: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00269630: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -00269640: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ -00269650: 6d32 3a31 3633 3a30 2e0a 1f0a 4669 6c65 m2:163:0....File │ │ │ │ -00269660: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00269670: 6e66 6f2c 204e 6f64 653a 2069 6e70 7574 nfo, Node: input │ │ │ │ -00269680: 2c20 4e65 7874 3a20 6c6f 6164 2c20 5072 , Next: load, Pr │ │ │ │ -00269690: 6576 3a20 696e 6974 6961 6c69 7a61 7469 ev: initializati │ │ │ │ -002696a0: 6f6e 2066 696c 652c 2055 703a 2073 7973 on file, Up: sys │ │ │ │ -002696b0: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -002696c0: 696e 7075 7420 2d2d 2072 6561 6420 4d61 input -- read Ma │ │ │ │ -002696d0: 6361 756c 6179 3220 636f 6d6d 616e 6473 caulay2 commands │ │ │ │ -002696e0: 2061 6e64 2065 6368 6f0a 2a2a 2a2a 2a2a and echo.****** │ │ │ │ -002696f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00269700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00269710: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00269720: 0a20 2020 2020 2020 2069 6e70 7574 2066 . input f │ │ │ │ -00269730: 6e0a 2020 2a20 496e 7075 7473 3a0a 2020 n. * Inputs:. │ │ │ │ -00269740: 2020 2020 2a20 666e 2c20 6120 2a6e 6f74 * fn, a *not │ │ │ │ -00269750: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ -00269760: 2c0a 2020 2a20 436f 6e73 6571 7565 6e63 ,. * Consequenc │ │ │ │ -00269770: 6573 3a0a 2020 2020 2020 2a20 7265 6164 es:. * read │ │ │ │ -00269780: 7320 616e 6420 6578 6563 7574 6573 2074 s and executes t │ │ │ │ -00269790: 6865 2063 6f6d 6d61 6e64 7320 666f 756e he commands foun │ │ │ │ -002697a0: 6420 696e 2074 6865 2066 696c 6520 7768 d in the file wh │ │ │ │ -002697b0: 6f73 6520 6e61 6d65 2069 730a 2020 2020 ose name is. │ │ │ │ -002697c0: 2020 2020 636f 6e74 6169 6e65 6420 696e contained in │ │ │ │ -002697d0: 2074 6865 2073 7472 696e 6720 666e 2c20 the string fn, │ │ │ │ -002697e0: 6563 686f 696e 6720 7468 6520 696e 7075 echoing the inpu │ │ │ │ -002697f0: 742c 2070 7269 6e74 696e 6720 7468 6520 t, printing the │ │ │ │ -00269800: 7661 6c75 6573 2c20 616e 640a 2020 2020 values, and. │ │ │ │ -00269810: 2020 2020 696e 6372 656d 656e 7469 6e67 incrementing │ │ │ │ -00269820: 2074 6865 206c 696e 6520 6e75 6d62 6572 the line number │ │ │ │ -00269830: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00269840: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 2066 =========..The f │ │ │ │ -00269850: 696c 6520 6973 2073 6f75 6768 7420 696e ile is sought in │ │ │ │ -00269860: 2074 6865 2064 6972 6563 746f 7279 2063 the directory c │ │ │ │ -00269870: 6f6e 7461 696e 696e 6720 7468 6520 6669 ontaining the fi │ │ │ │ -00269880: 6c65 2063 7572 7265 6e74 6c79 2062 6569 le currently bei │ │ │ │ -00269890: 6e67 206c 6f61 6465 642c 0a69 6620 616e ng loaded,.if an │ │ │ │ -002698a0: 792c 2061 6e64 2074 6865 6e20 616c 6f6e y, and then alon │ │ │ │ -002698b0: 6720 7468 6520 2a6e 6f74 6520 7061 7468 g the *note path │ │ │ │ -002698c0: 3a20 7061 7468 2c2c 2075 6e6c 6573 7320 : path,, unless │ │ │ │ -002698d0: 7468 6520 6e61 6d65 206f 6620 7468 6520 the name of the │ │ │ │ -002698e0: 6669 6c65 0a62 6567 696e 7320 7769 7468 file.begins with │ │ │ │ -002698f0: 202f 2c20 7e2f 2c20 242c 206f 7220 212e /, ~/, $, or !. │ │ │ │ -00269900: 2049 6620 7468 6520 6669 6c65 2062 6567 If the file beg │ │ │ │ -00269910: 696e 7320 7769 7468 202e 2f20 6f72 202e ins with ./ or . │ │ │ │ -00269920: 2e2f 2c20 7468 656e 2069 7420 6c6f 6f6b ./, then it look │ │ │ │ -00269930: 730a 696e 7374 6561 6420 696e 2074 6865 s.instead in the │ │ │ │ -00269940: 2064 6972 6563 746f 7279 206f 6620 7468 directory of th │ │ │ │ -00269950: 6520 6669 6c65 2063 7572 7265 6e74 6c79 e file currently │ │ │ │ -00269960: 2062 6569 6e67 206c 6f61 6465 6420 2873 being loaded (s │ │ │ │ -00269970: 6565 202a 6e6f 7465 0a63 7572 7265 6e74 ee *note.current │ │ │ │ -00269980: 4669 6c65 4469 7265 6374 6f72 793a 2063 FileDirectory: c │ │ │ │ -00269990: 7572 7265 6e74 4669 6c65 4469 7265 6374 urrentFileDirect │ │ │ │ -002699a0: 6f72 792c 292e 2020 4966 206e 6f20 6669 ory,). If no fi │ │ │ │ -002699b0: 6c65 2069 7320 6265 696e 6720 6c6f 6164 le is being load │ │ │ │ -002699c0: 6564 2069 740a 7769 6c6c 206c 6f6f 6b20 ed it.will look │ │ │ │ -002699d0: 696e 2074 6865 2063 7572 7265 6e74 2064 in the current d │ │ │ │ -002699e0: 6972 6563 746f 7279 2028 7365 6520 2a6e irectory (see *n │ │ │ │ -002699f0: 6f74 6520 6375 7272 656e 7444 6972 6563 ote currentDirec │ │ │ │ -00269a00: 746f 7279 3a0a 6375 7272 656e 7444 6972 tory:.currentDir │ │ │ │ -00269a10: 6563 746f 7279 2c29 2e0a 0a49 6620 6f6e ectory,)...If on │ │ │ │ -00269a20: 6520 6f66 2074 6865 2074 6f70 206c 6576 e of the top lev │ │ │ │ -00269a30: 656c 2065 7870 7265 7373 696f 6e73 2069 el expressions i │ │ │ │ -00269a40: 6e20 7468 6520 6669 6c65 2065 7661 6c75 n the file evalu │ │ │ │ -00269a50: 6174 6573 2074 6f20 7468 6520 7379 6d62 ates to the symb │ │ │ │ -00269a60: 6f6c 202a 6e6f 7465 0a65 6e64 3a20 656e ol *note.end: en │ │ │ │ -00269a70: 642c 2074 6865 2072 6561 6469 6e67 206f d, the reading o │ │ │ │ -00269a80: 6620 7468 6520 6669 6c65 2069 7320 7374 f the file is st │ │ │ │ -00269a90: 6f70 7065 6420 6174 2074 6861 7420 706f opped at that po │ │ │ │ -00269aa0: 696e 742e 0a0a 4966 2061 6e20 6572 726f int...If an erro │ │ │ │ -00269ab0: 7220 6f63 6375 7273 2077 6869 6c65 2065 r occurs while e │ │ │ │ -00269ac0: 7661 6c75 6174 696e 6720 7468 6520 6578 valuating the ex │ │ │ │ -00269ad0: 7072 6573 7369 6f6e 7320 696e 2074 6865 pressions in the │ │ │ │ -00269ae0: 2066 696c 652c 2072 6561 6469 6e67 2069 file, reading i │ │ │ │ -00269af0: 730a 7374 6f70 7065 642e 0a0a 5365 6520 s.stopped...See │ │ │ │ -00269b00: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00269b10: 202a 202a 6e6f 7465 2070 6174 683a 2070 * *note path: p │ │ │ │ -00269b20: 6174 682c 202d 2d20 6c69 7374 206f 6620 ath, -- list of │ │ │ │ -00269b30: 6469 7265 6374 6f72 6965 7320 746f 206c directories to l │ │ │ │ -00269b40: 6f6f 6b20 696e 0a20 202a 202a 6e6f 7465 ook in. * *note │ │ │ │ -00269b50: 206e 6565 6473 3a20 6e65 6564 732c 202d needs: needs, - │ │ │ │ -00269b60: 2d20 7265 6164 204d 6163 6175 6c61 7932 - read Macaulay2 │ │ │ │ -00269b70: 2063 6f6d 6d61 6e64 7320 6966 206e 6563 commands if nec │ │ │ │ -00269b80: 6573 7361 7279 0a20 202a 202a 6e6f 7465 essary. * *note │ │ │ │ -00269b90: 206c 6f61 643a 206c 6f61 642c 202d 2d20 load: load, -- │ │ │ │ -00269ba0: 7265 6164 204d 6163 6175 6c61 7932 2063 read Macaulay2 c │ │ │ │ -00269bb0: 6f6d 6d61 6e64 730a 0a46 6f72 2074 6865 ommands..For the │ │ │ │ -00269bc0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00269bd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00269be0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00269bf0: 2069 6e70 7574 3a20 696e 7075 742c 2069 input: input, i │ │ │ │ -00269c00: 7320 6120 2a6e 6f74 6520 6675 6e63 7469 s a *note functi │ │ │ │ -00269c10: 6f6e 2063 6c6f 7375 7265 3a20 4675 6e63 on closure: Func │ │ │ │ -00269c20: 7469 6f6e 436c 6f73 7572 652c 2e0a 0a2d tionClosure,...- │ │ │ │ -00269c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002695d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002695e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002695f0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00269600: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00269610: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00269620: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00269630: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00269640: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00269650: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ +00269660: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ +00269670: 7465 6d2e 6d32 3a31 3633 3a30 2e0a 1f0a tem.m2:163:0.... │ │ │ │ +00269680: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +00269690: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2069 oc.info, Node: i │ │ │ │ +002696a0: 6e70 7574 2c20 4e65 7874 3a20 6c6f 6164 nput, Next: load │ │ │ │ +002696b0: 2c20 5072 6576 3a20 696e 6974 6961 6c69 , Prev: initiali │ │ │ │ +002696c0: 7a61 7469 6f6e 2066 696c 652c 2055 703a zation file, Up: │ │ │ │ +002696d0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +002696e0: 6573 0a0a 696e 7075 7420 2d2d 2072 6561 es..input -- rea │ │ │ │ +002696f0: 6420 4d61 6361 756c 6179 3220 636f 6d6d d Macaulay2 comm │ │ │ │ +00269700: 616e 6473 2061 6e64 2065 6368 6f0a 2a2a ands and echo.** │ │ │ │ +00269710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00269720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00269730: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +00269740: 6765 3a20 0a20 2020 2020 2020 2069 6e70 ge: . inp │ │ │ │ +00269750: 7574 2066 6e0a 2020 2a20 496e 7075 7473 ut fn. * Inputs │ │ │ │ +00269760: 3a0a 2020 2020 2020 2a20 666e 2c20 6120 :. * fn, a │ │ │ │ +00269770: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +00269780: 7269 6e67 2c0a 2020 2a20 436f 6e73 6571 ring,. * Conseq │ │ │ │ +00269790: 7565 6e63 6573 3a0a 2020 2020 2020 2a20 uences:. * │ │ │ │ +002697a0: 7265 6164 7320 616e 6420 6578 6563 7574 reads and execut │ │ │ │ +002697b0: 6573 2074 6865 2063 6f6d 6d61 6e64 7320 es the commands │ │ │ │ +002697c0: 666f 756e 6420 696e 2074 6865 2066 696c found in the fil │ │ │ │ +002697d0: 6520 7768 6f73 6520 6e61 6d65 2069 730a e whose name is. │ │ │ │ +002697e0: 2020 2020 2020 2020 636f 6e74 6169 6e65 containe │ │ │ │ +002697f0: 6420 696e 2074 6865 2073 7472 696e 6720 d in the string │ │ │ │ +00269800: 666e 2c20 6563 686f 696e 6720 7468 6520 fn, echoing the │ │ │ │ +00269810: 696e 7075 742c 2070 7269 6e74 696e 6720 input, printing │ │ │ │ +00269820: 7468 6520 7661 6c75 6573 2c20 616e 640a the values, and. │ │ │ │ +00269830: 2020 2020 2020 2020 696e 6372 656d 656e incremen │ │ │ │ +00269840: 7469 6e67 2074 6865 206c 696e 6520 6e75 ting the line nu │ │ │ │ +00269850: 6d62 6572 0a0a 4465 7363 7269 7074 696f mber..Descriptio │ │ │ │ +00269860: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00269870: 6865 2066 696c 6520 6973 2073 6f75 6768 he file is sough │ │ │ │ +00269880: 7420 696e 2074 6865 2064 6972 6563 746f t in the directo │ │ │ │ +00269890: 7279 2063 6f6e 7461 696e 696e 6720 7468 ry containing th │ │ │ │ +002698a0: 6520 6669 6c65 2063 7572 7265 6e74 6c79 e file currently │ │ │ │ +002698b0: 2062 6569 6e67 206c 6f61 6465 642c 0a69 being loaded,.i │ │ │ │ +002698c0: 6620 616e 792c 2061 6e64 2074 6865 6e20 f any, and then │ │ │ │ +002698d0: 616c 6f6e 6720 7468 6520 2a6e 6f74 6520 along the *note │ │ │ │ +002698e0: 7061 7468 3a20 7061 7468 2c2c 2075 6e6c path: path,, unl │ │ │ │ +002698f0: 6573 7320 7468 6520 6e61 6d65 206f 6620 ess the name of │ │ │ │ +00269900: 7468 6520 6669 6c65 0a62 6567 696e 7320 the file.begins │ │ │ │ +00269910: 7769 7468 202f 2c20 7e2f 2c20 242c 206f with /, ~/, $, o │ │ │ │ +00269920: 7220 212e 2049 6620 7468 6520 6669 6c65 r !. If the file │ │ │ │ +00269930: 2062 6567 696e 7320 7769 7468 202e 2f20 begins with ./ │ │ │ │ +00269940: 6f72 202e 2e2f 2c20 7468 656e 2069 7420 or ../, then it │ │ │ │ +00269950: 6c6f 6f6b 730a 696e 7374 6561 6420 696e looks.instead in │ │ │ │ +00269960: 2074 6865 2064 6972 6563 746f 7279 206f the directory o │ │ │ │ +00269970: 6620 7468 6520 6669 6c65 2063 7572 7265 f the file curre │ │ │ │ +00269980: 6e74 6c79 2062 6569 6e67 206c 6f61 6465 ntly being loade │ │ │ │ +00269990: 6420 2873 6565 202a 6e6f 7465 0a63 7572 d (see *note.cur │ │ │ │ +002699a0: 7265 6e74 4669 6c65 4469 7265 6374 6f72 rentFileDirector │ │ │ │ +002699b0: 793a 2063 7572 7265 6e74 4669 6c65 4469 y: currentFileDi │ │ │ │ +002699c0: 7265 6374 6f72 792c 292e 2020 4966 206e rectory,). If n │ │ │ │ +002699d0: 6f20 6669 6c65 2069 7320 6265 696e 6720 o file is being │ │ │ │ +002699e0: 6c6f 6164 6564 2069 740a 7769 6c6c 206c loaded it.will l │ │ │ │ +002699f0: 6f6f 6b20 696e 2074 6865 2063 7572 7265 ook in the curre │ │ │ │ +00269a00: 6e74 2064 6972 6563 746f 7279 2028 7365 nt directory (se │ │ │ │ +00269a10: 6520 2a6e 6f74 6520 6375 7272 656e 7444 e *note currentD │ │ │ │ +00269a20: 6972 6563 746f 7279 3a0a 6375 7272 656e irectory:.curren │ │ │ │ +00269a30: 7444 6972 6563 746f 7279 2c29 2e0a 0a49 tDirectory,)...I │ │ │ │ +00269a40: 6620 6f6e 6520 6f66 2074 6865 2074 6f70 f one of the top │ │ │ │ +00269a50: 206c 6576 656c 2065 7870 7265 7373 696f level expressio │ │ │ │ +00269a60: 6e73 2069 6e20 7468 6520 6669 6c65 2065 ns in the file e │ │ │ │ +00269a70: 7661 6c75 6174 6573 2074 6f20 7468 6520 valuates to the │ │ │ │ +00269a80: 7379 6d62 6f6c 202a 6e6f 7465 0a65 6e64 symbol *note.end │ │ │ │ +00269a90: 3a20 656e 642c 2074 6865 2072 6561 6469 : end, the readi │ │ │ │ +00269aa0: 6e67 206f 6620 7468 6520 6669 6c65 2069 ng of the file i │ │ │ │ +00269ab0: 7320 7374 6f70 7065 6420 6174 2074 6861 s stopped at tha │ │ │ │ +00269ac0: 7420 706f 696e 742e 0a0a 4966 2061 6e20 t point...If an │ │ │ │ +00269ad0: 6572 726f 7220 6f63 6375 7273 2077 6869 error occurs whi │ │ │ │ +00269ae0: 6c65 2065 7661 6c75 6174 696e 6720 7468 le evaluating th │ │ │ │ +00269af0: 6520 6578 7072 6573 7369 6f6e 7320 696e e expressions in │ │ │ │ +00269b00: 2074 6865 2066 696c 652c 2072 6561 6469 the file, readi │ │ │ │ +00269b10: 6e67 2069 730a 7374 6f70 7065 642e 0a0a ng is.stopped... │ │ │ │ +00269b20: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +00269b30: 3d0a 0a20 202a 202a 6e6f 7465 2070 6174 =.. * *note pat │ │ │ │ +00269b40: 683a 2070 6174 682c 202d 2d20 6c69 7374 h: path, -- list │ │ │ │ +00269b50: 206f 6620 6469 7265 6374 6f72 6965 7320 of directories │ │ │ │ +00269b60: 746f 206c 6f6f 6b20 696e 0a20 202a 202a to look in. * * │ │ │ │ +00269b70: 6e6f 7465 206e 6565 6473 3a20 6e65 6564 note needs: need │ │ │ │ +00269b80: 732c 202d 2d20 7265 6164 204d 6163 6175 s, -- read Macau │ │ │ │ +00269b90: 6c61 7932 2063 6f6d 6d61 6e64 7320 6966 lay2 commands if │ │ │ │ +00269ba0: 206e 6563 6573 7361 7279 0a20 202a 202a necessary. * * │ │ │ │ +00269bb0: 6e6f 7465 206c 6f61 643a 206c 6f61 642c note load: load, │ │ │ │ +00269bc0: 202d 2d20 7265 6164 204d 6163 6175 6c61 -- read Macaula │ │ │ │ +00269bd0: 7932 2063 6f6d 6d61 6e64 730a 0a46 6f72 y2 commands..For │ │ │ │ +00269be0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00269bf0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00269c00: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00269c10: 6e6f 7465 2069 6e70 7574 3a20 696e 7075 note input: inpu │ │ │ │ +00269c20: 742c 2069 7320 6120 2a6e 6f74 6520 6675 t, is a *note fu │ │ │ │ +00269c30: 6e63 7469 6f6e 2063 6c6f 7375 7265 3a20 nction closure: │ │ │ │ +00269c40: 4675 6e63 7469 6f6e 436c 6f73 7572 652c FunctionClosure, │ │ │ │ +00269c50: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00269c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00269c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00269c80: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00269c90: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00269ca0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00269cb0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00269cc0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00269cd0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00269ce0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -00269cf0: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -00269d00: 3a31 3930 3a30 2e0a 1f0a 4669 6c65 3a20 :190:0....File: │ │ │ │ -00269d10: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -00269d20: 6f2c 204e 6f64 653a 206c 6f61 642c 204e o, Node: load, N │ │ │ │ -00269d30: 6578 743a 206e 6565 6473 2c20 5072 6576 ext: needs, Prev │ │ │ │ -00269d40: 3a20 696e 7075 742c 2055 703a 2073 7973 : input, Up: sys │ │ │ │ -00269d50: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -00269d60: 6c6f 6164 202d 2d20 7265 6164 204d 6163 load -- read Mac │ │ │ │ -00269d70: 6175 6c61 7932 2063 6f6d 6d61 6e64 730a aulay2 commands. │ │ │ │ -00269d80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00269d90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00269da0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00269db0: 3d3d 3d3d 3d3d 3d3d 0a0a 6c6f 6164 2022 ========..load " │ │ │ │ -00269dc0: 6622 202d 2d20 7265 6164 7320 616e 6420 f" -- reads and │ │ │ │ -00269dd0: 6578 6563 7574 6573 204d 6163 6175 6c61 executes Macaula │ │ │ │ -00269de0: 7932 2065 7870 7265 7373 696f 6e73 2066 y2 expressions f │ │ │ │ -00269df0: 6f75 6e64 2069 6e20 7468 6520 6669 6c65 ound in the file │ │ │ │ -00269e00: 206e 616d 6564 2066 2e0a 0a54 6865 2066 named f...The f │ │ │ │ -00269e10: 696c 6520 6973 2073 6f75 6768 7420 696e ile is sought in │ │ │ │ -00269e20: 2074 6865 2064 6972 6563 746f 7279 2063 the directory c │ │ │ │ -00269e30: 6f6e 7461 696e 696e 6720 7468 6520 6669 ontaining the fi │ │ │ │ -00269e40: 6c65 2063 7572 7265 6e74 6c79 2062 6569 le currently bei │ │ │ │ -00269e50: 6e67 206c 6f61 6465 642c 0a69 6620 616e ng loaded,.if an │ │ │ │ -00269e60: 792c 2061 6e64 2074 6865 6e20 616c 6f6e y, and then alon │ │ │ │ -00269e70: 6720 7468 6520 2a6e 6f74 6520 7061 7468 g the *note path │ │ │ │ -00269e80: 3a20 7061 7468 2c2c 2075 6e6c 6573 7320 : path,, unless │ │ │ │ -00269e90: 7468 6520 6e61 6d65 206f 6620 7468 6520 the name of the │ │ │ │ -00269ea0: 6669 6c65 0a62 6567 696e 7320 7769 7468 file.begins with │ │ │ │ -00269eb0: 202f 2c20 242c 206f 7220 212e 2049 6620 /, $, or !. If │ │ │ │ -00269ec0: 7468 6520 6669 6c65 2062 6567 696e 7320 the file begins │ │ │ │ -00269ed0: 7769 7468 202e 2f20 6f72 202e 2e2f 2c20 with ./ or ../, │ │ │ │ -00269ee0: 7468 656e 2069 7420 6c6f 6f6b 730a 696e then it looks.in │ │ │ │ -00269ef0: 7374 6561 6420 696e 2074 6865 2064 6972 stead in the dir │ │ │ │ -00269f00: 6563 746f 7279 206f 6620 7468 6520 6669 ectory of the fi │ │ │ │ -00269f10: 6c65 2063 7572 7265 6e74 6c79 2062 6569 le currently bei │ │ │ │ -00269f20: 6e67 206c 6f61 6465 6420 2873 6565 202a ng loaded (see * │ │ │ │ -00269f30: 6e6f 7465 0a63 7572 7265 6e74 4669 6c65 note.currentFile │ │ │ │ -00269f40: 4469 7265 6374 6f72 793a 2063 7572 7265 Directory: curre │ │ │ │ -00269f50: 6e74 4669 6c65 4469 7265 6374 6f72 792c ntFileDirectory, │ │ │ │ -00269f60: 292e 2020 4966 206e 6f20 6669 6c65 2069 ). If no file i │ │ │ │ -00269f70: 7320 6265 696e 6720 6c6f 6164 6564 2069 s being loaded i │ │ │ │ -00269f80: 740a 7769 6c6c 206c 6f6f 6b20 696e 2074 t.will look in t │ │ │ │ -00269f90: 6865 2063 7572 7265 6e74 2064 6972 6563 he current direc │ │ │ │ -00269fa0: 746f 7279 2028 7365 6520 2a6e 6f74 6520 tory (see *note │ │ │ │ -00269fb0: 6375 7272 656e 7444 6972 6563 746f 7279 currentDirectory │ │ │ │ -00269fc0: 3a0a 6375 7272 656e 7444 6972 6563 746f :.currentDirecto │ │ │ │ -00269fd0: 7279 2c29 2e0a 0a54 6865 2066 696c 6520 ry,)...The file │ │ │ │ -00269fe0: 6973 2072 6561 6420 7769 7468 6f75 7420 is read without │ │ │ │ -00269ff0: 6563 686f 696e 6720 7468 6520 696e 7075 echoing the inpu │ │ │ │ -0026a000: 742c 2070 7269 6e74 696e 6720 7468 6520 t, printing the │ │ │ │ -0026a010: 7661 6c75 6573 2c20 6f72 0a69 6e63 7265 values, or.incre │ │ │ │ -0026a020: 6d65 6e74 696e 6720 7468 6520 6c69 6e65 menting the line │ │ │ │ -0026a030: 206e 756d 6265 722e 0a0a 4966 206f 6e65 number...If one │ │ │ │ -0026a040: 206f 6620 7468 6520 746f 7020 6c65 7665 of the top leve │ │ │ │ -0026a050: 6c20 6578 7072 6573 7369 6f6e 7320 696e l expressions in │ │ │ │ -0026a060: 2074 6865 2066 696c 6520 6576 616c 7561 the file evalua │ │ │ │ -0026a070: 7465 7320 746f 2074 6865 2073 796d 626f tes to the symbo │ │ │ │ -0026a080: 6c20 2a6e 6f74 650a 656e 643a 2065 6e64 l *note.end: end │ │ │ │ -0026a090: 2c20 7468 6520 7265 6164 696e 6720 6f66 , the reading of │ │ │ │ -0026a0a0: 2074 6865 2066 696c 6520 6973 2073 746f the file is sto │ │ │ │ -0026a0b0: 7070 6564 2061 7420 7468 6174 2070 6f69 pped at that poi │ │ │ │ -0026a0c0: 6e74 2e0a 0a49 6620 7468 6520 7661 7269 nt...If the vari │ │ │ │ -0026a0d0: 6162 6c65 202a 6e6f 7465 206e 6f74 6966 able *note notif │ │ │ │ -0026a0e0: 793a 206e 6f74 6966 792c 2069 7320 7365 y: notify, is se │ │ │ │ -0026a0f0: 7420 746f 2074 7275 652c 2074 6865 6e20 t to true, then │ │ │ │ -0026a100: 616e 2069 6e66 6f72 6d61 7469 6f6e 616c an informational │ │ │ │ -0026a110: 0a6d 6573 7361 6765 2069 7320 6469 7370 .message is disp │ │ │ │ -0026a120: 6c61 7965 6420 6166 7465 7220 7468 6520 layed after the │ │ │ │ -0026a130: 6669 6c65 2069 7320 6c6f 6164 6564 2e0a file is loaded.. │ │ │ │ -0026a140: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0026a150: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7061 ==.. * *note pa │ │ │ │ -0026a160: 7468 3a20 7061 7468 2c20 2d2d 206c 6973 th: path, -- lis │ │ │ │ -0026a170: 7420 6f66 2064 6972 6563 746f 7269 6573 t of directories │ │ │ │ -0026a180: 2074 6f20 6c6f 6f6b 2069 6e0a 2020 2a20 to look in. * │ │ │ │ -0026a190: 2a6e 6f74 6520 6e65 6564 733a 206e 6565 *note needs: nee │ │ │ │ -0026a1a0: 6473 2c20 2d2d 2072 6561 6420 4d61 6361 ds, -- read Maca │ │ │ │ -0026a1b0: 756c 6179 3220 636f 6d6d 616e 6473 2069 ulay2 commands i │ │ │ │ -0026a1c0: 6620 6e65 6365 7373 6172 790a 2020 2a20 f necessary. * │ │ │ │ -0026a1d0: 2a6e 6f74 6520 696e 7075 743a 2069 6e70 *note input: inp │ │ │ │ -0026a1e0: 7574 2c20 2d2d 2072 6561 6420 4d61 6361 ut, -- read Maca │ │ │ │ -0026a1f0: 756c 6179 3220 636f 6d6d 616e 6473 2061 ulay2 commands a │ │ │ │ -0026a200: 6e64 2065 6368 6f0a 2020 2a20 2a6e 6f74 nd echo. * *not │ │ │ │ -0026a210: 6520 6e6f 7469 6679 3a20 6e6f 7469 6679 e notify: notify │ │ │ │ -0026a220: 2c20 2d2d 2077 6865 7468 6572 2074 6f20 , -- whether to │ │ │ │ -0026a230: 6e6f 7469 6679 2074 6865 2075 7365 7220 notify the user │ │ │ │ -0026a240: 7768 656e 2061 2066 696c 6520 6973 206c when a file is l │ │ │ │ -0026a250: 6f61 6465 640a 0a46 6f72 2074 6865 2070 oaded..For the p │ │ │ │ -0026a260: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0026a270: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0026a280: 6520 6f62 6a65 6374 202a 6e6f 7465 206c e object *note l │ │ │ │ -0026a290: 6f61 643a 206c 6f61 642c 2069 7320 6120 oad: load, is a │ │ │ │ -0026a2a0: 2a6e 6f74 6520 6675 6e63 7469 6f6e 2063 *note function c │ │ │ │ -0026a2b0: 6c6f 7375 7265 3a20 4675 6e63 7469 6f6e losure: Function │ │ │ │ -0026a2c0: 436c 6f73 7572 652c 2e0a 0a2d 2d2d 2d2d Closure,...----- │ │ │ │ -0026a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00269ca0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00269cb0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00269cc0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00269cd0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00269ce0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00269cf0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00269d00: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +00269d10: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +00269d20: 6d2e 6d32 3a31 3930 3a30 2e0a 1f0a 4669 m.m2:190:0....Fi │ │ │ │ +00269d30: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00269d40: 2e69 6e66 6f2c 204e 6f64 653a 206c 6f61 .info, Node: loa │ │ │ │ +00269d50: 642c 204e 6578 743a 206e 6565 6473 2c20 d, Next: needs, │ │ │ │ +00269d60: 5072 6576 3a20 696e 7075 742c 2055 703a Prev: input, Up: │ │ │ │ +00269d70: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +00269d80: 6573 0a0a 6c6f 6164 202d 2d20 7265 6164 es..load -- read │ │ │ │ +00269d90: 204d 6163 6175 6c61 7932 2063 6f6d 6d61 Macaulay2 comma │ │ │ │ +00269da0: 6e64 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a nds.************ │ │ │ │ +00269db0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00269dc0: 2a2a 2a0a 0a44 6573 6372 6970 7469 6f6e ***..Description │ │ │ │ +00269dd0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 6c6f .===========..lo │ │ │ │ +00269de0: 6164 2022 6622 202d 2d20 7265 6164 7320 ad "f" -- reads │ │ │ │ +00269df0: 616e 6420 6578 6563 7574 6573 204d 6163 and executes Mac │ │ │ │ +00269e00: 6175 6c61 7932 2065 7870 7265 7373 696f aulay2 expressio │ │ │ │ +00269e10: 6e73 2066 6f75 6e64 2069 6e20 7468 6520 ns found in the │ │ │ │ +00269e20: 6669 6c65 206e 616d 6564 2066 2e0a 0a54 file named f...T │ │ │ │ +00269e30: 6865 2066 696c 6520 6973 2073 6f75 6768 he file is sough │ │ │ │ +00269e40: 7420 696e 2074 6865 2064 6972 6563 746f t in the directo │ │ │ │ +00269e50: 7279 2063 6f6e 7461 696e 696e 6720 7468 ry containing th │ │ │ │ +00269e60: 6520 6669 6c65 2063 7572 7265 6e74 6c79 e file currently │ │ │ │ +00269e70: 2062 6569 6e67 206c 6f61 6465 642c 0a69 being loaded,.i │ │ │ │ +00269e80: 6620 616e 792c 2061 6e64 2074 6865 6e20 f any, and then │ │ │ │ +00269e90: 616c 6f6e 6720 7468 6520 2a6e 6f74 6520 along the *note │ │ │ │ +00269ea0: 7061 7468 3a20 7061 7468 2c2c 2075 6e6c path: path,, unl │ │ │ │ +00269eb0: 6573 7320 7468 6520 6e61 6d65 206f 6620 ess the name of │ │ │ │ +00269ec0: 7468 6520 6669 6c65 0a62 6567 696e 7320 the file.begins │ │ │ │ +00269ed0: 7769 7468 202f 2c20 242c 206f 7220 212e with /, $, or !. │ │ │ │ +00269ee0: 2049 6620 7468 6520 6669 6c65 2062 6567 If the file beg │ │ │ │ +00269ef0: 696e 7320 7769 7468 202e 2f20 6f72 202e ins with ./ or . │ │ │ │ +00269f00: 2e2f 2c20 7468 656e 2069 7420 6c6f 6f6b ./, then it look │ │ │ │ +00269f10: 730a 696e 7374 6561 6420 696e 2074 6865 s.instead in the │ │ │ │ +00269f20: 2064 6972 6563 746f 7279 206f 6620 7468 directory of th │ │ │ │ +00269f30: 6520 6669 6c65 2063 7572 7265 6e74 6c79 e file currently │ │ │ │ +00269f40: 2062 6569 6e67 206c 6f61 6465 6420 2873 being loaded (s │ │ │ │ +00269f50: 6565 202a 6e6f 7465 0a63 7572 7265 6e74 ee *note.current │ │ │ │ +00269f60: 4669 6c65 4469 7265 6374 6f72 793a 2063 FileDirectory: c │ │ │ │ +00269f70: 7572 7265 6e74 4669 6c65 4469 7265 6374 urrentFileDirect │ │ │ │ +00269f80: 6f72 792c 292e 2020 4966 206e 6f20 6669 ory,). If no fi │ │ │ │ +00269f90: 6c65 2069 7320 6265 696e 6720 6c6f 6164 le is being load │ │ │ │ +00269fa0: 6564 2069 740a 7769 6c6c 206c 6f6f 6b20 ed it.will look │ │ │ │ +00269fb0: 696e 2074 6865 2063 7572 7265 6e74 2064 in the current d │ │ │ │ +00269fc0: 6972 6563 746f 7279 2028 7365 6520 2a6e irectory (see *n │ │ │ │ +00269fd0: 6f74 6520 6375 7272 656e 7444 6972 6563 ote currentDirec │ │ │ │ +00269fe0: 746f 7279 3a0a 6375 7272 656e 7444 6972 tory:.currentDir │ │ │ │ +00269ff0: 6563 746f 7279 2c29 2e0a 0a54 6865 2066 ectory,)...The f │ │ │ │ +0026a000: 696c 6520 6973 2072 6561 6420 7769 7468 ile is read with │ │ │ │ +0026a010: 6f75 7420 6563 686f 696e 6720 7468 6520 out echoing the │ │ │ │ +0026a020: 696e 7075 742c 2070 7269 6e74 696e 6720 input, printing │ │ │ │ +0026a030: 7468 6520 7661 6c75 6573 2c20 6f72 0a69 the values, or.i │ │ │ │ +0026a040: 6e63 7265 6d65 6e74 696e 6720 7468 6520 ncrementing the │ │ │ │ +0026a050: 6c69 6e65 206e 756d 6265 722e 0a0a 4966 line number...If │ │ │ │ +0026a060: 206f 6e65 206f 6620 7468 6520 746f 7020 one of the top │ │ │ │ +0026a070: 6c65 7665 6c20 6578 7072 6573 7369 6f6e level expression │ │ │ │ +0026a080: 7320 696e 2074 6865 2066 696c 6520 6576 s in the file ev │ │ │ │ +0026a090: 616c 7561 7465 7320 746f 2074 6865 2073 aluates to the s │ │ │ │ +0026a0a0: 796d 626f 6c20 2a6e 6f74 650a 656e 643a ymbol *note.end: │ │ │ │ +0026a0b0: 2065 6e64 2c20 7468 6520 7265 6164 696e end, the readin │ │ │ │ +0026a0c0: 6720 6f66 2074 6865 2066 696c 6520 6973 g of the file is │ │ │ │ +0026a0d0: 2073 746f 7070 6564 2061 7420 7468 6174 stopped at that │ │ │ │ +0026a0e0: 2070 6f69 6e74 2e0a 0a49 6620 7468 6520 point...If the │ │ │ │ +0026a0f0: 7661 7269 6162 6c65 202a 6e6f 7465 206e variable *note n │ │ │ │ +0026a100: 6f74 6966 793a 206e 6f74 6966 792c 2069 otify: notify, i │ │ │ │ +0026a110: 7320 7365 7420 746f 2074 7275 652c 2074 s set to true, t │ │ │ │ +0026a120: 6865 6e20 616e 2069 6e66 6f72 6d61 7469 hen an informati │ │ │ │ +0026a130: 6f6e 616c 0a6d 6573 7361 6765 2069 7320 onal.message is │ │ │ │ +0026a140: 6469 7370 6c61 7965 6420 6166 7465 7220 displayed after │ │ │ │ +0026a150: 7468 6520 6669 6c65 2069 7320 6c6f 6164 the file is load │ │ │ │ +0026a160: 6564 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ed...See also.== │ │ │ │ +0026a170: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +0026a180: 6520 7061 7468 3a20 7061 7468 2c20 2d2d e path: path, -- │ │ │ │ +0026a190: 206c 6973 7420 6f66 2064 6972 6563 746f list of directo │ │ │ │ +0026a1a0: 7269 6573 2074 6f20 6c6f 6f6b 2069 6e0a ries to look in. │ │ │ │ +0026a1b0: 2020 2a20 2a6e 6f74 6520 6e65 6564 733a * *note needs: │ │ │ │ +0026a1c0: 206e 6565 6473 2c20 2d2d 2072 6561 6420 needs, -- read │ │ │ │ +0026a1d0: 4d61 6361 756c 6179 3220 636f 6d6d 616e Macaulay2 comman │ │ │ │ +0026a1e0: 6473 2069 6620 6e65 6365 7373 6172 790a ds if necessary. │ │ │ │ +0026a1f0: 2020 2a20 2a6e 6f74 6520 696e 7075 743a * *note input: │ │ │ │ +0026a200: 2069 6e70 7574 2c20 2d2d 2072 6561 6420 input, -- read │ │ │ │ +0026a210: 4d61 6361 756c 6179 3220 636f 6d6d 616e Macaulay2 comman │ │ │ │ +0026a220: 6473 2061 6e64 2065 6368 6f0a 2020 2a20 ds and echo. * │ │ │ │ +0026a230: 2a6e 6f74 6520 6e6f 7469 6679 3a20 6e6f *note notify: no │ │ │ │ +0026a240: 7469 6679 2c20 2d2d 2077 6865 7468 6572 tify, -- whether │ │ │ │ +0026a250: 2074 6f20 6e6f 7469 6679 2074 6865 2075 to notify the u │ │ │ │ +0026a260: 7365 7220 7768 656e 2061 2066 696c 6520 ser when a file │ │ │ │ +0026a270: 6973 206c 6f61 6465 640a 0a46 6f72 2074 is loaded..For t │ │ │ │ +0026a280: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0026a290: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0026a2a0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0026a2b0: 7465 206c 6f61 643a 206c 6f61 642c 2069 te load: load, i │ │ │ │ +0026a2c0: 7320 6120 2a6e 6f74 6520 6675 6e63 7469 s a *note functi │ │ │ │ +0026a2d0: 6f6e 2063 6c6f 7375 7265 3a20 4675 6e63 on closure: Func │ │ │ │ +0026a2e0: 7469 6f6e 436c 6f73 7572 652c 2e0a 0a2d tionClosure,...- │ │ │ │ 0026a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a310: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0026a320: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0026a330: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0026a340: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0026a350: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0026a360: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0026a370: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0026a380: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -0026a390: 6f76 5f73 7973 7465 6d2e 6d32 3a32 3134 ov_system.m2:214 │ │ │ │ -0026a3a0: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ -0026a3b0: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ -0026a3c0: 6f64 653a 206e 6565 6473 2c20 4e65 7874 ode: needs, Next │ │ │ │ -0026a3d0: 3a20 656e 642c 2050 7265 763a 206c 6f61 : end, Prev: loa │ │ │ │ -0026a3e0: 642c 2055 703a 2073 7973 7465 6d20 6661 d, Up: system fa │ │ │ │ -0026a3f0: 6369 6c69 7469 6573 0a0a 6e65 6564 7320 cilities..needs │ │ │ │ -0026a400: 2d2d 2072 6561 6420 4d61 6361 756c 6179 -- read Macaulay │ │ │ │ -0026a410: 3220 636f 6d6d 616e 6473 2069 6620 6e65 2 commands if ne │ │ │ │ -0026a420: 6365 7373 6172 790a 2a2a 2a2a 2a2a 2a2a cessary.******** │ │ │ │ -0026a430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026a440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026a450: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -0026a460: 3a20 0a20 2020 2020 2020 206e 6565 6473 : . needs │ │ │ │ -0026a470: 2022 6622 0a20 202a 2043 6f6e 7365 7175 "f". * Consequ │ │ │ │ -0026a480: 656e 6365 733a 0a20 2020 2020 202a 2054 ences:. * T │ │ │ │ -0026a490: 6865 2066 696c 6520 6e61 6d65 6420 6620 he file named f │ │ │ │ -0026a4a0: 6973 206c 6f61 6465 6420 7769 7468 202a is loaded with * │ │ │ │ -0026a4b0: 6e6f 7465 206c 6f61 643a 206c 6f61 642c note load: load, │ │ │ │ -0026a4c0: 2069 6620 6974 2068 6173 6e27 7420 6265 if it hasn't be │ │ │ │ -0026a4d0: 656e 0a20 2020 2020 2020 206c 6f61 6465 en. loade │ │ │ │ -0026a4e0: 6420 7965 743b 2069 6620 6974 2068 6173 d yet; if it has │ │ │ │ -0026a4f0: 2063 6861 6e67 6564 2073 696e 6365 2074 changed since t │ │ │ │ -0026a500: 6865 206c 6173 7420 7469 6d65 2069 7420 he last time it │ │ │ │ -0026a510: 7761 7320 6c6f 6164 6564 2c20 6974 0a20 was loaded, it. │ │ │ │ -0026a520: 2020 2020 2020 2077 696c 6c20 6265 206c will be l │ │ │ │ -0026a530: 6f61 6465 6420 6167 6169 6e2c 2066 726f oaded again, fro │ │ │ │ -0026a540: 6d20 7468 6520 7361 6d65 206c 6f63 6174 m the same locat │ │ │ │ -0026a550: 696f 6e20 6173 2074 6865 2074 696d 6520 ion as the time │ │ │ │ -0026a560: 6265 666f 7265 2c0a 2020 2020 2020 2020 before,. │ │ │ │ -0026a570: 7769 7468 6f75 7420 7365 6172 6368 696e without searchin │ │ │ │ -0026a580: 6720 616c 6f6e 6720 7468 6520 2a6e 6f74 g along the *not │ │ │ │ -0026a590: 6520 7061 7468 3a20 7061 7468 2c2e 0a0a e path: path,... │ │ │ │ -0026a5a0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0026a5b0: 3d3d 3d3d 3d3d 3d0a 0a49 6620 7468 6520 =======..If the │ │ │ │ -0026a5c0: 7661 7269 6162 6c65 202a 6e6f 7465 206e variable *note n │ │ │ │ -0026a5d0: 6f74 6966 793a 206e 6f74 6966 792c 2069 otify: notify, i │ │ │ │ -0026a5e0: 7320 7365 7420 746f 2074 7275 652c 2074 s set to true, t │ │ │ │ -0026a5f0: 6865 6e20 616e 2069 6e66 6f72 6d61 7469 hen an informati │ │ │ │ -0026a600: 6f6e 616c 0a6d 6573 7361 6765 2069 7320 onal.message is │ │ │ │ -0026a610: 6469 7370 6c61 7965 6420 6166 7465 7220 displayed after │ │ │ │ -0026a620: 7468 6520 6669 6c65 2069 7320 6c6f 6164 the file is load │ │ │ │ -0026a630: 6564 2e0a 0a46 6f72 2074 6865 2070 726f ed...For the pro │ │ │ │ -0026a640: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0026a650: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0026a660: 6f62 6a65 6374 202a 6e6f 7465 206e 6565 object *note nee │ │ │ │ -0026a670: 6473 3a20 6e65 6564 732c 2069 7320 6120 ds: needs, is a │ │ │ │ -0026a680: 2a6e 6f74 6520 6675 6e63 7469 6f6e 2063 *note function c │ │ │ │ -0026a690: 6c6f 7375 7265 3a20 4675 6e63 7469 6f6e losure: Function │ │ │ │ -0026a6a0: 436c 6f73 7572 652c 2e0a 0a2d 2d2d 2d2d Closure,...----- │ │ │ │ -0026a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0026a340: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0026a350: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0026a360: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0026a370: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0026a380: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0026a390: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0026a3a0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0026a3b0: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0026a3c0: 3a32 3134 3a30 2e0a 1f0a 4669 6c65 3a20 :214:0....File: │ │ │ │ +0026a3d0: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +0026a3e0: 6f2c 204e 6f64 653a 206e 6565 6473 2c20 o, Node: needs, │ │ │ │ +0026a3f0: 4e65 7874 3a20 656e 642c 2050 7265 763a Next: end, Prev: │ │ │ │ +0026a400: 206c 6f61 642c 2055 703a 2073 7973 7465 load, Up: syste │ │ │ │ +0026a410: 6d20 6661 6369 6c69 7469 6573 0a0a 6e65 m facilities..ne │ │ │ │ +0026a420: 6564 7320 2d2d 2072 6561 6420 4d61 6361 eds -- read Maca │ │ │ │ +0026a430: 756c 6179 3220 636f 6d6d 616e 6473 2069 ulay2 commands i │ │ │ │ +0026a440: 6620 6e65 6365 7373 6172 790a 2a2a 2a2a f necessary.**** │ │ │ │ +0026a450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026a460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026a470: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ +0026a480: 7361 6765 3a20 0a20 2020 2020 2020 206e sage: . n │ │ │ │ +0026a490: 6565 6473 2022 6622 0a20 202a 2043 6f6e eeds "f". * Con │ │ │ │ +0026a4a0: 7365 7175 656e 6365 733a 0a20 2020 2020 sequences:. │ │ │ │ +0026a4b0: 202a 2054 6865 2066 696c 6520 6e61 6d65 * The file name │ │ │ │ +0026a4c0: 6420 6620 6973 206c 6f61 6465 6420 7769 d f is loaded wi │ │ │ │ +0026a4d0: 7468 202a 6e6f 7465 206c 6f61 643a 206c th *note load: l │ │ │ │ +0026a4e0: 6f61 642c 2069 6620 6974 2068 6173 6e27 oad, if it hasn' │ │ │ │ +0026a4f0: 7420 6265 656e 0a20 2020 2020 2020 206c t been. l │ │ │ │ +0026a500: 6f61 6465 6420 7965 743b 2069 6620 6974 oaded yet; if it │ │ │ │ +0026a510: 2068 6173 2063 6861 6e67 6564 2073 696e has changed sin │ │ │ │ +0026a520: 6365 2074 6865 206c 6173 7420 7469 6d65 ce the last time │ │ │ │ +0026a530: 2069 7420 7761 7320 6c6f 6164 6564 2c20 it was loaded, │ │ │ │ +0026a540: 6974 0a20 2020 2020 2020 2077 696c 6c20 it. will │ │ │ │ +0026a550: 6265 206c 6f61 6465 6420 6167 6169 6e2c be loaded again, │ │ │ │ +0026a560: 2066 726f 6d20 7468 6520 7361 6d65 206c from the same l │ │ │ │ +0026a570: 6f63 6174 696f 6e20 6173 2074 6865 2074 ocation as the t │ │ │ │ +0026a580: 696d 6520 6265 666f 7265 2c0a 2020 2020 ime before,. │ │ │ │ +0026a590: 2020 2020 7769 7468 6f75 7420 7365 6172 without sear │ │ │ │ +0026a5a0: 6368 696e 6720 616c 6f6e 6720 7468 6520 ching along the │ │ │ │ +0026a5b0: 2a6e 6f74 6520 7061 7468 3a20 7061 7468 *note path: path │ │ │ │ +0026a5c0: 2c2e 0a0a 4465 7363 7269 7074 696f 6e0a ,...Description. │ │ │ │ +0026a5d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 ===========..If │ │ │ │ +0026a5e0: 7468 6520 7661 7269 6162 6c65 202a 6e6f the variable *no │ │ │ │ +0026a5f0: 7465 206e 6f74 6966 793a 206e 6f74 6966 te notify: notif │ │ │ │ +0026a600: 792c 2069 7320 7365 7420 746f 2074 7275 y, is set to tru │ │ │ │ +0026a610: 652c 2074 6865 6e20 616e 2069 6e66 6f72 e, then an infor │ │ │ │ +0026a620: 6d61 7469 6f6e 616c 0a6d 6573 7361 6765 mational.message │ │ │ │ +0026a630: 2069 7320 6469 7370 6c61 7965 6420 6166 is displayed af │ │ │ │ +0026a640: 7465 7220 7468 6520 6669 6c65 2069 7320 ter the file is │ │ │ │ +0026a650: 6c6f 6164 6564 2e0a 0a46 6f72 2074 6865 loaded...For the │ │ │ │ +0026a660: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0026a670: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0026a680: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0026a690: 206e 6565 6473 3a20 6e65 6564 732c 2069 needs: needs, i │ │ │ │ +0026a6a0: 7320 6120 2a6e 6f74 6520 6675 6e63 7469 s a *note functi │ │ │ │ +0026a6b0: 6f6e 2063 6c6f 7375 7265 3a20 4675 6e63 on closure: Func │ │ │ │ +0026a6c0: 7469 6f6e 436c 6f73 7572 652c 2e0a 0a2d tionClosure,...- │ │ │ │ 0026a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026a6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0026a700: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0026a710: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0026a720: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0026a730: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0026a740: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0026a750: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0026a760: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -0026a770: 6f76 5f73 7973 7465 6d2e 6d32 3a32 3235 ov_system.m2:225 │ │ │ │ -0026a780: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ -0026a790: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ -0026a7a0: 6f64 653a 2065 6e64 2c20 4e65 7874 3a20 ode: end, Next: │ │ │ │ -0026a7b0: 6c6f 6164 6564 4669 6c65 732c 2050 7265 loadedFiles, Pre │ │ │ │ -0026a7c0: 763a 206e 6565 6473 2c20 5570 3a20 7379 v: needs, Up: sy │ │ │ │ -0026a7d0: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ -0026a7e0: 0a65 6e64 202d 2d20 7374 6f70 206c 6f61 .end -- stop loa │ │ │ │ -0026a7f0: 6469 6e67 2061 2066 696c 650a 2a2a 2a2a ding a file.**** │ │ │ │ -0026a800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026a810: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -0026a820: 653a 200a 2020 2020 2020 2020 656e 640a e: . end. │ │ │ │ -0026a830: 2020 2a20 436f 6e73 6571 7565 6e63 6573 * Consequences │ │ │ │ -0026a840: 3a0a 2020 2020 2020 2a20 5468 6973 2073 :. * This s │ │ │ │ -0026a850: 796d 626f 6c2c 2065 6e63 6f75 6e74 6572 ymbol, encounter │ │ │ │ -0026a860: 6564 2061 7420 746f 7020 6c65 7665 6c2c ed at top level, │ │ │ │ -0026a870: 2063 6175 7365 7320 6c6f 6164 696e 6720 causes loading │ │ │ │ -0026a880: 6f66 2074 6865 2063 7572 7265 6e74 0a20 of the current. │ │ │ │ -0026a890: 2020 2020 2020 2069 6e70 7574 2066 696c input fil │ │ │ │ -0026a8a0: 6520 746f 2062 6520 7374 6f70 7065 642e e to be stopped. │ │ │ │ -0026a8b0: 0a20 2020 2020 202a 2041 6c74 6572 6e61 . * Alterna │ │ │ │ -0026a8c0: 7469 7665 6c79 2c20 696e 2074 6865 2064 tively, in the d │ │ │ │ -0026a8d0: 6562 7567 6765 7220 6974 2063 6175 7365 ebugger it cause │ │ │ │ -0026a8e0: 7320 7468 6520 6375 7272 656e 7420 636f s the current co │ │ │ │ -0026a8f0: 6465 2074 6f20 6265 0a20 2020 2020 2020 de to be. │ │ │ │ -0026a900: 2061 6261 6e64 6f6e 6564 2c20 616e 6420 abandoned, and │ │ │ │ -0026a910: 7468 6520 6465 6275 6767 6572 2074 6f20 the debugger to │ │ │ │ -0026a920: 6265 2072 652d 656e 7465 7265 6420 6f6e be re-entered on │ │ │ │ -0026a930: 6520 6c65 7665 6c20 6675 7274 6865 7220 e level further │ │ │ │ -0026a940: 7570 2e20 2049 660a 2020 2020 2020 2020 up. If. │ │ │ │ -0026a950: 7468 6572 6520 6172 6520 6e6f 206d 6f72 there are no mor │ │ │ │ -0026a960: 6520 7375 7370 656e 6465 6420 6c65 7665 e suspended leve │ │ │ │ -0026a970: 6c73 206f 6620 6578 6563 7574 696f 6e2c ls of execution, │ │ │ │ -0026a980: 2074 6865 6e20 636f 6e74 726f 6c20 6973 then control is │ │ │ │ -0026a990: 0a20 2020 2020 2020 2072 6574 7572 6e65 . returne │ │ │ │ -0026a9a0: 6420 746f 2074 6865 2074 6f70 206c 6576 d to the top lev │ │ │ │ -0026a9b0: 656c 2e0a 0a44 6573 6372 6970 7469 6f6e el...Description │ │ │ │ -0026a9c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ -0026a9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026a9f0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6c6f ------+.|i1 : lo │ │ │ │ -0026aa00: 6164 2022 4d61 6361 756c 6179 3244 6f63 ad "Macaulay2Doc │ │ │ │ -0026aa10: 2f64 656d 6f73 2f64 656d 6f33 2e6d 3222 /demos/demo3.m2" │ │ │ │ -0026aa20: 7c0a 7c68 6920 2020 2020 2020 2020 2020 |.|hi │ │ │ │ -0026aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026aa40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0026aa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026aa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026aa70: 2d2d 2d2d 2b0a 7c69 3220 3a20 6765 7420 ----+.|i2 : get │ │ │ │ -0026aa80: 6c6f 6164 6564 4669 6c65 7323 2823 6c6f loadedFiles#(#lo │ │ │ │ -0026aa90: 6164 6564 4669 6c65 732d 3129 2020 7c0a adedFiles-1) |. │ │ │ │ -0026aaa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0026aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026aac0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0026aad0: 7072 696e 7420 6869 2020 2020 2020 2020 print hi │ │ │ │ -0026aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026aaf0: 2020 7c0a 7c20 2020 2020 656e 6420 2020 |.| end │ │ │ │ +0026a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0026a720: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0026a730: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0026a740: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0026a750: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0026a760: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0026a770: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0026a780: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0026a790: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0026a7a0: 3a32 3235 3a30 2e0a 1f0a 4669 6c65 3a20 :225:0....File: │ │ │ │ +0026a7b0: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +0026a7c0: 6f2c 204e 6f64 653a 2065 6e64 2c20 4e65 o, Node: end, Ne │ │ │ │ +0026a7d0: 7874 3a20 6c6f 6164 6564 4669 6c65 732c xt: loadedFiles, │ │ │ │ +0026a7e0: 2050 7265 763a 206e 6565 6473 2c20 5570 Prev: needs, Up │ │ │ │ +0026a7f0: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ +0026a800: 6965 730a 0a65 6e64 202d 2d20 7374 6f70 ies..end -- stop │ │ │ │ +0026a810: 206c 6f61 6469 6e67 2061 2066 696c 650a loading a file. │ │ │ │ +0026a820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026a830: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +0026a840: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0026a850: 656e 640a 2020 2a20 436f 6e73 6571 7565 end. * Conseque │ │ │ │ +0026a860: 6e63 6573 3a0a 2020 2020 2020 2a20 5468 nces:. * Th │ │ │ │ +0026a870: 6973 2073 796d 626f 6c2c 2065 6e63 6f75 is symbol, encou │ │ │ │ +0026a880: 6e74 6572 6564 2061 7420 746f 7020 6c65 ntered at top le │ │ │ │ +0026a890: 7665 6c2c 2063 6175 7365 7320 6c6f 6164 vel, causes load │ │ │ │ +0026a8a0: 696e 6720 6f66 2074 6865 2063 7572 7265 ing of the curre │ │ │ │ +0026a8b0: 6e74 0a20 2020 2020 2020 2069 6e70 7574 nt. input │ │ │ │ +0026a8c0: 2066 696c 6520 746f 2062 6520 7374 6f70 file to be stop │ │ │ │ +0026a8d0: 7065 642e 0a20 2020 2020 202a 2041 6c74 ped.. * Alt │ │ │ │ +0026a8e0: 6572 6e61 7469 7665 6c79 2c20 696e 2074 ernatively, in t │ │ │ │ +0026a8f0: 6865 2064 6562 7567 6765 7220 6974 2063 he debugger it c │ │ │ │ +0026a900: 6175 7365 7320 7468 6520 6375 7272 656e auses the curren │ │ │ │ +0026a910: 7420 636f 6465 2074 6f20 6265 0a20 2020 t code to be. │ │ │ │ +0026a920: 2020 2020 2061 6261 6e64 6f6e 6564 2c20 abandoned, │ │ │ │ +0026a930: 616e 6420 7468 6520 6465 6275 6767 6572 and the debugger │ │ │ │ +0026a940: 2074 6f20 6265 2072 652d 656e 7465 7265 to be re-entere │ │ │ │ +0026a950: 6420 6f6e 6520 6c65 7665 6c20 6675 7274 d one level furt │ │ │ │ +0026a960: 6865 7220 7570 2e20 2049 660a 2020 2020 her up. If. │ │ │ │ +0026a970: 2020 2020 7468 6572 6520 6172 6520 6e6f there are no │ │ │ │ +0026a980: 206d 6f72 6520 7375 7370 656e 6465 6420 more suspended │ │ │ │ +0026a990: 6c65 7665 6c73 206f 6620 6578 6563 7574 levels of execut │ │ │ │ +0026a9a0: 696f 6e2c 2074 6865 6e20 636f 6e74 726f ion, then contro │ │ │ │ +0026a9b0: 6c20 6973 0a20 2020 2020 2020 2072 6574 l is. ret │ │ │ │ +0026a9c0: 7572 6e65 6420 746f 2074 6865 2074 6f70 urned to the top │ │ │ │ +0026a9d0: 206c 6576 656c 2e0a 0a44 6573 6372 6970 level...Descrip │ │ │ │ +0026a9e0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0026a9f0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +0026aa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0026aa20: 3a20 6c6f 6164 2022 4d61 6361 756c 6179 : load "Macaulay │ │ │ │ +0026aa30: 3244 6f63 2f64 656d 6f73 2f64 656d 6f33 2Doc/demos/demo3 │ │ │ │ +0026aa40: 2e6d 3222 7c0a 7c68 6920 2020 2020 2020 .m2"|.|hi │ │ │ │ +0026aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026aa60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0026aa70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0026aa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026aa90: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0026aaa0: 6765 7420 6c6f 6164 6564 4669 6c65 7323 get loadedFiles# │ │ │ │ +0026aab0: 2823 6c6f 6164 6564 4669 6c65 732d 3129 (#loadedFiles-1) │ │ │ │ +0026aac0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026aae0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0026aaf0: 3220 3d20 7072 696e 7420 6869 2020 2020 2 = print hi │ │ │ │ 0026ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ab10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0026ab20: 2020 2020 7072 696e 7420 686f 2020 2020 print ho │ │ │ │ +0026ab10: 2020 2020 2020 7c0a 7c20 2020 2020 656e |.| en │ │ │ │ +0026ab20: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0026ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ab40: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0026ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ab70: 2b0a 0a48 6572 6520 6973 2061 6e20 6578 +..Here is an ex │ │ │ │ -0026ab80: 616d 706c 6520 6f66 2069 7473 2075 7365 ample of its use │ │ │ │ -0026ab90: 2069 6e20 7468 6520 6465 6275 6767 6572 in the debugger │ │ │ │ -0026aba0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -0026abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ab40: 7c0a 7c20 2020 2020 7072 696e 7420 686f |.| print ho │ │ │ │ +0026ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ab60: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0026ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ab90: 2d2d 2d2d 2b0a 0a48 6572 6520 6973 2061 ----+..Here is a │ │ │ │ +0026aba0: 6e20 6578 616d 706c 6520 6f66 2069 7473 n example of its │ │ │ │ +0026abb0: 2075 7365 2069 6e20 7468 6520 6465 6275 use in the debu │ │ │ │ +0026abc0: 6767 6572 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d gger...+-------- │ │ │ │ 0026abd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026abf0: 2d2b 0a7c 6933 203a 206c 6f61 6420 224d -+.|i3 : load "M │ │ │ │ -0026ac00: 6163 6175 6c61 7932 446f 632f 6465 6d6f acaulay2Doc/demo │ │ │ │ -0026ac10: 732f 6465 6d6f 312e 6d32 2220 2020 2020 s/demo1.m2" │ │ │ │ -0026ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ac40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ac60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ac10: 2d2d 2d2d 2d2b 0a7c 6933 203a 206c 6f61 -----+.|i3 : loa │ │ │ │ +0026ac20: 6420 224d 6163 6175 6c61 7932 446f 632f d "Macaulay2Doc/ │ │ │ │ +0026ac30: 6465 6d6f 732f 6465 6d6f 312e 6d32 2220 demos/demo1.m2" │ │ │ │ +0026ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ac60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0026ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ac90: 2d2b 0a7c 6934 203a 2067 2032 2020 2020 -+.|i4 : g 2 │ │ │ │ -0026aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026acb0: 2d2d 2d2d 2d2b 0a7c 6934 203a 2067 2032 -----+.|i4 : g 2 │ │ │ │ 0026acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ace0: 207c 0a7c 2f75 7372 2f73 6861 7265 2f4d |.|/usr/share/M │ │ │ │ -0026acf0: 6163 6175 6c61 7932 2f4d 6163 6175 6c61 acaulay2/Macaula │ │ │ │ -0026ad00: 7932 446f 632f 6465 6d6f 732f 6465 6d6f y2Doc/demos/demo │ │ │ │ -0026ad10: 312e 6d32 3a38 3a31 313a 2833 293a 5b32 1.m2:8:11:(3):[2 │ │ │ │ -0026ad20: 5d3a 2065 7272 6f72 2020 2020 2020 2020 ]: error │ │ │ │ -0026ad30: 207c 0a7c 2f75 7372 2f73 6861 7265 2f4d |.|/usr/share/M │ │ │ │ -0026ad40: 6163 6175 6c61 7932 2f4d 6163 6175 6c61 acaulay2/Macaula │ │ │ │ -0026ad50: 7932 446f 632f 6465 6d6f 732f 6465 6d6f y2Doc/demos/demo │ │ │ │ -0026ad60: 312e 6d32 3a38 3a31 313a 2833 293a 2065 1.m2:8:11:(3): e │ │ │ │ -0026ad70: 6e74 6572 696e 6720 2020 2020 2020 2020 ntering │ │ │ │ -0026ad80: 207c 0a7c 2f75 7372 2f73 6861 7265 2f4d |.|/usr/share/M │ │ │ │ -0026ad90: 6163 6175 6c61 7932 2f20 2020 2020 2020 acaulay2/ │ │ │ │ -0026ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ad00: 2020 2020 207c 0a7c 2f75 7372 2f73 6861 |.|/usr/sha │ │ │ │ +0026ad10: 7265 2f4d 6163 6175 6c61 7932 2f4d 6163 re/Macaulay2/Mac │ │ │ │ +0026ad20: 6175 6c61 7932 446f 632f 6465 6d6f 732f aulay2Doc/demos/ │ │ │ │ +0026ad30: 6465 6d6f 312e 6d32 3a38 3a31 313a 2833 demo1.m2:8:11:(3 │ │ │ │ +0026ad40: 293a 5b32 5d3a 2065 7272 6f72 2020 2020 ):[2]: error │ │ │ │ +0026ad50: 2020 2020 207c 0a7c 2f75 7372 2f73 6861 |.|/usr/sha │ │ │ │ +0026ad60: 7265 2f4d 6163 6175 6c61 7932 2f4d 6163 re/Macaulay2/Mac │ │ │ │ +0026ad70: 6175 6c61 7932 446f 632f 6465 6d6f 732f aulay2Doc/demos/ │ │ │ │ +0026ad80: 6465 6d6f 312e 6d32 3a38 3a31 313a 2833 demo1.m2:8:11:(3 │ │ │ │ +0026ad90: 293a 2065 6e74 6572 696e 6720 2020 2020 ): entering │ │ │ │ +0026ada0: 2020 2020 207c 0a7c 2f75 7372 2f73 6861 |.|/usr/sha │ │ │ │ +0026adb0: 7265 2f4d 6163 6175 6c61 7932 2f20 2020 re/Macaulay2/ │ │ │ │ 0026adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026add0: 207c 0a7c 4d61 6361 756c 6179 3244 6f63 |.|Macaulay2Doc │ │ │ │ -0026ade0: 2f64 656d 6f73 2f64 656d 6f31 2e6d 323a /demos/demo1.m2: │ │ │ │ -0026adf0: 383a 3130 2d38 3a31 333a 202d 2d73 6f75 8:10-8:13: --sou │ │ │ │ -0026ae00: 7263 6520 636f 6465 3a20 2020 2020 2020 rce code: │ │ │ │ -0026ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ae20: 207c 0a7c 2020 2020 2062 203a 3d20 312f |.| b := 1/ │ │ │ │ -0026ae30: 783b 2020 2020 2020 2020 2020 2020 2020 x; │ │ │ │ -0026ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026adf0: 2020 2020 207c 0a7c 4d61 6361 756c 6179 |.|Macaulay │ │ │ │ +0026ae00: 3244 6f63 2f64 656d 6f73 2f64 656d 6f31 2Doc/demos/demo1 │ │ │ │ +0026ae10: 2e6d 323a 383a 3130 2d38 3a31 333a 202d .m2:8:10-8:13: - │ │ │ │ +0026ae20: 2d73 6f75 7263 6520 636f 6465 3a20 2020 -source code: │ │ │ │ +0026ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ae40: 2020 2020 207c 0a7c 2020 2020 2062 203a |.| b : │ │ │ │ +0026ae50: 3d20 312f 783b 2020 2020 2020 2020 2020 = 1/x; │ │ │ │ 0026ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ae70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ -0026ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ae90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ae90: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 0026aea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026aec0: 2d7c 0a7c 3a20 6469 7669 7369 6f6e 2062 -|.|: division b │ │ │ │ -0026aed0: 7920 7a65 726f 2020 2020 2020 2020 2020 y zero │ │ │ │ -0026aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026aee0: 2d2d 2d2d 2d7c 0a7c 3a20 6469 7669 7369 -----|.|: divisi │ │ │ │ +0026aef0: 6f6e 2062 7920 7a65 726f 2020 2020 2020 on by zero │ │ │ │ 0026af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026af10: 207c 0a7c 6465 6275 6767 6572 2028 656e |.|debugger (en │ │ │ │ -0026af20: 7465 7220 2768 656c 7027 2074 6f20 7365 ter 'help' to se │ │ │ │ -0026af30: 6520 636f 6d6d 616e 6473 2920 2020 2020 e commands) │ │ │ │ -0026af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026af60: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026af30: 2020 2020 207c 0a7c 6465 6275 6767 6572 |.|debugger │ │ │ │ +0026af40: 2028 656e 7465 7220 2768 656c 7027 2074 (enter 'help' t │ │ │ │ +0026af50: 6f20 7365 6520 636f 6d6d 616e 6473 2920 o see commands) │ │ │ │ +0026af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026af80: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0026af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026afb0: 2d2b 0a7c 6969 3520 3a20 656e 6420 2020 -+.|ii5 : end │ │ │ │ -0026afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026afd0: 2d2d 2d2d 2d2b 0a7c 6969 3520 3a20 656e -----+.|ii5 : en │ │ │ │ +0026afe0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0026aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b000: 207c 0a7c 2f75 7372 2f73 6861 7265 2f4d |.|/usr/share/M │ │ │ │ -0026b010: 6163 6175 6c61 7932 2f4d 6163 6175 6c61 acaulay2/Macaula │ │ │ │ -0026b020: 7932 446f 632f 6465 6d6f 732f 6465 6d6f y2Doc/demos/demo │ │ │ │ -0026b030: 312e 6d32 3a31 333a 3131 3a28 3329 3a20 1.m2:13:11:(3): │ │ │ │ -0026b040: 656e 7465 7269 6e67 2064 6562 7567 6765 entering debugge │ │ │ │ -0026b050: 727c 0a7c 2f75 7372 2f73 6861 7265 2f4d r|.|/usr/share/M │ │ │ │ -0026b060: 6163 6175 6c61 7932 2f20 2020 2020 2020 acaulay2/ │ │ │ │ -0026b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b020: 2020 2020 207c 0a7c 2f75 7372 2f73 6861 |.|/usr/sha │ │ │ │ +0026b030: 7265 2f4d 6163 6175 6c61 7932 2f4d 6163 re/Macaulay2/Mac │ │ │ │ +0026b040: 6175 6c61 7932 446f 632f 6465 6d6f 732f aulay2Doc/demos/ │ │ │ │ +0026b050: 6465 6d6f 312e 6d32 3a31 333a 3131 3a28 demo1.m2:13:11:( │ │ │ │ +0026b060: 3329 3a20 656e 7465 7269 6e67 2064 6562 3): entering deb │ │ │ │ +0026b070: 7567 6765 727c 0a7c 2f75 7372 2f73 6861 ugger|.|/usr/sha │ │ │ │ +0026b080: 7265 2f4d 6163 6175 6c61 7932 2f20 2020 re/Macaulay2/ │ │ │ │ 0026b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b0a0: 207c 0a7c 4d61 6361 756c 6179 3244 6f63 |.|Macaulay2Doc │ │ │ │ -0026b0b0: 2f64 656d 6f73 2f64 656d 6f31 2e6d 323a /demos/demo1.m2: │ │ │ │ -0026b0c0: 3133 3a31 302d 3133 3a31 363a 202d 2d73 13:10-13:16: --s │ │ │ │ -0026b0d0: 6f75 7263 6520 636f 6465 3a20 2020 2020 ource code: │ │ │ │ -0026b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b0f0: 207c 0a7c 2020 2020 2064 203a 3d20 6628 |.| d := f( │ │ │ │ -0026b100: 792d 3229 3b20 2020 2020 2020 2020 2020 y-2); │ │ │ │ -0026b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b0c0: 2020 2020 207c 0a7c 4d61 6361 756c 6179 |.|Macaulay │ │ │ │ +0026b0d0: 3244 6f63 2f64 656d 6f73 2f64 656d 6f31 2Doc/demos/demo1 │ │ │ │ +0026b0e0: 2e6d 323a 3133 3a31 302d 3133 3a31 363a .m2:13:10-13:16: │ │ │ │ +0026b0f0: 202d 2d73 6f75 7263 6520 636f 6465 3a20 --source code: │ │ │ │ +0026b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b110: 2020 2020 207c 0a7c 2020 2020 2064 203a |.| d : │ │ │ │ +0026b120: 3d20 6628 792d 3229 3b20 2020 2020 2020 = f(y-2); │ │ │ │ 0026b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b140: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ -0026b150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b160: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 0026b170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026b180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b190: 2d7c 0a7c 2865 6e74 6572 2027 6865 6c70 -|.|(enter 'help │ │ │ │ -0026b1a0: 2720 746f 2073 6565 2063 6f6d 6d61 6e64 ' to see command │ │ │ │ -0026b1b0: 7329 2020 2020 2020 2020 2020 2020 2020 s) │ │ │ │ -0026b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b1e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b1b0: 2d2d 2d2d 2d7c 0a7c 2865 6e74 6572 2027 -----|.|(enter ' │ │ │ │ +0026b1c0: 6865 6c70 2720 746f 2073 6565 2063 6f6d help' to see com │ │ │ │ +0026b1d0: 6d61 6e64 7329 2020 2020 2020 2020 2020 mands) │ │ │ │ +0026b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b200: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0026b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b230: 2d2b 0a7c 6969 3620 3a20 656e 6420 2020 -+.|ii6 : end │ │ │ │ -0026b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b250: 2d2d 2d2d 2d2b 0a7c 6969 3620 3a20 656e -----+.|ii6 : en │ │ │ │ +0026b260: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0026b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b280: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026b290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b2a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0026b2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026b2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b2d0: 2d2b 0a7c 6937 203a 2067 2033 2020 2020 -+.|i7 : g 3 │ │ │ │ -0026b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b2f0: 2d2d 2d2d 2d2b 0a7c 6937 203a 2067 2033 -----+.|i7 : g 3 │ │ │ │ 0026b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0026b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b370: 207c 0a7c 2020 2020 2037 2020 2020 2020 |.| 7 │ │ │ │ +0026b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b390: 2020 2020 207c 0a7c 2020 2020 2037 2020 |.| 7 │ │ │ │ 0026b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b3c0: 207c 0a7c 6f37 203d 202d 2020 2020 2020 |.|o7 = - │ │ │ │ +0026b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b3e0: 2020 2020 207c 0a7c 6f37 203d 202d 2020 |.|o7 = - │ │ │ │ 0026b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b410: 207c 0a7c 2020 2020 2032 2020 2020 2020 |.| 2 │ │ │ │ +0026b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b430: 2020 2020 207c 0a7c 2020 2020 2032 2020 |.| 2 │ │ │ │ 0026b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0026b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b4b0: 207c 0a7c 6f37 203a 2051 5120 2020 2020 |.|o7 : QQ │ │ │ │ +0026b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b4d0: 2020 2020 207c 0a7c 6f37 203a 2051 5120 |.|o7 : QQ │ │ │ │ 0026b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b500: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026b510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b520: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0026b530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026b540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b550: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -0026b560: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0026b570: 206e 6565 6473 3a20 6e65 6564 732c 202d needs: needs, - │ │ │ │ -0026b580: 2d20 7265 6164 204d 6163 6175 6c61 7932 - read Macaulay2 │ │ │ │ -0026b590: 2063 6f6d 6d61 6e64 7320 6966 206e 6563 commands if nec │ │ │ │ -0026b5a0: 6573 7361 7279 0a20 202a 202a 6e6f 7465 essary. * *note │ │ │ │ -0026b5b0: 206c 6f61 643a 206c 6f61 642c 202d 2d20 load: load, -- │ │ │ │ -0026b5c0: 7265 6164 204d 6163 6175 6c61 7932 2063 read Macaulay2 c │ │ │ │ -0026b5d0: 6f6d 6d61 6e64 730a 2020 2a20 2a6e 6f74 ommands. * *not │ │ │ │ -0026b5e0: 6520 696e 7075 743a 2069 6e70 7574 2c20 e input: input, │ │ │ │ -0026b5f0: 2d2d 2072 6561 6420 4d61 6361 756c 6179 -- read Macaulay │ │ │ │ -0026b600: 3220 636f 6d6d 616e 6473 2061 6e64 2065 2 commands and e │ │ │ │ -0026b610: 6368 6f0a 0a46 6f72 2074 6865 2070 726f cho..For the pro │ │ │ │ -0026b620: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0026b630: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0026b640: 6f62 6a65 6374 202a 6e6f 7465 2065 6e64 object *note end │ │ │ │ -0026b650: 3a20 656e 642c 2069 7320 6120 2a6e 6f74 : end, is a *not │ │ │ │ -0026b660: 6520 7379 6d62 6f6c 3a20 5379 6d62 6f6c e symbol: Symbol │ │ │ │ -0026b670: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -0026b680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b570: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +0026b580: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +0026b590: 6e6f 7465 206e 6565 6473 3a20 6e65 6564 note needs: need │ │ │ │ +0026b5a0: 732c 202d 2d20 7265 6164 204d 6163 6175 s, -- read Macau │ │ │ │ +0026b5b0: 6c61 7932 2063 6f6d 6d61 6e64 7320 6966 lay2 commands if │ │ │ │ +0026b5c0: 206e 6563 6573 7361 7279 0a20 202a 202a necessary. * * │ │ │ │ +0026b5d0: 6e6f 7465 206c 6f61 643a 206c 6f61 642c note load: load, │ │ │ │ +0026b5e0: 202d 2d20 7265 6164 204d 6163 6175 6c61 -- read Macaula │ │ │ │ +0026b5f0: 7932 2063 6f6d 6d61 6e64 730a 2020 2a20 y2 commands. * │ │ │ │ +0026b600: 2a6e 6f74 6520 696e 7075 743a 2069 6e70 *note input: inp │ │ │ │ +0026b610: 7574 2c20 2d2d 2072 6561 6420 4d61 6361 ut, -- read Maca │ │ │ │ +0026b620: 756c 6179 3220 636f 6d6d 616e 6473 2061 ulay2 commands a │ │ │ │ +0026b630: 6e64 2065 6368 6f0a 0a46 6f72 2074 6865 nd echo..For the │ │ │ │ +0026b640: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0026b650: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0026b660: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0026b670: 2065 6e64 3a20 656e 642c 2069 7320 6120 end: end, is a │ │ │ │ +0026b680: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 5379 *note symbol: Sy │ │ │ │ +0026b690: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ 0026b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b6c0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0026b6d0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0026b6e0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0026b6f0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0026b700: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0026b710: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0026b720: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -0026b730: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -0026b740: 656d 2e6d 323a 3235 323a 302e 0a1f 0a46 em.m2:252:0....F │ │ │ │ -0026b750: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -0026b760: 632e 696e 666f 2c20 4e6f 6465 3a20 6c6f c.info, Node: lo │ │ │ │ -0026b770: 6164 6564 4669 6c65 732c 204e 6578 743a adedFiles, Next: │ │ │ │ -0026b780: 2066 696c 6545 7869 7448 6f6f 6b73 2c20 fileExitHooks, │ │ │ │ -0026b790: 5072 6576 3a20 656e 642c 2055 703a 2073 Prev: end, Up: s │ │ │ │ -0026b7a0: 7973 7465 6d20 6661 6369 6c69 7469 6573 ystem facilities │ │ │ │ -0026b7b0: 0a0a 6c6f 6164 6564 4669 6c65 730a 2a2a ..loadedFiles.** │ │ │ │ -0026b7c0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 *********..Descr │ │ │ │ -0026b7d0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0026b7e0: 3d3d 0a0a 4166 7465 7220 6561 6368 2073 ==..After each s │ │ │ │ -0026b7f0: 6f75 7263 6520 6669 6c65 2069 7320 7375 ource file is su │ │ │ │ -0026b800: 6363 6573 7366 756c 6c79 206c 6f61 6465 ccessfully loade │ │ │ │ -0026b810: 642c 2074 6865 2066 756c 6c20 7061 7468 d, the full path │ │ │ │ -0026b820: 2074 6f20 7468 6520 6669 6c65 2069 730a to the file is. │ │ │ │ -0026b830: 7374 6f72 6564 2069 6e20 7468 6520 6861 stored in the ha │ │ │ │ -0026b840: 7368 2074 6162 6c65 202a 6e6f 7465 206c sh table *note l │ │ │ │ -0026b850: 6f61 6465 6446 696c 6573 3a20 6c6f 6164 oadedFiles: load │ │ │ │ -0026b860: 6564 4669 6c65 732c 2e20 2049 7420 6973 edFiles,. It is │ │ │ │ -0026b870: 2073 746f 7265 6420 6173 2074 6865 0a76 stored as the.v │ │ │ │ -0026b880: 616c 7565 2c20 7769 7468 2074 6865 2063 alue, with the c │ │ │ │ -0026b890: 6f72 7265 7370 6f6e 6469 6e67 206b 6579 orresponding key │ │ │ │ -0026b8a0: 2062 6569 6e67 2061 2073 6d61 6c6c 2069 being a small i │ │ │ │ -0026b8b0: 6e74 6567 6572 2c20 636f 6e73 6563 7574 nteger, consecut │ │ │ │ -0026b8c0: 6976 656c 790a 6173 7369 676e 6564 2c20 ively.assigned, │ │ │ │ -0026b8d0: 7374 6172 7469 6e67 2061 7420 302e 0a0a starting at 0... │ │ │ │ -0026b8e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0026b8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0026b900: 0a7c 6931 203a 206c 6f61 6465 6446 696c .|i1 : loadedFil │ │ │ │ -0026b910: 6573 2330 2020 2020 2020 2020 2020 2020 es#0 │ │ │ │ -0026b920: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0026b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b940: 207c 0a7c 6f31 203d 202f 7573 722f 7368 |.|o1 = /usr/sh │ │ │ │ -0026b950: 6172 652f 2020 2020 2020 2020 2020 2020 are/ │ │ │ │ -0026b960: 2020 7c0a 7c20 2020 2020 4d61 6361 756c |.| Macaul │ │ │ │ -0026b970: 6179 322f 436f 7265 2f76 6572 7369 6f6e ay2/Core/version │ │ │ │ -0026b980: 2e6d 327c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d .m2|.+---------- │ │ │ │ -0026b990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026b9a0: 2d2d 2d2d 2b0a 7c69 3220 3a20 236c 6f61 ----+.|i2 : #loa │ │ │ │ -0026b9b0: 6465 6446 696c 6573 2020 2020 2020 2020 dedFiles │ │ │ │ -0026b9c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0026b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026b9e0: 2020 2020 2020 7c0a 7c6f 3220 3d20 3135 |.|o2 = 15 │ │ │ │ -0026b9f0: 3132 2020 2020 2020 2020 2020 2020 2020 12 │ │ │ │ -0026ba00: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0026ba10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ba20: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -0026ba30: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0026ba40: 2a20 2a6e 6f74 6520 6c6f 6164 3a20 6c6f * *note load: lo │ │ │ │ -0026ba50: 6164 2c20 2d2d 2072 6561 6420 4d61 6361 ad, -- read Maca │ │ │ │ -0026ba60: 756c 6179 3220 636f 6d6d 616e 6473 0a0a ulay2 commands.. │ │ │ │ -0026ba70: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0026ba80: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0026ba90: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0026baa0: 7420 2a6e 6f74 6520 6c6f 6164 6564 4669 t *note loadedFi │ │ │ │ -0026bab0: 6c65 733a 206c 6f61 6465 6446 696c 6573 les: loadedFiles │ │ │ │ -0026bac0: 2c20 6973 2061 202a 6e6f 7465 206d 7574 , is a *note mut │ │ │ │ -0026bad0: 6162 6c65 2068 6173 6820 7461 626c 653a able hash table: │ │ │ │ -0026bae0: 0a4d 7574 6162 6c65 4861 7368 5461 626c .MutableHashTabl │ │ │ │ -0026baf0: 652c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d e,...----------- │ │ │ │ -0026bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b6e0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0026b6f0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0026b700: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0026b710: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0026b720: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0026b730: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0026b740: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +0026b750: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +0026b760: 7379 7374 656d 2e6d 323a 3235 323a 302e system.m2:252:0. │ │ │ │ +0026b770: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +0026b780: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +0026b790: 3a20 6c6f 6164 6564 4669 6c65 732c 204e : loadedFiles, N │ │ │ │ +0026b7a0: 6578 743a 2066 696c 6545 7869 7448 6f6f ext: fileExitHoo │ │ │ │ +0026b7b0: 6b73 2c20 5072 6576 3a20 656e 642c 2055 ks, Prev: end, U │ │ │ │ +0026b7c0: 703a 2073 7973 7465 6d20 6661 6369 6c69 p: system facili │ │ │ │ +0026b7d0: 7469 6573 0a0a 6c6f 6164 6564 4669 6c65 ties..loadedFile │ │ │ │ +0026b7e0: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 s.***********..D │ │ │ │ +0026b7f0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0026b800: 3d3d 3d3d 3d3d 0a0a 4166 7465 7220 6561 ======..After ea │ │ │ │ +0026b810: 6368 2073 6f75 7263 6520 6669 6c65 2069 ch source file i │ │ │ │ +0026b820: 7320 7375 6363 6573 7366 756c 6c79 206c s successfully l │ │ │ │ +0026b830: 6f61 6465 642c 2074 6865 2066 756c 6c20 oaded, the full │ │ │ │ +0026b840: 7061 7468 2074 6f20 7468 6520 6669 6c65 path to the file │ │ │ │ +0026b850: 2069 730a 7374 6f72 6564 2069 6e20 7468 is.stored in th │ │ │ │ +0026b860: 6520 6861 7368 2074 6162 6c65 202a 6e6f e hash table *no │ │ │ │ +0026b870: 7465 206c 6f61 6465 6446 696c 6573 3a20 te loadedFiles: │ │ │ │ +0026b880: 6c6f 6164 6564 4669 6c65 732c 2e20 2049 loadedFiles,. I │ │ │ │ +0026b890: 7420 6973 2073 746f 7265 6420 6173 2074 t is stored as t │ │ │ │ +0026b8a0: 6865 0a76 616c 7565 2c20 7769 7468 2074 he.value, with t │ │ │ │ +0026b8b0: 6865 2063 6f72 7265 7370 6f6e 6469 6e67 he corresponding │ │ │ │ +0026b8c0: 206b 6579 2062 6569 6e67 2061 2073 6d61 key being a sma │ │ │ │ +0026b8d0: 6c6c 2069 6e74 6567 6572 2c20 636f 6e73 ll integer, cons │ │ │ │ +0026b8e0: 6563 7574 6976 656c 790a 6173 7369 676e ecutively.assign │ │ │ │ +0026b8f0: 6564 2c20 7374 6172 7469 6e67 2061 7420 ed, starting at │ │ │ │ +0026b900: 302e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 0...+----------- │ │ │ │ +0026b910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b920: 2d2d 2d2b 0a7c 6931 203a 206c 6f61 6465 ---+.|i1 : loade │ │ │ │ +0026b930: 6446 696c 6573 2330 2020 2020 2020 2020 dFiles#0 │ │ │ │ +0026b940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0026b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026b960: 2020 2020 207c 0a7c 6f31 203d 202f 7573 |.|o1 = /us │ │ │ │ +0026b970: 722f 7368 6172 652f 2020 2020 2020 2020 r/share/ │ │ │ │ +0026b980: 2020 2020 2020 7c0a 7c20 2020 2020 4d61 |.| Ma │ │ │ │ +0026b990: 6361 756c 6179 322f 436f 7265 2f76 6572 caulay2/Core/ver │ │ │ │ +0026b9a0: 7369 6f6e 2e6d 327c 0a2b 2d2d 2d2d 2d2d sion.m2|.+------ │ │ │ │ +0026b9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026b9c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0026b9d0: 236c 6f61 6465 6446 696c 6573 2020 2020 #loadedFiles │ │ │ │ +0026b9e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0026b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026ba00: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0026ba10: 3d20 3135 3132 2020 2020 2020 2020 2020 = 1512 │ │ │ │ +0026ba20: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0026ba30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ba40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +0026ba50: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +0026ba60: 0a0a 2020 2a20 2a6e 6f74 6520 6c6f 6164 .. * *note load │ │ │ │ +0026ba70: 3a20 6c6f 6164 2c20 2d2d 2072 6561 6420 : load, -- read │ │ │ │ +0026ba80: 4d61 6361 756c 6179 3220 636f 6d6d 616e Macaulay2 comman │ │ │ │ +0026ba90: 6473 0a0a 466f 7220 7468 6520 7072 6f67 ds..For the prog │ │ │ │ +0026baa0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +0026bab0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +0026bac0: 626a 6563 7420 2a6e 6f74 6520 6c6f 6164 bject *note load │ │ │ │ +0026bad0: 6564 4669 6c65 733a 206c 6f61 6465 6446 edFiles: loadedF │ │ │ │ +0026bae0: 696c 6573 2c20 6973 2061 202a 6e6f 7465 iles, is a *note │ │ │ │ +0026baf0: 206d 7574 6162 6c65 2068 6173 6820 7461 mutable hash ta │ │ │ │ +0026bb00: 626c 653a 0a4d 7574 6162 6c65 4861 7368 ble:.MutableHash │ │ │ │ +0026bb10: 5461 626c 652c 2e0a 0a2d 2d2d 2d2d 2d2d Table,...------- │ │ │ │ 0026bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026bb40: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0026bb50: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0026bb60: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0026bb70: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0026bb80: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0026bb90: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0026bba0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0026bbb0: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -0026bbc0: 7465 6d2e 6d32 3a31 3837 393a 302e 0a1f tem.m2:1879:0... │ │ │ │ -0026bbd0: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -0026bbe0: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -0026bbf0: 6669 6c65 4578 6974 486f 6f6b 732c 204e fileExitHooks, N │ │ │ │ -0026bc00: 6578 743a 2070 6174 682c 2050 7265 763a ext: path, Prev: │ │ │ │ -0026bc10: 206c 6f61 6465 6446 696c 6573 2c20 5570 loadedFiles, Up │ │ │ │ -0026bc20: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ -0026bc30: 6965 730a 0a66 696c 6545 7869 7448 6f6f ies..fileExitHoo │ │ │ │ -0026bc40: 6b73 202d 2d20 6120 6c69 7374 206f 6620 ks -- a list of │ │ │ │ -0026bc50: 686f 6f6b 7320 2866 756e 6374 696f 6e73 hooks (functions │ │ │ │ -0026bc60: 2920 746f 2065 7865 6375 7465 2077 6865 ) to execute whe │ │ │ │ -0026bc70: 6e20 7468 6520 6375 7272 656e 7420 6669 n the current fi │ │ │ │ -0026bc80: 6c65 2068 6173 2062 6565 6e20 6c6f 6164 le has been load │ │ │ │ -0026bc90: 6564 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ed.************* │ │ │ │ -0026bca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026bcb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026bb60: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0026bb70: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0026bb80: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0026bb90: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0026bba0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0026bbb0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0026bbc0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0026bbd0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +0026bbe0: 5f73 7973 7465 6d2e 6d32 3a31 3837 393a _system.m2:1879: │ │ │ │ +0026bbf0: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +0026bc00: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +0026bc10: 6465 3a20 6669 6c65 4578 6974 486f 6f6b de: fileExitHook │ │ │ │ +0026bc20: 732c 204e 6578 743a 2070 6174 682c 2050 s, Next: path, P │ │ │ │ +0026bc30: 7265 763a 206c 6f61 6465 6446 696c 6573 rev: loadedFiles │ │ │ │ +0026bc40: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +0026bc50: 696c 6974 6965 730a 0a66 696c 6545 7869 ilities..fileExi │ │ │ │ +0026bc60: 7448 6f6f 6b73 202d 2d20 6120 6c69 7374 tHooks -- a list │ │ │ │ +0026bc70: 206f 6620 686f 6f6b 7320 2866 756e 6374 of hooks (funct │ │ │ │ +0026bc80: 696f 6e73 2920 746f 2065 7865 6375 7465 ions) to execute │ │ │ │ +0026bc90: 2077 6865 6e20 7468 6520 6375 7272 656e when the curren │ │ │ │ +0026bca0: 7420 6669 6c65 2068 6173 2062 6565 6e20 t file has been │ │ │ │ +0026bcb0: 6c6f 6164 6564 0a2a 2a2a 2a2a 2a2a 2a2a loaded.********* │ │ │ │ 0026bcc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0026bcd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0026bce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026bcf0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0026bd00: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0026bd10: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0026bd20: 6563 7420 2a6e 6f74 6520 6669 6c65 4578 ect *note fileEx │ │ │ │ -0026bd30: 6974 486f 6f6b 733a 2066 696c 6545 7869 itHooks: fileExi │ │ │ │ -0026bd40: 7448 6f6f 6b73 2c20 6973 2061 202a 6e6f tHooks, is a *no │ │ │ │ -0026bd50: 7465 206c 6973 743a 204c 6973 742c 2e0a te list: List,.. │ │ │ │ -0026bd60: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -0026bd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026bd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026bcf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026bd00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026bd10: 2a2a 2a2a 0a0a 466f 7220 7468 6520 7072 ****..For the pr │ │ │ │ +0026bd20: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0026bd30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0026bd40: 206f 626a 6563 7420 2a6e 6f74 6520 6669 object *note fi │ │ │ │ +0026bd50: 6c65 4578 6974 486f 6f6b 733a 2066 696c leExitHooks: fil │ │ │ │ +0026bd60: 6545 7869 7448 6f6f 6b73 2c20 6973 2061 eExitHooks, is a │ │ │ │ +0026bd70: 202a 6e6f 7465 206c 6973 743a 204c 6973 *note list: Lis │ │ │ │ +0026bd80: 742c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d t,...----------- │ │ │ │ 0026bd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026bda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026bdb0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -0026bdc0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -0026bdd0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -0026bde0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -0026bdf0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -0026be00: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -0026be10: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -0026be20: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ -0026be30: 6d32 3a31 3433 373a 302e 0a1f 0a46 696c m2:1437:0....Fil │ │ │ │ -0026be40: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -0026be50: 696e 666f 2c20 4e6f 6465 3a20 7061 7468 info, Node: path │ │ │ │ -0026be60: 2c20 4e65 7874 3a20 726f 6f74 5552 492c , Next: rootURI, │ │ │ │ -0026be70: 2050 7265 763a 2066 696c 6545 7869 7448 Prev: fileExitH │ │ │ │ -0026be80: 6f6f 6b73 2c20 5570 3a20 7379 7374 656d ooks, Up: system │ │ │ │ -0026be90: 2066 6163 696c 6974 6965 730a 0a70 6174 facilities..pat │ │ │ │ -0026bea0: 6820 2d2d 206c 6973 7420 6f66 2064 6972 h -- list of dir │ │ │ │ -0026beb0: 6563 746f 7269 6573 2074 6f20 6c6f 6f6b ectories to look │ │ │ │ -0026bec0: 2069 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a in.************ │ │ │ │ -0026bed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026bee0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -0026bef0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0026bf00: 3d3d 3d0a 0a41 206c 6973 7420 6f66 2073 ===..A list of s │ │ │ │ -0026bf10: 7472 696e 6773 2063 6f6e 7461 696e 696e trings containin │ │ │ │ -0026bf20: 6720 6e61 6d65 7320 6f66 2064 6972 6563 g names of direc │ │ │ │ -0026bf30: 746f 7269 6573 2069 6e20 7768 6963 6820 tories in which │ │ │ │ -0026bf40: 2a6e 6f74 6520 6c6f 6164 3a20 6c6f 6164 *note load: load │ │ │ │ -0026bf50: 2c2c 0a2a 6e6f 7465 2069 6e70 7574 3a20 ,,.*note input: │ │ │ │ -0026bf60: 696e 7075 742c 2c20 2a6e 6f74 6520 6c6f input,, *note lo │ │ │ │ -0026bf70: 6164 5061 636b 6167 653a 206c 6f61 6450 adPackage: loadP │ │ │ │ -0026bf80: 6163 6b61 6765 2c2c 202a 6e6f 7465 206e ackage,, *note n │ │ │ │ -0026bf90: 6565 6473 5061 636b 6167 653a 0a6e 6565 eedsPackage:.nee │ │ │ │ -0026bfa0: 6473 5061 636b 6167 652c 2c20 616e 6420 dsPackage,, and │ │ │ │ -0026bfb0: 2a6e 6f74 6520 696e 7374 616c 6c50 6163 *note installPac │ │ │ │ -0026bfc0: 6b61 6765 3a20 696e 7374 616c 6c50 6163 kage: installPac │ │ │ │ -0026bfd0: 6b61 6765 2c20 7368 6f75 6c64 2073 6565 kage, should see │ │ │ │ -0026bfe0: 6b20 6669 6c65 732e 0a54 6865 7365 2073 k files..These s │ │ │ │ -0026bff0: 7472 696e 6773 2061 7265 2073 696d 706c trings are simpl │ │ │ │ -0026c000: 7920 636f 6e63 6174 656e 6174 6564 2077 y concatenated w │ │ │ │ -0026c010: 6974 6820 7468 6520 6669 6c65 6e61 6d65 ith the filename │ │ │ │ -0026c020: 2062 6569 6e67 2073 6f75 6768 742c 2073 being sought, s │ │ │ │ -0026c030: 6f20 7368 6f75 6c64 0a69 6e63 6c75 6465 o should.include │ │ │ │ -0026c040: 2061 2074 6572 6d69 6e61 6c20 736c 6173 a terminal slas │ │ │ │ -0026c050: 682e 2020 4f6e 6520 6675 7274 6865 7220 h. One further │ │ │ │ -0026c060: 6469 7265 6374 6f72 7920 6973 2069 6d70 directory is imp │ │ │ │ -0026c070: 6c69 6369 746c 7920 7365 6172 6368 6564 licitly searched │ │ │ │ -0026c080: 2066 6972 7374 3a0a 7468 6520 6469 7265 first:.the dire │ │ │ │ -0026c090: 6374 6f72 7920 636f 6e74 6169 6e69 6e67 ctory containing │ │ │ │ -0026c0a0: 2074 6865 2063 7572 7265 6e74 2069 6e70 the current inp │ │ │ │ -0026c0b0: 7574 2066 696c 653b 2077 6865 6e20 696e ut file; when in │ │ │ │ -0026c0c0: 7075 7420 6973 2063 6f6d 696e 6720 6672 put is coming fr │ │ │ │ -0026c0d0: 6f6d 2074 6865 0a73 7461 6e64 6172 6420 om the.standard │ │ │ │ -0026c0e0: 696e 7075 742c 2074 6861 7420 6469 7265 input, that dire │ │ │ │ -0026c0f0: 6374 6f72 7920 6973 2074 6865 2063 7572 ctory is the cur │ │ │ │ -0026c100: 7265 6e74 2064 6972 6563 746f 7279 206f rent directory o │ │ │ │ -0026c110: 6620 7468 6520 7072 6f63 6573 732e 0a0a f the process... │ │ │ │ -0026c120: 4166 7465 7220 7468 6520 636f 7265 204d After the core M │ │ │ │ -0026c130: 6163 6175 6c61 7932 2066 696c 6573 2061 acaulay2 files a │ │ │ │ -0026c140: 7265 206c 6f61 6465 642c 2075 6e6c 6573 re loaded, unles │ │ │ │ -0026c150: 7320 7468 6520 636f 6d6d 616e 6420 6c69 s the command li │ │ │ │ -0026c160: 6e65 206f 7074 696f 6e20 2d71 2069 730a ne option -q is. │ │ │ │ -0026c170: 656e 636f 756e 7465 7265 642c 2074 6865 encountered, the │ │ │ │ -0026c180: 2066 6f6c 6c6f 7769 6e67 2073 7562 6469 following subdi │ │ │ │ -0026c190: 7265 6374 6f72 6965 7320 7769 6c6c 2062 rectories will b │ │ │ │ -0026c1a0: 6520 7072 6570 656e 6465 6420 746f 2074 e prepended to t │ │ │ │ -0026c1b0: 6865 2070 6174 682c 2062 6173 6564 0a6f he path, based.o │ │ │ │ -0026c1c0: 6e20 7468 6520 7661 6c75 6520 6f66 2074 n the value of t │ │ │ │ -0026c1d0: 6865 202a 6e6f 7465 2061 7070 6c69 6361 he *note applica │ │ │ │ -0026c1e0: 7469 6f6e 4469 7265 6374 6f72 793a 2061 tionDirectory: a │ │ │ │ -0026c1f0: 7070 6c69 6361 7469 6f6e 4469 7265 6374 pplicationDirect │ │ │ │ -0026c200: 6f72 792c 2066 6f72 2079 6f75 720a 7379 ory, for your.sy │ │ │ │ -0026c210: 7374 656d 2e0a 0a20 2020 2020 2f68 6f6d stem... /hom │ │ │ │ -0026c220: 652f 6d32 7573 6572 2f2e 4d61 6361 756c e/m2user/.Macaul │ │ │ │ -0026c230: 6179 322f 636f 6465 2f0a 2020 2020 202f ay2/code/. / │ │ │ │ -0026c240: 686f 6d65 2f6d 3275 7365 722f 2e4d 6163 home/m2user/.Mac │ │ │ │ -0026c250: 6175 6c61 7932 2f6c 6f63 616c 2f73 6861 aulay2/local/sha │ │ │ │ -0026c260: 7265 2f4d 6163 6175 6c61 7932 2f0a 2b2d re/Macaulay2/.+- │ │ │ │ -0026c270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c2a0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 7461 -----+.|i1 : sta │ │ │ │ -0026c2b0: 636b 2070 6174 6820 2020 2020 2020 2020 ck path │ │ │ │ -0026c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c2d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0026c2e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0026bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026bdd0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +0026bde0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +0026bdf0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +0026be00: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +0026be10: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +0026be20: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +0026be30: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ +0026be40: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ +0026be50: 7465 6d2e 6d32 3a31 3433 373a 302e 0a1f tem.m2:1437:0... │ │ │ │ +0026be60: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +0026be70: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +0026be80: 7061 7468 2c20 4e65 7874 3a20 726f 6f74 path, Next: root │ │ │ │ +0026be90: 5552 492c 2050 7265 763a 2066 696c 6545 URI, Prev: fileE │ │ │ │ +0026bea0: 7869 7448 6f6f 6b73 2c20 5570 3a20 7379 xitHooks, Up: sy │ │ │ │ +0026beb0: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +0026bec0: 0a70 6174 6820 2d2d 206c 6973 7420 6f66 .path -- list of │ │ │ │ +0026bed0: 2064 6972 6563 746f 7269 6573 2074 6f20 directories to │ │ │ │ +0026bee0: 6c6f 6f6b 2069 6e0a 2a2a 2a2a 2a2a 2a2a look in.******** │ │ │ │ +0026bef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026bf00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0026bf10: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0026bf20: 3d3d 3d3d 3d3d 3d0a 0a41 206c 6973 7420 =======..A list │ │ │ │ +0026bf30: 6f66 2073 7472 696e 6773 2063 6f6e 7461 of strings conta │ │ │ │ +0026bf40: 696e 696e 6720 6e61 6d65 7320 6f66 2064 ining names of d │ │ │ │ +0026bf50: 6972 6563 746f 7269 6573 2069 6e20 7768 irectories in wh │ │ │ │ +0026bf60: 6963 6820 2a6e 6f74 6520 6c6f 6164 3a20 ich *note load: │ │ │ │ +0026bf70: 6c6f 6164 2c2c 0a2a 6e6f 7465 2069 6e70 load,,.*note inp │ │ │ │ +0026bf80: 7574 3a20 696e 7075 742c 2c20 2a6e 6f74 ut: input,, *not │ │ │ │ +0026bf90: 6520 6c6f 6164 5061 636b 6167 653a 206c e loadPackage: l │ │ │ │ +0026bfa0: 6f61 6450 6163 6b61 6765 2c2c 202a 6e6f oadPackage,, *no │ │ │ │ +0026bfb0: 7465 206e 6565 6473 5061 636b 6167 653a te needsPackage: │ │ │ │ +0026bfc0: 0a6e 6565 6473 5061 636b 6167 652c 2c20 .needsPackage,, │ │ │ │ +0026bfd0: 616e 6420 2a6e 6f74 6520 696e 7374 616c and *note instal │ │ │ │ +0026bfe0: 6c50 6163 6b61 6765 3a20 696e 7374 616c lPackage: instal │ │ │ │ +0026bff0: 6c50 6163 6b61 6765 2c20 7368 6f75 6c64 lPackage, should │ │ │ │ +0026c000: 2073 6565 6b20 6669 6c65 732e 0a54 6865 seek files..The │ │ │ │ +0026c010: 7365 2073 7472 696e 6773 2061 7265 2073 se strings are s │ │ │ │ +0026c020: 696d 706c 7920 636f 6e63 6174 656e 6174 imply concatenat │ │ │ │ +0026c030: 6564 2077 6974 6820 7468 6520 6669 6c65 ed with the file │ │ │ │ +0026c040: 6e61 6d65 2062 6569 6e67 2073 6f75 6768 name being sough │ │ │ │ +0026c050: 742c 2073 6f20 7368 6f75 6c64 0a69 6e63 t, so should.inc │ │ │ │ +0026c060: 6c75 6465 2061 2074 6572 6d69 6e61 6c20 lude a terminal │ │ │ │ +0026c070: 736c 6173 682e 2020 4f6e 6520 6675 7274 slash. One furt │ │ │ │ +0026c080: 6865 7220 6469 7265 6374 6f72 7920 6973 her directory is │ │ │ │ +0026c090: 2069 6d70 6c69 6369 746c 7920 7365 6172 implicitly sear │ │ │ │ +0026c0a0: 6368 6564 2066 6972 7374 3a0a 7468 6520 ched first:.the │ │ │ │ +0026c0b0: 6469 7265 6374 6f72 7920 636f 6e74 6169 directory contai │ │ │ │ +0026c0c0: 6e69 6e67 2074 6865 2063 7572 7265 6e74 ning the current │ │ │ │ +0026c0d0: 2069 6e70 7574 2066 696c 653b 2077 6865 input file; whe │ │ │ │ +0026c0e0: 6e20 696e 7075 7420 6973 2063 6f6d 696e n input is comin │ │ │ │ +0026c0f0: 6720 6672 6f6d 2074 6865 0a73 7461 6e64 g from the.stand │ │ │ │ +0026c100: 6172 6420 696e 7075 742c 2074 6861 7420 ard input, that │ │ │ │ +0026c110: 6469 7265 6374 6f72 7920 6973 2074 6865 directory is the │ │ │ │ +0026c120: 2063 7572 7265 6e74 2064 6972 6563 746f current directo │ │ │ │ +0026c130: 7279 206f 6620 7468 6520 7072 6f63 6573 ry of the proces │ │ │ │ +0026c140: 732e 0a0a 4166 7465 7220 7468 6520 636f s...After the co │ │ │ │ +0026c150: 7265 204d 6163 6175 6c61 7932 2066 696c re Macaulay2 fil │ │ │ │ +0026c160: 6573 2061 7265 206c 6f61 6465 642c 2075 es are loaded, u │ │ │ │ +0026c170: 6e6c 6573 7320 7468 6520 636f 6d6d 616e nless the comman │ │ │ │ +0026c180: 6420 6c69 6e65 206f 7074 696f 6e20 2d71 d line option -q │ │ │ │ +0026c190: 2069 730a 656e 636f 756e 7465 7265 642c is.encountered, │ │ │ │ +0026c1a0: 2074 6865 2066 6f6c 6c6f 7769 6e67 2073 the following s │ │ │ │ +0026c1b0: 7562 6469 7265 6374 6f72 6965 7320 7769 ubdirectories wi │ │ │ │ +0026c1c0: 6c6c 2062 6520 7072 6570 656e 6465 6420 ll be prepended │ │ │ │ +0026c1d0: 746f 2074 6865 2070 6174 682c 2062 6173 to the path, bas │ │ │ │ +0026c1e0: 6564 0a6f 6e20 7468 6520 7661 6c75 6520 ed.on the value │ │ │ │ +0026c1f0: 6f66 2074 6865 202a 6e6f 7465 2061 7070 of the *note app │ │ │ │ +0026c200: 6c69 6361 7469 6f6e 4469 7265 6374 6f72 licationDirector │ │ │ │ +0026c210: 793a 2061 7070 6c69 6361 7469 6f6e 4469 y: applicationDi │ │ │ │ +0026c220: 7265 6374 6f72 792c 2066 6f72 2079 6f75 rectory, for you │ │ │ │ +0026c230: 720a 7379 7374 656d 2e0a 0a20 2020 2020 r.system... │ │ │ │ +0026c240: 2f68 6f6d 652f 6d32 7573 6572 2f2e 4d61 /home/m2user/.Ma │ │ │ │ +0026c250: 6361 756c 6179 322f 636f 6465 2f0a 2020 caulay2/code/. │ │ │ │ +0026c260: 2020 202f 686f 6d65 2f6d 3275 7365 722f /home/m2user/ │ │ │ │ +0026c270: 2e4d 6163 6175 6c61 7932 2f6c 6f63 616c .Macaulay2/local │ │ │ │ +0026c280: 2f73 6861 7265 2f4d 6163 6175 6c61 7932 /share/Macaulay2 │ │ │ │ +0026c290: 2f0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d /.+------------- │ │ │ │ +0026c2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c2c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0026c2d0: 2073 7461 636b 2070 6174 6820 2020 2020 stack path │ │ │ │ +0026c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c310: 2020 2020 2020 207c 0a7c 6f31 203d 202e |.|o1 = . │ │ │ │ -0026c320: 2f20 2020 2020 2020 2020 2020 2020 2020 / │ │ │ │ -0026c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c350: 7c0a 7c20 2020 2020 2e2e 2f20 2020 2020 |.| ../ │ │ │ │ +0026c300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c330: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0026c340: 203d 202e 2f20 2020 2020 2020 2020 2020 = ./ │ │ │ │ +0026c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c380: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0026c390: 202e 2e2f 2e2e 2f2e 2e2f 7573 722d 6469 ../../../usr-di │ │ │ │ -0026c3a0: 7374 2f63 6f6d 6d6f 6e2f 7368 6172 652f st/common/share/ │ │ │ │ -0026c3b0: 4d61 6361 756c 6179 322f 2020 2020 2020 Macaulay2/ │ │ │ │ -0026c3c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0026c3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0026c400: 203a 2070 6174 6820 3d20 6170 7065 6e64 : path = append │ │ │ │ -0026c410: 2870 6174 682c 2022 7e2f 7265 736f 6c75 (path, "~/resolu │ │ │ │ -0026c420: 7469 6f6e 732f 2229 3b20 7374 6163 6b20 tions/"); stack │ │ │ │ -0026c430: 7061 7468 7c0a 7c20 2020 2020 2020 2020 path|.| │ │ │ │ -0026c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0026c470: 6f33 203d 202e 2f20 2020 2020 2020 2020 o3 = ./ │ │ │ │ +0026c370: 2020 2020 7c0a 7c20 2020 2020 2e2e 2f20 |.| ../ │ │ │ │ +0026c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c3a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0026c3b0: 2020 2020 202e 2e2f 2e2e 2f2e 2e2f 7573 ../../../us │ │ │ │ +0026c3c0: 722d 6469 7374 2f63 6f6d 6d6f 6e2f 7368 r-dist/common/sh │ │ │ │ +0026c3d0: 6172 652f 4d61 6361 756c 6179 322f 2020 are/Macaulay2/ │ │ │ │ +0026c3e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0026c3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0026c420: 0a7c 6932 203a 2070 6174 6820 3d20 6170 .|i2 : path = ap │ │ │ │ +0026c430: 7065 6e64 2870 6174 682c 2022 7e2f 7265 pend(path, "~/re │ │ │ │ +0026c440: 736f 6c75 7469 6f6e 732f 2229 3b20 7374 solutions/"); st │ │ │ │ +0026c450: 6163 6b20 7061 7468 7c0a 7c20 2020 2020 ack path|.| │ │ │ │ +0026c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c4a0: 2020 2020 2020 7c0a 7c20 2020 2020 2e2e |.| .. │ │ │ │ -0026c4b0: 2f20 2020 2020 2020 2020 2020 2020 2020 / │ │ │ │ -0026c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c4d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0026c4e0: 0a7c 2020 2020 202e 2e2f 2e2e 2f2e 2e2f .| ../../../ │ │ │ │ -0026c4f0: 7573 722d 6469 7374 2f63 6f6d 6d6f 6e2f usr-dist/common/ │ │ │ │ -0026c500: 7368 6172 652f 4d61 6361 756c 6179 322f share/Macaulay2/ │ │ │ │ -0026c510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0026c520: 7e2f 7265 736f 6c75 7469 6f6e 732f 2020 ~/resolutions/ │ │ │ │ -0026c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026c550: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 6f72 ----------+..For │ │ │ │ -0026c590: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0026c5a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0026c5b0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0026c5c0: 6e6f 7465 2070 6174 683a 2070 6174 682c note path: path, │ │ │ │ -0026c5d0: 2069 7320 6120 2a6e 6f74 6520 6c69 7374 is a *note list │ │ │ │ -0026c5e0: 3a20 4c69 7374 2c2e 0a0a 2d2d 2d2d 2d2d : List,...------ │ │ │ │ -0026c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c490: 207c 0a7c 6f33 203d 202e 2f20 2020 2020 |.|o3 = ./ │ │ │ │ +0026c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c4c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0026c4d0: 2020 2e2e 2f20 2020 2020 2020 2020 2020 ../ │ │ │ │ +0026c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c500: 2020 207c 0a7c 2020 2020 202e 2e2f 2e2e |.| ../.. │ │ │ │ +0026c510: 2f2e 2e2f 7573 722d 6469 7374 2f63 6f6d /../usr-dist/com │ │ │ │ +0026c520: 6d6f 6e2f 7368 6172 652f 4d61 6361 756c mon/share/Macaul │ │ │ │ +0026c530: 6179 322f 2020 2020 2020 2020 7c0a 7c20 ay2/ |.| │ │ │ │ +0026c540: 2020 2020 7e2f 7265 736f 6c75 7469 6f6e ~/resolution │ │ │ │ +0026c550: 732f 2020 2020 2020 2020 2020 2020 2020 s/ │ │ │ │ +0026c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c570: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0026c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0026c5b0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0026c5c0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0026c5d0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0026c5e0: 6374 202a 6e6f 7465 2070 6174 683a 2070 ct *note path: p │ │ │ │ +0026c5f0: 6174 682c 2069 7320 6120 2a6e 6f74 6520 ath, is a *note │ │ │ │ +0026c600: 6c69 7374 3a20 4c69 7374 2c2e 0a0a 2d2d list: List,...-- │ │ │ │ 0026c610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026c620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026c630: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0026c640: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0026c650: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0026c660: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0026c670: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0026c680: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0026c690: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0026c6a0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -0026c6b0: 765f 7379 7374 656d 2e6d 323a 3833 333a v_system.m2:833: │ │ │ │ -0026c6c0: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ -0026c6d0: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ -0026c6e0: 6465 3a20 726f 6f74 5552 492c 204e 6578 de: rootURI, Nex │ │ │ │ -0026c6f0: 743a 2072 6f6f 7450 6174 682c 2050 7265 t: rootPath, Pre │ │ │ │ -0026c700: 763a 2070 6174 682c 2055 703a 2073 7973 v: path, Up: sys │ │ │ │ -0026c710: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -0026c720: 726f 6f74 5552 490a 2a2a 2a2a 2a2a 2a0a rootURI.*******. │ │ │ │ -0026c730: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0026c740: 2020 2020 2072 6f6f 7455 5249 0a20 202a rootURI. * │ │ │ │ -0026c750: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0026c760: 2a20 6120 2a6e 6f74 6520 7374 7269 6e67 * a *note string │ │ │ │ -0026c770: 3a20 5374 7269 6e67 2c2c 2074 6865 2070 : String,, the p │ │ │ │ -0026c780: 6174 682c 2061 7320 7365 656e 2062 7920 ath, as seen by │ │ │ │ -0026c790: 616e 2065 7874 6572 6e61 6c20 6272 6f77 an external brow │ │ │ │ -0026c7a0: 7365 722c 2074 6f0a 2020 2020 2020 2020 ser, to. │ │ │ │ -0026c7b0: 7468 6520 726f 6f74 206f 6620 7468 6520 the root of the │ │ │ │ -0026c7c0: 6669 6c65 2073 7973 7465 6d20 7365 656e file system seen │ │ │ │ -0026c7d0: 2062 7920 4d61 6361 756c 6179 320a 0a44 by Macaulay2..D │ │ │ │ -0026c7e0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0026c7f0: 3d3d 3d3d 3d3d 0a0a 5468 6973 2073 7472 ======..This str │ │ │ │ -0026c800: 696e 6720 6d61 7920 6265 2063 6f6e 6361 ing may be conca │ │ │ │ -0026c810: 7465 6e61 7465 6420 7769 7468 2061 6e20 tenated with an │ │ │ │ -0026c820: 6162 736f 6c75 7465 2070 6174 6820 746f absolute path to │ │ │ │ -0026c830: 2067 6574 206f 6e65 2075 6e64 6572 7374 get one underst │ │ │ │ -0026c840: 616e 6461 626c 650a 6279 2061 6e20 6578 andable.by an ex │ │ │ │ -0026c850: 7465 726e 616c 2062 726f 7773 6572 2e0a ternal browser.. │ │ │ │ -0026c860: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0026c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0026c880: 0a7c 6931 203a 2066 6e20 3d20 7465 6d70 .|i1 : fn = temp │ │ │ │ -0026c890: 6f72 6172 7946 696c 654e 616d 6528 297c oraryFileName()| │ │ │ │ -0026c8a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0026c8b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0026c8c0: 0a7c 6f31 203d 202f 746d 702f 4d32 2d31 .|o1 = /tmp/M2-1 │ │ │ │ -0026c8d0: 3135 3038 2d30 2f30 2020 2020 2020 207c 1508-0/0 | │ │ │ │ -0026c8e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0026c8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0026c900: 0a7c 6932 203a 2072 6f6f 7455 5249 207c .|i2 : rootURI | │ │ │ │ -0026c910: 2066 6e20 2020 2020 2020 2020 2020 207c fn | │ │ │ │ -0026c920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0026c930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0026c940: 0a7c 6f32 203d 2066 696c 653a 2f2f 2f74 .|o2 = file:///t │ │ │ │ -0026c950: 6d70 2f4d 322d 3131 3530 382d 302f 307c mp/M2-11508-0/0| │ │ │ │ -0026c960: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0026c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0026c980: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0026c990: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2072 ===.. * *note r │ │ │ │ -0026c9a0: 6f6f 7450 6174 683a 2072 6f6f 7450 6174 ootPath: rootPat │ │ │ │ -0026c9b0: 682c 0a0a 466f 7220 7468 6520 7072 6f67 h,..For the prog │ │ │ │ -0026c9c0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0026c9d0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0026c9e0: 626a 6563 7420 2a6e 6f74 6520 726f 6f74 bject *note root │ │ │ │ -0026c9f0: 5552 493a 2072 6f6f 7455 5249 2c20 6973 URI: rootURI, is │ │ │ │ -0026ca00: 2061 202a 6e6f 7465 2073 7472 696e 673a a *note string: │ │ │ │ -0026ca10: 2053 7472 696e 672c 2e0a 0a2d 2d2d 2d2d String,...----- │ │ │ │ -0026ca20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ca30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +0026c660: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +0026c670: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +0026c680: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +0026c690: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +0026c6a0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +0026c6b0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +0026c6c0: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +0026c6d0: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ +0026c6e0: 3833 333a 302e 0a1f 0a46 696c 653a 204d 833:0....File: M │ │ │ │ +0026c6f0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +0026c700: 2c20 4e6f 6465 3a20 726f 6f74 5552 492c , Node: rootURI, │ │ │ │ +0026c710: 204e 6578 743a 2072 6f6f 7450 6174 682c Next: rootPath, │ │ │ │ +0026c720: 2050 7265 763a 2070 6174 682c 2055 703a Prev: path, Up: │ │ │ │ +0026c730: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +0026c740: 6573 0a0a 726f 6f74 5552 490a 2a2a 2a2a es..rootURI.**** │ │ │ │ +0026c750: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +0026c760: 0a20 2020 2020 2020 2072 6f6f 7455 5249 . rootURI │ │ │ │ +0026c770: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0026c780: 2020 2020 2a20 6120 2a6e 6f74 6520 7374 * a *note st │ │ │ │ +0026c790: 7269 6e67 3a20 5374 7269 6e67 2c2c 2074 ring: String,, t │ │ │ │ +0026c7a0: 6865 2070 6174 682c 2061 7320 7365 656e he path, as seen │ │ │ │ +0026c7b0: 2062 7920 616e 2065 7874 6572 6e61 6c20 by an external │ │ │ │ +0026c7c0: 6272 6f77 7365 722c 2074 6f0a 2020 2020 browser, to. │ │ │ │ +0026c7d0: 2020 2020 7468 6520 726f 6f74 206f 6620 the root of │ │ │ │ +0026c7e0: 7468 6520 6669 6c65 2073 7973 7465 6d20 the file system │ │ │ │ +0026c7f0: 7365 656e 2062 7920 4d61 6361 756c 6179 seen by Macaulay │ │ │ │ +0026c800: 320a 0a44 6573 6372 6970 7469 6f6e 0a3d 2..Description.= │ │ │ │ +0026c810: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +0026c820: 2073 7472 696e 6720 6d61 7920 6265 2063 string may be c │ │ │ │ +0026c830: 6f6e 6361 7465 6e61 7465 6420 7769 7468 oncatenated with │ │ │ │ +0026c840: 2061 6e20 6162 736f 6c75 7465 2070 6174 an absolute pat │ │ │ │ +0026c850: 6820 746f 2067 6574 206f 6e65 2075 6e64 h to get one und │ │ │ │ +0026c860: 6572 7374 616e 6461 626c 650a 6279 2061 erstandable.by a │ │ │ │ +0026c870: 6e20 6578 7465 726e 616c 2062 726f 7773 n external brows │ │ │ │ +0026c880: 6572 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d er...+---------- │ │ │ │ +0026c890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c8a0: 2d2d 2d2b 0a7c 6931 203a 2066 6e20 3d20 ---+.|i1 : fn = │ │ │ │ +0026c8b0: 7465 6d70 6f72 6172 7946 696c 654e 616d temporaryFileNam │ │ │ │ +0026c8c0: 6528 297c 0a7c 2020 2020 2020 2020 2020 e()|.| │ │ │ │ +0026c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c8e0: 2020 207c 0a7c 6f31 203d 202f 746d 702f |.|o1 = /tmp/ │ │ │ │ +0026c8f0: 4d32 2d31 3239 3538 2d30 2f30 2020 2020 M2-12958-0/0 │ │ │ │ +0026c900: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0026c910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c920: 2d2d 2d2b 0a7c 6932 203a 2072 6f6f 7455 ---+.|i2 : rootU │ │ │ │ +0026c930: 5249 207c 2066 6e20 2020 2020 2020 2020 RI | fn │ │ │ │ +0026c940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026c960: 2020 207c 0a7c 6f32 203d 2066 696c 653a |.|o2 = file: │ │ │ │ +0026c970: 2f2f 2f74 6d70 2f4d 322d 3132 3935 382d ///tmp/M2-12958- │ │ │ │ +0026c980: 302f 307c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 0/0|.+---------- │ │ │ │ +0026c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026c9a0: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ +0026c9b0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0026c9c0: 7465 2072 6f6f 7450 6174 683a 2072 6f6f te rootPath: roo │ │ │ │ +0026c9d0: 7450 6174 682c 0a0a 466f 7220 7468 6520 tPath,..For the │ │ │ │ +0026c9e0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +0026c9f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +0026ca00: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +0026ca10: 726f 6f74 5552 493a 2072 6f6f 7455 5249 rootURI: rootURI │ │ │ │ +0026ca20: 2c20 6973 2061 202a 6e6f 7465 2073 7472 , is a *note str │ │ │ │ +0026ca30: 696e 673a 2053 7472 696e 672c 2e0a 0a2d ing: String,...- │ │ │ │ 0026ca40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026ca50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0026ca70: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0026ca80: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0026ca90: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0026caa0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0026cab0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0026cac0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0026cad0: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -0026cae0: 6f76 5f73 7973 7465 6d2e 6d32 3a32 3034 ov_system.m2:204 │ │ │ │ -0026caf0: 313a 302e 0a1f 0a46 696c 653a 204d 6163 1:0....File: Mac │ │ │ │ -0026cb00: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ -0026cb10: 4e6f 6465 3a20 726f 6f74 5061 7468 2c20 Node: rootPath, │ │ │ │ -0026cb20: 4e65 7874 3a20 686f 6d65 4469 7265 6374 Next: homeDirect │ │ │ │ -0026cb30: 6f72 792c 2050 7265 763a 2072 6f6f 7455 ory, Prev: rootU │ │ │ │ -0026cb40: 5249 2c20 5570 3a20 7379 7374 656d 2066 RI, Up: system f │ │ │ │ -0026cb50: 6163 696c 6974 6965 730a 0a72 6f6f 7450 acilities..rootP │ │ │ │ -0026cb60: 6174 680a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ath.********.. │ │ │ │ -0026cb70: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0026cb80: 2020 726f 6f74 5061 7468 0a20 202a 204f rootPath. * O │ │ │ │ -0026cb90: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0026cba0: 6120 2a6e 6f74 6520 7374 7269 6e67 3a20 a *note string: │ │ │ │ -0026cbb0: 5374 7269 6e67 2c2c 2074 6865 2070 6174 String,, the pat │ │ │ │ -0026cbc0: 682c 2061 7320 7365 656e 2062 7920 6578 h, as seen by ex │ │ │ │ -0026cbd0: 7465 726e 616c 2070 726f 6772 616d 732c ternal programs, │ │ │ │ -0026cbe0: 2074 6f20 7468 650a 2020 2020 2020 2020 to the. │ │ │ │ -0026cbf0: 726f 6f74 206f 6620 7468 6520 6669 6c65 root of the file │ │ │ │ -0026cc00: 2073 7973 7465 6d20 7365 656e 2062 7920 system seen by │ │ │ │ -0026cc10: 4d61 6361 756c 6179 320a 0a44 6573 6372 Macaulay2..Descr │ │ │ │ -0026cc20: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0026cc30: 3d3d 0a0a 5468 6973 2073 7472 696e 6720 ==..This string │ │ │ │ -0026cc40: 6d61 7920 6265 2063 6f6e 6361 7465 6e61 may be concatena │ │ │ │ -0026cc50: 7465 6420 7769 7468 2061 6e20 6162 736f ted with an abso │ │ │ │ -0026cc60: 6c75 7465 2070 6174 6820 746f 2067 6574 lute path to get │ │ │ │ -0026cc70: 206f 6e65 2075 6e64 6572 7374 616e 6461 one understanda │ │ │ │ -0026cc80: 626c 650a 6279 2065 7874 6572 6e61 6c20 ble.by external │ │ │ │ -0026cc90: 7072 6f67 7261 6d73 2e0a 0a2b 2d2d 2d2d programs...+---- │ │ │ │ -0026cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ccb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0026ccc0: 2066 6e20 3d20 7465 6d70 6f72 6172 7946 fn = temporaryF │ │ │ │ -0026ccd0: 696c 654e 616d 6528 297c 0a7c 2020 2020 ileName()|.| │ │ │ │ -0026cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026ccf0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0026cd00: 202f 746d 702f 4d32 2d31 3032 3833 2d30 /tmp/M2-10283-0 │ │ │ │ -0026cd10: 2f30 2020 2020 2020 207c 0a2b 2d2d 2d2d /0 |.+---- │ │ │ │ -0026cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026cd30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0026cd40: 2072 6f6f 7450 6174 6820 7c20 666e 2020 rootPath | fn │ │ │ │ -0026cd50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0026cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026cd70: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0026cd80: 202f 746d 702f 4d32 2d31 3032 3833 2d30 /tmp/M2-10283-0 │ │ │ │ -0026cd90: 2f30 2020 2020 2020 207c 0a2b 2d2d 2d2d /0 |.+---- │ │ │ │ -0026cda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026cdb0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -0026cdc0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0026cdd0: 202a 202a 6e6f 7465 2072 6f6f 7455 5249 * *note rootURI │ │ │ │ -0026cde0: 3a20 726f 6f74 5552 492c 0a0a 466f 7220 : rootURI,..For │ │ │ │ -0026cdf0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0026ce00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0026ce10: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0026ce20: 6f74 6520 726f 6f74 5061 7468 3a20 726f ote rootPath: ro │ │ │ │ -0026ce30: 6f74 5061 7468 2c20 6973 2061 202a 6e6f otPath, is a *no │ │ │ │ -0026ce40: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ -0026ce50: 672c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d g,...----------- │ │ │ │ -0026ce60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ca60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0026ca90: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0026caa0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0026cab0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0026cac0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0026cad0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0026cae0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0026caf0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0026cb00: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0026cb10: 3a32 3034 313a 302e 0a1f 0a46 696c 653a :2041:0....File: │ │ │ │ +0026cb20: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +0026cb30: 666f 2c20 4e6f 6465 3a20 726f 6f74 5061 fo, Node: rootPa │ │ │ │ +0026cb40: 7468 2c20 4e65 7874 3a20 686f 6d65 4469 th, Next: homeDi │ │ │ │ +0026cb50: 7265 6374 6f72 792c 2050 7265 763a 2072 rectory, Prev: r │ │ │ │ +0026cb60: 6f6f 7455 5249 2c20 5570 3a20 7379 7374 ootURI, Up: syst │ │ │ │ +0026cb70: 656d 2066 6163 696c 6974 6965 730a 0a72 em facilities..r │ │ │ │ +0026cb80: 6f6f 7450 6174 680a 2a2a 2a2a 2a2a 2a2a ootPath.******** │ │ │ │ +0026cb90: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0026cba0: 2020 2020 2020 726f 6f74 5061 7468 0a20 rootPath. │ │ │ │ +0026cbb0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0026cbc0: 2020 2a20 6120 2a6e 6f74 6520 7374 7269 * a *note stri │ │ │ │ +0026cbd0: 6e67 3a20 5374 7269 6e67 2c2c 2074 6865 ng: String,, the │ │ │ │ +0026cbe0: 2070 6174 682c 2061 7320 7365 656e 2062 path, as seen b │ │ │ │ +0026cbf0: 7920 6578 7465 726e 616c 2070 726f 6772 y external progr │ │ │ │ +0026cc00: 616d 732c 2074 6f20 7468 650a 2020 2020 ams, to the. │ │ │ │ +0026cc10: 2020 2020 726f 6f74 206f 6620 7468 6520 root of the │ │ │ │ +0026cc20: 6669 6c65 2073 7973 7465 6d20 7365 656e file system seen │ │ │ │ +0026cc30: 2062 7920 4d61 6361 756c 6179 320a 0a44 by Macaulay2..D │ │ │ │ +0026cc40: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0026cc50: 3d3d 3d3d 3d3d 0a0a 5468 6973 2073 7472 ======..This str │ │ │ │ +0026cc60: 696e 6720 6d61 7920 6265 2063 6f6e 6361 ing may be conca │ │ │ │ +0026cc70: 7465 6e61 7465 6420 7769 7468 2061 6e20 tenated with an │ │ │ │ +0026cc80: 6162 736f 6c75 7465 2070 6174 6820 746f absolute path to │ │ │ │ +0026cc90: 2067 6574 206f 6e65 2075 6e64 6572 7374 get one underst │ │ │ │ +0026cca0: 616e 6461 626c 650a 6279 2065 7874 6572 andable.by exter │ │ │ │ +0026ccb0: 6e61 6c20 7072 6f67 7261 6d73 2e0a 0a2b nal programs...+ │ │ │ │ +0026ccc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0026cce0: 6931 203a 2066 6e20 3d20 7465 6d70 6f72 i1 : fn = tempor │ │ │ │ +0026ccf0: 6172 7946 696c 654e 616d 6528 297c 0a7c aryFileName()|.| │ │ │ │ +0026cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026cd10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0026cd20: 6f31 203d 202f 746d 702f 4d32 2d31 3034 o1 = /tmp/M2-104 │ │ │ │ +0026cd30: 3733 2d30 2f30 2020 2020 2020 207c 0a2b 73-0/0 |.+ │ │ │ │ +0026cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0026cd60: 6932 203a 2072 6f6f 7450 6174 6820 7c20 i2 : rootPath | │ │ │ │ +0026cd70: 666e 2020 2020 2020 2020 2020 207c 0a7c fn |.| │ │ │ │ +0026cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026cd90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0026cda0: 6f32 203d 202f 746d 702f 4d32 2d31 3034 o2 = /tmp/M2-104 │ │ │ │ +0026cdb0: 3733 2d30 2f30 2020 2020 2020 207c 0a2b 73-0/0 |.+ │ │ │ │ +0026cdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0026cde0: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +0026cdf0: 3d0a 0a20 202a 202a 6e6f 7465 2072 6f6f =.. * *note roo │ │ │ │ +0026ce00: 7455 5249 3a20 726f 6f74 5552 492c 0a0a tURI: rootURI,.. │ │ │ │ +0026ce10: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0026ce20: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0026ce30: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0026ce40: 7420 2a6e 6f74 6520 726f 6f74 5061 7468 t *note rootPath │ │ │ │ +0026ce50: 3a20 726f 6f74 5061 7468 2c20 6973 2061 : rootPath, is a │ │ │ │ +0026ce60: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ +0026ce70: 7472 696e 672c 2e0a 0a2d 2d2d 2d2d 2d2d tring,...------- │ │ │ │ 0026ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026cea0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0026ceb0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0026cec0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0026ced0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0026cee0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0026cef0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0026cf00: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0026cf10: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -0026cf20: 7465 6d2e 6d32 3a32 3032 353a 302e 0a1f tem.m2:2025:0... │ │ │ │ -0026cf30: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -0026cf40: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -0026cf50: 686f 6d65 4469 7265 6374 6f72 792c 204e homeDirectory, N │ │ │ │ -0026cf60: 6578 743a 206d 696e 696d 697a 6546 696c ext: minimizeFil │ │ │ │ -0026cf70: 656e 616d 652c 2050 7265 763a 2072 6f6f ename, Prev: roo │ │ │ │ -0026cf80: 7450 6174 682c 2055 703a 2073 7973 7465 tPath, Up: syste │ │ │ │ -0026cf90: 6d20 6661 6369 6c69 7469 6573 0a0a 686f m facilities..ho │ │ │ │ -0026cfa0: 6d65 4469 7265 6374 6f72 7920 2d2d 2074 meDirectory -- t │ │ │ │ -0026cfb0: 6865 2068 6f6d 6520 6469 7265 6374 6f72 he home director │ │ │ │ -0026cfc0: 7920 6f66 2074 6865 2075 7365 720a 2a2a y of the user.** │ │ │ │ -0026cfd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026cfe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026cff0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -0026d000: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0026d010: 2020 2068 6f6d 6544 6972 6563 746f 7279 homeDirectory │ │ │ │ -0026d020: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0026d030: 2020 2020 2a20 6120 2a6e 6f74 6520 7374 * a *note st │ │ │ │ -0026d040: 7269 6e67 3a20 5374 7269 6e67 2c2c 2074 ring: String,, t │ │ │ │ -0026d050: 6865 2068 6f6d 6520 6469 7265 6374 6f72 he home director │ │ │ │ -0026d060: 7920 6f66 2074 6865 2075 7365 720a 0a44 y of the user..D │ │ │ │ -0026d070: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0026d080: 3d3d 3d3d 3d3d 0a0a 496e 2066 696c 6520 ======..In file │ │ │ │ -0026d090: 6f70 6572 6174 696f 6e73 2c20 6669 6c65 operations, file │ │ │ │ -0026d0a0: 206e 616d 6573 2062 6567 696e 6e69 6e67 names beginning │ │ │ │ -0026d0b0: 2077 6974 6820 7e2f 2077 696c 6c20 6861 with ~/ will ha │ │ │ │ -0026d0c0: 7665 2069 7420 7265 706c 6163 6564 2077 ve it replaced w │ │ │ │ -0026d0d0: 6974 6820 7468 650a 686f 6d65 2064 6972 ith the.home dir │ │ │ │ -0026d0e0: 6563 746f 7279 2e0a 0a2b 2d2d 2d2d 2d2d ectory...+------ │ │ │ │ -0026d0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0026d100: 3120 3a20 686f 6d65 4469 7265 6374 6f72 1 : homeDirector │ │ │ │ -0026d110: 797c 0a7c 2020 2020 2020 2020 2020 2020 y|.| │ │ │ │ -0026d120: 2020 2020 2020 7c0a 7c6f 3120 3d20 2f68 |.|o1 = /h │ │ │ │ -0026d130: 6f6d 652f 6d32 7573 6572 2f7c 0a2b 2d2d ome/m2user/|.+-- │ │ │ │ -0026d140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d150: 2b0a 0a46 6f72 2074 6865 2070 726f 6772 +..For the progr │ │ │ │ -0026d160: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -0026d170: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -0026d180: 6a65 6374 202a 6e6f 7465 2068 6f6d 6544 ject *note homeD │ │ │ │ -0026d190: 6972 6563 746f 7279 3a20 686f 6d65 4469 irectory: homeDi │ │ │ │ -0026d1a0: 7265 6374 6f72 792c 2069 7320 6120 2a6e rectory, is a *n │ │ │ │ -0026d1b0: 6f74 6520 7374 7269 6e67 3a20 5374 7269 ote string: Stri │ │ │ │ -0026d1c0: 6e67 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ng,...---------- │ │ │ │ -0026d1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026cea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026cec0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0026ced0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0026cee0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0026cef0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0026cf00: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0026cf10: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0026cf20: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0026cf30: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +0026cf40: 5f73 7973 7465 6d2e 6d32 3a32 3032 353a _system.m2:2025: │ │ │ │ +0026cf50: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +0026cf60: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +0026cf70: 6465 3a20 686f 6d65 4469 7265 6374 6f72 de: homeDirector │ │ │ │ +0026cf80: 792c 204e 6578 743a 206d 696e 696d 697a y, Next: minimiz │ │ │ │ +0026cf90: 6546 696c 656e 616d 652c 2050 7265 763a eFilename, Prev: │ │ │ │ +0026cfa0: 2072 6f6f 7450 6174 682c 2055 703a 2073 rootPath, Up: s │ │ │ │ +0026cfb0: 7973 7465 6d20 6661 6369 6c69 7469 6573 ystem facilities │ │ │ │ +0026cfc0: 0a0a 686f 6d65 4469 7265 6374 6f72 7920 ..homeDirectory │ │ │ │ +0026cfd0: 2d2d 2074 6865 2068 6f6d 6520 6469 7265 -- the home dire │ │ │ │ +0026cfe0: 6374 6f72 7920 6f66 2074 6865 2075 7365 ctory of the use │ │ │ │ +0026cff0: 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a r.************** │ │ │ │ +0026d000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026d010: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026d020: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +0026d030: 2020 2020 2020 2068 6f6d 6544 6972 6563 homeDirec │ │ │ │ +0026d040: 746f 7279 0a20 202a 204f 7574 7075 7473 tory. * Outputs │ │ │ │ +0026d050: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ +0026d060: 6520 7374 7269 6e67 3a20 5374 7269 6e67 e string: String │ │ │ │ +0026d070: 2c2c 2074 6865 2068 6f6d 6520 6469 7265 ,, the home dire │ │ │ │ +0026d080: 6374 6f72 7920 6f66 2074 6865 2075 7365 ctory of the use │ │ │ │ +0026d090: 720a 0a44 6573 6372 6970 7469 6f6e 0a3d r..Description.= │ │ │ │ +0026d0a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 496e 2066 ==========..In f │ │ │ │ +0026d0b0: 696c 6520 6f70 6572 6174 696f 6e73 2c20 ile operations, │ │ │ │ +0026d0c0: 6669 6c65 206e 616d 6573 2062 6567 696e file names begin │ │ │ │ +0026d0d0: 6e69 6e67 2077 6974 6820 7e2f 2077 696c ning with ~/ wil │ │ │ │ +0026d0e0: 6c20 6861 7665 2069 7420 7265 706c 6163 l have it replac │ │ │ │ +0026d0f0: 6564 2077 6974 6820 7468 650a 686f 6d65 ed with the.home │ │ │ │ +0026d100: 2064 6972 6563 746f 7279 2e0a 0a2b 2d2d directory...+-- │ │ │ │ +0026d110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d120: 2b0a 7c69 3120 3a20 686f 6d65 4469 7265 +.|i1 : homeDire │ │ │ │ +0026d130: 6374 6f72 797c 0a7c 2020 2020 2020 2020 ctory|.| │ │ │ │ +0026d140: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0026d150: 3d20 2f68 6f6d 652f 6d32 7573 6572 2f7c = /home/m2user/| │ │ │ │ +0026d160: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0026d170: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ +0026d180: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0026d190: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0026d1a0: 6520 6f62 6a65 6374 202a 6e6f 7465 2068 e object *note h │ │ │ │ +0026d1b0: 6f6d 6544 6972 6563 746f 7279 3a20 686f omeDirectory: ho │ │ │ │ +0026d1c0: 6d65 4469 7265 6374 6f72 792c 2069 7320 meDirectory, is │ │ │ │ +0026d1d0: 6120 2a6e 6f74 6520 7374 7269 6e67 3a20 a *note string: │ │ │ │ +0026d1e0: 5374 7269 6e67 2c2e 0a0a 2d2d 2d2d 2d2d String,...------ │ │ │ │ 0026d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026d200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d210: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0026d220: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0026d230: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0026d240: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0026d250: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0026d260: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0026d270: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -0026d280: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -0026d290: 7374 656d 2e6d 323a 3138 3839 3a30 2e0a stem.m2:1889:0.. │ │ │ │ -0026d2a0: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -0026d2b0: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -0026d2c0: 206d 696e 696d 697a 6546 696c 656e 616d minimizeFilenam │ │ │ │ -0026d2d0: 652c 204e 6578 743a 2072 656c 6174 6976 e, Next: relativ │ │ │ │ -0026d2e0: 697a 6546 696c 656e 616d 652c 2050 7265 izeFilename, Pre │ │ │ │ -0026d2f0: 763a 2068 6f6d 6544 6972 6563 746f 7279 v: homeDirectory │ │ │ │ -0026d300: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ -0026d310: 696c 6974 6965 730a 0a6d 696e 696d 697a ilities..minimiz │ │ │ │ -0026d320: 6546 696c 656e 616d 6520 2d2d 206d 696e eFilename -- min │ │ │ │ -0026d330: 696d 697a 6520 6120 6669 6c65 206e 616d imize a file nam │ │ │ │ -0026d340: 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a e.************** │ │ │ │ -0026d350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026d360: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0026d370: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0026d380: 6d69 6e69 6d69 7a65 4669 6c65 6e61 6d65 minimizeFilename │ │ │ │ -0026d390: 2066 6e0a 2020 2a20 496e 7075 7473 3a0a fn. * Inputs:. │ │ │ │ -0026d3a0: 2020 2020 2020 2a20 666e 2c20 6120 7061 * fn, a pa │ │ │ │ -0026d3b0: 7468 2074 6f20 6120 6669 6c65 0a20 202a th to a file. * │ │ │ │ -0026d3c0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0026d3d0: 2a20 6120 6d69 6e69 6d69 7a65 6420 7061 * a minimized pa │ │ │ │ -0026d3e0: 7468 2c20 6571 7569 7661 6c65 6e74 2074 th, equivalent t │ │ │ │ -0026d3f0: 6f20 666e 0a0a 4465 7363 7269 7074 696f o fn..Descriptio │ │ │ │ -0026d400: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b n.===========..+ │ │ │ │ -0026d410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d430: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -0026d440: 3a20 6d69 6e69 6d69 7a65 4669 6c65 6e61 : minimizeFilena │ │ │ │ -0026d450: 6d65 2022 612f 622f 632f 2e2e 2f64 2220 me "a/b/c/../d" │ │ │ │ -0026d460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0026d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d490: 2020 2020 7c0a 7c6f 3120 3d20 612f 622f |.|o1 = a/b/ │ │ │ │ -0026d4a0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ -0026d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d4c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0026d4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0026d4f0: 7c69 3220 3a20 6d69 6e69 6d69 7a65 4669 |i2 : minimizeFi │ │ │ │ -0026d500: 6c65 6e61 6d65 2022 2e2e 2f2e 2e2f 2e2e lename "../../.. │ │ │ │ -0026d510: 2f2e 2e2f 2e2e 2f2e 2e2f 227c 0a7c 2020 /../../../"|.| │ │ │ │ -0026d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d540: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0026d550: 2f62 7569 6c64 2f20 2020 2020 2020 2020 /build/ │ │ │ │ -0026d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026d570: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0026d580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d5a0: 2d2d 2b0a 0a50 6174 6873 206f 6620 7468 --+..Paths of th │ │ │ │ -0026d5b0: 6520 666f 726d 2066 6f6f 2f78 2f2e 2e2f e form foo/x/../ │ │ │ │ -0026d5c0: 6261 722c 2061 7265 2073 686f 7274 656e bar, are shorten │ │ │ │ -0026d5d0: 6564 2074 6f20 666f 6f2f 6261 7220 7769 ed to foo/bar wi │ │ │ │ -0026d5e0: 7468 6f75 7420 6368 6563 6b69 6e67 2074 thout checking t │ │ │ │ -0026d5f0: 6865 0a66 696c 6520 7379 7374 656d 2074 he.file system t │ │ │ │ -0026d600: 6f20 7365 6520 7768 6574 6865 7220 7820 o see whether x │ │ │ │ -0026d610: 6973 2061 2073 796d 626f 6c69 6320 6c69 is a symbolic li │ │ │ │ -0026d620: 6e6b 2e20 2046 6f72 2074 6865 206f 7468 nk. For the oth │ │ │ │ -0026d630: 6572 2062 6568 6176 696f 722c 2073 6565 er behavior, see │ │ │ │ -0026d640: 0a2a 6e6f 7465 2072 6561 6c70 6174 683a .*note realpath: │ │ │ │ -0026d650: 2072 6561 6c70 6174 682c 2e0a 0a53 6565 realpath,...See │ │ │ │ -0026d660: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ -0026d670: 2020 2a20 2a6e 6f74 6520 4669 6c65 3a20 * *note File: │ │ │ │ -0026d680: 4669 6c65 2c20 2d2d 2074 6865 2063 6c61 File, -- the cla │ │ │ │ -0026d690: 7373 206f 6620 616c 6c20 6669 6c65 730a ss of all files. │ │ │ │ -0026d6a0: 2020 2a20 2a6e 6f74 6520 7265 6c61 7469 * *note relati │ │ │ │ -0026d6b0: 7669 7a65 4669 6c65 6e61 6d65 3a20 7265 vizeFilename: re │ │ │ │ -0026d6c0: 6c61 7469 7669 7a65 4669 6c65 6e61 6d65 lativizeFilename │ │ │ │ -0026d6d0: 2c20 2d2d 2072 656c 6174 6976 697a 6520 , -- relativize │ │ │ │ -0026d6e0: 6120 6669 6c65 206e 616d 650a 2020 2a20 a file name. * │ │ │ │ -0026d6f0: 2a6e 6f74 6520 6261 7365 4669 6c65 6e61 *note baseFilena │ │ │ │ -0026d700: 6d65 3a20 6261 7365 4669 6c65 6e61 6d65 me: baseFilename │ │ │ │ -0026d710: 2c20 2d2d 2074 6865 2062 6173 6520 7061 , -- the base pa │ │ │ │ -0026d720: 7274 206f 6620 6120 6669 6c65 6e61 6d65 rt of a filename │ │ │ │ -0026d730: 206f 7220 7061 7468 0a20 202a 202a 6e6f or path. * *no │ │ │ │ -0026d740: 7465 2074 6f41 6273 6f6c 7574 6550 6174 te toAbsolutePat │ │ │ │ -0026d750: 683a 2074 6f41 6273 6f6c 7574 6550 6174 h: toAbsolutePat │ │ │ │ -0026d760: 682c 202d 2d20 7468 6520 6162 736f 6c75 h, -- the absolu │ │ │ │ -0026d770: 7465 2070 6174 6820 7665 7273 696f 6e20 te path version │ │ │ │ -0026d780: 6f66 2061 0a20 2020 2066 696c 6520 6e61 of a. file na │ │ │ │ -0026d790: 6d65 0a20 202a 202a 6e6f 7465 2073 6561 me. * *note sea │ │ │ │ -0026d7a0: 7263 6850 6174 683a 2073 6561 7263 6850 rchPath: searchP │ │ │ │ -0026d7b0: 6174 685f 6c70 4c69 7374 5f63 6d53 7472 ath_lpList_cmStr │ │ │ │ -0026d7c0: 696e 675f 7270 2c20 2d2d 2073 6561 7263 ing_rp, -- searc │ │ │ │ -0026d7d0: 6820 6120 7061 7468 2066 6f72 2061 0a20 h a path for a. │ │ │ │ -0026d7e0: 2020 2066 696c 650a 2020 2a20 2a6e 6f74 file. * *not │ │ │ │ -0026d7f0: 6520 7061 7468 3a20 7061 7468 2c20 2d2d e path: path, -- │ │ │ │ -0026d800: 206c 6973 7420 6f66 2064 6972 6563 746f list of directo │ │ │ │ -0026d810: 7269 6573 2074 6f20 6c6f 6f6b 2069 6e0a ries to look in. │ │ │ │ -0026d820: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -0026d830: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -0026d840: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -0026d850: 6374 202a 6e6f 7465 206d 696e 696d 697a ct *note minimiz │ │ │ │ -0026d860: 6546 696c 656e 616d 653a 206d 696e 696d eFilename: minim │ │ │ │ -0026d870: 697a 6546 696c 656e 616d 652c 2069 7320 izeFilename, is │ │ │ │ -0026d880: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ -0026d890: 0a66 756e 6374 696f 6e3a 2043 6f6d 7069 .function: Compi │ │ │ │ -0026d8a0: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ -0026d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d230: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0026d240: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0026d250: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0026d260: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0026d270: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0026d280: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0026d290: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0026d2a0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +0026d2b0: 765f 7379 7374 656d 2e6d 323a 3138 3839 v_system.m2:1889 │ │ │ │ +0026d2c0: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +0026d2d0: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +0026d2e0: 6f64 653a 206d 696e 696d 697a 6546 696c ode: minimizeFil │ │ │ │ +0026d2f0: 656e 616d 652c 204e 6578 743a 2072 656c ename, Next: rel │ │ │ │ +0026d300: 6174 6976 697a 6546 696c 656e 616d 652c ativizeFilename, │ │ │ │ +0026d310: 2050 7265 763a 2068 6f6d 6544 6972 6563 Prev: homeDirec │ │ │ │ +0026d320: 746f 7279 2c20 5570 3a20 7379 7374 656d tory, Up: system │ │ │ │ +0026d330: 2066 6163 696c 6974 6965 730a 0a6d 696e facilities..min │ │ │ │ +0026d340: 696d 697a 6546 696c 656e 616d 6520 2d2d imizeFilename -- │ │ │ │ +0026d350: 206d 696e 696d 697a 6520 6120 6669 6c65 minimize a file │ │ │ │ +0026d360: 206e 616d 650a 2a2a 2a2a 2a2a 2a2a 2a2a name.********** │ │ │ │ +0026d370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026d380: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0026d390: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0026d3a0: 2020 2020 6d69 6e69 6d69 7a65 4669 6c65 minimizeFile │ │ │ │ +0026d3b0: 6e61 6d65 2066 6e0a 2020 2a20 496e 7075 name fn. * Inpu │ │ │ │ +0026d3c0: 7473 3a0a 2020 2020 2020 2a20 666e 2c20 ts:. * fn, │ │ │ │ +0026d3d0: 6120 7061 7468 2074 6f20 6120 6669 6c65 a path to a file │ │ │ │ +0026d3e0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0026d3f0: 2020 2020 2a20 6120 6d69 6e69 6d69 7a65 * a minimize │ │ │ │ +0026d400: 6420 7061 7468 2c20 6571 7569 7661 6c65 d path, equivale │ │ │ │ +0026d410: 6e74 2074 6f20 666e 0a0a 4465 7363 7269 nt to fn..Descri │ │ │ │ +0026d420: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0026d430: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ +0026d440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0026d460: 7c69 3120 3a20 6d69 6e69 6d69 7a65 4669 |i1 : minimizeFi │ │ │ │ +0026d470: 6c65 6e61 6d65 2022 612f 622f 632f 2e2e lename "a/b/c/.. │ │ │ │ +0026d480: 2f64 2220 2020 2020 2020 207c 0a7c 2020 /d" |.| │ │ │ │ +0026d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026d4b0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +0026d4c0: 612f 622f 6420 2020 2020 2020 2020 2020 a/b/d │ │ │ │ +0026d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026d4e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0026d4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d510: 2d2d 2b0a 7c69 3220 3a20 6d69 6e69 6d69 --+.|i2 : minimi │ │ │ │ +0026d520: 7a65 4669 6c65 6e61 6d65 2022 2e2e 2f2e zeFilename "../. │ │ │ │ +0026d530: 2e2f 2e2e 2f2e 2e2f 2e2e 2f2e 2e2f 227c ./../../../../"| │ │ │ │ +0026d540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0026d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026d560: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0026d570: 3220 3d20 2f62 7569 6c64 2f20 2020 2020 2 = /build/ │ │ │ │ +0026d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026d590: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0026d5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d5c0: 2d2d 2d2d 2d2d 2b0a 0a50 6174 6873 206f ------+..Paths o │ │ │ │ +0026d5d0: 6620 7468 6520 666f 726d 2066 6f6f 2f78 f the form foo/x │ │ │ │ +0026d5e0: 2f2e 2e2f 6261 722c 2061 7265 2073 686f /../bar, are sho │ │ │ │ +0026d5f0: 7274 656e 6564 2074 6f20 666f 6f2f 6261 rtened to foo/ba │ │ │ │ +0026d600: 7220 7769 7468 6f75 7420 6368 6563 6b69 r without checki │ │ │ │ +0026d610: 6e67 2074 6865 0a66 696c 6520 7379 7374 ng the.file syst │ │ │ │ +0026d620: 656d 2074 6f20 7365 6520 7768 6574 6865 em to see whethe │ │ │ │ +0026d630: 7220 7820 6973 2061 2073 796d 626f 6c69 r x is a symboli │ │ │ │ +0026d640: 6320 6c69 6e6b 2e20 2046 6f72 2074 6865 c link. For the │ │ │ │ +0026d650: 206f 7468 6572 2062 6568 6176 696f 722c other behavior, │ │ │ │ +0026d660: 2073 6565 0a2a 6e6f 7465 2072 6561 6c70 see.*note realp │ │ │ │ +0026d670: 6174 683a 2072 6561 6c70 6174 682c 2e0a ath: realpath,.. │ │ │ │ +0026d680: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0026d690: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 4669 ==.. * *note Fi │ │ │ │ +0026d6a0: 6c65 3a20 4669 6c65 2c20 2d2d 2074 6865 le: File, -- the │ │ │ │ +0026d6b0: 2063 6c61 7373 206f 6620 616c 6c20 6669 class of all fi │ │ │ │ +0026d6c0: 6c65 730a 2020 2a20 2a6e 6f74 6520 7265 les. * *note re │ │ │ │ +0026d6d0: 6c61 7469 7669 7a65 4669 6c65 6e61 6d65 lativizeFilename │ │ │ │ +0026d6e0: 3a20 7265 6c61 7469 7669 7a65 4669 6c65 : relativizeFile │ │ │ │ +0026d6f0: 6e61 6d65 2c20 2d2d 2072 656c 6174 6976 name, -- relativ │ │ │ │ +0026d700: 697a 6520 6120 6669 6c65 206e 616d 650a ize a file name. │ │ │ │ +0026d710: 2020 2a20 2a6e 6f74 6520 6261 7365 4669 * *note baseFi │ │ │ │ +0026d720: 6c65 6e61 6d65 3a20 6261 7365 4669 6c65 lename: baseFile │ │ │ │ +0026d730: 6e61 6d65 2c20 2d2d 2074 6865 2062 6173 name, -- the bas │ │ │ │ +0026d740: 6520 7061 7274 206f 6620 6120 6669 6c65 e part of a file │ │ │ │ +0026d750: 6e61 6d65 206f 7220 7061 7468 0a20 202a name or path. * │ │ │ │ +0026d760: 202a 6e6f 7465 2074 6f41 6273 6f6c 7574 *note toAbsolut │ │ │ │ +0026d770: 6550 6174 683a 2074 6f41 6273 6f6c 7574 ePath: toAbsolut │ │ │ │ +0026d780: 6550 6174 682c 202d 2d20 7468 6520 6162 ePath, -- the ab │ │ │ │ +0026d790: 736f 6c75 7465 2070 6174 6820 7665 7273 solute path vers │ │ │ │ +0026d7a0: 696f 6e20 6f66 2061 0a20 2020 2066 696c ion of a. fil │ │ │ │ +0026d7b0: 6520 6e61 6d65 0a20 202a 202a 6e6f 7465 e name. * *note │ │ │ │ +0026d7c0: 2073 6561 7263 6850 6174 683a 2073 6561 searchPath: sea │ │ │ │ +0026d7d0: 7263 6850 6174 685f 6c70 4c69 7374 5f63 rchPath_lpList_c │ │ │ │ +0026d7e0: 6d53 7472 696e 675f 7270 2c20 2d2d 2073 mString_rp, -- s │ │ │ │ +0026d7f0: 6561 7263 6820 6120 7061 7468 2066 6f72 earch a path for │ │ │ │ +0026d800: 2061 0a20 2020 2066 696c 650a 2020 2a20 a. file. * │ │ │ │ +0026d810: 2a6e 6f74 6520 7061 7468 3a20 7061 7468 *note path: path │ │ │ │ +0026d820: 2c20 2d2d 206c 6973 7420 6f66 2064 6972 , -- list of dir │ │ │ │ +0026d830: 6563 746f 7269 6573 2074 6f20 6c6f 6f6b ectories to look │ │ │ │ +0026d840: 2069 6e0a 0a46 6f72 2074 6865 2070 726f in..For the pro │ │ │ │ +0026d850: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0026d860: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0026d870: 6f62 6a65 6374 202a 6e6f 7465 206d 696e object *note min │ │ │ │ +0026d880: 696d 697a 6546 696c 656e 616d 653a 206d imizeFilename: m │ │ │ │ +0026d890: 696e 696d 697a 6546 696c 656e 616d 652c inimizeFilename, │ │ │ │ +0026d8a0: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ +0026d8b0: 696c 6564 0a66 756e 6374 696f 6e3a 2043 iled.function: C │ │ │ │ +0026d8c0: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ +0026d8d0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 0026d8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0026d900: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0026d910: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0026d920: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0026d930: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0026d940: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0026d950: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0026d960: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -0026d970: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -0026d980: 3a31 3338 363a 302e 0a1f 0a46 696c 653a :1386:0....File: │ │ │ │ -0026d990: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -0026d9a0: 666f 2c20 4e6f 6465 3a20 7265 6c61 7469 fo, Node: relati │ │ │ │ -0026d9b0: 7669 7a65 4669 6c65 6e61 6d65 2c20 4e65 vizeFilename, Ne │ │ │ │ -0026d9c0: 7874 3a20 746f 4162 736f 6c75 7465 5061 xt: toAbsolutePa │ │ │ │ -0026d9d0: 7468 2c20 5072 6576 3a20 6d69 6e69 6d69 th, Prev: minimi │ │ │ │ -0026d9e0: 7a65 4669 6c65 6e61 6d65 2c20 5570 3a20 zeFilename, Up: │ │ │ │ -0026d9f0: 7379 7374 656d 2066 6163 696c 6974 6965 system facilitie │ │ │ │ -0026da00: 730a 0a72 656c 6174 6976 697a 6546 696c s..relativizeFil │ │ │ │ -0026da10: 656e 616d 6520 2d2d 2072 656c 6174 6976 ename -- relativ │ │ │ │ -0026da20: 697a 6520 6120 6669 6c65 206e 616d 650a ize a file name. │ │ │ │ -0026da30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026da40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026da50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -0026da60: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0026da70: 2020 7265 6c61 7469 7669 7a65 4669 6c65 relativizeFile │ │ │ │ -0026da80: 6e61 6d65 2864 6972 2c66 6e29 0a20 202a name(dir,fn). * │ │ │ │ -0026da90: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0026daa0: 2064 6972 2c20 6120 7061 7468 2074 6f20 dir, a path to │ │ │ │ -0026dab0: 6120 6469 7265 6374 6f72 790a 2020 2020 a directory. │ │ │ │ -0026dac0: 2020 2a20 666e 2c20 6120 7061 7468 2074 * fn, a path t │ │ │ │ -0026dad0: 6f20 6120 6669 6c65 0a20 202a 204f 7574 o a file. * Out │ │ │ │ -0026dae0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -0026daf0: 7265 6c61 7469 7669 7a65 6420 7061 7468 relativized path │ │ │ │ -0026db00: 2c20 6571 7569 7661 6c65 6e74 2074 6f20 , equivalent to │ │ │ │ -0026db10: 666e 2077 6865 6e20 7374 6172 7469 6e67 fn when starting │ │ │ │ -0026db20: 2066 726f 6d20 6469 720a 0a44 6573 6372 from dir..Descr │ │ │ │ -0026db30: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0026db40: 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ==..+----------- │ │ │ │ -0026db50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026db60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026db70: 2d2b 0a7c 6931 203a 2072 656c 6174 6976 -+.|i1 : relativ │ │ │ │ -0026db80: 697a 6546 696c 656e 616d 6528 2261 2f62 izeFilename("a/b │ │ │ │ -0026db90: 2f22 2c22 612f 622f 632f 6422 2920 2020 /","a/b/c/d") │ │ │ │ -0026dba0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0026dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dbc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0026dbd0: 0a7c 6f31 203d 2063 2f64 2020 2020 2020 .|o1 = c/d │ │ │ │ +0026d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026d920: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0026d930: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0026d940: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0026d950: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0026d960: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0026d970: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0026d980: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +0026d990: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +0026d9a0: 6d2e 6d32 3a31 3338 363a 302e 0a1f 0a46 m.m2:1386:0....F │ │ │ │ +0026d9b0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +0026d9c0: 632e 696e 666f 2c20 4e6f 6465 3a20 7265 c.info, Node: re │ │ │ │ +0026d9d0: 6c61 7469 7669 7a65 4669 6c65 6e61 6d65 lativizeFilename │ │ │ │ +0026d9e0: 2c20 4e65 7874 3a20 746f 4162 736f 6c75 , Next: toAbsolu │ │ │ │ +0026d9f0: 7465 5061 7468 2c20 5072 6576 3a20 6d69 tePath, Prev: mi │ │ │ │ +0026da00: 6e69 6d69 7a65 4669 6c65 6e61 6d65 2c20 nimizeFilename, │ │ │ │ +0026da10: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ +0026da20: 6974 6965 730a 0a72 656c 6174 6976 697a ities..relativiz │ │ │ │ +0026da30: 6546 696c 656e 616d 6520 2d2d 2072 656c eFilename -- rel │ │ │ │ +0026da40: 6174 6976 697a 6520 6120 6669 6c65 206e ativize a file n │ │ │ │ +0026da50: 616d 650a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ame.************ │ │ │ │ +0026da60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026da70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026da80: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +0026da90: 2020 2020 2020 7265 6c61 7469 7669 7a65 relativize │ │ │ │ +0026daa0: 4669 6c65 6e61 6d65 2864 6972 2c66 6e29 Filename(dir,fn) │ │ │ │ +0026dab0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +0026dac0: 2020 202a 2064 6972 2c20 6120 7061 7468 * dir, a path │ │ │ │ +0026dad0: 2074 6f20 6120 6469 7265 6374 6f72 790a to a directory. │ │ │ │ +0026dae0: 2020 2020 2020 2a20 666e 2c20 6120 7061 * fn, a pa │ │ │ │ +0026daf0: 7468 2074 6f20 6120 6669 6c65 0a20 202a th to a file. * │ │ │ │ +0026db00: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0026db10: 2a20 6120 7265 6c61 7469 7669 7a65 6420 * a relativized │ │ │ │ +0026db20: 7061 7468 2c20 6571 7569 7661 6c65 6e74 path, equivalent │ │ │ │ +0026db30: 2074 6f20 666e 2077 6865 6e20 7374 6172 to fn when star │ │ │ │ +0026db40: 7469 6e67 2066 726f 6d20 6469 720a 0a44 ting from dir..D │ │ │ │ +0026db50: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0026db60: 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d ======..+------- │ │ │ │ +0026db70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026db80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026db90: 2d2d 2d2d 2d2b 0a7c 6931 203a 2072 656c -----+.|i1 : rel │ │ │ │ +0026dba0: 6174 6976 697a 6546 696c 656e 616d 6528 ativizeFilename( │ │ │ │ +0026dbb0: 2261 2f62 2f22 2c22 612f 622f 632f 6422 "a/b/","a/b/c/d" │ │ │ │ +0026dbc0: 2920 2020 7c0a 7c20 2020 2020 2020 2020 ) |.| │ │ │ │ +0026dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0026dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dbf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0026dc00: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0026dc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026dc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0026dc30: 6932 203a 2072 656c 6174 6976 697a 6546 i2 : relativizeF │ │ │ │ -0026dc40: 696c 656e 616d 6528 2261 2f62 2f63 2f64 ilename("a/b/c/d │ │ │ │ -0026dc50: 222c 2261 2f62 2f22 2920 2020 7c0a 7c20 ","a/b/") |.| │ │ │ │ -0026dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dc80: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -0026dc90: 203d 202e 2e2f 2e2e 2f20 2020 2020 2020 = ../../ │ │ │ │ -0026dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dcb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0026dcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026dcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026dce0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0026dcf0: 2072 656c 6174 6976 697a 6546 696c 656e relativizeFilen │ │ │ │ -0026dd00: 616d 6528 2261 2f62 2f63 2f64 222c 2261 ame("a/b/c/d","a │ │ │ │ -0026dd10: 2f62 2f65 2f66 2229 7c0a 7c20 2020 2020 /b/e/f")|.| │ │ │ │ -0026dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dd40: 2020 2020 2020 207c 0a7c 6f33 203d 202e |.|o3 = . │ │ │ │ -0026dd50: 2e2f 2e2e 2f65 2f66 2020 2020 2020 2020 ./../e/f │ │ │ │ -0026dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026dd70: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0026dd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026dd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026dda0: 2d2d 2d2d 2d2b 0a0a 5061 7468 7320 6f66 -----+..Paths of │ │ │ │ -0026ddb0: 2074 6865 2066 6f72 6d20 666f 6f2f 782f the form foo/x/ │ │ │ │ -0026ddc0: 2e2e 2f62 6172 2c20 6172 6520 7368 6f72 ../bar, are shor │ │ │ │ -0026ddd0: 7465 6e65 6420 746f 2066 6f6f 2f62 6172 tened to foo/bar │ │ │ │ -0026dde0: 2077 6974 686f 7574 2063 6865 636b 696e without checkin │ │ │ │ -0026ddf0: 6720 7468 650a 6669 6c65 2073 7973 7465 g the.file syste │ │ │ │ -0026de00: 6d20 746f 2073 6565 2077 6865 7468 6572 m to see whether │ │ │ │ -0026de10: 2078 2069 7320 6120 7379 6d62 6f6c 6963 x is a symbolic │ │ │ │ -0026de20: 206c 696e 6b2e 2020 466f 7220 7468 6520 link. For the │ │ │ │ -0026de30: 6f74 6865 7220 6265 6861 7669 6f72 2c20 other behavior, │ │ │ │ -0026de40: 7365 650a 2a6e 6f74 6520 7265 616c 7061 see.*note realpa │ │ │ │ -0026de50: 7468 3a20 7265 616c 7061 7468 2c2e 0a0a th: realpath,... │ │ │ │ -0026de60: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -0026de70: 3d0a 0a20 202a 202a 6e6f 7465 2046 696c =.. * *note Fil │ │ │ │ -0026de80: 653a 2046 696c 652c 202d 2d20 7468 6520 e: File, -- the │ │ │ │ -0026de90: 636c 6173 7320 6f66 2061 6c6c 2066 696c class of all fil │ │ │ │ -0026dea0: 6573 0a20 202a 202a 6e6f 7465 206d 696e es. * *note min │ │ │ │ -0026deb0: 696d 697a 6546 696c 656e 616d 653a 206d imizeFilename: m │ │ │ │ -0026dec0: 696e 696d 697a 6546 696c 656e 616d 652c inimizeFilename, │ │ │ │ -0026ded0: 202d 2d20 6d69 6e69 6d69 7a65 2061 2066 -- minimize a f │ │ │ │ -0026dee0: 696c 6520 6e61 6d65 0a20 202a 202a 6e6f ile name. * *no │ │ │ │ -0026def0: 7465 2062 6173 6546 696c 656e 616d 653a te baseFilename: │ │ │ │ -0026df00: 2062 6173 6546 696c 656e 616d 652c 202d baseFilename, - │ │ │ │ -0026df10: 2d20 7468 6520 6261 7365 2070 6172 7420 - the base part │ │ │ │ -0026df20: 6f66 2061 2066 696c 656e 616d 6520 6f72 of a filename or │ │ │ │ -0026df30: 2070 6174 680a 2020 2a20 2a6e 6f74 6520 path. * *note │ │ │ │ -0026df40: 746f 4162 736f 6c75 7465 5061 7468 3a20 toAbsolutePath: │ │ │ │ -0026df50: 746f 4162 736f 6c75 7465 5061 7468 2c20 toAbsolutePath, │ │ │ │ -0026df60: 2d2d 2074 6865 2061 6273 6f6c 7574 6520 -- the absolute │ │ │ │ -0026df70: 7061 7468 2076 6572 7369 6f6e 206f 6620 path version of │ │ │ │ -0026df80: 610a 2020 2020 6669 6c65 206e 616d 650a a. file name. │ │ │ │ -0026df90: 2020 2a20 2a6e 6f74 6520 7365 6172 6368 * *note search │ │ │ │ -0026dfa0: 5061 7468 3a20 7365 6172 6368 5061 7468 Path: searchPath │ │ │ │ -0026dfb0: 5f6c 704c 6973 745f 636d 5374 7269 6e67 _lpList_cmString │ │ │ │ -0026dfc0: 5f72 702c 202d 2d20 7365 6172 6368 2061 _rp, -- search a │ │ │ │ -0026dfd0: 2070 6174 6820 666f 7220 610a 2020 2020 path for a. │ │ │ │ -0026dfe0: 6669 6c65 0a20 202a 202a 6e6f 7465 2070 file. * *note p │ │ │ │ -0026dff0: 6174 683a 2070 6174 682c 202d 2d20 6c69 ath: path, -- li │ │ │ │ -0026e000: 7374 206f 6620 6469 7265 6374 6f72 6965 st of directorie │ │ │ │ -0026e010: 7320 746f 206c 6f6f 6b20 696e 0a0a 466f s to look in..Fo │ │ │ │ -0026e020: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0026e030: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0026e040: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0026e050: 2a6e 6f74 6520 7265 6c61 7469 7669 7a65 *note relativize │ │ │ │ -0026e060: 4669 6c65 6e61 6d65 3a20 7265 6c61 7469 Filename: relati │ │ │ │ -0026e070: 7669 7a65 4669 6c65 6e61 6d65 2c20 6973 vizeFilename, is │ │ │ │ -0026e080: 2061 202a 6e6f 7465 2063 6f6d 7069 6c65 a *note compile │ │ │ │ -0026e090: 640a 6675 6e63 7469 6f6e 3a20 436f 6d70 d.function: Comp │ │ │ │ -0026e0a0: 696c 6564 4675 6e63 7469 6f6e 2c2e 0a0a iledFunction,... │ │ │ │ -0026e0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026dbf0: 2020 207c 0a7c 6f31 203d 2063 2f64 2020 |.|o1 = c/d │ │ │ │ +0026dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dc20: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0026dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026dc50: 2d2b 0a7c 6932 203a 2072 656c 6174 6976 -+.|i2 : relativ │ │ │ │ +0026dc60: 697a 6546 696c 656e 616d 6528 2261 2f62 izeFilename("a/b │ │ │ │ +0026dc70: 2f63 2f64 222c 2261 2f62 2f22 2920 2020 /c/d","a/b/") │ │ │ │ +0026dc80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0026dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0026dcb0: 0a7c 6f32 203d 202e 2e2f 2e2e 2f20 2020 .|o2 = ../../ │ │ │ │ +0026dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dcd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0026dce0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0026dcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026dd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0026dd10: 6933 203a 2072 656c 6174 6976 697a 6546 i3 : relativizeF │ │ │ │ +0026dd20: 696c 656e 616d 6528 2261 2f62 2f63 2f64 ilename("a/b/c/d │ │ │ │ +0026dd30: 222c 2261 2f62 2f65 2f66 2229 7c0a 7c20 ","a/b/e/f")|.| │ │ │ │ +0026dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dd60: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0026dd70: 203d 202e 2e2f 2e2e 2f65 2f66 2020 2020 = ../../e/f │ │ │ │ +0026dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026dd90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0026dda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ddc0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5061 7468 ---------+..Path │ │ │ │ +0026ddd0: 7320 6f66 2074 6865 2066 6f72 6d20 666f s of the form fo │ │ │ │ +0026dde0: 6f2f 782f 2e2e 2f62 6172 2c20 6172 6520 o/x/../bar, are │ │ │ │ +0026ddf0: 7368 6f72 7465 6e65 6420 746f 2066 6f6f shortened to foo │ │ │ │ +0026de00: 2f62 6172 2077 6974 686f 7574 2063 6865 /bar without che │ │ │ │ +0026de10: 636b 696e 6720 7468 650a 6669 6c65 2073 cking the.file s │ │ │ │ +0026de20: 7973 7465 6d20 746f 2073 6565 2077 6865 ystem to see whe │ │ │ │ +0026de30: 7468 6572 2078 2069 7320 6120 7379 6d62 ther x is a symb │ │ │ │ +0026de40: 6f6c 6963 206c 696e 6b2e 2020 466f 7220 olic link. For │ │ │ │ +0026de50: 7468 6520 6f74 6865 7220 6265 6861 7669 the other behavi │ │ │ │ +0026de60: 6f72 2c20 7365 650a 2a6e 6f74 6520 7265 or, see.*note re │ │ │ │ +0026de70: 616c 7061 7468 3a20 7265 616c 7061 7468 alpath: realpath │ │ │ │ +0026de80: 2c2e 0a0a 5365 6520 616c 736f 0a3d 3d3d ,...See also.=== │ │ │ │ +0026de90: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0026dea0: 2046 696c 653a 2046 696c 652c 202d 2d20 File: File, -- │ │ │ │ +0026deb0: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ +0026dec0: 2066 696c 6573 0a20 202a 202a 6e6f 7465 files. * *note │ │ │ │ +0026ded0: 206d 696e 696d 697a 6546 696c 656e 616d minimizeFilenam │ │ │ │ +0026dee0: 653a 206d 696e 696d 697a 6546 696c 656e e: minimizeFilen │ │ │ │ +0026def0: 616d 652c 202d 2d20 6d69 6e69 6d69 7a65 ame, -- minimize │ │ │ │ +0026df00: 2061 2066 696c 6520 6e61 6d65 0a20 202a a file name. * │ │ │ │ +0026df10: 202a 6e6f 7465 2062 6173 6546 696c 656e *note baseFilen │ │ │ │ +0026df20: 616d 653a 2062 6173 6546 696c 656e 616d ame: baseFilenam │ │ │ │ +0026df30: 652c 202d 2d20 7468 6520 6261 7365 2070 e, -- the base p │ │ │ │ +0026df40: 6172 7420 6f66 2061 2066 696c 656e 616d art of a filenam │ │ │ │ +0026df50: 6520 6f72 2070 6174 680a 2020 2a20 2a6e e or path. * *n │ │ │ │ +0026df60: 6f74 6520 746f 4162 736f 6c75 7465 5061 ote toAbsolutePa │ │ │ │ +0026df70: 7468 3a20 746f 4162 736f 6c75 7465 5061 th: toAbsolutePa │ │ │ │ +0026df80: 7468 2c20 2d2d 2074 6865 2061 6273 6f6c th, -- the absol │ │ │ │ +0026df90: 7574 6520 7061 7468 2076 6572 7369 6f6e ute path version │ │ │ │ +0026dfa0: 206f 6620 610a 2020 2020 6669 6c65 206e of a. file n │ │ │ │ +0026dfb0: 616d 650a 2020 2a20 2a6e 6f74 6520 7365 ame. * *note se │ │ │ │ +0026dfc0: 6172 6368 5061 7468 3a20 7365 6172 6368 archPath: search │ │ │ │ +0026dfd0: 5061 7468 5f6c 704c 6973 745f 636d 5374 Path_lpList_cmSt │ │ │ │ +0026dfe0: 7269 6e67 5f72 702c 202d 2d20 7365 6172 ring_rp, -- sear │ │ │ │ +0026dff0: 6368 2061 2070 6174 6820 666f 7220 610a ch a path for a. │ │ │ │ +0026e000: 2020 2020 6669 6c65 0a20 202a 202a 6e6f file. * *no │ │ │ │ +0026e010: 7465 2070 6174 683a 2070 6174 682c 202d te path: path, - │ │ │ │ +0026e020: 2d20 6c69 7374 206f 6620 6469 7265 6374 - list of direct │ │ │ │ +0026e030: 6f72 6965 7320 746f 206c 6f6f 6b20 696e ories to look in │ │ │ │ +0026e040: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0026e050: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0026e060: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0026e070: 6563 7420 2a6e 6f74 6520 7265 6c61 7469 ect *note relati │ │ │ │ +0026e080: 7669 7a65 4669 6c65 6e61 6d65 3a20 7265 vizeFilename: re │ │ │ │ +0026e090: 6c61 7469 7669 7a65 4669 6c65 6e61 6d65 lativizeFilename │ │ │ │ +0026e0a0: 2c20 6973 2061 202a 6e6f 7465 2063 6f6d , is a *note com │ │ │ │ +0026e0b0: 7069 6c65 640a 6675 6e63 7469 6f6e 3a20 piled.function: │ │ │ │ +0026e0c0: 436f 6d70 696c 6564 4675 6e63 7469 6f6e CompiledFunction │ │ │ │ +0026e0d0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0026e0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0026e100: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -0026e110: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -0026e120: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -0026e130: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -0026e140: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -0026e150: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -0026e160: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -0026e170: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ -0026e180: 323a 3134 3033 3a30 2e0a 1f0a 4669 6c65 2:1403:0....File │ │ │ │ -0026e190: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -0026e1a0: 6e66 6f2c 204e 6f64 653a 2074 6f41 6273 nfo, Node: toAbs │ │ │ │ -0026e1b0: 6f6c 7574 6550 6174 682c 204e 6578 743a olutePath, Next: │ │ │ │ -0026e1c0: 2073 6561 7263 6850 6174 685f 6c70 4c69 searchPath_lpLi │ │ │ │ -0026e1d0: 7374 5f63 6d53 7472 696e 675f 7270 2c20 st_cmString_rp, │ │ │ │ -0026e1e0: 5072 6576 3a20 7265 6c61 7469 7669 7a65 Prev: relativize │ │ │ │ -0026e1f0: 4669 6c65 6e61 6d65 2c20 5570 3a20 7379 Filename, Up: sy │ │ │ │ -0026e200: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ -0026e210: 0a74 6f41 6273 6f6c 7574 6550 6174 6820 .toAbsolutePath │ │ │ │ -0026e220: 2d2d 2074 6865 2061 6273 6f6c 7574 6520 -- the absolute │ │ │ │ -0026e230: 7061 7468 2076 6572 7369 6f6e 206f 6620 path version of │ │ │ │ -0026e240: 6120 6669 6c65 206e 616d 650a 2a2a 2a2a a file name.**** │ │ │ │ -0026e250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026e260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e120: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0026e130: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0026e140: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0026e150: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0026e160: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0026e170: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0026e180: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +0026e190: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ +0026e1a0: 656d 2e6d 323a 3134 3033 3a30 2e0a 1f0a em.m2:1403:0.... │ │ │ │ +0026e1b0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +0026e1c0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2074 oc.info, Node: t │ │ │ │ +0026e1d0: 6f41 6273 6f6c 7574 6550 6174 682c 204e oAbsolutePath, N │ │ │ │ +0026e1e0: 6578 743a 2073 6561 7263 6850 6174 685f ext: searchPath_ │ │ │ │ +0026e1f0: 6c70 4c69 7374 5f63 6d53 7472 696e 675f lpList_cmString_ │ │ │ │ +0026e200: 7270 2c20 5072 6576 3a20 7265 6c61 7469 rp, Prev: relati │ │ │ │ +0026e210: 7669 7a65 4669 6c65 6e61 6d65 2c20 5570 vizeFilename, Up │ │ │ │ +0026e220: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ +0026e230: 6965 730a 0a74 6f41 6273 6f6c 7574 6550 ies..toAbsoluteP │ │ │ │ +0026e240: 6174 6820 2d2d 2074 6865 2061 6273 6f6c ath -- the absol │ │ │ │ +0026e250: 7574 6520 7061 7468 2076 6572 7369 6f6e ute path version │ │ │ │ +0026e260: 206f 6620 6120 6669 6c65 206e 616d 650a of a file name. │ │ │ │ 0026e270: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026e280: 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 6167 ******.. * Usag │ │ │ │ -0026e290: 653a 200a 2020 2020 2020 2020 746f 4162 e: . toAb │ │ │ │ -0026e2a0: 736f 6c75 7465 5061 7468 2066 696c 656e solutePath filen │ │ │ │ -0026e2b0: 616d 650a 2020 2a20 496e 7075 7473 3a0a ame. * Inputs:. │ │ │ │ -0026e2c0: 2020 2020 2020 2a20 6669 6c65 6e61 6d65 * filename │ │ │ │ -0026e2d0: 2c20 6120 2a6e 6f74 6520 7374 7269 6e67 , a *note string │ │ │ │ -0026e2e0: 3a20 5374 7269 6e67 2c0a 2020 2a20 4f75 : String,. * Ou │ │ │ │ -0026e2f0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ -0026e300: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ -0026e310: 7472 696e 672c 2c20 7468 6520 6162 736f tring,, the abso │ │ │ │ -0026e320: 6c75 7465 2028 7265 616c 2920 7061 7468 lute (real) path │ │ │ │ -0026e330: 206e 616d 6520 6f66 2066 696c 656e 616d name of filenam │ │ │ │ -0026e340: 650a 0a44 6573 6372 6970 7469 6f6e 0a3d e..Description.= │ │ │ │ -0026e350: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ -0026e360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0026e380: 0a7c 6931 203a 2074 6f41 6273 6f6c 7574 .|i1 : toAbsolut │ │ │ │ -0026e390: 6550 6174 6820 2261 2f62 2e6d 3222 2020 ePath "a/b.m2" │ │ │ │ -0026e3a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0026e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026e3c0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0026e3d0: 202f 7573 722f 7368 6172 652f 4d61 6361 /usr/share/Maca │ │ │ │ -0026e3e0: 756c 6179 322f 2020 2020 2020 2020 7c0a ulay2/ |. │ │ │ │ -0026e3f0: 7c20 2020 2020 4d61 6361 756c 6179 3244 | Macaulay2D │ │ │ │ -0026e400: 6f63 2d74 656d 706f 7261 7279 2f61 2f62 oc-temporary/a/b │ │ │ │ -0026e410: 2e6d 327c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d .m2|.+---------- │ │ │ │ -0026e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e430: 2d2d 2d2d 2d2d 2d2d 2b0a 0a50 6174 6873 --------+..Paths │ │ │ │ -0026e440: 206f 6620 7468 6520 666f 726d 2066 6f6f of the form foo │ │ │ │ -0026e450: 2f78 2f2e 2e2f 6261 722c 2061 7265 2073 /x/../bar, are s │ │ │ │ -0026e460: 686f 7274 656e 6564 2074 6f20 666f 6f2f hortened to foo/ │ │ │ │ -0026e470: 6261 7220 7769 7468 6f75 7420 6368 6563 bar without chec │ │ │ │ -0026e480: 6b69 6e67 2074 6865 0a66 696c 6520 7379 king the.file sy │ │ │ │ -0026e490: 7374 656d 2074 6f20 7365 6520 7768 6574 stem to see whet │ │ │ │ -0026e4a0: 6865 7220 7820 6973 2061 2073 796d 626f her x is a symbo │ │ │ │ -0026e4b0: 6c69 6320 6c69 6e6b 2e20 2046 6f72 2074 lic link. For t │ │ │ │ -0026e4c0: 6865 206f 7468 6572 2062 6568 6176 696f he other behavio │ │ │ │ -0026e4d0: 722c 2073 6565 0a2a 6e6f 7465 2072 6561 r, see.*note rea │ │ │ │ -0026e4e0: 6c70 6174 683a 2072 6561 6c70 6174 682c lpath: realpath, │ │ │ │ -0026e4f0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -0026e500: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0026e510: 4669 6c65 3a20 4669 6c65 2c20 2d2d 2074 File: File, -- t │ │ │ │ -0026e520: 6865 2063 6c61 7373 206f 6620 616c 6c20 he class of all │ │ │ │ -0026e530: 6669 6c65 730a 2020 2a20 2a6e 6f74 6520 files. * *note │ │ │ │ -0026e540: 6d69 6e69 6d69 7a65 4669 6c65 6e61 6d65 minimizeFilename │ │ │ │ -0026e550: 3a20 6d69 6e69 6d69 7a65 4669 6c65 6e61 : minimizeFilena │ │ │ │ -0026e560: 6d65 2c20 2d2d 206d 696e 696d 697a 6520 me, -- minimize │ │ │ │ -0026e570: 6120 6669 6c65 206e 616d 650a 2020 2a20 a file name. * │ │ │ │ -0026e580: 2a6e 6f74 6520 7265 6c61 7469 7669 7a65 *note relativize │ │ │ │ -0026e590: 4669 6c65 6e61 6d65 3a20 7265 6c61 7469 Filename: relati │ │ │ │ -0026e5a0: 7669 7a65 4669 6c65 6e61 6d65 2c20 2d2d vizeFilename, -- │ │ │ │ -0026e5b0: 2072 656c 6174 6976 697a 6520 6120 6669 relativize a fi │ │ │ │ -0026e5c0: 6c65 206e 616d 650a 2020 2a20 2a6e 6f74 le name. * *not │ │ │ │ -0026e5d0: 6520 6261 7365 4669 6c65 6e61 6d65 3a20 e baseFilename: │ │ │ │ -0026e5e0: 6261 7365 4669 6c65 6e61 6d65 2c20 2d2d baseFilename, -- │ │ │ │ -0026e5f0: 2074 6865 2062 6173 6520 7061 7274 206f the base part o │ │ │ │ -0026e600: 6620 6120 6669 6c65 6e61 6d65 206f 7220 f a filename or │ │ │ │ -0026e610: 7061 7468 0a20 202a 202a 6e6f 7465 2070 path. * *note p │ │ │ │ -0026e620: 6174 683a 2070 6174 682c 202d 2d20 6c69 ath: path, -- li │ │ │ │ -0026e630: 7374 206f 6620 6469 7265 6374 6f72 6965 st of directorie │ │ │ │ -0026e640: 7320 746f 206c 6f6f 6b20 696e 0a20 202a s to look in. * │ │ │ │ -0026e650: 202a 6e6f 7465 2072 6f6f 7450 6174 683a *note rootPath: │ │ │ │ -0026e660: 2072 6f6f 7450 6174 682c 0a20 202a 202a rootPath,. * * │ │ │ │ -0026e670: 6e6f 7465 2072 6f6f 7455 5249 3a20 726f note rootURI: ro │ │ │ │ -0026e680: 6f74 5552 492c 0a0a 466f 7220 7468 6520 otURI,..For the │ │ │ │ -0026e690: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0026e6a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0026e6b0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0026e6c0: 746f 4162 736f 6c75 7465 5061 7468 3a20 toAbsolutePath: │ │ │ │ -0026e6d0: 746f 4162 736f 6c75 7465 5061 7468 2c20 toAbsolutePath, │ │ │ │ -0026e6e0: 6973 2061 202a 6e6f 7465 2066 756e 6374 is a *note funct │ │ │ │ -0026e6f0: 696f 6e20 636c 6f73 7572 653a 0a46 756e ion closure:.Fun │ │ │ │ -0026e700: 6374 696f 6e43 6c6f 7375 7265 2c2e 0a0a ctionClosure,... │ │ │ │ -0026e710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e280: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e2a0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +0026e2b0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0026e2c0: 746f 4162 736f 6c75 7465 5061 7468 2066 toAbsolutePath f │ │ │ │ +0026e2d0: 696c 656e 616d 650a 2020 2a20 496e 7075 ilename. * Inpu │ │ │ │ +0026e2e0: 7473 3a0a 2020 2020 2020 2a20 6669 6c65 ts:. * file │ │ │ │ +0026e2f0: 6e61 6d65 2c20 6120 2a6e 6f74 6520 7374 name, a *note st │ │ │ │ +0026e300: 7269 6e67 3a20 5374 7269 6e67 2c0a 2020 ring: String,. │ │ │ │ +0026e310: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +0026e320: 202a 2061 202a 6e6f 7465 2073 7472 696e * a *note strin │ │ │ │ +0026e330: 673a 2053 7472 696e 672c 2c20 7468 6520 g: String,, the │ │ │ │ +0026e340: 6162 736f 6c75 7465 2028 7265 616c 2920 absolute (real) │ │ │ │ +0026e350: 7061 7468 206e 616d 6520 6f66 2066 696c path name of fil │ │ │ │ +0026e360: 656e 616d 650a 0a44 6573 6372 6970 7469 ename..Descripti │ │ │ │ +0026e370: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0026e380: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0026e390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e3a0: 2d2d 2d2b 0a7c 6931 203a 2074 6f41 6273 ---+.|i1 : toAbs │ │ │ │ +0026e3b0: 6f6c 7574 6550 6174 6820 2261 2f62 2e6d olutePath "a/b.m │ │ │ │ +0026e3c0: 3222 2020 2020 2020 7c0a 7c20 2020 2020 2" |.| │ │ │ │ +0026e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026e3e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0026e3f0: 6f31 203d 202f 7573 722f 7368 6172 652f o1 = /usr/share/ │ │ │ │ +0026e400: 4d61 6361 756c 6179 322f 2020 2020 2020 Macaulay2/ │ │ │ │ +0026e410: 2020 7c0a 7c20 2020 2020 4d61 6361 756c |.| Macaul │ │ │ │ +0026e420: 6179 3244 6f63 2d74 656d 706f 7261 7279 ay2Doc-temporary │ │ │ │ +0026e430: 2f61 2f62 2e6d 327c 0a2b 2d2d 2d2d 2d2d /a/b.m2|.+------ │ │ │ │ +0026e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a50 ------------+..P │ │ │ │ +0026e460: 6174 6873 206f 6620 7468 6520 666f 726d aths of the form │ │ │ │ +0026e470: 2066 6f6f 2f78 2f2e 2e2f 6261 722c 2061 foo/x/../bar, a │ │ │ │ +0026e480: 7265 2073 686f 7274 656e 6564 2074 6f20 re shortened to │ │ │ │ +0026e490: 666f 6f2f 6261 7220 7769 7468 6f75 7420 foo/bar without │ │ │ │ +0026e4a0: 6368 6563 6b69 6e67 2074 6865 0a66 696c checking the.fil │ │ │ │ +0026e4b0: 6520 7379 7374 656d 2074 6f20 7365 6520 e system to see │ │ │ │ +0026e4c0: 7768 6574 6865 7220 7820 6973 2061 2073 whether x is a s │ │ │ │ +0026e4d0: 796d 626f 6c69 6320 6c69 6e6b 2e20 2046 ymbolic link. F │ │ │ │ +0026e4e0: 6f72 2074 6865 206f 7468 6572 2062 6568 or the other beh │ │ │ │ +0026e4f0: 6176 696f 722c 2073 6565 0a2a 6e6f 7465 avior, see.*note │ │ │ │ +0026e500: 2072 6561 6c70 6174 683a 2072 6561 6c70 realpath: realp │ │ │ │ +0026e510: 6174 682c 2e0a 0a53 6565 2061 6c73 6f0a ath,...See also. │ │ │ │ +0026e520: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +0026e530: 6f74 6520 4669 6c65 3a20 4669 6c65 2c20 ote File: File, │ │ │ │ +0026e540: 2d2d 2074 6865 2063 6c61 7373 206f 6620 -- the class of │ │ │ │ +0026e550: 616c 6c20 6669 6c65 730a 2020 2a20 2a6e all files. * *n │ │ │ │ +0026e560: 6f74 6520 6d69 6e69 6d69 7a65 4669 6c65 ote minimizeFile │ │ │ │ +0026e570: 6e61 6d65 3a20 6d69 6e69 6d69 7a65 4669 name: minimizeFi │ │ │ │ +0026e580: 6c65 6e61 6d65 2c20 2d2d 206d 696e 696d lename, -- minim │ │ │ │ +0026e590: 697a 6520 6120 6669 6c65 206e 616d 650a ize a file name. │ │ │ │ +0026e5a0: 2020 2a20 2a6e 6f74 6520 7265 6c61 7469 * *note relati │ │ │ │ +0026e5b0: 7669 7a65 4669 6c65 6e61 6d65 3a20 7265 vizeFilename: re │ │ │ │ +0026e5c0: 6c61 7469 7669 7a65 4669 6c65 6e61 6d65 lativizeFilename │ │ │ │ +0026e5d0: 2c20 2d2d 2072 656c 6174 6976 697a 6520 , -- relativize │ │ │ │ +0026e5e0: 6120 6669 6c65 206e 616d 650a 2020 2a20 a file name. * │ │ │ │ +0026e5f0: 2a6e 6f74 6520 6261 7365 4669 6c65 6e61 *note baseFilena │ │ │ │ +0026e600: 6d65 3a20 6261 7365 4669 6c65 6e61 6d65 me: baseFilename │ │ │ │ +0026e610: 2c20 2d2d 2074 6865 2062 6173 6520 7061 , -- the base pa │ │ │ │ +0026e620: 7274 206f 6620 6120 6669 6c65 6e61 6d65 rt of a filename │ │ │ │ +0026e630: 206f 7220 7061 7468 0a20 202a 202a 6e6f or path. * *no │ │ │ │ +0026e640: 7465 2070 6174 683a 2070 6174 682c 202d te path: path, - │ │ │ │ +0026e650: 2d20 6c69 7374 206f 6620 6469 7265 6374 - list of direct │ │ │ │ +0026e660: 6f72 6965 7320 746f 206c 6f6f 6b20 696e ories to look in │ │ │ │ +0026e670: 0a20 202a 202a 6e6f 7465 2072 6f6f 7450 . * *note rootP │ │ │ │ +0026e680: 6174 683a 2072 6f6f 7450 6174 682c 0a20 ath: rootPath,. │ │ │ │ +0026e690: 202a 202a 6e6f 7465 2072 6f6f 7455 5249 * *note rootURI │ │ │ │ +0026e6a0: 3a20 726f 6f74 5552 492c 0a0a 466f 7220 : rootURI,..For │ │ │ │ +0026e6b0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0026e6c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0026e6d0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0026e6e0: 6f74 6520 746f 4162 736f 6c75 7465 5061 ote toAbsolutePa │ │ │ │ +0026e6f0: 7468 3a20 746f 4162 736f 6c75 7465 5061 th: toAbsolutePa │ │ │ │ +0026e700: 7468 2c20 6973 2061 202a 6e6f 7465 2066 th, is a *note f │ │ │ │ +0026e710: 756e 6374 696f 6e20 636c 6f73 7572 653a unction closure: │ │ │ │ +0026e720: 0a46 756e 6374 696f 6e43 6c6f 7375 7265 .FunctionClosure │ │ │ │ +0026e730: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0026e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026e750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0026e760: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -0026e770: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -0026e780: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -0026e790: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -0026e7a0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -0026e7b0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -0026e7c0: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -0026e7d0: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ -0026e7e0: 323a 3133 3531 3a30 2e0a 1f0a 4669 6c65 2:1351:0....File │ │ │ │ -0026e7f0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -0026e800: 6e66 6f2c 204e 6f64 653a 2073 6561 7263 nfo, Node: searc │ │ │ │ -0026e810: 6850 6174 685f 6c70 4c69 7374 5f63 6d53 hPath_lpList_cmS │ │ │ │ -0026e820: 7472 696e 675f 7270 2c20 4e65 7874 3a20 tring_rp, Next: │ │ │ │ -0026e830: 636c 6561 7245 6368 6f2c 2050 7265 763a clearEcho, Prev: │ │ │ │ -0026e840: 2074 6f41 6273 6f6c 7574 6550 6174 682c toAbsolutePath, │ │ │ │ -0026e850: 2055 703a 2073 7973 7465 6d20 6661 6369 Up: system faci │ │ │ │ -0026e860: 6c69 7469 6573 0a0a 7365 6172 6368 5061 lities..searchPa │ │ │ │ -0026e870: 7468 284c 6973 742c 5374 7269 6e67 2920 th(List,String) │ │ │ │ -0026e880: 2d2d 2073 6561 7263 6820 6120 7061 7468 -- search a path │ │ │ │ -0026e890: 2066 6f72 2061 2066 696c 650a 2a2a 2a2a for a file.**** │ │ │ │ -0026e8a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026e8b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026e8c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0026e8d0: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -0026e8e0: 6e6f 7465 2073 6561 7263 6850 6174 683a note searchPath: │ │ │ │ -0026e8f0: 2073 6561 7263 6850 6174 685f 6c70 4c69 searchPath_lpLi │ │ │ │ -0026e900: 7374 5f63 6d53 7472 696e 675f 7270 2c0a st_cmString_rp,. │ │ │ │ -0026e910: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -0026e920: 2020 2020 7365 6172 6368 5061 7468 2870 searchPath(p │ │ │ │ -0026e930: 612c 666e 290a 2020 2020 2020 2020 7365 a,fn). se │ │ │ │ -0026e940: 6172 6368 5061 7468 2066 6e0a 2020 2a20 archPath fn. * │ │ │ │ -0026e950: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0026e960: 7061 2c20 6120 2a6e 6f74 6520 6c69 7374 pa, a *note list │ │ │ │ -0026e970: 3a20 4c69 7374 2c2c 2061 206c 6973 7420 : List,, a list │ │ │ │ -0026e980: 6f66 2073 7472 696e 6773 2067 6976 696e of strings givin │ │ │ │ -0026e990: 6720 7061 7468 7320 746f 2064 6972 6563 g paths to direc │ │ │ │ -0026e9a0: 746f 7269 6573 2e0a 2020 2020 2020 2020 tories.. │ │ │ │ -0026e9b0: 4561 6368 206f 6e65 2065 6e64 7320 7769 Each one ends wi │ │ │ │ -0026e9c0: 7468 2061 2073 6c61 7368 2e20 4966 206f th a slash. If o │ │ │ │ -0026e9d0: 6d69 7474 6564 2c20 7468 656e 202a 6e6f mitted, then *no │ │ │ │ -0026e9e0: 7465 2070 6174 683a 2070 6174 682c 2069 te path: path, i │ │ │ │ -0026e9f0: 7320 7573 6564 0a20 2020 2020 202a 2066 s used. * f │ │ │ │ -0026ea00: 6e2c 2061 202a 6e6f 7465 2073 7472 696e n, a *note strin │ │ │ │ -0026ea10: 673a 2053 7472 696e 672c 0a20 202a 204f g: String,. * O │ │ │ │ -0026ea20: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0026ea30: 6120 2a6e 6f74 6520 6c69 7374 3a20 4c69 a *note list: Li │ │ │ │ -0026ea40: 7374 2c2c 2061 206c 6973 7420 6f66 2074 st,, a list of t │ │ │ │ -0026ea50: 686f 7365 2064 6972 6563 746f 7269 6573 hose directories │ │ │ │ -0026ea60: 2069 6e20 7061 2063 6f6e 7461 696e 696e in pa containin │ │ │ │ -0026ea70: 6720 6669 6c65 730a 2020 2020 2020 2020 g files. │ │ │ │ -0026ea80: 6e61 6d65 6420 666e 0a0a 5365 6520 616c named fn..See al │ │ │ │ -0026ea90: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0026eaa0: 202a 6e6f 7465 2046 696c 653a 2046 696c *note File: Fil │ │ │ │ -0026eab0: 652c 202d 2d20 7468 6520 636c 6173 7320 e, -- the class │ │ │ │ -0026eac0: 6f66 2061 6c6c 2066 696c 6573 0a20 202a of all files. * │ │ │ │ -0026ead0: 202a 6e6f 7465 206d 696e 696d 697a 6546 *note minimizeF │ │ │ │ -0026eae0: 696c 656e 616d 653a 206d 696e 696d 697a ilename: minimiz │ │ │ │ -0026eaf0: 6546 696c 656e 616d 652c 202d 2d20 6d69 eFilename, -- mi │ │ │ │ -0026eb00: 6e69 6d69 7a65 2061 2066 696c 6520 6e61 nimize a file na │ │ │ │ -0026eb10: 6d65 0a20 202a 202a 6e6f 7465 2072 656c me. * *note rel │ │ │ │ -0026eb20: 6174 6976 697a 6546 696c 656e 616d 653a ativizeFilename: │ │ │ │ -0026eb30: 2072 656c 6174 6976 697a 6546 696c 656e relativizeFilen │ │ │ │ -0026eb40: 616d 652c 202d 2d20 7265 6c61 7469 7669 ame, -- relativi │ │ │ │ -0026eb50: 7a65 2061 2066 696c 6520 6e61 6d65 0a20 ze a file name. │ │ │ │ -0026eb60: 202a 202a 6e6f 7465 2062 6173 6546 696c * *note baseFil │ │ │ │ -0026eb70: 656e 616d 653a 2062 6173 6546 696c 656e ename: baseFilen │ │ │ │ -0026eb80: 616d 652c 202d 2d20 7468 6520 6261 7365 ame, -- the base │ │ │ │ -0026eb90: 2070 6172 7420 6f66 2061 2066 696c 656e part of a filen │ │ │ │ -0026eba0: 616d 6520 6f72 2070 6174 680a 2020 2a20 ame or path. * │ │ │ │ -0026ebb0: 2a6e 6f74 6520 746f 4162 736f 6c75 7465 *note toAbsolute │ │ │ │ -0026ebc0: 5061 7468 3a20 746f 4162 736f 6c75 7465 Path: toAbsolute │ │ │ │ -0026ebd0: 5061 7468 2c20 2d2d 2074 6865 2061 6273 Path, -- the abs │ │ │ │ -0026ebe0: 6f6c 7574 6520 7061 7468 2076 6572 7369 olute path versi │ │ │ │ -0026ebf0: 6f6e 206f 6620 610a 2020 2020 6669 6c65 on of a. file │ │ │ │ -0026ec00: 206e 616d 650a 2020 2a20 2a6e 6f74 6520 name. * *note │ │ │ │ -0026ec10: 7061 7468 3a20 7061 7468 2c20 2d2d 206c path: path, -- l │ │ │ │ -0026ec20: 6973 7420 6f66 2064 6972 6563 746f 7269 ist of directori │ │ │ │ -0026ec30: 6573 2074 6f20 6c6f 6f6b 2069 6e0a 0a57 es to look in..W │ │ │ │ -0026ec40: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -0026ec50: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -0026ec60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0026ec70: 0a0a 2020 2a20 2a6e 6f74 6520 7365 6172 .. * *note sear │ │ │ │ -0026ec80: 6368 5061 7468 284c 6973 742c 5374 7269 chPath(List,Stri │ │ │ │ -0026ec90: 6e67 293a 2073 6561 7263 6850 6174 685f ng): searchPath_ │ │ │ │ -0026eca0: 6c70 4c69 7374 5f63 6d53 7472 696e 675f lpList_cmString_ │ │ │ │ -0026ecb0: 7270 2c20 2d2d 2073 6561 7263 6820 610a rp, -- search a. │ │ │ │ -0026ecc0: 2020 2020 7061 7468 2066 6f72 2061 2066 path for a f │ │ │ │ -0026ecd0: 696c 650a 2020 2a20 2273 6561 7263 6850 ile. * "searchP │ │ │ │ -0026ece0: 6174 6828 5374 7269 6e67 2922 0a2d 2d2d ath(String)".--- │ │ │ │ -0026ecf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ed00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ed10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026e780: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0026e790: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0026e7a0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0026e7b0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0026e7c0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0026e7d0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0026e7e0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +0026e7f0: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ +0026e800: 656d 2e6d 323a 3133 3531 3a30 2e0a 1f0a em.m2:1351:0.... │ │ │ │ +0026e810: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +0026e820: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2073 oc.info, Node: s │ │ │ │ +0026e830: 6561 7263 6850 6174 685f 6c70 4c69 7374 earchPath_lpList │ │ │ │ +0026e840: 5f63 6d53 7472 696e 675f 7270 2c20 4e65 _cmString_rp, Ne │ │ │ │ +0026e850: 7874 3a20 636c 6561 7245 6368 6f2c 2050 xt: clearEcho, P │ │ │ │ +0026e860: 7265 763a 2074 6f41 6273 6f6c 7574 6550 rev: toAbsoluteP │ │ │ │ +0026e870: 6174 682c 2055 703a 2073 7973 7465 6d20 ath, Up: system │ │ │ │ +0026e880: 6661 6369 6c69 7469 6573 0a0a 7365 6172 facilities..sear │ │ │ │ +0026e890: 6368 5061 7468 284c 6973 742c 5374 7269 chPath(List,Stri │ │ │ │ +0026e8a0: 6e67 2920 2d2d 2073 6561 7263 6820 6120 ng) -- search a │ │ │ │ +0026e8b0: 7061 7468 2066 6f72 2061 2066 696c 650a path for a file. │ │ │ │ +0026e8c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e8d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e8e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026e8f0: 2a2a 2a0a 0a20 202a 2046 756e 6374 696f ***.. * Functio │ │ │ │ +0026e900: 6e3a 202a 6e6f 7465 2073 6561 7263 6850 n: *note searchP │ │ │ │ +0026e910: 6174 683a 2073 6561 7263 6850 6174 685f ath: searchPath_ │ │ │ │ +0026e920: 6c70 4c69 7374 5f63 6d53 7472 696e 675f lpList_cmString_ │ │ │ │ +0026e930: 7270 2c0a 2020 2a20 5573 6167 653a 200a rp,. * Usage: . │ │ │ │ +0026e940: 2020 2020 2020 2020 7365 6172 6368 5061 searchPa │ │ │ │ +0026e950: 7468 2870 612c 666e 290a 2020 2020 2020 th(pa,fn). │ │ │ │ +0026e960: 2020 7365 6172 6368 5061 7468 2066 6e0a searchPath fn. │ │ │ │ +0026e970: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0026e980: 2020 2a20 7061 2c20 6120 2a6e 6f74 6520 * pa, a *note │ │ │ │ +0026e990: 6c69 7374 3a20 4c69 7374 2c2c 2061 206c list: List,, a l │ │ │ │ +0026e9a0: 6973 7420 6f66 2073 7472 696e 6773 2067 ist of strings g │ │ │ │ +0026e9b0: 6976 696e 6720 7061 7468 7320 746f 2064 iving paths to d │ │ │ │ +0026e9c0: 6972 6563 746f 7269 6573 2e0a 2020 2020 irectories.. │ │ │ │ +0026e9d0: 2020 2020 4561 6368 206f 6e65 2065 6e64 Each one end │ │ │ │ +0026e9e0: 7320 7769 7468 2061 2073 6c61 7368 2e20 s with a slash. │ │ │ │ +0026e9f0: 4966 206f 6d69 7474 6564 2c20 7468 656e If omitted, then │ │ │ │ +0026ea00: 202a 6e6f 7465 2070 6174 683a 2070 6174 *note path: pat │ │ │ │ +0026ea10: 682c 2069 7320 7573 6564 0a20 2020 2020 h, is used. │ │ │ │ +0026ea20: 202a 2066 6e2c 2061 202a 6e6f 7465 2073 * fn, a *note s │ │ │ │ +0026ea30: 7472 696e 673a 2053 7472 696e 672c 0a20 tring: String,. │ │ │ │ +0026ea40: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0026ea50: 2020 2a20 6120 2a6e 6f74 6520 6c69 7374 * a *note list │ │ │ │ +0026ea60: 3a20 4c69 7374 2c2c 2061 206c 6973 7420 : List,, a list │ │ │ │ +0026ea70: 6f66 2074 686f 7365 2064 6972 6563 746f of those directo │ │ │ │ +0026ea80: 7269 6573 2069 6e20 7061 2063 6f6e 7461 ries in pa conta │ │ │ │ +0026ea90: 696e 696e 6720 6669 6c65 730a 2020 2020 ining files. │ │ │ │ +0026eaa0: 2020 2020 6e61 6d65 6420 666e 0a0a 5365 named fn..Se │ │ │ │ +0026eab0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0026eac0: 0a20 202a 202a 6e6f 7465 2046 696c 653a . * *note File: │ │ │ │ +0026ead0: 2046 696c 652c 202d 2d20 7468 6520 636c File, -- the cl │ │ │ │ +0026eae0: 6173 7320 6f66 2061 6c6c 2066 696c 6573 ass of all files │ │ │ │ +0026eaf0: 0a20 202a 202a 6e6f 7465 206d 696e 696d . * *note minim │ │ │ │ +0026eb00: 697a 6546 696c 656e 616d 653a 206d 696e izeFilename: min │ │ │ │ +0026eb10: 696d 697a 6546 696c 656e 616d 652c 202d imizeFilename, - │ │ │ │ +0026eb20: 2d20 6d69 6e69 6d69 7a65 2061 2066 696c - minimize a fil │ │ │ │ +0026eb30: 6520 6e61 6d65 0a20 202a 202a 6e6f 7465 e name. * *note │ │ │ │ +0026eb40: 2072 656c 6174 6976 697a 6546 696c 656e relativizeFilen │ │ │ │ +0026eb50: 616d 653a 2072 656c 6174 6976 697a 6546 ame: relativizeF │ │ │ │ +0026eb60: 696c 656e 616d 652c 202d 2d20 7265 6c61 ilename, -- rela │ │ │ │ +0026eb70: 7469 7669 7a65 2061 2066 696c 6520 6e61 tivize a file na │ │ │ │ +0026eb80: 6d65 0a20 202a 202a 6e6f 7465 2062 6173 me. * *note bas │ │ │ │ +0026eb90: 6546 696c 656e 616d 653a 2062 6173 6546 eFilename: baseF │ │ │ │ +0026eba0: 696c 656e 616d 652c 202d 2d20 7468 6520 ilename, -- the │ │ │ │ +0026ebb0: 6261 7365 2070 6172 7420 6f66 2061 2066 base part of a f │ │ │ │ +0026ebc0: 696c 656e 616d 6520 6f72 2070 6174 680a ilename or path. │ │ │ │ +0026ebd0: 2020 2a20 2a6e 6f74 6520 746f 4162 736f * *note toAbso │ │ │ │ +0026ebe0: 6c75 7465 5061 7468 3a20 746f 4162 736f lutePath: toAbso │ │ │ │ +0026ebf0: 6c75 7465 5061 7468 2c20 2d2d 2074 6865 lutePath, -- the │ │ │ │ +0026ec00: 2061 6273 6f6c 7574 6520 7061 7468 2076 absolute path v │ │ │ │ +0026ec10: 6572 7369 6f6e 206f 6620 610a 2020 2020 ersion of a. │ │ │ │ +0026ec20: 6669 6c65 206e 616d 650a 2020 2a20 2a6e file name. * *n │ │ │ │ +0026ec30: 6f74 6520 7061 7468 3a20 7061 7468 2c20 ote path: path, │ │ │ │ +0026ec40: 2d2d 206c 6973 7420 6f66 2064 6972 6563 -- list of direc │ │ │ │ +0026ec50: 746f 7269 6573 2074 6f20 6c6f 6f6b 2069 tories to look i │ │ │ │ +0026ec60: 6e0a 0a57 6179 7320 746f 2075 7365 2074 n..Ways to use t │ │ │ │ +0026ec70: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ +0026ec80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0026ec90: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0026eca0: 7365 6172 6368 5061 7468 284c 6973 742c searchPath(List, │ │ │ │ +0026ecb0: 5374 7269 6e67 293a 2073 6561 7263 6850 String): searchP │ │ │ │ +0026ecc0: 6174 685f 6c70 4c69 7374 5f63 6d53 7472 ath_lpList_cmStr │ │ │ │ +0026ecd0: 696e 675f 7270 2c20 2d2d 2073 6561 7263 ing_rp, -- searc │ │ │ │ +0026ece0: 6820 610a 2020 2020 7061 7468 2066 6f72 h a. path for │ │ │ │ +0026ecf0: 2061 2066 696c 650a 2020 2a20 2273 6561 a file. * "sea │ │ │ │ +0026ed00: 7263 6850 6174 6828 5374 7269 6e67 2922 rchPath(String)" │ │ │ │ +0026ed10: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0026ed20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ed30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -0026ed40: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -0026ed50: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -0026ed60: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -0026ed70: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -0026ed80: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -0026ed90: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -0026eda0: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ -0026edb0: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a31 c/ov_system.m2:1 │ │ │ │ -0026edc0: 3337 303a 302e 0a1f 0a46 696c 653a 204d 370:0....File: M │ │ │ │ -0026edd0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -0026ede0: 2c20 4e6f 6465 3a20 636c 6561 7245 6368 , Node: clearEch │ │ │ │ -0026edf0: 6f2c 204e 6578 743a 2073 6574 4563 686f o, Next: setEcho │ │ │ │ -0026ee00: 2c20 5072 6576 3a20 7365 6172 6368 5061 , Prev: searchPa │ │ │ │ -0026ee10: 7468 5f6c 704c 6973 745f 636d 5374 7269 th_lpList_cmStri │ │ │ │ -0026ee20: 6e67 5f72 702c 2055 703a 2073 7973 7465 ng_rp, Up: syste │ │ │ │ -0026ee30: 6d20 6661 6369 6c69 7469 6573 0a0a 636c m facilities..cl │ │ │ │ -0026ee40: 6561 7245 6368 6f20 2d2d 2074 7572 6e20 earEcho -- turn │ │ │ │ -0026ee50: 6f66 6620 6563 686f 696e 670a 2a2a 2a2a off echoing.**** │ │ │ │ -0026ee60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026ee70: 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 *********..Descr │ │ │ │ -0026ee80: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -0026ee90: 3d3d 0a0a 636c 6561 7245 6368 6f20 7374 ==..clearEcho st │ │ │ │ -0026eea0: 6469 6f20 2d2d 2074 7572 6e20 6f66 6620 dio -- turn off │ │ │ │ -0026eeb0: 6563 686f 696e 6720 6f66 2063 6861 7261 echoing of chara │ │ │ │ -0026eec0: 6374 6572 7320 7479 7065 6420 746f 2074 cters typed to t │ │ │ │ -0026eed0: 6865 2073 7461 6e64 6172 6420 696e 7075 he standard inpu │ │ │ │ -0026eee0: 742e 0a0a 466f 7220 7468 6520 7072 6f67 t...For the prog │ │ │ │ -0026eef0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0026ef00: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0026ef10: 626a 6563 7420 2a6e 6f74 6520 636c 6561 bject *note clea │ │ │ │ -0026ef20: 7245 6368 6f3a 2063 6c65 6172 4563 686f rEcho: clearEcho │ │ │ │ -0026ef30: 2c20 6973 2061 202a 6e6f 7465 2063 6f6d , is a *note com │ │ │ │ -0026ef40: 7069 6c65 6420 6675 6e63 7469 6f6e 3a0a piled function:. │ │ │ │ -0026ef50: 436f 6d70 696c 6564 4675 6e63 7469 6f6e CompiledFunction │ │ │ │ -0026ef60: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -0026ef70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026ef80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ed30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ed40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ed50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026ed60: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0026ed70: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0026ed80: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0026ed90: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0026eda0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0026edb0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0026edc0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +0026edd0: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ +0026ede0: 6d32 3a31 3337 303a 302e 0a1f 0a46 696c m2:1370:0....Fil │ │ │ │ +0026edf0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +0026ee00: 696e 666f 2c20 4e6f 6465 3a20 636c 6561 info, Node: clea │ │ │ │ +0026ee10: 7245 6368 6f2c 204e 6578 743a 2073 6574 rEcho, Next: set │ │ │ │ +0026ee20: 4563 686f 2c20 5072 6576 3a20 7365 6172 Echo, Prev: sear │ │ │ │ +0026ee30: 6368 5061 7468 5f6c 704c 6973 745f 636d chPath_lpList_cm │ │ │ │ +0026ee40: 5374 7269 6e67 5f72 702c 2055 703a 2073 String_rp, Up: s │ │ │ │ +0026ee50: 7973 7465 6d20 6661 6369 6c69 7469 6573 ystem facilities │ │ │ │ +0026ee60: 0a0a 636c 6561 7245 6368 6f20 2d2d 2074 ..clearEcho -- t │ │ │ │ +0026ee70: 7572 6e20 6f66 6620 6563 686f 696e 670a urn off echoing. │ │ │ │ +0026ee80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026ee90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 *************..D │ │ │ │ +0026eea0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0026eeb0: 3d3d 3d3d 3d3d 0a0a 636c 6561 7245 6368 ======..clearEch │ │ │ │ +0026eec0: 6f20 7374 6469 6f20 2d2d 2074 7572 6e20 o stdio -- turn │ │ │ │ +0026eed0: 6f66 6620 6563 686f 696e 6720 6f66 2063 off echoing of c │ │ │ │ +0026eee0: 6861 7261 6374 6572 7320 7479 7065 6420 haracters typed │ │ │ │ +0026eef0: 746f 2074 6865 2073 7461 6e64 6172 6420 to the standard │ │ │ │ +0026ef00: 696e 7075 742e 0a0a 466f 7220 7468 6520 input...For the │ │ │ │ +0026ef10: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +0026ef20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +0026ef30: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +0026ef40: 636c 6561 7245 6368 6f3a 2063 6c65 6172 clearEcho: clear │ │ │ │ +0026ef50: 4563 686f 2c20 6973 2061 202a 6e6f 7465 Echo, is a *note │ │ │ │ +0026ef60: 2063 6f6d 7069 6c65 6420 6675 6e63 7469 compiled functi │ │ │ │ +0026ef70: 6f6e 3a0a 436f 6d70 696c 6564 4675 6e63 on:.CompiledFunc │ │ │ │ +0026ef80: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ 0026ef90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026efa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026efb0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -0026efc0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -0026efd0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -0026efe0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -0026eff0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -0026f000: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -0026f010: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -0026f020: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -0026f030: 656d 2e6d 323a 3633 353a 302e 0a1f 0a46 em.m2:635:0....F │ │ │ │ -0026f040: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -0026f050: 632e 696e 666f 2c20 4e6f 6465 3a20 7365 c.info, Node: se │ │ │ │ -0026f060: 7445 6368 6f2c 204e 6578 743a 2074 6f70 tEcho, Next: top │ │ │ │ -0026f070: 206c 6576 656c 206c 6f6f 702c 2050 7265 level loop, Pre │ │ │ │ -0026f080: 763a 2063 6c65 6172 4563 686f 2c20 5570 v: clearEcho, Up │ │ │ │ -0026f090: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ -0026f0a0: 6965 730a 0a73 6574 4563 686f 202d 2d20 ies..setEcho -- │ │ │ │ -0026f0b0: 7475 726e 206f 6e20 6563 686f 696e 670a turn on echoing. │ │ │ │ -0026f0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026f0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ -0026f0e0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0026f0f0: 3d3d 3d0a 0a73 6574 4563 686f 2073 7464 ===..setEcho std │ │ │ │ -0026f100: 696f 202d 2d20 7475 726e 206f 6e20 6563 io -- turn on ec │ │ │ │ -0026f110: 686f 696e 6720 6f66 2063 6861 7261 6374 hoing of charact │ │ │ │ -0026f120: 6572 7320 7479 7065 6420 746f 2074 6865 ers typed to the │ │ │ │ -0026f130: 2073 7461 6e64 6172 6420 696e 7075 742e standard input. │ │ │ │ -0026f140: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0026f150: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0026f160: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0026f170: 6563 7420 2a6e 6f74 6520 7365 7445 6368 ect *note setEch │ │ │ │ -0026f180: 6f3a 2073 6574 4563 686f 2c20 6973 2061 o: setEcho, is a │ │ │ │ -0026f190: 202a 6e6f 7465 2063 6f6d 7069 6c65 6420 *note compiled │ │ │ │ -0026f1a0: 6675 6e63 7469 6f6e 3a0a 436f 6d70 696c function:.Compil │ │ │ │ -0026f1b0: 6564 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d edFunction,...-- │ │ │ │ -0026f1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026f1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026f1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026efb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026efc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026efd0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0026efe0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0026eff0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0026f000: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0026f010: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0026f020: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0026f030: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +0026f040: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +0026f050: 7379 7374 656d 2e6d 323a 3633 353a 302e system.m2:635:0. │ │ │ │ +0026f060: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +0026f070: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +0026f080: 3a20 7365 7445 6368 6f2c 204e 6578 743a : setEcho, Next: │ │ │ │ +0026f090: 2074 6f70 206c 6576 656c 206c 6f6f 702c top level loop, │ │ │ │ +0026f0a0: 2050 7265 763a 2063 6c65 6172 4563 686f Prev: clearEcho │ │ │ │ +0026f0b0: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +0026f0c0: 696c 6974 6965 730a 0a73 6574 4563 686f ilities..setEcho │ │ │ │ +0026f0d0: 202d 2d20 7475 726e 206f 6e20 6563 686f -- turn on echo │ │ │ │ +0026f0e0: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ +0026f0f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0026f100: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0026f110: 3d3d 3d3d 3d3d 3d0a 0a73 6574 4563 686f =======..setEcho │ │ │ │ +0026f120: 2073 7464 696f 202d 2d20 7475 726e 206f stdio -- turn o │ │ │ │ +0026f130: 6e20 6563 686f 696e 6720 6f66 2063 6861 n echoing of cha │ │ │ │ +0026f140: 7261 6374 6572 7320 7479 7065 6420 746f racters typed to │ │ │ │ +0026f150: 2074 6865 2073 7461 6e64 6172 6420 696e the standard in │ │ │ │ +0026f160: 7075 742e 0a0a 466f 7220 7468 6520 7072 put...For the pr │ │ │ │ +0026f170: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0026f180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0026f190: 206f 626a 6563 7420 2a6e 6f74 6520 7365 object *note se │ │ │ │ +0026f1a0: 7445 6368 6f3a 2073 6574 4563 686f 2c20 tEcho: setEcho, │ │ │ │ +0026f1b0: 6973 2061 202a 6e6f 7465 2063 6f6d 7069 is a *note compi │ │ │ │ +0026f1c0: 6c65 6420 6675 6e63 7469 6f6e 3a0a 436f led function:.Co │ │ │ │ +0026f1d0: 6d70 696c 6564 4675 6e63 7469 6f6e 2c2e mpiledFunction,. │ │ │ │ +0026f1e0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 0026f1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0026f210: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0026f220: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0026f230: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0026f240: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0026f250: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0026f260: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0026f270: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ -0026f280: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ -0026f290: 3632 393a 302e 0a1f 0a46 696c 653a 204d 629:0....File: M │ │ │ │ -0026f2a0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -0026f2b0: 2c20 4e6f 6465 3a20 746f 7020 6c65 7665 , Node: top leve │ │ │ │ -0026f2c0: 6c20 6c6f 6f70 2c20 4e65 7874 3a20 7265 l loop, Next: re │ │ │ │ -0026f2d0: 7374 6172 742c 2050 7265 763a 2073 6574 start, Prev: set │ │ │ │ -0026f2e0: 4563 686f 2c20 5570 3a20 7379 7374 656d Echo, Up: system │ │ │ │ -0026f2f0: 2066 6163 696c 6974 6965 730a 0a74 6f70 facilities..top │ │ │ │ -0026f300: 206c 6576 656c 206c 6f6f 700a 2a2a 2a2a level loop.**** │ │ │ │ -0026f310: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5468 6520 **********..The │ │ │ │ -0026f320: 746f 7020 6c65 7665 6c20 6576 616c 7561 top level evalua │ │ │ │ -0026f330: 7469 6f6e 206c 6f6f 7020 6f66 2074 6865 tion loop of the │ │ │ │ -0026f340: 2069 6e74 6572 7072 6574 6572 2063 6f6e interpreter con │ │ │ │ -0026f350: 7461 696e 7320 686f 6f6b 7320 736f 2074 tains hooks so t │ │ │ │ -0026f360: 6865 2075 7365 7220 6361 6e0a 636f 6e74 he user can.cont │ │ │ │ -0026f370: 726f 6c20 686f 7720 7072 696e 7469 6e67 rol how printing │ │ │ │ -0026f380: 206f 6620 7468 6520 7265 7375 6c74 7320 of the results │ │ │ │ -0026f390: 6f66 2065 7661 6c75 6174 696f 6e20 6973 of evaluation is │ │ │ │ -0026f3a0: 2064 6f6e 652e 2020 4966 2074 6865 2072 done. If the r │ │ │ │ -0026f3b0: 6573 756c 7420 6973 0a2a 6e6f 7465 206e esult is.*note n │ │ │ │ -0026f3c0: 756c 6c3a 206e 756c 6c2c 2074 6865 6e20 ull: null, then │ │ │ │ -0026f3d0: 6e6f 7468 696e 6720 6973 2070 7269 6e74 nothing is print │ │ │ │ -0026f3e0: 6564 2e20 204f 7468 6572 7769 7365 2c20 ed. Otherwise, │ │ │ │ -0026f3f0: 7468 6520 6170 7072 6f70 7269 6174 6520 the appropriate │ │ │ │ -0026f400: 6d65 7468 6f64 0a61 7373 6f63 6961 7465 method.associate │ │ │ │ -0026f410: 6420 7769 7468 2074 6865 2073 796d 626f d with the symbo │ │ │ │ -0026f420: 6c20 2a6e 6f74 6520 5072 696e 743a 2050 l *note Print: P │ │ │ │ -0026f430: 7269 6e74 2c20 6973 2061 7070 6c69 6564 rint, is applied │ │ │ │ -0026f440: 2074 6f20 7065 7266 6f72 6d20 7468 650a to perform the. │ │ │ │ -0026f450: 7072 696e 7469 6e67 2c20 756e 6c65 7373 printing, unless │ │ │ │ -0026f460: 2074 6865 2070 7269 6e74 696e 6720 6973 the printing is │ │ │ │ -0026f470: 2074 6f20 6265 2073 7570 7072 6573 7365 to be suppresse │ │ │ │ -0026f480: 642c 2061 7320 696e 6469 6361 7465 6420 d, as indicated │ │ │ │ -0026f490: 6279 2061 2073 656d 6963 6f6c 6f6e 0a61 by a semicolon.a │ │ │ │ -0026f4a0: 7420 7468 6520 656e 6420 6f66 2074 6865 t the end of the │ │ │ │ -0026f4b0: 2073 7461 7465 6d65 6e74 2c20 696e 2077 statement, in w │ │ │ │ -0026f4c0: 6869 6368 2063 6173 6520 7468 6520 2a6e hich case the *n │ │ │ │ -0026f4d0: 6f74 6520 4e6f 5072 696e 743a 204e 6f50 ote NoPrint: NoP │ │ │ │ -0026f4e0: 7269 6e74 2c20 6d65 7468 6f64 0a69 7320 rint, method.is │ │ │ │ -0026f4f0: 6170 706c 6965 642e 0a0a 5365 6520 616c applied...See al │ │ │ │ -0026f500: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0026f510: 202a 6e6f 7465 2050 7269 6e74 3a20 5072 *note Print: Pr │ │ │ │ -0026f520: 696e 742c 202d 2d20 746f 7020 6c65 7665 int, -- top leve │ │ │ │ -0026f530: 6c20 6d65 7468 6f64 2066 6f72 2070 7269 l method for pri │ │ │ │ -0026f540: 6e74 696e 6720 7265 7375 6c74 730a 2020 nting results. │ │ │ │ -0026f550: 2a20 2a6e 6f74 6520 4e6f 5072 696e 743a * *note NoPrint: │ │ │ │ -0026f560: 204e 6f50 7269 6e74 2c20 2d2d 2074 6f70 NoPrint, -- top │ │ │ │ -0026f570: 206c 6576 656c 206d 6574 686f 6420 666f level method fo │ │ │ │ -0026f580: 7220 6e6f 6e2d 7072 696e 7469 6e67 2072 r non-printing r │ │ │ │ -0026f590: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ -0026f5a0: 2042 6566 6f72 6550 7269 6e74 3a20 4265 BeforePrint: Be │ │ │ │ -0026f5b0: 666f 7265 5072 696e 742c 202d 2d20 746f forePrint, -- to │ │ │ │ -0026f5c0: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ -0026f5d0: 7070 6c69 6564 2062 6566 6f72 6520 7072 pplied before pr │ │ │ │ -0026f5e0: 696e 7469 6e67 0a20 2020 2072 6573 756c inting. resul │ │ │ │ -0026f5f0: 7473 0a20 202a 202a 6e6f 7465 2041 6674 ts. * *note Aft │ │ │ │ -0026f600: 6572 5072 696e 743a 2041 6674 6572 5072 erPrint: AfterPr │ │ │ │ -0026f610: 696e 742c 202d 2d20 746f 7020 6c65 7665 int, -- top leve │ │ │ │ -0026f620: 6c20 6d65 7468 6f64 2061 7070 6c69 6564 l method applied │ │ │ │ -0026f630: 2061 6674 6572 2070 7269 6e74 696e 670a after printing. │ │ │ │ -0026f640: 2020 2a20 2a6e 6f74 6520 4166 7465 724e * *note AfterN │ │ │ │ -0026f650: 6f50 7269 6e74 3a20 4166 7465 724e 6f50 oPrint: AfterNoP │ │ │ │ -0026f660: 7269 6e74 2c20 2d2d 2074 6f70 206c 6576 rint, -- top lev │ │ │ │ -0026f670: 656c 206d 6574 686f 6420 6170 706c 6965 el method applie │ │ │ │ -0026f680: 6420 6166 7465 7220 6e6f 740a 2020 2020 d after not. │ │ │ │ -0026f690: 7072 696e 7469 6e67 0a2a 204d 656e 753a printing.* Menu: │ │ │ │ -0026f6a0: 0a0a 2a20 7661 6c75 653a 3a20 2020 2020 ..* value:: │ │ │ │ -0026f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026f6c0: 2020 6576 616c 7561 7465 0a2a 2063 6170 evaluate.* cap │ │ │ │ -0026f6d0: 7475 7265 3a3a 2020 2020 2020 2020 2020 ture:: │ │ │ │ -0026f6e0: 2020 2020 2020 2020 2020 2065 7661 6c75 evalu │ │ │ │ -0026f6f0: 6174 6520 4d61 6361 756c 6179 3220 636f ate Macaulay2 co │ │ │ │ -0026f700: 6465 2061 6e64 2063 6170 7475 7265 2074 de and capture t │ │ │ │ -0026f710: 6865 206f 7574 7075 740a 2a20 6f6f 3a3a he output.* oo:: │ │ │ │ -0026f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026f730: 2020 2020 2020 2020 2020 7468 6520 6c61 the la │ │ │ │ -0026f740: 7374 206f 7574 7075 7420 7661 6c75 650a st output value. │ │ │ │ -0026f750: 2a20 6f6f 6f3a 3a20 2020 2020 2020 2020 * ooo:: │ │ │ │ -0026f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026f770: 7468 6520 6e65 7874 2074 6f20 7468 6520 the next to the │ │ │ │ -0026f780: 6c61 7374 206f 7574 7075 7420 7661 6c75 last output valu │ │ │ │ -0026f790: 650a 2a20 6f6f 6f6f 3a3a 2020 2020 2020 e.* oooo:: │ │ │ │ -0026f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0026f7b0: 2020 7468 6520 7468 6972 6420 746f 2074 the third to t │ │ │ │ -0026f7c0: 6865 206c 6173 7420 6f75 7470 7574 2076 he last output v │ │ │ │ -0026f7d0: 616c 7565 0a2a 204f 7574 7075 7444 6963 alue.* OutputDic │ │ │ │ -0026f7e0: 7469 6f6e 6172 793a 3a20 2020 2020 2020 tionary:: │ │ │ │ -0026f7f0: 2020 2020 2074 6865 2064 6963 7469 6f6e the diction │ │ │ │ -0026f800: 6172 7920 666f 7220 6f75 7470 7574 2076 ary for output v │ │ │ │ -0026f810: 616c 7565 730a 2a20 636c 6561 7241 6c6c alues.* clearAll │ │ │ │ -0026f820: 3a3a 2020 2020 2020 2020 2020 2020 2020 :: │ │ │ │ -0026f830: 2020 2020 2020 666f 7267 6574 2065 7665 forget eve │ │ │ │ -0026f840: 7279 7468 696e 670a 2a20 636c 6561 724f rything.* clearO │ │ │ │ -0026f850: 7574 7075 743a 3a20 2020 2020 2020 2020 utput:: │ │ │ │ -0026f860: 2020 2020 2020 2020 666f 7267 6574 206f forget o │ │ │ │ -0026f870: 7574 7075 7420 7661 6c75 6573 0a2a 2074 utput values.* t │ │ │ │ -0026f880: 6f70 4c65 7665 6c4d 6f64 653a 3a20 2020 opLevelMode:: │ │ │ │ -0026f890: 2020 2020 2020 2020 2020 2020 2074 6865 the │ │ │ │ -0026f8a0: 2063 7572 7265 6e74 2074 6f70 206c 6576 current top lev │ │ │ │ -0026f8b0: 656c 206d 6f64 650a 2d2d 2d2d 2d2d 2d2d el mode.-------- │ │ │ │ -0026f8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026f8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f230: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0026f240: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0026f250: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0026f260: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0026f270: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0026f280: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0026f290: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ +0026f2a0: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ +0026f2b0: 2e6d 323a 3632 393a 302e 0a1f 0a46 696c .m2:629:0....Fil │ │ │ │ +0026f2c0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +0026f2d0: 696e 666f 2c20 4e6f 6465 3a20 746f 7020 info, Node: top │ │ │ │ +0026f2e0: 6c65 7665 6c20 6c6f 6f70 2c20 4e65 7874 level loop, Next │ │ │ │ +0026f2f0: 3a20 7265 7374 6172 742c 2050 7265 763a : restart, Prev: │ │ │ │ +0026f300: 2073 6574 4563 686f 2c20 5570 3a20 7379 setEcho, Up: sy │ │ │ │ +0026f310: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +0026f320: 0a74 6f70 206c 6576 656c 206c 6f6f 700a .top level loop. │ │ │ │ +0026f330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0026f340: 5468 6520 746f 7020 6c65 7665 6c20 6576 The top level ev │ │ │ │ +0026f350: 616c 7561 7469 6f6e 206c 6f6f 7020 6f66 aluation loop of │ │ │ │ +0026f360: 2074 6865 2069 6e74 6572 7072 6574 6572 the interpreter │ │ │ │ +0026f370: 2063 6f6e 7461 696e 7320 686f 6f6b 7320 contains hooks │ │ │ │ +0026f380: 736f 2074 6865 2075 7365 7220 6361 6e0a so the user can. │ │ │ │ +0026f390: 636f 6e74 726f 6c20 686f 7720 7072 696e control how prin │ │ │ │ +0026f3a0: 7469 6e67 206f 6620 7468 6520 7265 7375 ting of the resu │ │ │ │ +0026f3b0: 6c74 7320 6f66 2065 7661 6c75 6174 696f lts of evaluatio │ │ │ │ +0026f3c0: 6e20 6973 2064 6f6e 652e 2020 4966 2074 n is done. If t │ │ │ │ +0026f3d0: 6865 2072 6573 756c 7420 6973 0a2a 6e6f he result is.*no │ │ │ │ +0026f3e0: 7465 206e 756c 6c3a 206e 756c 6c2c 2074 te null: null, t │ │ │ │ +0026f3f0: 6865 6e20 6e6f 7468 696e 6720 6973 2070 hen nothing is p │ │ │ │ +0026f400: 7269 6e74 6564 2e20 204f 7468 6572 7769 rinted. Otherwi │ │ │ │ +0026f410: 7365 2c20 7468 6520 6170 7072 6f70 7269 se, the appropri │ │ │ │ +0026f420: 6174 6520 6d65 7468 6f64 0a61 7373 6f63 ate method.assoc │ │ │ │ +0026f430: 6961 7465 6420 7769 7468 2074 6865 2073 iated with the s │ │ │ │ +0026f440: 796d 626f 6c20 2a6e 6f74 6520 5072 696e ymbol *note Prin │ │ │ │ +0026f450: 743a 2050 7269 6e74 2c20 6973 2061 7070 t: Print, is app │ │ │ │ +0026f460: 6c69 6564 2074 6f20 7065 7266 6f72 6d20 lied to perform │ │ │ │ +0026f470: 7468 650a 7072 696e 7469 6e67 2c20 756e the.printing, un │ │ │ │ +0026f480: 6c65 7373 2074 6865 2070 7269 6e74 696e less the printin │ │ │ │ +0026f490: 6720 6973 2074 6f20 6265 2073 7570 7072 g is to be suppr │ │ │ │ +0026f4a0: 6573 7365 642c 2061 7320 696e 6469 6361 essed, as indica │ │ │ │ +0026f4b0: 7465 6420 6279 2061 2073 656d 6963 6f6c ted by a semicol │ │ │ │ +0026f4c0: 6f6e 0a61 7420 7468 6520 656e 6420 6f66 on.at the end of │ │ │ │ +0026f4d0: 2074 6865 2073 7461 7465 6d65 6e74 2c20 the statement, │ │ │ │ +0026f4e0: 696e 2077 6869 6368 2063 6173 6520 7468 in which case th │ │ │ │ +0026f4f0: 6520 2a6e 6f74 6520 4e6f 5072 696e 743a e *note NoPrint: │ │ │ │ +0026f500: 204e 6f50 7269 6e74 2c20 6d65 7468 6f64 NoPrint, method │ │ │ │ +0026f510: 0a69 7320 6170 706c 6965 642e 0a0a 5365 .is applied...Se │ │ │ │ +0026f520: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0026f530: 0a20 202a 202a 6e6f 7465 2050 7269 6e74 . * *note Print │ │ │ │ +0026f540: 3a20 5072 696e 742c 202d 2d20 746f 7020 : Print, -- top │ │ │ │ +0026f550: 6c65 7665 6c20 6d65 7468 6f64 2066 6f72 level method for │ │ │ │ +0026f560: 2070 7269 6e74 696e 6720 7265 7375 6c74 printing result │ │ │ │ +0026f570: 730a 2020 2a20 2a6e 6f74 6520 4e6f 5072 s. * *note NoPr │ │ │ │ +0026f580: 696e 743a 204e 6f50 7269 6e74 2c20 2d2d int: NoPrint, -- │ │ │ │ +0026f590: 2074 6f70 206c 6576 656c 206d 6574 686f top level metho │ │ │ │ +0026f5a0: 6420 666f 7220 6e6f 6e2d 7072 696e 7469 d for non-printi │ │ │ │ +0026f5b0: 6e67 2072 6573 756c 7473 0a20 202a 202a ng results. * * │ │ │ │ +0026f5c0: 6e6f 7465 2042 6566 6f72 6550 7269 6e74 note BeforePrint │ │ │ │ +0026f5d0: 3a20 4265 666f 7265 5072 696e 742c 202d : BeforePrint, - │ │ │ │ +0026f5e0: 2d20 746f 7020 6c65 7665 6c20 6d65 7468 - top level meth │ │ │ │ +0026f5f0: 6f64 2061 7070 6c69 6564 2062 6566 6f72 od applied befor │ │ │ │ +0026f600: 6520 7072 696e 7469 6e67 0a20 2020 2072 e printing. r │ │ │ │ +0026f610: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ +0026f620: 2041 6674 6572 5072 696e 743a 2041 6674 AfterPrint: Aft │ │ │ │ +0026f630: 6572 5072 696e 742c 202d 2d20 746f 7020 erPrint, -- top │ │ │ │ +0026f640: 6c65 7665 6c20 6d65 7468 6f64 2061 7070 level method app │ │ │ │ +0026f650: 6c69 6564 2061 6674 6572 2070 7269 6e74 lied after print │ │ │ │ +0026f660: 696e 670a 2020 2a20 2a6e 6f74 6520 4166 ing. * *note Af │ │ │ │ +0026f670: 7465 724e 6f50 7269 6e74 3a20 4166 7465 terNoPrint: Afte │ │ │ │ +0026f680: 724e 6f50 7269 6e74 2c20 2d2d 2074 6f70 rNoPrint, -- top │ │ │ │ +0026f690: 206c 6576 656c 206d 6574 686f 6420 6170 level method ap │ │ │ │ +0026f6a0: 706c 6965 6420 6166 7465 7220 6e6f 740a plied after not. │ │ │ │ +0026f6b0: 2020 2020 7072 696e 7469 6e67 0a2a 204d printing.* M │ │ │ │ +0026f6c0: 656e 753a 0a0a 2a20 7661 6c75 653a 3a20 enu:..* value:: │ │ │ │ +0026f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026f6e0: 2020 2020 2020 6576 616c 7561 7465 0a2a evaluate.* │ │ │ │ +0026f6f0: 2063 6170 7475 7265 3a3a 2020 2020 2020 capture:: │ │ │ │ +0026f700: 2020 2020 2020 2020 2020 2020 2020 2065 e │ │ │ │ +0026f710: 7661 6c75 6174 6520 4d61 6361 756c 6179 valuate Macaulay │ │ │ │ +0026f720: 3220 636f 6465 2061 6e64 2063 6170 7475 2 code and captu │ │ │ │ +0026f730: 7265 2074 6865 206f 7574 7075 740a 2a20 re the output.* │ │ │ │ +0026f740: 6f6f 3a3a 2020 2020 2020 2020 2020 2020 oo:: │ │ │ │ +0026f750: 2020 2020 2020 2020 2020 2020 2020 7468 th │ │ │ │ +0026f760: 6520 6c61 7374 206f 7574 7075 7420 7661 e last output va │ │ │ │ +0026f770: 6c75 650a 2a20 6f6f 6f3a 3a20 2020 2020 lue.* ooo:: │ │ │ │ +0026f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026f790: 2020 2020 7468 6520 6e65 7874 2074 6f20 the next to │ │ │ │ +0026f7a0: 7468 6520 6c61 7374 206f 7574 7075 7420 the last output │ │ │ │ +0026f7b0: 7661 6c75 650a 2a20 6f6f 6f6f 3a3a 2020 value.* oooo:: │ │ │ │ +0026f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0026f7d0: 2020 2020 2020 7468 6520 7468 6972 6420 the third │ │ │ │ +0026f7e0: 746f 2074 6865 206c 6173 7420 6f75 7470 to the last outp │ │ │ │ +0026f7f0: 7574 2076 616c 7565 0a2a 204f 7574 7075 ut value.* Outpu │ │ │ │ +0026f800: 7444 6963 7469 6f6e 6172 793a 3a20 2020 tDictionary:: │ │ │ │ +0026f810: 2020 2020 2020 2020 2074 6865 2064 6963 the dic │ │ │ │ +0026f820: 7469 6f6e 6172 7920 666f 7220 6f75 7470 tionary for outp │ │ │ │ +0026f830: 7574 2076 616c 7565 730a 2a20 636c 6561 ut values.* clea │ │ │ │ +0026f840: 7241 6c6c 3a3a 2020 2020 2020 2020 2020 rAll:: │ │ │ │ +0026f850: 2020 2020 2020 2020 2020 666f 7267 6574 forget │ │ │ │ +0026f860: 2065 7665 7279 7468 696e 670a 2a20 636c everything.* cl │ │ │ │ +0026f870: 6561 724f 7574 7075 743a 3a20 2020 2020 earOutput:: │ │ │ │ +0026f880: 2020 2020 2020 2020 2020 2020 666f 7267 forg │ │ │ │ +0026f890: 6574 206f 7574 7075 7420 7661 6c75 6573 et output values │ │ │ │ +0026f8a0: 0a2a 2074 6f70 4c65 7665 6c4d 6f64 653a .* topLevelMode: │ │ │ │ +0026f8b0: 3a20 2020 2020 2020 2020 2020 2020 2020 : │ │ │ │ +0026f8c0: 2074 6865 2063 7572 7265 6e74 2074 6f70 the current top │ │ │ │ +0026f8d0: 206c 6576 656c 206d 6f64 650a 2d2d 2d2d level mode.---- │ │ │ │ 0026f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026f900: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -0026f910: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -0026f920: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -0026f930: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -0026f940: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -0026f950: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -0026f960: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -0026f970: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -0026f980: 7265 706c 2e6d 323a 3238 3a30 2e0a 1f0a repl.m2:28:0.... │ │ │ │ -0026f990: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -0026f9a0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2076 oc.info, Node: v │ │ │ │ -0026f9b0: 616c 7565 2c20 4e65 7874 3a20 6361 7074 alue, Next: capt │ │ │ │ -0026f9c0: 7572 652c 2055 703a 2074 6f70 206c 6576 ure, Up: top lev │ │ │ │ -0026f9d0: 656c 206c 6f6f 700a 0a76 616c 7565 202d el loop..value - │ │ │ │ -0026f9e0: 2d20 6576 616c 7561 7465 0a2a 2a2a 2a2a - evaluate.***** │ │ │ │ -0026f9f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 5761 ************..Wa │ │ │ │ -0026fa00: 7973 2074 6f20 7573 6520 7661 6c75 653a ys to use value: │ │ │ │ -0026fa10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0026fa20: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2076 ===.. * *note v │ │ │ │ -0026fa30: 616c 7565 2845 7870 7265 7373 696f 6e29 alue(Expression) │ │ │ │ -0026fa40: 3a20 7661 6c75 655f 6c70 4578 7072 6573 : value_lpExpres │ │ │ │ -0026fa50: 7369 6f6e 5f72 702c 202d 2d20 6576 616c sion_rp, -- eval │ │ │ │ -0026fa60: 7561 7465 0a20 202a 202a 6e6f 7465 2076 uate. * *note v │ │ │ │ -0026fa70: 616c 7565 2849 6e64 6578 6564 5661 7269 alue(IndexedVari │ │ │ │ -0026fa80: 6162 6c65 293a 2076 616c 7565 5f6c 7049 able): value_lpI │ │ │ │ -0026fa90: 6e64 6578 6564 5661 7269 6162 6c65 5f72 ndexedVariable_r │ │ │ │ -0026faa0: 702c 202d 2d20 7265 7472 6965 7665 2074 p, -- retrieve t │ │ │ │ -0026fab0: 6865 0a20 2020 2076 616c 7565 206f 6620 he. value of │ │ │ │ -0026fac0: 616e 2069 6e64 6578 6564 2076 6172 6961 an indexed varia │ │ │ │ -0026fad0: 626c 650a 2020 2a20 2a6e 6f74 6520 7661 ble. * *note va │ │ │ │ -0026fae0: 6c75 6528 5073 6575 646f 636f 6465 293a lue(Pseudocode): │ │ │ │ -0026faf0: 2076 616c 7565 5f6c 7050 7365 7564 6f63 value_lpPseudoc │ │ │ │ -0026fb00: 6f64 655f 7270 2c20 2d2d 2065 7865 6375 ode_rp, -- execu │ │ │ │ -0026fb10: 7465 2070 7365 7564 6f63 6f64 650a 2020 te pseudocode. │ │ │ │ -0026fb20: 2a20 2a6e 6f74 6520 7661 6c75 6528 5374 * *note value(St │ │ │ │ -0026fb30: 7269 6e67 293a 2076 616c 7565 5f6c 7053 ring): value_lpS │ │ │ │ -0026fb40: 7472 696e 675f 7270 2c20 2d2d 2065 7661 tring_rp, -- eva │ │ │ │ -0026fb50: 6c75 6174 6520 6120 7374 7269 6e67 0a20 luate a string. │ │ │ │ -0026fb60: 202a 202a 6e6f 7465 2076 616c 7565 2853 * *note value(S │ │ │ │ -0026fb70: 796d 626f 6c29 3a20 7661 6c75 655f 6c70 ymbol): value_lp │ │ │ │ -0026fb80: 5379 6d62 6f6c 5f72 702c 202d 2d20 7265 Symbol_rp, -- re │ │ │ │ -0026fb90: 7472 6965 7665 2074 6865 2076 616c 7565 trieve the value │ │ │ │ -0026fba0: 206f 6620 6120 7379 6d62 6f6c 0a0a 466f of a symbol..Fo │ │ │ │ -0026fbb0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0026fbc0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0026fbd0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0026fbe0: 2a6e 6f74 6520 7661 6c75 653a 2076 616c *note value: val │ │ │ │ -0026fbf0: 7565 2c20 6973 2061 202a 6e6f 7465 206d ue, is a *note m │ │ │ │ -0026fc00: 6574 686f 6420 6675 6e63 7469 6f6e 3a20 ethod function: │ │ │ │ -0026fc10: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -0026fc20: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -0026fc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026fc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0026f930: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0026f940: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0026f950: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0026f960: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0026f970: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0026f980: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0026f990: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +0026f9a0: 2f6f 765f 7265 706c 2e6d 323a 3238 3a30 /ov_repl.m2:28:0 │ │ │ │ +0026f9b0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +0026f9c0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +0026f9d0: 653a 2076 616c 7565 2c20 4e65 7874 3a20 e: value, Next: │ │ │ │ +0026f9e0: 6361 7074 7572 652c 2055 703a 2074 6f70 capture, Up: top │ │ │ │ +0026f9f0: 206c 6576 656c 206c 6f6f 700a 0a76 616c level loop..val │ │ │ │ +0026fa00: 7565 202d 2d20 6576 616c 7561 7465 0a2a ue -- evaluate.* │ │ │ │ +0026fa10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026fa20: 0a0a 5761 7973 2074 6f20 7573 6520 7661 ..Ways to use va │ │ │ │ +0026fa30: 6c75 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d lue:.=========== │ │ │ │ +0026fa40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0026fa50: 7465 2076 616c 7565 2845 7870 7265 7373 te value(Express │ │ │ │ +0026fa60: 696f 6e29 3a20 7661 6c75 655f 6c70 4578 ion): value_lpEx │ │ │ │ +0026fa70: 7072 6573 7369 6f6e 5f72 702c 202d 2d20 pression_rp, -- │ │ │ │ +0026fa80: 6576 616c 7561 7465 0a20 202a 202a 6e6f evaluate. * *no │ │ │ │ +0026fa90: 7465 2076 616c 7565 2849 6e64 6578 6564 te value(Indexed │ │ │ │ +0026faa0: 5661 7269 6162 6c65 293a 2076 616c 7565 Variable): value │ │ │ │ +0026fab0: 5f6c 7049 6e64 6578 6564 5661 7269 6162 _lpIndexedVariab │ │ │ │ +0026fac0: 6c65 5f72 702c 202d 2d20 7265 7472 6965 le_rp, -- retrie │ │ │ │ +0026fad0: 7665 2074 6865 0a20 2020 2076 616c 7565 ve the. value │ │ │ │ +0026fae0: 206f 6620 616e 2069 6e64 6578 6564 2076 of an indexed v │ │ │ │ +0026faf0: 6172 6961 626c 650a 2020 2a20 2a6e 6f74 ariable. * *not │ │ │ │ +0026fb00: 6520 7661 6c75 6528 5073 6575 646f 636f e value(Pseudoco │ │ │ │ +0026fb10: 6465 293a 2076 616c 7565 5f6c 7050 7365 de): value_lpPse │ │ │ │ +0026fb20: 7564 6f63 6f64 655f 7270 2c20 2d2d 2065 udocode_rp, -- e │ │ │ │ +0026fb30: 7865 6375 7465 2070 7365 7564 6f63 6f64 xecute pseudocod │ │ │ │ +0026fb40: 650a 2020 2a20 2a6e 6f74 6520 7661 6c75 e. * *note valu │ │ │ │ +0026fb50: 6528 5374 7269 6e67 293a 2076 616c 7565 e(String): value │ │ │ │ +0026fb60: 5f6c 7053 7472 696e 675f 7270 2c20 2d2d _lpString_rp, -- │ │ │ │ +0026fb70: 2065 7661 6c75 6174 6520 6120 7374 7269 evaluate a stri │ │ │ │ +0026fb80: 6e67 0a20 202a 202a 6e6f 7465 2076 616c ng. * *note val │ │ │ │ +0026fb90: 7565 2853 796d 626f 6c29 3a20 7661 6c75 ue(Symbol): valu │ │ │ │ +0026fba0: 655f 6c70 5379 6d62 6f6c 5f72 702c 202d e_lpSymbol_rp, - │ │ │ │ +0026fbb0: 2d20 7265 7472 6965 7665 2074 6865 2076 - retrieve the v │ │ │ │ +0026fbc0: 616c 7565 206f 6620 6120 7379 6d62 6f6c alue of a symbol │ │ │ │ +0026fbd0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0026fbe0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0026fbf0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0026fc00: 6563 7420 2a6e 6f74 6520 7661 6c75 653a ect *note value: │ │ │ │ +0026fc10: 2076 616c 7565 2c20 6973 2061 202a 6e6f value, is a *no │ │ │ │ +0026fc20: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +0026fc30: 6f6e 3a20 4d65 7468 6f64 4675 6e63 7469 on: MethodFuncti │ │ │ │ +0026fc40: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ 0026fc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0026fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0026fc70: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0026fc80: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0026fc90: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0026fca0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0026fcb0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0026fcc0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0026fcd0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -0026fce0: 6179 3244 6f63 2f66 756e 6374 696f 6e73 ay2Doc/functions │ │ │ │ -0026fcf0: 2f76 616c 7565 2d64 6f63 2e6d 323a 373a /value-doc.m2:7: │ │ │ │ -0026fd00: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ -0026fd10: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ -0026fd20: 6465 3a20 6361 7074 7572 652c 204e 6578 de: capture, Nex │ │ │ │ -0026fd30: 743a 206f 6f2c 2050 7265 763a 2076 616c t: oo, Prev: val │ │ │ │ -0026fd40: 7565 2c20 5570 3a20 746f 7020 6c65 7665 ue, Up: top leve │ │ │ │ -0026fd50: 6c20 6c6f 6f70 0a0a 6361 7074 7572 6520 l loop..capture │ │ │ │ -0026fd60: 2d2d 2065 7661 6c75 6174 6520 4d61 6361 -- evaluate Maca │ │ │ │ -0026fd70: 756c 6179 3220 636f 6465 2061 6e64 2063 ulay2 code and c │ │ │ │ -0026fd80: 6170 7475 7265 2074 6865 206f 7574 7075 apture the outpu │ │ │ │ -0026fd90: 740a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a t.************** │ │ │ │ -0026fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0026fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0026fdd0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0026fde0: 2028 6572 722c 206f 7574 7075 7429 203a (err, output) : │ │ │ │ -0026fdf0: 3d20 6361 7074 7572 6520 7374 720a 2020 = capture str. │ │ │ │ -0026fe00: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0026fe10: 2a20 7374 722c 2061 202a 6e6f 7465 206e * str, a *note n │ │ │ │ -0026fe20: 6574 3a20 4e65 742c 2c20 6120 2a6e 6f74 et: Net,, a *not │ │ │ │ -0026fe30: 6520 6c69 7374 3a20 4c69 7374 2c2c 2061 e list: List,, a │ │ │ │ -0026fe40: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ -0026fe50: 7472 696e 672c 2c0a 2020 2020 2020 2020 tring,,. │ │ │ │ -0026fe60: 6f72 2061 202a 6e6f 7465 2074 6573 7420 or a *note test │ │ │ │ -0026fe70: 696e 7075 743a 2074 6573 7473 2c2c 2074 input: tests,, t │ │ │ │ -0026fe80: 6865 204d 6163 6175 6c61 7932 2063 6f64 he Macaulay2 cod │ │ │ │ -0026fe90: 6520 746f 2062 6520 6576 616c 7561 7465 e to be evaluate │ │ │ │ -0026fea0: 640a 2020 2a20 2a6e 6f74 6520 4f70 7469 d. * *note Opti │ │ │ │ -0026feb0: 6f6e 616c 2069 6e70 7574 733a 2075 7369 onal inputs: usi │ │ │ │ -0026fec0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -0026fed0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -0026fee0: 732c 3a0a 2020 2020 2020 2a20 5573 6572 s,:. * User │ │ │ │ -0026fef0: 4d6f 6465 203d 3e20 6120 2a6e 6f74 6520 Mode => a *note │ │ │ │ -0026ff00: 426f 6f6c 6561 6e20 7661 6c75 653a 2042 Boolean value: B │ │ │ │ -0026ff10: 6f6f 6c65 616e 2c2c 2064 6566 6175 6c74 oolean,, default │ │ │ │ -0026ff20: 2076 616c 7565 2074 7275 652c 0a20 2020 value true,. │ │ │ │ -0026ff30: 2020 2020 2069 6e64 6963 6174 6573 2077 indicates w │ │ │ │ -0026ff40: 6865 7468 6572 2063 7572 7265 6e74 6c79 hether currently │ │ │ │ -0026ff50: 206c 6f61 6465 6420 7061 636b 6167 6573 loaded packages │ │ │ │ -0026ff60: 2061 6e64 2065 7870 6f72 7465 6420 7379 and exported sy │ │ │ │ -0026ff70: 6d62 6f6c 7320 7368 6f75 6c64 0a20 2020 mbols should. │ │ │ │ -0026ff80: 2020 2020 2062 6520 6163 6365 7373 6962 be accessib │ │ │ │ -0026ff90: 6c65 2077 6869 6c65 2073 7472 2069 7320 le while str is │ │ │ │ -0026ffa0: 6265 696e 6720 6576 616c 7561 7465 642e being evaluated. │ │ │ │ -0026ffb0: 0a20 2020 2020 202a 2050 6163 6b61 6765 . * Package │ │ │ │ -0026ffc0: 4578 706f 7274 7320 3d3e 2061 202a 6e6f Exports => a *no │ │ │ │ -0026ffd0: 7465 206c 6973 743a 204c 6973 742c 2c20 te list: List,, │ │ │ │ -0026ffe0: 6465 6661 756c 7420 7661 6c75 6520 6e75 default value nu │ │ │ │ -0026fff0: 6c6c 2c20 6f66 2070 6163 6b61 6765 730a ll, of packages. │ │ │ │ -00270000: 2020 2020 2020 2020 746f 2062 6520 6c6f to be lo │ │ │ │ -00270010: 6164 6564 2062 6566 6f72 6520 6576 616c aded before eval │ │ │ │ -00270020: 7561 7469 6e67 2073 7472 2e20 2054 6865 uating str. The │ │ │ │ -00270030: 2063 7572 7265 6e74 2070 6163 6b61 6765 current package │ │ │ │ -00270040: 2c20 6173 2067 6976 656e 2062 790a 2020 , as given by. │ │ │ │ -00270050: 2020 2020 2020 2a6e 6f74 6520 4d61 6361 *note Maca │ │ │ │ -00270060: 756c 6179 3244 6f63 3a20 546f 702c 2c20 ulay2Doc: Top,, │ │ │ │ -00270070: 7769 6c6c 2062 6520 696e 636c 7564 6564 will be included │ │ │ │ -00270080: 2e0a 2020 2a20 4f75 7470 7574 733a 0a20 .. * Outputs:. │ │ │ │ -00270090: 2020 2020 202a 2065 7272 2c20 6120 2a6e * err, a *n │ │ │ │ -002700a0: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ -002700b0: 653a 2042 6f6f 6c65 616e 2c2c 2077 6865 e: Boolean,, whe │ │ │ │ -002700c0: 7468 6572 2074 6865 2065 7661 6c75 6174 ther the evaluat │ │ │ │ -002700d0: 696f 6e20 7761 730a 2020 2020 2020 2020 ion was. │ │ │ │ -002700e0: 696e 7465 7272 7570 7465 6420 6265 6361 interrupted beca │ │ │ │ -002700f0: 7573 6520 6f66 2061 6e20 6572 726f 720a use of an error. │ │ │ │ -00270100: 2020 2020 2020 2a20 6f75 7470 7574 2c20 * output, │ │ │ │ -00270110: 6120 2a6e 6f74 6520 7374 7269 6e67 3a20 a *note string: │ │ │ │ -00270120: 5374 7269 6e67 2c2c 2074 6865 2072 6573 String,, the res │ │ │ │ -00270130: 756c 7420 6f66 2074 6865 2065 7661 6c75 ult of the evalu │ │ │ │ -00270140: 6174 696f 6e0a 0a44 6573 6372 6970 7469 ation..Descripti │ │ │ │ -00270150: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00270160: 5468 6973 2066 756e 6374 696f 6e20 6576 This function ev │ │ │ │ -00270170: 616c 7561 7465 7320 7468 6520 6769 7665 aluates the give │ │ │ │ -00270180: 6e20 4d61 6361 756c 6179 3220 636f 6465 n Macaulay2 code │ │ │ │ -00270190: 2077 6974 6869 6e20 7468 6520 7361 6d65 within the same │ │ │ │ -002701a0: 2070 726f 6365 7373 2069 6e0a 6f72 6465 process in.orde │ │ │ │ -002701b0: 7220 746f 2073 7065 6564 2075 7020 7461 r to speed up ta │ │ │ │ -002701c0: 736b 7320 7375 6368 2061 7320 6765 6e65 sks such as gene │ │ │ │ -002701d0: 7261 7469 6e67 2065 7861 6d70 6c65 2072 rating example r │ │ │ │ -002701e0: 6573 756c 7473 206f 7220 6368 6563 6b69 esults or checki │ │ │ │ -002701f0: 6e67 2074 6865 0a70 6163 6b61 6765 2074 ng the.package t │ │ │ │ -00270200: 6573 7473 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ests...+-------- │ │ │ │ -00270210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00270220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026fc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026fc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0026fc90: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +0026fca0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +0026fcb0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +0026fcc0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +0026fcd0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +0026fce0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +0026fcf0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +0026fd00: 6361 756c 6179 3244 6f63 2f66 756e 6374 caulay2Doc/funct │ │ │ │ +0026fd10: 696f 6e73 2f76 616c 7565 2d64 6f63 2e6d ions/value-doc.m │ │ │ │ +0026fd20: 323a 373a 302e 0a1f 0a46 696c 653a 204d 2:7:0....File: M │ │ │ │ +0026fd30: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +0026fd40: 2c20 4e6f 6465 3a20 6361 7074 7572 652c , Node: capture, │ │ │ │ +0026fd50: 204e 6578 743a 206f 6f2c 2050 7265 763a Next: oo, Prev: │ │ │ │ +0026fd60: 2076 616c 7565 2c20 5570 3a20 746f 7020 value, Up: top │ │ │ │ +0026fd70: 6c65 7665 6c20 6c6f 6f70 0a0a 6361 7074 level loop..capt │ │ │ │ +0026fd80: 7572 6520 2d2d 2065 7661 6c75 6174 6520 ure -- evaluate │ │ │ │ +0026fd90: 4d61 6361 756c 6179 3220 636f 6465 2061 Macaulay2 code a │ │ │ │ +0026fda0: 6e64 2063 6170 7475 7265 2074 6865 206f nd capture the o │ │ │ │ +0026fdb0: 7574 7075 740a 2a2a 2a2a 2a2a 2a2a 2a2a utput.********** │ │ │ │ +0026fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026fdd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0026fde0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0026fdf0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0026fe00: 2020 2020 2028 6572 722c 206f 7574 7075 (err, outpu │ │ │ │ +0026fe10: 7429 203a 3d20 6361 7074 7572 6520 7374 t) := capture st │ │ │ │ +0026fe20: 720a 2020 2a20 496e 7075 7473 3a0a 2020 r. * Inputs:. │ │ │ │ +0026fe30: 2020 2020 2a20 7374 722c 2061 202a 6e6f * str, a *no │ │ │ │ +0026fe40: 7465 206e 6574 3a20 4e65 742c 2c20 6120 te net: Net,, a │ │ │ │ +0026fe50: 2a6e 6f74 6520 6c69 7374 3a20 4c69 7374 *note list: List │ │ │ │ +0026fe60: 2c2c 2061 202a 6e6f 7465 2073 7472 696e ,, a *note strin │ │ │ │ +0026fe70: 673a 2053 7472 696e 672c 2c0a 2020 2020 g: String,,. │ │ │ │ +0026fe80: 2020 2020 6f72 2061 202a 6e6f 7465 2074 or a *note t │ │ │ │ +0026fe90: 6573 7420 696e 7075 743a 2074 6573 7473 est input: tests │ │ │ │ +0026fea0: 2c2c 2074 6865 204d 6163 6175 6c61 7932 ,, the Macaulay2 │ │ │ │ +0026feb0: 2063 6f64 6520 746f 2062 6520 6576 616c code to be eval │ │ │ │ +0026fec0: 7561 7465 640a 2020 2a20 2a6e 6f74 6520 uated. * *note │ │ │ │ +0026fed0: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ +0026fee0: 2075 7369 6e67 2066 756e 6374 696f 6e73 using functions │ │ │ │ +0026fef0: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ +0026ff00: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ +0026ff10: 5573 6572 4d6f 6465 203d 3e20 6120 2a6e UserMode => a *n │ │ │ │ +0026ff20: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ +0026ff30: 653a 2042 6f6f 6c65 616e 2c2c 2064 6566 e: Boolean,, def │ │ │ │ +0026ff40: 6175 6c74 2076 616c 7565 2074 7275 652c ault value true, │ │ │ │ +0026ff50: 0a20 2020 2020 2020 2069 6e64 6963 6174 . indicat │ │ │ │ +0026ff60: 6573 2077 6865 7468 6572 2063 7572 7265 es whether curre │ │ │ │ +0026ff70: 6e74 6c79 206c 6f61 6465 6420 7061 636b ntly loaded pack │ │ │ │ +0026ff80: 6167 6573 2061 6e64 2065 7870 6f72 7465 ages and exporte │ │ │ │ +0026ff90: 6420 7379 6d62 6f6c 7320 7368 6f75 6c64 d symbols should │ │ │ │ +0026ffa0: 0a20 2020 2020 2020 2062 6520 6163 6365 . be acce │ │ │ │ +0026ffb0: 7373 6962 6c65 2077 6869 6c65 2073 7472 ssible while str │ │ │ │ +0026ffc0: 2069 7320 6265 696e 6720 6576 616c 7561 is being evalua │ │ │ │ +0026ffd0: 7465 642e 0a20 2020 2020 202a 2050 6163 ted.. * Pac │ │ │ │ +0026ffe0: 6b61 6765 4578 706f 7274 7320 3d3e 2061 kageExports => a │ │ │ │ +0026fff0: 202a 6e6f 7465 206c 6973 743a 204c 6973 *note list: Lis │ │ │ │ +00270000: 742c 2c20 6465 6661 756c 7420 7661 6c75 t,, default valu │ │ │ │ +00270010: 6520 6e75 6c6c 2c20 6f66 2070 6163 6b61 e null, of packa │ │ │ │ +00270020: 6765 730a 2020 2020 2020 2020 746f 2062 ges. to b │ │ │ │ +00270030: 6520 6c6f 6164 6564 2062 6566 6f72 6520 e loaded before │ │ │ │ +00270040: 6576 616c 7561 7469 6e67 2073 7472 2e20 evaluating str. │ │ │ │ +00270050: 2054 6865 2063 7572 7265 6e74 2070 6163 The current pac │ │ │ │ +00270060: 6b61 6765 2c20 6173 2067 6976 656e 2062 kage, as given b │ │ │ │ +00270070: 790a 2020 2020 2020 2020 2a6e 6f74 6520 y. *note │ │ │ │ +00270080: 4d61 6361 756c 6179 3244 6f63 3a20 546f Macaulay2Doc: To │ │ │ │ +00270090: 702c 2c20 7769 6c6c 2062 6520 696e 636c p,, will be incl │ │ │ │ +002700a0: 7564 6564 2e0a 2020 2a20 4f75 7470 7574 uded.. * Output │ │ │ │ +002700b0: 733a 0a20 2020 2020 202a 2065 7272 2c20 s:. * err, │ │ │ │ +002700c0: 6120 2a6e 6f74 6520 426f 6f6c 6561 6e20 a *note Boolean │ │ │ │ +002700d0: 7661 6c75 653a 2042 6f6f 6c65 616e 2c2c value: Boolean,, │ │ │ │ +002700e0: 2077 6865 7468 6572 2074 6865 2065 7661 whether the eva │ │ │ │ +002700f0: 6c75 6174 696f 6e20 7761 730a 2020 2020 luation was. │ │ │ │ +00270100: 2020 2020 696e 7465 7272 7570 7465 6420 interrupted │ │ │ │ +00270110: 6265 6361 7573 6520 6f66 2061 6e20 6572 because of an er │ │ │ │ +00270120: 726f 720a 2020 2020 2020 2a20 6f75 7470 ror. * outp │ │ │ │ +00270130: 7574 2c20 6120 2a6e 6f74 6520 7374 7269 ut, a *note stri │ │ │ │ +00270140: 6e67 3a20 5374 7269 6e67 2c2c 2074 6865 ng: String,, the │ │ │ │ +00270150: 2072 6573 756c 7420 6f66 2074 6865 2065 result of the e │ │ │ │ +00270160: 7661 6c75 6174 696f 6e0a 0a44 6573 6372 valuation..Descr │ │ │ │ +00270170: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00270180: 3d3d 0a0a 5468 6973 2066 756e 6374 696f ==..This functio │ │ │ │ +00270190: 6e20 6576 616c 7561 7465 7320 7468 6520 n evaluates the │ │ │ │ +002701a0: 6769 7665 6e20 4d61 6361 756c 6179 3220 given Macaulay2 │ │ │ │ +002701b0: 636f 6465 2077 6974 6869 6e20 7468 6520 code within the │ │ │ │ +002701c0: 7361 6d65 2070 726f 6365 7373 2069 6e0a same process in. │ │ │ │ +002701d0: 6f72 6465 7220 746f 2073 7065 6564 2075 order to speed u │ │ │ │ +002701e0: 7020 7461 736b 7320 7375 6368 2061 7320 p tasks such as │ │ │ │ +002701f0: 6765 6e65 7261 7469 6e67 2065 7861 6d70 generating examp │ │ │ │ +00270200: 6c65 2072 6573 756c 7473 206f 7220 6368 le results or ch │ │ │ │ +00270210: 6563 6b69 6e67 2074 6865 0a70 6163 6b61 ecking the.packa │ │ │ │ +00270220: 6765 2074 6573 7473 2e0a 0a2b 2d2d 2d2d ge tests...+---- │ │ │ │ 00270230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00270240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00270250: 2d2d 2d2d 2d2b 0a7c 6931 203a 2028 6572 -----+.|i1 : (er │ │ │ │ -00270260: 722c 206f 7574 7075 7429 203d 2063 6170 r, output) = cap │ │ │ │ -00270270: 7475 7265 2065 7861 6d70 6c65 7328 7265 ture examples(re │ │ │ │ -00270280: 736f 6c75 7469 6f6e 2c20 4964 6561 6c29 solution, Ideal) │ │ │ │ -00270290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002702a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002702b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002702c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00270260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00270270: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00270280: 2028 6572 722c 206f 7574 7075 7429 203d (err, output) = │ │ │ │ +00270290: 2063 6170 7475 7265 2065 7861 6d70 6c65 capture example │ │ │ │ +002702a0: 7328 7265 736f 6c75 7469 6f6e 2c20 4964 s(resolution, Id │ │ │ │ +002702b0: 6561 6c29 2020 2020 2020 2020 2020 2020 eal) │ │ │ │ +002702c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 002702d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002702e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002702f0: 2020 2020 207c 0a7c 6f31 203d 2028 6661 |.|o1 = (fa │ │ │ │ -00270300: 6c73 652c 2020 2020 2020 2020 2020 2020 lse, │ │ │ │ -00270310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002702f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270310: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +00270320: 2028 6661 6c73 652c 2020 2020 2020 2020 (false, │ │ │ │ 00270330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270350: 2020 2020 2069 3120 3a20 2d2d 2065 7861 i1 : -- exa │ │ │ │ -00270360: 6d70 6c65 7320 666f 7220 7461 673a 2072 mples for tag: r │ │ │ │ -00270370: 6573 6f6c 7574 696f 6e28 4964 6561 6c29 esolution(Ideal) │ │ │ │ -00270380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002703a0: 2020 2020 2020 2020 2020 2d2d 202f 6275 -- /bu │ │ │ │ -002703b0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -002703c0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -002703d0: 312e 3235 2e31 312b 6473 2f4d 322f 2020 1.25.11+ds/M2/ │ │ │ │ -002703e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002703f0: 2020 2020 2020 2020 2020 5220 3d20 5a5a R = ZZ │ │ │ │ -00270400: 5b61 2e2e 645d 2020 2020 2020 2020 2020 [a..d] │ │ │ │ -00270410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270360: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270370: 2020 2020 2020 2020 2069 3120 3a20 2d2d i1 : -- │ │ │ │ +00270380: 2065 7861 6d70 6c65 7320 666f 7220 7461 examples for ta │ │ │ │ +00270390: 673a 2072 6573 6f6c 7574 696f 6e28 4964 g: resolution(Id │ │ │ │ +002703a0: 6561 6c29 2020 2020 2020 2020 2020 2020 eal) │ │ │ │ +002703b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002703c0: 2020 2020 2020 2020 2020 2020 2020 2d2d -- │ │ │ │ +002703d0: 202f 6275 696c 642f 7265 7072 6f64 7563 /build/reproduc │ │ │ │ +002703e0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +002703f0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00270400: 322f 2020 2020 2020 207c 0a7c 2020 2020 2/ |.| │ │ │ │ +00270410: 2020 2020 2020 2020 2020 2020 2020 5220 R │ │ │ │ +00270420: 3d20 5a5a 5b61 2e2e 645d 2020 2020 2020 = ZZ[a..d] │ │ │ │ +00270430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270490: 2020 2020 206f 3120 3d20 5220 2020 2020 o1 = R │ │ │ │ -002704a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002704b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002704a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002704b0: 2020 2020 2020 2020 206f 3120 3d20 5220 o1 = R │ │ │ │ 002704c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002704d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002704d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002704e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002704f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002704f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270520: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270530: 2020 2020 206f 3120 3a20 506f 6c79 6e6f o1 : Polyno │ │ │ │ -00270540: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ -00270550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270550: 2020 2020 2020 2020 206f 3120 3a20 506f o1 : Po │ │ │ │ +00270560: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +00270570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270590: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 002705a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002705b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002705c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002705d0: 2020 2020 2069 3220 3a20 4920 3d20 6964 i2 : I = id │ │ │ │ -002705e0: 6561 6c28 612c 622c 632c 6429 2020 2020 eal(a,b,c,d) │ │ │ │ -002705f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002705c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002705d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002705e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002705f0: 2020 2020 2020 2020 2069 3220 3a20 4920 i2 : I │ │ │ │ +00270600: 3d20 6964 6561 6c28 612c 622c 632c 6429 = ideal(a,b,c,d) │ │ │ │ +00270610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270630: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270660: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270670: 2020 2020 206f 3220 3d20 6964 6561 6c20 o2 = ideal │ │ │ │ -00270680: 2861 2c20 622c 2063 2c20 6429 2020 2020 (a, b, c, d) │ │ │ │ -00270690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002706a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002706b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270680: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270690: 2020 2020 2020 2020 206f 3220 3d20 6964 o2 = id │ │ │ │ +002706a0: 6561 6c20 2861 2c20 622c 2063 2c20 6429 eal (a, b, c, d) │ │ │ │ +002706b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002706c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002706d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002706d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 002706e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002706f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270710: 2020 2020 206f 3220 3a20 4964 6561 6c20 o2 : Ideal │ │ │ │ -00270720: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ -00270730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270720: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270730: 2020 2020 2020 2020 206f 3220 3a20 4964 o2 : Id │ │ │ │ +00270740: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ +00270750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002707a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002707b0: 2020 2020 2069 3320 3a20 4320 3d20 7265 i3 : C = re │ │ │ │ -002707c0: 7320 4920 2020 2020 2020 2020 2020 2020 s I │ │ │ │ -002707d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002707e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002707f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002707a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002707b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002707c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002707d0: 2020 2020 2020 2020 2069 3320 3a20 4320 i3 : C │ │ │ │ +002707e0: 3d20 7265 7320 4920 2020 2020 2020 2020 = res I │ │ │ │ +002707f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270810: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270840: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270850: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00270860: 2020 3420 2020 2020 2036 2020 2020 2020 4 6 │ │ │ │ -00270870: 3420 2020 2020 2031 2020 2020 2020 2020 4 1 │ │ │ │ -00270880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270890: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002708a0: 2020 2020 206f 3320 3d20 5220 203c 2d2d o3 = R <-- │ │ │ │ -002708b0: 2052 2020 3c2d 2d20 5220 203c 2d2d 2052 R <-- R <-- R │ │ │ │ -002708c0: 2020 3c2d 2d20 5220 203c 2d2d 2030 2020 <-- R <-- 0 │ │ │ │ -002708d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002708e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002708f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270860: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270870: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00270880: 2020 2020 2020 3420 2020 2020 2036 2020 4 6 │ │ │ │ +00270890: 2020 2020 3420 2020 2020 2031 2020 2020 4 1 │ │ │ │ +002708a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002708b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +002708c0: 2020 2020 2020 2020 206f 3320 3d20 5220 o3 = R │ │ │ │ +002708d0: 203c 2d2d 2052 2020 3c2d 2d20 5220 203c <-- R <-- R < │ │ │ │ +002708e0: 2d2d 2052 2020 3c2d 2d20 5220 203c 2d2d -- R <-- R <-- │ │ │ │ +002708f0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00270900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270940: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ -00270950: 2031 2020 2020 2020 3220 2020 2020 2033 1 2 3 │ │ │ │ -00270960: 2020 2020 2020 3420 2020 2020 2035 2020 4 5 │ │ │ │ -00270970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002709a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270950: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270960: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00270970: 2020 2020 2031 2020 2020 2020 3220 2020 1 2 │ │ │ │ +00270980: 2020 2033 2020 2020 2020 3420 2020 2020 3 4 │ │ │ │ +00270990: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +002709a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 002709b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002709c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002709d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002709e0: 2020 2020 206f 3320 3a20 4368 6169 6e43 o3 : ChainC │ │ │ │ -002709f0: 6f6d 706c 6578 2020 2020 2020 2020 2020 omplex │ │ │ │ -00270a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002709d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002709e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002709f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270a00: 2020 2020 2020 2020 206f 3320 3a20 4368 o3 : Ch │ │ │ │ +00270a10: 6169 6e43 6f6d 706c 6578 2020 2020 2020 ainComplex │ │ │ │ +00270a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270a40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270a80: 2020 2020 2069 3420 3a20 435f 3220 2020 i4 : C_2 │ │ │ │ -00270a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ac0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270a90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270aa0: 2020 2020 2020 2020 2069 3420 3a20 435f i4 : C_ │ │ │ │ +00270ab0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00270ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270ae0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270b10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270b20: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -00270b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270b40: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ 00270b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270b60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270b70: 2020 2020 206f 3420 3d20 5220 2020 2020 o4 = R │ │ │ │ -00270b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270b80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270b90: 2020 2020 2020 2020 206f 3420 3d20 5220 o4 = R │ │ │ │ 00270ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270bd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270c00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270c10: 2020 2020 206f 3420 3a20 522d 6d6f 6475 o4 : R-modu │ │ │ │ -00270c20: 6c65 2c20 6672 6565 2c20 6465 6772 6565 le, free, degree │ │ │ │ -00270c30: 7320 7b36 3a32 7d20 2020 2020 2020 2020 s {6:2} │ │ │ │ -00270c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270c20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270c30: 2020 2020 2020 2020 206f 3420 3a20 522d o4 : R- │ │ │ │ +00270c40: 6d6f 6475 6c65 2c20 6672 6565 2c20 6465 module, free, de │ │ │ │ +00270c50: 6772 6565 7320 7b36 3a32 7d20 2020 2020 grees {6:2} │ │ │ │ 00270c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270c70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270cb0: 2020 2020 2069 3520 3a20 432e 6464 5f32 i5 : C.dd_2 │ │ │ │ -00270cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270cc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270cd0: 2020 2020 2020 2020 2069 3520 3a20 432e i5 : C. │ │ │ │ +00270ce0: 6464 5f32 2020 2020 2020 2020 2020 2020 dd_2 │ │ │ │ +00270cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270d10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270d40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270d50: 2020 2020 206f 3520 3d20 7b31 7d20 7c20 o5 = {1} | │ │ │ │ -00270d60: 2d62 2030 2020 2d63 2030 2020 3020 202d -b 0 -c 0 0 - │ │ │ │ -00270d70: 6420 7c20 2020 2020 2020 2020 2020 2020 d | │ │ │ │ -00270d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270d90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270da0: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -00270db0: 6120 202d 6320 3020 2030 2020 2d64 2030 a -c 0 0 -d 0 │ │ │ │ -00270dc0: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00270dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270de0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270df0: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -00270e00: 3020 2062 2020 6120 202d 6420 3020 2030 0 b a -d 0 0 │ │ │ │ -00270e10: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00270e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270e40: 2020 2020 2020 2020 2020 7b31 7d20 7c20 {1} | │ │ │ │ -00270e50: 3020 2030 2020 3020 2063 2020 6220 2061 0 0 0 c b a │ │ │ │ -00270e60: 2020 7c20 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00270e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270e80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270d60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270d70: 2020 2020 2020 2020 206f 3520 3d20 7b31 o5 = {1 │ │ │ │ +00270d80: 7d20 7c20 2d62 2030 2020 2d63 2030 2020 } | -b 0 -c 0 │ │ │ │ +00270d90: 3020 202d 6420 7c20 2020 2020 2020 2020 0 -d | │ │ │ │ +00270da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270db0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270dc0: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ +00270dd0: 7d20 7c20 6120 202d 6320 3020 2030 2020 } | a -c 0 0 │ │ │ │ +00270de0: 2d64 2030 2020 7c20 2020 2020 2020 2020 -d 0 | │ │ │ │ +00270df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270e00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270e10: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ +00270e20: 7d20 7c20 3020 2062 2020 6120 202d 6420 } | 0 b a -d │ │ │ │ +00270e30: 3020 2030 2020 7c20 2020 2020 2020 2020 0 0 | │ │ │ │ +00270e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270e50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270e60: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ +00270e70: 7d20 7c20 3020 2030 2020 3020 2063 2020 } | 0 0 0 c │ │ │ │ +00270e80: 6220 2061 2020 7c20 2020 2020 2020 2020 b a | │ │ │ │ 00270e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270ea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ef0: 2020 3420 2020 2020 2036 2020 2020 2020 4 6 │ │ │ │ +00270ef0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270f20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270f30: 2020 2020 206f 3520 3a20 4d61 7472 6978 o5 : Matrix │ │ │ │ -00270f40: 2052 2020 3c2d 2d20 5220 2020 2020 2020 R <-- R │ │ │ │ -00270f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00270f10: 2020 2020 2020 3420 2020 2020 2036 2020 4 6 │ │ │ │ +00270f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270f40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270f50: 2020 2020 2020 2020 206f 3520 3a20 4d61 o5 : Ma │ │ │ │ +00270f60: 7472 6978 2052 2020 3c2d 2d20 5220 2020 trix R <-- R │ │ │ │ +00270f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270f90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00270fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00270fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00270fd0: 2020 2020 2069 3620 3a20 2020 2020 2020 i6 : │ │ │ │ -00270fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00270ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00270fe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00270ff0: 2020 2020 2020 2020 2069 3620 3a20 2020 i6 : │ │ │ │ 00271000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271010: 2020 2020 207c 0a7c 2020 2020 202d 2d2d |.| --- │ │ │ │ -00271020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271030: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00271040: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ 00271050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271060: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00271070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271080: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ 00271090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002710a0: 2020 2020 2029 2020 2020 2020 2020 2020 ) │ │ │ │ -002710b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002710c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002710d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002710a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002710b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002710c0: 2020 2020 2020 2020 2029 2020 2020 2020 ) │ │ │ │ +002710d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 002710e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002710f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271100: 2020 2020 207c 0a7c 2020 2020 204d 6163 |.| Mac │ │ │ │ -00271110: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00271120: 4f6c 6443 6861 696e 436f 6d70 6c65 7865 OldChainComplexe │ │ │ │ -00271130: 732f 646f 6373 2f64 6f63 3130 2e6d 323a s/docs/doc10.m2: │ │ │ │ -00271140: 3235 343a 3020 2020 2020 2020 2020 2020 254:0 │ │ │ │ -00271150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00271160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271120: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00271130: 204d 6163 6175 6c61 7932 2f70 6163 6b61 Macaulay2/packa │ │ │ │ +00271140: 6765 732f 4f6c 6443 6861 696e 436f 6d70 ges/OldChainComp │ │ │ │ +00271150: 6c65 7865 732f 646f 6373 2f64 6f63 3130 lexes/docs/doc10 │ │ │ │ +00271160: 2e6d 323a 3235 343a 3020 2020 2020 2020 .m2:254:0 │ │ │ │ +00271170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00271180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00271190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002711a0: 2020 2020 207c 0a7c 6f31 203a 2053 6571 |.|o1 : Seq │ │ │ │ -002711b0: 7565 6e63 6520 2020 2020 2020 2020 2020 uence │ │ │ │ -002711c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002711d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002711a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002711b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002711c0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ +002711d0: 2053 6571 7565 6e63 6520 2020 2020 2020 Sequence │ │ │ │ 002711e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002711f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00271200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002711f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271210: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 00271220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271240: 2d2d 2d2d 2d2b 0a7c 6932 203a 2061 7373 -----+.|i2 : ass │ │ │ │ -00271250: 6572 7420 6e6f 7420 6572 7220 2020 2020 ert not err │ │ │ │ -00271260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271260: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00271270: 2061 7373 6572 7420 6e6f 7420 6572 7220 assert not err │ │ │ │ 00271280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271290: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -002712a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002712b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002712a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002712b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 002712c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002712d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002712e0: 2d2d 2d2d 2d2b 0a0a 4966 2055 7365 724d -----+..If UserM │ │ │ │ -002712f0: 6f64 6520 3d3e 2066 616c 7365 2067 6976 ode => false giv │ │ │ │ -00271300: 656e 2c20 7468 6520 6469 6374 696f 6e61 en, the dictiona │ │ │ │ -00271310: 7269 6573 2061 7661 696c 6162 6c65 2074 ries available t │ │ │ │ -00271320: 6f20 7468 6520 7573 6572 2077 696c 6c20 o the user will │ │ │ │ -00271330: 6e6f 7420 6265 0a61 6666 6563 7465 6420 not be.affected │ │ │ │ -00271340: 6279 2074 6865 2065 7661 6c75 6174 696f by the evaluatio │ │ │ │ -00271350: 6e20 616e 6420 2a6e 6f74 6520 636f 6c6c n and *note coll │ │ │ │ -00271360: 6563 7447 6172 6261 6765 3a20 636f 6c6c ectGarbage: coll │ │ │ │ -00271370: 6563 7447 6172 6261 6765 2c20 6973 2063 ectGarbage, is c │ │ │ │ -00271380: 616c 6c65 640a 6166 7465 7277 6172 6473 alled.afterwards │ │ │ │ -00271390: 2e0a 0a45 7272 6f72 7320 6f63 6375 7272 ...Errors occurr │ │ │ │ -002713a0: 6564 2077 6869 6c65 2065 7661 6c75 6174 ed while evaluat │ │ │ │ -002713b0: 696e 6720 7374 7220 646f 206e 6f74 2063 ing str do not c │ │ │ │ -002713c0: 6175 7365 2061 6e20 6572 726f 7220 6f75 ause an error ou │ │ │ │ -002713d0: 7473 6964 6520 6f66 2063 6170 7475 7265 tside of capture │ │ │ │ -002713e0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -002713f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002712e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002712f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271300: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4966 2055 ---------+..If U │ │ │ │ +00271310: 7365 724d 6f64 6520 3d3e 2066 616c 7365 serMode => false │ │ │ │ +00271320: 2067 6976 656e 2c20 7468 6520 6469 6374 given, the dict │ │ │ │ +00271330: 696f 6e61 7269 6573 2061 7661 696c 6162 ionaries availab │ │ │ │ +00271340: 6c65 2074 6f20 7468 6520 7573 6572 2077 le to the user w │ │ │ │ +00271350: 696c 6c20 6e6f 7420 6265 0a61 6666 6563 ill not be.affec │ │ │ │ +00271360: 7465 6420 6279 2074 6865 2065 7661 6c75 ted by the evalu │ │ │ │ +00271370: 6174 696f 6e20 616e 6420 2a6e 6f74 6520 ation and *note │ │ │ │ +00271380: 636f 6c6c 6563 7447 6172 6261 6765 3a20 collectGarbage: │ │ │ │ +00271390: 636f 6c6c 6563 7447 6172 6261 6765 2c20 collectGarbage, │ │ │ │ +002713a0: 6973 2063 616c 6c65 640a 6166 7465 7277 is called.afterw │ │ │ │ +002713b0: 6172 6473 2e0a 0a45 7272 6f72 7320 6f63 ards...Errors oc │ │ │ │ +002713c0: 6375 7272 6564 2077 6869 6c65 2065 7661 curred while eva │ │ │ │ +002713d0: 6c75 6174 696e 6720 7374 7220 646f 206e luating str do n │ │ │ │ +002713e0: 6f74 2063 6175 7365 2061 6e20 6572 726f ot cause an erro │ │ │ │ +002713f0: 7220 6f75 7473 6964 6520 6f66 2063 6170 r outside of cap │ │ │ │ +00271400: 7475 7265 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ture...+-------- │ │ │ │ 00271410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271430: 2d2b 0a7c 6933 203a 2028 6572 722c 206f -+.|i3 : (err, o │ │ │ │ -00271440: 7574 7075 7429 203d 2063 6170 7475 7265 utput) = capture │ │ │ │ -00271450: 202f 2f2f 2073 7464 6572 7220 3c3c 2022 /// stderr << " │ │ │ │ -00271460: 4368 6563 6b69 6e67 2061 2066 616c 7365 Checking a false │ │ │ │ -00271470: 2073 7461 7465 6d65 6e74 3a22 203c 3c20 statement:" << │ │ │ │ -00271480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00271490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002714a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271450: 2d2d 2d2d 2d2b 0a7c 6933 203a 2028 6572 -----+.|i3 : (er │ │ │ │ +00271460: 722c 206f 7574 7075 7429 203d 2063 6170 r, output) = cap │ │ │ │ +00271470: 7475 7265 202f 2f2f 2073 7464 6572 7220 ture /// stderr │ │ │ │ +00271480: 3c3c 2022 4368 6563 6b69 6e67 2061 2066 << "Checking a f │ │ │ │ +00271490: 616c 7365 2073 7461 7465 6d65 6e74 3a22 alse statement:" │ │ │ │ +002714a0: 203c 3c20 207c 0a7c 2020 2020 2020 2020 << |.| │ │ │ │ 002714b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002714c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002714d0: 207c 0a7c 6f33 203d 2028 7472 7565 2c20 |.|o3 = (true, │ │ │ │ +002714d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002714e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002714f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271510: 2020 2020 2020 2020 2020 2029 2020 2020 ) │ │ │ │ -00271520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00271530: 6931 203a 2020 7374 6465 7272 203c 3c20 i1 : stderr << │ │ │ │ -00271540: 2243 6865 636b 696e 6720 6120 6661 6c73 "Checking a fals │ │ │ │ -00271550: 6520 7374 6174 656d 656e 743a 2220 3c3c e statement:" << │ │ │ │ -00271560: 2065 6e64 6c3b 2031 2f30 2020 2020 2020 endl; 1/0 │ │ │ │ -00271570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00271580: 4368 6563 6b69 6e67 2061 2066 616c 7365 Checking a false │ │ │ │ -00271590: 2073 7461 7465 6d65 6e74 3a20 2020 2020 statement: │ │ │ │ -002715a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002715b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002715c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -002715d0: 6375 7272 656e 7453 7472 696e 673a 313a currentString:1: │ │ │ │ -002715e0: 3531 3a28 3329 3a5b 335d 3a20 6572 726f 51:(3):[3]: erro │ │ │ │ -002715f0: 723a 2064 6976 6973 696f 6e20 6279 207a r: division by z │ │ │ │ -00271600: 6572 6f20 2020 2020 2020 2020 2020 2020 ero │ │ │ │ -00271610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00271620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002714f0: 2020 2020 207c 0a7c 6f33 203d 2028 7472 |.|o3 = (tr │ │ │ │ +00271500: 7565 2c20 2020 2020 2020 2020 2020 2020 ue, │ │ │ │ +00271510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271530: 2020 2020 2020 2020 2020 2020 2020 2029 ) │ │ │ │ +00271540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00271550: 2020 2020 6931 203a 2020 7374 6465 7272 i1 : stderr │ │ │ │ +00271560: 203c 3c20 2243 6865 636b 696e 6720 6120 << "Checking a │ │ │ │ +00271570: 6661 6c73 6520 7374 6174 656d 656e 743a false statement: │ │ │ │ +00271580: 2220 3c3c 2065 6e64 6c3b 2031 2f30 2020 " << endl; 1/0 │ │ │ │ +00271590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002715a0: 2020 2020 4368 6563 6b69 6e67 2061 2066 Checking a f │ │ │ │ +002715b0: 616c 7365 2073 7461 7465 6d65 6e74 3a20 alse statement: │ │ │ │ +002715c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002715d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002715e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002715f0: 2020 2020 6375 7272 656e 7453 7472 696e currentStrin │ │ │ │ +00271600: 673a 313a 3531 3a28 3329 3a5b 335d 3a20 g:1:51:(3):[3]: │ │ │ │ +00271610: 6572 726f 723a 2064 6976 6973 696f 6e20 error: division │ │ │ │ +00271620: 6279 207a 6572 6f20 2020 2020 2020 2020 by zero │ │ │ │ +00271630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00271640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00271650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00271660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00271670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00271690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002716a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002716b0: 207c 0a7c 6f33 203a 2053 6571 7565 6e63 |.|o3 : Sequenc │ │ │ │ -002716c0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -002716d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002716e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002716b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002716c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002716d0: 2020 2020 207c 0a7c 6f33 203a 2053 6571 |.|o3 : Seq │ │ │ │ +002716e0: 7565 6e63 6520 2020 2020 2020 2020 2020 uence │ │ │ │ 002716f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271700: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ -00271710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271720: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 00271730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271750: 2d7c 0a7c 656e 646c 3b20 312f 3020 2f2f -|.|endl; 1/0 // │ │ │ │ -00271760: 2f20 2020 2020 2020 2020 2020 2020 2020 / │ │ │ │ -00271770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271770: 2d2d 2d2d 2d7c 0a7c 656e 646c 3b20 312f -----|.|endl; 1/ │ │ │ │ +00271780: 3020 2f2f 2f20 2020 2020 2020 2020 2020 0 /// │ │ │ │ 00271790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002717a0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -002717b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002717c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002717a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002717b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002717c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 002717d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002717e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002717f0: 2d2b 0a7c 6934 203a 2061 7373 6572 7420 -+.|i4 : assert │ │ │ │ -00271800: 6572 7220 2020 2020 2020 2020 2020 2020 err │ │ │ │ -00271810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002717f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271810: 2d2d 2d2d 2d2b 0a7c 6934 203a 2061 7373 -----+.|i4 : ass │ │ │ │ +00271820: 6572 7420 6572 7220 2020 2020 2020 2020 ert err │ │ │ │ 00271830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00271840: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00271850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00271860: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00271870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271890: 2d2b 0a0a 4365 7274 6169 6e20 6578 616d -+..Certain exam │ │ │ │ -002718a0: 706c 6573 206f 7220 7465 7374 7320 6d69 ples or tests mi │ │ │ │ -002718b0: 6768 7420 6e6f 7420 6265 2063 6f6d 7061 ght not be compa │ │ │ │ -002718c0: 7469 626c 6520 7769 7468 2063 6170 7475 tible with captu │ │ │ │ -002718d0: 7265 2e20 496e 2073 7563 6820 6361 7365 re. In such case │ │ │ │ -002718e0: 732c 0a75 7365 2074 6865 2073 7472 696e s,.use the strin │ │ │ │ -002718f0: 6720 2d2a 206e 6f2d 6361 7074 7572 652d g -* no-capture- │ │ │ │ -00271900: 666c 6167 202a 2d20 736f 6d65 7768 6572 flag *- somewher │ │ │ │ -00271910: 6520 7769 7468 696e 2073 7472 2073 6f20 e within str so │ │ │ │ -00271920: 7468 6174 2074 6865 2063 6f64 6520 6973 that the code is │ │ │ │ -00271930: 0a72 756e 2069 6e20 6120 7365 7061 7261 .run in a separa │ │ │ │ -00271940: 7465 204d 6163 6175 6c61 7932 2073 7562 te Macaulay2 sub │ │ │ │ -00271950: 7072 6f63 6573 7320 696e 7374 6561 642e process instead. │ │ │ │ -00271960: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00271970: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2063 ===.. * *note c │ │ │ │ -00271980: 6865 636b 3a20 6368 6563 6b2c 202d 2d20 heck: check, -- │ │ │ │ -00271990: 7065 7266 6f72 6d20 7465 7374 7320 6f66 perform tests of │ │ │ │ -002719a0: 2061 2070 6163 6b61 6765 0a20 202a 202a a package. * * │ │ │ │ -002719b0: 6e6f 7465 2065 7861 6d70 6c65 733a 2065 note examples: e │ │ │ │ -002719c0: 7861 6d70 6c65 732c 202d 2d20 6c69 7374 xamples, -- list │ │ │ │ -002719d0: 2074 6865 2065 7861 6d70 6c65 7320 696e the examples in │ │ │ │ -002719e0: 2064 6f63 756d 656e 7461 7469 6f6e 0a0a documentation.. │ │ │ │ -002719f0: 5761 7973 2074 6f20 7573 6520 6361 7074 Ways to use capt │ │ │ │ -00271a00: 7572 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ure:.=========== │ │ │ │ -00271a10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00271a20: 6361 7074 7572 6528 4c69 7374 2922 0a20 capture(List)". │ │ │ │ -00271a30: 202a 2022 6361 7074 7572 6528 4e65 7429 * "capture(Net) │ │ │ │ -00271a40: 220a 2020 2a20 2263 6170 7475 7265 2853 ". * "capture(S │ │ │ │ -00271a50: 7472 696e 6729 220a 2020 2a20 2263 6170 tring)". * "cap │ │ │ │ -00271a60: 7475 7265 2854 6573 7449 6e70 7574 2922 ture(TestInput)" │ │ │ │ -00271a70: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -00271a80: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -00271a90: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -00271aa0: 6563 7420 2a6e 6f74 6520 6361 7074 7572 ect *note captur │ │ │ │ -00271ab0: 653a 2063 6170 7475 7265 2c20 6973 2061 e: capture, is a │ │ │ │ -00271ac0: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -00271ad0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ -00271ae0: 6f6e 733a 0a4d 6574 686f 6446 756e 6374 ons:.MethodFunct │ │ │ │ -00271af0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -00271b00: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00271b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002718a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002718b0: 2d2d 2d2d 2d2b 0a0a 4365 7274 6169 6e20 -----+..Certain │ │ │ │ +002718c0: 6578 616d 706c 6573 206f 7220 7465 7374 examples or test │ │ │ │ +002718d0: 7320 6d69 6768 7420 6e6f 7420 6265 2063 s might not be c │ │ │ │ +002718e0: 6f6d 7061 7469 626c 6520 7769 7468 2063 ompatible with c │ │ │ │ +002718f0: 6170 7475 7265 2e20 496e 2073 7563 6820 apture. In such │ │ │ │ +00271900: 6361 7365 732c 0a75 7365 2074 6865 2073 cases,.use the s │ │ │ │ +00271910: 7472 696e 6720 2d2a 206e 6f2d 6361 7074 tring -* no-capt │ │ │ │ +00271920: 7572 652d 666c 6167 202a 2d20 736f 6d65 ure-flag *- some │ │ │ │ +00271930: 7768 6572 6520 7769 7468 696e 2073 7472 where within str │ │ │ │ +00271940: 2073 6f20 7468 6174 2074 6865 2063 6f64 so that the cod │ │ │ │ +00271950: 6520 6973 0a72 756e 2069 6e20 6120 7365 e is.run in a se │ │ │ │ +00271960: 7061 7261 7465 204d 6163 6175 6c61 7932 parate Macaulay2 │ │ │ │ +00271970: 2073 7562 7072 6f63 6573 7320 696e 7374 subprocess inst │ │ │ │ +00271980: 6561 642e 0a0a 5365 6520 616c 736f 0a3d ead...See also.= │ │ │ │ +00271990: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +002719a0: 7465 2063 6865 636b 3a20 6368 6563 6b2c te check: check, │ │ │ │ +002719b0: 202d 2d20 7065 7266 6f72 6d20 7465 7374 -- perform test │ │ │ │ +002719c0: 7320 6f66 2061 2070 6163 6b61 6765 0a20 s of a package. │ │ │ │ +002719d0: 202a 202a 6e6f 7465 2065 7861 6d70 6c65 * *note example │ │ │ │ +002719e0: 733a 2065 7861 6d70 6c65 732c 202d 2d20 s: examples, -- │ │ │ │ +002719f0: 6c69 7374 2074 6865 2065 7861 6d70 6c65 list the example │ │ │ │ +00271a00: 7320 696e 2064 6f63 756d 656e 7461 7469 s in documentati │ │ │ │ +00271a10: 6f6e 0a0a 5761 7973 2074 6f20 7573 6520 on..Ways to use │ │ │ │ +00271a20: 6361 7074 7572 653a 0a3d 3d3d 3d3d 3d3d capture:.======= │ │ │ │ +00271a30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00271a40: 202a 2022 6361 7074 7572 6528 4c69 7374 * "capture(List │ │ │ │ +00271a50: 2922 0a20 202a 2022 6361 7074 7572 6528 )". * "capture( │ │ │ │ +00271a60: 4e65 7429 220a 2020 2a20 2263 6170 7475 Net)". * "captu │ │ │ │ +00271a70: 7265 2853 7472 696e 6729 220a 2020 2a20 re(String)". * │ │ │ │ +00271a80: 2263 6170 7475 7265 2854 6573 7449 6e70 "capture(TestInp │ │ │ │ +00271a90: 7574 2922 0a0a 466f 7220 7468 6520 7072 ut)"..For the pr │ │ │ │ +00271aa0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00271ab0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00271ac0: 206f 626a 6563 7420 2a6e 6f74 6520 6361 object *note ca │ │ │ │ +00271ad0: 7074 7572 653a 2063 6170 7475 7265 2c20 pture: capture, │ │ │ │ +00271ae0: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +00271af0: 6420 6675 6e63 7469 6f6e 2077 6974 6820 d function with │ │ │ │ +00271b00: 6f70 7469 6f6e 733a 0a4d 6574 686f 6446 options:.MethodF │ │ │ │ +00271b10: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ +00271b20: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ 00271b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271b50: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00271b60: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00271b70: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00271b80: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00271b90: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00271ba0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00271bb0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00271bc0: 6179 3244 6f63 2f66 756e 6374 696f 6e73 ay2Doc/functions │ │ │ │ -00271bd0: 2f65 7861 6d70 6c65 732d 646f 632e 6d32 /examples-doc.m2 │ │ │ │ -00271be0: 3a31 3334 3a30 2e0a 1f0a 4669 6c65 3a20 :134:0....File: │ │ │ │ -00271bf0: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -00271c00: 6f2c 204e 6f64 653a 206f 6f2c 204e 6578 o, Node: oo, Nex │ │ │ │ -00271c10: 743a 206f 6f6f 2c20 5072 6576 3a20 6361 t: ooo, Prev: ca │ │ │ │ -00271c20: 7074 7572 652c 2055 703a 2074 6f70 206c pture, Up: top l │ │ │ │ -00271c30: 6576 656c 206c 6f6f 700a 0a6f 6f20 2d2d evel loop..oo -- │ │ │ │ -00271c40: 2074 6865 206c 6173 7420 6f75 7470 7574 the last output │ │ │ │ -00271c50: 2076 616c 7565 0a2a 2a2a 2a2a 2a2a 2a2a value.********* │ │ │ │ -00271c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00271c70: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -00271c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a6f 6f20 ===========..oo │ │ │ │ -00271c90: 2d2d 2064 656e 6f74 6573 2074 6865 2076 -- denotes the v │ │ │ │ -00271ca0: 616c 7565 206f 6620 7468 6520 6578 7072 alue of the expr │ │ │ │ -00271cb0: 6573 7369 6f6e 206f 6e20 7468 6520 7072 ession on the pr │ │ │ │ -00271cc0: 6576 696f 7573 206f 7574 7075 7420 6c69 evious output li │ │ │ │ -00271cd0: 6e65 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ne...See also.== │ │ │ │ -00271ce0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00271cf0: 6520 6f6f 3a20 6f6f 2c20 2d2d 2074 6865 e oo: oo, -- the │ │ │ │ -00271d00: 206c 6173 7420 6f75 7470 7574 2076 616c last output val │ │ │ │ -00271d10: 7565 0a20 202a 202a 6e6f 7465 206f 6f6f ue. * *note ooo │ │ │ │ -00271d20: 3a20 6f6f 6f2c 202d 2d20 7468 6520 6e65 : ooo, -- the ne │ │ │ │ -00271d30: 7874 2074 6f20 7468 6520 6c61 7374 206f xt to the last o │ │ │ │ -00271d40: 7574 7075 7420 7661 6c75 650a 2020 2a20 utput value. * │ │ │ │ -00271d50: 2a6e 6f74 6520 6f6f 6f6f 3a20 6f6f 6f6f *note oooo: oooo │ │ │ │ -00271d60: 2c20 2d2d 2074 6865 2074 6869 7264 2074 , -- the third t │ │ │ │ -00271d70: 6f20 7468 6520 6c61 7374 206f 7574 7075 o the last outpu │ │ │ │ -00271d80: 7420 7661 6c75 650a 0a46 6f72 2074 6865 t value..For the │ │ │ │ -00271d90: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00271da0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00271db0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00271dc0: 206f 6f3a 206f 6f2c 2069 7320 6120 2a6e oo: oo, is a *n │ │ │ │ -00271dd0: 6f74 6520 7379 6d62 6f6c 3a20 5379 6d62 ote symbol: Symb │ │ │ │ -00271de0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ -00271df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271b70: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00271b80: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00271b90: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00271ba0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00271bb0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00271bc0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00271bd0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +00271be0: 6361 756c 6179 3244 6f63 2f66 756e 6374 caulay2Doc/funct │ │ │ │ +00271bf0: 696f 6e73 2f65 7861 6d70 6c65 732d 646f ions/examples-do │ │ │ │ +00271c00: 632e 6d32 3a31 3334 3a30 2e0a 1f0a 4669 c.m2:134:0....Fi │ │ │ │ +00271c10: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00271c20: 2e69 6e66 6f2c 204e 6f64 653a 206f 6f2c .info, Node: oo, │ │ │ │ +00271c30: 204e 6578 743a 206f 6f6f 2c20 5072 6576 Next: ooo, Prev │ │ │ │ +00271c40: 3a20 6361 7074 7572 652c 2055 703a 2074 : capture, Up: t │ │ │ │ +00271c50: 6f70 206c 6576 656c 206c 6f6f 700a 0a6f op level loop..o │ │ │ │ +00271c60: 6f20 2d2d 2074 6865 206c 6173 7420 6f75 o -- the last ou │ │ │ │ +00271c70: 7470 7574 2076 616c 7565 0a2a 2a2a 2a2a tput value.***** │ │ │ │ +00271c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00271c90: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00271ca0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00271cb0: 0a6f 6f20 2d2d 2064 656e 6f74 6573 2074 .oo -- denotes t │ │ │ │ +00271cc0: 6865 2076 616c 7565 206f 6620 7468 6520 he value of the │ │ │ │ +00271cd0: 6578 7072 6573 7369 6f6e 206f 6e20 7468 expression on th │ │ │ │ +00271ce0: 6520 7072 6576 696f 7573 206f 7574 7075 e previous outpu │ │ │ │ +00271cf0: 7420 6c69 6e65 2e0a 0a53 6565 2061 6c73 t line...See als │ │ │ │ +00271d00: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00271d10: 2a6e 6f74 6520 6f6f 3a20 6f6f 2c20 2d2d *note oo: oo, -- │ │ │ │ +00271d20: 2074 6865 206c 6173 7420 6f75 7470 7574 the last output │ │ │ │ +00271d30: 2076 616c 7565 0a20 202a 202a 6e6f 7465 value. * *note │ │ │ │ +00271d40: 206f 6f6f 3a20 6f6f 6f2c 202d 2d20 7468 ooo: ooo, -- th │ │ │ │ +00271d50: 6520 6e65 7874 2074 6f20 7468 6520 6c61 e next to the la │ │ │ │ +00271d60: 7374 206f 7574 7075 7420 7661 6c75 650a st output value. │ │ │ │ +00271d70: 2020 2a20 2a6e 6f74 6520 6f6f 6f6f 3a20 * *note oooo: │ │ │ │ +00271d80: 6f6f 6f6f 2c20 2d2d 2074 6865 2074 6869 oooo, -- the thi │ │ │ │ +00271d90: 7264 2074 6f20 7468 6520 6c61 7374 206f rd to the last o │ │ │ │ +00271da0: 7574 7075 7420 7661 6c75 650a 0a46 6f72 utput value..For │ │ │ │ +00271db0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00271dc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00271dd0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00271de0: 6e6f 7465 206f 6f3a 206f 6f2c 2069 7320 note oo: oo, is │ │ │ │ +00271df0: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ +00271e00: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ 00271e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00271e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00271e30: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00271e40: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00271e50: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00271e60: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00271e70: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00271e80: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00271e90: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00271ea0: 6361 756c 6179 3244 6f63 2f6f 765f 7265 caulay2Doc/ov_re │ │ │ │ -00271eb0: 706c 2e6d 323a 3536 333a 302e 0a1f 0a46 pl.m2:563:0....F │ │ │ │ -00271ec0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -00271ed0: 632e 696e 666f 2c20 4e6f 6465 3a20 6f6f c.info, Node: oo │ │ │ │ -00271ee0: 6f2c 204e 6578 743a 206f 6f6f 6f2c 2050 o, Next: oooo, P │ │ │ │ -00271ef0: 7265 763a 206f 6f2c 2055 703a 2074 6f70 rev: oo, Up: top │ │ │ │ -00271f00: 206c 6576 656c 206c 6f6f 700a 0a6f 6f6f level loop..ooo │ │ │ │ -00271f10: 202d 2d20 7468 6520 6e65 7874 2074 6f20 -- the next to │ │ │ │ -00271f20: 7468 6520 6c61 7374 206f 7574 7075 7420 the last output │ │ │ │ -00271f30: 7661 6c75 650a 2a2a 2a2a 2a2a 2a2a 2a2a value.********** │ │ │ │ -00271f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00271f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00271f60: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00271f70: 3d3d 3d3d 3d3d 3d0a 0a6f 6f6f 202d 2d20 =======..ooo -- │ │ │ │ -00271f80: 6465 6e6f 7465 7320 7468 6520 7661 6c75 denotes the valu │ │ │ │ -00271f90: 6520 6f66 2074 6865 2065 7870 7265 7373 e of the express │ │ │ │ -00271fa0: 696f 6e20 6f6e 2074 6865 206f 7574 7075 ion on the outpu │ │ │ │ -00271fb0: 7420 6c69 6e65 2074 776f 206c 696e 6573 t line two lines │ │ │ │ -00271fc0: 2061 626f 7665 2e0a 0a53 6565 2061 6c73 above...See als │ │ │ │ -00271fd0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00271fe0: 2a6e 6f74 6520 6f6f 3a20 6f6f 2c20 2d2d *note oo: oo, -- │ │ │ │ -00271ff0: 2074 6865 206c 6173 7420 6f75 7470 7574 the last output │ │ │ │ -00272000: 2076 616c 7565 0a20 202a 202a 6e6f 7465 value. * *note │ │ │ │ -00272010: 206f 6f6f 6f3a 206f 6f6f 6f2c 202d 2d20 oooo: oooo, -- │ │ │ │ -00272020: 7468 6520 7468 6972 6420 746f 2074 6865 the third to the │ │ │ │ -00272030: 206c 6173 7420 6f75 7470 7574 2076 616c last output val │ │ │ │ -00272040: 7565 0a0a 466f 7220 7468 6520 7072 6f67 ue..For the prog │ │ │ │ -00272050: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -00272060: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -00272070: 626a 6563 7420 2a6e 6f74 6520 6f6f 6f3a bject *note ooo: │ │ │ │ -00272080: 206f 6f6f 2c20 6973 2061 202a 6e6f 7465 ooo, is a *note │ │ │ │ -00272090: 2073 796d 626f 6c3a 2053 796d 626f 6c2c symbol: Symbol, │ │ │ │ -002720a0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -002720b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002720c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00271e50: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00271e60: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00271e70: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00271e80: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00271e90: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00271ea0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00271eb0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00271ec0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00271ed0: 765f 7265 706c 2e6d 323a 3536 333a 302e v_repl.m2:563:0. │ │ │ │ +00271ee0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +00271ef0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +00271f00: 3a20 6f6f 6f2c 204e 6578 743a 206f 6f6f : ooo, Next: ooo │ │ │ │ +00271f10: 6f2c 2050 7265 763a 206f 6f2c 2055 703a o, Prev: oo, Up: │ │ │ │ +00271f20: 2074 6f70 206c 6576 656c 206c 6f6f 700a top level loop. │ │ │ │ +00271f30: 0a6f 6f6f 202d 2d20 7468 6520 6e65 7874 .ooo -- the next │ │ │ │ +00271f40: 2074 6f20 7468 6520 6c61 7374 206f 7574 to the last out │ │ │ │ +00271f50: 7075 7420 7661 6c75 650a 2a2a 2a2a 2a2a put value.****** │ │ │ │ +00271f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00271f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00271f80: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ +00271f90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a6f 6f6f ===========..ooo │ │ │ │ +00271fa0: 202d 2d20 6465 6e6f 7465 7320 7468 6520 -- denotes the │ │ │ │ +00271fb0: 7661 6c75 6520 6f66 2074 6865 2065 7870 value of the exp │ │ │ │ +00271fc0: 7265 7373 696f 6e20 6f6e 2074 6865 206f ression on the o │ │ │ │ +00271fd0: 7574 7075 7420 6c69 6e65 2074 776f 206c utput line two l │ │ │ │ +00271fe0: 696e 6573 2061 626f 7665 2e0a 0a53 6565 ines above...See │ │ │ │ +00271ff0: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +00272000: 2020 2a20 2a6e 6f74 6520 6f6f 3a20 6f6f * *note oo: oo │ │ │ │ +00272010: 2c20 2d2d 2074 6865 206c 6173 7420 6f75 , -- the last ou │ │ │ │ +00272020: 7470 7574 2076 616c 7565 0a20 202a 202a tput value. * * │ │ │ │ +00272030: 6e6f 7465 206f 6f6f 6f3a 206f 6f6f 6f2c note oooo: oooo, │ │ │ │ +00272040: 202d 2d20 7468 6520 7468 6972 6420 746f -- the third to │ │ │ │ +00272050: 2074 6865 206c 6173 7420 6f75 7470 7574 the last output │ │ │ │ +00272060: 2076 616c 7565 0a0a 466f 7220 7468 6520 value..For the │ │ │ │ +00272070: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00272080: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00272090: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +002720a0: 6f6f 6f3a 206f 6f6f 2c20 6973 2061 202a ooo: ooo, is a * │ │ │ │ +002720b0: 6e6f 7465 2073 796d 626f 6c3a 2053 796d note symbol: Sym │ │ │ │ +002720c0: 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d bol,...--------- │ │ │ │ 002720d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002720e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002720f0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00272100: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00272110: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00272120: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00272130: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00272140: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00272150: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -00272160: 6c61 7932 446f 632f 6f76 5f72 6570 6c2e lay2Doc/ov_repl. │ │ │ │ -00272170: 6d32 3a35 3731 3a30 2e0a 1f0a 4669 6c65 m2:571:0....File │ │ │ │ -00272180: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00272190: 6e66 6f2c 204e 6f64 653a 206f 6f6f 6f2c nfo, Node: oooo, │ │ │ │ -002721a0: 204e 6578 743a 204f 7574 7075 7444 6963 Next: OutputDic │ │ │ │ -002721b0: 7469 6f6e 6172 792c 2050 7265 763a 206f tionary, Prev: o │ │ │ │ -002721c0: 6f6f 2c20 5570 3a20 746f 7020 6c65 7665 oo, Up: top leve │ │ │ │ -002721d0: 6c20 6c6f 6f70 0a0a 6f6f 6f6f 202d 2d20 l loop..oooo -- │ │ │ │ -002721e0: 7468 6520 7468 6972 6420 746f 2074 6865 the third to the │ │ │ │ -002721f0: 206c 6173 7420 6f75 7470 7574 2076 616c last output val │ │ │ │ -00272200: 7565 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ue.************* │ │ │ │ -00272210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00272220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 *************..D │ │ │ │ -00272230: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00272240: 3d3d 3d3d 3d3d 0a0a 6f6f 6f6f 202d 2d20 ======..oooo -- │ │ │ │ -00272250: 6465 6e6f 7465 7320 7468 6520 7661 6c75 denotes the valu │ │ │ │ -00272260: 6520 6f66 2074 6865 2065 7870 7265 7373 e of the express │ │ │ │ -00272270: 696f 6e20 6f6e 2074 6865 206f 7574 7075 ion on the outpu │ │ │ │ -00272280: 7420 6c69 6e65 2074 6872 6565 206c 696e t line three lin │ │ │ │ -00272290: 6573 0a61 626f 7665 2e0a 0a53 6565 2061 es.above...See a │ │ │ │ -002722a0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -002722b0: 2a20 2a6e 6f74 6520 6f6f 3a20 6f6f 2c20 * *note oo: oo, │ │ │ │ -002722c0: 2d2d 2074 6865 206c 6173 7420 6f75 7470 -- the last outp │ │ │ │ -002722d0: 7574 2076 616c 7565 0a20 202a 202a 6e6f ut value. * *no │ │ │ │ -002722e0: 7465 206f 6f6f 3a20 6f6f 6f2c 202d 2d20 te ooo: ooo, -- │ │ │ │ -002722f0: 7468 6520 6e65 7874 2074 6f20 7468 6520 the next to the │ │ │ │ -00272300: 6c61 7374 206f 7574 7075 7420 7661 6c75 last output valu │ │ │ │ -00272310: 650a 0a46 6f72 2074 6865 2070 726f 6772 e..For the progr │ │ │ │ -00272320: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00272330: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00272340: 6a65 6374 202a 6e6f 7465 206f 6f6f 6f3a ject *note oooo: │ │ │ │ -00272350: 206f 6f6f 6f2c 2069 7320 6120 2a6e 6f74 oooo, is a *not │ │ │ │ -00272360: 6520 7379 6d62 6f6c 3a20 5379 6d62 6f6c e symbol: Symbol │ │ │ │ -00272370: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00272380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002720f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272110: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00272120: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00272130: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00272140: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00272150: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00272160: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00272170: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ +00272180: 6163 6175 6c61 7932 446f 632f 6f76 5f72 acaulay2Doc/ov_r │ │ │ │ +00272190: 6570 6c2e 6d32 3a35 3731 3a30 2e0a 1f0a epl.m2:571:0.... │ │ │ │ +002721a0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +002721b0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 206f oc.info, Node: o │ │ │ │ +002721c0: 6f6f 6f2c 204e 6578 743a 204f 7574 7075 ooo, Next: Outpu │ │ │ │ +002721d0: 7444 6963 7469 6f6e 6172 792c 2050 7265 tDictionary, Pre │ │ │ │ +002721e0: 763a 206f 6f6f 2c20 5570 3a20 746f 7020 v: ooo, Up: top │ │ │ │ +002721f0: 6c65 7665 6c20 6c6f 6f70 0a0a 6f6f 6f6f level loop..oooo │ │ │ │ +00272200: 202d 2d20 7468 6520 7468 6972 6420 746f -- the third to │ │ │ │ +00272210: 2074 6865 206c 6173 7420 6f75 7470 7574 the last output │ │ │ │ +00272220: 2076 616c 7565 0a2a 2a2a 2a2a 2a2a 2a2a value.********* │ │ │ │ +00272230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00272240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00272250: 2a0a 0a44 6573 6372 6970 7469 6f6e 0a3d *..Description.= │ │ │ │ +00272260: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 6f6f 6f6f ==========..oooo │ │ │ │ +00272270: 202d 2d20 6465 6e6f 7465 7320 7468 6520 -- denotes the │ │ │ │ +00272280: 7661 6c75 6520 6f66 2074 6865 2065 7870 value of the exp │ │ │ │ +00272290: 7265 7373 696f 6e20 6f6e 2074 6865 206f ression on the o │ │ │ │ +002722a0: 7574 7075 7420 6c69 6e65 2074 6872 6565 utput line three │ │ │ │ +002722b0: 206c 696e 6573 0a61 626f 7665 2e0a 0a53 lines.above...S │ │ │ │ +002722c0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +002722d0: 0a0a 2020 2a20 2a6e 6f74 6520 6f6f 3a20 .. * *note oo: │ │ │ │ +002722e0: 6f6f 2c20 2d2d 2074 6865 206c 6173 7420 oo, -- the last │ │ │ │ +002722f0: 6f75 7470 7574 2076 616c 7565 0a20 202a output value. * │ │ │ │ +00272300: 202a 6e6f 7465 206f 6f6f 3a20 6f6f 6f2c *note ooo: ooo, │ │ │ │ +00272310: 202d 2d20 7468 6520 6e65 7874 2074 6f20 -- the next to │ │ │ │ +00272320: 7468 6520 6c61 7374 206f 7574 7075 7420 the last output │ │ │ │ +00272330: 7661 6c75 650a 0a46 6f72 2074 6865 2070 value..For the p │ │ │ │ +00272340: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00272350: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00272360: 6520 6f62 6a65 6374 202a 6e6f 7465 206f e object *note o │ │ │ │ +00272370: 6f6f 6f3a 206f 6f6f 6f2c 2069 7320 6120 ooo: oooo, is a │ │ │ │ +00272380: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 5379 *note symbol: Sy │ │ │ │ +00272390: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ 002723a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002723b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002723c0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -002723d0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -002723e0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -002723f0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00272400: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00272410: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00272420: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00272430: 756c 6179 3244 6f63 2f6f 765f 7265 706c ulay2Doc/ov_repl │ │ │ │ -00272440: 2e6d 323a 3537 393a 302e 0a1f 0a46 696c .m2:579:0....Fil │ │ │ │ -00272450: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -00272460: 696e 666f 2c20 4e6f 6465 3a20 4f75 7470 info, Node: Outp │ │ │ │ -00272470: 7574 4469 6374 696f 6e61 7279 2c20 4e65 utDictionary, Ne │ │ │ │ -00272480: 7874 3a20 636c 6561 7241 6c6c 2c20 5072 xt: clearAll, Pr │ │ │ │ -00272490: 6576 3a20 6f6f 6f6f 2c20 5570 3a20 746f ev: oooo, Up: to │ │ │ │ -002724a0: 7020 6c65 7665 6c20 6c6f 6f70 0a0a 4f75 p level loop..Ou │ │ │ │ -002724b0: 7470 7574 4469 6374 696f 6e61 7279 202d tputDictionary - │ │ │ │ -002724c0: 2d20 7468 6520 6469 6374 696f 6e61 7279 - the dictionary │ │ │ │ -002724d0: 2066 6f72 206f 7574 7075 7420 7661 6c75 for output valu │ │ │ │ -002724e0: 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a es.************* │ │ │ │ -002724f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00272500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00272510: 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 6970 *******..Descrip │ │ │ │ -00272520: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00272530: 0a0a 5468 6520 7379 6d62 6f6c 7320 6f31 ..The symbols o1 │ │ │ │ -00272540: 2c20 6f32 2c20 6f33 2c20 6574 632e 2c20 , o2, o3, etc., │ │ │ │ -00272550: 6172 6520 7573 6564 2074 6f20 7374 6f72 are used to stor │ │ │ │ -00272560: 6520 7468 6520 6f75 7470 7574 2076 616c e the output val │ │ │ │ -00272570: 7565 7320 6172 6973 696e 6720 6672 6f6d ues arising from │ │ │ │ -00272580: 0a69 6e74 6572 6163 7469 6f6e 2077 6974 .interaction wit │ │ │ │ -00272590: 6820 7468 6520 7573 6572 2c20 6f6e 6520 h the user, one │ │ │ │ -002725a0: 6c69 6e65 2061 7420 6120 7469 6d65 2e20 line at a time. │ │ │ │ -002725b0: 2054 6865 2064 6963 7469 6f6e 6172 7920 The dictionary │ │ │ │ -002725c0: 4f75 7470 7574 4469 6374 696f 6e61 7279 OutputDictionary │ │ │ │ -002725d0: 0a69 7320 7468 6520 6469 6374 696f 6e61 .is the dictiona │ │ │ │ -002725e0: 7279 2069 6e20 7768 6963 6820 7468 6f73 ry in which thos │ │ │ │ -002725f0: 6520 7379 6d62 6f6c 7320 7265 7369 6465 e symbols reside │ │ │ │ -00272600: 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -00272610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002723c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002723d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002723e0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +002723f0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00272400: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00272410: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00272420: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00272430: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00272440: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00272450: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +00272460: 7265 706c 2e6d 323a 3537 393a 302e 0a1f repl.m2:579:0... │ │ │ │ +00272470: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +00272480: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +00272490: 4f75 7470 7574 4469 6374 696f 6e61 7279 OutputDictionary │ │ │ │ +002724a0: 2c20 4e65 7874 3a20 636c 6561 7241 6c6c , Next: clearAll │ │ │ │ +002724b0: 2c20 5072 6576 3a20 6f6f 6f6f 2c20 5570 , Prev: oooo, Up │ │ │ │ +002724c0: 3a20 746f 7020 6c65 7665 6c20 6c6f 6f70 : top level loop │ │ │ │ +002724d0: 0a0a 4f75 7470 7574 4469 6374 696f 6e61 ..OutputDictiona │ │ │ │ +002724e0: 7279 202d 2d20 7468 6520 6469 6374 696f ry -- the dictio │ │ │ │ +002724f0: 6e61 7279 2066 6f72 206f 7574 7075 7420 nary for output │ │ │ │ +00272500: 7661 6c75 6573 0a2a 2a2a 2a2a 2a2a 2a2a values.********* │ │ │ │ +00272510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00272520: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00272530: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ +00272540: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00272550: 3d3d 3d3d 0a0a 5468 6520 7379 6d62 6f6c ====..The symbol │ │ │ │ +00272560: 7320 6f31 2c20 6f32 2c20 6f33 2c20 6574 s o1, o2, o3, et │ │ │ │ +00272570: 632e 2c20 6172 6520 7573 6564 2074 6f20 c., are used to │ │ │ │ +00272580: 7374 6f72 6520 7468 6520 6f75 7470 7574 store the output │ │ │ │ +00272590: 2076 616c 7565 7320 6172 6973 696e 6720 values arising │ │ │ │ +002725a0: 6672 6f6d 0a69 6e74 6572 6163 7469 6f6e from.interaction │ │ │ │ +002725b0: 2077 6974 6820 7468 6520 7573 6572 2c20 with the user, │ │ │ │ +002725c0: 6f6e 6520 6c69 6e65 2061 7420 6120 7469 one line at a ti │ │ │ │ +002725d0: 6d65 2e20 2054 6865 2064 6963 7469 6f6e me. The diction │ │ │ │ +002725e0: 6172 7920 4f75 7470 7574 4469 6374 696f ary OutputDictio │ │ │ │ +002725f0: 6e61 7279 0a69 7320 7468 6520 6469 6374 nary.is the dict │ │ │ │ +00272600: 696f 6e61 7279 2069 6e20 7768 6963 6820 ionary in which │ │ │ │ +00272610: 7468 6f73 6520 7379 6d62 6f6c 7320 7265 those symbols re │ │ │ │ +00272620: 7369 6465 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d side..+--------- │ │ │ │ 00272630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272650: 2b0a 7c69 3120 3a20 322b 3220 2020 2020 +.|i1 : 2+2 │ │ │ │ -00272660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272670: 2d2d 2d2d 2b0a 7c69 3120 3a20 322b 3220 ----+.|i1 : 2+2 │ │ │ │ 00272680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002726a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002726a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002726b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002726c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002726c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 002726d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002726e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002726f0: 7c0a 7c6f 3120 3d20 3420 2020 2020 2020 |.|o1 = 4 │ │ │ │ +002726f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272710: 2020 2020 7c0a 7c6f 3120 3d20 3420 2020 |.|o1 = 4 │ │ │ │ 00272720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272740: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00272750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272760: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00272770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272790: 2b0a 7c69 3220 3a20 2261 7364 6622 207c +.|i2 : "asdf" | │ │ │ │ -002727a0: 2022 7177 6572 2220 2020 2020 2020 2020 "qwer" │ │ │ │ -002727b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002727c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002727a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002727b0: 2d2d 2d2d 2b0a 7c69 3220 3a20 2261 7364 ----+.|i2 : "asd │ │ │ │ +002727c0: 6622 207c 2022 7177 6572 2220 2020 2020 f" | "qwer" │ │ │ │ 002727d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002727e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002727e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002727f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00272810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272830: 7c0a 7c6f 3220 3d20 6173 6466 7177 6572 |.|o2 = asdfqwer │ │ │ │ +00272830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272850: 2020 2020 7c0a 7c6f 3220 3d20 6173 6466 |.|o2 = asdf │ │ │ │ +00272860: 7177 6572 2020 2020 2020 2020 2020 2020 qwer │ │ │ │ 00272870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272880: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00272890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002728a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002728a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 002728b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002728c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002728d0: 2b0a 7c69 3320 3a20 7661 6c75 6520 5c20 +.|i3 : value \ │ │ │ │ -002728e0: 7661 6c75 6573 204f 7574 7075 7444 6963 values OutputDic │ │ │ │ -002728f0: 7469 6f6e 6172 7920 2020 2020 2020 2020 tionary │ │ │ │ -00272900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272920: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002728d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002728e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002728f0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7661 6c75 ----+.|i3 : valu │ │ │ │ +00272900: 6520 5c20 7661 6c75 6573 204f 7574 7075 e \ values Outpu │ │ │ │ +00272910: 7444 6963 7469 6f6e 6172 7920 2020 2020 tDictionary │ │ │ │ +00272920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272940: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00272950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272970: 7c0a 7c6f 3320 3d20 7b34 2c20 6173 6466 |.|o3 = {4, asdf │ │ │ │ -00272980: 7177 6572 7d20 2020 2020 2020 2020 2020 qwer} │ │ │ │ -00272990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002729a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272990: 2020 2020 7c0a 7c6f 3320 3d20 7b34 2c20 |.|o3 = {4, │ │ │ │ +002729a0: 6173 6466 7177 6572 7d20 2020 2020 2020 asdfqwer} │ │ │ │ 002729b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002729c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002729c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002729d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002729e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002729e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 002729f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272a10: 7c0a 7c6f 3320 3a20 4c69 7374 2020 2020 |.|o3 : List │ │ │ │ +00272a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272a30: 2020 2020 7c0a 7c6f 3320 3a20 4c69 7374 |.|o3 : List │ │ │ │ 00272a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272a60: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00272a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272a80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00272a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272ab0: 2b0a 7c69 3420 3a20 6469 6374 696f 6e61 +.|i4 : dictiona │ │ │ │ -00272ac0: 7279 5061 7468 2020 2020 2020 2020 2020 ryPath │ │ │ │ -00272ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272ad0: 2d2d 2d2d 2b0a 7c69 3420 3a20 6469 6374 ----+.|i4 : dict │ │ │ │ +00272ae0: 696f 6e61 7279 5061 7468 2020 2020 2020 ionaryPath │ │ │ │ 00272af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272b00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00272b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272b20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00272b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00272b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272b50: 7c0a 7c6f 3420 3d20 7b47 6c6f 6261 6c44 |.|o4 = {GlobalD │ │ │ │ -00272b60: 6963 7469 6f6e 6172 797b 7d2c 2056 6172 ictionary{}, Var │ │ │ │ -00272b70: 6965 7469 6573 2e44 6963 7469 6f6e 6172 ieties.Dictionar │ │ │ │ -00272b80: 792c 2049 736f 6d6f 7270 6869 736d 2e44 y, Isomorphism.D │ │ │ │ -00272b90: 6963 7469 6f6e 6172 792c 2020 2020 2020 ictionary, │ │ │ │ -00272ba0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272b70: 2020 2020 7c0a 7c6f 3420 3d20 7b47 6c6f |.|o4 = {Glo │ │ │ │ +00272b80: 6261 6c44 6963 7469 6f6e 6172 797b 7d2c balDictionary{}, │ │ │ │ +00272b90: 2056 6172 6965 7469 6573 2e44 6963 7469 Varieties.Dicti │ │ │ │ +00272ba0: 6f6e 6172 792c 2049 736f 6d6f 7270 6869 onary, Isomorphi │ │ │ │ +00272bb0: 736d 2e44 6963 7469 6f6e 6172 792c 2020 sm.Dictionary, │ │ │ │ +00272bc0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272bf0: 7c0a 7c20 2020 2020 5472 756e 6361 7469 |.| Truncati │ │ │ │ -00272c00: 6f6e 732e 4469 6374 696f 6e61 7279 2c20 ons.Dictionary, │ │ │ │ -00272c10: 506f 6c79 6865 6472 612e 4469 6374 696f Polyhedra.Dictio │ │ │ │ -00272c20: 6e61 7279 2c20 5361 7475 7261 7469 6f6e nary, Saturation │ │ │ │ -00272c30: 2e44 6963 7469 6f6e 6172 792c 2020 2020 .Dictionary, │ │ │ │ -00272c40: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272c10: 2d2d 2d2d 7c0a 7c20 2020 2020 5472 756e ----|.| Trun │ │ │ │ +00272c20: 6361 7469 6f6e 732e 4469 6374 696f 6e61 cations.Dictiona │ │ │ │ +00272c30: 7279 2c20 506f 6c79 6865 6472 612e 4469 ry, Polyhedra.Di │ │ │ │ +00272c40: 6374 696f 6e61 7279 2c20 5361 7475 7261 ctionary, Satura │ │ │ │ +00272c50: 7469 6f6e 2e44 6963 7469 6f6e 6172 792c tion.Dictionary, │ │ │ │ +00272c60: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272c90: 7c0a 7c20 2020 2020 456c 696d 696e 6174 |.| Eliminat │ │ │ │ -00272ca0: 696f 6e2e 4469 6374 696f 6e61 7279 2c20 ion.Dictionary, │ │ │ │ -00272cb0: 4f6c 6443 6861 696e 436f 6d70 6c65 7865 OldChainComplexe │ │ │ │ -00272cc0: 732e 4469 6374 696f 6e61 7279 2c20 2020 s.Dictionary, │ │ │ │ -00272cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272ce0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272cb0: 2d2d 2d2d 7c0a 7c20 2020 2020 456c 696d ----|.| Elim │ │ │ │ +00272cc0: 696e 6174 696f 6e2e 4469 6374 696f 6e61 ination.Dictiona │ │ │ │ +00272cd0: 7279 2c20 4f6c 6443 6861 696e 436f 6d70 ry, OldChainComp │ │ │ │ +00272ce0: 6c65 7865 732e 4469 6374 696f 6e61 7279 lexes.Dictionary │ │ │ │ +00272cf0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00272d00: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272d30: 7c0a 7c20 2020 2020 5461 6e67 656e 7443 |.| TangentC │ │ │ │ -00272d40: 6f6e 652e 4469 6374 696f 6e61 7279 2c20 one.Dictionary, │ │ │ │ -00272d50: 5369 6d70 6c65 446f 632e 4469 6374 696f SimpleDoc.Dictio │ │ │ │ -00272d60: 6e61 7279 2c20 5265 6573 416c 6765 6272 nary, ReesAlgebr │ │ │ │ -00272d70: 612e 4469 6374 696f 6e61 7279 2c20 2020 a.Dictionary, │ │ │ │ -00272d80: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272d50: 2d2d 2d2d 7c0a 7c20 2020 2020 5461 6e67 ----|.| Tang │ │ │ │ +00272d60: 656e 7443 6f6e 652e 4469 6374 696f 6e61 entCone.Dictiona │ │ │ │ +00272d70: 7279 2c20 5369 6d70 6c65 446f 632e 4469 ry, SimpleDoc.Di │ │ │ │ +00272d80: 6374 696f 6e61 7279 2c20 5265 6573 416c ctionary, ReesAl │ │ │ │ +00272d90: 6765 6272 612e 4469 6374 696f 6e61 7279 gebra.Dictionary │ │ │ │ +00272da0: 2c20 2020 7c0a 7c20 2020 2020 2d2d 2d2d , |.| ---- │ │ │ │ 00272db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272dd0: 7c0a 7c20 2020 2020 5072 696d 6172 7944 |.| PrimaryD │ │ │ │ -00272de0: 6563 6f6d 706f 7369 7469 6f6e 2e44 6963 ecomposition.Dic │ │ │ │ -00272df0: 7469 6f6e 6172 792c 204d 696e 696d 616c tionary, Minimal │ │ │ │ -00272e00: 5072 696d 6573 2e44 6963 7469 6f6e 6172 Primes.Dictionar │ │ │ │ -00272e10: 792c 2020 2020 2020 2020 2020 2020 2020 y, │ │ │ │ -00272e20: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272df0: 2d2d 2d2d 7c0a 7c20 2020 2020 5072 696d ----|.| Prim │ │ │ │ +00272e00: 6172 7944 6563 6f6d 706f 7369 7469 6f6e aryDecomposition │ │ │ │ +00272e10: 2e44 6963 7469 6f6e 6172 792c 204d 696e .Dictionary, Min │ │ │ │ +00272e20: 696d 616c 5072 696d 6573 2e44 6963 7469 imalPrimes.Dicti │ │ │ │ +00272e30: 6f6e 6172 792c 2020 2020 2020 2020 2020 onary, │ │ │ │ +00272e40: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272e70: 7c0a 7c20 2020 2020 5061 636b 6167 6543 |.| PackageC │ │ │ │ -00272e80: 6974 6174 696f 6e73 2e44 6963 7469 6f6e itations.Diction │ │ │ │ -00272e90: 6172 792c 204f 6e6c 696e 654c 6f6f 6b75 ary, OnlineLooku │ │ │ │ -00272ea0: 702e 4469 6374 696f 6e61 7279 2c20 2020 p.Dictionary, │ │ │ │ -00272eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272ec0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272e90: 2d2d 2d2d 7c0a 7c20 2020 2020 5061 636b ----|.| Pack │ │ │ │ +00272ea0: 6167 6543 6974 6174 696f 6e73 2e44 6963 ageCitations.Dic │ │ │ │ +00272eb0: 7469 6f6e 6172 792c 204f 6e6c 696e 654c tionary, OnlineL │ │ │ │ +00272ec0: 6f6f 6b75 702e 4469 6374 696f 6e61 7279 ookup.Dictionary │ │ │ │ +00272ed0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00272ee0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272f10: 7c0a 7c20 2020 2020 4c4c 4c42 6173 6573 |.| LLLBases │ │ │ │ -00272f20: 2e44 6963 7469 6f6e 6172 792c 2049 6e76 .Dictionary, Inv │ │ │ │ -00272f30: 6572 7365 5379 7374 656d 732e 4469 6374 erseSystems.Dict │ │ │ │ -00272f40: 696f 6e61 7279 2c20 2020 2020 2020 2020 ionary, │ │ │ │ -00272f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00272f60: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00272f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272f30: 2d2d 2d2d 7c0a 7c20 2020 2020 4c4c 4c42 ----|.| LLLB │ │ │ │ +00272f40: 6173 6573 2e44 6963 7469 6f6e 6172 792c ases.Dictionary, │ │ │ │ +00272f50: 2049 6e76 6572 7365 5379 7374 656d 732e InverseSystems. │ │ │ │ +00272f60: 4469 6374 696f 6e61 7279 2c20 2020 2020 Dictionary, │ │ │ │ +00272f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00272f80: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00272f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00272fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00272fb0: 7c0a 7c20 2020 2020 496e 7465 6772 616c |.| Integral │ │ │ │ -00272fc0: 436c 6f73 7572 652e 4469 6374 696f 6e61 Closure.Dictiona │ │ │ │ -00272fd0: 7279 2c20 436f 6e77 6179 506f 6c79 6e6f ry, ConwayPolyno │ │ │ │ -00272fe0: 6d69 616c 732e 4469 6374 696f 6e61 7279 mials.Dictionary │ │ │ │ -00272ff0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00273000: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -00273010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00272fd0: 2d2d 2d2d 7c0a 7c20 2020 2020 496e 7465 ----|.| Inte │ │ │ │ +00272fe0: 6772 616c 436c 6f73 7572 652e 4469 6374 gralClosure.Dict │ │ │ │ +00272ff0: 696f 6e61 7279 2c20 436f 6e77 6179 506f ionary, ConwayPo │ │ │ │ +00273000: 6c79 6e6f 6d69 616c 732e 4469 6374 696f lynomials.Dictio │ │ │ │ +00273010: 6e61 7279 2c20 2020 2020 2020 2020 2020 nary, │ │ │ │ +00273020: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 00273030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00273040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273050: 7c0a 7c20 2020 2020 436c 6173 7369 632e |.| Classic. │ │ │ │ -00273060: 4469 6374 696f 6e61 7279 2c20 4d61 6361 Dictionary, Maca │ │ │ │ -00273070: 756c 6179 3244 6f63 2e44 6963 7469 6f6e ulay2Doc.Diction │ │ │ │ -00273080: 6172 792c 2043 6f72 652e 4469 6374 696f ary, Core.Dictio │ │ │ │ -00273090: 6e61 7279 2c20 2020 2020 2020 2020 2020 nary, │ │ │ │ -002730a0: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ -002730b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002730c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273070: 2d2d 2d2d 7c0a 7c20 2020 2020 436c 6173 ----|.| Clas │ │ │ │ +00273080: 7369 632e 4469 6374 696f 6e61 7279 2c20 sic.Dictionary, │ │ │ │ +00273090: 4d61 6361 756c 6179 3244 6f63 2e44 6963 Macaulay2Doc.Dic │ │ │ │ +002730a0: 7469 6f6e 6172 792c 2043 6f72 652e 4469 tionary, Core.Di │ │ │ │ +002730b0: 6374 696f 6e61 7279 2c20 2020 2020 2020 ctionary, │ │ │ │ +002730c0: 2020 2020 7c0a 7c20 2020 2020 2d2d 2d2d |.| ---- │ │ │ │ 002730d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002730e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002730f0: 7c0a 7c20 2020 2020 476c 6f62 616c 4469 |.| GlobalDi │ │ │ │ -00273100: 6374 696f 6e61 7279 7b2e 2e2e 342e 2e2e ctionary{...4... │ │ │ │ -00273110: 7d2c 2050 6163 6b61 6765 4469 6374 696f }, PackageDictio │ │ │ │ -00273120: 6e61 7279 7d20 2020 2020 2020 2020 2020 nary} │ │ │ │ -00273130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273140: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002730f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273110: 2d2d 2d2d 7c0a 7c20 2020 2020 476c 6f62 ----|.| Glob │ │ │ │ +00273120: 616c 4469 6374 696f 6e61 7279 7b2e 2e2e alDictionary{... │ │ │ │ +00273130: 342e 2e2e 7d2c 2050 6163 6b61 6765 4469 4...}, PackageDi │ │ │ │ +00273140: 6374 696f 6e61 7279 7d20 2020 2020 2020 ctionary} │ │ │ │ 00273150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00273170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00273180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273190: 7c0a 7c6f 3420 3a20 4c69 7374 2020 2020 |.|o4 : List │ │ │ │ +00273190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002731a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002731b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002731b0: 2020 2020 7c0a 7c6f 3420 3a20 4c69 7374 |.|o4 : List │ │ │ │ 002731c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002731d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002731e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -002731f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002731e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002731f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273200: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00273210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00273220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273230: 2b0a 7c69 3520 3a20 7065 656b 204f 7574 +.|i5 : peek Out │ │ │ │ -00273240: 7075 7444 6963 7469 6f6e 6172 7920 2020 putDictionary │ │ │ │ -00273250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273280: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00273230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273250: 2d2d 2d2d 2b0a 7c69 3520 3a20 7065 656b ----+.|i5 : peek │ │ │ │ +00273260: 204f 7574 7075 7444 6963 7469 6f6e 6172 OutputDictionar │ │ │ │ +00273270: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00273280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00273290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002732a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002732a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 002732b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002732c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002732d0: 7c0a 7c6f 3520 3d20 476c 6f62 616c 4469 |.|o5 = GlobalDi │ │ │ │ -002732e0: 6374 696f 6e61 7279 7b22 6f31 2220 3d3e ctionary{"o1" => │ │ │ │ -002732f0: 206f 317d 2020 2020 2020 2020 2020 2020 o1} │ │ │ │ -00273300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273320: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00273330: 2020 2020 2020 2020 2022 6f32 2220 3d3e "o2" => │ │ │ │ -00273340: 206f 3220 2020 2020 2020 2020 2020 2020 o2 │ │ │ │ -00273350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273370: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00273380: 2020 2020 2020 2020 2022 6f33 2220 3d3e "o3" => │ │ │ │ -00273390: 206f 3320 2020 2020 2020 2020 2020 2020 o3 │ │ │ │ -002733a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002733b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002733c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -002733d0: 2020 2020 2020 2020 2022 6f34 2220 3d3e "o4" => │ │ │ │ -002733e0: 206f 3420 2020 2020 2020 2020 2020 2020 o4 │ │ │ │ -002733f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273410: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -00273420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002732d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002732e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002732f0: 2020 2020 7c0a 7c6f 3520 3d20 476c 6f62 |.|o5 = Glob │ │ │ │ +00273300: 616c 4469 6374 696f 6e61 7279 7b22 6f31 alDictionary{"o1 │ │ │ │ +00273310: 2220 3d3e 206f 317d 2020 2020 2020 2020 " => o1} │ │ │ │ +00273320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00273350: 2020 2020 2020 2020 2020 2020 2022 6f32 "o2 │ │ │ │ +00273360: 2220 3d3e 206f 3220 2020 2020 2020 2020 " => o2 │ │ │ │ +00273370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273390: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +002733a0: 2020 2020 2020 2020 2020 2020 2022 6f33 "o3 │ │ │ │ +002733b0: 2220 3d3e 206f 3320 2020 2020 2020 2020 " => o3 │ │ │ │ +002733c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002733d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002733e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +002733f0: 2020 2020 2020 2020 2020 2020 2022 6f34 "o4 │ │ │ │ +00273400: 2220 3d3e 206f 3420 2020 2020 2020 2020 " => o4 │ │ │ │ +00273410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273430: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00273440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00273450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273460: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -00273470: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00273480: 6469 6374 696f 6e61 7279 5061 7468 3a20 dictionaryPath: │ │ │ │ -00273490: 6469 6374 696f 6e61 7279 5061 7468 2c0a dictionaryPath,. │ │ │ │ -002734a0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -002734b0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -002734c0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -002734d0: 6374 202a 6e6f 7465 204f 7574 7075 7444 ct *note OutputD │ │ │ │ -002734e0: 6963 7469 6f6e 6172 793a 204f 7574 7075 ictionary: Outpu │ │ │ │ -002734f0: 7444 6963 7469 6f6e 6172 792c 2069 7320 tDictionary, is │ │ │ │ -00273500: 616e 2069 6e73 7461 6e63 6520 6f66 2074 an instance of t │ │ │ │ -00273510: 6865 2074 7970 650a 2a6e 6f74 6520 476c he type.*note Gl │ │ │ │ -00273520: 6f62 616c 4469 6374 696f 6e61 7279 3a20 obalDictionary: │ │ │ │ -00273530: 476c 6f62 616c 4469 6374 696f 6e61 7279 GlobalDictionary │ │ │ │ -00273540: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00273550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273480: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ +00273490: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +002734a0: 6f74 6520 6469 6374 696f 6e61 7279 5061 ote dictionaryPa │ │ │ │ +002734b0: 7468 3a20 6469 6374 696f 6e61 7279 5061 th: dictionaryPa │ │ │ │ +002734c0: 7468 2c0a 0a46 6f72 2074 6865 2070 726f th,..For the pro │ │ │ │ +002734d0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +002734e0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +002734f0: 6f62 6a65 6374 202a 6e6f 7465 204f 7574 object *note Out │ │ │ │ +00273500: 7075 7444 6963 7469 6f6e 6172 793a 204f putDictionary: O │ │ │ │ +00273510: 7574 7075 7444 6963 7469 6f6e 6172 792c utputDictionary, │ │ │ │ +00273520: 2069 7320 616e 2069 6e73 7461 6e63 6520 is an instance │ │ │ │ +00273530: 6f66 2074 6865 2074 7970 650a 2a6e 6f74 of the type.*not │ │ │ │ +00273540: 6520 476c 6f62 616c 4469 6374 696f 6e61 e GlobalDictiona │ │ │ │ +00273550: 7279 3a20 476c 6f62 616c 4469 6374 696f ry: GlobalDictio │ │ │ │ +00273560: 6e61 7279 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d nary,...-------- │ │ │ │ 00273570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00273580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273590: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -002735a0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -002735b0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -002735c0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -002735d0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -002735e0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -002735f0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00273600: 756c 6179 3244 6f63 2f6f 765f 7265 706c ulay2Doc/ov_repl │ │ │ │ -00273610: 2e6d 323a 3938 313a 302e 0a1f 0a46 696c .m2:981:0....Fil │ │ │ │ -00273620: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -00273630: 696e 666f 2c20 4e6f 6465 3a20 636c 6561 info, Node: clea │ │ │ │ -00273640: 7241 6c6c 2c20 4e65 7874 3a20 636c 6561 rAll, Next: clea │ │ │ │ -00273650: 724f 7574 7075 742c 2050 7265 763a 204f rOutput, Prev: O │ │ │ │ -00273660: 7574 7075 7444 6963 7469 6f6e 6172 792c utputDictionary, │ │ │ │ -00273670: 2055 703a 2074 6f70 206c 6576 656c 206c Up: top level l │ │ │ │ -00273680: 6f6f 700a 0a63 6c65 6172 416c 6c20 2d2d oop..clearAll -- │ │ │ │ -00273690: 2066 6f72 6765 7420 6576 6572 7974 6869 forget everythi │ │ │ │ -002736a0: 6e67 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ng.************* │ │ │ │ -002736b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002736c0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -002736d0: 2020 2020 2020 636c 6561 7241 6c6c 0a0a clearAll.. │ │ │ │ -002736e0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -002736f0: 3d3d 3d3d 3d3d 3d0a 0a63 6c65 6172 416c =======..clearAl │ │ │ │ -00273700: 6c20 6973 2061 2063 6f6d 6d61 6e64 2074 l is a command t │ │ │ │ -00273710: 6861 7420 6174 7465 6d70 7473 2074 6f20 hat attempts to │ │ │ │ -00273720: 7265 6c65 6173 6520 6d65 6d6f 7279 2062 release memory b │ │ │ │ -00273730: 7920 636c 6561 7269 6e67 2074 6865 2076 y clearing the v │ │ │ │ -00273740: 616c 7565 730a 7265 7461 696e 6564 2062 alues.retained b │ │ │ │ -00273750: 7920 7468 6520 6f75 7470 7574 206c 696e y the output lin │ │ │ │ -00273760: 6520 7379 6d62 6f6c 7320 616e 6420 616c e symbols and al │ │ │ │ -00273770: 6c20 7468 6520 7573 6572 2073 796d 626f l the user symbo │ │ │ │ -00273780: 6c73 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ls...See also.== │ │ │ │ -00273790: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -002737a0: 6520 7573 6572 5379 6d62 6f6c 733a 2075 e userSymbols: u │ │ │ │ -002737b0: 7365 7253 796d 626f 6c73 2c20 2d2d 2061 serSymbols, -- a │ │ │ │ -002737c0: 206c 6973 7420 6f66 2074 6865 2075 7365 list of the use │ │ │ │ -002737d0: 7227 7320 7379 6d62 6f6c 730a 2020 2a20 r's symbols. * │ │ │ │ -002737e0: 2a6e 6f74 6520 636c 6561 724f 7574 7075 *note clearOutpu │ │ │ │ -002737f0: 743a 2063 6c65 6172 4f75 7470 7574 2c20 t: clearOutput, │ │ │ │ -00273800: 2d2d 2066 6f72 6765 7420 6f75 7470 7574 -- forget output │ │ │ │ -00273810: 2076 616c 7565 730a 0a46 6f72 2074 6865 values..For the │ │ │ │ -00273820: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00273830: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00273840: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00273850: 2063 6c65 6172 416c 6c3a 2063 6c65 6172 clearAll: clear │ │ │ │ -00273860: 416c 6c2c 2069 7320 6120 2a6e 6f74 6520 All, is a *note │ │ │ │ -00273870: 636f 6d6d 616e 643a 2043 6f6d 6d61 6e64 command: Command │ │ │ │ -00273880: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00273890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002738a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002735a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002735b0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +002735c0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +002735d0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +002735e0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +002735f0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00273600: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00273610: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00273620: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +00273630: 7265 706c 2e6d 323a 3938 313a 302e 0a1f repl.m2:981:0... │ │ │ │ +00273640: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +00273650: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +00273660: 636c 6561 7241 6c6c 2c20 4e65 7874 3a20 clearAll, Next: │ │ │ │ +00273670: 636c 6561 724f 7574 7075 742c 2050 7265 clearOutput, Pre │ │ │ │ +00273680: 763a 204f 7574 7075 7444 6963 7469 6f6e v: OutputDiction │ │ │ │ +00273690: 6172 792c 2055 703a 2074 6f70 206c 6576 ary, Up: top lev │ │ │ │ +002736a0: 656c 206c 6f6f 700a 0a63 6c65 6172 416c el loop..clearAl │ │ │ │ +002736b0: 6c20 2d2d 2066 6f72 6765 7420 6576 6572 l -- forget ever │ │ │ │ +002736c0: 7974 6869 6e67 0a2a 2a2a 2a2a 2a2a 2a2a ything.********* │ │ │ │ +002736d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002736e0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +002736f0: 200a 2020 2020 2020 2020 636c 6561 7241 . clearA │ │ │ │ +00273700: 6c6c 0a0a 4465 7363 7269 7074 696f 6e0a ll..Description. │ │ │ │ +00273710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a63 6c65 ===========..cle │ │ │ │ +00273720: 6172 416c 6c20 6973 2061 2063 6f6d 6d61 arAll is a comma │ │ │ │ +00273730: 6e64 2074 6861 7420 6174 7465 6d70 7473 nd that attempts │ │ │ │ +00273740: 2074 6f20 7265 6c65 6173 6520 6d65 6d6f to release memo │ │ │ │ +00273750: 7279 2062 7920 636c 6561 7269 6e67 2074 ry by clearing t │ │ │ │ +00273760: 6865 2076 616c 7565 730a 7265 7461 696e he values.retain │ │ │ │ +00273770: 6564 2062 7920 7468 6520 6f75 7470 7574 ed by the output │ │ │ │ +00273780: 206c 696e 6520 7379 6d62 6f6c 7320 616e line symbols an │ │ │ │ +00273790: 6420 616c 6c20 7468 6520 7573 6572 2073 d all the user s │ │ │ │ +002737a0: 796d 626f 6c73 2e0a 0a53 6565 2061 6c73 ymbols...See als │ │ │ │ +002737b0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +002737c0: 2a6e 6f74 6520 7573 6572 5379 6d62 6f6c *note userSymbol │ │ │ │ +002737d0: 733a 2075 7365 7253 796d 626f 6c73 2c20 s: userSymbols, │ │ │ │ +002737e0: 2d2d 2061 206c 6973 7420 6f66 2074 6865 -- a list of the │ │ │ │ +002737f0: 2075 7365 7227 7320 7379 6d62 6f6c 730a user's symbols. │ │ │ │ +00273800: 2020 2a20 2a6e 6f74 6520 636c 6561 724f * *note clearO │ │ │ │ +00273810: 7574 7075 743a 2063 6c65 6172 4f75 7470 utput: clearOutp │ │ │ │ +00273820: 7574 2c20 2d2d 2066 6f72 6765 7420 6f75 ut, -- forget ou │ │ │ │ +00273830: 7470 7574 2076 616c 7565 730a 0a46 6f72 tput values..For │ │ │ │ +00273840: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ +00273850: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00273860: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ +00273870: 6e6f 7465 2063 6c65 6172 416c 6c3a 2063 note clearAll: c │ │ │ │ +00273880: 6c65 6172 416c 6c2c 2069 7320 6120 2a6e learAll, is a *n │ │ │ │ +00273890: 6f74 6520 636f 6d6d 616e 643a 2043 6f6d ote command: Com │ │ │ │ +002738a0: 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mand,...-------- │ │ │ │ 002738b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002738c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002738d0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -002738e0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -002738f0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00273900: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00273910: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00273920: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00273930: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00273940: 756c 6179 3244 6f63 2f6f 765f 7265 706c ulay2Doc/ov_repl │ │ │ │ -00273950: 2e6d 323a 3635 353a 302e 0a1f 0a46 696c .m2:655:0....Fil │ │ │ │ -00273960: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -00273970: 696e 666f 2c20 4e6f 6465 3a20 636c 6561 info, Node: clea │ │ │ │ -00273980: 724f 7574 7075 742c 204e 6578 743a 2074 rOutput, Next: t │ │ │ │ -00273990: 6f70 4c65 7665 6c4d 6f64 652c 2050 7265 opLevelMode, Pre │ │ │ │ -002739a0: 763a 2063 6c65 6172 416c 6c2c 2055 703a v: clearAll, Up: │ │ │ │ -002739b0: 2074 6f70 206c 6576 656c 206c 6f6f 700a top level loop. │ │ │ │ -002739c0: 0a63 6c65 6172 4f75 7470 7574 202d 2d20 .clearOutput -- │ │ │ │ -002739d0: 666f 7267 6574 206f 7574 7075 7420 7661 forget output va │ │ │ │ -002739e0: 6c75 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a lues.*********** │ │ │ │ -002739f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00273a00: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -00273a10: 6167 653a 200a 2020 2020 2020 2020 636c age: . cl │ │ │ │ -00273a20: 6561 724f 7574 7075 740a 0a44 6573 6372 earOutput..Descr │ │ │ │ -00273a30: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ -00273a40: 3d3d 0a0a 636c 6561 724f 7574 7075 7420 ==..clearOutput │ │ │ │ -00273a50: 6973 2061 2063 6f6d 6d61 6e64 2074 6861 is a command tha │ │ │ │ -00273a60: 7420 6174 7465 6d70 7473 2074 6f20 7265 t attempts to re │ │ │ │ -00273a70: 6c65 6173 6520 6d65 6d6f 7279 2062 7920 lease memory by │ │ │ │ -00273a80: 636c 6561 7269 6e67 2074 6865 2076 616c clearing the val │ │ │ │ -00273a90: 7565 730a 7265 7461 696e 6564 2062 7920 ues.retained by │ │ │ │ -00273aa0: 7468 6520 6f75 7470 7574 206c 696e 6520 the output line │ │ │ │ -00273ab0: 7379 6d62 6f6c 732e 0a0a 5365 6520 616c symbols...See al │ │ │ │ -00273ac0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -00273ad0: 202a 6e6f 7465 2063 6c65 6172 416c 6c3a *note clearAll: │ │ │ │ -00273ae0: 2063 6c65 6172 416c 6c2c 202d 2d20 666f clearAll, -- fo │ │ │ │ -00273af0: 7267 6574 2065 7665 7279 7468 696e 670a rget everything. │ │ │ │ -00273b00: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -00273b10: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -00273b20: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -00273b30: 6374 202a 6e6f 7465 2063 6c65 6172 4f75 ct *note clearOu │ │ │ │ -00273b40: 7470 7574 3a20 636c 6561 724f 7574 7075 tput: clearOutpu │ │ │ │ -00273b50: 742c 2069 7320 6120 2a6e 6f74 6520 636f t, is a *note co │ │ │ │ -00273b60: 6d6d 616e 643a 2043 6f6d 6d61 6e64 2c2e mmand: Command,. │ │ │ │ -00273b70: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00273b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002738d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002738e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002738f0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00273900: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00273910: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00273920: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00273930: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00273940: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00273950: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00273960: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +00273970: 7265 706c 2e6d 323a 3635 353a 302e 0a1f repl.m2:655:0... │ │ │ │ +00273980: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +00273990: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +002739a0: 636c 6561 724f 7574 7075 742c 204e 6578 clearOutput, Nex │ │ │ │ +002739b0: 743a 2074 6f70 4c65 7665 6c4d 6f64 652c t: topLevelMode, │ │ │ │ +002739c0: 2050 7265 763a 2063 6c65 6172 416c 6c2c Prev: clearAll, │ │ │ │ +002739d0: 2055 703a 2074 6f70 206c 6576 656c 206c Up: top level l │ │ │ │ +002739e0: 6f6f 700a 0a63 6c65 6172 4f75 7470 7574 oop..clearOutput │ │ │ │ +002739f0: 202d 2d20 666f 7267 6574 206f 7574 7075 -- forget outpu │ │ │ │ +00273a00: 7420 7661 6c75 6573 0a2a 2a2a 2a2a 2a2a t values.******* │ │ │ │ +00273a10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00273a20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00273a30: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00273a40: 2020 636c 6561 724f 7574 7075 740a 0a44 clearOutput..D │ │ │ │ +00273a50: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00273a60: 3d3d 3d3d 3d3d 0a0a 636c 6561 724f 7574 ======..clearOut │ │ │ │ +00273a70: 7075 7420 6973 2061 2063 6f6d 6d61 6e64 put is a command │ │ │ │ +00273a80: 2074 6861 7420 6174 7465 6d70 7473 2074 that attempts t │ │ │ │ +00273a90: 6f20 7265 6c65 6173 6520 6d65 6d6f 7279 o release memory │ │ │ │ +00273aa0: 2062 7920 636c 6561 7269 6e67 2074 6865 by clearing the │ │ │ │ +00273ab0: 2076 616c 7565 730a 7265 7461 696e 6564 values.retained │ │ │ │ +00273ac0: 2062 7920 7468 6520 6f75 7470 7574 206c by the output l │ │ │ │ +00273ad0: 696e 6520 7379 6d62 6f6c 732e 0a0a 5365 ine symbols...Se │ │ │ │ +00273ae0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00273af0: 0a20 202a 202a 6e6f 7465 2063 6c65 6172 . * *note clear │ │ │ │ +00273b00: 416c 6c3a 2063 6c65 6172 416c 6c2c 202d All: clearAll, - │ │ │ │ +00273b10: 2d20 666f 7267 6574 2065 7665 7279 7468 - forget everyth │ │ │ │ +00273b20: 696e 670a 0a46 6f72 2074 6865 2070 726f ing..For the pro │ │ │ │ +00273b30: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00273b40: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00273b50: 6f62 6a65 6374 202a 6e6f 7465 2063 6c65 object *note cle │ │ │ │ +00273b60: 6172 4f75 7470 7574 3a20 636c 6561 724f arOutput: clearO │ │ │ │ +00273b70: 7574 7075 742c 2069 7320 6120 2a6e 6f74 utput, is a *not │ │ │ │ +00273b80: 6520 636f 6d6d 616e 643a 2043 6f6d 6d61 e command: Comma │ │ │ │ +00273b90: 6e64 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d nd,...---------- │ │ │ │ 00273ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00273bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00273bc0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00273bd0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00273be0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00273bf0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00273c00: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00273c10: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00273c20: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00273c30: 6179 3244 6f63 2f6f 765f 7265 706c 2e6d ay2Doc/ov_repl.m │ │ │ │ -00273c40: 323a 3634 363a 302e 0a1f 0a46 696c 653a 2:646:0....File: │ │ │ │ -00273c50: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -00273c60: 666f 2c20 4e6f 6465 3a20 746f 704c 6576 fo, Node: topLev │ │ │ │ -00273c70: 656c 4d6f 6465 2c20 5072 6576 3a20 636c elMode, Prev: cl │ │ │ │ -00273c80: 6561 724f 7574 7075 742c 2055 703a 2074 earOutput, Up: t │ │ │ │ -00273c90: 6f70 206c 6576 656c 206c 6f6f 700a 0a74 op level loop..t │ │ │ │ -00273ca0: 6f70 4c65 7665 6c4d 6f64 6520 2d2d 2074 opLevelMode -- t │ │ │ │ -00273cb0: 6865 2063 7572 7265 6e74 2074 6f70 206c he current top l │ │ │ │ -00273cc0: 6576 656c 206d 6f64 650a 2a2a 2a2a 2a2a evel mode.****** │ │ │ │ -00273cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00273ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00273cf0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00273d00: 200a 2020 2020 2020 2020 746f 704c 6576 . topLev │ │ │ │ -00273d10: 656c 4d6f 6465 203d 2078 0a20 202a 2049 elMode = x. * I │ │ │ │ -00273d20: 6e70 7574 733a 0a20 2020 2020 202a 2078 nputs:. * x │ │ │ │ -00273d30: 2c20 6120 2a6e 6f74 6520 7379 6d62 6f6c , a *note symbol │ │ │ │ -00273d40: 3a20 5379 6d62 6f6c 2c2c 202a 6e6f 7465 : Symbol,, *note │ │ │ │ -00273d50: 2054 6558 6d61 6373 3a20 5465 586d 6163 TeXmacs: TeXmac │ │ │ │ -00273d60: 732c 2c20 6f72 202a 6e6f 7465 2053 7461 s,, or *note Sta │ │ │ │ -00273d70: 6e64 6172 643a 0a20 2020 2020 2020 2053 ndard:. S │ │ │ │ -00273d80: 7461 6e64 6172 642c 206f 7220 2a6e 6f74 tandard, or *not │ │ │ │ -00273d90: 6520 5765 6241 7070 3a20 5765 6241 7070 e WebApp: WebApp │ │ │ │ -00273da0: 2c0a 2020 2a20 436f 6e73 6571 7565 6e63 ,. * Consequenc │ │ │ │ -00273db0: 6573 3a0a 2020 2020 2020 2a20 7468 6520 es:. * the │ │ │ │ -00273dc0: 696e 7465 7270 7265 7465 7220 7769 6c6c interpreter will │ │ │ │ -00273dd0: 2070 726f 6475 6365 2069 6e70 7574 2061 produce input a │ │ │ │ -00273de0: 6e64 206f 7574 7075 7420 7072 6f6d 7074 nd output prompt │ │ │ │ -00273df0: 7320 6170 7072 6f70 7269 6174 6520 666f s appropriate fo │ │ │ │ -00273e00: 720a 2020 2020 2020 2020 7468 6520 6d6f r. the mo │ │ │ │ -00273e10: 6465 2c20 616e 6420 7769 6c6c 2066 6f72 de, and will for │ │ │ │ -00273e20: 6d61 7420 6f75 7470 7574 2076 616c 7565 mat output value │ │ │ │ -00273e30: 7320 6170 7072 6f70 7269 6174 656c 790a s appropriately. │ │ │ │ -00273e40: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00273e50: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2076 ========..This v │ │ │ │ -00273e60: 6172 6961 626c 6520 6973 2069 6e74 656e ariable is inten │ │ │ │ -00273e70: 6465 6420 666f 7220 696e 7465 726e 616c ded for internal │ │ │ │ -00273e80: 2075 7365 206f 6e6c 792e 0a0a 2a20 4d65 use only...* Me │ │ │ │ -00273e90: 6e75 3a0a 0a0a 4b65 7973 2066 6f72 2074 nu:...Keys for t │ │ │ │ -00273ea0: 6f70 206c 6576 656c 206d 6f64 6573 3a0a op level modes:. │ │ │ │ -00273eb0: 2a20 5374 616e 6461 7264 3a3a 2020 2020 * Standard:: │ │ │ │ -00273ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00273ed0: 7468 6520 7374 616e 6461 7264 2074 6f70 the standard top │ │ │ │ -00273ee0: 206c 6576 656c 2070 7269 6e74 696e 6720 level printing │ │ │ │ -00273ef0: 6d65 7468 6f64 0a2a 2057 6562 4170 703a method.* WebApp: │ │ │ │ -00273f00: 3a20 2020 2020 2020 2020 2020 2020 2020 : │ │ │ │ -00273f10: 2020 2020 2020 2074 6865 2077 6562 2061 the web a │ │ │ │ -00273f20: 7070 2074 6f70 206c 6576 656c 2070 7269 pp top level pri │ │ │ │ -00273f30: 6e74 696e 6720 6d65 7468 6f64 0a2a 2054 nting method.* T │ │ │ │ -00273f40: 6558 6d61 6373 3a3a 2020 2020 2020 2020 eXmacs:: │ │ │ │ -00273f50: 2020 2020 2020 2020 2020 2020 2074 6865 the │ │ │ │ -00273f60: 2054 6558 6d61 6373 2074 6f70 206c 6576 TeXmacs top lev │ │ │ │ -00273f70: 656c 2070 7269 6e74 696e 6720 6d65 7468 el printing meth │ │ │ │ -00273f80: 6f64 0a0a 4b65 7973 2066 6f72 206d 6f64 od..Keys for mod │ │ │ │ -00273f90: 652d 6465 7065 6e64 656e 7420 7072 696e e-dependent prin │ │ │ │ -00273fa0: 7469 6e67 206d 6574 686f 6473 3a0a 2a20 ting methods:.* │ │ │ │ -00273fb0: 5072 696e 743a 3a20 2020 2020 2020 2020 Print:: │ │ │ │ -00273fc0: 2020 2020 2020 2020 2020 2020 2020 746f to │ │ │ │ -00273fd0: 7020 6c65 7665 6c20 6d65 7468 6f64 2066 p level method f │ │ │ │ -00273fe0: 6f72 2070 7269 6e74 696e 6720 7265 7375 or printing resu │ │ │ │ -00273ff0: 6c74 730a 2a20 4e6f 5072 696e 743a 3a20 lts.* NoPrint:: │ │ │ │ -00274000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00274010: 2020 2020 746f 7020 6c65 7665 6c20 6d65 top level me │ │ │ │ -00274020: 7468 6f64 2066 6f72 206e 6f6e 2d70 7269 thod for non-pri │ │ │ │ -00274030: 6e74 696e 6720 7265 7375 6c74 730a 2a20 nting results.* │ │ │ │ -00274040: 4166 7465 7245 7661 6c3a 3a20 2020 2020 AfterEval:: │ │ │ │ -00274050: 2020 2020 2020 2020 2020 2020 2020 746f to │ │ │ │ -00274060: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ -00274070: 7070 6c69 6564 2061 6674 6572 2065 7661 pplied after eva │ │ │ │ -00274080: 6c75 6174 696f 6e0a 2a20 4265 666f 7265 luation.* Before │ │ │ │ -00274090: 5072 696e 743a 3a20 2020 2020 2020 2020 Print:: │ │ │ │ -002740a0: 2020 2020 2020 2020 746f 7020 6c65 7665 top leve │ │ │ │ -002740b0: 6c20 6d65 7468 6f64 2061 7070 6c69 6564 l method applied │ │ │ │ -002740c0: 2062 6566 6f72 6520 7072 696e 7469 6e67 before printing │ │ │ │ -002740d0: 2072 6573 756c 7473 0a2a 2041 6674 6572 results.* After │ │ │ │ -002740e0: 5072 696e 743a 3a20 2020 2020 2020 2020 Print:: │ │ │ │ -002740f0: 2020 2020 2020 2020 2074 6f70 206c 6576 top lev │ │ │ │ -00274100: 656c 206d 6574 686f 6420 6170 706c 6965 el method applie │ │ │ │ -00274110: 6420 6166 7465 7220 7072 696e 7469 6e67 d after printing │ │ │ │ -00274120: 0a2a 2041 6674 6572 4e6f 5072 696e 743a .* AfterNoPrint: │ │ │ │ -00274130: 3a20 2020 2020 2020 2020 2020 2020 2020 : │ │ │ │ -00274140: 2074 6f70 206c 6576 656c 206d 6574 686f top level metho │ │ │ │ -00274150: 6420 6170 706c 6965 6420 6166 7465 7220 d applied after │ │ │ │ -00274160: 6e6f 7420 7072 696e 7469 6e67 0a0a 466f not printing..Fo │ │ │ │ -00274170: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00274180: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00274190: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -002741a0: 2a6e 6f74 6520 746f 704c 6576 656c 4d6f *note topLevelMo │ │ │ │ -002741b0: 6465 3a20 746f 704c 6576 656c 4d6f 6465 de: topLevelMode │ │ │ │ -002741c0: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ -002741d0: 626f 6c3a 2053 796d 626f 6c2c 2e0a 0a2d bol: Symbol,...- │ │ │ │ -002741e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002741f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00273be0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00273bf0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00273c00: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00273c10: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00273c20: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00273c30: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00273c40: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +00273c50: 6361 756c 6179 3244 6f63 2f6f 765f 7265 caulay2Doc/ov_re │ │ │ │ +00273c60: 706c 2e6d 323a 3634 363a 302e 0a1f 0a46 pl.m2:646:0....F │ │ │ │ +00273c70: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +00273c80: 632e 696e 666f 2c20 4e6f 6465 3a20 746f c.info, Node: to │ │ │ │ +00273c90: 704c 6576 656c 4d6f 6465 2c20 5072 6576 pLevelMode, Prev │ │ │ │ +00273ca0: 3a20 636c 6561 724f 7574 7075 742c 2055 : clearOutput, U │ │ │ │ +00273cb0: 703a 2074 6f70 206c 6576 656c 206c 6f6f p: top level loo │ │ │ │ +00273cc0: 700a 0a74 6f70 4c65 7665 6c4d 6f64 6520 p..topLevelMode │ │ │ │ +00273cd0: 2d2d 2074 6865 2063 7572 7265 6e74 2074 -- the current t │ │ │ │ +00273ce0: 6f70 206c 6576 656c 206d 6f64 650a 2a2a op level mode.** │ │ │ │ +00273cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00273d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00273d10: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +00273d20: 6167 653a 200a 2020 2020 2020 2020 746f age: . to │ │ │ │ +00273d30: 704c 6576 656c 4d6f 6465 203d 2078 0a20 pLevelMode = x. │ │ │ │ +00273d40: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00273d50: 202a 2078 2c20 6120 2a6e 6f74 6520 7379 * x, a *note sy │ │ │ │ +00273d60: 6d62 6f6c 3a20 5379 6d62 6f6c 2c2c 202a mbol: Symbol,, * │ │ │ │ +00273d70: 6e6f 7465 2054 6558 6d61 6373 3a20 5465 note TeXmacs: Te │ │ │ │ +00273d80: 586d 6163 732c 2c20 6f72 202a 6e6f 7465 Xmacs,, or *note │ │ │ │ +00273d90: 2053 7461 6e64 6172 643a 0a20 2020 2020 Standard:. │ │ │ │ +00273da0: 2020 2053 7461 6e64 6172 642c 206f 7220 Standard, or │ │ │ │ +00273db0: 2a6e 6f74 6520 5765 6241 7070 3a20 5765 *note WebApp: We │ │ │ │ +00273dc0: 6241 7070 2c0a 2020 2a20 436f 6e73 6571 bApp,. * Conseq │ │ │ │ +00273dd0: 7565 6e63 6573 3a0a 2020 2020 2020 2a20 uences:. * │ │ │ │ +00273de0: 7468 6520 696e 7465 7270 7265 7465 7220 the interpreter │ │ │ │ +00273df0: 7769 6c6c 2070 726f 6475 6365 2069 6e70 will produce inp │ │ │ │ +00273e00: 7574 2061 6e64 206f 7574 7075 7420 7072 ut and output pr │ │ │ │ +00273e10: 6f6d 7074 7320 6170 7072 6f70 7269 6174 ompts appropriat │ │ │ │ +00273e20: 6520 666f 720a 2020 2020 2020 2020 7468 e for. th │ │ │ │ +00273e30: 6520 6d6f 6465 2c20 616e 6420 7769 6c6c e mode, and will │ │ │ │ +00273e40: 2066 6f72 6d61 7420 6f75 7470 7574 2076 format output v │ │ │ │ +00273e50: 616c 7565 7320 6170 7072 6f70 7269 6174 alues appropriat │ │ │ │ +00273e60: 656c 790a 0a44 6573 6372 6970 7469 6f6e ely..Description │ │ │ │ +00273e70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ +00273e80: 6973 2076 6172 6961 626c 6520 6973 2069 is variable is i │ │ │ │ +00273e90: 6e74 656e 6465 6420 666f 7220 696e 7465 ntended for inte │ │ │ │ +00273ea0: 726e 616c 2075 7365 206f 6e6c 792e 0a0a rnal use only... │ │ │ │ +00273eb0: 2a20 4d65 6e75 3a0a 0a0a 4b65 7973 2066 * Menu:...Keys f │ │ │ │ +00273ec0: 6f72 2074 6f70 206c 6576 656c 206d 6f64 or top level mod │ │ │ │ +00273ed0: 6573 3a0a 2a20 5374 616e 6461 7264 3a3a es:.* Standard:: │ │ │ │ +00273ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273ef0: 2020 2020 7468 6520 7374 616e 6461 7264 the standard │ │ │ │ +00273f00: 2074 6f70 206c 6576 656c 2070 7269 6e74 top level print │ │ │ │ +00273f10: 696e 6720 6d65 7468 6f64 0a2a 2057 6562 ing method.* Web │ │ │ │ +00273f20: 4170 703a 3a20 2020 2020 2020 2020 2020 App:: │ │ │ │ +00273f30: 2020 2020 2020 2020 2020 2074 6865 2077 the w │ │ │ │ +00273f40: 6562 2061 7070 2074 6f70 206c 6576 656c eb app top level │ │ │ │ +00273f50: 2070 7269 6e74 696e 6720 6d65 7468 6f64 printing method │ │ │ │ +00273f60: 0a2a 2054 6558 6d61 6373 3a3a 2020 2020 .* TeXmacs:: │ │ │ │ +00273f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273f80: 2074 6865 2054 6558 6d61 6373 2074 6f70 the TeXmacs top │ │ │ │ +00273f90: 206c 6576 656c 2070 7269 6e74 696e 6720 level printing │ │ │ │ +00273fa0: 6d65 7468 6f64 0a0a 4b65 7973 2066 6f72 method..Keys for │ │ │ │ +00273fb0: 206d 6f64 652d 6465 7065 6e64 656e 7420 mode-dependent │ │ │ │ +00273fc0: 7072 696e 7469 6e67 206d 6574 686f 6473 printing methods │ │ │ │ +00273fd0: 3a0a 2a20 5072 696e 743a 3a20 2020 2020 :.* Print:: │ │ │ │ +00273fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00273ff0: 2020 746f 7020 6c65 7665 6c20 6d65 7468 top level meth │ │ │ │ +00274000: 6f64 2066 6f72 2070 7269 6e74 696e 6720 od for printing │ │ │ │ +00274010: 7265 7375 6c74 730a 2a20 4e6f 5072 696e results.* NoPrin │ │ │ │ +00274020: 743a 3a20 2020 2020 2020 2020 2020 2020 t:: │ │ │ │ +00274030: 2020 2020 2020 2020 746f 7020 6c65 7665 top leve │ │ │ │ +00274040: 6c20 6d65 7468 6f64 2066 6f72 206e 6f6e l method for non │ │ │ │ +00274050: 2d70 7269 6e74 696e 6720 7265 7375 6c74 -printing result │ │ │ │ +00274060: 730a 2a20 4166 7465 7245 7661 6c3a 3a20 s.* AfterEval:: │ │ │ │ +00274070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00274080: 2020 746f 7020 6c65 7665 6c20 6d65 7468 top level meth │ │ │ │ +00274090: 6f64 2061 7070 6c69 6564 2061 6674 6572 od applied after │ │ │ │ +002740a0: 2065 7661 6c75 6174 696f 6e0a 2a20 4265 evaluation.* Be │ │ │ │ +002740b0: 666f 7265 5072 696e 743a 3a20 2020 2020 forePrint:: │ │ │ │ +002740c0: 2020 2020 2020 2020 2020 2020 746f 7020 top │ │ │ │ +002740d0: 6c65 7665 6c20 6d65 7468 6f64 2061 7070 level method app │ │ │ │ +002740e0: 6c69 6564 2062 6566 6f72 6520 7072 696e lied before prin │ │ │ │ +002740f0: 7469 6e67 2072 6573 756c 7473 0a2a 2041 ting results.* A │ │ │ │ +00274100: 6674 6572 5072 696e 743a 3a20 2020 2020 fterPrint:: │ │ │ │ +00274110: 2020 2020 2020 2020 2020 2020 2074 6f70 top │ │ │ │ +00274120: 206c 6576 656c 206d 6574 686f 6420 6170 level method ap │ │ │ │ +00274130: 706c 6965 6420 6166 7465 7220 7072 696e plied after prin │ │ │ │ +00274140: 7469 6e67 0a2a 2041 6674 6572 4e6f 5072 ting.* AfterNoPr │ │ │ │ +00274150: 696e 743a 3a20 2020 2020 2020 2020 2020 int:: │ │ │ │ +00274160: 2020 2020 2074 6f70 206c 6576 656c 206d top level m │ │ │ │ +00274170: 6574 686f 6420 6170 706c 6965 6420 6166 ethod applied af │ │ │ │ +00274180: 7465 7220 6e6f 7420 7072 696e 7469 6e67 ter not printing │ │ │ │ +00274190: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +002741a0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +002741b0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +002741c0: 6563 7420 2a6e 6f74 6520 746f 704c 6576 ect *note topLev │ │ │ │ +002741d0: 656c 4d6f 6465 3a20 746f 704c 6576 656c elMode: topLevel │ │ │ │ +002741e0: 4d6f 6465 2c20 6973 2061 202a 6e6f 7465 Mode, is a *note │ │ │ │ +002741f0: 2073 796d 626f 6c3a 2053 796d 626f 6c2c symbol: Symbol, │ │ │ │ +00274200: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00274210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00274230: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00274240: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00274250: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00274260: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00274270: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00274280: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00274290: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -002742a0: 446f 632f 6f76 5f72 6570 6c2e 6d32 3a34 Doc/ov_repl.m2:4 │ │ │ │ -002742b0: 3134 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 14:0....File: Ma │ │ │ │ -002742c0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ -002742d0: 204e 6f64 653a 2053 7461 6e64 6172 642c Node: Standard, │ │ │ │ -002742e0: 204e 6578 743a 2057 6562 4170 702c 2055 Next: WebApp, U │ │ │ │ -002742f0: 703a 2074 6f70 4c65 7665 6c4d 6f64 650a p: topLevelMode. │ │ │ │ -00274300: 0a53 7461 6e64 6172 6420 2d2d 2074 6865 .Standard -- the │ │ │ │ -00274310: 2073 7461 6e64 6172 6420 746f 7020 6c65 standard top le │ │ │ │ -00274320: 7665 6c20 7072 696e 7469 6e67 206d 6574 vel printing met │ │ │ │ -00274330: 686f 640a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a hod.************ │ │ │ │ -00274340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00274350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00274360: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -00274370: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00274380: 0a54 6869 7320 7379 6d62 6f6c 2069 7320 .This symbol is │ │ │ │ -00274390: 7573 6564 2028 7465 6e74 6174 6976 656c used (tentativel │ │ │ │ -002743a0: 7929 2061 7320 7468 6520 6669 7273 7420 y) as the first │ │ │ │ -002743b0: 656c 656d 656e 7420 6f66 2061 2070 6169 element of a pai │ │ │ │ -002743c0: 7220 746f 2073 7065 6369 6679 0a76 6172 r to specify.var │ │ │ │ -002743d0: 696f 7573 2074 6f70 206c 6576 656c 2069 ious top level i │ │ │ │ -002743e0: 6e74 6572 7072 6574 6572 206d 6574 686f nterpreter metho │ │ │ │ -002743f0: 6473 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ds...See also.== │ │ │ │ -00274400: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00274410: 6520 5465 586d 6163 733a 2054 6558 6d61 e TeXmacs: TeXma │ │ │ │ -00274420: 6373 2c20 2d2d 2074 6865 2054 6558 6d61 cs, -- the TeXma │ │ │ │ -00274430: 6373 2074 6f70 206c 6576 656c 2070 7269 cs top level pri │ │ │ │ -00274440: 6e74 696e 6720 6d65 7468 6f64 0a20 202a nting method. * │ │ │ │ -00274450: 202a 6e6f 7465 2050 7269 6e74 3a20 5072 *note Print: Pr │ │ │ │ -00274460: 696e 742c 202d 2d20 746f 7020 6c65 7665 int, -- top leve │ │ │ │ -00274470: 6c20 6d65 7468 6f64 2066 6f72 2070 7269 l method for pri │ │ │ │ -00274480: 6e74 696e 6720 7265 7375 6c74 730a 2020 nting results. │ │ │ │ -00274490: 2a20 2a6e 6f74 6520 4e6f 5072 696e 743a * *note NoPrint: │ │ │ │ -002744a0: 204e 6f50 7269 6e74 2c20 2d2d 2074 6f70 NoPrint, -- top │ │ │ │ -002744b0: 206c 6576 656c 206d 6574 686f 6420 666f level method fo │ │ │ │ -002744c0: 7220 6e6f 6e2d 7072 696e 7469 6e67 2072 r non-printing r │ │ │ │ -002744d0: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ -002744e0: 2042 6566 6f72 6550 7269 6e74 3a20 4265 BeforePrint: Be │ │ │ │ -002744f0: 666f 7265 5072 696e 742c 202d 2d20 746f forePrint, -- to │ │ │ │ -00274500: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ -00274510: 7070 6c69 6564 2062 6566 6f72 6520 7072 pplied before pr │ │ │ │ -00274520: 696e 7469 6e67 0a20 2020 2072 6573 756c inting. resul │ │ │ │ -00274530: 7473 0a20 202a 202a 6e6f 7465 2041 6674 ts. * *note Aft │ │ │ │ -00274540: 6572 5072 696e 743a 2041 6674 6572 5072 erPrint: AfterPr │ │ │ │ -00274550: 696e 742c 202d 2d20 746f 7020 6c65 7665 int, -- top leve │ │ │ │ -00274560: 6c20 6d65 7468 6f64 2061 7070 6c69 6564 l method applied │ │ │ │ -00274570: 2061 6674 6572 2070 7269 6e74 696e 670a after printing. │ │ │ │ -00274580: 2020 2a20 2a6e 6f74 6520 4166 7465 724e * *note AfterN │ │ │ │ -00274590: 6f50 7269 6e74 3a20 4166 7465 724e 6f50 oPrint: AfterNoP │ │ │ │ -002745a0: 7269 6e74 2c20 2d2d 2074 6f70 206c 6576 rint, -- top lev │ │ │ │ -002745b0: 656c 206d 6574 686f 6420 6170 706c 6965 el method applie │ │ │ │ -002745c0: 6420 6166 7465 7220 6e6f 740a 2020 2020 d after not. │ │ │ │ -002745d0: 7072 696e 7469 6e67 0a0a 466f 7220 7468 printing..For th │ │ │ │ -002745e0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -002745f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00274600: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -00274610: 6520 5374 616e 6461 7264 3a20 5374 616e e Standard: Stan │ │ │ │ -00274620: 6461 7264 2c20 6973 2061 202a 6e6f 7465 dard, is a *note │ │ │ │ -00274630: 2073 796d 626f 6c3a 2053 796d 626f 6c2c symbol: Symbol, │ │ │ │ -00274640: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -00274650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274250: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00274260: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00274270: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00274280: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00274290: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +002742a0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +002742b0: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +002742c0: 6c61 7932 446f 632f 6f76 5f72 6570 6c2e lay2Doc/ov_repl. │ │ │ │ +002742d0: 6d32 3a34 3134 3a30 2e0a 1f0a 4669 6c65 m2:414:0....File │ │ │ │ +002742e0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ +002742f0: 6e66 6f2c 204e 6f64 653a 2053 7461 6e64 nfo, Node: Stand │ │ │ │ +00274300: 6172 642c 204e 6578 743a 2057 6562 4170 ard, Next: WebAp │ │ │ │ +00274310: 702c 2055 703a 2074 6f70 4c65 7665 6c4d p, Up: topLevelM │ │ │ │ +00274320: 6f64 650a 0a53 7461 6e64 6172 6420 2d2d ode..Standard -- │ │ │ │ +00274330: 2074 6865 2073 7461 6e64 6172 6420 746f the standard to │ │ │ │ +00274340: 7020 6c65 7665 6c20 7072 696e 7469 6e67 p level printing │ │ │ │ +00274350: 206d 6574 686f 640a 2a2a 2a2a 2a2a 2a2a method.******** │ │ │ │ +00274360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00274370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00274380: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +00274390: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +002743a0: 3d3d 3d0a 0a54 6869 7320 7379 6d62 6f6c ===..This symbol │ │ │ │ +002743b0: 2069 7320 7573 6564 2028 7465 6e74 6174 is used (tentat │ │ │ │ +002743c0: 6976 656c 7929 2061 7320 7468 6520 6669 ively) as the fi │ │ │ │ +002743d0: 7273 7420 656c 656d 656e 7420 6f66 2061 rst element of a │ │ │ │ +002743e0: 2070 6169 7220 746f 2073 7065 6369 6679 pair to specify │ │ │ │ +002743f0: 0a76 6172 696f 7573 2074 6f70 206c 6576 .various top lev │ │ │ │ +00274400: 656c 2069 6e74 6572 7072 6574 6572 206d el interpreter m │ │ │ │ +00274410: 6574 686f 6473 2e0a 0a53 6565 2061 6c73 ethods...See als │ │ │ │ +00274420: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00274430: 2a6e 6f74 6520 5465 586d 6163 733a 2054 *note TeXmacs: T │ │ │ │ +00274440: 6558 6d61 6373 2c20 2d2d 2074 6865 2054 eXmacs, -- the T │ │ │ │ +00274450: 6558 6d61 6373 2074 6f70 206c 6576 656c eXmacs top level │ │ │ │ +00274460: 2070 7269 6e74 696e 6720 6d65 7468 6f64 printing method │ │ │ │ +00274470: 0a20 202a 202a 6e6f 7465 2050 7269 6e74 . * *note Print │ │ │ │ +00274480: 3a20 5072 696e 742c 202d 2d20 746f 7020 : Print, -- top │ │ │ │ +00274490: 6c65 7665 6c20 6d65 7468 6f64 2066 6f72 level method for │ │ │ │ +002744a0: 2070 7269 6e74 696e 6720 7265 7375 6c74 printing result │ │ │ │ +002744b0: 730a 2020 2a20 2a6e 6f74 6520 4e6f 5072 s. * *note NoPr │ │ │ │ +002744c0: 696e 743a 204e 6f50 7269 6e74 2c20 2d2d int: NoPrint, -- │ │ │ │ +002744d0: 2074 6f70 206c 6576 656c 206d 6574 686f top level metho │ │ │ │ +002744e0: 6420 666f 7220 6e6f 6e2d 7072 696e 7469 d for non-printi │ │ │ │ +002744f0: 6e67 2072 6573 756c 7473 0a20 202a 202a ng results. * * │ │ │ │ +00274500: 6e6f 7465 2042 6566 6f72 6550 7269 6e74 note BeforePrint │ │ │ │ +00274510: 3a20 4265 666f 7265 5072 696e 742c 202d : BeforePrint, - │ │ │ │ +00274520: 2d20 746f 7020 6c65 7665 6c20 6d65 7468 - top level meth │ │ │ │ +00274530: 6f64 2061 7070 6c69 6564 2062 6566 6f72 od applied befor │ │ │ │ +00274540: 6520 7072 696e 7469 6e67 0a20 2020 2072 e printing. r │ │ │ │ +00274550: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ +00274560: 2041 6674 6572 5072 696e 743a 2041 6674 AfterPrint: Aft │ │ │ │ +00274570: 6572 5072 696e 742c 202d 2d20 746f 7020 erPrint, -- top │ │ │ │ +00274580: 6c65 7665 6c20 6d65 7468 6f64 2061 7070 level method app │ │ │ │ +00274590: 6c69 6564 2061 6674 6572 2070 7269 6e74 lied after print │ │ │ │ +002745a0: 696e 670a 2020 2a20 2a6e 6f74 6520 4166 ing. * *note Af │ │ │ │ +002745b0: 7465 724e 6f50 7269 6e74 3a20 4166 7465 terNoPrint: Afte │ │ │ │ +002745c0: 724e 6f50 7269 6e74 2c20 2d2d 2074 6f70 rNoPrint, -- top │ │ │ │ +002745d0: 206c 6576 656c 206d 6574 686f 6420 6170 level method ap │ │ │ │ +002745e0: 706c 6965 6420 6166 7465 7220 6e6f 740a plied after not. │ │ │ │ +002745f0: 2020 2020 7072 696e 7469 6e67 0a0a 466f printing..Fo │ │ │ │ +00274600: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00274610: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00274620: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00274630: 2a6e 6f74 6520 5374 616e 6461 7264 3a20 *note Standard: │ │ │ │ +00274640: 5374 616e 6461 7264 2c20 6973 2061 202a Standard, is a * │ │ │ │ +00274650: 6e6f 7465 2073 796d 626f 6c3a 2053 796d note symbol: Sym │ │ │ │ +00274660: 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d bol,...--------- │ │ │ │ 00274670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00274680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274690: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -002746a0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -002746b0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -002746c0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -002746d0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -002746e0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -002746f0: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -00274700: 6c61 7932 446f 632f 6f76 5f72 6570 6c2e lay2Doc/ov_repl. │ │ │ │ -00274710: 6d32 3a34 3230 3a30 2e0a 1f0a 4669 6c65 m2:420:0....File │ │ │ │ -00274720: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00274730: 6e66 6f2c 204e 6f64 653a 2057 6562 4170 nfo, Node: WebAp │ │ │ │ -00274740: 702c 204e 6578 743a 2054 6558 6d61 6373 p, Next: TeXmacs │ │ │ │ -00274750: 2c20 5072 6576 3a20 5374 616e 6461 7264 , Prev: Standard │ │ │ │ -00274760: 2c20 5570 3a20 746f 704c 6576 656c 4d6f , Up: topLevelMo │ │ │ │ -00274770: 6465 0a0a 5765 6241 7070 202d 2d20 7468 de..WebApp -- th │ │ │ │ -00274780: 6520 7765 6220 6170 7020 746f 7020 6c65 e web app top le │ │ │ │ -00274790: 7665 6c20 7072 696e 7469 6e67 206d 6574 vel printing met │ │ │ │ -002747a0: 686f 640a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a hod.************ │ │ │ │ -002747b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002747c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002747d0: 2a2a 2a0a 0a44 6573 6372 6970 7469 6f6e ***..Description │ │ │ │ -002747e0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -002747f0: 6973 2073 796d 626f 6c20 6973 2075 7365 is symbol is use │ │ │ │ -00274800: 6420 2874 656e 7461 7469 7665 6c79 2920 d (tentatively) │ │ │ │ -00274810: 6173 2074 6865 2066 6972 7374 2065 6c65 as the first ele │ │ │ │ -00274820: 6d65 6e74 206f 6620 6120 7061 6972 2074 ment of a pair t │ │ │ │ -00274830: 6f20 7370 6563 6966 790a 7661 7269 6f75 o specify.variou │ │ │ │ -00274840: 7320 746f 7020 6c65 7665 6c20 696e 7465 s top level inte │ │ │ │ -00274850: 7270 7265 7465 7220 6d65 7468 6f64 732c rpreter methods, │ │ │ │ -00274860: 2069 6e20 636f 6e6e 6563 7469 6f6e 2077 in connection w │ │ │ │ -00274870: 6974 6820 7468 6520 7573 6520 6f66 2074 ith the use of t │ │ │ │ -00274880: 6865 0a28 6375 7272 656e 746c 7920 6465 he.(currently de │ │ │ │ -00274890: 7665 6c6f 7065 6429 2077 6562 2061 7070 veloped) web app │ │ │ │ -002748a0: 2077 6974 6820 284b 6129 5465 5820 6f75 with (Ka)TeX ou │ │ │ │ -002748b0: 7470 7574 2061 7320 6672 6f6e 7420 656e tput as front en │ │ │ │ -002748c0: 642e 0a0a 5365 6520 616c 736f 0a3d 3d3d d...See also.=== │ │ │ │ -002748d0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -002748e0: 2053 7461 6e64 6172 643a 2053 7461 6e64 Standard: Stand │ │ │ │ -002748f0: 6172 642c 202d 2d20 7468 6520 7374 616e ard, -- the stan │ │ │ │ -00274900: 6461 7264 2074 6f70 206c 6576 656c 2070 dard top level p │ │ │ │ -00274910: 7269 6e74 696e 6720 6d65 7468 6f64 0a20 rinting method. │ │ │ │ -00274920: 202a 202a 6e6f 7465 2050 7269 6e74 3a20 * *note Print: │ │ │ │ -00274930: 5072 696e 742c 202d 2d20 746f 7020 6c65 Print, -- top le │ │ │ │ -00274940: 7665 6c20 6d65 7468 6f64 2066 6f72 2070 vel method for p │ │ │ │ -00274950: 7269 6e74 696e 6720 7265 7375 6c74 730a rinting results. │ │ │ │ -00274960: 2020 2a20 2a6e 6f74 6520 4e6f 5072 696e * *note NoPrin │ │ │ │ -00274970: 743a 204e 6f50 7269 6e74 2c20 2d2d 2074 t: NoPrint, -- t │ │ │ │ -00274980: 6f70 206c 6576 656c 206d 6574 686f 6420 op level method │ │ │ │ -00274990: 666f 7220 6e6f 6e2d 7072 696e 7469 6e67 for non-printing │ │ │ │ -002749a0: 2072 6573 756c 7473 0a20 202a 202a 6e6f results. * *no │ │ │ │ -002749b0: 7465 2042 6566 6f72 6550 7269 6e74 3a20 te BeforePrint: │ │ │ │ -002749c0: 4265 666f 7265 5072 696e 742c 202d 2d20 BeforePrint, -- │ │ │ │ -002749d0: 746f 7020 6c65 7665 6c20 6d65 7468 6f64 top level method │ │ │ │ -002749e0: 2061 7070 6c69 6564 2062 6566 6f72 6520 applied before │ │ │ │ -002749f0: 7072 696e 7469 6e67 0a20 2020 2072 6573 printing. res │ │ │ │ -00274a00: 756c 7473 0a20 202a 202a 6e6f 7465 2041 ults. * *note A │ │ │ │ -00274a10: 6674 6572 5072 696e 743a 2041 6674 6572 fterPrint: After │ │ │ │ -00274a20: 5072 696e 742c 202d 2d20 746f 7020 6c65 Print, -- top le │ │ │ │ -00274a30: 7665 6c20 6d65 7468 6f64 2061 7070 6c69 vel method appli │ │ │ │ -00274a40: 6564 2061 6674 6572 2070 7269 6e74 696e ed after printin │ │ │ │ -00274a50: 670a 2020 2a20 2a6e 6f74 6520 4166 7465 g. * *note Afte │ │ │ │ -00274a60: 724e 6f50 7269 6e74 3a20 4166 7465 724e rNoPrint: AfterN │ │ │ │ -00274a70: 6f50 7269 6e74 2c20 2d2d 2074 6f70 206c oPrint, -- top l │ │ │ │ -00274a80: 6576 656c 206d 6574 686f 6420 6170 706c evel method appl │ │ │ │ -00274a90: 6965 6420 6166 7465 7220 6e6f 740a 2020 ied after not. │ │ │ │ -00274aa0: 2020 7072 696e 7469 6e67 0a0a 466f 7220 printing..For │ │ │ │ -00274ab0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00274ac0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00274ad0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00274ae0: 6f74 6520 5765 6241 7070 3a20 5765 6241 ote WebApp: WebA │ │ │ │ -00274af0: 7070 2c20 6973 2061 202a 6e6f 7465 2073 pp, is a *note s │ │ │ │ -00274b00: 796d 626f 6c3a 2053 796d 626f 6c2c 2e0a ymbol: Symbol,.. │ │ │ │ -00274b10: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00274b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002746a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002746b0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +002746c0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +002746d0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +002746e0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +002746f0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00274700: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00274710: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ +00274720: 6163 6175 6c61 7932 446f 632f 6f76 5f72 acaulay2Doc/ov_r │ │ │ │ +00274730: 6570 6c2e 6d32 3a34 3230 3a30 2e0a 1f0a epl.m2:420:0.... │ │ │ │ +00274740: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ +00274750: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2057 oc.info, Node: W │ │ │ │ +00274760: 6562 4170 702c 204e 6578 743a 2054 6558 ebApp, Next: TeX │ │ │ │ +00274770: 6d61 6373 2c20 5072 6576 3a20 5374 616e macs, Prev: Stan │ │ │ │ +00274780: 6461 7264 2c20 5570 3a20 746f 704c 6576 dard, Up: topLev │ │ │ │ +00274790: 656c 4d6f 6465 0a0a 5765 6241 7070 202d elMode..WebApp - │ │ │ │ +002747a0: 2d20 7468 6520 7765 6220 6170 7020 746f - the web app to │ │ │ │ +002747b0: 7020 6c65 7665 6c20 7072 696e 7469 6e67 p level printing │ │ │ │ +002747c0: 206d 6574 686f 640a 2a2a 2a2a 2a2a 2a2a method.******** │ │ │ │ +002747d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002747e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002747f0: 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 6970 *******..Descrip │ │ │ │ +00274800: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00274810: 0a0a 5468 6973 2073 796d 626f 6c20 6973 ..This symbol is │ │ │ │ +00274820: 2075 7365 6420 2874 656e 7461 7469 7665 used (tentative │ │ │ │ +00274830: 6c79 2920 6173 2074 6865 2066 6972 7374 ly) as the first │ │ │ │ +00274840: 2065 6c65 6d65 6e74 206f 6620 6120 7061 element of a pa │ │ │ │ +00274850: 6972 2074 6f20 7370 6563 6966 790a 7661 ir to specify.va │ │ │ │ +00274860: 7269 6f75 7320 746f 7020 6c65 7665 6c20 rious top level │ │ │ │ +00274870: 696e 7465 7270 7265 7465 7220 6d65 7468 interpreter meth │ │ │ │ +00274880: 6f64 732c 2069 6e20 636f 6e6e 6563 7469 ods, in connecti │ │ │ │ +00274890: 6f6e 2077 6974 6820 7468 6520 7573 6520 on with the use │ │ │ │ +002748a0: 6f66 2074 6865 0a28 6375 7272 656e 746c of the.(currentl │ │ │ │ +002748b0: 7920 6465 7665 6c6f 7065 6429 2077 6562 y developed) web │ │ │ │ +002748c0: 2061 7070 2077 6974 6820 284b 6129 5465 app with (Ka)Te │ │ │ │ +002748d0: 5820 6f75 7470 7574 2061 7320 6672 6f6e X output as fron │ │ │ │ +002748e0: 7420 656e 642e 0a0a 5365 6520 616c 736f t end...See also │ │ │ │ +002748f0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00274900: 6e6f 7465 2053 7461 6e64 6172 643a 2053 note Standard: S │ │ │ │ +00274910: 7461 6e64 6172 642c 202d 2d20 7468 6520 tandard, -- the │ │ │ │ +00274920: 7374 616e 6461 7264 2074 6f70 206c 6576 standard top lev │ │ │ │ +00274930: 656c 2070 7269 6e74 696e 6720 6d65 7468 el printing meth │ │ │ │ +00274940: 6f64 0a20 202a 202a 6e6f 7465 2050 7269 od. * *note Pri │ │ │ │ +00274950: 6e74 3a20 5072 696e 742c 202d 2d20 746f nt: Print, -- to │ │ │ │ +00274960: 7020 6c65 7665 6c20 6d65 7468 6f64 2066 p level method f │ │ │ │ +00274970: 6f72 2070 7269 6e74 696e 6720 7265 7375 or printing resu │ │ │ │ +00274980: 6c74 730a 2020 2a20 2a6e 6f74 6520 4e6f lts. * *note No │ │ │ │ +00274990: 5072 696e 743a 204e 6f50 7269 6e74 2c20 Print: NoPrint, │ │ │ │ +002749a0: 2d2d 2074 6f70 206c 6576 656c 206d 6574 -- top level met │ │ │ │ +002749b0: 686f 6420 666f 7220 6e6f 6e2d 7072 696e hod for non-prin │ │ │ │ +002749c0: 7469 6e67 2072 6573 756c 7473 0a20 202a ting results. * │ │ │ │ +002749d0: 202a 6e6f 7465 2042 6566 6f72 6550 7269 *note BeforePri │ │ │ │ +002749e0: 6e74 3a20 4265 666f 7265 5072 696e 742c nt: BeforePrint, │ │ │ │ +002749f0: 202d 2d20 746f 7020 6c65 7665 6c20 6d65 -- top level me │ │ │ │ +00274a00: 7468 6f64 2061 7070 6c69 6564 2062 6566 thod applied bef │ │ │ │ +00274a10: 6f72 6520 7072 696e 7469 6e67 0a20 2020 ore printing. │ │ │ │ +00274a20: 2072 6573 756c 7473 0a20 202a 202a 6e6f results. * *no │ │ │ │ +00274a30: 7465 2041 6674 6572 5072 696e 743a 2041 te AfterPrint: A │ │ │ │ +00274a40: 6674 6572 5072 696e 742c 202d 2d20 746f fterPrint, -- to │ │ │ │ +00274a50: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ +00274a60: 7070 6c69 6564 2061 6674 6572 2070 7269 pplied after pri │ │ │ │ +00274a70: 6e74 696e 670a 2020 2a20 2a6e 6f74 6520 nting. * *note │ │ │ │ +00274a80: 4166 7465 724e 6f50 7269 6e74 3a20 4166 AfterNoPrint: Af │ │ │ │ +00274a90: 7465 724e 6f50 7269 6e74 2c20 2d2d 2074 terNoPrint, -- t │ │ │ │ +00274aa0: 6f70 206c 6576 656c 206d 6574 686f 6420 op level method │ │ │ │ +00274ab0: 6170 706c 6965 6420 6166 7465 7220 6e6f applied after no │ │ │ │ +00274ac0: 740a 2020 2020 7072 696e 7469 6e67 0a0a t. printing.. │ │ │ │ +00274ad0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00274ae0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00274af0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00274b00: 7420 2a6e 6f74 6520 5765 6241 7070 3a20 t *note WebApp: │ │ │ │ +00274b10: 5765 6241 7070 2c20 6973 2061 202a 6e6f WebApp, is a *no │ │ │ │ +00274b20: 7465 2073 796d 626f 6c3a 2053 796d 626f te symbol: Symbo │ │ │ │ +00274b30: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ 00274b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00274b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274b60: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00274b70: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00274b80: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00274b90: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00274ba0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00274bb0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00274bc0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -00274bd0: 7932 446f 632f 6f76 5f72 6570 6c2e 6d32 y2Doc/ov_repl.m2 │ │ │ │ -00274be0: 3a34 3334 3a30 2e0a 1f0a 4669 6c65 3a20 :434:0....File: │ │ │ │ -00274bf0: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -00274c00: 6f2c 204e 6f64 653a 2054 6558 6d61 6373 o, Node: TeXmacs │ │ │ │ -00274c10: 2c20 4e65 7874 3a20 5072 696e 742c 2050 , Next: Print, P │ │ │ │ -00274c20: 7265 763a 2057 6562 4170 702c 2055 703a rev: WebApp, Up: │ │ │ │ -00274c30: 2074 6f70 4c65 7665 6c4d 6f64 650a 0a54 topLevelMode..T │ │ │ │ -00274c40: 6558 6d61 6373 202d 2d20 7468 6520 5465 eXmacs -- the Te │ │ │ │ -00274c50: 586d 6163 7320 746f 7020 6c65 7665 6c20 Xmacs top level │ │ │ │ -00274c60: 7072 696e 7469 6e67 206d 6574 686f 640a printing method. │ │ │ │ -00274c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00274c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00274c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00274ca0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00274cb0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ -00274cc0: 7379 6d62 6f6c 2069 7320 7573 6564 2028 symbol is used ( │ │ │ │ -00274cd0: 7465 6e74 6174 6976 656c 7929 2061 7320 tentatively) as │ │ │ │ -00274ce0: 7468 6520 6669 7273 7420 656c 656d 656e the first elemen │ │ │ │ -00274cf0: 7420 6f66 2061 2070 6169 7220 746f 2073 t of a pair to s │ │ │ │ -00274d00: 7065 6369 6679 0a76 6172 696f 7573 2074 pecify.various t │ │ │ │ -00274d10: 6f70 206c 6576 656c 2069 6e74 6572 7072 op level interpr │ │ │ │ -00274d20: 6574 6572 206d 6574 686f 6473 2c20 696e eter methods, in │ │ │ │ -00274d30: 2063 6f6e 6e65 6374 696f 6e20 7769 7468 connection with │ │ │ │ -00274d40: 2074 6865 2075 7365 206f 6620 5465 586d the use of TeXm │ │ │ │ -00274d50: 6163 7320 6173 0a66 726f 6e74 2065 6e64 acs as.front end │ │ │ │ -00274d60: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -00274d70: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00274d80: 5374 616e 6461 7264 3a20 5374 616e 6461 Standard: Standa │ │ │ │ -00274d90: 7264 2c20 2d2d 2074 6865 2073 7461 6e64 rd, -- the stand │ │ │ │ -00274da0: 6172 6420 746f 7020 6c65 7665 6c20 7072 ard top level pr │ │ │ │ -00274db0: 696e 7469 6e67 206d 6574 686f 640a 2020 inting method. │ │ │ │ -00274dc0: 2a20 2a6e 6f74 6520 5072 696e 743a 2050 * *note Print: P │ │ │ │ -00274dd0: 7269 6e74 2c20 2d2d 2074 6f70 206c 6576 rint, -- top lev │ │ │ │ -00274de0: 656c 206d 6574 686f 6420 666f 7220 7072 el method for pr │ │ │ │ -00274df0: 696e 7469 6e67 2072 6573 756c 7473 0a20 inting results. │ │ │ │ -00274e00: 202a 202a 6e6f 7465 204e 6f50 7269 6e74 * *note NoPrint │ │ │ │ -00274e10: 3a20 4e6f 5072 696e 742c 202d 2d20 746f : NoPrint, -- to │ │ │ │ -00274e20: 7020 6c65 7665 6c20 6d65 7468 6f64 2066 p level method f │ │ │ │ -00274e30: 6f72 206e 6f6e 2d70 7269 6e74 696e 6720 or non-printing │ │ │ │ -00274e40: 7265 7375 6c74 730a 2020 2a20 2a6e 6f74 results. * *not │ │ │ │ -00274e50: 6520 4265 666f 7265 5072 696e 743a 2042 e BeforePrint: B │ │ │ │ -00274e60: 6566 6f72 6550 7269 6e74 2c20 2d2d 2074 eforePrint, -- t │ │ │ │ -00274e70: 6f70 206c 6576 656c 206d 6574 686f 6420 op level method │ │ │ │ -00274e80: 6170 706c 6965 6420 6265 666f 7265 2070 applied before p │ │ │ │ -00274e90: 7269 6e74 696e 670a 2020 2020 7265 7375 rinting. resu │ │ │ │ -00274ea0: 6c74 730a 2020 2a20 2a6e 6f74 6520 4166 lts. * *note Af │ │ │ │ -00274eb0: 7465 7250 7269 6e74 3a20 4166 7465 7250 terPrint: AfterP │ │ │ │ -00274ec0: 7269 6e74 2c20 2d2d 2074 6f70 206c 6576 rint, -- top lev │ │ │ │ -00274ed0: 656c 206d 6574 686f 6420 6170 706c 6965 el method applie │ │ │ │ -00274ee0: 6420 6166 7465 7220 7072 696e 7469 6e67 d after printing │ │ │ │ -00274ef0: 0a20 202a 202a 6e6f 7465 2041 6674 6572 . * *note After │ │ │ │ -00274f00: 4e6f 5072 696e 743a 2041 6674 6572 4e6f NoPrint: AfterNo │ │ │ │ -00274f10: 5072 696e 742c 202d 2d20 746f 7020 6c65 Print, -- top le │ │ │ │ -00274f20: 7665 6c20 6d65 7468 6f64 2061 7070 6c69 vel method appli │ │ │ │ -00274f30: 6564 2061 6674 6572 206e 6f74 0a20 2020 ed after not. │ │ │ │ -00274f40: 2070 7269 6e74 696e 670a 0a46 6f72 2074 printing..For t │ │ │ │ -00274f50: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00274f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00274f70: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00274f80: 7465 2054 6558 6d61 6373 3a20 5465 586d te TeXmacs: TeXm │ │ │ │ -00274f90: 6163 732c 2069 7320 6120 2a6e 6f74 6520 acs, is a *note │ │ │ │ -00274fa0: 7379 6d62 6f6c 3a20 5379 6d62 6f6c 2c2e symbol: Symbol,. │ │ │ │ -00274fb0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00274fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00274fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00274b80: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00274b90: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00274ba0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00274bb0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00274bc0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00274bd0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00274be0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ +00274bf0: 6175 6c61 7932 446f 632f 6f76 5f72 6570 aulay2Doc/ov_rep │ │ │ │ +00274c00: 6c2e 6d32 3a34 3334 3a30 2e0a 1f0a 4669 l.m2:434:0....Fi │ │ │ │ +00274c10: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00274c20: 2e69 6e66 6f2c 204e 6f64 653a 2054 6558 .info, Node: TeX │ │ │ │ +00274c30: 6d61 6373 2c20 4e65 7874 3a20 5072 696e macs, Next: Prin │ │ │ │ +00274c40: 742c 2050 7265 763a 2057 6562 4170 702c t, Prev: WebApp, │ │ │ │ +00274c50: 2055 703a 2074 6f70 4c65 7665 6c4d 6f64 Up: topLevelMod │ │ │ │ +00274c60: 650a 0a54 6558 6d61 6373 202d 2d20 7468 e..TeXmacs -- th │ │ │ │ +00274c70: 6520 5465 586d 6163 7320 746f 7020 6c65 e TeXmacs top le │ │ │ │ +00274c80: 7665 6c20 7072 696e 7469 6e67 206d 6574 vel printing met │ │ │ │ +00274c90: 686f 640a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a hod.************ │ │ │ │ +00274ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00274cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00274cc0: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ +00274cd0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00274ce0: 6869 7320 7379 6d62 6f6c 2069 7320 7573 his symbol is us │ │ │ │ +00274cf0: 6564 2028 7465 6e74 6174 6976 656c 7929 ed (tentatively) │ │ │ │ +00274d00: 2061 7320 7468 6520 6669 7273 7420 656c as the first el │ │ │ │ +00274d10: 656d 656e 7420 6f66 2061 2070 6169 7220 ement of a pair │ │ │ │ +00274d20: 746f 2073 7065 6369 6679 0a76 6172 696f to specify.vario │ │ │ │ +00274d30: 7573 2074 6f70 206c 6576 656c 2069 6e74 us top level int │ │ │ │ +00274d40: 6572 7072 6574 6572 206d 6574 686f 6473 erpreter methods │ │ │ │ +00274d50: 2c20 696e 2063 6f6e 6e65 6374 696f 6e20 , in connection │ │ │ │ +00274d60: 7769 7468 2074 6865 2075 7365 206f 6620 with the use of │ │ │ │ +00274d70: 5465 586d 6163 7320 6173 0a66 726f 6e74 TeXmacs as.front │ │ │ │ +00274d80: 2065 6e64 2e0a 0a53 6565 2061 6c73 6f0a end...See also. │ │ │ │ +00274d90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00274da0: 6f74 6520 5374 616e 6461 7264 3a20 5374 ote Standard: St │ │ │ │ +00274db0: 616e 6461 7264 2c20 2d2d 2074 6865 2073 andard, -- the s │ │ │ │ +00274dc0: 7461 6e64 6172 6420 746f 7020 6c65 7665 tandard top leve │ │ │ │ +00274dd0: 6c20 7072 696e 7469 6e67 206d 6574 686f l printing metho │ │ │ │ +00274de0: 640a 2020 2a20 2a6e 6f74 6520 5072 696e d. * *note Prin │ │ │ │ +00274df0: 743a 2050 7269 6e74 2c20 2d2d 2074 6f70 t: Print, -- top │ │ │ │ +00274e00: 206c 6576 656c 206d 6574 686f 6420 666f level method fo │ │ │ │ +00274e10: 7220 7072 696e 7469 6e67 2072 6573 756c r printing resul │ │ │ │ +00274e20: 7473 0a20 202a 202a 6e6f 7465 204e 6f50 ts. * *note NoP │ │ │ │ +00274e30: 7269 6e74 3a20 4e6f 5072 696e 742c 202d rint: NoPrint, - │ │ │ │ +00274e40: 2d20 746f 7020 6c65 7665 6c20 6d65 7468 - top level meth │ │ │ │ +00274e50: 6f64 2066 6f72 206e 6f6e 2d70 7269 6e74 od for non-print │ │ │ │ +00274e60: 696e 6720 7265 7375 6c74 730a 2020 2a20 ing results. * │ │ │ │ +00274e70: 2a6e 6f74 6520 4265 666f 7265 5072 696e *note BeforePrin │ │ │ │ +00274e80: 743a 2042 6566 6f72 6550 7269 6e74 2c20 t: BeforePrint, │ │ │ │ +00274e90: 2d2d 2074 6f70 206c 6576 656c 206d 6574 -- top level met │ │ │ │ +00274ea0: 686f 6420 6170 706c 6965 6420 6265 666f hod applied befo │ │ │ │ +00274eb0: 7265 2070 7269 6e74 696e 670a 2020 2020 re printing. │ │ │ │ +00274ec0: 7265 7375 6c74 730a 2020 2a20 2a6e 6f74 results. * *not │ │ │ │ +00274ed0: 6520 4166 7465 7250 7269 6e74 3a20 4166 e AfterPrint: Af │ │ │ │ +00274ee0: 7465 7250 7269 6e74 2c20 2d2d 2074 6f70 terPrint, -- top │ │ │ │ +00274ef0: 206c 6576 656c 206d 6574 686f 6420 6170 level method ap │ │ │ │ +00274f00: 706c 6965 6420 6166 7465 7220 7072 696e plied after prin │ │ │ │ +00274f10: 7469 6e67 0a20 202a 202a 6e6f 7465 2041 ting. * *note A │ │ │ │ +00274f20: 6674 6572 4e6f 5072 696e 743a 2041 6674 fterNoPrint: Aft │ │ │ │ +00274f30: 6572 4e6f 5072 696e 742c 202d 2d20 746f erNoPrint, -- to │ │ │ │ +00274f40: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ +00274f50: 7070 6c69 6564 2061 6674 6572 206e 6f74 pplied after not │ │ │ │ +00274f60: 0a20 2020 2070 7269 6e74 696e 670a 0a46 . printing..F │ │ │ │ +00274f70: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00274f80: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00274f90: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00274fa0: 202a 6e6f 7465 2054 6558 6d61 6373 3a20 *note TeXmacs: │ │ │ │ +00274fb0: 5465 586d 6163 732c 2069 7320 6120 2a6e TeXmacs, is a *n │ │ │ │ +00274fc0: 6f74 6520 7379 6d62 6f6c 3a20 5379 6d62 ote symbol: Symb │ │ │ │ +00274fd0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ 00274fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00274ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275000: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00275010: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00275020: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00275030: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00275040: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00275050: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00275060: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00275070: 6179 3244 6f63 2f6f 765f 7265 706c 2e6d ay2Doc/ov_repl.m │ │ │ │ -00275080: 323a 3432 373a 302e 0a1f 0a46 696c 653a 2:427:0....File: │ │ │ │ -00275090: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -002750a0: 666f 2c20 4e6f 6465 3a20 5072 696e 742c fo, Node: Print, │ │ │ │ -002750b0: 204e 6578 743a 204e 6f50 7269 6e74 2c20 Next: NoPrint, │ │ │ │ -002750c0: 5072 6576 3a20 5465 586d 6163 732c 2055 Prev: TeXmacs, U │ │ │ │ -002750d0: 703a 2074 6f70 4c65 7665 6c4d 6f64 650a p: topLevelMode. │ │ │ │ -002750e0: 0a50 7269 6e74 202d 2d20 746f 7020 6c65 .Print -- top le │ │ │ │ -002750f0: 7665 6c20 6d65 7468 6f64 2066 6f72 2070 vel method for p │ │ │ │ -00275100: 7269 6e74 696e 6720 7265 7375 6c74 730a rinting results. │ │ │ │ -00275110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00275120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00275130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00275140: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00275150: 2020 2020 5823 7b74 6f70 4c65 7665 6c4d X#{topLevelM │ │ │ │ -00275160: 6f64 652c 5072 696e 747d 203d 2066 0a20 ode,Print} = f. │ │ │ │ -00275170: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00275180: 202a 2058 2c20 6120 2a6e 6f74 6520 7479 * X, a *note ty │ │ │ │ -00275190: 7065 3a20 5479 7065 2c0a 2020 2020 2020 pe: Type,. │ │ │ │ -002751a0: 2a20 662c 2061 202a 6e6f 7465 2066 756e * f, a *note fun │ │ │ │ -002751b0: 6374 696f 6e3a 2046 756e 6374 696f 6e2c ction: Function, │ │ │ │ -002751c0: 2c20 2074 6861 7420 6361 6e20 7072 696e , that can prin │ │ │ │ -002751d0: 7420 736f 6d65 7468 696e 6720 6f66 2074 t something of t │ │ │ │ -002751e0: 7970 6520 580a 2020 2a20 436f 6e73 6571 ype X. * Conseq │ │ │ │ -002751f0: 7565 6e63 6573 3a0a 2020 2020 2020 2a20 uences:. * │ │ │ │ -00275200: 6174 2074 6f70 206c 6576 656c 2c20 7768 at top level, wh │ │ │ │ -00275210: 656e 6576 6572 2069 7420 6973 2074 696d enever it is tim │ │ │ │ -00275220: 6520 746f 2070 7269 6e74 2061 6e20 6f75 e to print an ou │ │ │ │ -00275230: 7470 7574 2076 616c 7565 206f 6620 7479 tput value of ty │ │ │ │ -00275240: 7065 2058 2c0a 2020 2020 2020 2020 7468 pe X,. th │ │ │ │ -00275250: 6520 6675 6e63 7469 6f6e 2066 2077 696c e function f wil │ │ │ │ -00275260: 6c20 6265 2063 616c 6c65 640a 0a44 6573 l be called..Des │ │ │ │ -00275270: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00275280: 3d3d 3d3d 0a0a 5468 6520 6675 6e63 7469 ====..The functi │ │ │ │ -00275290: 6f6e 2066 2069 7320 7265 7370 6f6e 7369 on f is responsi │ │ │ │ -002752a0: 626c 6520 666f 7220 7072 696e 7469 6e67 ble for printing │ │ │ │ -002752b0: 2074 6865 206f 7574 7075 7420 7072 6f6d the output prom │ │ │ │ -002752c0: 7074 2061 6e64 2066 6f72 2061 7070 6c79 pt and for apply │ │ │ │ -002752d0: 696e 670a 7468 6520 2a6e 6f74 6520 4265 ing.the *note Be │ │ │ │ -002752e0: 666f 7265 5072 696e 743a 2042 6566 6f72 forePrint: Befor │ │ │ │ -002752f0: 6550 7269 6e74 2c20 616e 6420 2a6e 6f74 ePrint, and *not │ │ │ │ -00275300: 6520 4166 7465 7250 7269 6e74 3a20 4166 e AfterPrint: Af │ │ │ │ -00275310: 7465 7250 7269 6e74 2c20 6d65 7468 6f64 terPrint, method │ │ │ │ -00275320: 732c 0a69 6620 6465 7369 7265 642e 0a2b s,.if desired..+ │ │ │ │ -00275330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275020: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00275030: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00275040: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00275050: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00275060: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00275070: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00275080: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +00275090: 6361 756c 6179 3244 6f63 2f6f 765f 7265 caulay2Doc/ov_re │ │ │ │ +002750a0: 706c 2e6d 323a 3432 373a 302e 0a1f 0a46 pl.m2:427:0....F │ │ │ │ +002750b0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +002750c0: 632e 696e 666f 2c20 4e6f 6465 3a20 5072 c.info, Node: Pr │ │ │ │ +002750d0: 696e 742c 204e 6578 743a 204e 6f50 7269 int, Next: NoPri │ │ │ │ +002750e0: 6e74 2c20 5072 6576 3a20 5465 586d 6163 nt, Prev: TeXmac │ │ │ │ +002750f0: 732c 2055 703a 2074 6f70 4c65 7665 6c4d s, Up: topLevelM │ │ │ │ +00275100: 6f64 650a 0a50 7269 6e74 202d 2d20 746f ode..Print -- to │ │ │ │ +00275110: 7020 6c65 7665 6c20 6d65 7468 6f64 2066 p level method f │ │ │ │ +00275120: 6f72 2070 7269 6e74 696e 6720 7265 7375 or printing resu │ │ │ │ +00275130: 6c74 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a lts.************ │ │ │ │ +00275140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00275150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00275160: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00275170: 2020 2020 2020 2020 5823 7b74 6f70 4c65 X#{topLe │ │ │ │ +00275180: 7665 6c4d 6f64 652c 5072 696e 747d 203d velMode,Print} = │ │ │ │ +00275190: 2066 0a20 202a 2049 6e70 7574 733a 0a20 f. * Inputs:. │ │ │ │ +002751a0: 2020 2020 202a 2058 2c20 6120 2a6e 6f74 * X, a *not │ │ │ │ +002751b0: 6520 7479 7065 3a20 5479 7065 2c0a 2020 e type: Type,. │ │ │ │ +002751c0: 2020 2020 2a20 662c 2061 202a 6e6f 7465 * f, a *note │ │ │ │ +002751d0: 2066 756e 6374 696f 6e3a 2046 756e 6374 function: Funct │ │ │ │ +002751e0: 696f 6e2c 2c20 2074 6861 7420 6361 6e20 ion,, that can │ │ │ │ +002751f0: 7072 696e 7420 736f 6d65 7468 696e 6720 print something │ │ │ │ +00275200: 6f66 2074 7970 6520 580a 2020 2a20 436f of type X. * Co │ │ │ │ +00275210: 6e73 6571 7565 6e63 6573 3a0a 2020 2020 nsequences:. │ │ │ │ +00275220: 2020 2a20 6174 2074 6f70 206c 6576 656c * at top level │ │ │ │ +00275230: 2c20 7768 656e 6576 6572 2069 7420 6973 , whenever it is │ │ │ │ +00275240: 2074 696d 6520 746f 2070 7269 6e74 2061 time to print a │ │ │ │ +00275250: 6e20 6f75 7470 7574 2076 616c 7565 206f n output value o │ │ │ │ +00275260: 6620 7479 7065 2058 2c0a 2020 2020 2020 f type X,. │ │ │ │ +00275270: 2020 7468 6520 6675 6e63 7469 6f6e 2066 the function f │ │ │ │ +00275280: 2077 696c 6c20 6265 2063 616c 6c65 640a will be called. │ │ │ │ +00275290: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +002752a0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6675 ========..The fu │ │ │ │ +002752b0: 6e63 7469 6f6e 2066 2069 7320 7265 7370 nction f is resp │ │ │ │ +002752c0: 6f6e 7369 626c 6520 666f 7220 7072 696e onsible for prin │ │ │ │ +002752d0: 7469 6e67 2074 6865 206f 7574 7075 7420 ting the output │ │ │ │ +002752e0: 7072 6f6d 7074 2061 6e64 2066 6f72 2061 prompt and for a │ │ │ │ +002752f0: 7070 6c79 696e 670a 7468 6520 2a6e 6f74 pplying.the *not │ │ │ │ +00275300: 6520 4265 666f 7265 5072 696e 743a 2042 e BeforePrint: B │ │ │ │ +00275310: 6566 6f72 6550 7269 6e74 2c20 616e 6420 eforePrint, and │ │ │ │ +00275320: 2a6e 6f74 6520 4166 7465 7250 7269 6e74 *note AfterPrint │ │ │ │ +00275330: 3a20 4166 7465 7250 7269 6e74 2c20 6d65 : AfterPrint, me │ │ │ │ +00275340: 7468 6f64 732c 0a69 6620 6465 7369 7265 thods,.if desire │ │ │ │ +00275350: 642e 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d d..+------------ │ │ │ │ 00275360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00275380: 6931 203a 2063 6f64 6520 5468 696e 6723 i1 : code Thing# │ │ │ │ -00275390: 7b53 7461 6e64 6172 642c 5072 696e 747d {Standard,Print} │ │ │ │ -002753a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002753b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002753c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002753a0: 2d2b 0a7c 6931 203a 2063 6f64 6520 5468 -+.|i1 : code Th │ │ │ │ +002753b0: 696e 6723 7b53 7461 6e64 6172 642c 5072 ing#{Standard,Pr │ │ │ │ +002753c0: 696e 747d 2020 2020 2020 2020 2020 2020 int} │ │ │ │ 002753d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002753e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002753f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002753f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275420: 6f31 203d 202f 7573 722f 7368 6172 652f o1 = /usr/share/ │ │ │ │ -00275430: 4d61 6361 756c 6179 322f 436f 7265 2f72 Macaulay2/Core/r │ │ │ │ -00275440: 6f62 7573 742e 6d32 3a20 2020 2020 2020 obust.m2: │ │ │ │ -00275450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275470: 2020 2020 2031 3333 3a32 352d 3134 393a 133:25-149: │ │ │ │ -00275480: 363a 202d 2d73 6f75 7263 6520 636f 6465 6: --source code │ │ │ │ -00275490: 3a20 2020 2020 2020 2020 2020 2020 2020 : │ │ │ │ -002754a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002754b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002754c0: 2020 2020 2054 6869 6e67 237b 5374 616e Thing#{Stan │ │ │ │ -002754d0: 6461 7264 2c50 7269 6e74 7d20 3d20 7820 dard,Print} = x │ │ │ │ -002754e0: 2d3e 2028 2020 2020 2020 2020 2020 2020 -> ( │ │ │ │ -002754f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275510: 2020 2020 2020 2020 2020 6f70 726f 6d70 opromp │ │ │ │ -00275520: 7420 3a3d 2063 6f6e 6361 7465 6e61 7465 t := concatenate │ │ │ │ -00275530: 2869 6e74 6572 7072 6574 6572 4465 7074 (interpreterDept │ │ │ │ -00275540: 683a 226f 222c 2074 6f53 7472 696e 6720 h:"o", toString │ │ │ │ -00275550: 6c69 6e65 4e75 6d62 6572 2c20 227c 0a7c lineNumber, "|.| │ │ │ │ -00275560: 2020 2020 2020 2020 2020 7361 7665 203a save : │ │ │ │ -00275570: 3d20 7072 696e 7457 6964 7468 3b20 2020 = printWidth; │ │ │ │ -00275580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002755a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002755b0: 2020 2020 2020 2020 2020 6966 2070 7269 if pri │ │ │ │ -002755c0: 6e74 5769 6474 6820 213d 2030 2074 6865 ntWidth != 0 the │ │ │ │ -002755d0: 6e20 7072 696e 7457 6964 7468 203d 2070 n printWidth = p │ │ │ │ -002755e0: 7269 6e74 5769 6474 6820 2d20 236f 7072 rintWidth - #opr │ │ │ │ -002755f0: 6f6d 7074 3b20 2020 2020 2020 207c 0a7c ompt; |.| │ │ │ │ -00275600: 2020 2020 2020 2020 2020 7a20 3a3d 2072 z := r │ │ │ │ -00275610: 6f62 7573 744e 6574 2078 3b20 2020 2020 obustNet x; │ │ │ │ -00275620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275650: 2020 2020 2020 2020 2020 7772 6170 7065 wrappe │ │ │ │ -00275660: 7220 3a3d 206c 6f6f 6b75 7028 676c 6f62 r := lookup(glob │ │ │ │ -00275670: 616c 2057 7261 702c 636c 6173 7320 7829 al Wrap,class x) │ │ │ │ -00275680: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -00275690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002756a0: 2020 2020 2020 2020 2020 6966 2077 7261 if wra │ │ │ │ -002756b0: 7070 6572 203d 213d 206e 756c 6c20 7468 pper =!= null th │ │ │ │ -002756c0: 656e 2028 2020 2020 2020 2020 2020 2020 en ( │ │ │ │ -002756d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002756e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002756f0: 2020 2020 2020 2020 2020 2020 2020 2066 f │ │ │ │ -00275700: 756e 203a 3d20 2829 202d 3e20 7a20 3d20 un := () -> z = │ │ │ │ -00275710: 7772 6170 7065 7220 7a3b 2020 2020 2020 wrapper z; │ │ │ │ -00275720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275740: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00275750: 7279 2074 696d 656c 696d 6974 2870 7269 ry timelimit(pri │ │ │ │ -00275760: 6e74 696e 6754 696d 654c 696d 6974 2c20 ntingTimeLimit, │ │ │ │ -00275770: 6675 6e29 2020 2020 2020 2020 2020 2020 fun) │ │ │ │ -00275780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275790: 2020 2020 2020 2020 2020 2020 2020 2065 e │ │ │ │ -002757a0: 6c73 6520 2820 2020 2020 2020 2020 2020 lse ( │ │ │ │ -002757b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002757c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002757d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275440: 207c 0a7c 6f31 203d 202f 7573 722f 7368 |.|o1 = /usr/sh │ │ │ │ +00275450: 6172 652f 4d61 6361 756c 6179 322f 436f are/Macaulay2/Co │ │ │ │ +00275460: 7265 2f72 6f62 7573 742e 6d32 3a20 2020 re/robust.m2: │ │ │ │ +00275470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275490: 207c 0a7c 2020 2020 2031 3333 3a32 352d |.| 133:25- │ │ │ │ +002754a0: 3134 393a 363a 202d 2d73 6f75 7263 6520 149:6: --source │ │ │ │ +002754b0: 636f 6465 3a20 2020 2020 2020 2020 2020 code: │ │ │ │ +002754c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002754d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002754e0: 207c 0a7c 2020 2020 2054 6869 6e67 237b |.| Thing#{ │ │ │ │ +002754f0: 5374 616e 6461 7264 2c50 7269 6e74 7d20 Standard,Print} │ │ │ │ +00275500: 3d20 7820 2d3e 2028 2020 2020 2020 2020 = x -> ( │ │ │ │ +00275510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275530: 207c 0a7c 2020 2020 2020 2020 2020 6f70 |.| op │ │ │ │ +00275540: 726f 6d70 7420 3a3d 2063 6f6e 6361 7465 rompt := concate │ │ │ │ +00275550: 6e61 7465 2869 6e74 6572 7072 6574 6572 nate(interpreter │ │ │ │ +00275560: 4465 7074 683a 226f 222c 2074 6f53 7472 Depth:"o", toStr │ │ │ │ +00275570: 696e 6720 6c69 6e65 4e75 6d62 6572 2c20 ing lineNumber, │ │ │ │ +00275580: 227c 0a7c 2020 2020 2020 2020 2020 7361 "|.| sa │ │ │ │ +00275590: 7665 203a 3d20 7072 696e 7457 6964 7468 ve := printWidth │ │ │ │ +002755a0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +002755b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002755c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002755d0: 207c 0a7c 2020 2020 2020 2020 2020 6966 |.| if │ │ │ │ +002755e0: 2070 7269 6e74 5769 6474 6820 213d 2030 printWidth != 0 │ │ │ │ +002755f0: 2074 6865 6e20 7072 696e 7457 6964 7468 then printWidth │ │ │ │ +00275600: 203d 2070 7269 6e74 5769 6474 6820 2d20 = printWidth - │ │ │ │ +00275610: 236f 7072 6f6d 7074 3b20 2020 2020 2020 #oprompt; │ │ │ │ +00275620: 207c 0a7c 2020 2020 2020 2020 2020 7a20 |.| z │ │ │ │ +00275630: 3a3d 2072 6f62 7573 744e 6574 2078 3b20 := robustNet x; │ │ │ │ +00275640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275670: 207c 0a7c 2020 2020 2020 2020 2020 7772 |.| wr │ │ │ │ +00275680: 6170 7065 7220 3a3d 206c 6f6f 6b75 7028 apper := lookup( │ │ │ │ +00275690: 676c 6f62 616c 2057 7261 702c 636c 6173 global Wrap,clas │ │ │ │ +002756a0: 7320 7829 3b20 2020 2020 2020 2020 2020 s x); │ │ │ │ +002756b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002756c0: 207c 0a7c 2020 2020 2020 2020 2020 6966 |.| if │ │ │ │ +002756d0: 2077 7261 7070 6572 203d 213d 206e 756c wrapper =!= nul │ │ │ │ +002756e0: 6c20 7468 656e 2028 2020 2020 2020 2020 l then ( │ │ │ │ +002756f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00275720: 2020 2066 756e 203a 3d20 2829 202d 3e20 fun := () -> │ │ │ │ +00275730: 7a20 3d20 7772 6170 7065 7220 7a3b 2020 z = wrapper z; │ │ │ │ +00275740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00275770: 2020 2074 7279 2074 696d 656c 696d 6974 try timelimit │ │ │ │ +00275780: 2870 7269 6e74 696e 6754 696d 654c 696d (printingTimeLim │ │ │ │ +00275790: 6974 2c20 6675 6e29 2020 2020 2020 2020 it, fun) │ │ │ │ +002757a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002757b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002757c0: 2020 2065 6c73 6520 2820 2020 2020 2020 else ( │ │ │ │ +002757d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002757e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002757f0: 2020 2020 616c 6172 6d20 303b 2020 2020 alarm 0; │ │ │ │ -00275800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002757f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275800: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00275810: 2020 2020 2020 2020 616c 6172 6d20 303b alarm 0; │ │ │ │ +00275820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275840: 2020 2020 676c 6f62 616c 2064 6562 7567 global debug │ │ │ │ -00275850: 4572 726f 7220 3c2d 2066 756e 3b20 2020 Error <- fun; │ │ │ │ -00275860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275890: 2020 2020 7374 6465 7272 203c 3c20 222d stderr << "- │ │ │ │ -002758a0: 2d65 7272 6f72 206f 7220 7469 6d65 206c -error or time l │ │ │ │ -002758b0: 696d 6974 2072 6561 6368 6564 2069 6e20 imit reached in │ │ │ │ -002758c0: 6170 706c 7969 6e67 2057 7261 707c 0a7c applying Wrap|.| │ │ │ │ -002758d0: 2020 2020 2020 2020 2020 2020 2020 2029 ) │ │ │ │ -002758e0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -002758f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275910: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275920: 2020 2020 2020 2020 2020 3c3c 2065 6e64 << end │ │ │ │ -00275930: 6c20 3c3c 206f 7072 6f6d 7074 203c 3c20 l << oprompt << │ │ │ │ -00275940: 7a20 3c3c 2065 6e64 6c3b 2020 2020 2020 z << endl; │ │ │ │ -00275950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275960: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275970: 2020 2020 2020 2020 2020 7072 696e 7457 printW │ │ │ │ -00275980: 6964 7468 203d 2073 6176 653b 2020 2020 idth = save; │ │ │ │ -00275990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002759a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002759b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -002759c0: 2020 2020 2020 2020 2020 2920 2020 2020 ) │ │ │ │ +00275840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275850: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00275860: 2020 2020 2020 2020 676c 6f62 616c 2064 global d │ │ │ │ +00275870: 6562 7567 4572 726f 7220 3c2d 2066 756e ebugError <- fun │ │ │ │ +00275880: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00275890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002758a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002758b0: 2020 2020 2020 2020 7374 6465 7272 203c stderr < │ │ │ │ +002758c0: 3c20 222d 2d65 7272 6f72 206f 7220 7469 < "--error or ti │ │ │ │ +002758d0: 6d65 206c 696d 6974 2072 6561 6368 6564 me limit reached │ │ │ │ +002758e0: 2069 6e20 6170 706c 7969 6e67 2057 7261 in applying Wra │ │ │ │ +002758f0: 707c 0a7c 2020 2020 2020 2020 2020 2020 p|.| │ │ │ │ +00275900: 2020 2029 3b20 2020 2020 2020 2020 2020 ); │ │ │ │ +00275910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275940: 207c 0a7c 2020 2020 2020 2020 2020 3c3c |.| << │ │ │ │ +00275950: 2065 6e64 6c20 3c3c 206f 7072 6f6d 7074 endl << oprompt │ │ │ │ +00275960: 203c 3c20 7a20 3c3c 2065 6e64 6c3b 2020 << z << endl; │ │ │ │ +00275970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275990: 207c 0a7c 2020 2020 2020 2020 2020 7072 |.| pr │ │ │ │ +002759a0: 696e 7457 6964 7468 203d 2073 6176 653b intWidth = save; │ │ │ │ +002759b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002759c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002759d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002759e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002759e0: 207c 0a7c 2020 2020 2020 2020 2020 2920 |.| ) │ │ │ │ 002759f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275a00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275a30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00275a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00275a60: 3d20 2229 3b20 2020 2020 2020 2020 2020 = "); │ │ │ │ -00275a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275a80: 2d7c 0a7c 3d20 2229 3b20 2020 2020 2020 -|.|= "); │ │ │ │ 00275a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275ad0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275b20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275b70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275b90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275bc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275be0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275c10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275c30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275c60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275c80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275cb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275d00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275d50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00275d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00275d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275da0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00275db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275dc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00275dd0: 6d65 7468 6f64 2074 6f20 6f75 7470 7574 method to output │ │ │ │ -00275de0: 3b20 7479 7065 2027 6465 6275 6745 7272 ; type 'debugErr │ │ │ │ -00275df0: 6f72 2829 2720 746f 2073 6565 2069 7422 or()' to see it" │ │ │ │ -00275e00: 203c 3c20 656e 646c 203c 3c20 656e 646c << endl << endl │ │ │ │ -00275e10: 293b 2020 2020 2020 2020 2020 207c 0a2b ); |.+ │ │ │ │ -00275e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00275df0: 207c 0a7c 6d65 7468 6f64 2074 6f20 6f75 |.|method to ou │ │ │ │ +00275e00: 7470 7574 3b20 7479 7065 2027 6465 6275 tput; type 'debu │ │ │ │ +00275e10: 6745 7272 6f72 2829 2720 746f 2073 6565 gError()' to see │ │ │ │ +00275e20: 2069 7422 203c 3c20 656e 646c 203c 3c20 it" << endl << │ │ │ │ +00275e30: 656e 646c 293b 2020 2020 2020 2020 2020 endl); │ │ │ │ +00275e40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00275e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2a -------------+.* │ │ │ │ -00275e70: 204d 656e 753a 0a0a 2a20 5772 6170 3a3a Menu:..* Wrap:: │ │ │ │ -00275e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00275e90: 2020 2020 2020 2020 6120 6b65 7920 666f a key fo │ │ │ │ -00275ea0: 7220 6d65 7468 6f64 7320 666f 7220 7772 r methods for wr │ │ │ │ -00275eb0: 6170 7069 6e67 2070 7269 6e74 6564 206f apping printed o │ │ │ │ -00275ec0: 7574 7075 740a 0a46 6f72 2074 6865 2070 utput..For the p │ │ │ │ -00275ed0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00275ee0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00275ef0: 6520 6f62 6a65 6374 202a 6e6f 7465 2050 e object *note P │ │ │ │ -00275f00: 7269 6e74 3a20 5072 696e 742c 2069 7320 rint: Print, is │ │ │ │ -00275f10: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -00275f20: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ -00275f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275e90: 2d2b 0a2a 204d 656e 753a 0a0a 2a20 5772 -+.* Menu:..* Wr │ │ │ │ +00275ea0: 6170 3a3a 2020 2020 2020 2020 2020 2020 ap:: │ │ │ │ +00275eb0: 2020 2020 2020 2020 2020 2020 6120 6b65 a ke │ │ │ │ +00275ec0: 7920 666f 7220 6d65 7468 6f64 7320 666f y for methods fo │ │ │ │ +00275ed0: 7220 7772 6170 7069 6e67 2070 7269 6e74 r wrapping print │ │ │ │ +00275ee0: 6564 206f 7574 7075 740a 0a46 6f72 2074 ed output..For t │ │ │ │ +00275ef0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +00275f00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00275f10: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +00275f20: 7465 2050 7269 6e74 3a20 5072 696e 742c te Print: Print, │ │ │ │ +00275f30: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ +00275f40: 6f6c 3a20 5379 6d62 6f6c 2c2e 0a0a 2d2d ol: Symbol,...-- │ │ │ │ 00275f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00275f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00275f70: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00275f80: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00275f90: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00275fa0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00275fb0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00275fc0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00275fd0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00275fe0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -00275ff0: 765f 7265 706c 2e6d 323a 3331 353a 302e v_repl.m2:315:0. │ │ │ │ -00276000: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -00276010: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -00276020: 3a20 5772 6170 2c20 5570 3a20 5072 696e : Wrap, Up: Prin │ │ │ │ -00276030: 740a 0a57 7261 7020 2d2d 2061 206b 6579 t..Wrap -- a key │ │ │ │ -00276040: 2066 6f72 206d 6574 686f 6473 2066 6f72 for methods for │ │ │ │ -00276050: 2077 7261 7070 696e 6720 7072 696e 7465 wrapping printe │ │ │ │ -00276060: 6420 6f75 7470 7574 0a2a 2a2a 2a2a 2a2a d output.******* │ │ │ │ -00276070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -002760a0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -002760b0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 2064 6566 =======..The def │ │ │ │ -002760c0: 6175 6c74 206d 6574 686f 6420 666f 7220 ault method for │ │ │ │ -002760d0: 7072 696e 7469 6e67 2072 6573 756c 7473 printing results │ │ │ │ -002760e0: 206f 6620 636f 6d70 7574 6174 696f 6e73 of computations │ │ │ │ -002760f0: 2028 7374 6f72 6564 2069 6e0a 5468 696e (stored in.Thin │ │ │ │ -00276100: 6723 7b53 7461 6e64 6172 642c 5072 696e g#{Standard,Prin │ │ │ │ -00276110: 747d 2920 7365 6172 6368 6573 2066 6f72 t}) searches for │ │ │ │ -00276120: 2061 206d 6574 686f 6420 666f 7220 7772 a method for wr │ │ │ │ -00276130: 6170 7069 6e67 2074 6865 206f 7574 7075 apping the outpu │ │ │ │ -00276140: 7420 6279 2073 6561 7263 680a 696e 2074 t by search.in t │ │ │ │ -00276150: 6865 2063 6c61 7373 206f 6620 7468 6520 he class of the │ │ │ │ -00276160: 7265 7375 6c74 2028 616e 6420 6974 7320 result (and its │ │ │ │ -00276170: 616e 6365 7374 6f72 7329 2066 6f72 2061 ancestors) for a │ │ │ │ -00276180: 2066 756e 6374 696f 6e20 7374 6f72 6564 function stored │ │ │ │ -00276190: 2075 6e64 6572 2074 6865 0a6b 6579 2057 under the.key W │ │ │ │ -002761a0: 7261 702e 2020 5468 6520 7072 6569 6e73 rap. The preins │ │ │ │ -002761b0: 7461 6c6c 6564 2077 7261 7070 696e 6720 talled wrapping │ │ │ │ -002761c0: 6d65 7468 6f64 7320 7573 6520 2a6e 6f74 methods use *not │ │ │ │ -002761d0: 6520 7772 6170 3a20 7772 6170 2c2c 2074 e wrap: wrap,, t │ │ │ │ -002761e0: 6865 7920 6469 6666 6572 0a69 6e20 7468 hey differ.in th │ │ │ │ -002761f0: 6569 7220 6368 6f69 6365 206f 6620 7365 eir choice of se │ │ │ │ -00276200: 7061 7261 746f 7220 6265 7477 6565 6e20 parator between │ │ │ │ -00276210: 7772 6170 7065 6420 6c69 6e65 732c 206f wrapped lines, o │ │ │ │ -00276220: 7220 696e 2077 6865 7468 6572 2074 6f20 r in whether to │ │ │ │ -00276230: 7772 6170 2061 740a 616c 6c2e 0a2b 2d2d wrap at.all..+-- │ │ │ │ -00276240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00275f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00275fa0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00275fb0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00275fc0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00275fd0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00275fe0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00275ff0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00276000: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +00276010: 6f63 2f6f 765f 7265 706c 2e6d 323a 3331 oc/ov_repl.m2:31 │ │ │ │ +00276020: 353a 302e 0a1f 0a46 696c 653a 204d 6163 5:0....File: Mac │ │ │ │ +00276030: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +00276040: 4e6f 6465 3a20 5772 6170 2c20 5570 3a20 Node: Wrap, Up: │ │ │ │ +00276050: 5072 696e 740a 0a57 7261 7020 2d2d 2061 Print..Wrap -- a │ │ │ │ +00276060: 206b 6579 2066 6f72 206d 6574 686f 6473 key for methods │ │ │ │ +00276070: 2066 6f72 2077 7261 7070 696e 6720 7072 for wrapping pr │ │ │ │ +00276080: 696e 7465 6420 6f75 7470 7574 0a2a 2a2a inted output.*** │ │ │ │ +00276090: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002760a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002760b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002760c0: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ +002760d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +002760e0: 2064 6566 6175 6c74 206d 6574 686f 6420 default method │ │ │ │ +002760f0: 666f 7220 7072 696e 7469 6e67 2072 6573 for printing res │ │ │ │ +00276100: 756c 7473 206f 6620 636f 6d70 7574 6174 ults of computat │ │ │ │ +00276110: 696f 6e73 2028 7374 6f72 6564 2069 6e0a ions (stored in. │ │ │ │ +00276120: 5468 696e 6723 7b53 7461 6e64 6172 642c Thing#{Standard, │ │ │ │ +00276130: 5072 696e 747d 2920 7365 6172 6368 6573 Print}) searches │ │ │ │ +00276140: 2066 6f72 2061 206d 6574 686f 6420 666f for a method fo │ │ │ │ +00276150: 7220 7772 6170 7069 6e67 2074 6865 206f r wrapping the o │ │ │ │ +00276160: 7574 7075 7420 6279 2073 6561 7263 680a utput by search. │ │ │ │ +00276170: 696e 2074 6865 2063 6c61 7373 206f 6620 in the class of │ │ │ │ +00276180: 7468 6520 7265 7375 6c74 2028 616e 6420 the result (and │ │ │ │ +00276190: 6974 7320 616e 6365 7374 6f72 7329 2066 its ancestors) f │ │ │ │ +002761a0: 6f72 2061 2066 756e 6374 696f 6e20 7374 or a function st │ │ │ │ +002761b0: 6f72 6564 2075 6e64 6572 2074 6865 0a6b ored under the.k │ │ │ │ +002761c0: 6579 2057 7261 702e 2020 5468 6520 7072 ey Wrap. The pr │ │ │ │ +002761d0: 6569 6e73 7461 6c6c 6564 2077 7261 7070 einstalled wrapp │ │ │ │ +002761e0: 696e 6720 6d65 7468 6f64 7320 7573 6520 ing methods use │ │ │ │ +002761f0: 2a6e 6f74 6520 7772 6170 3a20 7772 6170 *note wrap: wrap │ │ │ │ +00276200: 2c2c 2074 6865 7920 6469 6666 6572 0a69 ,, they differ.i │ │ │ │ +00276210: 6e20 7468 6569 7220 6368 6f69 6365 206f n their choice o │ │ │ │ +00276220: 6620 7365 7061 7261 746f 7220 6265 7477 f separator betw │ │ │ │ +00276230: 6565 6e20 7772 6170 7065 6420 6c69 6e65 een wrapped line │ │ │ │ +00276240: 732c 206f 7220 696e 2077 6865 7468 6572 s, or in whether │ │ │ │ +00276250: 2074 6f20 7772 6170 2061 740a 616c 6c2e to wrap at.all. │ │ │ │ +00276260: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00276270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276280: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00276290: 5151 5b78 5f30 202e 2e20 785f 3430 205d QQ[x_0 .. x_40 ] │ │ │ │ -002762a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002762b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002762c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002762d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00276280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002762a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +002762b0: 3120 3a20 5151 5b78 5f30 202e 2e20 785f 1 : QQ[x_0 .. x_ │ │ │ │ +002762c0: 3430 205d 2020 2020 2020 2020 2020 2020 40 ] │ │ │ │ +002762d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002762e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002762f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002762f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00276300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00276310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276320: 2020 7c0a 7c6f 3120 3d20 5151 5b78 202e |.|o1 = QQ[x . │ │ │ │ -00276330: 2e78 2020 5d20 2020 2020 2020 2020 2020 .x ] │ │ │ │ -00276340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00276370: 0a7c 2020 2020 2020 2020 2030 2020 2034 .| 0 4 │ │ │ │ -00276380: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00276390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002763a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002763b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00276320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276340: 2020 2020 2020 7c0a 7c6f 3120 3d20 5151 |.|o1 = QQ │ │ │ │ +00276350: 5b78 202e 2e78 2020 5d20 2020 2020 2020 [x ..x ] │ │ │ │ +00276360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276390: 2020 207c 0a7c 2020 2020 2020 2020 2030 |.| 0 │ │ │ │ +002763a0: 2020 2034 3020 2020 2020 2020 2020 2020 40 │ │ │ │ +002763b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002763c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002763d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002763e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002763e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 002763f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276400: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -00276410: 2050 6f6c 796e 6f6d 6961 6c52 696e 6720 PolynomialRing │ │ │ │ -00276420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276450: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -00276460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00276430: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ +00276440: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00276450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276470: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ 00276480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00276490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002764a0: 2d2d 2d2b 0a7c 6932 203a 2063 6f6e 6361 ---+.|i2 : conca │ │ │ │ -002764b0: 7465 6e61 7465 2835 303a 2261 6263 6420 tenate(50:"abcd │ │ │ │ -002764c0: 2229 2020 2020 2020 2020 2020 2020 2020 ") │ │ │ │ -002764d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002764e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002764f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +002764a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002764b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002764c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2063 -------+.|i2 : c │ │ │ │ +002764d0: 6f6e 6361 7465 6e61 7465 2835 303a 2261 oncatenate(50:"a │ │ │ │ +002764e0: 6263 6420 2229 2020 2020 2020 2020 2020 bcd ") │ │ │ │ +002764f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00276500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276510: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00276520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276530: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00276540: 6f32 203d 2061 6263 6420 6162 6364 2061 o2 = abcd abcd a │ │ │ │ -00276550: 6263 6420 6162 6364 2061 6263 6420 6162 bcd abcd abcd ab │ │ │ │ -00276560: 6364 2061 6263 6420 6162 6364 2061 6263 cd abcd abcd abc │ │ │ │ -00276570: 6420 6162 6364 2061 6263 6420 6162 6364 d abcd abcd abcd │ │ │ │ -00276580: 2061 6263 6420 6162 6364 7c0a 7c20 2020 abcd abcd|.| │ │ │ │ -00276590: 2020 6162 6364 2061 6263 6420 6162 6364 abcd abcd abcd │ │ │ │ -002765a0: 2061 6263 6420 6162 6364 2061 6263 6420 abcd abcd abcd │ │ │ │ -002765b0: 6162 6364 2061 6263 6420 6162 6364 2061 abcd abcd abcd a │ │ │ │ -002765c0: 6263 6420 6162 6364 2061 6263 6420 6162 bcd abcd abcd ab │ │ │ │ -002765d0: 6364 2061 6263 647c 0a7c 2020 2020 2061 cd abcd|.| a │ │ │ │ -002765e0: 6263 6420 6162 6364 2061 6263 6420 6162 bcd abcd abcd ab │ │ │ │ -002765f0: 6364 2061 6263 6420 6162 6364 2061 6263 cd abcd abcd abc │ │ │ │ -00276600: 6420 6162 6364 2061 6263 6420 6162 6364 d abcd abcd abcd │ │ │ │ -00276610: 2061 6263 6420 6162 6364 2061 6263 6420 abcd abcd abcd │ │ │ │ -00276620: 6162 6364 7c0a 7c20 2020 2020 6162 6364 abcd|.| abcd │ │ │ │ -00276630: 2061 6263 6420 6162 6364 2061 6263 6420 abcd abcd abcd │ │ │ │ -00276640: 6162 6364 2061 6263 6420 6162 6364 2061 abcd abcd abcd a │ │ │ │ -00276650: 6263 6420 2020 2020 2020 2020 2020 2020 bcd │ │ │ │ -00276660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00276670: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00276680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276560: 207c 0a7c 6f32 203d 2061 6263 6420 6162 |.|o2 = abcd ab │ │ │ │ +00276570: 6364 2061 6263 6420 6162 6364 2061 6263 cd abcd abcd abc │ │ │ │ +00276580: 6420 6162 6364 2061 6263 6420 6162 6364 d abcd abcd abcd │ │ │ │ +00276590: 2061 6263 6420 6162 6364 2061 6263 6420 abcd abcd abcd │ │ │ │ +002765a0: 6162 6364 2061 6263 6420 6162 6364 7c0a abcd abcd abcd|. │ │ │ │ +002765b0: 7c20 2020 2020 6162 6364 2061 6263 6420 | abcd abcd │ │ │ │ +002765c0: 6162 6364 2061 6263 6420 6162 6364 2061 abcd abcd abcd a │ │ │ │ +002765d0: 6263 6420 6162 6364 2061 6263 6420 6162 bcd abcd abcd ab │ │ │ │ +002765e0: 6364 2061 6263 6420 6162 6364 2061 6263 cd abcd abcd abc │ │ │ │ +002765f0: 6420 6162 6364 2061 6263 647c 0a7c 2020 d abcd abcd|.| │ │ │ │ +00276600: 2020 2061 6263 6420 6162 6364 2061 6263 abcd abcd abc │ │ │ │ +00276610: 6420 6162 6364 2061 6263 6420 6162 6364 d abcd abcd abcd │ │ │ │ +00276620: 2061 6263 6420 6162 6364 2061 6263 6420 abcd abcd abcd │ │ │ │ +00276630: 6162 6364 2061 6263 6420 6162 6364 2061 abcd abcd abcd a │ │ │ │ +00276640: 6263 6420 6162 6364 7c0a 7c20 2020 2020 bcd abcd|.| │ │ │ │ +00276650: 6162 6364 2061 6263 6420 6162 6364 2061 abcd abcd abcd a │ │ │ │ +00276660: 6263 6420 6162 6364 2061 6263 6420 6162 bcd abcd abcd ab │ │ │ │ +00276670: 6364 2061 6263 6420 2020 2020 2020 2020 cd abcd │ │ │ │ +00276680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00276690: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 002766a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002766b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -002766c0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -002766d0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -002766e0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -002766f0: 6374 202a 6e6f 7465 2057 7261 703a 2057 ct *note Wrap: W │ │ │ │ -00276700: 7261 702c 2069 7320 6120 2a6e 6f74 6520 rap, is a *note │ │ │ │ -00276710: 7379 6d62 6f6c 3a20 5379 6d62 6f6c 2c2e symbol: Symbol,. │ │ │ │ -00276720: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00276730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002766b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002766c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002766d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002766e0: 2d2d 2b0a 0a46 6f72 2074 6865 2070 726f --+..For the pro │ │ │ │ +002766f0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +00276700: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +00276710: 6f62 6a65 6374 202a 6e6f 7465 2057 7261 object *note Wra │ │ │ │ +00276720: 703a 2057 7261 702c 2069 7320 6120 2a6e p: Wrap, is a *n │ │ │ │ +00276730: 6f74 6520 7379 6d62 6f6c 3a20 5379 6d62 ote symbol: Symb │ │ │ │ +00276740: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ 00276750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00276760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276770: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00276780: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00276790: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -002767a0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -002767b0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -002767c0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -002767d0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -002767e0: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ -002767f0: 2e6d 323a 3132 3637 3a30 2e0a 1f0a 4669 .m2:1267:0....Fi │ │ │ │ -00276800: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ -00276810: 2e69 6e66 6f2c 204e 6f64 653a 204e 6f50 .info, Node: NoP │ │ │ │ -00276820: 7269 6e74 2c20 4e65 7874 3a20 4166 7465 rint, Next: Afte │ │ │ │ -00276830: 7245 7661 6c2c 2050 7265 763a 2050 7269 rEval, Prev: Pri │ │ │ │ -00276840: 6e74 2c20 5570 3a20 746f 704c 6576 656c nt, Up: topLevel │ │ │ │ -00276850: 4d6f 6465 0a0a 4e6f 5072 696e 7420 2d2d Mode..NoPrint -- │ │ │ │ -00276860: 2074 6f70 206c 6576 656c 206d 6574 686f top level metho │ │ │ │ -00276870: 6420 666f 7220 6e6f 6e2d 7072 696e 7469 d for non-printi │ │ │ │ -00276880: 6e67 2072 6573 756c 7473 0a2a 2a2a 2a2a ng results.***** │ │ │ │ -00276890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002768a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002768b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -002768c0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -002768d0: 2020 2020 2058 237b 746f 704c 6576 656c X#{topLevel │ │ │ │ -002768e0: 4d6f 6465 2c4e 6f50 7269 6e74 7d20 3d20 Mode,NoPrint} = │ │ │ │ -002768f0: 660a 2020 2a20 496e 7075 7473 3a0a 2020 f. * Inputs:. │ │ │ │ -00276900: 2020 2020 2a20 582c 2061 202a 6e6f 7465 * X, a *note │ │ │ │ -00276910: 2074 7970 653a 2054 7970 652c 0a20 2020 type: Type,. │ │ │ │ -00276920: 2020 202a 2066 2c20 6120 2a6e 6f74 6520 * f, a *note │ │ │ │ -00276930: 6675 6e63 7469 6f6e 3a20 4675 6e63 7469 function: Functi │ │ │ │ -00276940: 6f6e 2c2c 2020 7468 6174 2063 616e 2061 on,, that can a │ │ │ │ -00276950: 6363 6570 7420 736f 6d65 7468 696e 6720 ccept something │ │ │ │ -00276960: 6f66 2074 7970 6520 580a 2020 2a20 436f of type X. * Co │ │ │ │ -00276970: 6e73 6571 7565 6e63 6573 3a0a 2020 2020 nsequences:. │ │ │ │ -00276980: 2020 2a20 4174 2074 6f70 206c 6576 656c * At top level │ │ │ │ -00276990: 2c20 7768 656e 6576 6572 2069 7420 6973 , whenever it is │ │ │ │ -002769a0: 2074 696d 652c 2061 7320 696e 6469 6361 time, as indica │ │ │ │ -002769b0: 7465 6420 6279 2061 2073 656d 6963 6f6c ted by a semicol │ │ │ │ -002769c0: 6f6e 2061 7420 7468 650a 2020 2020 2020 on at the. │ │ │ │ -002769d0: 2020 656e 6420 6f66 2061 6e20 696e 7075 end of an inpu │ │ │ │ -002769e0: 7420 6c69 6e65 2c20 746f 2073 7570 7072 t line, to suppr │ │ │ │ -002769f0: 6573 7320 7072 696e 7469 6e67 206f 6620 ess printing of │ │ │ │ -00276a00: 616e 206f 7574 7075 7420 7661 6c75 6520 an output value │ │ │ │ -00276a10: 6f66 2074 7970 650a 2020 2020 2020 2020 of type. │ │ │ │ -00276a20: 582c 2074 6865 2066 756e 6374 696f 6e20 X, the function │ │ │ │ -00276a30: 6620 7769 6c6c 2062 6520 6361 6c6c 6564 f will be called │ │ │ │ -00276a40: 2e0a 0a46 6f72 2074 6865 2070 726f 6772 ...For the progr │ │ │ │ -00276a50: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00276a60: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00276a70: 6a65 6374 202a 6e6f 7465 204e 6f50 7269 ject *note NoPri │ │ │ │ -00276a80: 6e74 3a20 4e6f 5072 696e 742c 2069 7320 nt: NoPrint, is │ │ │ │ -00276a90: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -00276aa0: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ -00276ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276790: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +002767a0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +002767b0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +002767c0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +002767d0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +002767e0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +002767f0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +00276800: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ +00276810: 7374 656d 2e6d 323a 3132 3637 3a30 2e0a stem.m2:1267:0.. │ │ │ │ +00276820: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ +00276830: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ +00276840: 204e 6f50 7269 6e74 2c20 4e65 7874 3a20 NoPrint, Next: │ │ │ │ +00276850: 4166 7465 7245 7661 6c2c 2050 7265 763a AfterEval, Prev: │ │ │ │ +00276860: 2050 7269 6e74 2c20 5570 3a20 746f 704c Print, Up: topL │ │ │ │ +00276870: 6576 656c 4d6f 6465 0a0a 4e6f 5072 696e evelMode..NoPrin │ │ │ │ +00276880: 7420 2d2d 2074 6f70 206c 6576 656c 206d t -- top level m │ │ │ │ +00276890: 6574 686f 6420 666f 7220 6e6f 6e2d 7072 ethod for non-pr │ │ │ │ +002768a0: 696e 7469 6e67 2072 6573 756c 7473 0a2a inting results.* │ │ │ │ +002768b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002768c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002768d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002768e0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +002768f0: 0a20 2020 2020 2020 2058 237b 746f 704c . X#{topL │ │ │ │ +00276900: 6576 656c 4d6f 6465 2c4e 6f50 7269 6e74 evelMode,NoPrint │ │ │ │ +00276910: 7d20 3d20 660a 2020 2a20 496e 7075 7473 } = f. * Inputs │ │ │ │ +00276920: 3a0a 2020 2020 2020 2a20 582c 2061 202a :. * X, a * │ │ │ │ +00276930: 6e6f 7465 2074 7970 653a 2054 7970 652c note type: Type, │ │ │ │ +00276940: 0a20 2020 2020 202a 2066 2c20 6120 2a6e . * f, a *n │ │ │ │ +00276950: 6f74 6520 6675 6e63 7469 6f6e 3a20 4675 ote function: Fu │ │ │ │ +00276960: 6e63 7469 6f6e 2c2c 2020 7468 6174 2063 nction,, that c │ │ │ │ +00276970: 616e 2061 6363 6570 7420 736f 6d65 7468 an accept someth │ │ │ │ +00276980: 696e 6720 6f66 2074 7970 6520 580a 2020 ing of type X. │ │ │ │ +00276990: 2a20 436f 6e73 6571 7565 6e63 6573 3a0a * Consequences:. │ │ │ │ +002769a0: 2020 2020 2020 2a20 4174 2074 6f70 206c * At top l │ │ │ │ +002769b0: 6576 656c 2c20 7768 656e 6576 6572 2069 evel, whenever i │ │ │ │ +002769c0: 7420 6973 2074 696d 652c 2061 7320 696e t is time, as in │ │ │ │ +002769d0: 6469 6361 7465 6420 6279 2061 2073 656d dicated by a sem │ │ │ │ +002769e0: 6963 6f6c 6f6e 2061 7420 7468 650a 2020 icolon at the. │ │ │ │ +002769f0: 2020 2020 2020 656e 6420 6f66 2061 6e20 end of an │ │ │ │ +00276a00: 696e 7075 7420 6c69 6e65 2c20 746f 2073 input line, to s │ │ │ │ +00276a10: 7570 7072 6573 7320 7072 696e 7469 6e67 uppress printing │ │ │ │ +00276a20: 206f 6620 616e 206f 7574 7075 7420 7661 of an output va │ │ │ │ +00276a30: 6c75 6520 6f66 2074 7970 650a 2020 2020 lue of type. │ │ │ │ +00276a40: 2020 2020 582c 2074 6865 2066 756e 6374 X, the funct │ │ │ │ +00276a50: 696f 6e20 6620 7769 6c6c 2062 6520 6361 ion f will be ca │ │ │ │ +00276a60: 6c6c 6564 2e0a 0a46 6f72 2074 6865 2070 lled...For the p │ │ │ │ +00276a70: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00276a80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00276a90: 6520 6f62 6a65 6374 202a 6e6f 7465 204e e object *note N │ │ │ │ +00276aa0: 6f50 7269 6e74 3a20 4e6f 5072 696e 742c oPrint: NoPrint, │ │ │ │ +00276ab0: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ +00276ac0: 6f6c 3a20 5379 6d62 6f6c 2c2e 0a0a 2d2d ol: Symbol,...-- │ │ │ │ 00276ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00276ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276af0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00276b00: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00276b10: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00276b20: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00276b30: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00276b40: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00276b50: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00276b60: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -00276b70: 765f 7265 706c 2e6d 323a 3332 393a 302e v_repl.m2:329:0. │ │ │ │ -00276b80: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -00276b90: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -00276ba0: 3a20 4166 7465 7245 7661 6c2c 204e 6578 : AfterEval, Nex │ │ │ │ -00276bb0: 743a 2042 6566 6f72 6550 7269 6e74 2c20 t: BeforePrint, │ │ │ │ -00276bc0: 5072 6576 3a20 4e6f 5072 696e 742c 2055 Prev: NoPrint, U │ │ │ │ -00276bd0: 703a 2074 6f70 4c65 7665 6c4d 6f64 650a p: topLevelMode. │ │ │ │ -00276be0: 0a41 6674 6572 4576 616c 202d 2d20 746f .AfterEval -- to │ │ │ │ -00276bf0: 7020 6c65 7665 6c20 6d65 7468 6f64 2061 p level method a │ │ │ │ -00276c00: 7070 6c69 6564 2061 6674 6572 2065 7661 pplied after eva │ │ │ │ -00276c10: 6c75 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a luation.******** │ │ │ │ -00276c20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276c30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -00276c50: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00276c60: 2020 2020 5823 4166 7465 7245 7661 6c20 X#AfterEval │ │ │ │ -00276c70: 3d20 660a 2020 2a20 496e 7075 7473 3a0a = f. * Inputs:. │ │ │ │ -00276c80: 2020 2020 2020 2a20 662c 2061 2066 756e * f, a fun │ │ │ │ -00276c90: 6374 696f 6e20 746f 2062 6520 6170 706c ction to be appl │ │ │ │ -00276ca0: 6965 6420 6166 7465 7220 6576 616c 7561 ied after evalua │ │ │ │ -00276cb0: 7469 6e67 2061 2074 6f70 2d6c 6576 656c ting a top-level │ │ │ │ -00276cc0: 2065 7661 6c75 6174 696f 6e0a 2020 2020 evaluation. │ │ │ │ -00276cd0: 2020 2020 7265 7375 6c74 2072 206f 6620 result r of │ │ │ │ -00276ce0: 7479 7065 2058 2e0a 2020 2a20 436f 6e73 type X.. * Cons │ │ │ │ -00276cf0: 6571 7565 6e63 6573 3a0a 2020 2020 2020 equences:. │ │ │ │ -00276d00: 2a20 5468 6520 7661 6c75 6520 7265 7475 * The value retu │ │ │ │ -00276d10: 726e 6564 2072 6573 756c 7420 7265 706c rned result repl │ │ │ │ -00276d20: 6163 6573 2074 6865 206f 7269 6769 6e61 aces the origina │ │ │ │ -00276d30: 6c20 666f 7220 7374 6f72 696e 6720 696e l for storing in │ │ │ │ -00276d40: 2074 6865 0a20 2020 2020 2020 206f 7574 the. out │ │ │ │ -00276d50: 7075 7420 7661 7269 6162 6c65 7320 616e put variables an │ │ │ │ -00276d60: 6420 666f 7220 7072 696e 7469 6e67 0a0a d for printing.. │ │ │ │ -00276d70: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -00276d80: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -00276d90: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -00276da0: 7420 2a6e 6f74 6520 4166 7465 7245 7661 t *note AfterEva │ │ │ │ -00276db0: 6c3a 2041 6674 6572 4576 616c 2c20 6973 l: AfterEval, is │ │ │ │ -00276dc0: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ -00276dd0: 2053 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d Symbol,...----- │ │ │ │ -00276de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00276b20: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00276b30: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00276b40: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00276b50: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00276b60: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00276b70: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00276b80: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +00276b90: 6f63 2f6f 765f 7265 706c 2e6d 323a 3332 oc/ov_repl.m2:32 │ │ │ │ +00276ba0: 393a 302e 0a1f 0a46 696c 653a 204d 6163 9:0....File: Mac │ │ │ │ +00276bb0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +00276bc0: 4e6f 6465 3a20 4166 7465 7245 7661 6c2c Node: AfterEval, │ │ │ │ +00276bd0: 204e 6578 743a 2042 6566 6f72 6550 7269 Next: BeforePri │ │ │ │ +00276be0: 6e74 2c20 5072 6576 3a20 4e6f 5072 696e nt, Prev: NoPrin │ │ │ │ +00276bf0: 742c 2055 703a 2074 6f70 4c65 7665 6c4d t, Up: topLevelM │ │ │ │ +00276c00: 6f64 650a 0a41 6674 6572 4576 616c 202d ode..AfterEval - │ │ │ │ +00276c10: 2d20 746f 7020 6c65 7665 6c20 6d65 7468 - top level meth │ │ │ │ +00276c20: 6f64 2061 7070 6c69 6564 2061 6674 6572 od applied after │ │ │ │ +00276c30: 2065 7661 6c75 6174 696f 6e0a 2a2a 2a2a evaluation.**** │ │ │ │ +00276c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276c70: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00276c80: 2020 2020 2020 2020 5823 4166 7465 7245 X#AfterE │ │ │ │ +00276c90: 7661 6c20 3d20 660a 2020 2a20 496e 7075 val = f. * Inpu │ │ │ │ +00276ca0: 7473 3a0a 2020 2020 2020 2a20 662c 2061 ts:. * f, a │ │ │ │ +00276cb0: 2066 756e 6374 696f 6e20 746f 2062 6520 function to be │ │ │ │ +00276cc0: 6170 706c 6965 6420 6166 7465 7220 6576 applied after ev │ │ │ │ +00276cd0: 616c 7561 7469 6e67 2061 2074 6f70 2d6c aluating a top-l │ │ │ │ +00276ce0: 6576 656c 2065 7661 6c75 6174 696f 6e0a evel evaluation. │ │ │ │ +00276cf0: 2020 2020 2020 2020 7265 7375 6c74 2072 result r │ │ │ │ +00276d00: 206f 6620 7479 7065 2058 2e0a 2020 2a20 of type X.. * │ │ │ │ +00276d10: 436f 6e73 6571 7565 6e63 6573 3a0a 2020 Consequences:. │ │ │ │ +00276d20: 2020 2020 2a20 5468 6520 7661 6c75 6520 * The value │ │ │ │ +00276d30: 7265 7475 726e 6564 2072 6573 756c 7420 returned result │ │ │ │ +00276d40: 7265 706c 6163 6573 2074 6865 206f 7269 replaces the ori │ │ │ │ +00276d50: 6769 6e61 6c20 666f 7220 7374 6f72 696e ginal for storin │ │ │ │ +00276d60: 6720 696e 2074 6865 0a20 2020 2020 2020 g in the. │ │ │ │ +00276d70: 206f 7574 7075 7420 7661 7269 6162 6c65 output variable │ │ │ │ +00276d80: 7320 616e 6420 666f 7220 7072 696e 7469 s and for printi │ │ │ │ +00276d90: 6e67 0a0a 466f 7220 7468 6520 7072 6f67 ng..For the prog │ │ │ │ +00276da0: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ +00276db0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ +00276dc0: 626a 6563 7420 2a6e 6f74 6520 4166 7465 bject *note Afte │ │ │ │ +00276dd0: 7245 7661 6c3a 2041 6674 6572 4576 616c rEval: AfterEval │ │ │ │ +00276de0: 2c20 6973 2061 202a 6e6f 7465 2073 796d , is a *note sym │ │ │ │ +00276df0: 626f 6c3a 2053 796d 626f 6c2c 2e0a 0a2d bol: Symbol,...- │ │ │ │ 00276e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00276e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00276e20: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00276e30: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00276e40: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00276e50: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -00276e60: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -00276e70: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -00276e80: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00276e90: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ -00276ea0: 6f76 5f72 6570 6c2e 6d32 3a33 3531 3a30 ov_repl.m2:351:0 │ │ │ │ -00276eb0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ -00276ec0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ -00276ed0: 653a 2042 6566 6f72 6550 7269 6e74 2c20 e: BeforePrint, │ │ │ │ -00276ee0: 4e65 7874 3a20 4166 7465 7250 7269 6e74 Next: AfterPrint │ │ │ │ -00276ef0: 2c20 5072 6576 3a20 4166 7465 7245 7661 , Prev: AfterEva │ │ │ │ -00276f00: 6c2c 2055 703a 2074 6f70 4c65 7665 6c4d l, Up: topLevelM │ │ │ │ -00276f10: 6f64 650a 0a42 6566 6f72 6550 7269 6e74 ode..BeforePrint │ │ │ │ -00276f20: 202d 2d20 746f 7020 6c65 7665 6c20 6d65 -- top level me │ │ │ │ -00276f30: 7468 6f64 2061 7070 6c69 6564 2062 6566 thod applied bef │ │ │ │ -00276f40: 6f72 6520 7072 696e 7469 6e67 2072 6573 ore printing res │ │ │ │ -00276f50: 756c 7473 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ults.*********** │ │ │ │ -00276f60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276f70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00276e50: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00276e60: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00276e70: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00276e80: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00276e90: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00276ea0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00276eb0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +00276ec0: 446f 632f 6f76 5f72 6570 6c2e 6d32 3a33 Doc/ov_repl.m2:3 │ │ │ │ +00276ed0: 3531 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 51:0....File: Ma │ │ │ │ +00276ee0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ +00276ef0: 204e 6f64 653a 2042 6566 6f72 6550 7269 Node: BeforePri │ │ │ │ +00276f00: 6e74 2c20 4e65 7874 3a20 4166 7465 7250 nt, Next: AfterP │ │ │ │ +00276f10: 7269 6e74 2c20 5072 6576 3a20 4166 7465 rint, Prev: Afte │ │ │ │ +00276f20: 7245 7661 6c2c 2055 703a 2074 6f70 4c65 rEval, Up: topLe │ │ │ │ +00276f30: 7665 6c4d 6f64 650a 0a42 6566 6f72 6550 velMode..BeforeP │ │ │ │ +00276f40: 7269 6e74 202d 2d20 746f 7020 6c65 7665 rint -- top leve │ │ │ │ +00276f50: 6c20 6d65 7468 6f64 2061 7070 6c69 6564 l method applied │ │ │ │ +00276f60: 2062 6566 6f72 6520 7072 696e 7469 6e67 before printing │ │ │ │ +00276f70: 2072 6573 756c 7473 0a2a 2a2a 2a2a 2a2a results.******* │ │ │ │ 00276f80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00276f90: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00276fa0: 200a 2020 2020 2020 2020 5823 7b74 6f70 . X#{top │ │ │ │ -00276fb0: 4c65 7665 6c4d 6f64 652c 4265 666f 7265 LevelMode,Before │ │ │ │ -00276fc0: 5072 696e 747d 203d 2066 0a20 202a 2049 Print} = f. * I │ │ │ │ -00276fd0: 6e70 7574 733a 0a20 2020 2020 202a 2066 nputs:. * f │ │ │ │ -00276fe0: 2c20 6120 6675 6e63 7469 6f6e 2074 6f20 , a function to │ │ │ │ -00276ff0: 6265 2061 7070 6c69 6564 2062 6566 6f72 be applied befor │ │ │ │ -00277000: 6520 7072 696e 7469 6e67 2061 2074 6f70 e printing a top │ │ │ │ -00277010: 2d6c 6576 656c 2065 7661 6c75 6174 696f -level evaluatio │ │ │ │ -00277020: 6e0a 2020 2020 2020 2020 7265 7375 6c74 n. result │ │ │ │ -00277030: 2072 206f 6620 7479 7065 2058 2e0a 2020 r of type X.. │ │ │ │ -00277040: 2a20 436f 6e73 6571 7565 6e63 6573 3a0a * Consequences:. │ │ │ │ -00277050: 2020 2020 2020 2a20 5468 6520 7661 6c75 * The valu │ │ │ │ -00277060: 6520 7265 7475 726e 6564 2062 7920 6620 e returned by f │ │ │ │ -00277070: 6973 2070 7269 6e74 6564 2069 6e73 7465 is printed inste │ │ │ │ -00277080: 6164 2e0a 0a46 6f72 2074 6865 2070 726f ad...For the pro │ │ │ │ -00277090: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -002770a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -002770b0: 6f62 6a65 6374 202a 6e6f 7465 2042 6566 object *note Bef │ │ │ │ -002770c0: 6f72 6550 7269 6e74 3a20 4265 666f 7265 orePrint: Before │ │ │ │ -002770d0: 5072 696e 742c 2069 7320 6120 2a6e 6f74 Print, is a *not │ │ │ │ -002770e0: 6520 7379 6d62 6f6c 3a20 5379 6d62 6f6c e symbol: Symbol │ │ │ │ -002770f0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00277100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00276f90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276fa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00276fb0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +00276fc0: 6167 653a 200a 2020 2020 2020 2020 5823 age: . X# │ │ │ │ +00276fd0: 7b74 6f70 4c65 7665 6c4d 6f64 652c 4265 {topLevelMode,Be │ │ │ │ +00276fe0: 666f 7265 5072 696e 747d 203d 2066 0a20 forePrint} = f. │ │ │ │ +00276ff0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00277000: 202a 2066 2c20 6120 6675 6e63 7469 6f6e * f, a function │ │ │ │ +00277010: 2074 6f20 6265 2061 7070 6c69 6564 2062 to be applied b │ │ │ │ +00277020: 6566 6f72 6520 7072 696e 7469 6e67 2061 efore printing a │ │ │ │ +00277030: 2074 6f70 2d6c 6576 656c 2065 7661 6c75 top-level evalu │ │ │ │ +00277040: 6174 696f 6e0a 2020 2020 2020 2020 7265 ation. re │ │ │ │ +00277050: 7375 6c74 2072 206f 6620 7479 7065 2058 sult r of type X │ │ │ │ +00277060: 2e0a 2020 2a20 436f 6e73 6571 7565 6e63 .. * Consequenc │ │ │ │ +00277070: 6573 3a0a 2020 2020 2020 2a20 5468 6520 es:. * The │ │ │ │ +00277080: 7661 6c75 6520 7265 7475 726e 6564 2062 value returned b │ │ │ │ +00277090: 7920 6620 6973 2070 7269 6e74 6564 2069 y f is printed i │ │ │ │ +002770a0: 6e73 7465 6164 2e0a 0a46 6f72 2074 6865 nstead...For the │ │ │ │ +002770b0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +002770c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +002770d0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +002770e0: 2042 6566 6f72 6550 7269 6e74 3a20 4265 BeforePrint: Be │ │ │ │ +002770f0: 666f 7265 5072 696e 742c 2069 7320 6120 forePrint, is a │ │ │ │ +00277100: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 5379 *note symbol: Sy │ │ │ │ +00277110: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ 00277120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00277130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277140: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -00277150: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -00277160: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00277170: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00277180: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00277190: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -002771a0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -002771b0: 756c 6179 3244 6f63 2f6f 765f 7265 706c ulay2Doc/ov_repl │ │ │ │ -002771c0: 2e6d 323a 3334 303a 302e 0a1f 0a46 696c .m2:340:0....Fil │ │ │ │ -002771d0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -002771e0: 696e 666f 2c20 4e6f 6465 3a20 4166 7465 info, Node: Afte │ │ │ │ -002771f0: 7250 7269 6e74 2c20 4e65 7874 3a20 4166 rPrint, Next: Af │ │ │ │ -00277200: 7465 724e 6f50 7269 6e74 2c20 5072 6576 terNoPrint, Prev │ │ │ │ -00277210: 3a20 4265 666f 7265 5072 696e 742c 2055 : BeforePrint, U │ │ │ │ -00277220: 703a 2074 6f70 4c65 7665 6c4d 6f64 650a p: topLevelMode. │ │ │ │ -00277230: 0a41 6674 6572 5072 696e 7420 2d2d 2074 .AfterPrint -- t │ │ │ │ -00277240: 6f70 206c 6576 656c 206d 6574 686f 6420 op level method │ │ │ │ -00277250: 6170 706c 6965 6420 6166 7465 7220 7072 applied after pr │ │ │ │ -00277260: 696e 7469 6e67 0a2a 2a2a 2a2a 2a2a 2a2a inting.********* │ │ │ │ -00277270: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277280: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -002772a0: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -002772b0: 2020 5823 7b74 6f70 4c65 7665 6c4d 6f64 X#{topLevelMod │ │ │ │ -002772c0: 652c 4166 7465 7250 7269 6e74 7d20 3d20 e,AfterPrint} = │ │ │ │ -002772d0: 660a 2020 2a20 496e 7075 7473 3a0a 2020 f. * Inputs:. │ │ │ │ -002772e0: 2020 2020 2a20 662c 2061 2066 756e 6374 * f, a funct │ │ │ │ -002772f0: 696f 6e20 746f 2062 6520 6170 706c 6965 ion to be applie │ │ │ │ -00277300: 6420 6166 7465 7220 7072 696e 7469 6e67 d after printing │ │ │ │ -00277310: 2061 2074 6f70 2d6c 6576 656c 2065 7661 a top-level eva │ │ │ │ -00277320: 6c75 6174 696f 6e0a 2020 2020 2020 2020 luation. │ │ │ │ -00277330: 7265 7375 6c74 2072 206f 6620 7479 7065 result r of type │ │ │ │ -00277340: 2058 2e0a 2020 2a20 4f75 7470 7574 733a X.. * Outputs: │ │ │ │ -00277350: 0a20 2020 2020 202a 2054 6865 2076 616c . * The val │ │ │ │ -00277360: 7565 2072 6574 7572 6e65 6420 6279 2066 ue returned by f │ │ │ │ -00277370: 2069 7320 6469 7363 6172 6465 642e 0a0a is discarded... │ │ │ │ -00277380: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00277390: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6d65 =======..This me │ │ │ │ -002773a0: 7468 6f64 2069 7320 7573 6564 2074 6f20 thod is used to │ │ │ │ -002773b0: 7072 696e 7420 7468 6520 7479 7065 206f print the type o │ │ │ │ -002773c0: 6620 7468 6520 7265 7375 6c74 206f 6620 f the result of │ │ │ │ -002773d0: 6120 636f 6d70 7574 6174 696f 6e2e 0a2b a computation..+ │ │ │ │ -002773e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -002773f0: 332f 347c 0a7c 2020 2020 2020 2020 7c0a 3/4|.| |. │ │ │ │ -00277400: 7c20 2020 2020 3320 207c 0a7c 6f31 203d | 3 |.|o1 = │ │ │ │ -00277410: 202d 2020 7c0a 7c20 2020 2020 3420 207c - |.| 4 | │ │ │ │ -00277420: 0a7c 2020 2020 2020 2020 7c0a 7c6f 3120 .| |.|o1 │ │ │ │ -00277430: 3a20 5151 207c 0a2b 2d2d 2d2d 2d2d 2d2d : QQ |.+-------- │ │ │ │ -00277440: 2b0a 5765 2063 6f75 6c64 2073 7570 7072 +.We could suppr │ │ │ │ -00277450: 6573 7320 7468 6174 206f 7574 7075 7420 ess that output │ │ │ │ -00277460: 666f 7220 6120 7369 6e67 6c65 2074 7970 for a single typ │ │ │ │ -00277470: 6520 6173 2066 6f6c 6c6f 7773 2e0a 2b2d e as follows..+- │ │ │ │ -00277480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002774a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -002774b0: 3a20 5151 237b 746f 704c 6576 656c 4d6f : QQ#{topLevelMo │ │ │ │ -002774c0: 6465 2c41 6674 6572 5072 696e 747d 203d de,AfterPrint} = │ │ │ │ -002774d0: 2072 202d 3e20 723b 7c0a 2b2d 2d2d 2d2d r -> r;|.+----- │ │ │ │ -002774e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002774f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277500: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 332f ------+.|i3 : 3/ │ │ │ │ -00277510: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00277520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00277530: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00277140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277160: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00277170: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00277180: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00277190: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +002771a0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +002771b0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +002771c0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +002771d0: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +002771e0: 7265 706c 2e6d 323a 3334 303a 302e 0a1f repl.m2:340:0... │ │ │ │ +002771f0: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ +00277200: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ +00277210: 4166 7465 7250 7269 6e74 2c20 4e65 7874 AfterPrint, Next │ │ │ │ +00277220: 3a20 4166 7465 724e 6f50 7269 6e74 2c20 : AfterNoPrint, │ │ │ │ +00277230: 5072 6576 3a20 4265 666f 7265 5072 696e Prev: BeforePrin │ │ │ │ +00277240: 742c 2055 703a 2074 6f70 4c65 7665 6c4d t, Up: topLevelM │ │ │ │ +00277250: 6f64 650a 0a41 6674 6572 5072 696e 7420 ode..AfterPrint │ │ │ │ +00277260: 2d2d 2074 6f70 206c 6576 656c 206d 6574 -- top level met │ │ │ │ +00277270: 686f 6420 6170 706c 6965 6420 6166 7465 hod applied afte │ │ │ │ +00277280: 7220 7072 696e 7469 6e67 0a2a 2a2a 2a2a r printing.***** │ │ │ │ +00277290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002772a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002772b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002772c0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +002772d0: 2020 2020 2020 5823 7b74 6f70 4c65 7665 X#{topLeve │ │ │ │ +002772e0: 6c4d 6f64 652c 4166 7465 7250 7269 6e74 lMode,AfterPrint │ │ │ │ +002772f0: 7d20 3d20 660a 2020 2a20 496e 7075 7473 } = f. * Inputs │ │ │ │ +00277300: 3a0a 2020 2020 2020 2a20 662c 2061 2066 :. * f, a f │ │ │ │ +00277310: 756e 6374 696f 6e20 746f 2062 6520 6170 unction to be ap │ │ │ │ +00277320: 706c 6965 6420 6166 7465 7220 7072 696e plied after prin │ │ │ │ +00277330: 7469 6e67 2061 2074 6f70 2d6c 6576 656c ting a top-level │ │ │ │ +00277340: 2065 7661 6c75 6174 696f 6e0a 2020 2020 evaluation. │ │ │ │ +00277350: 2020 2020 7265 7375 6c74 2072 206f 6620 result r of │ │ │ │ +00277360: 7479 7065 2058 2e0a 2020 2a20 4f75 7470 type X.. * Outp │ │ │ │ +00277370: 7574 733a 0a20 2020 2020 202a 2054 6865 uts:. * The │ │ │ │ +00277380: 2076 616c 7565 2072 6574 7572 6e65 6420 value returned │ │ │ │ +00277390: 6279 2066 2069 7320 6469 7363 6172 6465 by f is discarde │ │ │ │ +002773a0: 642e 0a0a 4465 7363 7269 7074 696f 6e0a d...Description. │ │ │ │ +002773b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ +002773c0: 7320 6d65 7468 6f64 2069 7320 7573 6564 s method is used │ │ │ │ +002773d0: 2074 6f20 7072 696e 7420 7468 6520 7479 to print the ty │ │ │ │ +002773e0: 7065 206f 6620 7468 6520 7265 7375 6c74 pe of the result │ │ │ │ +002773f0: 206f 6620 6120 636f 6d70 7574 6174 696f of a computatio │ │ │ │ +00277400: 6e2e 0a2b 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 n..+--------+.|i │ │ │ │ +00277410: 3120 3a20 332f 347c 0a7c 2020 2020 2020 1 : 3/4|.| │ │ │ │ +00277420: 2020 7c0a 7c20 2020 2020 3320 207c 0a7c |.| 3 |.| │ │ │ │ +00277430: 6f31 203d 202d 2020 7c0a 7c20 2020 2020 o1 = - |.| │ │ │ │ +00277440: 3420 207c 0a7c 2020 2020 2020 2020 7c0a 4 |.| |. │ │ │ │ +00277450: 7c6f 3120 3a20 5151 207c 0a2b 2d2d 2d2d |o1 : QQ |.+---- │ │ │ │ +00277460: 2d2d 2d2d 2b0a 5765 2063 6f75 6c64 2073 ----+.We could s │ │ │ │ +00277470: 7570 7072 6573 7320 7468 6174 206f 7574 uppress that out │ │ │ │ +00277480: 7075 7420 666f 7220 6120 7369 6e67 6c65 put for a single │ │ │ │ +00277490: 2074 7970 6520 6173 2066 6f6c 6c6f 7773 type as follows │ │ │ │ +002774a0: 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +002774b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002774c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +002774d0: 7c69 3220 3a20 5151 237b 746f 704c 6576 |i2 : QQ#{topLev │ │ │ │ +002774e0: 656c 4d6f 6465 2c41 6674 6572 5072 696e elMode,AfterPrin │ │ │ │ +002774f0: 747d 203d 2072 202d 3e20 723b 7c0a 2b2d t} = r -> r;|.+- │ │ │ │ +00277500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277520: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +00277530: 3a20 332f 3420 2020 2020 2020 2020 2020 : 3/4 │ │ │ │ 00277540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00277550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00277560: 2020 7c0a 7c20 2020 2020 3320 2020 2020 |.| 3 │ │ │ │ +00277550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00277560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00277570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00277580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00277590: 7c0a 7c6f 3320 3d20 2d20 2020 2020 2020 |.|o3 = - │ │ │ │ +00277580: 2020 2020 2020 7c0a 7c20 2020 2020 3320 |.| 3 │ │ │ │ +00277590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002775a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002775b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -002775c0: 7c20 2020 2020 3420 2020 2020 2020 2020 | 4 │ │ │ │ +002775b0: 2020 2020 7c0a 7c6f 3320 3d20 2d20 2020 |.|o3 = - │ │ │ │ +002775c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002775d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002775e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -002775f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 6f72 ----------+..For │ │ │ │ -00277620: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00277630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00277640: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00277650: 6e6f 7465 2041 6674 6572 5072 696e 743a note AfterPrint: │ │ │ │ -00277660: 2041 6674 6572 5072 696e 742c 2069 7320 AfterPrint, is │ │ │ │ -00277670: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -00277680: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ -00277690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002776a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002775e0: 2020 7c0a 7c20 2020 2020 3420 2020 2020 |.| 4 │ │ │ │ +002775f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00277600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00277610: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00277620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00277640: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +00277650: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +00277660: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00277670: 6374 202a 6e6f 7465 2041 6674 6572 5072 ct *note AfterPr │ │ │ │ +00277680: 696e 743a 2041 6674 6572 5072 696e 742c int: AfterPrint, │ │ │ │ +00277690: 2069 7320 6120 2a6e 6f74 6520 7379 6d62 is a *note symb │ │ │ │ +002776a0: 6f6c 3a20 5379 6d62 6f6c 2c2e 0a0a 2d2d ol: Symbol,...-- │ │ │ │ 002776b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002776c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002776d0: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -002776e0: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -002776f0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00277700: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00277710: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00277720: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00277730: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00277740: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -00277750: 765f 7265 706c 2e6d 323a 3337 313a 302e v_repl.m2:371:0. │ │ │ │ -00277760: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -00277770: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -00277780: 3a20 4166 7465 724e 6f50 7269 6e74 2c20 : AfterNoPrint, │ │ │ │ -00277790: 5072 6576 3a20 4166 7465 7250 7269 6e74 Prev: AfterPrint │ │ │ │ -002777a0: 2c20 5570 3a20 746f 704c 6576 656c 4d6f , Up: topLevelMo │ │ │ │ -002777b0: 6465 0a0a 4166 7465 724e 6f50 7269 6e74 de..AfterNoPrint │ │ │ │ -002777c0: 202d 2d20 746f 7020 6c65 7665 6c20 6d65 -- top level me │ │ │ │ -002777d0: 7468 6f64 2061 7070 6c69 6564 2061 6674 thod applied aft │ │ │ │ -002777e0: 6572 206e 6f74 2070 7269 6e74 696e 670a er not printing. │ │ │ │ -002777f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277800: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277810: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -00277830: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00277840: 2058 237b 746f 704c 6576 656c 4d6f 6465 X#{topLevelMode │ │ │ │ -00277850: 2c41 6674 6572 4e6f 5072 696e 747d 203d ,AfterNoPrint} = │ │ │ │ -00277860: 2066 0a20 202a 2049 6e70 7574 733a 0a20 f. * Inputs:. │ │ │ │ -00277870: 2020 2020 202a 2066 2c20 6120 6675 6e63 * f, a func │ │ │ │ -00277880: 7469 6f6e 2074 6f20 6265 2061 7070 6c69 tion to be appli │ │ │ │ -00277890: 6564 2061 6674 6572 206e 6f74 2070 7269 ed after not pri │ │ │ │ -002778a0: 6e74 696e 6720 6120 746f 702d 6c65 7665 nting a top-leve │ │ │ │ -002778b0: 6c20 6576 616c 7561 7469 6f6e 0a20 2020 l evaluation. │ │ │ │ -002778c0: 2020 2020 2072 6573 756c 7420 7220 6f66 result r of │ │ │ │ -002778d0: 2074 7970 6520 582e 0a20 202a 2043 6f6e type X.. * Con │ │ │ │ -002778e0: 7365 7175 656e 6365 733a 0a20 2020 2020 sequences:. │ │ │ │ -002778f0: 202a 2054 6865 2066 756e 6374 696f 6e20 * The function │ │ │ │ -00277900: 6620 7769 6c6c 2062 6520 6170 706c 6965 f will be applie │ │ │ │ -00277910: 6420 6174 2074 6f70 206c 6576 656c 2074 d at top level t │ │ │ │ -00277920: 6f20 7468 6520 7265 7375 6c74 206f 6620 o the result of │ │ │ │ -00277930: 616e 0a20 2020 2020 2020 2065 7661 6c75 an. evalu │ │ │ │ -00277940: 6174 696f 6e20 7768 656e 2070 7269 6e74 ation when print │ │ │ │ -00277950: 696e 6720 6f66 2074 6865 2072 6573 756c ing of the resul │ │ │ │ -00277960: 7420 6861 7320 6265 656e 2073 7570 7072 t has been suppr │ │ │ │ -00277970: 6573 7365 6420 6279 2061 0a20 2020 2020 essed by a. │ │ │ │ -00277980: 2020 2073 656d 6963 6f6c 6f6e 2e0a 0a46 semicolon...F │ │ │ │ -00277990: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -002779a0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -002779b0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -002779c0: 202a 6e6f 7465 2041 6674 6572 4e6f 5072 *note AfterNoPr │ │ │ │ -002779d0: 696e 743a 2041 6674 6572 4e6f 5072 696e int: AfterNoPrin │ │ │ │ -002779e0: 742c 2069 7320 6120 2a6e 6f74 6520 7379 t, is a *note sy │ │ │ │ -002779f0: 6d62 6f6c 3a20 5379 6d62 6f6c 2c2e 0a0a mbol: Symbol,... │ │ │ │ -00277a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002776d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002776e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002776f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00277700: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00277710: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00277720: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00277730: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00277740: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00277750: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00277760: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +00277770: 6f63 2f6f 765f 7265 706c 2e6d 323a 3337 oc/ov_repl.m2:37 │ │ │ │ +00277780: 313a 302e 0a1f 0a46 696c 653a 204d 6163 1:0....File: Mac │ │ │ │ +00277790: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +002777a0: 4e6f 6465 3a20 4166 7465 724e 6f50 7269 Node: AfterNoPri │ │ │ │ +002777b0: 6e74 2c20 5072 6576 3a20 4166 7465 7250 nt, Prev: AfterP │ │ │ │ +002777c0: 7269 6e74 2c20 5570 3a20 746f 704c 6576 rint, Up: topLev │ │ │ │ +002777d0: 656c 4d6f 6465 0a0a 4166 7465 724e 6f50 elMode..AfterNoP │ │ │ │ +002777e0: 7269 6e74 202d 2d20 746f 7020 6c65 7665 rint -- top leve │ │ │ │ +002777f0: 6c20 6d65 7468 6f64 2061 7070 6c69 6564 l method applied │ │ │ │ +00277800: 2061 6674 6572 206e 6f74 2070 7269 6e74 after not print │ │ │ │ +00277810: 696e 670a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ing.************ │ │ │ │ +00277820: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00277830: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00277840: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00277850: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00277860: 2020 2020 2058 237b 746f 704c 6576 656c X#{topLevel │ │ │ │ +00277870: 4d6f 6465 2c41 6674 6572 4e6f 5072 696e Mode,AfterNoPrin │ │ │ │ +00277880: 747d 203d 2066 0a20 202a 2049 6e70 7574 t} = f. * Input │ │ │ │ +00277890: 733a 0a20 2020 2020 202a 2066 2c20 6120 s:. * f, a │ │ │ │ +002778a0: 6675 6e63 7469 6f6e 2074 6f20 6265 2061 function to be a │ │ │ │ +002778b0: 7070 6c69 6564 2061 6674 6572 206e 6f74 pplied after not │ │ │ │ +002778c0: 2070 7269 6e74 696e 6720 6120 746f 702d printing a top- │ │ │ │ +002778d0: 6c65 7665 6c20 6576 616c 7561 7469 6f6e level evaluation │ │ │ │ +002778e0: 0a20 2020 2020 2020 2072 6573 756c 7420 . result │ │ │ │ +002778f0: 7220 6f66 2074 7970 6520 582e 0a20 202a r of type X.. * │ │ │ │ +00277900: 2043 6f6e 7365 7175 656e 6365 733a 0a20 Consequences:. │ │ │ │ +00277910: 2020 2020 202a 2054 6865 2066 756e 6374 * The funct │ │ │ │ +00277920: 696f 6e20 6620 7769 6c6c 2062 6520 6170 ion f will be ap │ │ │ │ +00277930: 706c 6965 6420 6174 2074 6f70 206c 6576 plied at top lev │ │ │ │ +00277940: 656c 2074 6f20 7468 6520 7265 7375 6c74 el to the result │ │ │ │ +00277950: 206f 6620 616e 0a20 2020 2020 2020 2065 of an. e │ │ │ │ +00277960: 7661 6c75 6174 696f 6e20 7768 656e 2070 valuation when p │ │ │ │ +00277970: 7269 6e74 696e 6720 6f66 2074 6865 2072 rinting of the r │ │ │ │ +00277980: 6573 756c 7420 6861 7320 6265 656e 2073 esult has been s │ │ │ │ +00277990: 7570 7072 6573 7365 6420 6279 2061 0a20 uppressed by a. │ │ │ │ +002779a0: 2020 2020 2020 2073 656d 6963 6f6c 6f6e semicolon │ │ │ │ +002779b0: 2e0a 0a46 6f72 2074 6865 2070 726f 6772 ...For the progr │ │ │ │ +002779c0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +002779d0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +002779e0: 6a65 6374 202a 6e6f 7465 2041 6674 6572 ject *note After │ │ │ │ +002779f0: 4e6f 5072 696e 743a 2041 6674 6572 4e6f NoPrint: AfterNo │ │ │ │ +00277a00: 5072 696e 742c 2069 7320 6120 2a6e 6f74 Print, is a *not │ │ │ │ +00277a10: 6520 7379 6d62 6f6c 3a20 5379 6d62 6f6c e symbol: Symbol │ │ │ │ +00277a20: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 00277a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00277a50: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00277a60: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00277a70: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00277a80: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00277a90: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00277aa0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -00277ab0: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -00277ac0: 3244 6f63 2f6f 765f 7265 706c 2e6d 323a 2Doc/ov_repl.m2: │ │ │ │ -00277ad0: 3338 363a 302e 0a1f 0a46 696c 653a 204d 386:0....File: M │ │ │ │ -00277ae0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ -00277af0: 2c20 4e6f 6465 3a20 7265 7374 6172 742c , Node: restart, │ │ │ │ -00277b00: 204e 6578 743a 2061 6464 456e 6446 756e Next: addEndFun │ │ │ │ -00277b10: 6374 696f 6e2c 2050 7265 763a 2074 6f70 ction, Prev: top │ │ │ │ -00277b20: 206c 6576 656c 206c 6f6f 702c 2055 703a level loop, Up: │ │ │ │ -00277b30: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -00277b40: 6573 0a0a 7265 7374 6172 7420 2d2d 2072 es..restart -- r │ │ │ │ -00277b50: 6573 7461 7274 204d 6163 6175 6c61 7932 estart Macaulay2 │ │ │ │ -00277b60: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00277b70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -00277b80: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -00277b90: 2020 2072 6573 7461 7274 0a20 202a 2043 restart. * C │ │ │ │ -00277ba0: 6f6e 7365 7175 656e 6365 733a 0a20 2020 onsequences:. │ │ │ │ -00277bb0: 2020 202a 2074 6865 2070 726f 6772 616d * the program │ │ │ │ -00277bc0: 2077 696c 6c20 6265 2072 6573 7461 7274 will be restart │ │ │ │ -00277bd0: 6564 2066 726f 6d20 7468 6520 6265 6769 ed from the begi │ │ │ │ -00277be0: 6e6e 696e 670a 0a44 6573 6372 6970 7469 nning..Descripti │ │ │ │ -00277bf0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00277c00: 4675 6e63 7469 6f6e 7320 7072 6576 696f Functions previo │ │ │ │ -00277c10: 7573 6c79 2072 6567 6973 7465 7265 6420 usly registered │ │ │ │ -00277c20: 7769 7468 202a 6e6f 7465 2061 6464 456e with *note addEn │ │ │ │ -00277c30: 6446 756e 6374 696f 6e3a 2061 6464 456e dFunction: addEn │ │ │ │ -00277c40: 6446 756e 6374 696f 6e2c 2077 696c 6c0a dFunction, will. │ │ │ │ -00277c50: 6265 2063 616c 6c65 6420 6265 666f 7265 be called before │ │ │ │ -00277c60: 2074 6865 2063 7572 7265 6e74 2069 6e73 the current ins │ │ │ │ -00277c70: 7461 6e63 6520 6f66 2074 6865 2070 726f tance of the pro │ │ │ │ -00277c80: 6772 616d 2074 6572 6d69 6e61 7465 732e gram terminates. │ │ │ │ -00277c90: 2020 5468 656e 2074 6865 0a70 726f 6772 Then the.progr │ │ │ │ -00277ca0: 616d 2077 696c 6c20 6265 2069 6e76 6f6b am will be invok │ │ │ │ -00277cb0: 6564 2061 6672 6573 682c 2061 7320 6465 ed afresh, as de │ │ │ │ -00277cc0: 7363 7269 6265 6420 696e 202a 6e6f 7465 scribed in *note │ │ │ │ -00277cd0: 2069 6e76 6f6b 696e 6720 7468 6520 4d61 invoking the Ma │ │ │ │ -00277ce0: 6361 756c 6179 320a 7072 6f67 7261 6d3a caulay2.program: │ │ │ │ -00277cf0: 2069 6e76 6f6b 696e 6720 7468 6520 4d61 invoking the Ma │ │ │ │ -00277d00: 6361 756c 6179 3220 7072 6f67 7261 6d2c caulay2 program, │ │ │ │ -00277d10: 2e0a 0a46 6f72 2074 6865 2070 726f 6772 ...For the progr │ │ │ │ -00277d20: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00277d30: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00277d40: 6a65 6374 202a 6e6f 7465 2072 6573 7461 ject *note resta │ │ │ │ -00277d50: 7274 3a20 7265 7374 6172 742c 2069 7320 rt: restart, is │ │ │ │ -00277d60: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ -00277d70: 2043 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d Command,...---- │ │ │ │ -00277d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277a70: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +00277a80: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +00277a90: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +00277aa0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +00277ab0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +00277ac0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +00277ad0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +00277ae0: 756c 6179 3244 6f63 2f6f 765f 7265 706c ulay2Doc/ov_repl │ │ │ │ +00277af0: 2e6d 323a 3338 363a 302e 0a1f 0a46 696c .m2:386:0....Fil │ │ │ │ +00277b00: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +00277b10: 696e 666f 2c20 4e6f 6465 3a20 7265 7374 info, Node: rest │ │ │ │ +00277b20: 6172 742c 204e 6578 743a 2061 6464 456e art, Next: addEn │ │ │ │ +00277b30: 6446 756e 6374 696f 6e2c 2050 7265 763a dFunction, Prev: │ │ │ │ +00277b40: 2074 6f70 206c 6576 656c 206c 6f6f 702c top level loop, │ │ │ │ +00277b50: 2055 703a 2073 7973 7465 6d20 6661 6369 Up: system faci │ │ │ │ +00277b60: 6c69 7469 6573 0a0a 7265 7374 6172 7420 lities..restart │ │ │ │ +00277b70: 2d2d 2072 6573 7461 7274 204d 6163 6175 -- restart Macau │ │ │ │ +00277b80: 6c61 7932 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a lay2.*********** │ │ │ │ +00277b90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00277ba0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00277bb0: 2020 2020 2020 2072 6573 7461 7274 0a20 restart. │ │ │ │ +00277bc0: 202a 2043 6f6e 7365 7175 656e 6365 733a * Consequences: │ │ │ │ +00277bd0: 0a20 2020 2020 202a 2074 6865 2070 726f . * the pro │ │ │ │ +00277be0: 6772 616d 2077 696c 6c20 6265 2072 6573 gram will be res │ │ │ │ +00277bf0: 7461 7274 6564 2066 726f 6d20 7468 6520 tarted from the │ │ │ │ +00277c00: 6265 6769 6e6e 696e 670a 0a44 6573 6372 beginning..Descr │ │ │ │ +00277c10: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00277c20: 3d3d 0a0a 4675 6e63 7469 6f6e 7320 7072 ==..Functions pr │ │ │ │ +00277c30: 6576 696f 7573 6c79 2072 6567 6973 7465 eviously registe │ │ │ │ +00277c40: 7265 6420 7769 7468 202a 6e6f 7465 2061 red with *note a │ │ │ │ +00277c50: 6464 456e 6446 756e 6374 696f 6e3a 2061 ddEndFunction: a │ │ │ │ +00277c60: 6464 456e 6446 756e 6374 696f 6e2c 2077 ddEndFunction, w │ │ │ │ +00277c70: 696c 6c0a 6265 2063 616c 6c65 6420 6265 ill.be called be │ │ │ │ +00277c80: 666f 7265 2074 6865 2063 7572 7265 6e74 fore the current │ │ │ │ +00277c90: 2069 6e73 7461 6e63 6520 6f66 2074 6865 instance of the │ │ │ │ +00277ca0: 2070 726f 6772 616d 2074 6572 6d69 6e61 program termina │ │ │ │ +00277cb0: 7465 732e 2020 5468 656e 2074 6865 0a70 tes. Then the.p │ │ │ │ +00277cc0: 726f 6772 616d 2077 696c 6c20 6265 2069 rogram will be i │ │ │ │ +00277cd0: 6e76 6f6b 6564 2061 6672 6573 682c 2061 nvoked afresh, a │ │ │ │ +00277ce0: 7320 6465 7363 7269 6265 6420 696e 202a s described in * │ │ │ │ +00277cf0: 6e6f 7465 2069 6e76 6f6b 696e 6720 7468 note invoking th │ │ │ │ +00277d00: 6520 4d61 6361 756c 6179 320a 7072 6f67 e Macaulay2.prog │ │ │ │ +00277d10: 7261 6d3a 2069 6e76 6f6b 696e 6720 7468 ram: invoking th │ │ │ │ +00277d20: 6520 4d61 6361 756c 6179 3220 7072 6f67 e Macaulay2 prog │ │ │ │ +00277d30: 7261 6d2c 2e0a 0a46 6f72 2074 6865 2070 ram,...For the p │ │ │ │ +00277d40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00277d50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00277d60: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00277d70: 6573 7461 7274 3a20 7265 7374 6172 742c estart: restart, │ │ │ │ +00277d80: 2069 7320 6120 2a6e 6f74 6520 636f 6d6d is a *note comm │ │ │ │ +00277d90: 616e 643a 2043 6f6d 6d61 6e64 2c2e 0a0a and: Command,... │ │ │ │ 00277da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00277db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00277dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00277dd0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00277de0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00277df0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00277e00: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00277e10: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00277e20: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00277e30: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ -00277e40: 2f6f 765f 7379 7374 656d 2e6d 323a 3634 /ov_system.m2:64 │ │ │ │ -00277e50: 373a 302e 0a1f 0a46 696c 653a 204d 6163 7:0....File: Mac │ │ │ │ -00277e60: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ -00277e70: 4e6f 6465 3a20 6164 6445 6e64 4675 6e63 Node: addEndFunc │ │ │ │ -00277e80: 7469 6f6e 2c20 4e65 7874 3a20 5469 6d65 tion, Next: Time │ │ │ │ -00277e90: 2c20 5072 6576 3a20 7265 7374 6172 742c , Prev: restart, │ │ │ │ -00277ea0: 2055 703a 2073 7973 7465 6d20 6661 6369 Up: system faci │ │ │ │ -00277eb0: 6c69 7469 6573 0a0a 6164 6445 6e64 4675 lities..addEndFu │ │ │ │ -00277ec0: 6e63 7469 6f6e 202d 2d20 6164 6420 616e nction -- add an │ │ │ │ -00277ed0: 2065 6e64 696e 6720 6675 6e63 7469 6f6e ending function │ │ │ │ -00277ee0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -00277ef0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00277f00: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -00277f10: 7361 6765 3a20 0a20 2020 2020 2020 2061 sage: . a │ │ │ │ -00277f20: 6464 456e 6446 756e 6374 696f 6e20 660a ddEndFunction f. │ │ │ │ -00277f30: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00277f40: 2020 2a20 662c 2061 202a 6e6f 7465 2066 * f, a *note f │ │ │ │ -00277f50: 756e 6374 696f 6e3a 2046 756e 6374 696f unction: Functio │ │ │ │ -00277f60: 6e2c 0a20 202a 2043 6f6e 7365 7175 656e n,. * Consequen │ │ │ │ -00277f70: 6365 733a 0a20 2020 2020 202a 2057 6865 ces:. * Whe │ │ │ │ -00277f80: 6e20 7468 6520 7072 6f67 7261 6d20 6973 n the program is │ │ │ │ -00277f90: 2061 626f 7574 2074 6865 2065 7869 742c about the exit, │ │ │ │ -00277fa0: 2074 6865 2066 756e 6374 696f 6e20 6620 the function f │ │ │ │ -00277fb0: 7769 6c6c 2062 6520 6361 6c6c 6564 2c20 will be called, │ │ │ │ -00277fc0: 7769 7468 0a20 2020 2020 2020 206e 6f20 with. no │ │ │ │ -00277fd0: 6172 6775 6d65 6e74 732e 0a0a 466f 7220 arguments...For │ │ │ │ -00277fe0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00277ff0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00278000: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00278010: 6f74 6520 6164 6445 6e64 4675 6e63 7469 ote addEndFuncti │ │ │ │ -00278020: 6f6e 3a20 6164 6445 6e64 4675 6e63 7469 on: addEndFuncti │ │ │ │ -00278030: 6f6e 2c20 6973 2061 202a 6e6f 7465 2066 on, is a *note f │ │ │ │ -00278040: 756e 6374 696f 6e20 636c 6f73 7572 653a unction closure: │ │ │ │ -00278050: 0a46 756e 6374 696f 6e43 6c6f 7375 7265 .FunctionClosure │ │ │ │ -00278060: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00278070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00277de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00277df0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00277e00: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00277e10: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00277e20: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00277e30: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00277e40: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00277e50: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +00277e60: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ +00277e70: 323a 3634 373a 302e 0a1f 0a46 696c 653a 2:647:0....File: │ │ │ │ +00277e80: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +00277e90: 666f 2c20 4e6f 6465 3a20 6164 6445 6e64 fo, Node: addEnd │ │ │ │ +00277ea0: 4675 6e63 7469 6f6e 2c20 4e65 7874 3a20 Function, Next: │ │ │ │ +00277eb0: 5469 6d65 2c20 5072 6576 3a20 7265 7374 Time, Prev: rest │ │ │ │ +00277ec0: 6172 742c 2055 703a 2073 7973 7465 6d20 art, Up: system │ │ │ │ +00277ed0: 6661 6369 6c69 7469 6573 0a0a 6164 6445 facilities..addE │ │ │ │ +00277ee0: 6e64 4675 6e63 7469 6f6e 202d 2d20 6164 ndFunction -- ad │ │ │ │ +00277ef0: 6420 616e 2065 6e64 696e 6720 6675 6e63 d an ending func │ │ │ │ +00277f00: 7469 6f6e 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a tion.*********** │ │ │ │ +00277f10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00277f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +00277f30: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00277f40: 2020 2061 6464 456e 6446 756e 6374 696f addEndFunctio │ │ │ │ +00277f50: 6e20 660a 2020 2a20 496e 7075 7473 3a0a n f. * Inputs:. │ │ │ │ +00277f60: 2020 2020 2020 2a20 662c 2061 202a 6e6f * f, a *no │ │ │ │ +00277f70: 7465 2066 756e 6374 696f 6e3a 2046 756e te function: Fun │ │ │ │ +00277f80: 6374 696f 6e2c 0a20 202a 2043 6f6e 7365 ction,. * Conse │ │ │ │ +00277f90: 7175 656e 6365 733a 0a20 2020 2020 202a quences:. * │ │ │ │ +00277fa0: 2057 6865 6e20 7468 6520 7072 6f67 7261 When the progra │ │ │ │ +00277fb0: 6d20 6973 2061 626f 7574 2074 6865 2065 m is about the e │ │ │ │ +00277fc0: 7869 742c 2074 6865 2066 756e 6374 696f xit, the functio │ │ │ │ +00277fd0: 6e20 6620 7769 6c6c 2062 6520 6361 6c6c n f will be call │ │ │ │ +00277fe0: 6564 2c20 7769 7468 0a20 2020 2020 2020 ed, with. │ │ │ │ +00277ff0: 206e 6f20 6172 6775 6d65 6e74 732e 0a0a no arguments... │ │ │ │ +00278000: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00278010: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00278020: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00278030: 7420 2a6e 6f74 6520 6164 6445 6e64 4675 t *note addEndFu │ │ │ │ +00278040: 6e63 7469 6f6e 3a20 6164 6445 6e64 4675 nction: addEndFu │ │ │ │ +00278050: 6e63 7469 6f6e 2c20 6973 2061 202a 6e6f nction, is a *no │ │ │ │ +00278060: 7465 2066 756e 6374 696f 6e20 636c 6f73 te function clos │ │ │ │ +00278070: 7572 653a 0a46 756e 6374 696f 6e43 6c6f ure:.FunctionClo │ │ │ │ +00278080: 7375 7265 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d sure,...-------- │ │ │ │ 00278090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002780a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002780b0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -002780c0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -002780d0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -002780e0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -002780f0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00278100: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00278110: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00278120: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -00278130: 656d 2e6d 323a 3635 373a 302e 0a1f 0a46 em.m2:657:0....F │ │ │ │ -00278140: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -00278150: 632e 696e 666f 2c20 4e6f 6465 3a20 5469 c.info, Node: Ti │ │ │ │ -00278160: 6d65 2c20 4e65 7874 3a20 7469 6d65 2c20 me, Next: time, │ │ │ │ -00278170: 5072 6576 3a20 6164 6445 6e64 4675 6e63 Prev: addEndFunc │ │ │ │ -00278180: 7469 6f6e 2c20 5570 3a20 7379 7374 656d tion, Up: system │ │ │ │ -00278190: 2066 6163 696c 6974 6965 730a 0a54 696d facilities..Tim │ │ │ │ -002781a0: 6520 2d2d 2074 6865 2063 6c61 7373 206f e -- the class o │ │ │ │ -002781b0: 6620 616c 6c20 7469 6d69 6e67 2072 6573 f all timing res │ │ │ │ -002781c0: 756c 7473 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ults.*********** │ │ │ │ -002781d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002781e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ -002781f0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00278200: 3d3d 3d3d 3d0a 0a54 696d 6520 6973 2074 =====..Time is t │ │ │ │ -00278210: 6865 2063 6c61 7373 206f 6620 616c 6c20 he class of all │ │ │ │ -00278220: 7469 6d69 6e67 2072 6573 756c 7473 2e20 timing results. │ │ │ │ -00278230: 2045 6163 6820 7469 6d69 6e67 2072 6573 Each timing res │ │ │ │ -00278240: 756c 7420 6973 2061 202a 6e6f 7465 2062 ult is a *note b │ │ │ │ -00278250: 6173 6963 0a6c 6973 743a 2042 6173 6963 asic.list: Basic │ │ │ │ -00278260: 4c69 7374 2c20 6f66 2074 6865 2066 6f72 List, of the for │ │ │ │ -00278270: 6d20 7b74 2c76 7d2c 2077 6865 7265 2074 m {t,v}, where t │ │ │ │ -00278280: 2069 7320 7468 6520 6e75 6d62 6572 206f is the number o │ │ │ │ -00278290: 6620 7365 636f 6e64 7320 6f66 2063 7075 f seconds of cpu │ │ │ │ -002782a0: 0a74 696d 6520 7573 6564 2c20 616e 6420 .time used, and │ │ │ │ -002782b0: 7620 6973 2074 6865 2076 616c 7565 206f v is the value o │ │ │ │ -002782c0: 6620 7468 6520 6578 7072 6573 7369 6f6e f the expression │ │ │ │ -002782d0: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ -002782e0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -002782f0: 7469 6d69 6e67 3a20 7469 6d69 6e67 2c20 timing: timing, │ │ │ │ -00278300: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ -00278310: 6174 696f 6e0a 2020 2a20 2a6e 6f74 6520 ation. * *note │ │ │ │ -00278320: 7469 6d65 3a20 7469 6d65 2c20 2d2d 2074 time: time, -- t │ │ │ │ -00278330: 696d 6520 6120 636f 6d70 7574 6174 696f ime a computatio │ │ │ │ -00278340: 6e0a 2020 2a20 2a6e 6f74 6520 6370 7554 n. * *note cpuT │ │ │ │ -00278350: 696d 653a 2063 7075 5469 6d65 2c20 2d2d ime: cpuTime, -- │ │ │ │ -00278360: 2073 6563 6f6e 6473 206f 6620 6370 7520 seconds of cpu │ │ │ │ -00278370: 7469 6d65 2075 7365 6420 7369 6e63 6520 time used since │ │ │ │ -00278380: 4d61 6361 756c 6179 3220 6265 6761 6e0a Macaulay2 began. │ │ │ │ -00278390: 2020 2a20 2a6e 6f74 6520 656c 6170 7365 * *note elapse │ │ │ │ -002783a0: 6454 696d 696e 673a 2065 6c61 7073 6564 dTiming: elapsed │ │ │ │ -002783b0: 5469 6d69 6e67 2c20 2d2d 2074 696d 6520 Timing, -- time │ │ │ │ -002783c0: 6120 636f 6d70 7574 6174 696f 6e20 7573 a computation us │ │ │ │ -002783d0: 696e 6720 7469 6d65 0a20 2020 2065 6c61 ing time. ela │ │ │ │ -002783e0: 7073 6564 0a20 202a 202a 6e6f 7465 2065 psed. * *note e │ │ │ │ -002783f0: 6c61 7073 6564 5469 6d65 3a20 656c 6170 lapsedTime: elap │ │ │ │ -00278400: 7365 6454 696d 652c 202d 2d20 7469 6d65 sedTime, -- time │ │ │ │ -00278410: 2061 2063 6f6d 7075 7461 7469 6f6e 2069 a computation i │ │ │ │ -00278420: 6e63 6c75 6469 6e67 2074 696d 650a 2020 ncluding time. │ │ │ │ -00278430: 2020 656c 6170 7365 640a 0a46 756e 6374 elapsed..Funct │ │ │ │ -00278440: 696f 6e73 2061 6e64 206d 6574 686f 6473 ions and methods │ │ │ │ -00278450: 2072 6574 7572 6e69 6e67 2061 2074 696d returning a tim │ │ │ │ -00278460: 696e 6720 7265 7375 6c74 3a0a 3d3d 3d3d ing result:.==== │ │ │ │ -00278470: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00278480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00278490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -002784a0: 2a20 2a6e 6f74 6520 656c 6170 7365 6454 * *note elapsedT │ │ │ │ -002784b0: 696d 696e 673a 2065 6c61 7073 6564 5469 iming: elapsedTi │ │ │ │ -002784c0: 6d69 6e67 2c20 2d2d 2074 696d 6520 6120 ming, -- time a │ │ │ │ -002784d0: 636f 6d70 7574 6174 696f 6e20 7573 696e computation usin │ │ │ │ -002784e0: 6720 7469 6d65 0a20 2020 2065 6c61 7073 g time. elaps │ │ │ │ -002784f0: 6564 0a20 202a 202a 6e6f 7465 2074 696d ed. * *note tim │ │ │ │ -00278500: 696e 673a 2074 696d 696e 672c 202d 2d20 ing: timing, -- │ │ │ │ -00278510: 7469 6d65 2061 2063 6f6d 7075 7461 7469 time a computati │ │ │ │ -00278520: 6f6e 0a0a 466f 7220 7468 6520 7072 6f67 on..For the prog │ │ │ │ -00278530: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -00278540: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -00278550: 626a 6563 7420 2a6e 6f74 6520 5469 6d65 bject *note Time │ │ │ │ -00278560: 3a20 5469 6d65 2c20 6973 2061 202a 6e6f : Time, is a *no │ │ │ │ -00278570: 7465 2074 7970 653a 2054 7970 652c 2c20 te type: Type,, │ │ │ │ -00278580: 7769 7468 2061 6e63 6573 746f 7220 636c with ancestor cl │ │ │ │ -00278590: 6173 7365 730a 2a6e 6f74 6520 4261 7369 asses.*note Basi │ │ │ │ -002785a0: 634c 6973 743a 2042 6173 6963 4c69 7374 cList: BasicList │ │ │ │ -002785b0: 2c20 3c20 2a6e 6f74 6520 5468 696e 673a , < *note Thing: │ │ │ │ -002785c0: 2054 6869 6e67 2c2e 0a0a 2d2d 2d2d 2d2d Thing,...------ │ │ │ │ -002785d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002785e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002780b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002780c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002780d0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +002780e0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +002780f0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00278100: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00278110: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00278120: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00278130: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +00278140: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ +00278150: 7379 7374 656d 2e6d 323a 3635 373a 302e system.m2:657:0. │ │ │ │ +00278160: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ +00278170: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ +00278180: 3a20 5469 6d65 2c20 4e65 7874 3a20 7469 : Time, Next: ti │ │ │ │ +00278190: 6d65 2c20 5072 6576 3a20 6164 6445 6e64 me, Prev: addEnd │ │ │ │ +002781a0: 4675 6e63 7469 6f6e 2c20 5570 3a20 7379 Function, Up: sy │ │ │ │ +002781b0: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +002781c0: 0a54 696d 6520 2d2d 2074 6865 2063 6c61 .Time -- the cla │ │ │ │ +002781d0: 7373 206f 6620 616c 6c20 7469 6d69 6e67 ss of all timing │ │ │ │ +002781e0: 2072 6573 756c 7473 0a2a 2a2a 2a2a 2a2a results.******* │ │ │ │ +002781f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00278200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00278210: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00278220: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 696d 6520 =========..Time │ │ │ │ +00278230: 6973 2074 6865 2063 6c61 7373 206f 6620 is the class of │ │ │ │ +00278240: 616c 6c20 7469 6d69 6e67 2072 6573 756c all timing resul │ │ │ │ +00278250: 7473 2e20 2045 6163 6820 7469 6d69 6e67 ts. Each timing │ │ │ │ +00278260: 2072 6573 756c 7420 6973 2061 202a 6e6f result is a *no │ │ │ │ +00278270: 7465 2062 6173 6963 0a6c 6973 743a 2042 te basic.list: B │ │ │ │ +00278280: 6173 6963 4c69 7374 2c20 6f66 2074 6865 asicList, of the │ │ │ │ +00278290: 2066 6f72 6d20 7b74 2c76 7d2c 2077 6865 form {t,v}, whe │ │ │ │ +002782a0: 7265 2074 2069 7320 7468 6520 6e75 6d62 re t is the numb │ │ │ │ +002782b0: 6572 206f 6620 7365 636f 6e64 7320 6f66 er of seconds of │ │ │ │ +002782c0: 2063 7075 0a74 696d 6520 7573 6564 2c20 cpu.time used, │ │ │ │ +002782d0: 616e 6420 7620 6973 2074 6865 2076 616c and v is the val │ │ │ │ +002782e0: 7565 206f 6620 7468 6520 6578 7072 6573 ue of the expres │ │ │ │ +002782f0: 7369 6f6e 2e0a 0a53 6565 2061 6c73 6f0a sion...See also. │ │ │ │ +00278300: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ +00278310: 6f74 6520 7469 6d69 6e67 3a20 7469 6d69 ote timing: timi │ │ │ │ +00278320: 6e67 2c20 2d2d 2074 696d 6520 6120 636f ng, -- time a co │ │ │ │ +00278330: 6d70 7574 6174 696f 6e0a 2020 2a20 2a6e mputation. * *n │ │ │ │ +00278340: 6f74 6520 7469 6d65 3a20 7469 6d65 2c20 ote time: time, │ │ │ │ +00278350: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ +00278360: 6174 696f 6e0a 2020 2a20 2a6e 6f74 6520 ation. * *note │ │ │ │ +00278370: 6370 7554 696d 653a 2063 7075 5469 6d65 cpuTime: cpuTime │ │ │ │ +00278380: 2c20 2d2d 2073 6563 6f6e 6473 206f 6620 , -- seconds of │ │ │ │ +00278390: 6370 7520 7469 6d65 2075 7365 6420 7369 cpu time used si │ │ │ │ +002783a0: 6e63 6520 4d61 6361 756c 6179 3220 6265 nce Macaulay2 be │ │ │ │ +002783b0: 6761 6e0a 2020 2a20 2a6e 6f74 6520 656c gan. * *note el │ │ │ │ +002783c0: 6170 7365 6454 696d 696e 673a 2065 6c61 apsedTiming: ela │ │ │ │ +002783d0: 7073 6564 5469 6d69 6e67 2c20 2d2d 2074 psedTiming, -- t │ │ │ │ +002783e0: 696d 6520 6120 636f 6d70 7574 6174 696f ime a computatio │ │ │ │ +002783f0: 6e20 7573 696e 6720 7469 6d65 0a20 2020 n using time. │ │ │ │ +00278400: 2065 6c61 7073 6564 0a20 202a 202a 6e6f elapsed. * *no │ │ │ │ +00278410: 7465 2065 6c61 7073 6564 5469 6d65 3a20 te elapsedTime: │ │ │ │ +00278420: 656c 6170 7365 6454 696d 652c 202d 2d20 elapsedTime, -- │ │ │ │ +00278430: 7469 6d65 2061 2063 6f6d 7075 7461 7469 time a computati │ │ │ │ +00278440: 6f6e 2069 6e63 6c75 6469 6e67 2074 696d on including tim │ │ │ │ +00278450: 650a 2020 2020 656c 6170 7365 640a 0a46 e. elapsed..F │ │ │ │ +00278460: 756e 6374 696f 6e73 2061 6e64 206d 6574 unctions and met │ │ │ │ +00278470: 686f 6473 2072 6574 7572 6e69 6e67 2061 hods returning a │ │ │ │ +00278480: 2074 696d 696e 6720 7265 7375 6c74 3a0a timing result:. │ │ │ │ +00278490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002784a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002784b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002784c0: 0a0a 2020 2a20 2a6e 6f74 6520 656c 6170 .. * *note elap │ │ │ │ +002784d0: 7365 6454 696d 696e 673a 2065 6c61 7073 sedTiming: elaps │ │ │ │ +002784e0: 6564 5469 6d69 6e67 2c20 2d2d 2074 696d edTiming, -- tim │ │ │ │ +002784f0: 6520 6120 636f 6d70 7574 6174 696f 6e20 e a computation │ │ │ │ +00278500: 7573 696e 6720 7469 6d65 0a20 2020 2065 using time. e │ │ │ │ +00278510: 6c61 7073 6564 0a20 202a 202a 6e6f 7465 lapsed. * *note │ │ │ │ +00278520: 2074 696d 696e 673a 2074 696d 696e 672c timing: timing, │ │ │ │ +00278530: 202d 2d20 7469 6d65 2061 2063 6f6d 7075 -- time a compu │ │ │ │ +00278540: 7461 7469 6f6e 0a0a 466f 7220 7468 6520 tation..For the │ │ │ │ +00278550: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00278560: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00278570: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00278580: 5469 6d65 3a20 5469 6d65 2c20 6973 2061 Time: Time, is a │ │ │ │ +00278590: 202a 6e6f 7465 2074 7970 653a 2054 7970 *note type: Typ │ │ │ │ +002785a0: 652c 2c20 7769 7468 2061 6e63 6573 746f e,, with ancesto │ │ │ │ +002785b0: 7220 636c 6173 7365 730a 2a6e 6f74 6520 r classes.*note │ │ │ │ +002785c0: 4261 7369 634c 6973 743a 2042 6173 6963 BasicList: Basic │ │ │ │ +002785d0: 4c69 7374 2c20 3c20 2a6e 6f74 6520 5468 List, < *note Th │ │ │ │ +002785e0: 696e 673a 2054 6869 6e67 2c2e 0a0a 2d2d ing: Thing,...-- │ │ │ │ 002785f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00278600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278610: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00278620: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00278630: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00278640: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00278650: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00278660: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00278670: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00278680: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -00278690: 765f 7379 7374 656d 2e6d 323a 3934 343a v_system.m2:944: │ │ │ │ -002786a0: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ -002786b0: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ -002786c0: 6465 3a20 7469 6d65 2c20 4e65 7874 3a20 de: time, Next: │ │ │ │ -002786d0: 7469 6d69 6e67 2c20 5072 6576 3a20 5469 timing, Prev: Ti │ │ │ │ -002786e0: 6d65 2c20 5570 3a20 7379 7374 656d 2066 me, Up: system f │ │ │ │ -002786f0: 6163 696c 6974 6965 730a 0a74 696d 6520 acilities..time │ │ │ │ -00278700: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ -00278710: 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a ation.********** │ │ │ │ -00278720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00278730: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00278740: 2020 2020 2020 7469 6d65 2065 0a0a 4465 time e..De │ │ │ │ -00278750: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00278760: 3d3d 3d3d 3d0a 0a74 696d 6520 6520 6576 =====..time e ev │ │ │ │ -00278770: 616c 7561 7465 7320 652c 2070 7269 6e74 aluates e, print │ │ │ │ -00278780: 7320 7468 6520 616d 6f75 6e74 206f 6620 s the amount of │ │ │ │ -00278790: 6370 7520 7469 6d65 2075 7365 642c 2061 cpu time used, a │ │ │ │ -002787a0: 6e64 2072 6574 7572 6e73 2074 6865 2076 nd returns the v │ │ │ │ -002787b0: 616c 7565 0a6f 6620 652e 2020 5468 6520 alue.of e. The │ │ │ │ -002787c0: 7469 6d65 2075 7365 6420 6279 2074 6865 time used by the │ │ │ │ -002787d0: 2074 6865 2063 7572 7265 6e74 2074 6872 the current thr │ │ │ │ -002787e0: 6561 6420 616e 6420 6761 7262 6167 6520 ead and garbage │ │ │ │ -002787f0: 636f 6c6c 6563 7469 6f6e 2064 7572 696e collection durin │ │ │ │ -00278800: 670a 7468 6520 6576 616c 7561 7469 6f6e g.the evaluation │ │ │ │ -00278810: 206f 6620 6520 6973 2061 6c73 6f20 7368 of e is also sh │ │ │ │ -00278820: 6f77 6e2e 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d own..+---------- │ │ │ │ -00278830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00278860: 6931 203a 2074 696d 6520 335e 3330 2020 i1 : time 3^30 │ │ │ │ -00278870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278890: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -002788a0: 6564 2032 2e31 3865 2d30 3573 2028 6370 ed 2.18e-05s (cp │ │ │ │ -002788b0: 7529 3b20 312e 3131 3031 652d 3035 7320 u); 1.1101e-05s │ │ │ │ -002788c0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -002788d0: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ -002788e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002788f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278900: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00278910: 203d 2032 3035 3839 3131 3332 3039 3436 = 2058911320946 │ │ │ │ -00278920: 3439 2020 2020 2020 2020 2020 2020 2020 49 │ │ │ │ -00278930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278940: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00278950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00278980: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00278990: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2074 ===.. * *note t │ │ │ │ -002789a0: 696d 696e 673a 2074 696d 696e 672c 202d iming: timing, - │ │ │ │ -002789b0: 2d20 7469 6d65 2061 2063 6f6d 7075 7461 - time a computa │ │ │ │ -002789c0: 7469 6f6e 0a20 202a 202a 6e6f 7465 2063 tion. * *note c │ │ │ │ -002789d0: 7075 5469 6d65 3a20 6370 7554 696d 652c puTime: cpuTime, │ │ │ │ -002789e0: 202d 2d20 7365 636f 6e64 7320 6f66 2063 -- seconds of c │ │ │ │ -002789f0: 7075 2074 696d 6520 7573 6564 2073 696e pu time used sin │ │ │ │ -00278a00: 6365 204d 6163 6175 6c61 7932 2062 6567 ce Macaulay2 beg │ │ │ │ -00278a10: 616e 0a20 202a 202a 6e6f 7465 2065 6c61 an. * *note ela │ │ │ │ -00278a20: 7073 6564 5469 6d69 6e67 3a20 656c 6170 psedTiming: elap │ │ │ │ -00278a30: 7365 6454 696d 696e 672c 202d 2d20 7469 sedTiming, -- ti │ │ │ │ -00278a40: 6d65 2061 2063 6f6d 7075 7461 7469 6f6e me a computation │ │ │ │ -00278a50: 2075 7369 6e67 2074 696d 650a 2020 2020 using time. │ │ │ │ -00278a60: 656c 6170 7365 640a 2020 2a20 2a6e 6f74 elapsed. * *not │ │ │ │ -00278a70: 6520 656c 6170 7365 6454 696d 653a 2065 e elapsedTime: e │ │ │ │ -00278a80: 6c61 7073 6564 5469 6d65 2c20 2d2d 2074 lapsedTime, -- t │ │ │ │ -00278a90: 696d 6520 6120 636f 6d70 7574 6174 696f ime a computatio │ │ │ │ -00278aa0: 6e20 696e 636c 7564 696e 6720 7469 6d65 n including time │ │ │ │ -00278ab0: 0a20 2020 2065 6c61 7073 6564 0a0a 466f . elapsed..Fo │ │ │ │ -00278ac0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00278ad0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00278ae0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00278af0: 2a6e 6f74 6520 7469 6d65 3a20 7469 6d65 *note time: time │ │ │ │ -00278b00: 2c20 6973 2061 202a 6e6f 7465 206b 6579 , is a *note key │ │ │ │ -00278b10: 776f 7264 3a20 4b65 7977 6f72 642c 2e0a word: Keyword,.. │ │ │ │ -00278b20: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00278b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00278640: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00278650: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00278660: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00278670: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00278680: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00278690: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +002786a0: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +002786b0: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ +002786c0: 3934 343a 302e 0a1f 0a46 696c 653a 204d 944:0....File: M │ │ │ │ +002786d0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +002786e0: 2c20 4e6f 6465 3a20 7469 6d65 2c20 4e65 , Node: time, Ne │ │ │ │ +002786f0: 7874 3a20 7469 6d69 6e67 2c20 5072 6576 xt: timing, Prev │ │ │ │ +00278700: 3a20 5469 6d65 2c20 5570 3a20 7379 7374 : Time, Up: syst │ │ │ │ +00278710: 656d 2066 6163 696c 6974 6965 730a 0a74 em facilities..t │ │ │ │ +00278720: 696d 6520 2d2d 2074 696d 6520 6120 636f ime -- time a co │ │ │ │ +00278730: 6d70 7574 6174 696f 6e0a 2a2a 2a2a 2a2a mputation.****** │ │ │ │ +00278740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00278750: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +00278760: 200a 2020 2020 2020 2020 7469 6d65 2065 . time e │ │ │ │ +00278770: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00278780: 3d3d 3d3d 3d3d 3d3d 3d0a 0a74 696d 6520 =========..time │ │ │ │ +00278790: 6520 6576 616c 7561 7465 7320 652c 2070 e evaluates e, p │ │ │ │ +002787a0: 7269 6e74 7320 7468 6520 616d 6f75 6e74 rints the amount │ │ │ │ +002787b0: 206f 6620 6370 7520 7469 6d65 2075 7365 of cpu time use │ │ │ │ +002787c0: 642c 2061 6e64 2072 6574 7572 6e73 2074 d, and returns t │ │ │ │ +002787d0: 6865 2076 616c 7565 0a6f 6620 652e 2020 he value.of e. │ │ │ │ +002787e0: 5468 6520 7469 6d65 2075 7365 6420 6279 The time used by │ │ │ │ +002787f0: 2074 6865 2074 6865 2063 7572 7265 6e74 the the current │ │ │ │ +00278800: 2074 6872 6561 6420 616e 6420 6761 7262 thread and garb │ │ │ │ +00278810: 6167 6520 636f 6c6c 6563 7469 6f6e 2064 age collection d │ │ │ │ +00278820: 7572 696e 670a 7468 6520 6576 616c 7561 uring.the evalua │ │ │ │ +00278830: 7469 6f6e 206f 6620 6520 6973 2061 6c73 tion of e is als │ │ │ │ +00278840: 6f20 7368 6f77 6e2e 0a2b 2d2d 2d2d 2d2d o shown..+------ │ │ │ │ +00278850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278880: 2d2d 2b0a 7c69 3120 3a20 7469 6d65 2033 --+.|i1 : time 3 │ │ │ │ +00278890: 5e33 3020 2020 2020 2020 2020 2020 2020 ^30 │ │ │ │ +002788a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002788b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +002788c0: 202d 2d20 7573 6564 2031 2e39 3034 3365 -- used 1.9043e │ │ │ │ +002788d0: 2d30 3573 2028 6370 7529 3b20 352e 3635 -05s (cpu); 5.65 │ │ │ │ +002788e0: 3965 2d30 3673 2028 7468 7265 6164 293b 9e-06s (thread); │ │ │ │ +002788f0: 2030 7320 2867 6329 7c0a 7c20 2020 2020 0s (gc)|.| │ │ │ │ +00278900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278930: 2020 207c 0a7c 6f31 203d 2032 3035 3839 |.|o1 = 20589 │ │ │ │ +00278940: 3131 3332 3039 3436 3439 2020 2020 2020 1132094649 │ │ │ │ +00278950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00278970: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00278980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002789a0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +002789b0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +002789c0: 202a 202a 6e6f 7465 2074 696d 696e 673a * *note timing: │ │ │ │ +002789d0: 2074 696d 696e 672c 202d 2d20 7469 6d65 timing, -- time │ │ │ │ +002789e0: 2061 2063 6f6d 7075 7461 7469 6f6e 0a20 a computation. │ │ │ │ +002789f0: 202a 202a 6e6f 7465 2063 7075 5469 6d65 * *note cpuTime │ │ │ │ +00278a00: 3a20 6370 7554 696d 652c 202d 2d20 7365 : cpuTime, -- se │ │ │ │ +00278a10: 636f 6e64 7320 6f66 2063 7075 2074 696d conds of cpu tim │ │ │ │ +00278a20: 6520 7573 6564 2073 696e 6365 204d 6163 e used since Mac │ │ │ │ +00278a30: 6175 6c61 7932 2062 6567 616e 0a20 202a aulay2 began. * │ │ │ │ +00278a40: 202a 6e6f 7465 2065 6c61 7073 6564 5469 *note elapsedTi │ │ │ │ +00278a50: 6d69 6e67 3a20 656c 6170 7365 6454 696d ming: elapsedTim │ │ │ │ +00278a60: 696e 672c 202d 2d20 7469 6d65 2061 2063 ing, -- time a c │ │ │ │ +00278a70: 6f6d 7075 7461 7469 6f6e 2075 7369 6e67 omputation using │ │ │ │ +00278a80: 2074 696d 650a 2020 2020 656c 6170 7365 time. elapse │ │ │ │ +00278a90: 640a 2020 2a20 2a6e 6f74 6520 656c 6170 d. * *note elap │ │ │ │ +00278aa0: 7365 6454 696d 653a 2065 6c61 7073 6564 sedTime: elapsed │ │ │ │ +00278ab0: 5469 6d65 2c20 2d2d 2074 696d 6520 6120 Time, -- time a │ │ │ │ +00278ac0: 636f 6d70 7574 6174 696f 6e20 696e 636c computation incl │ │ │ │ +00278ad0: 7564 696e 6720 7469 6d65 0a20 2020 2065 uding time. e │ │ │ │ +00278ae0: 6c61 7073 6564 0a0a 466f 7220 7468 6520 lapsed..For the │ │ │ │ +00278af0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00278b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00278b10: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00278b20: 7469 6d65 3a20 7469 6d65 2c20 6973 2061 time: time, is a │ │ │ │ +00278b30: 202a 6e6f 7465 206b 6579 776f 7264 3a20 *note keyword: │ │ │ │ +00278b40: 4b65 7977 6f72 642c 2e0a 0a2d 2d2d 2d2d Keyword,...----- │ │ │ │ 00278b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00278b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278b70: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00278b80: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00278b90: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00278ba0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00278bb0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00278bc0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00278bd0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -00278be0: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ -00278bf0: 6d32 3a39 3039 3a30 2e0a 1f0a 4669 6c65 m2:909:0....File │ │ │ │ -00278c00: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00278c10: 6e66 6f2c 204e 6f64 653a 2074 696d 696e nfo, Node: timin │ │ │ │ -00278c20: 672c 204e 6578 743a 2065 6c61 7073 6564 g, Next: elapsed │ │ │ │ -00278c30: 5469 6d65 2c20 5072 6576 3a20 7469 6d65 Time, Prev: time │ │ │ │ -00278c40: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ -00278c50: 696c 6974 6965 730a 0a74 696d 696e 6720 ilities..timing │ │ │ │ -00278c60: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ -00278c70: 6174 696f 6e0a 2a2a 2a2a 2a2a 2a2a 2a2a ation.********** │ │ │ │ -00278c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00278c90: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -00278ca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a74 696d ===========..tim │ │ │ │ -00278cb0: 696e 6720 6520 6576 616c 7561 7465 7320 ing e evaluates │ │ │ │ -00278cc0: 6520 616e 6420 7265 7475 726e 7320 6120 e and returns a │ │ │ │ -00278cd0: 6c69 7374 206f 6620 7479 7065 202a 6e6f list of type *no │ │ │ │ -00278ce0: 7465 2054 696d 653a 2054 696d 652c 206f te Time: Time, o │ │ │ │ -00278cf0: 6620 7468 6520 666f 726d 0a7b 742c 767d f the form.{t,v} │ │ │ │ -00278d00: 2c20 7768 6572 6520 7420 6973 2074 6865 , where t is the │ │ │ │ -00278d10: 206e 756d 6265 7220 6f66 2073 6563 6f6e number of secon │ │ │ │ -00278d20: 6473 206f 6620 6370 7520 7469 6d69 6e67 ds of cpu timing │ │ │ │ -00278d30: 2075 7365 642c 2061 6e64 2076 2069 7320 used, and v is │ │ │ │ -00278d40: 7468 6520 7661 6c75 650a 6f66 2074 6865 the value.of the │ │ │ │ -00278d50: 2065 7870 7265 7373 696f 6e2e 0a0a 0a54 expression....T │ │ │ │ -00278d60: 6865 2064 6566 6175 6c74 206d 6574 686f he default metho │ │ │ │ -00278d70: 6420 666f 7220 7072 696e 7469 6e67 2073 d for printing s │ │ │ │ -00278d80: 7563 6820 7469 6d69 6e67 2072 6573 756c uch timing resul │ │ │ │ -00278d90: 7473 2069 7320 746f 2064 6973 706c 6179 ts is to display │ │ │ │ -00278da0: 2074 6865 2074 696d 696e 670a 7365 7061 the timing.sepa │ │ │ │ -00278db0: 7261 7465 6c79 2069 6e20 6120 636f 6d6d rately in a comm │ │ │ │ -00278dc0: 656e 7420 6265 6c6f 7720 7468 6520 636f ent below the co │ │ │ │ -00278dd0: 6d70 7574 6564 2076 616c 7565 2e0a 2b2d mputed value..+- │ │ │ │ -00278de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278e00: 2d2d 2d2d 2d2b 0a7c 6931 203a 2074 696d -----+.|i1 : tim │ │ │ │ -00278e10: 696e 6720 335e 3330 2020 2020 2020 2020 ing 3^30 │ │ │ │ -00278e20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00278e30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00278e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278e50: 2020 2020 2020 207c 0a7c 6f31 203d 2032 |.|o1 = 2 │ │ │ │ -00278e60: 3035 3839 3131 3332 3039 3436 3439 2020 05891132094649 │ │ │ │ +00278b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278b90: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +00278ba0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +00278bb0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +00278bc0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +00278bd0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +00278be0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +00278bf0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +00278c00: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ +00278c10: 6f76 5f73 7973 7465 6d2e 6d32 3a39 3039 ov_system.m2:909 │ │ │ │ +00278c20: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00278c30: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +00278c40: 6f64 653a 2074 696d 696e 672c 204e 6578 ode: timing, Nex │ │ │ │ +00278c50: 743a 2065 6c61 7073 6564 5469 6d65 2c20 t: elapsedTime, │ │ │ │ +00278c60: 5072 6576 3a20 7469 6d65 2c20 5570 3a20 Prev: time, Up: │ │ │ │ +00278c70: 7379 7374 656d 2066 6163 696c 6974 6965 system facilitie │ │ │ │ +00278c80: 730a 0a74 696d 696e 6720 2d2d 2074 696d s..timing -- tim │ │ │ │ +00278c90: 6520 6120 636f 6d70 7574 6174 696f 6e0a e a computation. │ │ │ │ +00278ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00278cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ +00278cc0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00278cd0: 3d3d 3d3d 3d0a 0a74 696d 696e 6720 6520 =====..timing e │ │ │ │ +00278ce0: 6576 616c 7561 7465 7320 6520 616e 6420 evaluates e and │ │ │ │ +00278cf0: 7265 7475 726e 7320 6120 6c69 7374 206f returns a list o │ │ │ │ +00278d00: 6620 7479 7065 202a 6e6f 7465 2054 696d f type *note Tim │ │ │ │ +00278d10: 653a 2054 696d 652c 206f 6620 7468 6520 e: Time, of the │ │ │ │ +00278d20: 666f 726d 0a7b 742c 767d 2c20 7768 6572 form.{t,v}, wher │ │ │ │ +00278d30: 6520 7420 6973 2074 6865 206e 756d 6265 e t is the numbe │ │ │ │ +00278d40: 7220 6f66 2073 6563 6f6e 6473 206f 6620 r of seconds of │ │ │ │ +00278d50: 6370 7520 7469 6d69 6e67 2075 7365 642c cpu timing used, │ │ │ │ +00278d60: 2061 6e64 2076 2069 7320 7468 6520 7661 and v is the va │ │ │ │ +00278d70: 6c75 650a 6f66 2074 6865 2065 7870 7265 lue.of the expre │ │ │ │ +00278d80: 7373 696f 6e2e 0a0a 0a54 6865 2064 6566 ssion....The def │ │ │ │ +00278d90: 6175 6c74 206d 6574 686f 6420 666f 7220 ault method for │ │ │ │ +00278da0: 7072 696e 7469 6e67 2073 7563 6820 7469 printing such ti │ │ │ │ +00278db0: 6d69 6e67 2072 6573 756c 7473 2069 7320 ming results is │ │ │ │ +00278dc0: 746f 2064 6973 706c 6179 2074 6865 2074 to display the t │ │ │ │ +00278dd0: 696d 696e 670a 7365 7061 7261 7465 6c79 iming.separately │ │ │ │ +00278de0: 2069 6e20 6120 636f 6d6d 656e 7420 6265 in a comment be │ │ │ │ +00278df0: 6c6f 7720 7468 6520 636f 6d70 7574 6564 low the computed │ │ │ │ +00278e00: 2076 616c 7565 2e0a 2b2d 2d2d 2d2d 2d2d value..+------- │ │ │ │ +00278e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00278e30: 0a7c 6931 203a 2074 696d 696e 6720 335e .|i1 : timing 3^ │ │ │ │ +00278e40: 3330 2020 2020 2020 2020 2020 2020 2020 30 │ │ │ │ +00278e50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00278e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00278e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278e80: 7c0a 7c20 2020 2020 2d2d 202e 3030 3030 |.| -- .0000 │ │ │ │ -00278e90: 3138 3134 3420 7365 636f 6e64 7320 2020 18144 seconds │ │ │ │ -00278ea0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00278eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278ed0: 2020 7c0a 7c6f 3120 3a20 5469 6d65 2020 |.|o1 : Time │ │ │ │ +00278e80: 207c 0a7c 6f31 203d 2032 3035 3839 3131 |.|o1 = 2058911 │ │ │ │ +00278e90: 3332 3039 3436 3439 2020 2020 2020 2020 32094649 │ │ │ │ +00278ea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00278eb0: 2020 2d2d 202e 3030 3030 3139 3930 3620 -- .000019906 │ │ │ │ +00278ec0: 7365 636f 6e64 7320 2020 2020 2020 2020 seconds │ │ │ │ +00278ed0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00278ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278ef0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -00278f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278f20: 2d2d 2d2d 2b0a 7c69 3220 3a20 7065 656b ----+.|i2 : peek │ │ │ │ -00278f30: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ -00278f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00278f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278ef0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00278f00: 3120 3a20 5469 6d65 2020 2020 2020 2020 1 : Time │ │ │ │ +00278f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278f20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00278f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00278f50: 7c69 3220 3a20 7065 656b 206f 6f20 2020 |i2 : peek oo │ │ │ │ 00278f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00278f70: 2020 2020 2020 7c0a 7c6f 3220 3d20 5469 |.|o2 = Ti │ │ │ │ -00278f80: 6d65 7b2e 3030 3030 3138 3134 342c 2032 me{.000018144, 2 │ │ │ │ -00278f90: 3035 3839 3131 3332 3039 3436 3439 7d7c 05891132094649}| │ │ │ │ -00278fa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00278fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00278fc0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00278fd0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00278fe0: 2a20 2a6e 6f74 6520 5469 6d65 3a20 5469 * *note Time: Ti │ │ │ │ -00278ff0: 6d65 2c20 2d2d 2074 6865 2063 6c61 7373 me, -- the class │ │ │ │ -00279000: 206f 6620 616c 6c20 7469 6d69 6e67 2072 of all timing r │ │ │ │ -00279010: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ -00279020: 2074 696d 653a 2074 696d 652c 202d 2d20 time: time, -- │ │ │ │ -00279030: 7469 6d65 2061 2063 6f6d 7075 7461 7469 time a computati │ │ │ │ -00279040: 6f6e 0a20 202a 202a 6e6f 7465 2063 7075 on. * *note cpu │ │ │ │ -00279050: 5469 6d65 3a20 6370 7554 696d 652c 202d Time: cpuTime, - │ │ │ │ -00279060: 2d20 7365 636f 6e64 7320 6f66 2063 7075 - seconds of cpu │ │ │ │ -00279070: 2074 696d 6520 7573 6564 2073 696e 6365 time used since │ │ │ │ -00279080: 204d 6163 6175 6c61 7932 2062 6567 616e Macaulay2 began │ │ │ │ -00279090: 0a20 202a 202a 6e6f 7465 2065 6c61 7073 . * *note elaps │ │ │ │ -002790a0: 6564 5469 6d69 6e67 3a20 656c 6170 7365 edTiming: elapse │ │ │ │ -002790b0: 6454 696d 696e 672c 202d 2d20 7469 6d65 dTiming, -- time │ │ │ │ -002790c0: 2061 2063 6f6d 7075 7461 7469 6f6e 2075 a computation u │ │ │ │ -002790d0: 7369 6e67 2074 696d 650a 2020 2020 656c sing time. el │ │ │ │ -002790e0: 6170 7365 640a 2020 2a20 2a6e 6f74 6520 apsed. * *note │ │ │ │ -002790f0: 656c 6170 7365 6454 696d 653a 2065 6c61 elapsedTime: ela │ │ │ │ -00279100: 7073 6564 5469 6d65 2c20 2d2d 2074 696d psedTime, -- tim │ │ │ │ -00279110: 6520 6120 636f 6d70 7574 6174 696f 6e20 e a computation │ │ │ │ -00279120: 696e 636c 7564 696e 6720 7469 6d65 0a20 including time. │ │ │ │ -00279130: 2020 2065 6c61 7073 6564 0a0a 466f 7220 elapsed..For │ │ │ │ -00279140: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00279150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00279160: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00279170: 6f74 6520 7469 6d69 6e67 3a20 7469 6d69 ote timing: timi │ │ │ │ -00279180: 6e67 2c20 6973 2061 202a 6e6f 7465 206b ng, is a *note k │ │ │ │ -00279190: 6579 776f 7264 3a20 4b65 7977 6f72 642c eyword: Keyword, │ │ │ │ -002791a0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -002791b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002791c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278f70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00278f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00278fa0: 7c0a 7c6f 3220 3d20 5469 6d65 7b2e 3030 |.|o2 = Time{.00 │ │ │ │ +00278fb0: 3030 3139 3930 362c 2032 3035 3839 3131 0019906, 2058911 │ │ │ │ +00278fc0: 3332 3039 3436 3439 7d7c 0a2b 2d2d 2d2d 32094649}|.+---- │ │ │ │ +00278fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00278ff0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +00279000: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +00279010: 6520 5469 6d65 3a20 5469 6d65 2c20 2d2d e Time: Time, -- │ │ │ │ +00279020: 2074 6865 2063 6c61 7373 206f 6620 616c the class of al │ │ │ │ +00279030: 6c20 7469 6d69 6e67 2072 6573 756c 7473 l timing results │ │ │ │ +00279040: 0a20 202a 202a 6e6f 7465 2074 696d 653a . * *note time: │ │ │ │ +00279050: 2074 696d 652c 202d 2d20 7469 6d65 2061 time, -- time a │ │ │ │ +00279060: 2063 6f6d 7075 7461 7469 6f6e 0a20 202a computation. * │ │ │ │ +00279070: 202a 6e6f 7465 2063 7075 5469 6d65 3a20 *note cpuTime: │ │ │ │ +00279080: 6370 7554 696d 652c 202d 2d20 7365 636f cpuTime, -- seco │ │ │ │ +00279090: 6e64 7320 6f66 2063 7075 2074 696d 6520 nds of cpu time │ │ │ │ +002790a0: 7573 6564 2073 696e 6365 204d 6163 6175 used since Macau │ │ │ │ +002790b0: 6c61 7932 2062 6567 616e 0a20 202a 202a lay2 began. * * │ │ │ │ +002790c0: 6e6f 7465 2065 6c61 7073 6564 5469 6d69 note elapsedTimi │ │ │ │ +002790d0: 6e67 3a20 656c 6170 7365 6454 696d 696e ng: elapsedTimin │ │ │ │ +002790e0: 672c 202d 2d20 7469 6d65 2061 2063 6f6d g, -- time a com │ │ │ │ +002790f0: 7075 7461 7469 6f6e 2075 7369 6e67 2074 putation using t │ │ │ │ +00279100: 696d 650a 2020 2020 656c 6170 7365 640a ime. elapsed. │ │ │ │ +00279110: 2020 2a20 2a6e 6f74 6520 656c 6170 7365 * *note elapse │ │ │ │ +00279120: 6454 696d 653a 2065 6c61 7073 6564 5469 dTime: elapsedTi │ │ │ │ +00279130: 6d65 2c20 2d2d 2074 696d 6520 6120 636f me, -- time a co │ │ │ │ +00279140: 6d70 7574 6174 696f 6e20 696e 636c 7564 mputation includ │ │ │ │ +00279150: 696e 6720 7469 6d65 0a20 2020 2065 6c61 ing time. ela │ │ │ │ +00279160: 7073 6564 0a0a 466f 7220 7468 6520 7072 psed..For the pr │ │ │ │ +00279170: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00279180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00279190: 206f 626a 6563 7420 2a6e 6f74 6520 7469 object *note ti │ │ │ │ +002791a0: 6d69 6e67 3a20 7469 6d69 6e67 2c20 6973 ming: timing, is │ │ │ │ +002791b0: 2061 202a 6e6f 7465 206b 6579 776f 7264 a *note keyword │ │ │ │ +002791c0: 3a20 4b65 7977 6f72 642c 2e0a 0a2d 2d2d : Keyword,...--- │ │ │ │ 002791d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002791e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002791f0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00279200: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00279210: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00279220: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00279230: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00279240: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00279250: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -00279260: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ -00279270: 6d2e 6d32 3a38 3938 3a30 2e0a 1f0a 4669 m.m2:898:0....Fi │ │ │ │ -00279280: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ -00279290: 2e69 6e66 6f2c 204e 6f64 653a 2065 6c61 .info, Node: ela │ │ │ │ -002792a0: 7073 6564 5469 6d65 2c20 4e65 7874 3a20 psedTime, Next: │ │ │ │ -002792b0: 656c 6170 7365 6454 696d 696e 672c 2050 elapsedTiming, P │ │ │ │ -002792c0: 7265 763a 2074 696d 696e 672c 2055 703a rev: timing, Up: │ │ │ │ -002792d0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -002792e0: 6573 0a0a 656c 6170 7365 6454 696d 6520 es..elapsedTime │ │ │ │ -002792f0: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ -00279300: 6174 696f 6e20 696e 636c 7564 696e 6720 ation including │ │ │ │ -00279310: 7469 6d65 2065 6c61 7073 6564 0a2a 2a2a time elapsed.*** │ │ │ │ -00279320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279350: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00279360: 3a20 0a20 2020 2020 2020 2065 6c61 7073 : . elaps │ │ │ │ -00279370: 6564 5469 6d65 2065 0a0a 4465 7363 7269 edTime e..Descri │ │ │ │ -00279380: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00279390: 3d0a 0a65 6c61 7073 6564 5469 6d65 2065 =..elapsedTime e │ │ │ │ -002793a0: 2065 7661 6c75 6174 6573 2065 2c20 7072 evaluates e, pr │ │ │ │ -002793b0: 696e 7473 2074 6865 2061 6d6f 756e 7420 ints the amount │ │ │ │ -002793c0: 6f66 2074 696d 6520 656c 6170 7365 642c of time elapsed, │ │ │ │ -002793d0: 2061 6e64 2072 6574 7572 6e73 2074 6865 and returns the │ │ │ │ -002793e0: 0a76 616c 7565 206f 6620 652e 0a2b 2d2d .value of e..+-- │ │ │ │ -002793f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279400: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 656c ------+.|i1 : el │ │ │ │ -00279410: 6170 7365 6454 696d 6520 736c 6565 7020 apsedTime sleep │ │ │ │ -00279420: 317c 0a7c 202d 2d20 312e 3030 3031 3573 1|.| -- 1.00015s │ │ │ │ -00279430: 2065 6c61 7073 6564 2020 2020 7c0a 7c20 elapsed |.| │ │ │ │ -00279440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279450: 2020 2020 2020 207c 0a7c 6f31 203d 2030 |.|o1 = 0 │ │ │ │ -00279460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279470: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00279480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00279490: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -002794a0: 3d0a 0a20 202a 202a 6e6f 7465 2065 6c61 =.. * *note ela │ │ │ │ -002794b0: 7073 6564 5469 6d69 6e67 3a20 656c 6170 psedTiming: elap │ │ │ │ -002794c0: 7365 6454 696d 696e 672c 202d 2d20 7469 sedTiming, -- ti │ │ │ │ -002794d0: 6d65 2061 2063 6f6d 7075 7461 7469 6f6e me a computation │ │ │ │ -002794e0: 2075 7369 6e67 2074 696d 650a 2020 2020 using time. │ │ │ │ -002794f0: 656c 6170 7365 640a 2020 2a20 2a6e 6f74 elapsed. * *not │ │ │ │ -00279500: 6520 6370 7554 696d 653a 2063 7075 5469 e cpuTime: cpuTi │ │ │ │ -00279510: 6d65 2c20 2d2d 2073 6563 6f6e 6473 206f me, -- seconds o │ │ │ │ -00279520: 6620 6370 7520 7469 6d65 2075 7365 6420 f cpu time used │ │ │ │ -00279530: 7369 6e63 6520 4d61 6361 756c 6179 3220 since Macaulay2 │ │ │ │ -00279540: 6265 6761 6e0a 2020 2a20 2a6e 6f74 6520 began. * *note │ │ │ │ -00279550: 4743 7374 6174 733a 2047 4373 7461 7473 GCstats: GCstats │ │ │ │ -00279560: 2c20 2d2d 2069 6e66 6f72 6d61 7469 6f6e , -- information │ │ │ │ -00279570: 2061 626f 7574 2074 6865 2073 7461 7475 about the statu │ │ │ │ -00279580: 7320 6f66 2074 6865 2067 6172 6261 6765 s of the garbage │ │ │ │ -00279590: 0a20 2020 2063 6f6c 6c65 6374 6f72 0a20 . collector. │ │ │ │ -002795a0: 202a 202a 6e6f 7465 2070 6172 616c 6c65 * *note paralle │ │ │ │ -002795b0: 6c20 7072 6f67 7261 6d6d 696e 6720 7769 l programming wi │ │ │ │ -002795c0: 7468 2074 6872 6561 6473 2061 6e64 2074 th threads and t │ │ │ │ -002795d0: 6173 6b73 3a20 7061 7261 6c6c 656c 2070 asks: parallel p │ │ │ │ -002795e0: 726f 6772 616d 6d69 6e67 0a20 2020 2077 rogramming. w │ │ │ │ -002795f0: 6974 6820 7468 7265 6164 7320 616e 6420 ith threads and │ │ │ │ -00279600: 7461 736b 732c 0a20 202a 202a 6e6f 7465 tasks,. * *note │ │ │ │ -00279610: 2070 6172 616c 6c65 6c69 736d 2069 6e20 parallelism in │ │ │ │ -00279620: 656e 6769 6e65 2063 6f6d 7075 7461 7469 engine computati │ │ │ │ -00279630: 6f6e 733a 2070 6172 616c 6c65 6c69 736d ons: parallelism │ │ │ │ -00279640: 2069 6e20 656e 6769 6e65 0a20 2020 2063 in engine. c │ │ │ │ -00279650: 6f6d 7075 7461 7469 6f6e 732c 202d 2d20 omputations, -- │ │ │ │ -00279660: 7061 7261 6c6c 656c 6973 6d20 696e 2065 parallelism in e │ │ │ │ -00279670: 6e67 696e 6520 636f 6d70 7574 6174 696f ngine computatio │ │ │ │ -00279680: 6e73 0a0a 466f 7220 7468 6520 7072 6f67 ns..For the prog │ │ │ │ -00279690: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -002796a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -002796b0: 626a 6563 7420 2a6e 6f74 6520 656c 6170 bject *note elap │ │ │ │ -002796c0: 7365 6454 696d 653a 2065 6c61 7073 6564 sedTime: elapsed │ │ │ │ -002796d0: 5469 6d65 2c20 6973 2061 202a 6e6f 7465 Time, is a *note │ │ │ │ -002796e0: 206b 6579 776f 7264 3a20 4b65 7977 6f72 keyword: Keywor │ │ │ │ -002796f0: 642c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d d,...----------- │ │ │ │ -00279700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002791f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00279220: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00279230: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00279240: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00279250: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00279260: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00279270: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00279280: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +00279290: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a38 c/ov_system.m2:8 │ │ │ │ +002792a0: 3938 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 98:0....File: Ma │ │ │ │ +002792b0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ +002792c0: 204e 6f64 653a 2065 6c61 7073 6564 5469 Node: elapsedTi │ │ │ │ +002792d0: 6d65 2c20 4e65 7874 3a20 656c 6170 7365 me, Next: elapse │ │ │ │ +002792e0: 6454 696d 696e 672c 2050 7265 763a 2074 dTiming, Prev: t │ │ │ │ +002792f0: 696d 696e 672c 2055 703a 2073 7973 7465 iming, Up: syste │ │ │ │ +00279300: 6d20 6661 6369 6c69 7469 6573 0a0a 656c m facilities..el │ │ │ │ +00279310: 6170 7365 6454 696d 6520 2d2d 2074 696d apsedTime -- tim │ │ │ │ +00279320: 6520 6120 636f 6d70 7574 6174 696f 6e20 e a computation │ │ │ │ +00279330: 696e 636c 7564 696e 6720 7469 6d65 2065 including time e │ │ │ │ +00279340: 6c61 7073 6564 0a2a 2a2a 2a2a 2a2a 2a2a lapsed.********* │ │ │ │ +00279350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00279360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00279370: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00279380: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00279390: 2020 2020 2065 6c61 7073 6564 5469 6d65 elapsedTime │ │ │ │ +002793a0: 2065 0a0a 4465 7363 7269 7074 696f 6e0a e..Description. │ │ │ │ +002793b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a65 6c61 ===========..ela │ │ │ │ +002793c0: 7073 6564 5469 6d65 2065 2065 7661 6c75 psedTime e evalu │ │ │ │ +002793d0: 6174 6573 2065 2c20 7072 696e 7473 2074 ates e, prints t │ │ │ │ +002793e0: 6865 2061 6d6f 756e 7420 6f66 2074 696d he amount of tim │ │ │ │ +002793f0: 6520 656c 6170 7365 642c 2061 6e64 2072 e elapsed, and r │ │ │ │ +00279400: 6574 7572 6e73 2074 6865 0a76 616c 7565 eturns the.value │ │ │ │ +00279410: 206f 6620 652e 0a2b 2d2d 2d2d 2d2d 2d2d of e..+-------- │ │ │ │ +00279420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279430: 2b0a 7c69 3120 3a20 656c 6170 7365 6454 +.|i1 : elapsedT │ │ │ │ +00279440: 696d 6520 736c 6565 7020 317c 0a7c 202d ime sleep 1|.| - │ │ │ │ +00279450: 2d20 312e 3030 3031 3373 2065 6c61 7073 - 1.00013s elaps │ │ │ │ +00279460: 6564 2020 2020 7c0a 7c20 2020 2020 2020 ed |.| │ │ │ │ +00279470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00279480: 207c 0a7c 6f31 203d 2030 2020 2020 2020 |.|o1 = 0 │ │ │ │ +00279490: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +002794a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002794b0: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +002794c0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +002794d0: 202a 6e6f 7465 2065 6c61 7073 6564 5469 *note elapsedTi │ │ │ │ +002794e0: 6d69 6e67 3a20 656c 6170 7365 6454 696d ming: elapsedTim │ │ │ │ +002794f0: 696e 672c 202d 2d20 7469 6d65 2061 2063 ing, -- time a c │ │ │ │ +00279500: 6f6d 7075 7461 7469 6f6e 2075 7369 6e67 omputation using │ │ │ │ +00279510: 2074 696d 650a 2020 2020 656c 6170 7365 time. elapse │ │ │ │ +00279520: 640a 2020 2a20 2a6e 6f74 6520 6370 7554 d. * *note cpuT │ │ │ │ +00279530: 696d 653a 2063 7075 5469 6d65 2c20 2d2d ime: cpuTime, -- │ │ │ │ +00279540: 2073 6563 6f6e 6473 206f 6620 6370 7520 seconds of cpu │ │ │ │ +00279550: 7469 6d65 2075 7365 6420 7369 6e63 6520 time used since │ │ │ │ +00279560: 4d61 6361 756c 6179 3220 6265 6761 6e0a Macaulay2 began. │ │ │ │ +00279570: 2020 2a20 2a6e 6f74 6520 4743 7374 6174 * *note GCstat │ │ │ │ +00279580: 733a 2047 4373 7461 7473 2c20 2d2d 2069 s: GCstats, -- i │ │ │ │ +00279590: 6e66 6f72 6d61 7469 6f6e 2061 626f 7574 nformation about │ │ │ │ +002795a0: 2074 6865 2073 7461 7475 7320 6f66 2074 the status of t │ │ │ │ +002795b0: 6865 2067 6172 6261 6765 0a20 2020 2063 he garbage. c │ │ │ │ +002795c0: 6f6c 6c65 6374 6f72 0a20 202a 202a 6e6f ollector. * *no │ │ │ │ +002795d0: 7465 2070 6172 616c 6c65 6c20 7072 6f67 te parallel prog │ │ │ │ +002795e0: 7261 6d6d 696e 6720 7769 7468 2074 6872 ramming with thr │ │ │ │ +002795f0: 6561 6473 2061 6e64 2074 6173 6b73 3a20 eads and tasks: │ │ │ │ +00279600: 7061 7261 6c6c 656c 2070 726f 6772 616d parallel program │ │ │ │ +00279610: 6d69 6e67 0a20 2020 2077 6974 6820 7468 ming. with th │ │ │ │ +00279620: 7265 6164 7320 616e 6420 7461 736b 732c reads and tasks, │ │ │ │ +00279630: 0a20 202a 202a 6e6f 7465 2070 6172 616c . * *note paral │ │ │ │ +00279640: 6c65 6c69 736d 2069 6e20 656e 6769 6e65 lelism in engine │ │ │ │ +00279650: 2063 6f6d 7075 7461 7469 6f6e 733a 2070 computations: p │ │ │ │ +00279660: 6172 616c 6c65 6c69 736d 2069 6e20 656e arallelism in en │ │ │ │ +00279670: 6769 6e65 0a20 2020 2063 6f6d 7075 7461 gine. computa │ │ │ │ +00279680: 7469 6f6e 732c 202d 2d20 7061 7261 6c6c tions, -- parall │ │ │ │ +00279690: 656c 6973 6d20 696e 2065 6e67 696e 6520 elism in engine │ │ │ │ +002796a0: 636f 6d70 7574 6174 696f 6e73 0a0a 466f computations..Fo │ │ │ │ +002796b0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +002796c0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +002796d0: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +002796e0: 2a6e 6f74 6520 656c 6170 7365 6454 696d *note elapsedTim │ │ │ │ +002796f0: 653a 2065 6c61 7073 6564 5469 6d65 2c20 e: elapsedTime, │ │ │ │ +00279700: 6973 2061 202a 6e6f 7465 206b 6579 776f is a *note keywo │ │ │ │ +00279710: 7264 3a20 4b65 7977 6f72 642c 2e0a 0a2d rd: Keyword,...- │ │ │ │ 00279720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00279730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279740: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00279750: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00279760: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00279770: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00279780: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00279790: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -002797a0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -002797b0: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -002797c0: 7465 6d2e 6d32 3a39 3335 3a30 2e0a 1f0a tem.m2:935:0.... │ │ │ │ -002797d0: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -002797e0: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2065 oc.info, Node: e │ │ │ │ -002797f0: 6c61 7073 6564 5469 6d69 6e67 2c20 4e65 lapsedTiming, Ne │ │ │ │ -00279800: 7874 3a20 6370 7554 696d 652c 2050 7265 xt: cpuTime, Pre │ │ │ │ -00279810: 763a 2065 6c61 7073 6564 5469 6d65 2c20 v: elapsedTime, │ │ │ │ -00279820: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ -00279830: 6974 6965 730a 0a65 6c61 7073 6564 5469 ities..elapsedTi │ │ │ │ -00279840: 6d69 6e67 202d 2d20 7469 6d65 2061 2063 ming -- time a c │ │ │ │ -00279850: 6f6d 7075 7461 7469 6f6e 2075 7369 6e67 omputation using │ │ │ │ -00279860: 2074 696d 6520 656c 6170 7365 640a 2a2a time elapsed.** │ │ │ │ -00279870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002798a0: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ -002798b0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a65 n.===========..e │ │ │ │ -002798c0: 6c61 7073 6564 5469 6d69 6e67 2065 2065 lapsedTiming e e │ │ │ │ -002798d0: 7661 6c75 6174 6573 2065 2061 6e64 2072 valuates e and r │ │ │ │ -002798e0: 6574 7572 6e73 2061 206c 6973 7420 6f66 eturns a list of │ │ │ │ -002798f0: 2074 7970 6520 2a6e 6f74 6520 5469 6d65 type *note Time │ │ │ │ -00279900: 3a20 5469 6d65 2c20 6f66 2074 6865 0a66 : Time, of the.f │ │ │ │ -00279910: 6f72 6d20 7b74 2c76 7d2c 2077 6865 7265 orm {t,v}, where │ │ │ │ -00279920: 2074 2069 7320 7468 6520 6e75 6d62 6572 t is the number │ │ │ │ -00279930: 206f 6620 7365 636f 6e64 7320 6f66 2074 of seconds of t │ │ │ │ -00279940: 696d 6520 656c 6170 7365 642c 2061 6e64 ime elapsed, and │ │ │ │ -00279950: 2076 2069 7320 7468 650a 7661 6c75 6520 v is the.value │ │ │ │ -00279960: 6f66 2074 6865 2065 7870 7265 7373 696f of the expressio │ │ │ │ -00279970: 6e2e 0a0a 0a54 6865 2064 6566 6175 6c74 n....The default │ │ │ │ -00279980: 206d 6574 686f 6420 666f 7220 7072 696e method for prin │ │ │ │ -00279990: 7469 6e67 2073 7563 6820 7469 6d69 6e67 ting such timing │ │ │ │ -002799a0: 2072 6573 756c 7473 2069 7320 746f 2064 results is to d │ │ │ │ -002799b0: 6973 706c 6179 2074 6865 2074 696d 696e isplay the timin │ │ │ │ -002799c0: 670a 7365 7061 7261 7465 6c79 2069 6e20 g.separately in │ │ │ │ -002799d0: 6120 636f 6d6d 656e 7420 6265 6c6f 7720 a comment below │ │ │ │ -002799e0: 7468 6520 636f 6d70 7574 6564 2076 616c the computed val │ │ │ │ -002799f0: 7565 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ue..+----------- │ │ │ │ -00279a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00279a10: 0a7c 6931 203a 2065 6c61 7073 6564 5469 .|i1 : elapsedTi │ │ │ │ -00279a20: 6d69 6e67 2073 6c65 6570 2031 7c0a 7c20 ming sleep 1|.| │ │ │ │ -00279a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279a40: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -00279a50: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00279a60: 2020 2020 2020 7c0a 7c20 2020 2020 2d2d |.| -- │ │ │ │ -00279a70: 2031 2e30 3030 3135 2073 6563 6f6e 6473 1.00015 seconds │ │ │ │ -00279a80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00279a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279aa0: 7c0a 7c6f 3120 3a20 5469 6d65 2020 2020 |.|o1 : Time │ │ │ │ -00279ab0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -00279ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -00279ae0: 3a20 7065 656b 206f 6f20 2020 2020 2020 : peek oo │ │ │ │ -00279af0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00279b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279b10: 2020 2020 7c0a 7c6f 3220 3d20 5469 6d65 |.|o2 = Time │ │ │ │ -00279b20: 7b31 2e30 3030 3135 2c20 307d 2020 2020 {1.00015, 0} │ │ │ │ -00279b30: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00279b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00279b50: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00279b60: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5469 ==.. * *note Ti │ │ │ │ -00279b70: 6d65 3a20 5469 6d65 2c20 2d2d 2074 6865 me: Time, -- the │ │ │ │ -00279b80: 2063 6c61 7373 206f 6620 616c 6c20 7469 class of all ti │ │ │ │ -00279b90: 6d69 6e67 2072 6573 756c 7473 0a20 202a ming results. * │ │ │ │ -00279ba0: 202a 6e6f 7465 2065 6c61 7073 6564 5469 *note elapsedTi │ │ │ │ -00279bb0: 6d65 3a20 656c 6170 7365 6454 696d 652c me: elapsedTime, │ │ │ │ -00279bc0: 202d 2d20 7469 6d65 2061 2063 6f6d 7075 -- time a compu │ │ │ │ -00279bd0: 7461 7469 6f6e 2069 6e63 6c75 6469 6e67 tation including │ │ │ │ -00279be0: 2074 696d 650a 2020 2020 656c 6170 7365 time. elapse │ │ │ │ -00279bf0: 640a 2020 2a20 2a6e 6f74 6520 6370 7554 d. * *note cpuT │ │ │ │ -00279c00: 696d 653a 2063 7075 5469 6d65 2c20 2d2d ime: cpuTime, -- │ │ │ │ -00279c10: 2073 6563 6f6e 6473 206f 6620 6370 7520 seconds of cpu │ │ │ │ -00279c20: 7469 6d65 2075 7365 6420 7369 6e63 6520 time used since │ │ │ │ -00279c30: 4d61 6361 756c 6179 3220 6265 6761 6e0a Macaulay2 began. │ │ │ │ -00279c40: 2020 2a20 2a6e 6f74 6520 7469 6d69 6e67 * *note timing │ │ │ │ -00279c50: 3a20 7469 6d69 6e67 2c20 2d2d 2074 696d : timing, -- tim │ │ │ │ -00279c60: 6520 6120 636f 6d70 7574 6174 696f 6e0a e a computation. │ │ │ │ -00279c70: 2020 2a20 2a6e 6f74 6520 7469 6d65 3a20 * *note time: │ │ │ │ -00279c80: 7469 6d65 2c20 2d2d 2074 696d 6520 6120 time, -- time a │ │ │ │ -00279c90: 636f 6d70 7574 6174 696f 6e0a 0a46 6f72 computation..For │ │ │ │ -00279ca0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00279cb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00279cc0: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00279cd0: 6e6f 7465 2065 6c61 7073 6564 5469 6d69 note elapsedTimi │ │ │ │ -00279ce0: 6e67 3a20 656c 6170 7365 6454 696d 696e ng: elapsedTimin │ │ │ │ -00279cf0: 672c 2069 7320 6120 2a6e 6f74 6520 6b65 g, is a *note ke │ │ │ │ -00279d00: 7977 6f72 643a 204b 6579 776f 7264 2c2e yword: Keyword,. │ │ │ │ -00279d10: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00279d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00279770: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00279780: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00279790: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +002797a0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +002797b0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +002797c0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +002797d0: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +002797e0: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +002797f0: 3a39 3335 3a30 2e0a 1f0a 4669 6c65 3a20 :935:0....File: │ │ │ │ +00279800: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +00279810: 6f2c 204e 6f64 653a 2065 6c61 7073 6564 o, Node: elapsed │ │ │ │ +00279820: 5469 6d69 6e67 2c20 4e65 7874 3a20 6370 Timing, Next: cp │ │ │ │ +00279830: 7554 696d 652c 2050 7265 763a 2065 6c61 uTime, Prev: ela │ │ │ │ +00279840: 7073 6564 5469 6d65 2c20 5570 3a20 7379 psedTime, Up: sy │ │ │ │ +00279850: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +00279860: 0a65 6c61 7073 6564 5469 6d69 6e67 202d .elapsedTiming - │ │ │ │ +00279870: 2d20 7469 6d65 2061 2063 6f6d 7075 7461 - time a computa │ │ │ │ +00279880: 7469 6f6e 2075 7369 6e67 2074 696d 6520 tion using time │ │ │ │ +00279890: 656c 6170 7365 640a 2a2a 2a2a 2a2a 2a2a elapsed.******** │ │ │ │ +002798a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002798b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002798c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +002798d0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +002798e0: 3d3d 3d3d 3d3d 3d0a 0a65 6c61 7073 6564 =======..elapsed │ │ │ │ +002798f0: 5469 6d69 6e67 2065 2065 7661 6c75 6174 Timing e evaluat │ │ │ │ +00279900: 6573 2065 2061 6e64 2072 6574 7572 6e73 es e and returns │ │ │ │ +00279910: 2061 206c 6973 7420 6f66 2074 7970 6520 a list of type │ │ │ │ +00279920: 2a6e 6f74 6520 5469 6d65 3a20 5469 6d65 *note Time: Time │ │ │ │ +00279930: 2c20 6f66 2074 6865 0a66 6f72 6d20 7b74 , of the.form {t │ │ │ │ +00279940: 2c76 7d2c 2077 6865 7265 2074 2069 7320 ,v}, where t is │ │ │ │ +00279950: 7468 6520 6e75 6d62 6572 206f 6620 7365 the number of se │ │ │ │ +00279960: 636f 6e64 7320 6f66 2074 696d 6520 656c conds of time el │ │ │ │ +00279970: 6170 7365 642c 2061 6e64 2076 2069 7320 apsed, and v is │ │ │ │ +00279980: 7468 650a 7661 6c75 6520 6f66 2074 6865 the.value of the │ │ │ │ +00279990: 2065 7870 7265 7373 696f 6e2e 0a0a 0a54 expression....T │ │ │ │ +002799a0: 6865 2064 6566 6175 6c74 206d 6574 686f he default metho │ │ │ │ +002799b0: 6420 666f 7220 7072 696e 7469 6e67 2073 d for printing s │ │ │ │ +002799c0: 7563 6820 7469 6d69 6e67 2072 6573 756c uch timing resul │ │ │ │ +002799d0: 7473 2069 7320 746f 2064 6973 706c 6179 ts is to display │ │ │ │ +002799e0: 2074 6865 2074 696d 696e 670a 7365 7061 the timing.sepa │ │ │ │ +002799f0: 7261 7465 6c79 2069 6e20 6120 636f 6d6d rately in a comm │ │ │ │ +00279a00: 656e 7420 6265 6c6f 7720 7468 6520 636f ent below the co │ │ │ │ +00279a10: 6d70 7574 6564 2076 616c 7565 2e0a 2b2d mputed value..+- │ │ │ │ +00279a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279a30: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00279a40: 2065 6c61 7073 6564 5469 6d69 6e67 2073 elapsedTiming s │ │ │ │ +00279a50: 6c65 6570 2031 7c0a 7c20 2020 2020 2020 leep 1|.| │ │ │ │ +00279a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00279a70: 2020 207c 0a7c 6f31 203d 2030 2020 2020 |.|o1 = 0 │ │ │ │ +00279a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00279a90: 7c0a 7c20 2020 2020 2d2d 2031 2e30 3030 |.| -- 1.000 │ │ │ │ +00279aa0: 3134 2073 6563 6f6e 6473 2020 207c 0a7c 14 seconds |.| │ │ │ │ +00279ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00279ac0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00279ad0: 3a20 5469 6d65 2020 2020 2020 2020 2020 : Time │ │ │ │ +00279ae0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00279af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279b00: 2d2d 2d2d 2b0a 7c69 3220 3a20 7065 656b ----+.|i2 : peek │ │ │ │ +00279b10: 206f 6f20 2020 2020 2020 2020 2020 2020 oo │ │ │ │ +00279b20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00279b30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00279b40: 7c6f 3220 3d20 5469 6d65 7b31 2e30 3030 |o2 = Time{1.000 │ │ │ │ +00279b50: 3134 2c20 307d 2020 2020 207c 0a2b 2d2d 14, 0} |.+-- │ │ │ │ +00279b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279b70: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +00279b80: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00279b90: 2a20 2a6e 6f74 6520 5469 6d65 3a20 5469 * *note Time: Ti │ │ │ │ +00279ba0: 6d65 2c20 2d2d 2074 6865 2063 6c61 7373 me, -- the class │ │ │ │ +00279bb0: 206f 6620 616c 6c20 7469 6d69 6e67 2072 of all timing r │ │ │ │ +00279bc0: 6573 756c 7473 0a20 202a 202a 6e6f 7465 esults. * *note │ │ │ │ +00279bd0: 2065 6c61 7073 6564 5469 6d65 3a20 656c elapsedTime: el │ │ │ │ +00279be0: 6170 7365 6454 696d 652c 202d 2d20 7469 apsedTime, -- ti │ │ │ │ +00279bf0: 6d65 2061 2063 6f6d 7075 7461 7469 6f6e me a computation │ │ │ │ +00279c00: 2069 6e63 6c75 6469 6e67 2074 696d 650a including time. │ │ │ │ +00279c10: 2020 2020 656c 6170 7365 640a 2020 2a20 elapsed. * │ │ │ │ +00279c20: 2a6e 6f74 6520 6370 7554 696d 653a 2063 *note cpuTime: c │ │ │ │ +00279c30: 7075 5469 6d65 2c20 2d2d 2073 6563 6f6e puTime, -- secon │ │ │ │ +00279c40: 6473 206f 6620 6370 7520 7469 6d65 2075 ds of cpu time u │ │ │ │ +00279c50: 7365 6420 7369 6e63 6520 4d61 6361 756c sed since Macaul │ │ │ │ +00279c60: 6179 3220 6265 6761 6e0a 2020 2a20 2a6e ay2 began. * *n │ │ │ │ +00279c70: 6f74 6520 7469 6d69 6e67 3a20 7469 6d69 ote timing: timi │ │ │ │ +00279c80: 6e67 2c20 2d2d 2074 696d 6520 6120 636f ng, -- time a co │ │ │ │ +00279c90: 6d70 7574 6174 696f 6e0a 2020 2a20 2a6e mputation. * *n │ │ │ │ +00279ca0: 6f74 6520 7469 6d65 3a20 7469 6d65 2c20 ote time: time, │ │ │ │ +00279cb0: 2d2d 2074 696d 6520 6120 636f 6d70 7574 -- time a comput │ │ │ │ +00279cc0: 6174 696f 6e0a 0a46 6f72 2074 6865 2070 ation..For the p │ │ │ │ +00279cd0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00279ce0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00279cf0: 6520 6f62 6a65 6374 202a 6e6f 7465 2065 e object *note e │ │ │ │ +00279d00: 6c61 7073 6564 5469 6d69 6e67 3a20 656c lapsedTiming: el │ │ │ │ +00279d10: 6170 7365 6454 696d 696e 672c 2069 7320 apsedTiming, is │ │ │ │ +00279d20: 6120 2a6e 6f74 6520 6b65 7977 6f72 643a a *note keyword: │ │ │ │ +00279d30: 204b 6579 776f 7264 2c2e 0a0a 2d2d 2d2d Keyword,...---- │ │ │ │ 00279d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00279d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279d60: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00279d70: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00279d80: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00279d90: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00279da0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00279db0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00279dc0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -00279dd0: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ -00279de0: 2e6d 323a 3932 343a 302e 0a1f 0a46 696c .m2:924:0....Fil │ │ │ │ -00279df0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -00279e00: 696e 666f 2c20 4e6f 6465 3a20 6370 7554 info, Node: cpuT │ │ │ │ -00279e10: 696d 652c 204e 6578 743a 2063 7572 7265 ime, Next: curre │ │ │ │ -00279e20: 6e74 5469 6d65 2c20 5072 6576 3a20 656c ntTime, Prev: el │ │ │ │ -00279e30: 6170 7365 6454 696d 696e 672c 2055 703a apsedTiming, Up: │ │ │ │ -00279e40: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -00279e50: 6573 0a0a 6370 7554 696d 6520 2d2d 2073 es..cpuTime -- s │ │ │ │ -00279e60: 6563 6f6e 6473 206f 6620 6370 7520 7469 econds of cpu ti │ │ │ │ -00279e70: 6d65 2075 7365 6420 7369 6e63 6520 4d61 me used since Ma │ │ │ │ -00279e80: 6361 756c 6179 3220 6265 6761 6e0a 2a2a caulay2 began.** │ │ │ │ -00279e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279ea0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279eb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00279ec0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00279ed0: 6765 3a20 0a20 2020 2020 2020 2063 7075 ge: . cpu │ │ │ │ -00279ee0: 5469 6d65 2829 0a20 202a 204f 7574 7075 Time(). * Outpu │ │ │ │ -00279ef0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -00279f00: 6f74 6520 7265 616c 206e 756d 6265 723a ote real number: │ │ │ │ -00279f10: 2052 522c 2c20 7468 6520 6e75 6d62 6572 RR,, the number │ │ │ │ -00279f20: 206f 6620 7365 636f 6e64 7320 6f66 2063 of seconds of c │ │ │ │ -00279f30: 7075 2074 696d 6520 7573 6564 2073 696e pu time used sin │ │ │ │ -00279f40: 6365 0a20 2020 2020 2020 2074 6865 2070 ce. the p │ │ │ │ -00279f50: 726f 6772 616d 2077 6173 2073 7461 7274 rogram was start │ │ │ │ -00279f60: 6564 0a0a 4465 7363 7269 7074 696f 6e0a ed..Description. │ │ │ │ -00279f70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ -00279f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00279fb0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00279fc0: 7431 203d 2063 7075 5469 6d65 2829 2020 t1 = cpuTime() │ │ │ │ -00279fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00279ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00279d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00279d90: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00279da0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00279db0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00279dc0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00279dd0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00279de0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00279df0: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +00279e00: 2f6f 765f 7379 7374 656d 2e6d 323a 3932 /ov_system.m2:92 │ │ │ │ +00279e10: 343a 302e 0a1f 0a46 696c 653a 204d 6163 4:0....File: Mac │ │ │ │ +00279e20: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +00279e30: 4e6f 6465 3a20 6370 7554 696d 652c 204e Node: cpuTime, N │ │ │ │ +00279e40: 6578 743a 2063 7572 7265 6e74 5469 6d65 ext: currentTime │ │ │ │ +00279e50: 2c20 5072 6576 3a20 656c 6170 7365 6454 , Prev: elapsedT │ │ │ │ +00279e60: 696d 696e 672c 2055 703a 2073 7973 7465 iming, Up: syste │ │ │ │ +00279e70: 6d20 6661 6369 6c69 7469 6573 0a0a 6370 m facilities..cp │ │ │ │ +00279e80: 7554 696d 6520 2d2d 2073 6563 6f6e 6473 uTime -- seconds │ │ │ │ +00279e90: 206f 6620 6370 7520 7469 6d65 2075 7365 of cpu time use │ │ │ │ +00279ea0: 6420 7369 6e63 6520 4d61 6361 756c 6179 d since Macaulay │ │ │ │ +00279eb0: 3220 6265 6761 6e0a 2a2a 2a2a 2a2a 2a2a 2 began.******** │ │ │ │ +00279ec0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00279ed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00279ee0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00279ef0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00279f00: 2020 2020 2020 2063 7075 5469 6d65 2829 cpuTime() │ │ │ │ +00279f10: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00279f20: 2020 2020 2a20 6120 2a6e 6f74 6520 7265 * a *note re │ │ │ │ +00279f30: 616c 206e 756d 6265 723a 2052 522c 2c20 al number: RR,, │ │ │ │ +00279f40: 7468 6520 6e75 6d62 6572 206f 6620 7365 the number of se │ │ │ │ +00279f50: 636f 6e64 7320 6f66 2063 7075 2074 696d conds of cpu tim │ │ │ │ +00279f60: 6520 7573 6564 2073 696e 6365 0a20 2020 e used since. │ │ │ │ +00279f70: 2020 2020 2074 6865 2070 726f 6772 616d the program │ │ │ │ +00279f80: 2077 6173 2073 7461 7274 6564 0a0a 4465 was started..De │ │ │ │ +00279f90: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00279fa0: 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d =====..+-------- │ │ │ │ +00279fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00279fe0: 2d2d 2b0a 7c69 3120 3a20 7431 203d 2063 --+.|i1 : t1 = c │ │ │ │ +00279ff0: 7075 5469 6d65 2829 2020 2020 2020 2020 puTime() │ │ │ │ 0027a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a030: 2020 7c0a 7c6f 3120 3d20 3335 342e 3032 |.|o1 = 354.02 │ │ │ │ -0027a040: 3936 3439 3238 3220 2020 2020 2020 2020 9649282 │ │ │ │ -0027a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027a070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027a010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0027a020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a050: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0027a060: 3120 3d20 3331 392e 3839 3037 3734 3335 1 = 319.89077435 │ │ │ │ +0027a070: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0027a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a0a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0027a0b0: 3120 3a20 5252 2028 6f66 2070 7265 6369 1 : RR (of preci │ │ │ │ -0027a0c0: 7369 6f6e 2035 3329 2020 2020 2020 2020 sion 53) │ │ │ │ -0027a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a0e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0027a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a120: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 666f ------+.|i2 : fo │ │ │ │ -0027a130: 7220 6920 6672 6f6d 2030 2074 6f20 3130 r i from 0 to 10 │ │ │ │ -0027a140: 3030 3030 3020 646f 2032 3233 3133 3133 00000 do 2231313 │ │ │ │ -0027a150: 3231 3332 312a 3332 3432 3334 3332 3433 21321*3242343243 │ │ │ │ -0027a160: 3234 3b7c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 24;|.+---------- │ │ │ │ -0027a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a090: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a0d0: 2020 2020 2020 7c0a 7c6f 3120 3a20 5252 |.|o1 : RR │ │ │ │ +0027a0e0: 2028 6f66 2070 7265 6369 7369 6f6e 2035 (of precision 5 │ │ │ │ +0027a0f0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ +0027a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a110: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0027a120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a150: 2b0a 7c69 3220 3a20 666f 7220 6920 6672 +.|i2 : for i fr │ │ │ │ +0027a160: 6f6d 2030 2074 6f20 3130 3030 3030 3020 om 0 to 1000000 │ │ │ │ +0027a170: 646f 2032 3233 3133 3133 3231 3332 312a do 223131321321* │ │ │ │ +0027a180: 3332 3432 3334 3332 3433 3234 3b7c 0a2b 324234324324;|.+ │ │ │ │ 0027a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a1a0: 2b0a 7c69 3320 3a20 7432 203d 2063 7075 +.|i3 : t2 = cpu │ │ │ │ -0027a1b0: 5469 6d65 2829 2020 2020 2020 2020 2020 Time() │ │ │ │ -0027a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a1d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0027a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +0027a1d0: 3a20 7432 203d 2063 7075 5469 6d65 2829 : t2 = cpuTime() │ │ │ │ 0027a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a210: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0027a220: 3d20 3335 352e 3939 3639 3130 3439 3120 = 355.996910491 │ │ │ │ +0027a200: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0027a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a250: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0027a240: 2020 2020 7c0a 7c6f 3320 3d20 3332 302e |.|o3 = 320. │ │ │ │ +0027a250: 3638 3637 3234 3739 3620 2020 2020 2020 686724796 │ │ │ │ 0027a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a290: 2020 2020 7c0a 7c6f 3320 3a20 5252 2028 |.|o3 : RR ( │ │ │ │ -0027a2a0: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ -0027a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a2d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0027a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0027a310: 7c69 3420 3a20 7432 2d74 3120 2020 2020 |i4 : t2-t1 │ │ │ │ -0027a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a340: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0027a280: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0027a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a2b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0027a2c0: 7c6f 3320 3a20 5252 2028 6f66 2070 7265 |o3 : RR (of pre │ │ │ │ +0027a2d0: 6369 7369 6f6e 2035 3329 2020 2020 2020 cision 53) │ │ │ │ +0027a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a2f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0027a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a330: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +0027a340: 7432 2d74 3120 2020 2020 2020 2020 2020 t2-t1 │ │ │ │ 0027a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a380: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -0027a390: 312e 3936 3732 3631 3230 3930 3030 3031 1.96726120900001 │ │ │ │ -0027a3a0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0027a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a3c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0027a370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0027a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a3b0: 2020 7c0a 7c6f 3420 3d20 2e37 3935 3935 |.|o4 = .79595 │ │ │ │ +0027a3c0: 3034 3434 3030 3030 3237 3320 2020 2020 04440000273 │ │ │ │ 0027a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a400: 2020 7c0a 7c6f 3420 3a20 5252 2028 6f66 |.|o4 : RR (of │ │ │ │ -0027a410: 2070 7265 6369 7369 6f6e 2035 3329 2020 precision 53) │ │ │ │ -0027a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027a440: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027a450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -0027a480: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0027a490: 0a0a 2020 2a20 2a6e 6f74 6520 7469 6d65 .. * *note time │ │ │ │ -0027a4a0: 3a20 7469 6d65 2c20 2d2d 2074 696d 6520 : time, -- time │ │ │ │ -0027a4b0: 6120 636f 6d70 7574 6174 696f 6e0a 2020 a computation. │ │ │ │ -0027a4c0: 2a20 2a6e 6f74 6520 7469 6d69 6e67 3a20 * *note timing: │ │ │ │ -0027a4d0: 7469 6d69 6e67 2c20 2d2d 2074 696d 6520 timing, -- time │ │ │ │ -0027a4e0: 6120 636f 6d70 7574 6174 696f 6e0a 2020 a computation. │ │ │ │ -0027a4f0: 2a20 2a6e 6f74 6520 6375 7272 656e 7454 * *note currentT │ │ │ │ -0027a500: 696d 653a 2063 7572 7265 6e74 5469 6d65 ime: currentTime │ │ │ │ -0027a510: 2c20 2d2d 2067 6574 2074 6865 2063 7572 , -- get the cur │ │ │ │ -0027a520: 7265 6e74 2074 696d 650a 0a46 6f72 2074 rent time..For t │ │ │ │ -0027a530: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -0027a540: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0027a550: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -0027a560: 7465 2063 7075 5469 6d65 3a20 6370 7554 te cpuTime: cpuT │ │ │ │ -0027a570: 696d 652c 2069 7320 6120 2a6e 6f74 6520 ime, is a *note │ │ │ │ -0027a580: 636f 6d70 696c 6564 2066 756e 6374 696f compiled functio │ │ │ │ -0027a590: 6e3a 0a43 6f6d 7069 6c65 6446 756e 6374 n:.CompiledFunct │ │ │ │ -0027a5a0: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ -0027a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0027a3f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a420: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0027a430: 3420 3a20 5252 2028 6f66 2070 7265 6369 4 : RR (of preci │ │ │ │ +0027a440: 7369 6f6e 2035 3329 2020 2020 2020 2020 sion 53) │ │ │ │ +0027a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a460: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0027a470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a4a0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +0027a4b0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0027a4c0: 2a6e 6f74 6520 7469 6d65 3a20 7469 6d65 *note time: time │ │ │ │ +0027a4d0: 2c20 2d2d 2074 696d 6520 6120 636f 6d70 , -- time a comp │ │ │ │ +0027a4e0: 7574 6174 696f 6e0a 2020 2a20 2a6e 6f74 utation. * *not │ │ │ │ +0027a4f0: 6520 7469 6d69 6e67 3a20 7469 6d69 6e67 e timing: timing │ │ │ │ +0027a500: 2c20 2d2d 2074 696d 6520 6120 636f 6d70 , -- time a comp │ │ │ │ +0027a510: 7574 6174 696f 6e0a 2020 2a20 2a6e 6f74 utation. * *not │ │ │ │ +0027a520: 6520 6375 7272 656e 7454 696d 653a 2063 e currentTime: c │ │ │ │ +0027a530: 7572 7265 6e74 5469 6d65 2c20 2d2d 2067 urrentTime, -- g │ │ │ │ +0027a540: 6574 2074 6865 2063 7572 7265 6e74 2074 et the current t │ │ │ │ +0027a550: 696d 650a 0a46 6f72 2074 6865 2070 726f ime..For the pro │ │ │ │ +0027a560: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0027a570: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0027a580: 6f62 6a65 6374 202a 6e6f 7465 2063 7075 object *note cpu │ │ │ │ +0027a590: 5469 6d65 3a20 6370 7554 696d 652c 2069 Time: cpuTime, i │ │ │ │ +0027a5a0: 7320 6120 2a6e 6f74 6520 636f 6d70 696c s a *note compil │ │ │ │ +0027a5b0: 6564 2066 756e 6374 696f 6e3a 0a43 6f6d ed function:.Com │ │ │ │ +0027a5c0: 7069 6c65 6446 756e 6374 696f 6e2c 2e0a piledFunction,.. │ │ │ │ +0027a5d0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0027a5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a5f0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -0027a600: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -0027a610: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -0027a620: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -0027a630: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -0027a640: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -0027a650: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ -0027a660: 6163 6175 6c61 7932 446f 632f 6675 6e63 acaulay2Doc/func │ │ │ │ -0027a670: 7469 6f6e 732f 6370 7554 696d 652d 646f tions/cpuTime-do │ │ │ │ -0027a680: 632e 6d32 3a32 363a 302e 0a1f 0a46 696c c.m2:26:0....Fil │ │ │ │ -0027a690: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -0027a6a0: 696e 666f 2c20 4e6f 6465 3a20 6375 7272 info, Node: curr │ │ │ │ -0027a6b0: 656e 7454 696d 652c 204e 6578 743a 2073 entTime, Next: s │ │ │ │ -0027a6c0: 6c65 6570 2c20 5072 6576 3a20 6370 7554 leep, Prev: cpuT │ │ │ │ -0027a6d0: 696d 652c 2055 703a 2073 7973 7465 6d20 ime, Up: system │ │ │ │ -0027a6e0: 6661 6369 6c69 7469 6573 0a0a 6375 7272 facilities..curr │ │ │ │ -0027a6f0: 656e 7454 696d 6520 2d2d 2067 6574 2074 entTime -- get t │ │ │ │ -0027a700: 6865 2063 7572 7265 6e74 2074 696d 650a he current time. │ │ │ │ -0027a710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027a720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027a730: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0027a740: 0a20 2020 2020 2020 2063 7572 7265 6e74 . current │ │ │ │ -0027a750: 5469 6d65 2829 0a20 202a 204f 7574 7075 Time(). * Outpu │ │ │ │ -0027a760: 7473 3a0a 2020 2020 2020 2a20 616e 202a ts:. * an * │ │ │ │ -0027a770: 6e6f 7465 2069 6e74 6567 6572 3a20 5a5a note integer: ZZ │ │ │ │ -0027a780: 2c2c 2074 6865 2063 7572 7265 6e74 2074 ,, the current t │ │ │ │ -0027a790: 696d 652c 2069 6e20 7365 636f 6e64 7320 ime, in seconds │ │ │ │ -0027a7a0: 7369 6e63 6520 3030 3a30 303a 3030 0a20 since 00:00:00. │ │ │ │ -0027a7b0: 2020 2020 2020 2031 3937 302d 3031 2d30 1970-01-0 │ │ │ │ -0027a7c0: 3120 5554 432c 2074 6865 2062 6567 696e 1 UTC, the begin │ │ │ │ -0027a7d0: 6e69 6e67 206f 6620 7468 6520 6570 6f63 ning of the epoc │ │ │ │ -0027a7e0: 680a 0a44 6573 6372 6970 7469 6f6e 0a3d h..Description.= │ │ │ │ -0027a7f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ -0027a800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027a810: 0a7c 6931 203a 2063 7572 7265 6e74 5469 .|i1 : currentTi │ │ │ │ -0027a820: 6d65 2829 7c0a 7c20 2020 2020 2020 2020 me()|.| │ │ │ │ -0027a830: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0027a840: 2031 3736 3537 3236 3039 3120 2020 7c0a 1765726091 |. │ │ │ │ -0027a850: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0027a860: 2d2d 2d2b 0a0a 5765 2063 616e 2063 6f6d ---+..We can com │ │ │ │ -0027a870: 7075 7465 2c20 726f 7567 686c 792c 2068 pute, roughly, h │ │ │ │ -0027a880: 6f77 206d 616e 7920 7965 6172 7320 6167 ow many years ag │ │ │ │ -0027a890: 6f20 7468 6520 6570 6f63 6820 6265 6761 o the epoch bega │ │ │ │ -0027a8a0: 6e20 6173 2066 6f6c 6c6f 7773 2e0a 0a2b n as follows...+ │ │ │ │ -0027a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027a8e0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 6375 ------+.|i2 : cu │ │ │ │ -0027a8f0: 7272 656e 7454 696d 6528 2920 2f28 2028 rrentTime() /( ( │ │ │ │ -0027a900: 3336 3520 2b20 3937 2e2f 3430 3029 202a 365 + 97./400) * │ │ │ │ -0027a910: 2032 3420 2a20 3630 202a 2036 3020 297c 24 * 60 * 60 )| │ │ │ │ -0027a920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0027a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a950: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0027a960: 3535 2e39 3533 3633 3233 3732 3335 3333 55.9536323723533 │ │ │ │ -0027a970: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0027a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0027a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a620: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0027a630: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0027a640: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0027a650: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0027a660: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0027a670: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0027a680: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +0027a690: 7932 446f 632f 6675 6e63 7469 6f6e 732f y2Doc/functions/ │ │ │ │ +0027a6a0: 6370 7554 696d 652d 646f 632e 6d32 3a32 cpuTime-doc.m2:2 │ │ │ │ +0027a6b0: 363a 302e 0a1f 0a46 696c 653a 204d 6163 6:0....File: Mac │ │ │ │ +0027a6c0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +0027a6d0: 4e6f 6465 3a20 6375 7272 656e 7454 696d Node: currentTim │ │ │ │ +0027a6e0: 652c 204e 6578 743a 2073 6c65 6570 2c20 e, Next: sleep, │ │ │ │ +0027a6f0: 5072 6576 3a20 6370 7554 696d 652c 2055 Prev: cpuTime, U │ │ │ │ +0027a700: 703a 2073 7973 7465 6d20 6661 6369 6c69 p: system facili │ │ │ │ +0027a710: 7469 6573 0a0a 6375 7272 656e 7454 696d ties..currentTim │ │ │ │ +0027a720: 6520 2d2d 2067 6574 2074 6865 2063 7572 e -- get the cur │ │ │ │ +0027a730: 7265 6e74 2074 696d 650a 2a2a 2a2a 2a2a rent time.****** │ │ │ │ +0027a740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027a750: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +0027a760: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +0027a770: 2020 2063 7572 7265 6e74 5469 6d65 2829 currentTime() │ │ │ │ +0027a780: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0027a790: 2020 2020 2a20 616e 202a 6e6f 7465 2069 * an *note i │ │ │ │ +0027a7a0: 6e74 6567 6572 3a20 5a5a 2c2c 2074 6865 nteger: ZZ,, the │ │ │ │ +0027a7b0: 2063 7572 7265 6e74 2074 696d 652c 2069 current time, i │ │ │ │ +0027a7c0: 6e20 7365 636f 6e64 7320 7369 6e63 6520 n seconds since │ │ │ │ +0027a7d0: 3030 3a30 303a 3030 0a20 2020 2020 2020 00:00:00. │ │ │ │ +0027a7e0: 2031 3937 302d 3031 2d30 3120 5554 432c 1970-01-01 UTC, │ │ │ │ +0027a7f0: 2074 6865 2062 6567 696e 6e69 6e67 206f the beginning o │ │ │ │ +0027a800: 6620 7468 6520 6570 6f63 680a 0a44 6573 f the epoch..Des │ │ │ │ +0027a810: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0027a820: 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ====..+--------- │ │ │ │ +0027a830: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0027a840: 2063 7572 7265 6e74 5469 6d65 2829 7c0a currentTime()|. │ │ │ │ +0027a850: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0027a860: 2020 207c 0a7c 6f31 203d 2031 3736 3732 |.|o1 = 17672 │ │ │ │ +0027a870: 3635 3430 3320 2020 7c0a 2b2d 2d2d 2d2d 65403 |.+----- │ │ │ │ +0027a880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0027a890: 5765 2063 616e 2063 6f6d 7075 7465 2c20 We can compute, │ │ │ │ +0027a8a0: 726f 7567 686c 792c 2068 6f77 206d 616e roughly, how man │ │ │ │ +0027a8b0: 7920 7965 6172 7320 6167 6f20 7468 6520 y years ago the │ │ │ │ +0027a8c0: 6570 6f63 6820 6265 6761 6e20 6173 2066 epoch began as f │ │ │ │ +0027a8d0: 6f6c 6c6f 7773 2e0a 0a2b 2d2d 2d2d 2d2d ollows...+------ │ │ │ │ +0027a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a910: 2b0a 7c69 3220 3a20 6375 7272 656e 7454 +.|i2 : currentT │ │ │ │ +0027a920: 696d 6528 2920 2f28 2028 3336 3520 2b20 ime() /( (365 + │ │ │ │ +0027a930: 3937 2e2f 3430 3029 202a 2032 3420 2a20 97./400) * 24 * │ │ │ │ +0027a940: 3630 202a 2036 3020 297c 0a7c 2020 2020 60 * 60 )|.| │ │ │ │ +0027a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a980: 2020 7c0a 7c6f 3220 3d20 3536 2e30 3032 |.|o2 = 56.002 │ │ │ │ +0027a990: 3431 3132 3237 3830 3137 3320 2020 2020 41122780173 │ │ │ │ 0027a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027a9c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0027a9d0: 3a20 5252 2028 6f66 2070 7265 6369 7369 : RR (of precisi │ │ │ │ -0027a9e0: 6f6e 2035 3329 2020 2020 2020 2020 2020 on 53) │ │ │ │ -0027a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027aa00: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0027aa10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027aa20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027aa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ -0027aa40: 6520 6361 6e20 616c 736f 2063 6f6d 7075 e can also compu │ │ │ │ -0027aa50: 7465 2068 6f77 206d 616e 7920 6d6f 6e74 te how many mont │ │ │ │ -0027aa60: 6873 2061 6363 6f75 6e74 2066 6f72 2074 hs account for t │ │ │ │ -0027aa70: 6865 2066 7261 6374 696f 6e61 6c20 7061 he fractional pa │ │ │ │ -0027aa80: 7274 206f 6620 7468 6174 0a6e 756d 6265 rt of that.numbe │ │ │ │ -0027aa90: 722e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d r...+----------- │ │ │ │ -0027aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0027aab0: 7c69 3320 3a20 3132 202a 2028 6f6f 202d |i3 : 12 * (oo - │ │ │ │ -0027aac0: 2066 6c6f 6f72 206f 6f29 7c0a 7c20 2020 floor oo)|.| │ │ │ │ -0027aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027aae0: 2020 2020 2020 7c0a 7c6f 3320 3d20 3131 |.|o3 = 11 │ │ │ │ -0027aaf0: 2e34 3433 3538 3834 3638 3233 3939 3920 .44358846823999 │ │ │ │ -0027ab00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0027ab10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0027ab20: 7c6f 3320 3a20 5252 2028 6f66 2070 7265 |o3 : RR (of pre │ │ │ │ -0027ab30: 6369 7369 6f6e 2035 3329 7c0a 2b2d 2d2d cision 53)|.+--- │ │ │ │ -0027ab40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ab50: 2d2d 2d2d 2d2d 2b0a 0a43 6f6d 7061 7265 ------+..Compare │ │ │ │ -0027ab60: 2074 6861 7420 746f 2074 6865 2063 7572 that to the cur │ │ │ │ -0027ab70: 7265 6e74 2064 6174 652c 2061 7661 696c rent date, avail │ │ │ │ -0027ab80: 6162 6c65 2066 726f 6d20 6120 7374 616e able from a stan │ │ │ │ -0027ab90: 6461 7264 2055 6e69 7820 636f 6d6d 616e dard Unix comman │ │ │ │ -0027aba0: 642e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d d...+----------- │ │ │ │ -0027abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027abc0: 2d2b 0a7c 6934 203a 2072 756e 2022 6461 -+.|i4 : run "da │ │ │ │ -0027abd0: 7465 2220 2020 2020 2020 2020 2020 2020 te" │ │ │ │ -0027abe0: 7c0a 7c53 756e 2044 6563 2031 3420 3135 |.|Sun Dec 14 15 │ │ │ │ -0027abf0: 3a32 383a 3131 2055 5443 2032 3032 357c :28:11 UTC 2025| │ │ │ │ -0027ac00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0027ac10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0027ac20: 7c6f 3420 3d20 3020 2020 2020 2020 2020 |o4 = 0 │ │ │ │ -0027ac30: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0027ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ -0027ac60: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -0027ac70: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -0027ac80: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -0027ac90: 202a 6e6f 7465 2063 7572 7265 6e74 5469 *note currentTi │ │ │ │ -0027aca0: 6d65 3a20 6375 7272 656e 7454 696d 652c me: currentTime, │ │ │ │ -0027acb0: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ -0027acc0: 696c 6564 2066 756e 6374 696f 6e3a 0a43 iled function:.C │ │ │ │ -0027acd0: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ -0027ace0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -0027acf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ad00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027a9b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0027a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027a9f0: 2020 2020 7c0a 7c6f 3220 3a20 5252 2028 |.|o2 : RR ( │ │ │ │ +0027aa00: 6f66 2070 7265 6369 7369 6f6e 2035 3329 of precision 53) │ │ │ │ +0027aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027aa20: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0027aa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027aa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027aa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027aa60: 2d2d 2d2d 2d2d 2b0a 0a57 6520 6361 6e20 ------+..We can │ │ │ │ +0027aa70: 616c 736f 2063 6f6d 7075 7465 2068 6f77 also compute how │ │ │ │ +0027aa80: 206d 616e 7920 6d6f 6e74 6873 2061 6363 many months acc │ │ │ │ +0027aa90: 6f75 6e74 2066 6f72 2074 6865 2066 7261 ount for the fra │ │ │ │ +0027aaa0: 6374 696f 6e61 6c20 7061 7274 206f 6620 ctional part of │ │ │ │ +0027aab0: 7468 6174 0a6e 756d 6265 722e 0a0a 2b2d that.number...+- │ │ │ │ +0027aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027aad0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0027aae0: 3132 202a 2028 6f6f 202d 2066 6c6f 6f72 12 * (oo - floor │ │ │ │ +0027aaf0: 206f 6f29 7c0a 7c20 2020 2020 2020 2020 oo)|.| │ │ │ │ +0027ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ab10: 7c0a 7c6f 3320 3d20 2e30 3238 3933 3437 |.|o3 = .0289347 │ │ │ │ +0027ab20: 3333 3632 3037 3538 3338 2020 7c0a 7c20 3362075838 |.| │ │ │ │ +0027ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ab40: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0027ab50: 5252 2028 6f66 2070 7265 6369 7369 6f6e RR (of precision │ │ │ │ +0027ab60: 2035 3329 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 53)|.+--------- │ │ │ │ +0027ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ab80: 2b0a 0a43 6f6d 7061 7265 2074 6861 7420 +..Compare that │ │ │ │ +0027ab90: 746f 2074 6865 2063 7572 7265 6e74 2064 to the current d │ │ │ │ +0027aba0: 6174 652c 2061 7661 696c 6162 6c65 2066 ate, available f │ │ │ │ +0027abb0: 726f 6d20 6120 7374 616e 6461 7264 2055 rom a standard U │ │ │ │ +0027abc0: 6e69 7820 636f 6d6d 616e 642e 0a0a 2b2d nix command...+- │ │ │ │ +0027abd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0027abf0: 203a 2072 756e 2022 6461 7465 2220 2020 : run "date" │ │ │ │ +0027ac00: 2020 2020 2020 2020 2020 7c0a 7c54 6875 |.|Thu │ │ │ │ +0027ac10: 204a 616e 2020 3120 3131 3a30 333a 3233 Jan 1 11:03:23 │ │ │ │ +0027ac20: 2055 5443 2032 3032 367c 0a7c 2020 2020 UTC 2026|.| │ │ │ │ +0027ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ac40: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +0027ac50: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0027ac60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0027ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ac80: 2d2d 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 ------+..For the │ │ │ │ +0027ac90: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0027aca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0027acb0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0027acc0: 2063 7572 7265 6e74 5469 6d65 3a20 6375 currentTime: cu │ │ │ │ +0027acd0: 7272 656e 7454 696d 652c 2069 7320 6120 rrentTime, is a │ │ │ │ +0027ace0: 2a6e 6f74 6520 636f 6d70 696c 6564 2066 *note compiled f │ │ │ │ +0027acf0: 756e 6374 696f 6e3a 0a43 6f6d 7069 6c65 unction:.Compile │ │ │ │ +0027ad00: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ 0027ad10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027ad20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ad30: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0027ad40: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0027ad50: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0027ad60: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0027ad70: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0027ad80: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0027ad90: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -0027ada0: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ -0027adb0: 6d2e 6d32 3a31 3834 393a 302e 0a1f 0a46 m.m2:1849:0....F │ │ │ │ -0027adc0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -0027add0: 632e 696e 666f 2c20 4e6f 6465 3a20 736c c.info, Node: sl │ │ │ │ -0027ade0: 6565 702c 204e 6578 743a 206e 616e 6f73 eep, Next: nanos │ │ │ │ -0027adf0: 6c65 6570 2c20 5072 6576 3a20 6375 7272 leep, Prev: curr │ │ │ │ -0027ae00: 656e 7454 696d 652c 2055 703a 2073 7973 entTime, Up: sys │ │ │ │ -0027ae10: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -0027ae20: 736c 6565 7020 2d2d 2073 6c65 6570 2066 sleep -- sleep f │ │ │ │ -0027ae30: 6f72 2061 2077 6869 6c65 0a2a 2a2a 2a2a or a while.***** │ │ │ │ -0027ae40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027ae50: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -0027ae60: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0027ae70: 736c 6565 7020 6e20 2d2d 2073 6c65 6570 sleep n -- sleep │ │ │ │ -0027ae80: 7320 666f 7220 6e20 7365 636f 6e64 732e s for n seconds. │ │ │ │ -0027ae90: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0027aea0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206e ===.. * *note n │ │ │ │ -0027aeb0: 616e 6f73 6c65 6570 3a20 6e61 6e6f 736c anosleep: nanosl │ │ │ │ -0027aec0: 6565 702c 202d 2d20 736c 6565 7020 666f eep, -- sleep fo │ │ │ │ -0027aed0: 7220 6120 6769 7665 6e20 6e75 6d62 6572 r a given number │ │ │ │ -0027aee0: 206f 6620 6e61 6e6f 7365 636f 6e64 730a of nanoseconds. │ │ │ │ -0027aef0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -0027af00: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -0027af10: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -0027af20: 6374 202a 6e6f 7465 2073 6c65 6570 3a20 ct *note sleep: │ │ │ │ -0027af30: 736c 6565 702c 2069 7320 6120 2a6e 6f74 sleep, is a *not │ │ │ │ -0027af40: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ -0027af50: 696f 6e3a 2043 6f6d 7069 6c65 6446 756e ion: CompiledFun │ │ │ │ -0027af60: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ -0027af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0027ad60: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0027ad70: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0027ad80: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0027ad90: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0027ada0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0027adb0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0027adc0: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +0027add0: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a31 c/ov_system.m2:1 │ │ │ │ +0027ade0: 3834 393a 302e 0a1f 0a46 696c 653a 204d 849:0....File: M │ │ │ │ +0027adf0: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +0027ae00: 2c20 4e6f 6465 3a20 736c 6565 702c 204e , Node: sleep, N │ │ │ │ +0027ae10: 6578 743a 206e 616e 6f73 6c65 6570 2c20 ext: nanosleep, │ │ │ │ +0027ae20: 5072 6576 3a20 6375 7272 656e 7454 696d Prev: currentTim │ │ │ │ +0027ae30: 652c 2055 703a 2073 7973 7465 6d20 6661 e, Up: system fa │ │ │ │ +0027ae40: 6369 6c69 7469 6573 0a0a 736c 6565 7020 cilities..sleep │ │ │ │ +0027ae50: 2d2d 2073 6c65 6570 2066 6f72 2061 2077 -- sleep for a w │ │ │ │ +0027ae60: 6869 6c65 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a hile.*********** │ │ │ │ +0027ae70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0027ae80: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0027ae90: 3d3d 3d3d 3d3d 3d3d 0a0a 736c 6565 7020 ========..sleep │ │ │ │ +0027aea0: 6e20 2d2d 2073 6c65 6570 7320 666f 7220 n -- sleeps for │ │ │ │ +0027aeb0: 6e20 7365 636f 6e64 732e 0a0a 5365 6520 n seconds...See │ │ │ │ +0027aec0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +0027aed0: 202a 202a 6e6f 7465 206e 616e 6f73 6c65 * *note nanosle │ │ │ │ +0027aee0: 6570 3a20 6e61 6e6f 736c 6565 702c 202d ep: nanosleep, - │ │ │ │ +0027aef0: 2d20 736c 6565 7020 666f 7220 6120 6769 - sleep for a gi │ │ │ │ +0027af00: 7665 6e20 6e75 6d62 6572 206f 6620 6e61 ven number of na │ │ │ │ +0027af10: 6e6f 7365 636f 6e64 730a 0a46 6f72 2074 noseconds..For t │ │ │ │ +0027af20: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0027af30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0027af40: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0027af50: 7465 2073 6c65 6570 3a20 736c 6565 702c te sleep: sleep, │ │ │ │ +0027af60: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ +0027af70: 696c 6564 2066 756e 6374 696f 6e3a 2043 iled function: C │ │ │ │ +0027af80: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ +0027af90: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 0027afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027afb0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0027afc0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0027afd0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0027afe0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0027aff0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0027b000: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0027b010: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0027b020: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -0027b030: 5f73 7973 7465 6d2e 6d32 3a38 3736 3a30 _system.m2:876:0 │ │ │ │ -0027b040: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ -0027b050: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ -0027b060: 653a 206e 616e 6f73 6c65 6570 2c20 4e65 e: nanosleep, Ne │ │ │ │ -0027b070: 7874 3a20 616c 6172 6d2c 2050 7265 763a xt: alarm, Prev: │ │ │ │ -0027b080: 2073 6c65 6570 2c20 5570 3a20 7379 7374 sleep, Up: syst │ │ │ │ -0027b090: 656d 2066 6163 696c 6974 6965 730a 0a6e em facilities..n │ │ │ │ -0027b0a0: 616e 6f73 6c65 6570 202d 2d20 736c 6565 anosleep -- slee │ │ │ │ -0027b0b0: 7020 666f 7220 6120 6769 7665 6e20 6e75 p for a given nu │ │ │ │ -0027b0c0: 6d62 6572 206f 6620 6e61 6e6f 7365 636f mber of nanoseco │ │ │ │ -0027b0d0: 6e64 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a nds.************ │ │ │ │ -0027b0e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027b0f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027b100: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ -0027b110: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0027b120: 3d0a 0a6e 616e 6f73 6c65 6570 206e 202d =..nanosleep n - │ │ │ │ -0027b130: 2d20 736c 6565 7073 2066 6f72 206e 206e - sleeps for n n │ │ │ │ -0027b140: 616e 6f73 6563 6f6e 6473 2e0a 2b2d 2d2d anoseconds..+--- │ │ │ │ -0027b150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b170: 2d2b 0a7c 6931 203a 2065 6c61 7073 6564 -+.|i1 : elapsed │ │ │ │ -0027b180: 5469 6d65 206e 616e 6f73 6c65 6570 2035 Time nanosleep 5 │ │ │ │ -0027b190: 3030 3030 3030 3030 7c0a 7c20 2d2d 202e 00000000|.| -- . │ │ │ │ -0027b1a0: 3530 3031 3335 7320 656c 6170 7365 6420 500135s elapsed │ │ │ │ -0027b1b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027b1c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0027b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027b1e0: 2020 2020 2020 7c0a 7c6f 3120 3d20 3020 |.|o1 = 0 │ │ │ │ +0027afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027afd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027afe0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0027aff0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0027b000: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0027b010: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0027b020: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0027b030: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0027b040: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +0027b050: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +0027b060: 6d2e 6d32 3a38 3736 3a30 2e0a 1f0a 4669 m.m2:876:0....Fi │ │ │ │ +0027b070: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +0027b080: 2e69 6e66 6f2c 204e 6f64 653a 206e 616e .info, Node: nan │ │ │ │ +0027b090: 6f73 6c65 6570 2c20 4e65 7874 3a20 616c osleep, Next: al │ │ │ │ +0027b0a0: 6172 6d2c 2050 7265 763a 2073 6c65 6570 arm, Prev: sleep │ │ │ │ +0027b0b0: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +0027b0c0: 696c 6974 6965 730a 0a6e 616e 6f73 6c65 ilities..nanosle │ │ │ │ +0027b0d0: 6570 202d 2d20 736c 6565 7020 666f 7220 ep -- sleep for │ │ │ │ +0027b0e0: 6120 6769 7665 6e20 6e75 6d62 6572 206f a given number o │ │ │ │ +0027b0f0: 6620 6e61 6e6f 7365 636f 6e64 730a 2a2a f nanoseconds.** │ │ │ │ +0027b100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027b110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027b120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027b130: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ +0027b140: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a6e 616e ===========..nan │ │ │ │ +0027b150: 6f73 6c65 6570 206e 202d 2d20 736c 6565 osleep n -- slee │ │ │ │ +0027b160: 7073 2066 6f72 206e 206e 616e 6f73 6563 ps for n nanosec │ │ │ │ +0027b170: 6f6e 6473 2e0a 2b2d 2d2d 2d2d 2d2d 2d2d onds..+--------- │ │ │ │ +0027b180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +0027b1a0: 203a 2065 6c61 7073 6564 5469 6d65 206e : elapsedTime n │ │ │ │ +0027b1b0: 616e 6f73 6c65 6570 2035 3030 3030 3030 anosleep 5000000 │ │ │ │ +0027b1c0: 3030 7c0a 7c20 2d2d 202e 3530 3031 3135 00|.| -- .500115 │ │ │ │ +0027b1d0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ +0027b1e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0027b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027b200: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0027b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b230: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ -0027b240: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0027b250: 6f74 6520 736c 6565 703a 2073 6c65 6570 ote sleep: sleep │ │ │ │ -0027b260: 2c20 2d2d 2073 6c65 6570 2066 6f72 2061 , -- sleep for a │ │ │ │ -0027b270: 2077 6869 6c65 0a0a 466f 7220 7468 6520 while..For the │ │ │ │ -0027b280: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0027b290: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0027b2a0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0027b2b0: 6e61 6e6f 736c 6565 703a 206e 616e 6f73 nanosleep: nanos │ │ │ │ -0027b2c0: 6c65 6570 2c20 6973 2061 202a 6e6f 7465 leep, is a *note │ │ │ │ -0027b2d0: 2063 6f6d 7069 6c65 6420 6675 6e63 7469 compiled functi │ │ │ │ -0027b2e0: 6f6e 3a0a 436f 6d70 696c 6564 4675 6e63 on:.CompiledFunc │ │ │ │ -0027b2f0: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ -0027b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027b210: 7c0a 7c6f 3120 3d20 3020 2020 2020 2020 |.|o1 = 0 │ │ │ │ +0027b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027b230: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0027b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0027b260: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0027b270: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 736c ==.. * *note sl │ │ │ │ +0027b280: 6565 703a 2073 6c65 6570 2c20 2d2d 2073 eep: sleep, -- s │ │ │ │ +0027b290: 6c65 6570 2066 6f72 2061 2077 6869 6c65 leep for a while │ │ │ │ +0027b2a0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0027b2b0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0027b2c0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0027b2d0: 6563 7420 2a6e 6f74 6520 6e61 6e6f 736c ect *note nanosl │ │ │ │ +0027b2e0: 6565 703a 206e 616e 6f73 6c65 6570 2c20 eep: nanosleep, │ │ │ │ +0027b2f0: 6973 2061 202a 6e6f 7465 2063 6f6d 7069 is a *note compi │ │ │ │ +0027b300: 6c65 6420 6675 6e63 7469 6f6e 3a0a 436f led function:.Co │ │ │ │ +0027b310: 6d70 696c 6564 4675 6e63 7469 6f6e 2c2e mpiledFunction,. │ │ │ │ +0027b320: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 0027b330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b340: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -0027b350: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -0027b360: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -0027b370: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -0027b380: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -0027b390: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -0027b3a0: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -0027b3b0: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -0027b3c0: 7379 7374 656d 2e6d 323a 3838 333a 302e system.m2:883:0. │ │ │ │ -0027b3d0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -0027b3e0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -0027b3f0: 3a20 616c 6172 6d2c 204e 6578 743a 2065 : alarm, Next: e │ │ │ │ -0027b400: 7865 632c 2050 7265 763a 206e 616e 6f73 xec, Prev: nanos │ │ │ │ -0027b410: 6c65 6570 2c20 5570 3a20 7379 7374 656d leep, Up: system │ │ │ │ -0027b420: 2066 6163 696c 6974 6965 730a 0a61 6c61 facilities..ala │ │ │ │ -0027b430: 726d 202d 2d20 7365 7420 616e 2061 6c61 rm -- set an ala │ │ │ │ -0027b440: 726d 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a rm.************* │ │ │ │ -0027b450: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -0027b460: 6167 653a 200a 2020 2020 2020 2020 616c age: . al │ │ │ │ -0027b470: 6172 6d20 6e0a 2020 2a20 496e 7075 7473 arm n. * Inputs │ │ │ │ -0027b480: 3a0a 2020 2020 2020 2a20 6e2c 2061 6e20 :. * n, an │ │ │ │ -0027b490: 2a6e 6f74 6520 696e 7465 6765 723a 205a *note integer: Z │ │ │ │ -0027b4a0: 5a2c 0a20 202a 2043 6f6e 7365 7175 656e Z,. * Consequen │ │ │ │ -0027b4b0: 6365 733a 0a20 2020 2020 202a 2074 6865 ces:. * the │ │ │ │ -0027b4c0: 2061 6c61 726d 2077 696c 6c20 6265 2073 alarm will be s │ │ │ │ -0027b4d0: 6f75 6e64 6564 2061 6674 6572 206e 2073 ounded after n s │ │ │ │ -0027b4e0: 6563 6f6e 6473 3b20 6974 2063 616e 2062 econds; it can b │ │ │ │ -0027b4f0: 6520 696e 7465 7263 6570 7465 6420 7769 e intercepted wi │ │ │ │ -0027b500: 7468 0a20 2020 2020 2020 202a 6e6f 7465 th. *note │ │ │ │ -0027b510: 2074 7279 3a20 7472 792c 0a0a 4465 7363 try: try,..Desc │ │ │ │ -0027b520: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0027b530: 3d3d 3d0a 0a49 6620 6e20 6973 207a 6572 ===..If n is zer │ │ │ │ -0027b540: 6f2c 2074 6865 6e20 6e6f 2061 6c61 726d o, then no alarm │ │ │ │ -0027b550: 2069 7320 7363 6865 6475 6c65 642c 2061 is scheduled, a │ │ │ │ -0027b560: 6e64 2061 6e79 2070 7265 7669 6f75 736c nd any previousl │ │ │ │ -0027b570: 7920 7363 6865 6475 6c65 6420 616c 6172 y scheduled alar │ │ │ │ -0027b580: 6d20 6973 0a63 616e 6365 6c6c 6564 2e20 m is.cancelled. │ │ │ │ -0027b590: 416e 7920 7065 6e64 696e 6720 616c 6172 Any pending alar │ │ │ │ -0027b5a0: 6d20 7769 6c6c 2062 6520 6361 6e63 656c m will be cancel │ │ │ │ -0027b5b0: 6c65 6420 7768 656e 2061 6e79 206f 7468 led when any oth │ │ │ │ -0027b5c0: 6572 2065 7272 6f72 206f 6363 7572 732c er error occurs, │ │ │ │ -0027b5d0: 206f 720a 7768 656e 2074 6865 2074 6f70 or.when the top │ │ │ │ -0027b5e0: 206c 6576 656c 206c 6f6f 7020 6f66 6665 level loop offe │ │ │ │ -0027b5f0: 7273 2061 6e20 696e 7075 7420 7072 6f6d rs an input prom │ │ │ │ -0027b600: 7074 2074 6f20 7468 6520 7573 6572 2e0a pt to the user.. │ │ │ │ -0027b610: 0a0a 5468 6520 7661 6c75 6520 7265 7475 ..The value retu │ │ │ │ -0027b620: 726e 6564 2069 7320 7468 6520 6e75 6d62 rned is the numb │ │ │ │ -0027b630: 6572 206f 6620 7365 636f 6e64 7320 7265 er of seconds re │ │ │ │ -0027b640: 6d61 696e 696e 6720 756e 7469 6c20 616e maining until an │ │ │ │ -0027b650: 7920 7072 6576 696f 7573 6c79 0a73 6368 y previously.sch │ │ │ │ -0027b660: 6564 756c 6564 2061 6c61 726d 2077 6173 eduled alarm was │ │ │ │ -0027b670: 2064 7565 2074 6f20 6265 2064 656c 6976 due to be deliv │ │ │ │ -0027b680: 6572 6564 2c20 6f72 207a 6572 6f20 6966 ered, or zero if │ │ │ │ -0027b690: 2074 6865 7265 2077 6173 206e 6f20 7072 there was no pr │ │ │ │ -0027b6a0: 6576 696f 7573 6c79 0a73 6368 6564 756c eviously.schedul │ │ │ │ -0027b6b0: 6564 2061 6c61 726d 2e0a 0a0a 5468 6973 ed alarm....This │ │ │ │ -0027b6c0: 2063 6f6d 6d61 6e64 206d 6179 2069 6e74 command may int │ │ │ │ -0027b6d0: 6572 6665 7265 2077 6974 6820 2a6e 6f74 erfere with *not │ │ │ │ -0027b6e0: 6520 7469 6d65 3a20 7469 6d65 2c20 6f72 e time: time, or │ │ │ │ -0027b6f0: 202a 6e6f 7465 2073 6c65 6570 3a20 736c *note sleep: sl │ │ │ │ -0027b700: 6565 702c 206f 6e0a 736f 6d65 2073 7973 eep, on.some sys │ │ │ │ -0027b710: 7465 6d73 2e0a 0a46 6f72 2074 6865 2070 tems...For the p │ │ │ │ -0027b720: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0027b730: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0027b740: 6520 6f62 6a65 6374 202a 6e6f 7465 2061 e object *note a │ │ │ │ -0027b750: 6c61 726d 3a20 616c 6172 6d2c 2069 7320 larm: alarm, is │ │ │ │ -0027b760: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ -0027b770: 2066 756e 6374 696f 6e3a 2043 6f6d 7069 function: Compi │ │ │ │ -0027b780: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ -0027b790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b370: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0027b380: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0027b390: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0027b3a0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0027b3b0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0027b3c0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0027b3d0: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ +0027b3e0: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ +0027b3f0: 2e6d 323a 3838 333a 302e 0a1f 0a46 696c .m2:883:0....Fil │ │ │ │ +0027b400: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +0027b410: 696e 666f 2c20 4e6f 6465 3a20 616c 6172 info, Node: alar │ │ │ │ +0027b420: 6d2c 204e 6578 743a 2065 7865 632c 2050 m, Next: exec, P │ │ │ │ +0027b430: 7265 763a 206e 616e 6f73 6c65 6570 2c20 rev: nanosleep, │ │ │ │ +0027b440: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ +0027b450: 6974 6965 730a 0a61 6c61 726d 202d 2d20 ities..alarm -- │ │ │ │ +0027b460: 7365 7420 616e 2061 6c61 726d 0a2a 2a2a set an alarm.*** │ │ │ │ +0027b470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027b480: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +0027b490: 2020 2020 2020 2020 616c 6172 6d20 6e0a alarm n. │ │ │ │ +0027b4a0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0027b4b0: 2020 2a20 6e2c 2061 6e20 2a6e 6f74 6520 * n, an *note │ │ │ │ +0027b4c0: 696e 7465 6765 723a 205a 5a2c 0a20 202a integer: ZZ,. * │ │ │ │ +0027b4d0: 2043 6f6e 7365 7175 656e 6365 733a 0a20 Consequences:. │ │ │ │ +0027b4e0: 2020 2020 202a 2074 6865 2061 6c61 726d * the alarm │ │ │ │ +0027b4f0: 2077 696c 6c20 6265 2073 6f75 6e64 6564 will be sounded │ │ │ │ +0027b500: 2061 6674 6572 206e 2073 6563 6f6e 6473 after n seconds │ │ │ │ +0027b510: 3b20 6974 2063 616e 2062 6520 696e 7465 ; it can be inte │ │ │ │ +0027b520: 7263 6570 7465 6420 7769 7468 0a20 2020 rcepted with. │ │ │ │ +0027b530: 2020 2020 202a 6e6f 7465 2074 7279 3a20 *note try: │ │ │ │ +0027b540: 7472 792c 0a0a 4465 7363 7269 7074 696f try,..Descriptio │ │ │ │ +0027b550: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 n.===========..I │ │ │ │ +0027b560: 6620 6e20 6973 207a 6572 6f2c 2074 6865 f n is zero, the │ │ │ │ +0027b570: 6e20 6e6f 2061 6c61 726d 2069 7320 7363 n no alarm is sc │ │ │ │ +0027b580: 6865 6475 6c65 642c 2061 6e64 2061 6e79 heduled, and any │ │ │ │ +0027b590: 2070 7265 7669 6f75 736c 7920 7363 6865 previously sche │ │ │ │ +0027b5a0: 6475 6c65 6420 616c 6172 6d20 6973 0a63 duled alarm is.c │ │ │ │ +0027b5b0: 616e 6365 6c6c 6564 2e20 416e 7920 7065 ancelled. Any pe │ │ │ │ +0027b5c0: 6e64 696e 6720 616c 6172 6d20 7769 6c6c nding alarm will │ │ │ │ +0027b5d0: 2062 6520 6361 6e63 656c 6c65 6420 7768 be cancelled wh │ │ │ │ +0027b5e0: 656e 2061 6e79 206f 7468 6572 2065 7272 en any other err │ │ │ │ +0027b5f0: 6f72 206f 6363 7572 732c 206f 720a 7768 or occurs, or.wh │ │ │ │ +0027b600: 656e 2074 6865 2074 6f70 206c 6576 656c en the top level │ │ │ │ +0027b610: 206c 6f6f 7020 6f66 6665 7273 2061 6e20 loop offers an │ │ │ │ +0027b620: 696e 7075 7420 7072 6f6d 7074 2074 6f20 input prompt to │ │ │ │ +0027b630: 7468 6520 7573 6572 2e0a 0a0a 5468 6520 the user....The │ │ │ │ +0027b640: 7661 6c75 6520 7265 7475 726e 6564 2069 value returned i │ │ │ │ +0027b650: 7320 7468 6520 6e75 6d62 6572 206f 6620 s the number of │ │ │ │ +0027b660: 7365 636f 6e64 7320 7265 6d61 696e 696e seconds remainin │ │ │ │ +0027b670: 6720 756e 7469 6c20 616e 7920 7072 6576 g until any prev │ │ │ │ +0027b680: 696f 7573 6c79 0a73 6368 6564 756c 6564 iously.scheduled │ │ │ │ +0027b690: 2061 6c61 726d 2077 6173 2064 7565 2074 alarm was due t │ │ │ │ +0027b6a0: 6f20 6265 2064 656c 6976 6572 6564 2c20 o be delivered, │ │ │ │ +0027b6b0: 6f72 207a 6572 6f20 6966 2074 6865 7265 or zero if there │ │ │ │ +0027b6c0: 2077 6173 206e 6f20 7072 6576 696f 7573 was no previous │ │ │ │ +0027b6d0: 6c79 0a73 6368 6564 756c 6564 2061 6c61 ly.scheduled ala │ │ │ │ +0027b6e0: 726d 2e0a 0a0a 5468 6973 2063 6f6d 6d61 rm....This comma │ │ │ │ +0027b6f0: 6e64 206d 6179 2069 6e74 6572 6665 7265 nd may interfere │ │ │ │ +0027b700: 2077 6974 6820 2a6e 6f74 6520 7469 6d65 with *note time │ │ │ │ +0027b710: 3a20 7469 6d65 2c20 6f72 202a 6e6f 7465 : time, or *note │ │ │ │ +0027b720: 2073 6c65 6570 3a20 736c 6565 702c 206f sleep: sleep, o │ │ │ │ +0027b730: 6e0a 736f 6d65 2073 7973 7465 6d73 2e0a n.some systems.. │ │ │ │ +0027b740: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0027b750: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0027b760: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0027b770: 6374 202a 6e6f 7465 2061 6c61 726d 3a20 ct *note alarm: │ │ │ │ +0027b780: 616c 6172 6d2c 2069 7320 6120 2a6e 6f74 alarm, is a *not │ │ │ │ +0027b790: 6520 636f 6d70 696c 6564 2066 756e 6374 e compiled funct │ │ │ │ +0027b7a0: 696f 6e3a 2043 6f6d 7069 6c65 6446 756e ion: CompiledFun │ │ │ │ +0027b7b0: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ 0027b7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0027b7e0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0027b7f0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0027b800: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0027b810: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0027b820: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0027b830: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0027b840: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -0027b850: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -0027b860: 3a36 3736 3a30 2e0a 1f0a 4669 6c65 3a20 :676:0....File: │ │ │ │ -0027b870: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -0027b880: 6f2c 204e 6f64 653a 2065 7865 632c 204e o, Node: exec, N │ │ │ │ -0027b890: 6578 743a 2065 7869 742c 2050 7265 763a ext: exit, Prev: │ │ │ │ -0027b8a0: 2061 6c61 726d 2c20 5570 3a20 7379 7374 alarm, Up: syst │ │ │ │ -0027b8b0: 656d 2066 6163 696c 6974 6965 730a 0a65 em facilities..e │ │ │ │ -0027b8c0: 7865 6320 2d2d 2065 7865 6375 7465 2061 xec -- execute a │ │ │ │ -0027b8d0: 6e6f 7468 6572 2070 726f 6772 616d 0a2a nother program.* │ │ │ │ -0027b8e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027b8f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0027b900: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -0027b910: 2020 2020 6578 6563 2061 7267 760a 0a44 exec argv..D │ │ │ │ -0027b920: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0027b930: 3d3d 3d3d 3d3d 0a0a 6578 6563 2061 7267 ======..exec arg │ │ │ │ -0027b940: 7620 2075 7365 7320 7468 6520 2765 7865 v uses the 'exe │ │ │ │ -0027b950: 6327 206f 7065 7261 7469 6e67 2073 7973 c' operating sys │ │ │ │ -0027b960: 7465 6d20 6361 6c6c 2074 6f20 7374 6172 tem call to star │ │ │ │ -0027b970: 7420 7570 2061 6e6f 7468 6572 2070 726f t up another pro │ │ │ │ -0027b980: 6772 616d 2c0a 7265 706c 6163 696e 6720 gram,.replacing │ │ │ │ -0027b990: 7468 6520 6375 7272 656e 7420 4d61 6361 the current Maca │ │ │ │ -0027b9a0: 756c 6179 3220 7072 6f63 6573 732e 2048 ulay2 process. H │ │ │ │ -0027b9b0: 6572 6520 6172 6776 2069 7320 6120 7374 ere argv is a st │ │ │ │ -0027b9c0: 7269 6e67 2c20 6f72 2061 2073 6571 7565 ring, or a seque │ │ │ │ -0027b9d0: 6e63 650a 6f72 206c 6973 7420 6f66 2073 nce.or list of s │ │ │ │ -0027b9e0: 7472 696e 6773 2074 6f20 6265 2070 6173 trings to be pas │ │ │ │ -0027b9f0: 7365 6420 6173 2061 7267 756d 656e 7473 sed as arguments │ │ │ │ -0027ba00: 2074 6f20 7468 6520 6e65 7720 7072 6f63 to the new proc │ │ │ │ -0027ba10: 6573 732e 2020 5468 6520 6669 7273 740a ess. The first. │ │ │ │ -0027ba20: 7374 7269 6e67 2069 7320 7468 6520 6e61 string is the na │ │ │ │ -0027ba30: 6d65 206f 6620 7468 6520 6578 6563 7574 me of the execut │ │ │ │ -0027ba40: 6162 6c65 2066 696c 652e 0a0a 466f 7220 able file...For │ │ │ │ -0027ba50: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0027ba60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0027ba70: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0027ba80: 6f74 6520 6578 6563 3a20 6578 6563 2c20 ote exec: exec, │ │ │ │ -0027ba90: 6973 2061 202a 6e6f 7465 2063 6f6d 7069 is a *note compi │ │ │ │ -0027baa0: 6c65 6420 6675 6e63 7469 6f6e 3a20 436f led function: Co │ │ │ │ -0027bab0: 6d70 696c 6564 4675 6e63 7469 6f6e 2c2e mpiledFunction,. │ │ │ │ -0027bac0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -0027bad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027bae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027b800: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0027b810: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0027b820: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0027b830: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0027b840: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0027b850: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0027b860: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0027b870: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +0027b880: 5f73 7973 7465 6d2e 6d32 3a36 3736 3a30 _system.m2:676:0 │ │ │ │ +0027b890: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +0027b8a0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +0027b8b0: 653a 2065 7865 632c 204e 6578 743a 2065 e: exec, Next: e │ │ │ │ +0027b8c0: 7869 742c 2050 7265 763a 2061 6c61 726d xit, Prev: alarm │ │ │ │ +0027b8d0: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +0027b8e0: 696c 6974 6965 730a 0a65 7865 6320 2d2d ilities..exec -- │ │ │ │ +0027b8f0: 2065 7865 6375 7465 2061 6e6f 7468 6572 execute another │ │ │ │ +0027b900: 2070 726f 6772 616d 0a2a 2a2a 2a2a 2a2a program.******* │ │ │ │ +0027b910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027b920: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +0027b930: 6167 653a 200a 2020 2020 2020 2020 6578 age: . ex │ │ │ │ +0027b940: 6563 2061 7267 760a 0a44 6573 6372 6970 ec argv..Descrip │ │ │ │ +0027b950: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0027b960: 0a0a 6578 6563 2061 7267 7620 2075 7365 ..exec argv use │ │ │ │ +0027b970: 7320 7468 6520 2765 7865 6327 206f 7065 s the 'exec' ope │ │ │ │ +0027b980: 7261 7469 6e67 2073 7973 7465 6d20 6361 rating system ca │ │ │ │ +0027b990: 6c6c 2074 6f20 7374 6172 7420 7570 2061 ll to start up a │ │ │ │ +0027b9a0: 6e6f 7468 6572 2070 726f 6772 616d 2c0a nother program,. │ │ │ │ +0027b9b0: 7265 706c 6163 696e 6720 7468 6520 6375 replacing the cu │ │ │ │ +0027b9c0: 7272 656e 7420 4d61 6361 756c 6179 3220 rrent Macaulay2 │ │ │ │ +0027b9d0: 7072 6f63 6573 732e 2048 6572 6520 6172 process. Here ar │ │ │ │ +0027b9e0: 6776 2069 7320 6120 7374 7269 6e67 2c20 gv is a string, │ │ │ │ +0027b9f0: 6f72 2061 2073 6571 7565 6e63 650a 6f72 or a sequence.or │ │ │ │ +0027ba00: 206c 6973 7420 6f66 2073 7472 696e 6773 list of strings │ │ │ │ +0027ba10: 2074 6f20 6265 2070 6173 7365 6420 6173 to be passed as │ │ │ │ +0027ba20: 2061 7267 756d 656e 7473 2074 6f20 7468 arguments to th │ │ │ │ +0027ba30: 6520 6e65 7720 7072 6f63 6573 732e 2020 e new process. │ │ │ │ +0027ba40: 5468 6520 6669 7273 740a 7374 7269 6e67 The first.string │ │ │ │ +0027ba50: 2069 7320 7468 6520 6e61 6d65 206f 6620 is the name of │ │ │ │ +0027ba60: 7468 6520 6578 6563 7574 6162 6c65 2066 the executable f │ │ │ │ +0027ba70: 696c 652e 0a0a 466f 7220 7468 6520 7072 ile...For the pr │ │ │ │ +0027ba80: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0027ba90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0027baa0: 206f 626a 6563 7420 2a6e 6f74 6520 6578 object *note ex │ │ │ │ +0027bab0: 6563 3a20 6578 6563 2c20 6973 2061 202a ec: exec, is a * │ │ │ │ +0027bac0: 6e6f 7465 2063 6f6d 7069 6c65 6420 6675 note compiled fu │ │ │ │ +0027bad0: 6e63 7469 6f6e 3a20 436f 6d70 696c 6564 nction: Compiled │ │ │ │ +0027bae0: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ 0027baf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027bb10: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0027bb20: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0027bb30: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0027bb40: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0027bb50: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0027bb60: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0027bb70: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ -0027bb80: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ -0027bb90: 2e6d 323a 3732 383a 302e 0a1f 0a46 696c .m2:728:0....Fil │ │ │ │ -0027bba0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -0027bbb0: 696e 666f 2c20 4e6f 6465 3a20 6578 6974 info, Node: exit │ │ │ │ -0027bbc0: 2c20 4e65 7874 3a20 666f 726b 2c20 5072 , Next: fork, Pr │ │ │ │ -0027bbd0: 6576 3a20 6578 6563 2c20 5570 3a20 7379 ev: exec, Up: sy │ │ │ │ -0027bbe0: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ -0027bbf0: 0a65 7869 7420 2d2d 2065 7869 7420 7468 .exit -- exit th │ │ │ │ -0027bc00: 6520 7072 6f67 7261 6d0a 2a2a 2a2a 2a2a e program.****** │ │ │ │ -0027bc10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027bc20: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ -0027bc30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a65 7869 ===========..exi │ │ │ │ -0027bc40: 7420 6e20 2d2d 2074 6572 6d69 6e61 7465 t n -- terminate │ │ │ │ -0027bc50: 7320 7468 6520 7072 6f67 7261 6d20 616e s the program an │ │ │ │ -0027bc60: 6420 7265 7475 726e 7320 6e20 6173 2072 d returns n as r │ │ │ │ -0027bc70: 6574 7572 6e20 636f 6465 2e0a 6578 6974 eturn code..exit │ │ │ │ -0027bc80: 202d 2d20 7465 726d 696e 6174 6573 2074 -- terminates t │ │ │ │ -0027bc90: 6865 2070 726f 6772 616d 2061 6e64 2072 he program and r │ │ │ │ -0027bca0: 6574 7572 6e73 2030 2061 7320 7265 7475 eturns 0 as retu │ │ │ │ -0027bcb0: 726e 2063 6f64 652e 0a0a 0a46 696c 6573 rn code....Files │ │ │ │ -0027bcc0: 2061 7265 2066 6c75 7368 6564 2061 6e64 are flushed and │ │ │ │ -0027bcd0: 2063 6c6f 7365 642e 2020 4675 6e63 7469 closed. Functi │ │ │ │ -0027bce0: 6f6e 7320 7265 6769 7374 6572 6564 2077 ons registered w │ │ │ │ -0027bcf0: 6974 6820 2a6e 6f74 6520 6164 6445 6e64 ith *note addEnd │ │ │ │ -0027bd00: 4675 6e63 7469 6f6e 3a0a 6164 6445 6e64 Function:.addEnd │ │ │ │ -0027bd10: 4675 6e63 7469 6f6e 2c20 6172 6520 6361 Function, are ca │ │ │ │ -0027bd20: 6c6c 6564 2c20 756e 6c65 7373 2061 206e lled, unless a n │ │ │ │ -0027bd30: 6f6e 7a65 726f 2072 6574 7572 6e20 7661 onzero return va │ │ │ │ -0027bd40: 6c75 6520 6861 7320 6265 656e 2070 726f lue has been pro │ │ │ │ -0027bd50: 7669 6465 642e 0a41 6e6f 7468 6572 2077 vided..Another w │ │ │ │ -0027bd60: 6179 2074 6f20 6578 6974 2069 7320 746f ay to exit is to │ │ │ │ -0027bd70: 2074 7970 6520 7468 6520 656e 6420 6f66 type the end of │ │ │ │ -0027bd80: 2066 696c 6520 6368 6172 6163 7465 722c file character, │ │ │ │ -0027bd90: 2077 6869 6368 2069 7320 7479 7069 6361 which is typica │ │ │ │ -0027bda0: 6c6c 790a 7365 7420 746f 2043 6f6e 7472 lly.set to Contr │ │ │ │ -0027bdb0: 6f6c 2d44 2069 6e20 756e 6978 2073 7973 ol-D in unix sys │ │ │ │ -0027bdc0: 7465 6d73 2c20 616e 6420 6973 2043 6f6e tems, and is Con │ │ │ │ -0027bdd0: 7472 6f6c 2d5a 2075 6e64 6572 2057 696e trol-Z under Win │ │ │ │ -0027bde0: 646f 7773 2e0a 0a53 6565 2061 6c73 6f0a dows...See also. │ │ │ │ -0027bdf0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0027be00: 6f74 6520 7175 6974 3a20 7175 6974 2c20 ote quit: quit, │ │ │ │ -0027be10: 2d2d 2071 7569 7420 7468 6520 7072 6f67 -- quit the prog │ │ │ │ -0027be20: 7261 6d0a 0a46 6f72 2074 6865 2070 726f ram..For the pro │ │ │ │ -0027be30: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0027be40: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0027be50: 6f62 6a65 6374 202a 6e6f 7465 2065 7869 object *note exi │ │ │ │ -0027be60: 743a 2065 7869 742c 2069 7320 6120 2a6e t: exit, is a *n │ │ │ │ -0027be70: 6f74 6520 636f 6d6d 616e 643a 2043 6f6d ote command: Com │ │ │ │ -0027be80: 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mand,...-------- │ │ │ │ -0027be90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027bea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027beb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0027bb40: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0027bb50: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0027bb60: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0027bb70: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0027bb80: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0027bb90: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0027bba0: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ +0027bbb0: 2f6f 765f 7379 7374 656d 2e6d 323a 3732 /ov_system.m2:72 │ │ │ │ +0027bbc0: 383a 302e 0a1f 0a46 696c 653a 204d 6163 8:0....File: Mac │ │ │ │ +0027bbd0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +0027bbe0: 4e6f 6465 3a20 6578 6974 2c20 4e65 7874 Node: exit, Next │ │ │ │ +0027bbf0: 3a20 666f 726b 2c20 5072 6576 3a20 6578 : fork, Prev: ex │ │ │ │ +0027bc00: 6563 2c20 5570 3a20 7379 7374 656d 2066 ec, Up: system f │ │ │ │ +0027bc10: 6163 696c 6974 6965 730a 0a65 7869 7420 acilities..exit │ │ │ │ +0027bc20: 2d2d 2065 7869 7420 7468 6520 7072 6f67 -- exit the prog │ │ │ │ +0027bc30: 7261 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ram.************ │ │ │ │ +0027bc40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 ************..De │ │ │ │ +0027bc50: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0027bc60: 3d3d 3d3d 3d0a 0a65 7869 7420 6e20 2d2d =====..exit n -- │ │ │ │ +0027bc70: 2074 6572 6d69 6e61 7465 7320 7468 6520 terminates the │ │ │ │ +0027bc80: 7072 6f67 7261 6d20 616e 6420 7265 7475 program and retu │ │ │ │ +0027bc90: 726e 7320 6e20 6173 2072 6574 7572 6e20 rns n as return │ │ │ │ +0027bca0: 636f 6465 2e0a 6578 6974 202d 2d20 7465 code..exit -- te │ │ │ │ +0027bcb0: 726d 696e 6174 6573 2074 6865 2070 726f rminates the pro │ │ │ │ +0027bcc0: 6772 616d 2061 6e64 2072 6574 7572 6e73 gram and returns │ │ │ │ +0027bcd0: 2030 2061 7320 7265 7475 726e 2063 6f64 0 as return cod │ │ │ │ +0027bce0: 652e 0a0a 0a46 696c 6573 2061 7265 2066 e....Files are f │ │ │ │ +0027bcf0: 6c75 7368 6564 2061 6e64 2063 6c6f 7365 lushed and close │ │ │ │ +0027bd00: 642e 2020 4675 6e63 7469 6f6e 7320 7265 d. Functions re │ │ │ │ +0027bd10: 6769 7374 6572 6564 2077 6974 6820 2a6e gistered with *n │ │ │ │ +0027bd20: 6f74 6520 6164 6445 6e64 4675 6e63 7469 ote addEndFuncti │ │ │ │ +0027bd30: 6f6e 3a0a 6164 6445 6e64 4675 6e63 7469 on:.addEndFuncti │ │ │ │ +0027bd40: 6f6e 2c20 6172 6520 6361 6c6c 6564 2c20 on, are called, │ │ │ │ +0027bd50: 756e 6c65 7373 2061 206e 6f6e 7a65 726f unless a nonzero │ │ │ │ +0027bd60: 2072 6574 7572 6e20 7661 6c75 6520 6861 return value ha │ │ │ │ +0027bd70: 7320 6265 656e 2070 726f 7669 6465 642e s been provided. │ │ │ │ +0027bd80: 0a41 6e6f 7468 6572 2077 6179 2074 6f20 .Another way to │ │ │ │ +0027bd90: 6578 6974 2069 7320 746f 2074 7970 6520 exit is to type │ │ │ │ +0027bda0: 7468 6520 656e 6420 6f66 2066 696c 6520 the end of file │ │ │ │ +0027bdb0: 6368 6172 6163 7465 722c 2077 6869 6368 character, which │ │ │ │ +0027bdc0: 2069 7320 7479 7069 6361 6c6c 790a 7365 is typically.se │ │ │ │ +0027bdd0: 7420 746f 2043 6f6e 7472 6f6c 2d44 2069 t to Control-D i │ │ │ │ +0027bde0: 6e20 756e 6978 2073 7973 7465 6d73 2c20 n unix systems, │ │ │ │ +0027bdf0: 616e 6420 6973 2043 6f6e 7472 6f6c 2d5a and is Control-Z │ │ │ │ +0027be00: 2075 6e64 6572 2057 696e 646f 7773 2e0a under Windows.. │ │ │ │ +0027be10: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0027be20: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7175 ==.. * *note qu │ │ │ │ +0027be30: 6974 3a20 7175 6974 2c20 2d2d 2071 7569 it: quit, -- qui │ │ │ │ +0027be40: 7420 7468 6520 7072 6f67 7261 6d0a 0a46 t the program..F │ │ │ │ +0027be50: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0027be60: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0027be70: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0027be80: 202a 6e6f 7465 2065 7869 743a 2065 7869 *note exit: exi │ │ │ │ +0027be90: 742c 2069 7320 6120 2a6e 6f74 6520 636f t, is a *note co │ │ │ │ +0027bea0: 6d6d 616e 643a 2043 6f6d 6d61 6e64 2c2e mmand: Command,. │ │ │ │ +0027beb0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 0027bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027bed0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -0027bee0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -0027bef0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -0027bf00: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -0027bf10: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -0027bf20: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -0027bf30: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -0027bf40: 4d61 6361 756c 6179 3244 6f63 2f6f 765f Macaulay2Doc/ov_ │ │ │ │ -0027bf50: 7379 7374 656d 2e6d 323a 3734 313a 302e system.m2:741:0. │ │ │ │ -0027bf60: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -0027bf70: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -0027bf80: 3a20 666f 726b 2c20 4e65 7874 3a20 7368 : fork, Next: sh │ │ │ │ -0027bf90: 6f77 2c20 5072 6576 3a20 6578 6974 2c20 ow, Prev: exit, │ │ │ │ -0027bfa0: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ -0027bfb0: 6974 6965 730a 0a66 6f72 6b20 2d2d 2066 ities..fork -- f │ │ │ │ -0027bfc0: 6f72 6b20 7468 6520 7072 6f63 6573 730a ork the process. │ │ │ │ -0027bfd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027bfe0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -0027bff0: 6167 653a 200a 2020 2020 2020 2020 666f age: . fo │ │ │ │ -0027c000: 726b 2829 0a20 202a 204f 7574 7075 7473 rk(). * Outputs │ │ │ │ -0027c010: 3a0a 2020 2020 2020 2a20 5768 656e 2073 :. * When s │ │ │ │ -0027c020: 7563 6365 7373 6675 6c2c 2069 7420 7265 uccessful, it re │ │ │ │ -0027c030: 7475 726e 7320 7468 6520 7072 6f63 6573 turns the proces │ │ │ │ -0027c040: 7320 6964 206f 6620 7468 6520 6368 696c s id of the chil │ │ │ │ -0027c050: 6420 696e 2074 6865 2070 6172 656e 742c d in the parent, │ │ │ │ -0027c060: 0a20 2020 2020 2020 2061 6e64 2072 6574 . and ret │ │ │ │ -0027c070: 7572 6e73 2030 2069 6e20 7468 6520 6368 urns 0 in the ch │ │ │ │ -0027c080: 696c 642e 2020 5768 656e 2075 6e73 7563 ild. When unsuc │ │ │ │ -0027c090: 6365 7373 6675 6c2c 2069 7420 7265 7475 cessful, it retu │ │ │ │ -0027c0a0: 726e 7320 2d31 2e0a 0a44 6573 6372 6970 rns -1...Descrip │ │ │ │ -0027c0b0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -0027c0c0: 0a0a 506c 6174 666f 726d 7320 7468 6174 ..Platforms that │ │ │ │ -0027c0d0: 2064 6f20 6e6f 7420 6861 7665 2061 2062 do not have a b │ │ │ │ -0027c0e0: 7569 6c74 2d69 6e20 666f 726b 2829 2066 uilt-in fork() f │ │ │ │ -0027c0f0: 756e 6374 696f 6e20 7769 6c6c 2061 6c77 unction will alw │ │ │ │ -0027c100: 6179 7320 7265 7475 726e 202d 312e 0a0a ays return -1... │ │ │ │ -0027c110: 5761 726e 696e 673a 2069 6e20 6d75 6c74 Warning: in mult │ │ │ │ -0027c120: 6974 6872 6561 6465 6420 7072 6f67 7261 ithreaded progra │ │ │ │ -0027c130: 6d73 206c 696b 6520 4d61 6361 756c 6179 ms like Macaulay │ │ │ │ -0027c140: 322c 2076 6572 7920 6665 7720 6f70 6572 2, very few oper │ │ │ │ -0027c150: 6174 696f 6e73 2063 616e 2062 650a 7361 ations can be.sa │ │ │ │ -0027c160: 6665 6c79 2064 6f6e 6520 696e 2074 6865 fely done in the │ │ │ │ -0027c170: 2063 6869 6c64 2e20 2054 6869 7320 6973 child. This is │ │ │ │ -0027c180: 2065 7370 6563 6961 6c6c 7920 7472 7565 especially true │ │ │ │ -0027c190: 2077 6865 6e20 7468 6520 7573 6572 2068 when the user h │ │ │ │ -0027c1a0: 6173 2062 6565 6e20 2a6e 6f74 650a 7061 as been *note.pa │ │ │ │ -0027c1b0: 7261 6c6c 656c 2070 726f 6772 616d 6d69 rallel programmi │ │ │ │ -0027c1c0: 6e67 2077 6974 6820 7468 7265 6164 7320 ng with threads │ │ │ │ -0027c1d0: 616e 6420 7461 736b 733a 2070 6172 616c and tasks: paral │ │ │ │ -0027c1e0: 6c65 6c20 7072 6f67 7261 6d6d 696e 6720 lel programming │ │ │ │ -0027c1f0: 7769 7468 2074 6872 6561 6473 0a61 6e64 with threads.and │ │ │ │ -0027c200: 2074 6173 6b73 2c2e 2045 7665 6e20 616c tasks,. Even al │ │ │ │ -0027c210: 6c6f 6361 7469 6e67 206d 656d 6f72 7920 locating memory │ │ │ │ -0027c220: 696e 2074 6865 2063 6869 6c64 206d 6179 in the child may │ │ │ │ -0027c230: 2068 616e 6720 7468 6520 7072 6f63 6573 hang the proces │ │ │ │ -0027c240: 732e 0a0a 466f 7220 7468 6520 7072 6f67 s...For the prog │ │ │ │ -0027c250: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0027c260: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0027c270: 626a 6563 7420 2a6e 6f74 6520 666f 726b bject *note fork │ │ │ │ -0027c280: 3a20 666f 726b 2c20 6973 2061 202a 6e6f : fork, is a *no │ │ │ │ -0027c290: 7465 2063 6f6d 7069 6c65 6420 6675 6e63 te compiled func │ │ │ │ -0027c2a0: 7469 6f6e 3a20 436f 6d70 696c 6564 4675 tion: CompiledFu │ │ │ │ -0027c2b0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ -0027c2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027bf00: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +0027bf10: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +0027bf20: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +0027bf30: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +0027bf40: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +0027bf50: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +0027bf60: 7061 636b 6167 6573 2f0a 4d61 6361 756c packages/.Macaul │ │ │ │ +0027bf70: 6179 3244 6f63 2f6f 765f 7379 7374 656d ay2Doc/ov_system │ │ │ │ +0027bf80: 2e6d 323a 3734 313a 302e 0a1f 0a46 696c .m2:741:0....Fil │ │ │ │ +0027bf90: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +0027bfa0: 696e 666f 2c20 4e6f 6465 3a20 666f 726b info, Node: fork │ │ │ │ +0027bfb0: 2c20 4e65 7874 3a20 7368 6f77 2c20 5072 , Next: show, Pr │ │ │ │ +0027bfc0: 6576 3a20 6578 6974 2c20 5570 3a20 7379 ev: exit, Up: sy │ │ │ │ +0027bfd0: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +0027bfe0: 0a66 6f72 6b20 2d2d 2066 6f72 6b20 7468 .fork -- fork th │ │ │ │ +0027bff0: 6520 7072 6f63 6573 730a 2a2a 2a2a 2a2a e process.****** │ │ │ │ +0027c000: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027c010: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +0027c020: 2020 2020 2020 2020 666f 726b 2829 0a20 fork(). │ │ │ │ +0027c030: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0027c040: 2020 2a20 5768 656e 2073 7563 6365 7373 * When success │ │ │ │ +0027c050: 6675 6c2c 2069 7420 7265 7475 726e 7320 ful, it returns │ │ │ │ +0027c060: 7468 6520 7072 6f63 6573 7320 6964 206f the process id o │ │ │ │ +0027c070: 6620 7468 6520 6368 696c 6420 696e 2074 f the child in t │ │ │ │ +0027c080: 6865 2070 6172 656e 742c 0a20 2020 2020 he parent,. │ │ │ │ +0027c090: 2020 2061 6e64 2072 6574 7572 6e73 2030 and returns 0 │ │ │ │ +0027c0a0: 2069 6e20 7468 6520 6368 696c 642e 2020 in the child. │ │ │ │ +0027c0b0: 5768 656e 2075 6e73 7563 6365 7373 6675 When unsuccessfu │ │ │ │ +0027c0c0: 6c2c 2069 7420 7265 7475 726e 7320 2d31 l, it returns -1 │ │ │ │ +0027c0d0: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ +0027c0e0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 506c 6174 ==========..Plat │ │ │ │ +0027c0f0: 666f 726d 7320 7468 6174 2064 6f20 6e6f forms that do no │ │ │ │ +0027c100: 7420 6861 7665 2061 2062 7569 6c74 2d69 t have a built-i │ │ │ │ +0027c110: 6e20 666f 726b 2829 2066 756e 6374 696f n fork() functio │ │ │ │ +0027c120: 6e20 7769 6c6c 2061 6c77 6179 7320 7265 n will always re │ │ │ │ +0027c130: 7475 726e 202d 312e 0a0a 5761 726e 696e turn -1...Warnin │ │ │ │ +0027c140: 673a 2069 6e20 6d75 6c74 6974 6872 6561 g: in multithrea │ │ │ │ +0027c150: 6465 6420 7072 6f67 7261 6d73 206c 696b ded programs lik │ │ │ │ +0027c160: 6520 4d61 6361 756c 6179 322c 2076 6572 e Macaulay2, ver │ │ │ │ +0027c170: 7920 6665 7720 6f70 6572 6174 696f 6e73 y few operations │ │ │ │ +0027c180: 2063 616e 2062 650a 7361 6665 6c79 2064 can be.safely d │ │ │ │ +0027c190: 6f6e 6520 696e 2074 6865 2063 6869 6c64 one in the child │ │ │ │ +0027c1a0: 2e20 2054 6869 7320 6973 2065 7370 6563 . This is espec │ │ │ │ +0027c1b0: 6961 6c6c 7920 7472 7565 2077 6865 6e20 ially true when │ │ │ │ +0027c1c0: 7468 6520 7573 6572 2068 6173 2062 6565 the user has bee │ │ │ │ +0027c1d0: 6e20 2a6e 6f74 650a 7061 7261 6c6c 656c n *note.parallel │ │ │ │ +0027c1e0: 2070 726f 6772 616d 6d69 6e67 2077 6974 programming wit │ │ │ │ +0027c1f0: 6820 7468 7265 6164 7320 616e 6420 7461 h threads and ta │ │ │ │ +0027c200: 736b 733a 2070 6172 616c 6c65 6c20 7072 sks: parallel pr │ │ │ │ +0027c210: 6f67 7261 6d6d 696e 6720 7769 7468 2074 ogramming with t │ │ │ │ +0027c220: 6872 6561 6473 0a61 6e64 2074 6173 6b73 hreads.and tasks │ │ │ │ +0027c230: 2c2e 2045 7665 6e20 616c 6c6f 6361 7469 ,. Even allocati │ │ │ │ +0027c240: 6e67 206d 656d 6f72 7920 696e 2074 6865 ng memory in the │ │ │ │ +0027c250: 2063 6869 6c64 206d 6179 2068 616e 6720 child may hang │ │ │ │ +0027c260: 7468 6520 7072 6f63 6573 732e 0a0a 466f the process...Fo │ │ │ │ +0027c270: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +0027c280: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0027c290: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +0027c2a0: 2a6e 6f74 6520 666f 726b 3a20 666f 726b *note fork: fork │ │ │ │ +0027c2b0: 2c20 6973 2061 202a 6e6f 7465 2063 6f6d , is a *note com │ │ │ │ +0027c2c0: 7069 6c65 6420 6675 6e63 7469 6f6e 3a20 piled function: │ │ │ │ +0027c2d0: 436f 6d70 696c 6564 4675 6e63 7469 6f6e CompiledFunction │ │ │ │ +0027c2e0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0027c2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c300: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0027c310: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0027c320: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0027c330: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0027c340: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0027c350: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0027c360: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0027c370: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ -0027c380: 765f 7379 7374 656d 2e6d 323a 3735 393a v_system.m2:759: │ │ │ │ -0027c390: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ -0027c3a0: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ -0027c3b0: 6465 3a20 7368 6f77 2c20 4e65 7874 3a20 de: show, Next: │ │ │ │ -0027c3c0: 7061 6765 722c 2050 7265 763a 2066 6f72 pager, Prev: for │ │ │ │ -0027c3d0: 6b2c 2055 703a 2073 7973 7465 6d20 6661 k, Up: system fa │ │ │ │ -0027c3e0: 6369 6c69 7469 6573 0a0a 7368 6f77 202d cilities..show - │ │ │ │ -0027c3f0: 2d20 6469 7370 6c61 7920 7661 7269 6f75 - display variou │ │ │ │ -0027c400: 7320 6f62 6a65 6374 7320 696e 2061 6e20 s objects in an │ │ │ │ -0027c410: 6578 7465 726e 616c 2076 6965 7765 720a external viewer. │ │ │ │ -0027c420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027c430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027c440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027c450: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -0027c460: 3a20 0a20 2020 2020 2020 2073 686f 7720 : . show │ │ │ │ -0027c470: 780a 2020 2a20 496e 7075 7473 3a0a 2020 x. * Inputs:. │ │ │ │ -0027c480: 2020 2020 2a20 782c 2061 202a 6e6f 7465 * x, a *note │ │ │ │ -0027c490: 206d 6172 6b75 7020 6c69 7374 3a20 2854 markup list: (T │ │ │ │ -0027c4a0: 6578 7429 4879 7065 7274 6578 742c 2c20 ext)Hypertext,, │ │ │ │ -0027c4b0: 616e 2069 6e73 7461 6e63 6520 6f66 2074 an instance of t │ │ │ │ -0027c4c0: 6865 2074 7970 6520 2a6e 6f74 650a 2020 he type *note. │ │ │ │ -0027c4d0: 2020 2020 2020 5445 583a 2028 5465 7874 TEX: (Text │ │ │ │ -0027c4e0: 2954 4558 2c2c 206f 7220 616e 2069 6e73 )TEX,, or an ins │ │ │ │ -0027c4f0: 7461 6e63 6520 6f66 2074 6865 2074 7970 tance of the typ │ │ │ │ -0027c500: 6520 2a6e 6f74 6520 5552 4c3a 2055 524c e *note URL: URL │ │ │ │ -0027c510: 2c2c 0a20 202a 2043 6f6e 7365 7175 656e ,,. * Consequen │ │ │ │ -0027c520: 6365 733a 0a20 2020 2020 202a 2041 6e20 ces:. * An │ │ │ │ -0027c530: 6578 7465 726e 616c 2076 6965 7765 722c external viewer, │ │ │ │ -0027c540: 2073 7563 6820 6173 2061 2077 6562 2062 such as a web b │ │ │ │ -0027c550: 726f 7773 6572 206f 7220 5044 4620 7669 rowser or PDF vi │ │ │ │ -0027c560: 6577 6572 2c20 6973 2073 7461 7274 6564 ewer, is started │ │ │ │ -0027c570: 2074 6f0a 2020 2020 2020 2020 7669 6577 to. view │ │ │ │ -0027c580: 2074 6865 206f 626a 6563 7420 780a 0a44 the object x..D │ │ │ │ -0027c590: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0027c5a0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6675 6e63 ======..The func │ │ │ │ -0027c5b0: 7469 6f6e 7320 7368 6f77 5465 7820 616e tions showTex an │ │ │ │ -0027c5c0: 6420 7368 6f77 4874 6d6c 2061 7265 2073 d showHtml are s │ │ │ │ -0027c5d0: 7065 6369 616c 697a 6174 696f 6e73 206f pecializations o │ │ │ │ -0027c5e0: 6620 7468 6520 7368 6f77 206d 6574 686f f the show metho │ │ │ │ -0027c5f0: 6420 7768 6963 680a 6669 7273 7420 636f d which.first co │ │ │ │ -0027c600: 6e76 6572 7420 7820 746f 2061 202a 6e6f nvert x to a *no │ │ │ │ -0027c610: 7465 2054 4558 3a20 2854 6578 7429 5445 te TEX: (Text)TE │ │ │ │ -0027c620: 582c 206f 7220 2a6e 6f74 6520 4879 7065 X, or *note Hype │ │ │ │ -0027c630: 7274 6578 743a 2028 5465 7874 2948 7970 rtext: (Text)Hyp │ │ │ │ -0027c640: 6572 7465 7874 2c0a 6f62 6a65 6374 2c20 ertext,.object, │ │ │ │ -0027c650: 7265 7370 6563 7469 7665 6c79 2c20 616e respectively, an │ │ │ │ -0027c660: 6420 6469 7370 6c61 7920 7468 6174 2072 d display that r │ │ │ │ -0027c670: 6573 756c 742e 0a0a 466f 7220 6578 616d esult...For exam │ │ │ │ -0027c680: 706c 652c 2074 6865 2066 6f6c 6c6f 7769 ple, the followi │ │ │ │ -0027c690: 6e67 206c 696e 6573 2077 6f75 6c64 2064 ng lines would d │ │ │ │ -0027c6a0: 6973 706c 6179 2061 206d 6174 7269 7820 isplay a matrix │ │ │ │ -0027c6b0: 696e 2061 2062 726f 7773 6572 206f 7220 in a browser or │ │ │ │ -0027c6c0: 5044 460a 7669 6577 6572 3a0a 0a2b 2d2d PDF.viewer:..+-- │ │ │ │ -0027c6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c330: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0027c340: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0027c350: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0027c360: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0027c370: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0027c380: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0027c390: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +0027c3a0: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ +0027c3b0: 656d 2e6d 323a 3735 393a 302e 0a1f 0a46 em.m2:759:0....F │ │ │ │ +0027c3c0: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ +0027c3d0: 632e 696e 666f 2c20 4e6f 6465 3a20 7368 c.info, Node: sh │ │ │ │ +0027c3e0: 6f77 2c20 4e65 7874 3a20 7061 6765 722c ow, Next: pager, │ │ │ │ +0027c3f0: 2050 7265 763a 2066 6f72 6b2c 2055 703a Prev: fork, Up: │ │ │ │ +0027c400: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +0027c410: 6573 0a0a 7368 6f77 202d 2d20 6469 7370 es..show -- disp │ │ │ │ +0027c420: 6c61 7920 7661 7269 6f75 7320 6f62 6a65 lay various obje │ │ │ │ +0027c430: 6374 7320 696e 2061 6e20 6578 7465 726e cts in an extern │ │ │ │ +0027c440: 616c 2076 6965 7765 720a 2a2a 2a2a 2a2a al viewer.****** │ │ │ │ +0027c450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027c460: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027c470: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +0027c480: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0027c490: 2020 2020 2073 686f 7720 780a 2020 2a20 show x. * │ │ │ │ +0027c4a0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0027c4b0: 782c 2061 202a 6e6f 7465 206d 6172 6b75 x, a *note marku │ │ │ │ +0027c4c0: 7020 6c69 7374 3a20 2854 6578 7429 4879 p list: (Text)Hy │ │ │ │ +0027c4d0: 7065 7274 6578 742c 2c20 616e 2069 6e73 pertext,, an ins │ │ │ │ +0027c4e0: 7461 6e63 6520 6f66 2074 6865 2074 7970 tance of the typ │ │ │ │ +0027c4f0: 6520 2a6e 6f74 650a 2020 2020 2020 2020 e *note. │ │ │ │ +0027c500: 5445 583a 2028 5465 7874 2954 4558 2c2c TEX: (Text)TEX,, │ │ │ │ +0027c510: 206f 7220 616e 2069 6e73 7461 6e63 6520 or an instance │ │ │ │ +0027c520: 6f66 2074 6865 2074 7970 6520 2a6e 6f74 of the type *not │ │ │ │ +0027c530: 6520 5552 4c3a 2055 524c 2c2c 0a20 202a e URL: URL,,. * │ │ │ │ +0027c540: 2043 6f6e 7365 7175 656e 6365 733a 0a20 Consequences:. │ │ │ │ +0027c550: 2020 2020 202a 2041 6e20 6578 7465 726e * An extern │ │ │ │ +0027c560: 616c 2076 6965 7765 722c 2073 7563 6820 al viewer, such │ │ │ │ +0027c570: 6173 2061 2077 6562 2062 726f 7773 6572 as a web browser │ │ │ │ +0027c580: 206f 7220 5044 4620 7669 6577 6572 2c20 or PDF viewer, │ │ │ │ +0027c590: 6973 2073 7461 7274 6564 2074 6f0a 2020 is started to. │ │ │ │ +0027c5a0: 2020 2020 2020 7669 6577 2074 6865 206f view the o │ │ │ │ +0027c5b0: 626a 6563 7420 780a 0a44 6573 6372 6970 bject x..Descrip │ │ │ │ +0027c5c0: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +0027c5d0: 0a0a 5468 6520 6675 6e63 7469 6f6e 7320 ..The functions │ │ │ │ +0027c5e0: 7368 6f77 5465 7820 616e 6420 7368 6f77 showTex and show │ │ │ │ +0027c5f0: 4874 6d6c 2061 7265 2073 7065 6369 616c Html are special │ │ │ │ +0027c600: 697a 6174 696f 6e73 206f 6620 7468 6520 izations of the │ │ │ │ +0027c610: 7368 6f77 206d 6574 686f 6420 7768 6963 show method whic │ │ │ │ +0027c620: 680a 6669 7273 7420 636f 6e76 6572 7420 h.first convert │ │ │ │ +0027c630: 7820 746f 2061 202a 6e6f 7465 2054 4558 x to a *note TEX │ │ │ │ +0027c640: 3a20 2854 6578 7429 5445 582c 206f 7220 : (Text)TEX, or │ │ │ │ +0027c650: 2a6e 6f74 6520 4879 7065 7274 6578 743a *note Hypertext: │ │ │ │ +0027c660: 2028 5465 7874 2948 7970 6572 7465 7874 (Text)Hypertext │ │ │ │ +0027c670: 2c0a 6f62 6a65 6374 2c20 7265 7370 6563 ,.object, respec │ │ │ │ +0027c680: 7469 7665 6c79 2c20 616e 6420 6469 7370 tively, and disp │ │ │ │ +0027c690: 6c61 7920 7468 6174 2072 6573 756c 742e lay that result. │ │ │ │ +0027c6a0: 0a0a 466f 7220 6578 616d 706c 652c 2074 ..For example, t │ │ │ │ +0027c6b0: 6865 2066 6f6c 6c6f 7769 6e67 206c 696e he following lin │ │ │ │ +0027c6c0: 6573 2077 6f75 6c64 2064 6973 706c 6179 es would display │ │ │ │ +0027c6d0: 2061 206d 6174 7269 7820 696e 2061 2062 a matrix in a b │ │ │ │ +0027c6e0: 726f 7773 6572 206f 7220 5044 460a 7669 rowser or PDF.vi │ │ │ │ +0027c6f0: 6577 6572 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d ewer:..+-------- │ │ │ │ 0027c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0027c720: 203a 2073 686f 7754 6578 206d 6174 7269 : showTex matri │ │ │ │ -0027c730: 787b 7b31 2c32 2c33 7d2c 7b34 2c35 2c36 x{{1,2,3},{4,5,6 │ │ │ │ -0027c740: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ -0027c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c760: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ -0027c770: 6364 202f 746d 702f 4d32 2d39 3536 3738 cd /tmp/M2-95678 │ │ │ │ -0027c780: 2d30 2f30 2f20 2020 2020 2020 2020 2020 -0/0/ │ │ │ │ -0027c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c7b0: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ -0027c7c0: 7064 666c 6174 6578 202d 696e 7465 7261 pdflatex -intera │ │ │ │ -0027c7d0: 6374 696f 6e3d 6261 7463 686d 6f64 6520 ction=batchmode │ │ │ │ -0027c7e0: 7368 6f77 2020 2020 2020 2020 2020 2020 show │ │ │ │ -0027c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c800: 2020 2020 2020 2020 2020 207c 0a7c 5468 |.|Th │ │ │ │ -0027c810: 6973 2069 7320 7064 6654 6558 2c20 5665 is is pdfTeX, Ve │ │ │ │ -0027c820: 7273 696f 6e20 332e 3134 3135 3932 3635 rsion 3.14159265 │ │ │ │ -0027c830: 2d32 2e36 2d31 2e34 302e 3231 2028 5465 -2.6-1.40.21 (Te │ │ │ │ -0027c840: 5820 4c69 7665 2032 3032 3029 2028 7072 X Live 2020) (pr │ │ │ │ -0027c850: 656c 6f61 6465 6420 2020 207c 0a7c 7265 eloaded |.|re │ │ │ │ -0027c860: 7374 7269 6374 6564 205c 7772 6974 6531 stricted \write1 │ │ │ │ -0027c870: 3820 656e 6162 6c65 642e 2020 2020 2020 8 enabled. │ │ │ │ -0027c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c8a0: 2020 2020 2020 2020 2020 207c 0a7c 656e |.|en │ │ │ │ -0027c8b0: 7465 7269 6e67 2065 7874 656e 6465 6420 tering extended │ │ │ │ -0027c8c0: 6d6f 6465 2020 2020 2020 2020 2020 2020 mode │ │ │ │ -0027c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c8f0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ -0027c900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c740: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 686f -----+.|i1 : sho │ │ │ │ +0027c750: 7754 6578 206d 6174 7269 787b 7b31 2c32 wTex matrix{{1,2 │ │ │ │ +0027c760: 2c33 7d2c 7b34 2c35 2c36 7d7d 2020 2020 ,3},{4,5,6}} │ │ │ │ +0027c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c790: 2020 2020 207c 0a7c 2b20 6364 202f 746d |.|+ cd /tm │ │ │ │ +0027c7a0: 702f 4d32 2d39 3536 3738 2d30 2f30 2f20 p/M2-95678-0/0/ │ │ │ │ +0027c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c7e0: 2020 2020 207c 0a7c 2b20 7064 666c 6174 |.|+ pdflat │ │ │ │ +0027c7f0: 6578 202d 696e 7465 7261 6374 696f 6e3d ex -interaction= │ │ │ │ +0027c800: 6261 7463 686d 6f64 6520 7368 6f77 2020 batchmode show │ │ │ │ +0027c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c830: 2020 2020 207c 0a7c 5468 6973 2069 7320 |.|This is │ │ │ │ +0027c840: 7064 6654 6558 2c20 5665 7273 696f 6e20 pdfTeX, Version │ │ │ │ +0027c850: 332e 3134 3135 3932 3635 2d32 2e36 2d31 3.14159265-2.6-1 │ │ │ │ +0027c860: 2e34 302e 3231 2028 5465 5820 4c69 7665 .40.21 (TeX Live │ │ │ │ +0027c870: 2032 3032 3029 2028 7072 656c 6f61 6465 2020) (preloade │ │ │ │ +0027c880: 6420 2020 207c 0a7c 7265 7374 7269 6374 d |.|restrict │ │ │ │ +0027c890: 6564 205c 7772 6974 6531 3820 656e 6162 ed \write18 enab │ │ │ │ +0027c8a0: 6c65 642e 2020 2020 2020 2020 2020 2020 led. │ │ │ │ +0027c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c8d0: 2020 2020 207c 0a7c 656e 7465 7269 6e67 |.|entering │ │ │ │ +0027c8e0: 2065 7874 656e 6465 6420 6d6f 6465 2020 extended mode │ │ │ │ +0027c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c920: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 0027c930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 666f -----------|.|fo │ │ │ │ -0027c950: 726d 6174 3d70 6466 6c61 7465 7829 2020 rmat=pdflatex) │ │ │ │ -0027c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027c990: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -0027c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c970: 2d2d 2d2d 2d7c 0a7c 666f 726d 6174 3d70 -----|.|format=p │ │ │ │ +0027c980: 6466 6c61 7465 7829 2020 2020 2020 2020 dflatex) │ │ │ │ +0027c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027c9c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0027c9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0027c9f0: 203a 2073 686f 7748 746d 6c20 6d61 7472 : showHtml matr │ │ │ │ -0027ca00: 6978 7b7b 312c 322c 337d 2c7b 342c 352c ix{{1,2,3},{4,5, │ │ │ │ -0027ca10: 367d 7d20 2020 2020 2020 2020 2020 2020 6}} │ │ │ │ -0027ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ca30: 2020 2020 2020 2020 2020 207c 0a7c 4f70 |.|Op │ │ │ │ -0027ca40: 656e 696e 6720 696e 2065 7869 7374 696e ening in existin │ │ │ │ -0027ca50: 6720 6272 6f77 7365 7220 7365 7373 696f g browser sessio │ │ │ │ -0027ca60: 6e2e 2020 2020 2020 2020 2020 2020 2020 n. │ │ │ │ -0027ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ca80: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -0027ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027c9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ca10: 2d2d 2d2d 2d2b 0a7c 6932 203a 2073 686f -----+.|i2 : sho │ │ │ │ +0027ca20: 7748 746d 6c20 6d61 7472 6978 7b7b 312c wHtml matrix{{1, │ │ │ │ +0027ca30: 322c 337d 2c7b 342c 352c 367d 7d20 2020 2,3},{4,5,6}} │ │ │ │ +0027ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ca60: 2020 2020 207c 0a7c 4f70 656e 696e 6720 |.|Opening │ │ │ │ +0027ca70: 696e 2065 7869 7374 696e 6720 6272 6f77 in existing brow │ │ │ │ +0027ca80: 7365 7220 7365 7373 696f 6e2e 2020 2020 ser session. │ │ │ │ +0027ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027cab0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0027cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4279 -----------+..By │ │ │ │ -0027cae0: 2064 6566 6175 6c74 2c20 7468 6520 7669 default, the vi │ │ │ │ -0027caf0: 6577 6572 2069 7320 6465 7465 726d 696e ewer is determin │ │ │ │ -0027cb00: 6564 2062 7920 6569 7468 6572 206f 7065 ed by either ope │ │ │ │ -0027cb10: 6e20 6f6e 206d 6163 4f53 206f 7220 7864 n on macOS or xd │ │ │ │ -0027cb20: 672d 6f70 656e 206f 6e0a 4c69 6e75 7820 g-open on.Linux │ │ │ │ -0027cb30: 6469 7374 7269 6275 7469 6f6e 732e 2041 distributions. A │ │ │ │ -0027cb40: 7320 6261 636b 7570 2066 6f72 2077 6865 s backup for whe │ │ │ │ -0027cb50: 6e20 6e65 6974 6865 7220 6f70 656e 206e n neither open n │ │ │ │ -0027cb60: 6f72 2078 6467 2d6f 7065 6e20 6973 2061 or xdg-open is a │ │ │ │ -0027cb70: 7661 696c 6162 6c65 2c0a 7468 6520 656e vailable,.the en │ │ │ │ -0027cb80: 7669 726f 6e6d 656e 7461 6c20 7661 7269 vironmental vari │ │ │ │ -0027cb90: 6162 6c65 2057 5757 4252 4f57 5345 5220 able WWWBROWSER │ │ │ │ -0027cba0: 6f72 2066 6972 6566 6f78 2069 7320 7573 or firefox is us │ │ │ │ -0027cbb0: 6564 2e0a 0a43 6176 6561 740a 3d3d 3d3d ed...Caveat.==== │ │ │ │ -0027cbc0: 3d3d 0a0a 4e6f 2061 7474 656d 7074 2069 ==..No attempt i │ │ │ │ -0027cbd0: 7320 6d61 6465 2074 6f20 7772 6170 206c s made to wrap l │ │ │ │ -0027cbe0: 6172 6765 206d 6174 7269 6365 7320 6f72 arge matrices or │ │ │ │ -0027cbf0: 2065 7175 6174 696f 6e73 2e20 5468 6520 equations. The │ │ │ │ -0027cc00: 636f 6465 2066 6f72 2074 6869 730a 6675 code for this.fu │ │ │ │ -0027cc10: 6e63 7469 6f6e 2069 7320 556e 6978 2064 nction is Unix d │ │ │ │ -0027cc20: 6570 656e 6465 6e74 2061 7420 7468 6520 ependent at the │ │ │ │ -0027cc30: 6d6f 6d65 6e74 2c20 7265 7175 6972 696e moment, requirin │ │ │ │ -0027cc40: 6720 7468 6174 2063 6572 7461 696e 2063 g that certain c │ │ │ │ -0027cc50: 6f6d 6d61 6e64 7320 6c69 6b65 0a70 6466 ommands like.pdf │ │ │ │ -0027cc60: 6c61 7465 7820 6172 6520 7072 6573 656e latex are presen │ │ │ │ -0027cc70: 742e 0a0a 5365 6520 616c 736f 0a3d 3d3d t...See also.=== │ │ │ │ -0027cc80: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0027cc90: 2074 6578 3a20 7465 782c 202d 2d20 636f tex: tex, -- co │ │ │ │ -0027cca0: 6e76 6572 7420 746f 2024 5c54 6558 2420 nvert to $\TeX$ │ │ │ │ -0027ccb0: 666f 726d 6174 0a20 202a 202a 6e6f 7465 format. * *note │ │ │ │ -0027ccc0: 2074 6578 4d61 7468 3a20 7465 784d 6174 texMath: texMat │ │ │ │ -0027ccd0: 682c 202d 2d20 636f 6e76 6572 7420 746f h, -- convert to │ │ │ │ -0027cce0: 2054 6558 206d 6174 6820 666f 726d 6174 TeX math format │ │ │ │ -0027ccf0: 0a20 202a 202a 6e6f 7465 2068 746d 6c3a . * *note html: │ │ │ │ -0027cd00: 2068 746d 6c2c 202d 2d20 636f 6e76 6572 html, -- conver │ │ │ │ -0027cd10: 7420 746f 2048 544d 4c20 666f 726d 6174 t to HTML format │ │ │ │ -0027cd20: 0a0a 5761 7973 2074 6f20 7573 6520 7368 ..Ways to use sh │ │ │ │ -0027cd30: 6f77 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ow:.============ │ │ │ │ -0027cd40: 3d3d 3d3d 3d0a 0a20 202a 2022 7368 6f77 =====.. * "show │ │ │ │ -0027cd50: 2855 524c 2922 0a0a 466f 7220 7468 6520 (URL)"..For the │ │ │ │ -0027cd60: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0027cd70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0027cd80: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0027cd90: 7368 6f77 3a20 7368 6f77 2c20 6973 2061 show: show, is a │ │ │ │ -0027cda0: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ -0027cdb0: 6e63 7469 6f6e 3a20 4d65 7468 6f64 4675 nction: MethodFu │ │ │ │ -0027cdc0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ -0027cdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027cde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027caf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027cb00: 2d2d 2d2d 2d2b 0a0a 4279 2064 6566 6175 -----+..By defau │ │ │ │ +0027cb10: 6c74 2c20 7468 6520 7669 6577 6572 2069 lt, the viewer i │ │ │ │ +0027cb20: 7320 6465 7465 726d 696e 6564 2062 7920 s determined by │ │ │ │ +0027cb30: 6569 7468 6572 206f 7065 6e20 6f6e 206d either open on m │ │ │ │ +0027cb40: 6163 4f53 206f 7220 7864 672d 6f70 656e acOS or xdg-open │ │ │ │ +0027cb50: 206f 6e0a 4c69 6e75 7820 6469 7374 7269 on.Linux distri │ │ │ │ +0027cb60: 6275 7469 6f6e 732e 2041 7320 6261 636b butions. As back │ │ │ │ +0027cb70: 7570 2066 6f72 2077 6865 6e20 6e65 6974 up for when neit │ │ │ │ +0027cb80: 6865 7220 6f70 656e 206e 6f72 2078 6467 her open nor xdg │ │ │ │ +0027cb90: 2d6f 7065 6e20 6973 2061 7661 696c 6162 -open is availab │ │ │ │ +0027cba0: 6c65 2c0a 7468 6520 656e 7669 726f 6e6d le,.the environm │ │ │ │ +0027cbb0: 656e 7461 6c20 7661 7269 6162 6c65 2057 ental variable W │ │ │ │ +0027cbc0: 5757 4252 4f57 5345 5220 6f72 2066 6972 WWBROWSER or fir │ │ │ │ +0027cbd0: 6566 6f78 2069 7320 7573 6564 2e0a 0a43 efox is used...C │ │ │ │ +0027cbe0: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4e6f aveat.======..No │ │ │ │ +0027cbf0: 2061 7474 656d 7074 2069 7320 6d61 6465 attempt is made │ │ │ │ +0027cc00: 2074 6f20 7772 6170 206c 6172 6765 206d to wrap large m │ │ │ │ +0027cc10: 6174 7269 6365 7320 6f72 2065 7175 6174 atrices or equat │ │ │ │ +0027cc20: 696f 6e73 2e20 5468 6520 636f 6465 2066 ions. The code f │ │ │ │ +0027cc30: 6f72 2074 6869 730a 6675 6e63 7469 6f6e or this.function │ │ │ │ +0027cc40: 2069 7320 556e 6978 2064 6570 656e 6465 is Unix depende │ │ │ │ +0027cc50: 6e74 2061 7420 7468 6520 6d6f 6d65 6e74 nt at the moment │ │ │ │ +0027cc60: 2c20 7265 7175 6972 696e 6720 7468 6174 , requiring that │ │ │ │ +0027cc70: 2063 6572 7461 696e 2063 6f6d 6d61 6e64 certain command │ │ │ │ +0027cc80: 7320 6c69 6b65 0a70 6466 6c61 7465 7820 s like.pdflatex │ │ │ │ +0027cc90: 6172 6520 7072 6573 656e 742e 0a0a 5365 are present...Se │ │ │ │ +0027cca0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0027ccb0: 0a20 202a 202a 6e6f 7465 2074 6578 3a20 . * *note tex: │ │ │ │ +0027ccc0: 7465 782c 202d 2d20 636f 6e76 6572 7420 tex, -- convert │ │ │ │ +0027ccd0: 746f 2024 5c54 6558 2420 666f 726d 6174 to $\TeX$ format │ │ │ │ +0027cce0: 0a20 202a 202a 6e6f 7465 2074 6578 4d61 . * *note texMa │ │ │ │ +0027ccf0: 7468 3a20 7465 784d 6174 682c 202d 2d20 th: texMath, -- │ │ │ │ +0027cd00: 636f 6e76 6572 7420 746f 2054 6558 206d convert to TeX m │ │ │ │ +0027cd10: 6174 6820 666f 726d 6174 0a20 202a 202a ath format. * * │ │ │ │ +0027cd20: 6e6f 7465 2068 746d 6c3a 2068 746d 6c2c note html: html, │ │ │ │ +0027cd30: 202d 2d20 636f 6e76 6572 7420 746f 2048 -- convert to H │ │ │ │ +0027cd40: 544d 4c20 666f 726d 6174 0a0a 5761 7973 TML format..Ways │ │ │ │ +0027cd50: 2074 6f20 7573 6520 7368 6f77 3a0a 3d3d to use show:.== │ │ │ │ +0027cd60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0027cd70: 0a20 202a 2022 7368 6f77 2855 524c 2922 . * "show(URL)" │ │ │ │ +0027cd80: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +0027cd90: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +0027cda0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +0027cdb0: 6563 7420 2a6e 6f74 6520 7368 6f77 3a20 ect *note show: │ │ │ │ +0027cdc0: 7368 6f77 2c20 6973 2061 202a 6e6f 7465 show, is a *note │ │ │ │ +0027cdd0: 206d 6574 686f 6420 6675 6e63 7469 6f6e method function │ │ │ │ +0027cde0: 3a20 4d65 7468 6f64 4675 6e63 7469 6f6e : MethodFunction │ │ │ │ +0027cdf0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0027ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ce10: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0027ce20: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0027ce30: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0027ce40: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0027ce50: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0027ce60: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0027ce70: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0027ce80: 2f0a 4d61 6361 756c 6179 3244 6f63 2f66 /.Macaulay2Doc/f │ │ │ │ -0027ce90: 756e 6374 696f 6e73 2f73 686f 772d 646f unctions/show-do │ │ │ │ -0027cea0: 632e 6d32 3a37 303a 302e 0a1f 0a46 696c c.m2:70:0....Fil │ │ │ │ -0027ceb0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -0027cec0: 696e 666f 2c20 4e6f 6465 3a20 7061 6765 info, Node: page │ │ │ │ -0027ced0: 722c 204e 6578 743a 2067 6574 656e 762c r, Next: getenv, │ │ │ │ -0027cee0: 2050 7265 763a 2073 686f 772c 2055 703a Prev: show, Up: │ │ │ │ -0027cef0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -0027cf00: 6573 0a0a 7061 6765 7220 2d2d 2064 6973 es..pager -- dis │ │ │ │ -0027cf10: 706c 6179 2077 6974 6820 7061 6769 6e67 play with paging │ │ │ │ -0027cf20: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ -0027cf30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -0027cf40: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0027cf50: 2020 2070 6167 6572 2078 0a20 202a 2049 pager x. * I │ │ │ │ -0027cf60: 6e70 7574 733a 0a20 2020 2020 202a 2078 nputs:. * x │ │ │ │ -0027cf70: 0a20 202a 2043 6f6e 7365 7175 656e 6365 . * Consequence │ │ │ │ -0027cf80: 733a 0a20 2020 2020 202a 2078 2069 7320 s:. * x is │ │ │ │ -0027cf90: 636f 6e76 6572 7465 6420 746f 2061 206e converted to a n │ │ │ │ -0027cfa0: 6574 2061 6e64 2064 6973 706c 6179 6564 et and displayed │ │ │ │ -0027cfb0: 2074 6872 6f75 6768 2074 6865 2070 6167 through the pag │ │ │ │ -0027cfc0: 6572 2073 7065 6369 6669 6564 2062 790a er specified by. │ │ │ │ -0027cfd0: 2020 2020 2020 2020 7468 6520 656e 7669 the envi │ │ │ │ -0027cfe0: 726f 6e6d 656e 7420 7661 7269 6162 6c65 ronment variable │ │ │ │ -0027cff0: 2050 4147 4552 2c20 6966 2073 6574 2c20 PAGER, if set, │ │ │ │ -0027d000: 656c 7365 2074 6872 6f75 6768 2074 6865 else through the │ │ │ │ -0027d010: 2070 726f 6772 616d 206d 6f72 652e 0a0a program more... │ │ │ │ -0027d020: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0027d030: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0027d040: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0027d050: 7420 2a6e 6f74 6520 7061 6765 723a 2070 t *note pager: p │ │ │ │ -0027d060: 6167 6572 2c20 6973 2061 202a 6e6f 7465 ager, is a *note │ │ │ │ -0027d070: 2066 756e 6374 696f 6e20 636c 6f73 7572 function closur │ │ │ │ -0027d080: 653a 2046 756e 6374 696f 6e43 6c6f 7375 e: FunctionClosu │ │ │ │ -0027d090: 7265 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d re,...---------- │ │ │ │ -0027d0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ce40: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0027ce50: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0027ce60: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0027ce70: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0027ce80: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0027ce90: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0027cea0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ +0027ceb0: 756c 6179 3244 6f63 2f66 756e 6374 696f ulay2Doc/functio │ │ │ │ +0027cec0: 6e73 2f73 686f 772d 646f 632e 6d32 3a37 ns/show-doc.m2:7 │ │ │ │ +0027ced0: 303a 302e 0a1f 0a46 696c 653a 204d 6163 0:0....File: Mac │ │ │ │ +0027cee0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +0027cef0: 4e6f 6465 3a20 7061 6765 722c 204e 6578 Node: pager, Nex │ │ │ │ +0027cf00: 743a 2067 6574 656e 762c 2050 7265 763a t: getenv, Prev: │ │ │ │ +0027cf10: 2073 686f 772c 2055 703a 2073 7973 7465 show, Up: syste │ │ │ │ +0027cf20: 6d20 6661 6369 6c69 7469 6573 0a0a 7061 m facilities..pa │ │ │ │ +0027cf30: 6765 7220 2d2d 2064 6973 706c 6179 2077 ger -- display w │ │ │ │ +0027cf40: 6974 6820 7061 6769 6e67 0a2a 2a2a 2a2a ith paging.***** │ │ │ │ +0027cf50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027cf60: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ +0027cf70: 6765 3a20 0a20 2020 2020 2020 2070 6167 ge: . pag │ │ │ │ +0027cf80: 6572 2078 0a20 202a 2049 6e70 7574 733a er x. * Inputs: │ │ │ │ +0027cf90: 0a20 2020 2020 202a 2078 0a20 202a 2043 . * x. * C │ │ │ │ +0027cfa0: 6f6e 7365 7175 656e 6365 733a 0a20 2020 onsequences:. │ │ │ │ +0027cfb0: 2020 202a 2078 2069 7320 636f 6e76 6572 * x is conver │ │ │ │ +0027cfc0: 7465 6420 746f 2061 206e 6574 2061 6e64 ted to a net and │ │ │ │ +0027cfd0: 2064 6973 706c 6179 6564 2074 6872 6f75 displayed throu │ │ │ │ +0027cfe0: 6768 2074 6865 2070 6167 6572 2073 7065 gh the pager spe │ │ │ │ +0027cff0: 6369 6669 6564 2062 790a 2020 2020 2020 cified by. │ │ │ │ +0027d000: 2020 7468 6520 656e 7669 726f 6e6d 656e the environmen │ │ │ │ +0027d010: 7420 7661 7269 6162 6c65 2050 4147 4552 t variable PAGER │ │ │ │ +0027d020: 2c20 6966 2073 6574 2c20 656c 7365 2074 , if set, else t │ │ │ │ +0027d030: 6872 6f75 6768 2074 6865 2070 726f 6772 hrough the progr │ │ │ │ +0027d040: 616d 206d 6f72 652e 0a0a 466f 7220 7468 am more...For th │ │ │ │ +0027d050: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0027d060: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0027d070: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0027d080: 6520 7061 6765 723a 2070 6167 6572 2c20 e pager: pager, │ │ │ │ +0027d090: 6973 2061 202a 6e6f 7465 2066 756e 6374 is a *note funct │ │ │ │ +0027d0a0: 696f 6e20 636c 6f73 7572 653a 2046 756e ion closure: Fun │ │ │ │ +0027d0b0: 6374 696f 6e43 6c6f 7375 7265 2c2e 0a0a ctionClosure,... │ │ │ │ 0027d0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027d0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d0e0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0027d0f0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0027d100: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0027d110: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0027d120: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0027d130: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0027d140: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -0027d150: 6361 756c 6179 3244 6f63 2f64 6f63 332e caulay2Doc/doc3. │ │ │ │ -0027d160: 6d32 3a38 373a 302e 0a1f 0a46 696c 653a m2:87:0....File: │ │ │ │ -0027d170: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -0027d180: 666f 2c20 4e6f 6465 3a20 6765 7465 6e76 fo, Node: getenv │ │ │ │ -0027d190: 2c20 4e65 7874 3a20 6765 7457 5757 2c20 , Next: getWWW, │ │ │ │ -0027d1a0: 5072 6576 3a20 7061 6765 722c 2055 703a Prev: pager, Up: │ │ │ │ -0027d1b0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -0027d1c0: 6573 0a0a 6765 7465 6e76 202d 2d20 6765 es..getenv -- ge │ │ │ │ -0027d1d0: 7420 7661 6c75 6520 6f66 2065 6e76 6972 t value of envir │ │ │ │ -0027d1e0: 6f6e 6d65 6e74 2076 6172 6961 626c 650a onment variable. │ │ │ │ -0027d1f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027d200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027d210: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -0027d220: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0027d230: 3d3d 3d3d 0a0a 6765 7465 6e76 2073 2079 ====..getenv s y │ │ │ │ -0027d240: 6965 6c64 7320 7468 6520 7661 6c75 6520 ields the value │ │ │ │ -0027d250: 6173 736f 6369 6174 6564 2077 6974 6820 associated with │ │ │ │ -0027d260: 7468 6520 7374 7269 6e67 2073 2069 6e20 the string s in │ │ │ │ -0027d270: 7468 6520 656e 7669 726f 6e6d 656e 742e the environment. │ │ │ │ -0027d280: 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ -0027d290: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6765 ------+.|i1 : ge │ │ │ │ -0027d2a0: 7465 6e76 2022 484f 4d45 227c 0a7c 2020 tenv "HOME"|.| │ │ │ │ -0027d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027d2c0: 7c0a 7c6f 3120 3d20 2f68 6f6d 652f 6d32 |.|o1 = /home/m2 │ │ │ │ -0027d2d0: 7573 6572 207c 0a2b 2d2d 2d2d 2d2d 2d2d user |.+-------- │ │ │ │ -0027d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 ----------+..Way │ │ │ │ -0027d2f0: 7320 746f 2075 7365 2067 6574 656e 763a s to use getenv: │ │ │ │ -0027d300: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0027d310: 3d3d 3d3d 0a0a 2020 2a20 2267 6574 656e ====.. * "geten │ │ │ │ -0027d320: 7628 5374 7269 6e67 2922 0a0a 466f 7220 v(String)"..For │ │ │ │ -0027d330: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0027d340: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0027d350: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0027d360: 6f74 6520 6765 7465 6e76 3a20 6765 7465 ote getenv: gete │ │ │ │ -0027d370: 6e76 2c20 6973 2061 202a 6e6f 7465 2063 nv, is a *note c │ │ │ │ -0027d380: 6f6d 7069 6c65 6420 6675 6e63 7469 6f6e ompiled function │ │ │ │ -0027d390: 3a0a 436f 6d70 696c 6564 4675 6e63 7469 :.CompiledFuncti │ │ │ │ -0027d3a0: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -0027d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0027d110: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0027d120: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0027d130: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0027d140: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0027d150: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0027d160: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0027d170: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +0027d180: 3244 6f63 2f64 6f63 332e 6d32 3a38 373a 2Doc/doc3.m2:87: │ │ │ │ +0027d190: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +0027d1a0: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +0027d1b0: 6465 3a20 6765 7465 6e76 2c20 4e65 7874 de: getenv, Next │ │ │ │ +0027d1c0: 3a20 6765 7457 5757 2c20 5072 6576 3a20 : getWWW, Prev: │ │ │ │ +0027d1d0: 7061 6765 722c 2055 703a 2073 7973 7465 pager, Up: syste │ │ │ │ +0027d1e0: 6d20 6661 6369 6c69 7469 6573 0a0a 6765 m facilities..ge │ │ │ │ +0027d1f0: 7465 6e76 202d 2d20 6765 7420 7661 6c75 tenv -- get valu │ │ │ │ +0027d200: 6520 6f66 2065 6e76 6972 6f6e 6d65 6e74 e of environment │ │ │ │ +0027d210: 2076 6172 6961 626c 650a 2a2a 2a2a 2a2a variable.****** │ │ │ │ +0027d220: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027d230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027d240: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ +0027d250: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0027d260: 6765 7465 6e76 2073 2079 6965 6c64 7320 getenv s yields │ │ │ │ +0027d270: 7468 6520 7661 6c75 6520 6173 736f 6369 the value associ │ │ │ │ +0027d280: 6174 6564 2077 6974 6820 7468 6520 7374 ated with the st │ │ │ │ +0027d290: 7269 6e67 2073 2069 6e20 7468 6520 656e ring s in the en │ │ │ │ +0027d2a0: 7669 726f 6e6d 656e 742e 0a0a 0a2b 2d2d vironment....+-- │ │ │ │ +0027d2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d2c0: 2b0a 7c69 3120 3a20 6765 7465 6e76 2022 +.|i1 : getenv " │ │ │ │ +0027d2d0: 484f 4d45 227c 0a7c 2020 2020 2020 2020 HOME"|.| │ │ │ │ +0027d2e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0027d2f0: 3d20 2f68 6f6d 652f 6d32 7573 6572 207c = /home/m2user | │ │ │ │ +0027d300: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0027d310: 2d2d 2d2d 2b0a 0a57 6179 7320 746f 2075 ----+..Ways to u │ │ │ │ +0027d320: 7365 2067 6574 656e 763a 0a3d 3d3d 3d3d se getenv:.===== │ │ │ │ +0027d330: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0027d340: 2020 2a20 2267 6574 656e 7628 5374 7269 * "getenv(Stri │ │ │ │ +0027d350: 6e67 2922 0a0a 466f 7220 7468 6520 7072 ng)"..For the pr │ │ │ │ +0027d360: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +0027d370: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +0027d380: 206f 626a 6563 7420 2a6e 6f74 6520 6765 object *note ge │ │ │ │ +0027d390: 7465 6e76 3a20 6765 7465 6e76 2c20 6973 tenv: getenv, is │ │ │ │ +0027d3a0: 2061 202a 6e6f 7465 2063 6f6d 7069 6c65 a *note compile │ │ │ │ +0027d3b0: 6420 6675 6e63 7469 6f6e 3a0a 436f 6d70 d function:.Comp │ │ │ │ +0027d3c0: 696c 6564 4675 6e63 7469 6f6e 2c2e 0a0a iledFunction,... │ │ │ │ 0027d3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027d3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d3f0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0027d400: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0027d410: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0027d420: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0027d430: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0027d440: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0027d450: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -0027d460: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -0027d470: 7374 656d 2e6d 323a 3736 393a 302e 0a1f stem.m2:769:0... │ │ │ │ -0027d480: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -0027d490: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -0027d4a0: 6765 7457 5757 2c20 4e65 7874 3a20 7370 getWWW, Next: sp │ │ │ │ -0027d4b0: 6c69 7457 5757 2c20 5072 6576 3a20 6765 litWWW, Prev: ge │ │ │ │ -0027d4c0: 7465 6e76 2c20 5570 3a20 7379 7374 656d tenv, Up: system │ │ │ │ -0027d4d0: 2066 6163 696c 6974 6965 730a 0a67 6574 facilities..get │ │ │ │ -0027d4e0: 5757 5720 2d2d 2067 6574 2061 2077 6562 WWW -- get a web │ │ │ │ -0027d4f0: 2070 6167 650a 2a2a 2a2a 2a2a 2a2a 2a2a page.********** │ │ │ │ -0027d500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0027d510: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0027d520: 3d3d 3d3d 3d3d 3d0a 0a53 796e 6f70 7369 =======..Synopsi │ │ │ │ -0027d530: 730a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 s.========.. * │ │ │ │ -0027d540: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0027d550: 6765 7457 5757 2055 524c 0a20 202a 2049 getWWW URL. * I │ │ │ │ -0027d560: 6e70 7574 733a 0a20 2020 2020 202a 2055 nputs:. * U │ │ │ │ -0027d570: 524c 2c20 6120 2a6e 6f74 6520 7374 7269 RL, a *note stri │ │ │ │ -0027d580: 6e67 3a20 5374 7269 6e67 2c0a 2020 2a20 ng: String,. * │ │ │ │ -0027d590: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -0027d5a0: 2074 6865 2063 6f6e 7465 6e74 7320 6f66 the contents of │ │ │ │ -0027d5b0: 2074 6865 2077 6562 2070 6167 652c 2074 the web page, t │ │ │ │ -0027d5c0: 6f67 6574 6865 7220 7769 7468 2074 6865 ogether with the │ │ │ │ -0027d5d0: 2068 7474 7020 6865 6164 6572 732c 2061 http headers, a │ │ │ │ -0027d5e0: 7420 7468 650a 2020 2020 2020 2020 6164 t the. ad │ │ │ │ -0027d5f0: 6472 6573 7320 6769 7665 6e20 6279 2055 dress given by U │ │ │ │ -0027d600: 524c 0a0a 5379 6e6f 7073 6973 0a3d 3d3d RL..Synopsis.=== │ │ │ │ -0027d610: 3d3d 3d3d 3d0a 0a20 202a 2055 7361 6765 =====.. * Usage │ │ │ │ -0027d620: 3a20 0a20 2020 2020 2020 2067 6574 5757 : . getWW │ │ │ │ -0027d630: 5728 5552 4c2c 5445 5854 290a 2020 2a20 W(URL,TEXT). * │ │ │ │ -0027d640: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0027d650: 5552 4c2c 2061 202a 6e6f 7465 2073 7472 URL, a *note str │ │ │ │ -0027d660: 696e 673a 2053 7472 696e 672c 0a20 2020 ing: String,. │ │ │ │ -0027d670: 2020 202a 2054 4558 542c 2061 202a 6e6f * TEXT, a *no │ │ │ │ -0027d680: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ -0027d690: 672c 0a20 202a 204f 7574 7075 7473 3a0a g,. * Outputs:. │ │ │ │ -0027d6a0: 2020 2020 2020 2a20 6f62 7461 696e 2074 * obtain t │ │ │ │ -0027d6b0: 6865 2063 6f6e 7465 6e74 7320 6f66 2074 he contents of t │ │ │ │ -0027d6c0: 6865 2077 6562 2070 6167 6520 6164 6472 he web page addr │ │ │ │ -0027d6d0: 6573 7365 6420 6279 2055 524c 2066 726f essed by URL fro │ │ │ │ -0027d6e0: 6d20 616e 2068 7474 700a 2020 2020 2020 m an http. │ │ │ │ -0027d6f0: 2020 7365 7276 6572 2c20 7573 696e 6720 server, using │ │ │ │ -0027d700: 7468 6520 504f 5354 206d 6574 686f 642c the POST method, │ │ │ │ -0027d710: 2070 726f 7669 6465 6420 7769 7468 2054 provided with T │ │ │ │ -0027d720: 4558 540a 0a41 6363 6573 7369 6e67 2061 EXT..Accessing a │ │ │ │ -0027d730: 2073 6563 7572 6520 7765 6220 7369 7465 secure web site │ │ │ │ -0027d740: 2028 7768 6f73 6520 5552 4c20 6265 6769 (whose URL begi │ │ │ │ -0027d750: 6e73 2077 6974 6820 6874 7470 733a 2920 ns with https:) │ │ │ │ -0027d760: 6465 7065 6e64 7320 6f6e 2079 6f75 720a depends on your. │ │ │ │ -0027d770: 6861 7669 6e67 2069 6e73 7461 6c6c 6564 having installed │ │ │ │ -0027d780: 206f 7065 6e73 736c 206f 6e20 796f 7572 openssl on your │ │ │ │ -0027d790: 2073 7973 7465 6d2e 0a0a 5365 6520 616c system...See al │ │ │ │ -0027d7a0: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ -0027d7b0: 202a 6e6f 7465 2073 706c 6974 5757 573a *note splitWWW: │ │ │ │ -0027d7c0: 2073 706c 6974 5757 572c 202d 2d20 7365 splitWWW, -- se │ │ │ │ -0027d7d0: 7061 7261 7465 2061 6e20 6874 7470 2072 parate an http r │ │ │ │ -0027d7e0: 6573 706f 6e73 6520 696e 746f 2068 6561 esponse into hea │ │ │ │ -0027d7f0: 6465 7220 616e 6420 626f 6479 0a0a 5761 der and body..Wa │ │ │ │ -0027d800: 7973 2074 6f20 7573 6520 6765 7457 5757 ys to use getWWW │ │ │ │ -0027d810: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0027d820: 3d3d 3d3d 3d0a 0a20 202a 2022 6765 7457 =====.. * "getW │ │ │ │ -0027d830: 5757 2853 7472 696e 6729 220a 2020 2a20 WW(String)". * │ │ │ │ -0027d840: 2267 6574 5757 5728 5374 7269 6e67 2c4e "getWWW(String,N │ │ │ │ -0027d850: 6f74 6869 6e67 2922 0a20 202a 2022 6765 othing)". * "ge │ │ │ │ -0027d860: 7457 5757 2853 7472 696e 672c 5374 7269 tWWW(String,Stri │ │ │ │ -0027d870: 6e67 2922 0a0a 466f 7220 7468 6520 7072 ng)"..For the pr │ │ │ │ -0027d880: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -0027d890: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -0027d8a0: 206f 626a 6563 7420 2a6e 6f74 6520 6765 object *note ge │ │ │ │ -0027d8b0: 7457 5757 3a20 6765 7457 5757 2c20 6973 tWWW: getWWW, is │ │ │ │ -0027d8c0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0027d8d0: 6675 6e63 7469 6f6e 3a20 4d65 7468 6f64 function: Method │ │ │ │ -0027d8e0: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ -0027d8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0027d420: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0027d430: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0027d440: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0027d450: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0027d460: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0027d470: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0027d480: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +0027d490: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ +0027d4a0: 323a 3736 393a 302e 0a1f 0a46 696c 653a 2:769:0....File: │ │ │ │ +0027d4b0: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +0027d4c0: 666f 2c20 4e6f 6465 3a20 6765 7457 5757 fo, Node: getWWW │ │ │ │ +0027d4d0: 2c20 4e65 7874 3a20 7370 6c69 7457 5757 , Next: splitWWW │ │ │ │ +0027d4e0: 2c20 5072 6576 3a20 6765 7465 6e76 2c20 , Prev: getenv, │ │ │ │ +0027d4f0: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ +0027d500: 6974 6965 730a 0a67 6574 5757 5720 2d2d ities..getWWW -- │ │ │ │ +0027d510: 2067 6574 2061 2077 6562 2070 6167 650a get a web page. │ │ │ │ +0027d520: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027d530: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0027d540: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0027d550: 3d0a 0a53 796e 6f70 7369 730a 3d3d 3d3d =..Synopsis.==== │ │ │ │ +0027d560: 3d3d 3d3d 0a0a 2020 2a20 5573 6167 653a ====.. * Usage: │ │ │ │ +0027d570: 200a 2020 2020 2020 2020 6765 7457 5757 . getWWW │ │ │ │ +0027d580: 2055 524c 0a20 202a 2049 6e70 7574 733a URL. * Inputs: │ │ │ │ +0027d590: 0a20 2020 2020 202a 2055 524c 2c20 6120 . * URL, a │ │ │ │ +0027d5a0: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ +0027d5b0: 7269 6e67 2c0a 2020 2a20 4f75 7470 7574 ring,. * Output │ │ │ │ +0027d5c0: 733a 0a20 2020 2020 202a 2074 6865 2063 s:. * the c │ │ │ │ +0027d5d0: 6f6e 7465 6e74 7320 6f66 2074 6865 2077 ontents of the w │ │ │ │ +0027d5e0: 6562 2070 6167 652c 2074 6f67 6574 6865 eb page, togethe │ │ │ │ +0027d5f0: 7220 7769 7468 2074 6865 2068 7474 7020 r with the http │ │ │ │ +0027d600: 6865 6164 6572 732c 2061 7420 7468 650a headers, at the. │ │ │ │ +0027d610: 2020 2020 2020 2020 6164 6472 6573 7320 address │ │ │ │ +0027d620: 6769 7665 6e20 6279 2055 524c 0a0a 5379 given by URL..Sy │ │ │ │ +0027d630: 6e6f 7073 6973 0a3d 3d3d 3d3d 3d3d 3d0a nopsis.========. │ │ │ │ +0027d640: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +0027d650: 2020 2020 2067 6574 5757 5728 5552 4c2c getWWW(URL, │ │ │ │ +0027d660: 5445 5854 290a 2020 2a20 496e 7075 7473 TEXT). * Inputs │ │ │ │ +0027d670: 3a0a 2020 2020 2020 2a20 5552 4c2c 2061 :. * URL, a │ │ │ │ +0027d680: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ +0027d690: 7472 696e 672c 0a20 2020 2020 202a 2054 tring,. * T │ │ │ │ +0027d6a0: 4558 542c 2061 202a 6e6f 7465 2073 7472 EXT, a *note str │ │ │ │ +0027d6b0: 696e 673a 2053 7472 696e 672c 0a20 202a ing: String,. * │ │ │ │ +0027d6c0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0027d6d0: 2a20 6f62 7461 696e 2074 6865 2063 6f6e * obtain the con │ │ │ │ +0027d6e0: 7465 6e74 7320 6f66 2074 6865 2077 6562 tents of the web │ │ │ │ +0027d6f0: 2070 6167 6520 6164 6472 6573 7365 6420 page addressed │ │ │ │ +0027d700: 6279 2055 524c 2066 726f 6d20 616e 2068 by URL from an h │ │ │ │ +0027d710: 7474 700a 2020 2020 2020 2020 7365 7276 ttp. serv │ │ │ │ +0027d720: 6572 2c20 7573 696e 6720 7468 6520 504f er, using the PO │ │ │ │ +0027d730: 5354 206d 6574 686f 642c 2070 726f 7669 ST method, provi │ │ │ │ +0027d740: 6465 6420 7769 7468 2054 4558 540a 0a41 ded with TEXT..A │ │ │ │ +0027d750: 6363 6573 7369 6e67 2061 2073 6563 7572 ccessing a secur │ │ │ │ +0027d760: 6520 7765 6220 7369 7465 2028 7768 6f73 e web site (whos │ │ │ │ +0027d770: 6520 5552 4c20 6265 6769 6e73 2077 6974 e URL begins wit │ │ │ │ +0027d780: 6820 6874 7470 733a 2920 6465 7065 6e64 h https:) depend │ │ │ │ +0027d790: 7320 6f6e 2079 6f75 720a 6861 7669 6e67 s on your.having │ │ │ │ +0027d7a0: 2069 6e73 7461 6c6c 6564 206f 7065 6e73 installed opens │ │ │ │ +0027d7b0: 736c 206f 6e20 796f 7572 2073 7973 7465 sl on your syste │ │ │ │ +0027d7c0: 6d2e 0a0a 5365 6520 616c 736f 0a3d 3d3d m...See also.=== │ │ │ │ +0027d7d0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0027d7e0: 2073 706c 6974 5757 573a 2073 706c 6974 splitWWW: split │ │ │ │ +0027d7f0: 5757 572c 202d 2d20 7365 7061 7261 7465 WWW, -- separate │ │ │ │ +0027d800: 2061 6e20 6874 7470 2072 6573 706f 6e73 an http respons │ │ │ │ +0027d810: 6520 696e 746f 2068 6561 6465 7220 616e e into header an │ │ │ │ +0027d820: 6420 626f 6479 0a0a 5761 7973 2074 6f20 d body..Ways to │ │ │ │ +0027d830: 7573 6520 6765 7457 5757 3a0a 3d3d 3d3d use getWWW:.==== │ │ │ │ +0027d840: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0027d850: 0a20 202a 2022 6765 7457 5757 2853 7472 . * "getWWW(Str │ │ │ │ +0027d860: 696e 6729 220a 2020 2a20 2267 6574 5757 ing)". * "getWW │ │ │ │ +0027d870: 5728 5374 7269 6e67 2c4e 6f74 6869 6e67 W(String,Nothing │ │ │ │ +0027d880: 2922 0a20 202a 2022 6765 7457 5757 2853 )". * "getWWW(S │ │ │ │ +0027d890: 7472 696e 672c 5374 7269 6e67 2922 0a0a tring,String)".. │ │ │ │ +0027d8a0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +0027d8b0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +0027d8c0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +0027d8d0: 7420 2a6e 6f74 6520 6765 7457 5757 3a20 t *note getWWW: │ │ │ │ +0027d8e0: 6765 7457 5757 2c20 6973 2061 202a 6e6f getWWW, is a *no │ │ │ │ +0027d8f0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +0027d900: 6f6e 3a20 4d65 7468 6f64 4675 6e63 7469 on: MethodFuncti │ │ │ │ +0027d910: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ 0027d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -0027d940: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -0027d950: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -0027d960: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -0027d970: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -0027d980: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -0027d990: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -0027d9a0: 6573 2f0a 4d61 6361 756c 6179 3244 6f63 es/.Macaulay2Doc │ │ │ │ -0027d9b0: 2f6f 765f 7379 7374 656d 2e6d 323a 3137 /ov_system.m2:17 │ │ │ │ -0027d9c0: 3331 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 31:0....File: Ma │ │ │ │ -0027d9d0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ -0027d9e0: 204e 6f64 653a 2073 706c 6974 5757 572c Node: splitWWW, │ │ │ │ -0027d9f0: 204e 6578 743a 2068 7474 7048 6561 6465 Next: httpHeade │ │ │ │ -0027da00: 7273 5f6c 7053 7472 696e 675f 7270 2c20 rs_lpString_rp, │ │ │ │ -0027da10: 5072 6576 3a20 6765 7457 5757 2c20 5570 Prev: getWWW, Up │ │ │ │ -0027da20: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ -0027da30: 6965 730a 0a73 706c 6974 5757 5720 2d2d ies..splitWWW -- │ │ │ │ -0027da40: 2073 6570 6172 6174 6520 616e 2068 7474 separate an htt │ │ │ │ -0027da50: 7020 7265 7370 6f6e 7365 2069 6e74 6f20 p response into │ │ │ │ -0027da60: 6865 6164 6572 2061 6e64 2062 6f64 790a header and body. │ │ │ │ -0027da70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027da80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027da90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027daa0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0027dab0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0027dac0: 2868 6561 642c 2062 6f64 7929 203d 2073 (head, body) = s │ │ │ │ -0027dad0: 706c 6974 5757 5720 7374 720a 2020 2a20 plitWWW str. * │ │ │ │ -0027dae0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0027daf0: 7374 722c 2061 202a 6e6f 7465 2073 7472 str, a *note str │ │ │ │ -0027db00: 696e 673a 2053 7472 696e 672c 2c20 616e ing: String,, an │ │ │ │ -0027db10: 2068 7474 7020 7265 7370 6f6e 7365 2c20 http response, │ │ │ │ -0027db20: 7375 6368 2061 7320 7468 6174 2072 6574 such as that ret │ │ │ │ -0027db30: 7572 6e65 640a 2020 2020 2020 2020 6279 urned. by │ │ │ │ -0027db40: 202a 6e6f 7465 2067 6574 5757 573a 2067 *note getWWW: g │ │ │ │ -0027db50: 6574 5757 572c 2e0a 2020 2a20 4f75 7470 etWWW,.. * Outp │ │ │ │ -0027db60: 7574 733a 0a20 2020 2020 202a 2068 6561 uts:. * hea │ │ │ │ -0027db70: 642c 2061 202a 6e6f 7465 2073 7472 696e d, a *note strin │ │ │ │ -0027db80: 673a 2053 7472 696e 672c 2c20 7468 6520 g: String,, the │ │ │ │ -0027db90: 6865 6164 6572 206f 6620 7468 6520 7265 header of the re │ │ │ │ -0027dba0: 7370 6f6e 7365 0a20 2020 2020 202a 2062 sponse. * b │ │ │ │ -0027dbb0: 6f64 792c 2061 202a 6e6f 7465 2073 7472 ody, a *note str │ │ │ │ -0027dbc0: 696e 673a 2053 7472 696e 672c 2c20 7468 ing: String,, th │ │ │ │ -0027dbd0: 6520 7265 7370 6f6e 7365 2062 6f64 792c e response body, │ │ │ │ -0027dbe0: 2077 6869 6368 2068 6173 2062 6565 6e0a which has been. │ │ │ │ -0027dbf0: 2020 2020 2020 2020 2775 6e63 6875 6e6b 'unchunk │ │ │ │ -0027dc00: 6564 272c 2069 6620 7468 6520 7265 7370 ed', if the resp │ │ │ │ -0027dc10: 6f6e 7365 2074 7970 6520 6973 2063 6875 onse type is chu │ │ │ │ -0027dc20: 6e6b 6564 2e0a 0a44 6573 6372 6970 7469 nked...Descripti │ │ │ │ -0027dc30: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0027dc40: 5468 6520 666f 726d 6174 206f 6620 6368 The format of ch │ │ │ │ -0027dc50: 756e 6b65 6420 6461 7461 2069 7320 6465 unked data is de │ │ │ │ -0027dc60: 7363 7269 6265 6420 6865 7265 2028 7365 scribed here (se │ │ │ │ -0027dc70: 6520 6874 7470 733a 2f2f 7777 772e 7733 e https://www.w3 │ │ │ │ -0027dc80: 2e6f 7267 2f50 726f 746f 636f 6c73 2f0a .org/Protocols/. │ │ │ │ -0027dc90: 292e 0a0a 5468 6520 666f 6c6c 6f77 696e )...The followin │ │ │ │ -0027dca0: 6720 6973 2061 6e20 6578 616d 706c 6520 g is an example │ │ │ │ -0027dcb0: 6f62 7461 696e 696e 6720 3520 6578 616d obtaining 5 exam │ │ │ │ -0027dcc0: 706c 6573 2066 726f 6d20 7468 6520 4b72 ples from the Kr │ │ │ │ -0027dcd0: 6575 7a65 722d 536b 6172 6b65 0a64 6174 euzer-Skarke.dat │ │ │ │ -0027dce0: 6162 6173 6520 666f 7220 3420 6469 6d65 abase for 4 dime │ │ │ │ -0027dcf0: 6e73 696f 6e61 6c20 7265 666c 6578 6976 nsional reflexiv │ │ │ │ -0027dd00: 6520 706f 6c79 746f 7065 732e 2020 5765 e polytopes. We │ │ │ │ -0027dd10: 2072 6574 7269 6576 6520 3520 6578 616d retrieve 5 exam │ │ │ │ -0027dd20: 706c 6573 2065 6163 680a 6861 7669 6e67 ples each.having │ │ │ │ -0027dd30: 2074 6865 2061 6e74 692d 6361 6e6f 6e69 the anti-canoni │ │ │ │ -0027dd40: 6361 6c20 6469 7669 736f 7220 6120 4361 cal divisor a Ca │ │ │ │ -0027dd50: 6c61 6269 2d59 6175 2077 6974 6820 2468 labi-Yau with $h │ │ │ │ -0027dd60: 5e7b 2831 2c31 297d 203d 2031 3024 2e0a ^{(1,1)} = 10$.. │ │ │ │ -0027dd70: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027dd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027dd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027d960: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +0027d970: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +0027d980: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +0027d990: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +0027d9a0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +0027d9b0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +0027d9c0: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ +0027d9d0: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ +0027d9e0: 7374 656d 2e6d 323a 3137 3331 3a30 2e0a stem.m2:1731:0.. │ │ │ │ +0027d9f0: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ +0027da00: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ +0027da10: 2073 706c 6974 5757 572c 204e 6578 743a splitWWW, Next: │ │ │ │ +0027da20: 2068 7474 7048 6561 6465 7273 5f6c 7053 httpHeaders_lpS │ │ │ │ +0027da30: 7472 696e 675f 7270 2c20 5072 6576 3a20 tring_rp, Prev: │ │ │ │ +0027da40: 6765 7457 5757 2c20 5570 3a20 7379 7374 getWWW, Up: syst │ │ │ │ +0027da50: 656d 2066 6163 696c 6974 6965 730a 0a73 em facilities..s │ │ │ │ +0027da60: 706c 6974 5757 5720 2d2d 2073 6570 6172 plitWWW -- separ │ │ │ │ +0027da70: 6174 6520 616e 2068 7474 7020 7265 7370 ate an http resp │ │ │ │ +0027da80: 6f6e 7365 2069 6e74 6f20 6865 6164 6572 onse into header │ │ │ │ +0027da90: 2061 6e64 2062 6f64 790a 2a2a 2a2a 2a2a and body.****** │ │ │ │ +0027daa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027dab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027dac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027dad0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +0027dae0: 200a 2020 2020 2020 2020 2868 6561 642c . (head, │ │ │ │ +0027daf0: 2062 6f64 7929 203d 2073 706c 6974 5757 body) = splitWW │ │ │ │ +0027db00: 5720 7374 720a 2020 2a20 496e 7075 7473 W str. * Inputs │ │ │ │ +0027db10: 3a0a 2020 2020 2020 2a20 7374 722c 2061 :. * str, a │ │ │ │ +0027db20: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ +0027db30: 7472 696e 672c 2c20 616e 2068 7474 7020 tring,, an http │ │ │ │ +0027db40: 7265 7370 6f6e 7365 2c20 7375 6368 2061 response, such a │ │ │ │ +0027db50: 7320 7468 6174 2072 6574 7572 6e65 640a s that returned. │ │ │ │ +0027db60: 2020 2020 2020 2020 6279 202a 6e6f 7465 by *note │ │ │ │ +0027db70: 2067 6574 5757 573a 2067 6574 5757 572c getWWW: getWWW, │ │ │ │ +0027db80: 2e0a 2020 2a20 4f75 7470 7574 733a 0a20 .. * Outputs:. │ │ │ │ +0027db90: 2020 2020 202a 2068 6561 642c 2061 202a * head, a * │ │ │ │ +0027dba0: 6e6f 7465 2073 7472 696e 673a 2053 7472 note string: Str │ │ │ │ +0027dbb0: 696e 672c 2c20 7468 6520 6865 6164 6572 ing,, the header │ │ │ │ +0027dbc0: 206f 6620 7468 6520 7265 7370 6f6e 7365 of the response │ │ │ │ +0027dbd0: 0a20 2020 2020 202a 2062 6f64 792c 2061 . * body, a │ │ │ │ +0027dbe0: 202a 6e6f 7465 2073 7472 696e 673a 2053 *note string: S │ │ │ │ +0027dbf0: 7472 696e 672c 2c20 7468 6520 7265 7370 tring,, the resp │ │ │ │ +0027dc00: 6f6e 7365 2062 6f64 792c 2077 6869 6368 onse body, which │ │ │ │ +0027dc10: 2068 6173 2062 6565 6e0a 2020 2020 2020 has been. │ │ │ │ +0027dc20: 2020 2775 6e63 6875 6e6b 6564 272c 2069 'unchunked', i │ │ │ │ +0027dc30: 6620 7468 6520 7265 7370 6f6e 7365 2074 f the response t │ │ │ │ +0027dc40: 7970 6520 6973 2063 6875 6e6b 6564 2e0a ype is chunked.. │ │ │ │ +0027dc50: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0027dc60: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 666f ========..The fo │ │ │ │ +0027dc70: 726d 6174 206f 6620 6368 756e 6b65 6420 rmat of chunked │ │ │ │ +0027dc80: 6461 7461 2069 7320 6465 7363 7269 6265 data is describe │ │ │ │ +0027dc90: 6420 6865 7265 2028 7365 6520 6874 7470 d here (see http │ │ │ │ +0027dca0: 733a 2f2f 7777 772e 7733 2e6f 7267 2f50 s://www.w3.org/P │ │ │ │ +0027dcb0: 726f 746f 636f 6c73 2f0a 292e 0a0a 5468 rotocols/.)...Th │ │ │ │ +0027dcc0: 6520 666f 6c6c 6f77 696e 6720 6973 2061 e following is a │ │ │ │ +0027dcd0: 6e20 6578 616d 706c 6520 6f62 7461 696e n example obtain │ │ │ │ +0027dce0: 696e 6720 3520 6578 616d 706c 6573 2066 ing 5 examples f │ │ │ │ +0027dcf0: 726f 6d20 7468 6520 4b72 6575 7a65 722d rom the Kreuzer- │ │ │ │ +0027dd00: 536b 6172 6b65 0a64 6174 6162 6173 6520 Skarke.database │ │ │ │ +0027dd10: 666f 7220 3420 6469 6d65 6e73 696f 6e61 for 4 dimensiona │ │ │ │ +0027dd20: 6c20 7265 666c 6578 6976 6520 706f 6c79 l reflexive poly │ │ │ │ +0027dd30: 746f 7065 732e 2020 5765 2072 6574 7269 topes. We retri │ │ │ │ +0027dd40: 6576 6520 3520 6578 616d 706c 6573 2065 eve 5 examples e │ │ │ │ +0027dd50: 6163 680a 6861 7669 6e67 2074 6865 2061 ach.having the a │ │ │ │ +0027dd60: 6e74 692d 6361 6e6f 6e69 6361 6c20 6469 nti-canonical di │ │ │ │ +0027dd70: 7669 736f 7220 6120 4361 6c61 6269 2d59 visor a Calabi-Y │ │ │ │ +0027dd80: 6175 2077 6974 6820 2468 5e7b 2831 2c31 au with $h^{(1,1 │ │ │ │ +0027dd90: 297d 203d 2031 3024 2e0a 0a2b 2d2d 2d2d )} = 10$...+---- │ │ │ │ 0027dda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027ddc0: 0a7c 6931 203a 2073 7472 203d 2067 6574 .|i1 : str = get │ │ │ │ -0027ddd0: 5757 5720 2268 7474 703a 2f2f 7175 6172 WWW "http://quar │ │ │ │ -0027dde0: 6b2e 6974 702e 7475 7769 656e 2e61 632e k.itp.tuwien.ac. │ │ │ │ -0027ddf0: 6174 2f63 6769 2d62 696e 2f63 792f 6379 at/cgi-bin/cy/cy │ │ │ │ -0027de00: 6461 7461 2e63 6769 3f68 3131 3d31 307c data.cgi?h11=10| │ │ │ │ -0027de10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ -0027de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ddc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ddd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027dde0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +0027ddf0: 2073 7472 203d 2067 6574 5757 5720 2268 str = getWWW "h │ │ │ │ +0027de00: 7474 703a 2f2f 7175 6172 6b2e 6974 702e ttp://quark.itp. │ │ │ │ +0027de10: 7475 7769 656e 2e61 632e 6174 2f63 6769 tuwien.ac.at/cgi │ │ │ │ +0027de20: 2d62 696e 2f63 792f 6379 6461 7461 2e63 -bin/cy/cydata.c │ │ │ │ +0027de30: 6769 3f68 3131 3d31 307c 0a7c 2d2d 2d2d gi?h11=10|.|---- │ │ │ │ 0027de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -0027de60: 0a7c 264c 3d35 223b 2020 2020 2020 2020 .|&L=5"; │ │ │ │ -0027de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027dea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027deb0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027de80: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 264c 3d35 ---------|.|&L=5 │ │ │ │ +0027de90: 223b 2020 2020 2020 2020 2020 2020 2020 "; │ │ │ │ +0027dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ded0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0027dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027df00: 0a7c 6932 203a 2028 6865 6164 2c62 6f64 .|i2 : (head,bod │ │ │ │ -0027df10: 7929 203d 2073 706c 6974 5757 5720 7374 y) = splitWWW st │ │ │ │ -0027df20: 723b 2020 2020 2020 2020 2020 2020 2020 r; │ │ │ │ -0027df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027df40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027df50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027df00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027df10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027df20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +0027df30: 2028 6865 6164 2c62 6f64 7929 203d 2073 (head,body) = s │ │ │ │ +0027df40: 706c 6974 5757 5720 7374 723b 2020 2020 plitWWW str; │ │ │ │ +0027df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027df70: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0027df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027dfa0: 0a7c 6933 203a 2068 6561 6420 2020 2020 .|i3 : head │ │ │ │ -0027dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027dfe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027dff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027dfc0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +0027dfd0: 2068 6561 6420 2020 2020 2020 2020 2020 head │ │ │ │ +0027dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0027e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e040: 0a7c 6f33 203d 2048 5454 502f 312e 3120 .|o3 = HTTP/1.1 │ │ │ │ -0027e050: 3230 3020 4f4b 2020 2020 2020 2020 2020 200 OK │ │ │ │ -0027e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e090: 0a7c 2020 2020 2044 6174 653a 2054 6875 .| Date: Thu │ │ │ │ -0027e0a0: 2c20 3233 204a 756e 2032 3031 3620 3132 , 23 Jun 2016 12 │ │ │ │ -0027e0b0: 3a31 303a 3538 2047 4d54 2020 2020 2020 :10:58 GMT │ │ │ │ -0027e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e0d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e0e0: 0a7c 2020 2020 2053 6572 7665 723a 2041 .| Server: A │ │ │ │ -0027e0f0: 7061 6368 652f 322e 3220 2020 2020 2020 pache/2.2 │ │ │ │ -0027e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e130: 0a7c 2020 2020 2056 6172 793a 2041 6363 .| Vary: Acc │ │ │ │ -0027e140: 6570 742d 456e 636f 6469 6e67 2020 2020 ept-Encoding │ │ │ │ -0027e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e180: 0a7c 2020 2020 2043 6f6e 6e65 6374 696f .| Connectio │ │ │ │ -0027e190: 6e3a 2063 6c6f 7365 2020 2020 2020 2020 n: close │ │ │ │ -0027e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e1c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e1d0: 0a7c 2020 2020 2054 7261 6e73 6665 722d .| Transfer- │ │ │ │ -0027e1e0: 456e 636f 6469 6e67 3a20 6368 756e 6b65 Encoding: chunke │ │ │ │ -0027e1f0: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ -0027e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e220: 0a7c 2020 2020 2043 6f6e 7465 6e74 2d54 .| Content-T │ │ │ │ -0027e230: 7970 653a 2074 6578 742f 6874 6d6c 3b20 ype: text/html; │ │ │ │ -0027e240: 6368 6172 7365 743d 5554 462d 3820 2020 charset=UTF-8 │ │ │ │ -0027e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e270: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e060: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +0027e070: 2048 5454 502f 312e 3120 3230 3020 4f4b HTTP/1.1 200 OK │ │ │ │ +0027e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e0b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e0c0: 2044 6174 653a 2054 6875 2c20 3233 204a Date: Thu, 23 J │ │ │ │ +0027e0d0: 756e 2032 3031 3620 3132 3a31 303a 3538 un 2016 12:10:58 │ │ │ │ +0027e0e0: 2047 4d54 2020 2020 2020 2020 2020 2020 GMT │ │ │ │ +0027e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e110: 2053 6572 7665 723a 2041 7061 6368 652f Server: Apache/ │ │ │ │ +0027e120: 322e 3220 2020 2020 2020 2020 2020 2020 2.2 │ │ │ │ +0027e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e160: 2056 6172 793a 2041 6363 6570 742d 456e Vary: Accept-En │ │ │ │ +0027e170: 636f 6469 6e67 2020 2020 2020 2020 2020 coding │ │ │ │ +0027e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e1a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e1b0: 2043 6f6e 6e65 6374 696f 6e3a 2063 6c6f Connection: clo │ │ │ │ +0027e1c0: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ +0027e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e1f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e200: 2054 7261 6e73 6665 722d 456e 636f 6469 Transfer-Encodi │ │ │ │ +0027e210: 6e67 3a20 6368 756e 6b65 6420 2020 2020 ng: chunked │ │ │ │ +0027e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e250: 2043 6f6e 7465 6e74 2d54 7970 653a 2074 Content-Type: t │ │ │ │ +0027e260: 6578 742f 6874 6d6c 3b20 6368 6172 7365 ext/html; charse │ │ │ │ +0027e270: 743d 5554 462d 3820 2020 2020 2020 2020 t=UTF-8 │ │ │ │ +0027e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e290: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0027e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027e2c0: 0a7c 6934 203a 2062 6f64 7920 2020 2020 .|i4 : body │ │ │ │ -0027e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027e2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027e2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027e2e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +0027e2f0: 2062 6f64 7920 2020 2020 2020 2020 2020 body │ │ │ │ +0027e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e330: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0027e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e360: 0a7c 6f34 203d 203c 6865 6164 3e3c 7469 .|o4 = SEARCH RESUL │ │ │ │ -0027e380: 5453 3c2f 7469 746c 653e 3c2f 6865 6164 TS │ │ │ │ -0027e3a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e3b0: 0a7c 2020 2020 203c 626f 6479 3e3c 7072 .| Search comm │ │ │ │ -0027e3d0: 616e 643a 3c2f 623e 2020 2020 2020 2020 and: │ │ │ │ -0027e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e3f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e400: 0a7c 2020 2020 2063 6c61 7373 2e78 202d .| class.x - │ │ │ │ -0027e410: 6469 2078 202d 4865 2045 4831 303a 4d56 di x -He EH10:MV │ │ │ │ -0027e420: 4e46 4c35 2020 2020 2020 2020 2020 2020 NFL5 │ │ │ │ -0027e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e380: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0027e390: 203c 6865 6164 3e3c 7469 746c 653e 5345 SE │ │ │ │ +0027e3a0: 4152 4348 2052 4553 554c 5453 3c2f 7469 ARCH RESULTS</ti │ │ │ │ +0027e3b0: 746c 653e 3c2f 6865 6164 3e20 2020 2020 tle></head> │ │ │ │ +0027e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e3d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e3e0: 203c 626f 6479 3e3c 7072 653e 3c62 3e53 <body><pre><b>S │ │ │ │ +0027e3f0: 6561 7263 6820 636f 6d6d 616e 643a 3c2f earch command:</ │ │ │ │ +0027e400: 623e 2020 2020 2020 2020 2020 2020 2020 b> │ │ │ │ +0027e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e420: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e430: 2063 6c61 7373 2e78 202d 6469 2078 202d class.x -di x - │ │ │ │ +0027e440: 4865 2045 4831 303a 4d56 4e46 4c35 2020 He EH10:MVNFL5 │ │ │ │ +0027e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0027e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0027e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e4a0: 0a7c 2020 2020 203c 623e 5265 7375 6c74 .| <b>Result │ │ │ │ -0027e4b0: 3a3c 2f62 3e20 2020 2020 2020 2020 2020 :</b> │ │ │ │ -0027e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e4e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e4f0: 0a7c 2020 2020 2034 2039 2020 4d3a 3232 .| 4 9 M:22 │ │ │ │ -0027e500: 2039 204e 3a31 3420 3820 483a 3130 2c31 9 N:14 8 H:10,1 │ │ │ │ -0027e510: 3820 5b2d 3136 5d20 2020 2020 2020 2020 8 [-16] │ │ │ │ -0027e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e540: 0a7c 2020 2020 2020 2020 3120 2020 3020 .| 1 0 │ │ │ │ -0027e550: 2020 3120 2020 3020 2020 3220 2020 3020 1 0 2 0 │ │ │ │ -0027e560: 202d 3220 202d 3220 202d 3220 2020 2020 -2 -2 -2 │ │ │ │ -0027e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e590: 0a7c 2020 2020 2020 2020 3020 2020 3120 .| 0 1 │ │ │ │ -0027e5a0: 2020 3020 2020 3020 202d 3120 2020 3120 0 0 -1 1 │ │ │ │ -0027e5b0: 2020 3120 202d 3120 2020 3120 2020 2020 1 -1 1 │ │ │ │ -0027e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e5d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e5e0: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027e5f0: 2020 3220 2020 3020 2020 3120 2020 3120 2 0 1 1 │ │ │ │ -0027e600: 202d 3320 202d 3120 202d 3420 2020 2020 -3 -1 -4 │ │ │ │ -0027e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e630: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027e640: 2020 3020 2020 3120 2020 3120 2020 3120 0 1 1 1 │ │ │ │ -0027e650: 202d 3120 202d 3120 202d 3220 2020 2020 -1 -1 -2 │ │ │ │ -0027e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e680: 0a7c 2020 2020 2034 2031 3020 204d 3a32 .| 4 10 M:2 │ │ │ │ -0027e690: 3320 3130 204e 3a31 3520 3130 2048 3a31 3 10 N:15 10 H:1 │ │ │ │ -0027e6a0: 302c 3138 205b 2d31 365d 2020 2020 2020 0,18 [-16] │ │ │ │ -0027e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e6c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e6d0: 0a7c 2020 2020 2020 2020 2031 2020 2020 .| 1 │ │ │ │ -0027e6e0: 3020 2020 2030 2020 2020 3020 2020 2d31 0 0 0 -1 │ │ │ │ -0027e6f0: 2020 2020 3120 2020 2d32 2020 2020 3220 1 -2 2 │ │ │ │ -0027e700: 2020 2030 2020 202d 3120 2020 2020 2020 0 -1 │ │ │ │ -0027e710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e720: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027e730: 3120 2020 2030 2020 2020 3020 2020 2031 1 0 0 1 │ │ │ │ -0027e740: 2020 202d 3120 2020 2032 2020 202d 3120 -1 2 -1 │ │ │ │ -0027e750: 2020 2d32 2020 2020 3020 2020 2020 2020 -2 0 │ │ │ │ -0027e760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e770: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027e780: 3020 2020 2031 2020 2020 3020 2020 2d31 0 1 0 -1 │ │ │ │ -0027e790: 2020 2020 3120 2020 2d31 2020 2020 3020 1 -1 0 │ │ │ │ -0027e7a0: 2020 2032 2020 202d 3220 2020 2020 2020 2 -2 │ │ │ │ -0027e7b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e7c0: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027e7d0: 3020 2020 2030 2020 2020 3120 2020 2031 0 0 1 1 │ │ │ │ -0027e7e0: 2020 202d 3120 2020 2030 2020 202d 3220 -1 0 -2 │ │ │ │ -0027e7f0: 2020 2d31 2020 2020 3220 2020 2020 2020 -1 2 │ │ │ │ -0027e800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e810: 0a7c 2020 2020 2034 2039 2020 4d3a 3234 .| 4 9 M:24 │ │ │ │ -0027e820: 2039 204e 3a31 3420 3820 483a 3130 2c32 9 N:14 8 H:10,2 │ │ │ │ -0027e830: 3020 5b2d 3230 5d20 2020 2020 2020 2020 0 [-20] │ │ │ │ -0027e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e860: 0a7c 2020 2020 2020 2020 3120 2020 3020 .| 1 0 │ │ │ │ -0027e870: 2020 3120 2020 3020 2020 3120 202d 3120 1 0 1 -1 │ │ │ │ -0027e880: 202d 3220 2020 3120 202d 3220 2020 2020 -2 1 -2 │ │ │ │ -0027e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e8a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e8b0: 0a7c 2020 2020 2020 2020 3020 2020 3120 .| 0 1 │ │ │ │ -0027e8c0: 2020 3020 2020 3020 2020 3020 2020 3220 0 0 0 2 │ │ │ │ -0027e8d0: 202d 3220 202d 3120 2020 3220 2020 2020 -2 -1 2 │ │ │ │ -0027e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e8f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e900: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027e910: 2020 3220 2020 3020 202d 3120 202d 3120 2 0 -1 -1 │ │ │ │ -0027e920: 2020 3020 202d 3220 202d 3220 2020 2020 0 -2 -2 │ │ │ │ -0027e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e950: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027e960: 2020 3020 2020 3120 202d 3120 202d 3120 0 1 -1 -1 │ │ │ │ -0027e970: 2020 3120 202d 3120 202d 3120 2020 2020 1 -1 -1 │ │ │ │ -0027e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e9a0: 0a7c 2020 2020 2034 2031 3120 204d 3a32 .| 4 11 M:2 │ │ │ │ -0027e9b0: 3520 3131 204e 3a31 3520 3130 2048 3a31 5 11 N:15 10 H:1 │ │ │ │ -0027e9c0: 302c 3230 205b 2d32 305d 2020 2020 2020 0,20 [-20] │ │ │ │ -0027e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027e9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027e9f0: 0a7c 2020 2020 2020 2020 3120 2020 3020 .| 1 0 │ │ │ │ -0027ea00: 2020 3020 2020 3020 2020 3220 202d 3220 0 0 2 -2 │ │ │ │ -0027ea10: 2020 3020 2020 3220 202d 3220 202d 3220 0 2 -2 -2 │ │ │ │ -0027ea20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0027ea30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ea40: 0a7c 2020 2020 2020 2020 3020 2020 3120 .| 0 1 │ │ │ │ -0027ea50: 2020 3020 2020 3020 202d 3120 2020 3120 0 0 -1 1 │ │ │ │ -0027ea60: 2020 3120 202d 3120 2020 3020 2020 3120 1 -1 0 1 │ │ │ │ -0027ea70: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ -0027ea80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ea90: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027eaa0: 2020 3120 2020 3020 202d 3120 2020 3120 1 0 -1 1 │ │ │ │ -0027eab0: 202d 3120 2020 3020 2020 3220 2020 3020 -1 0 2 0 │ │ │ │ -0027eac0: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ -0027ead0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027eae0: 0a7c 2020 2020 2020 2020 3020 2020 3020 .| 0 0 │ │ │ │ -0027eaf0: 2020 3020 2020 3120 202d 3120 2020 3120 0 1 -1 1 │ │ │ │ -0027eb00: 2020 3120 202d 3220 2020 3120 2020 3020 1 -2 1 0 │ │ │ │ -0027eb10: 202d 3120 2020 2020 2020 2020 2020 2020 -1 │ │ │ │ -0027eb20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027eb30: 0a7c 2020 2020 2034 2031 3020 204d 3a32 .| 4 10 M:2 │ │ │ │ -0027eb40: 3520 3130 204e 3a31 3520 3130 2048 3a31 5 10 N:15 10 H:1 │ │ │ │ -0027eb50: 302c 3230 205b 2d32 305d 2020 2020 2020 0,20 [-20] │ │ │ │ -0027eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027eb70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027eb80: 0a7c 2020 2020 2020 2020 2031 2020 2020 .| 1 │ │ │ │ -0027eb90: 3020 2020 2030 2020 2020 3020 2020 2d31 0 0 0 -1 │ │ │ │ -0027eba0: 2020 2020 3020 2020 2d31 2020 202d 3120 0 -1 -1 │ │ │ │ -0027ebb0: 2020 2032 2020 2020 3120 2020 2020 2020 2 1 │ │ │ │ -0027ebc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ebd0: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027ebe0: 3120 2020 2030 2020 2020 3020 2020 2030 1 0 0 0 │ │ │ │ -0027ebf0: 2020 2020 3020 2020 2032 2020 2020 3020 0 2 0 │ │ │ │ -0027ec00: 2020 2d31 2020 202d 3220 2020 2020 2020 -1 -2 │ │ │ │ -0027ec10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ec20: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027ec30: 3020 2020 2031 2020 2020 3020 2020 2030 0 1 0 0 │ │ │ │ -0027ec40: 2020 202d 3220 2020 2032 2020 2020 3220 -2 2 2 │ │ │ │ -0027ec50: 2020 2d32 2020 202d 3220 2020 2020 2020 -2 -2 │ │ │ │ -0027ec60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ec70: 0a7c 2020 2020 2020 2020 2030 2020 2020 .| 0 │ │ │ │ -0027ec80: 3020 2020 2030 2020 2020 3120 2020 2030 0 0 1 0 │ │ │ │ -0027ec90: 2020 202d 3120 2020 2030 2020 2020 3220 -1 0 2 │ │ │ │ -0027eca0: 2020 2030 2020 202d 3220 2020 2020 2020 0 -2 │ │ │ │ -0027ecb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ecc0: 0a7c 2020 2020 2045 7863 6565 6465 6420 .| Exceeded │ │ │ │ -0027ecd0: 6c69 6d69 7420 6f66 2035 2020 2020 2020 limit of 5 │ │ │ │ -0027ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ed00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ed10: 0a7c 2020 2020 203c 2f70 7265 3e3c 2f62 .| </pre></b │ │ │ │ -0027ed20: 6f64 793e 2020 2020 2020 2020 2020 2020 ody> │ │ │ │ -0027ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027ed50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027ed60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027ed70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ed80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e4c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e4d0: 203c 623e 5265 7375 6c74 3a3c 2f62 3e20 <b>Result:</b> │ │ │ │ +0027e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e510: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e520: 2034 2039 2020 4d3a 3232 2039 204e 3a31 4 9 M:22 9 N:1 │ │ │ │ +0027e530: 3420 3820 483a 3130 2c31 3820 5b2d 3136 4 8 H:10,18 [-16 │ │ │ │ +0027e540: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0027e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e560: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e570: 2020 2020 3120 2020 3020 2020 3120 2020 1 0 1 │ │ │ │ +0027e580: 3020 2020 3220 2020 3020 202d 3220 202d 0 2 0 -2 - │ │ │ │ +0027e590: 3220 202d 3220 2020 2020 2020 2020 2020 2 -2 │ │ │ │ +0027e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e5b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e5c0: 2020 2020 3020 2020 3120 2020 3020 2020 0 1 0 │ │ │ │ +0027e5d0: 3020 202d 3120 2020 3120 2020 3120 202d 0 -1 1 1 - │ │ │ │ +0027e5e0: 3120 2020 3120 2020 2020 2020 2020 2020 1 1 │ │ │ │ +0027e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e610: 2020 2020 3020 2020 3020 2020 3220 2020 0 0 2 │ │ │ │ +0027e620: 3020 2020 3120 2020 3120 202d 3320 202d 0 1 1 -3 - │ │ │ │ +0027e630: 3120 202d 3420 2020 2020 2020 2020 2020 1 -4 │ │ │ │ +0027e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e660: 2020 2020 3020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ +0027e670: 3120 2020 3120 2020 3120 202d 3120 202d 1 1 1 -1 - │ │ │ │ +0027e680: 3120 202d 3220 2020 2020 2020 2020 2020 1 -2 │ │ │ │ +0027e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e6a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e6b0: 2034 2031 3020 204d 3a32 3320 3130 204e 4 10 M:23 10 N │ │ │ │ +0027e6c0: 3a31 3520 3130 2048 3a31 302c 3138 205b :15 10 H:10,18 [ │ │ │ │ +0027e6d0: 2d31 365d 2020 2020 2020 2020 2020 2020 -16] │ │ │ │ +0027e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e6f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e700: 2020 2020 2031 2020 2020 3020 2020 2030 1 0 0 │ │ │ │ +0027e710: 2020 2020 3020 2020 2d31 2020 2020 3120 0 -1 1 │ │ │ │ +0027e720: 2020 2d32 2020 2020 3220 2020 2030 2020 -2 2 0 │ │ │ │ +0027e730: 202d 3120 2020 2020 2020 2020 2020 2020 -1 │ │ │ │ +0027e740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e750: 2020 2020 2030 2020 2020 3120 2020 2030 0 1 0 │ │ │ │ +0027e760: 2020 2020 3020 2020 2031 2020 202d 3120 0 1 -1 │ │ │ │ +0027e770: 2020 2032 2020 202d 3120 2020 2d32 2020 2 -1 -2 │ │ │ │ +0027e780: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0027e790: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e7a0: 2020 2020 2030 2020 2020 3020 2020 2031 0 0 1 │ │ │ │ +0027e7b0: 2020 2020 3020 2020 2d31 2020 2020 3120 0 -1 1 │ │ │ │ +0027e7c0: 2020 2d31 2020 2020 3020 2020 2032 2020 -1 0 2 │ │ │ │ +0027e7d0: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ +0027e7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e7f0: 2020 2020 2030 2020 2020 3020 2020 2030 0 0 0 │ │ │ │ +0027e800: 2020 2020 3120 2020 2031 2020 202d 3120 1 1 -1 │ │ │ │ +0027e810: 2020 2030 2020 202d 3220 2020 2d31 2020 0 -2 -1 │ │ │ │ +0027e820: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0027e830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e840: 2034 2039 2020 4d3a 3234 2039 204e 3a31 4 9 M:24 9 N:1 │ │ │ │ +0027e850: 3420 3820 483a 3130 2c32 3020 5b2d 3230 4 8 H:10,20 [-20 │ │ │ │ +0027e860: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0027e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e890: 2020 2020 3120 2020 3020 2020 3120 2020 1 0 1 │ │ │ │ +0027e8a0: 3020 2020 3120 202d 3120 202d 3220 2020 0 1 -1 -2 │ │ │ │ +0027e8b0: 3120 202d 3220 2020 2020 2020 2020 2020 1 -2 │ │ │ │ +0027e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e8d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e8e0: 2020 2020 3020 2020 3120 2020 3020 2020 0 1 0 │ │ │ │ +0027e8f0: 3020 2020 3020 2020 3220 202d 3220 202d 0 0 2 -2 - │ │ │ │ +0027e900: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0027e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e920: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e930: 2020 2020 3020 2020 3020 2020 3220 2020 0 0 2 │ │ │ │ +0027e940: 3020 202d 3120 202d 3120 2020 3020 202d 0 -1 -1 0 - │ │ │ │ +0027e950: 3220 202d 3220 2020 2020 2020 2020 2020 2 -2 │ │ │ │ +0027e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e970: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e980: 2020 2020 3020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ +0027e990: 3120 202d 3120 202d 3120 2020 3120 202d 1 -1 -1 1 - │ │ │ │ +0027e9a0: 3120 202d 3120 2020 2020 2020 2020 2020 1 -1 │ │ │ │ +0027e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027e9c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027e9d0: 2034 2031 3120 204d 3a32 3520 3131 204e 4 11 M:25 11 N │ │ │ │ +0027e9e0: 3a31 3520 3130 2048 3a31 302c 3230 205b :15 10 H:10,20 [ │ │ │ │ +0027e9f0: 2d32 305d 2020 2020 2020 2020 2020 2020 -20] │ │ │ │ +0027ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ea10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ea20: 2020 2020 3120 2020 3020 2020 3020 2020 1 0 0 │ │ │ │ +0027ea30: 3020 2020 3220 202d 3220 2020 3020 2020 0 2 -2 0 │ │ │ │ +0027ea40: 3220 202d 3220 202d 3220 2020 3220 2020 2 -2 -2 2 │ │ │ │ +0027ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ea60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ea70: 2020 2020 3020 2020 3120 2020 3020 2020 0 1 0 │ │ │ │ +0027ea80: 3020 202d 3120 2020 3120 2020 3120 202d 0 -1 1 1 - │ │ │ │ +0027ea90: 3120 2020 3020 2020 3120 202d 3220 2020 1 0 1 -2 │ │ │ │ +0027eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027eab0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027eac0: 2020 2020 3020 2020 3020 2020 3120 2020 0 0 1 │ │ │ │ +0027ead0: 3020 202d 3120 2020 3120 202d 3120 2020 0 -1 1 -1 │ │ │ │ +0027eae0: 3020 2020 3220 2020 3020 202d 3220 2020 0 2 0 -2 │ │ │ │ +0027eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027eb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027eb10: 2020 2020 3020 2020 3020 2020 3020 2020 0 0 0 │ │ │ │ +0027eb20: 3120 202d 3120 2020 3120 2020 3120 202d 1 -1 1 1 - │ │ │ │ +0027eb30: 3220 2020 3120 2020 3020 202d 3120 2020 2 1 0 -1 │ │ │ │ +0027eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027eb50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027eb60: 2034 2031 3020 204d 3a32 3520 3130 204e 4 10 M:25 10 N │ │ │ │ +0027eb70: 3a31 3520 3130 2048 3a31 302c 3230 205b :15 10 H:10,20 [ │ │ │ │ +0027eb80: 2d32 305d 2020 2020 2020 2020 2020 2020 -20] │ │ │ │ +0027eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027eba0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ebb0: 2020 2020 2031 2020 2020 3020 2020 2030 1 0 0 │ │ │ │ +0027ebc0: 2020 2020 3020 2020 2d31 2020 2020 3020 0 -1 0 │ │ │ │ +0027ebd0: 2020 2d31 2020 202d 3120 2020 2032 2020 -1 -1 2 │ │ │ │ +0027ebe0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0027ebf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ec00: 2020 2020 2030 2020 2020 3120 2020 2030 0 1 0 │ │ │ │ +0027ec10: 2020 2020 3020 2020 2030 2020 2020 3020 0 0 0 │ │ │ │ +0027ec20: 2020 2032 2020 2020 3020 2020 2d31 2020 2 0 -1 │ │ │ │ +0027ec30: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ +0027ec40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ec50: 2020 2020 2030 2020 2020 3020 2020 2031 0 0 1 │ │ │ │ +0027ec60: 2020 2020 3020 2020 2030 2020 202d 3220 0 0 -2 │ │ │ │ +0027ec70: 2020 2032 2020 2020 3220 2020 2d32 2020 2 2 -2 │ │ │ │ +0027ec80: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ +0027ec90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027eca0: 2020 2020 2030 2020 2020 3020 2020 2030 0 0 0 │ │ │ │ +0027ecb0: 2020 2020 3120 2020 2030 2020 202d 3120 1 0 -1 │ │ │ │ +0027ecc0: 2020 2030 2020 2020 3220 2020 2030 2020 0 2 0 │ │ │ │ +0027ecd0: 202d 3220 2020 2020 2020 2020 2020 2020 -2 │ │ │ │ +0027ece0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ecf0: 2045 7863 6565 6465 6420 6c69 6d69 7420 Exceeded limit │ │ │ │ +0027ed00: 6f66 2035 2020 2020 2020 2020 2020 2020 of 5 │ │ │ │ +0027ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ed30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0027ed40: 203c 2f70 7265 3e3c 2f62 6f64 793e 2020 </pre></body> │ │ │ │ +0027ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027ed80: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0027ed90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027edb0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0027edc0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2067 ===.. * *note g │ │ │ │ -0027edd0: 6574 5757 573a 2067 6574 5757 572c 202d etWWW: getWWW, - │ │ │ │ -0027ede0: 2d20 6765 7420 6120 7765 6220 7061 6765 - get a web page │ │ │ │ -0027edf0: 0a0a 5761 7973 2074 6f20 7573 6520 7370 ..Ways to use sp │ │ │ │ -0027ee00: 6c69 7457 5757 3a0a 3d3d 3d3d 3d3d 3d3d litWWW:.======== │ │ │ │ -0027ee10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0027ee20: 202a 2022 7370 6c69 7457 5757 2853 7472 * "splitWWW(Str │ │ │ │ -0027ee30: 696e 6729 220a 0a46 6f72 2074 6865 2070 ing)"..For the p │ │ │ │ -0027ee40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0027ee50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0027ee60: 6520 6f62 6a65 6374 202a 6e6f 7465 2073 e object *note s │ │ │ │ -0027ee70: 706c 6974 5757 573a 2073 706c 6974 5757 plitWWW: splitWW │ │ │ │ -0027ee80: 572c 2069 7320 6120 2a6e 6f74 6520 6d65 W, is a *note me │ │ │ │ -0027ee90: 7468 6f64 2066 756e 6374 696f 6e3a 0a4d thod function:.M │ │ │ │ -0027eea0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -0027eeb0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -0027eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027edd0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +0027ede0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +0027edf0: 202a 202a 6e6f 7465 2067 6574 5757 573a * *note getWWW: │ │ │ │ +0027ee00: 2067 6574 5757 572c 202d 2d20 6765 7420 getWWW, -- get │ │ │ │ +0027ee10: 6120 7765 6220 7061 6765 0a0a 5761 7973 a web page..Ways │ │ │ │ +0027ee20: 2074 6f20 7573 6520 7370 6c69 7457 5757 to use splitWWW │ │ │ │ +0027ee30: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0027ee40: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 7370 =======.. * "sp │ │ │ │ +0027ee50: 6c69 7457 5757 2853 7472 696e 6729 220a litWWW(String)". │ │ │ │ +0027ee60: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0027ee70: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0027ee80: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0027ee90: 6374 202a 6e6f 7465 2073 706c 6974 5757 ct *note splitWW │ │ │ │ +0027eea0: 573a 2073 706c 6974 5757 572c 2069 7320 W: splitWWW, is │ │ │ │ +0027eeb0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0027eec0: 756e 6374 696f 6e3a 0a4d 6574 686f 6446 unction:.MethodF │ │ │ │ +0027eed0: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ 0027eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ef00: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -0027ef10: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -0027ef20: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -0027ef30: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -0027ef40: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -0027ef50: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -0027ef60: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ -0027ef70: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ -0027ef80: 6d32 3a31 3830 373a 302e 0a1f 0a46 696c m2:1807:0....Fil │ │ │ │ -0027ef90: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ -0027efa0: 696e 666f 2c20 4e6f 6465 3a20 6874 7470 info, Node: http │ │ │ │ -0027efb0: 4865 6164 6572 735f 6c70 5374 7269 6e67 Headers_lpString │ │ │ │ -0027efc0: 5f72 702c 204e 6578 743a 2070 726f 6365 _rp, Next: proce │ │ │ │ -0027efd0: 7373 4944 2c20 5072 6576 3a20 7370 6c69 ssID, Prev: spli │ │ │ │ -0027efe0: 7457 5757 2c20 5570 3a20 7379 7374 656d tWWW, Up: system │ │ │ │ -0027eff0: 2066 6163 696c 6974 6965 730a 0a68 7474 facilities..htt │ │ │ │ -0027f000: 7048 6561 6465 7273 2853 7472 696e 6729 pHeaders(String) │ │ │ │ -0027f010: 202d 2d20 7072 6570 656e 6420 6874 7470 -- prepend http │ │ │ │ -0027f020: 2068 6561 6465 7273 2074 6f20 6120 7374 headers to a st │ │ │ │ -0027f030: 7269 6e67 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ring.*********** │ │ │ │ -0027f040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027f050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027f060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -0027f070: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ -0027f080: 6520 6874 7470 4865 6164 6572 733a 2068 e httpHeaders: h │ │ │ │ -0027f090: 7474 7048 6561 6465 7273 5f6c 7053 7472 ttpHeaders_lpStr │ │ │ │ -0027f0a0: 696e 675f 7270 2c0a 2020 2a20 5573 6167 ing_rp,. * Usag │ │ │ │ -0027f0b0: 653a 200a 2020 2020 2020 2020 6874 7470 e: . http │ │ │ │ -0027f0c0: 4865 6164 6572 7320 730a 2020 2a20 496e Headers s. * In │ │ │ │ -0027f0d0: 7075 7473 3a0a 2020 2020 2020 2a20 732c puts:. * s, │ │ │ │ -0027f0e0: 2061 202a 6e6f 7465 2073 7472 696e 673a a *note string: │ │ │ │ -0027f0f0: 2053 7472 696e 672c 0a20 202a 204f 7574 String,. * Out │ │ │ │ -0027f100: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -0027f110: 2a6e 6f74 6520 7374 7269 6e67 3a20 5374 *note string: St │ │ │ │ -0027f120: 7269 6e67 2c2c 2074 6865 2073 7472 696e ring,, the strin │ │ │ │ -0027f130: 6720 6f62 7461 696e 6564 2066 726f 6d20 g obtained from │ │ │ │ -0027f140: 7320 6279 2070 7265 7065 6e64 696e 670a s by prepending. │ │ │ │ -0027f150: 2020 2020 2020 2020 6170 7072 6f70 7269 appropri │ │ │ │ -0027f160: 6174 6520 6865 6164 6572 7320 746f 2069 ate headers to i │ │ │ │ -0027f170: 740a 0a44 6573 6372 6970 7469 6f6e 0a3d t..Description.= │ │ │ │ -0027f180: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -0027f190: 2066 756e 6374 696f 6e20 6973 2065 7870 function is exp │ │ │ │ -0027f1a0: 6572 696d 656e 7461 6c2c 2061 6e64 2069 erimental, and i │ │ │ │ -0027f1b0: 7320 696e 7465 6e64 6564 2074 6f20 7375 s intended to su │ │ │ │ -0027f1c0: 7070 6f72 7420 7468 6520 6465 7665 6c6f pport the develo │ │ │ │ -0027f1d0: 706d 656e 7420 6f66 0a77 6562 2073 6572 pment of.web ser │ │ │ │ -0027f1e0: 7665 7273 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d vers...+-------- │ │ │ │ -0027f1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f210: 2d2d 2d2b 0a7c 6931 203a 2068 7474 7048 ---+.|i1 : httpH │ │ │ │ -0027f220: 6561 6465 7273 2022 6869 2074 6865 7265 eaders "hi there │ │ │ │ -0027f230: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ -0027f240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0027f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027f260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0027f270: 0a7c 6f31 203d 2048 5454 502f 312e 3120 .|o1 = HTTP/1.1 │ │ │ │ -0027f280: 3230 3020 4f4b 2020 2020 2020 2020 2020 200 OK │ │ │ │ -0027f290: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0027f2a0: 2020 2020 2053 6572 7665 723a 204d 6163 Server: Mac │ │ │ │ -0027f2b0: 6175 6c61 7932 2f31 2e32 352e 3131 2020 aulay2/1.25.11 │ │ │ │ -0027f2c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0027f2d0: 2020 2043 6f6e 6e65 6374 696f 6e3a 2063 Connection: c │ │ │ │ -0027f2e0: 6c6f 7365 2020 2020 2020 2020 2020 2020 lose │ │ │ │ -0027f2f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0027f300: 2043 6f6e 7465 6e74 2d4c 656e 6774 683a Content-Length: │ │ │ │ -0027f310: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -0027f320: 2020 2020 2020 207c 0a7c 2020 2020 2043 |.| C │ │ │ │ -0027f330: 6f6e 7465 6e74 2d74 7970 653a 2074 6578 ontent-type: tex │ │ │ │ -0027f340: 742f 6874 6d6c 3b20 6368 6172 7365 743d t/html; charset= │ │ │ │ -0027f350: 7574 662d 387c 0a7c 2020 2020 2020 2020 utf-8|.| │ │ │ │ -0027f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027f380: 2020 207c 0a7c 2020 2020 2068 6920 7468 |.| hi th │ │ │ │ -0027f390: 6572 6520 2020 2020 2020 2020 2020 2020 ere │ │ │ │ -0027f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0027f3b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0027f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0027f3e0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ -0027f3f0: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ -0027f400: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0027f410: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2068 ===.. * *note h │ │ │ │ -0027f420: 7474 7048 6561 6465 7273 2853 7472 696e ttpHeaders(Strin │ │ │ │ -0027f430: 6729 3a20 6874 7470 4865 6164 6572 735f g): httpHeaders_ │ │ │ │ -0027f440: 6c70 5374 7269 6e67 5f72 702c 202d 2d20 lpString_rp, -- │ │ │ │ -0027f450: 7072 6570 656e 6420 6874 7470 2068 6561 prepend http hea │ │ │ │ -0027f460: 6465 7273 0a20 2020 2074 6f20 6120 7374 ders. to a st │ │ │ │ -0027f470: 7269 6e67 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d ring.----------- │ │ │ │ -0027f480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0027ef30: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0027ef40: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0027ef50: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0027ef60: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0027ef70: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0027ef80: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0027ef90: 732f 0a4d 6163 6175 6c61 7932 446f 632f s/.Macaulay2Doc/ │ │ │ │ +0027efa0: 6f76 5f73 7973 7465 6d2e 6d32 3a31 3830 ov_system.m2:180 │ │ │ │ +0027efb0: 373a 302e 0a1f 0a46 696c 653a 204d 6163 7:0....File: Mac │ │ │ │ +0027efc0: 6175 6c61 7932 446f 632e 696e 666f 2c20 aulay2Doc.info, │ │ │ │ +0027efd0: 4e6f 6465 3a20 6874 7470 4865 6164 6572 Node: httpHeader │ │ │ │ +0027efe0: 735f 6c70 5374 7269 6e67 5f72 702c 204e s_lpString_rp, N │ │ │ │ +0027eff0: 6578 743a 2070 726f 6365 7373 4944 2c20 ext: processID, │ │ │ │ +0027f000: 5072 6576 3a20 7370 6c69 7457 5757 2c20 Prev: splitWWW, │ │ │ │ +0027f010: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ +0027f020: 6974 6965 730a 0a68 7474 7048 6561 6465 ities..httpHeade │ │ │ │ +0027f030: 7273 2853 7472 696e 6729 202d 2d20 7072 rs(String) -- pr │ │ │ │ +0027f040: 6570 656e 6420 6874 7470 2068 6561 6465 epend http heade │ │ │ │ +0027f050: 7273 2074 6f20 6120 7374 7269 6e67 0a2a rs to a string.* │ │ │ │ +0027f060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f090: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ +0027f0a0: 7469 6f6e 3a20 2a6e 6f74 6520 6874 7470 tion: *note http │ │ │ │ +0027f0b0: 4865 6164 6572 733a 2068 7474 7048 6561 Headers: httpHea │ │ │ │ +0027f0c0: 6465 7273 5f6c 7053 7472 696e 675f 7270 ders_lpString_rp │ │ │ │ +0027f0d0: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ +0027f0e0: 2020 2020 2020 6874 7470 4865 6164 6572 httpHeader │ │ │ │ +0027f0f0: 7320 730a 2020 2a20 496e 7075 7473 3a0a s s. * Inputs:. │ │ │ │ +0027f100: 2020 2020 2020 2a20 732c 2061 202a 6e6f * s, a *no │ │ │ │ +0027f110: 7465 2073 7472 696e 673a 2053 7472 696e te string: Strin │ │ │ │ +0027f120: 672c 0a20 202a 204f 7574 7075 7473 3a0a g,. * Outputs:. │ │ │ │ +0027f130: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +0027f140: 7374 7269 6e67 3a20 5374 7269 6e67 2c2c string: String,, │ │ │ │ +0027f150: 2074 6865 2073 7472 696e 6720 6f62 7461 the string obta │ │ │ │ +0027f160: 696e 6564 2066 726f 6d20 7320 6279 2070 ined from s by p │ │ │ │ +0027f170: 7265 7065 6e64 696e 670a 2020 2020 2020 repending. │ │ │ │ +0027f180: 2020 6170 7072 6f70 7269 6174 6520 6865 appropriate he │ │ │ │ +0027f190: 6164 6572 7320 746f 2069 740a 0a44 6573 aders to it..Des │ │ │ │ +0027f1a0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +0027f1b0: 3d3d 3d3d 0a0a 5468 6973 2066 756e 6374 ====..This funct │ │ │ │ +0027f1c0: 696f 6e20 6973 2065 7870 6572 696d 656e ion is experimen │ │ │ │ +0027f1d0: 7461 6c2c 2061 6e64 2069 7320 696e 7465 tal, and is inte │ │ │ │ +0027f1e0: 6e64 6564 2074 6f20 7375 7070 6f72 7420 nded to support │ │ │ │ +0027f1f0: 7468 6520 6465 7665 6c6f 706d 656e 7420 the development │ │ │ │ +0027f200: 6f66 0a77 6562 2073 6572 7665 7273 2e0a of.web servers.. │ │ │ │ +0027f210: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0027f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0027f240: 6931 203a 2068 7474 7048 6561 6465 7273 i1 : httpHeaders │ │ │ │ +0027f250: 2022 6869 2074 6865 7265 2220 2020 2020 "hi there" │ │ │ │ +0027f260: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0027f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f290: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0027f2a0: 2048 5454 502f 312e 3120 3230 3020 4f4b HTTP/1.1 200 OK │ │ │ │ +0027f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f2c0: 2020 2020 2020 207c 0a7c 2020 2020 2053 |.| S │ │ │ │ +0027f2d0: 6572 7665 723a 204d 6163 6175 6c61 7932 erver: Macaulay2 │ │ │ │ +0027f2e0: 2f31 2e32 352e 3131 2020 2020 2020 2020 /1.25.11 │ │ │ │ +0027f2f0: 2020 2020 207c 0a7c 2020 2020 2043 6f6e |.| Con │ │ │ │ +0027f300: 6e65 6374 696f 6e3a 2063 6c6f 7365 2020 nection: close │ │ │ │ +0027f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f320: 2020 207c 0a7c 2020 2020 2043 6f6e 7465 |.| Conte │ │ │ │ +0027f330: 6e74 2d4c 656e 6774 683a 2038 2020 2020 nt-Length: 8 │ │ │ │ +0027f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f350: 207c 0a7c 2020 2020 2043 6f6e 7465 6e74 |.| Content │ │ │ │ +0027f360: 2d74 7970 653a 2074 6578 742f 6874 6d6c -type: text/html │ │ │ │ +0027f370: 3b20 6368 6172 7365 743d 7574 662d 387c ; charset=utf-8| │ │ │ │ +0027f380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0027f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f3a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0027f3b0: 2020 2020 2068 6920 7468 6572 6520 2020 hi there │ │ │ │ +0027f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f3d0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0027f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f400: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 7973 ---------+..Ways │ │ │ │ +0027f410: 2074 6f20 7573 6520 7468 6973 206d 6574 to use this met │ │ │ │ +0027f420: 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d hod:.=========== │ │ │ │ +0027f430: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +0027f440: 202a 202a 6e6f 7465 2068 7474 7048 6561 * *note httpHea │ │ │ │ +0027f450: 6465 7273 2853 7472 696e 6729 3a20 6874 ders(String): ht │ │ │ │ +0027f460: 7470 4865 6164 6572 735f 6c70 5374 7269 tpHeaders_lpStri │ │ │ │ +0027f470: 6e67 5f72 702c 202d 2d20 7072 6570 656e ng_rp, -- prepen │ │ │ │ +0027f480: 6420 6874 7470 2068 6561 6465 7273 0a20 d http headers. │ │ │ │ +0027f490: 2020 2074 6f20 6120 7374 7269 6e67 0a2d to a string.- │ │ │ │ 0027f4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f4c0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0027f4d0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0027f4e0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0027f4f0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0027f500: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0027f510: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0027f520: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0027f530: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -0027f540: 7465 6d2e 6d32 3a31 3731 303a 302e 0a1f tem.m2:1710:0... │ │ │ │ -0027f550: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -0027f560: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -0027f570: 7072 6f63 6573 7349 442c 204e 6578 743a processID, Next: │ │ │ │ -0027f580: 2067 726f 7570 4944 2c20 5072 6576 3a20 groupID, Prev: │ │ │ │ -0027f590: 6874 7470 4865 6164 6572 735f 6c70 5374 httpHeaders_lpSt │ │ │ │ -0027f5a0: 7269 6e67 5f72 702c 2055 703a 2073 7973 ring_rp, Up: sys │ │ │ │ -0027f5b0: 7465 6d20 6661 6369 6c69 7469 6573 0a0a tem facilities.. │ │ │ │ -0027f5c0: 7072 6f63 6573 7349 4420 2d2d 2074 6865 processID -- the │ │ │ │ -0027f5d0: 2070 726f 6365 7373 2069 6465 6e74 6966 process identif │ │ │ │ -0027f5e0: 6965 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ier.************ │ │ │ │ -0027f5f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027f600: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -0027f610: 6765 3a20 0a20 2020 2020 2020 2070 726f ge: . pro │ │ │ │ -0027f620: 6365 7373 4944 2829 0a20 202a 204f 7574 cessID(). * Out │ │ │ │ -0027f630: 7075 7473 3a0a 2020 2020 2020 2a20 616e puts:. * an │ │ │ │ -0027f640: 202a 6e6f 7465 2069 6e74 6567 6572 3a20 *note integer: │ │ │ │ -0027f650: 5a5a 2c2c 2074 6865 2070 726f 6365 7373 ZZ,, the process │ │ │ │ -0027f660: 2069 6465 6e74 6966 6965 7220 6f66 2074 identifier of t │ │ │ │ -0027f670: 6865 2063 7572 7265 6e74 204d 6163 6175 he current Macau │ │ │ │ -0027f680: 6c61 7932 0a20 2020 2020 2020 2070 726f lay2. pro │ │ │ │ -0027f690: 6365 7373 0a0a 4465 7363 7269 7074 696f cess..Descriptio │ │ │ │ -0027f6a0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b n.===========..+ │ │ │ │ -0027f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f6c0: 2b0a 7c69 3120 3a20 7072 6f63 6573 7349 +.|i1 : processI │ │ │ │ -0027f6d0: 4428 297c 0a7c 2020 2020 2020 2020 2020 D()|.| │ │ │ │ -0027f6e0: 2020 2020 2020 7c0a 7c6f 3120 3d20 3130 |.|o1 = 10 │ │ │ │ -0027f6f0: 3139 3120 2020 2020 207c 0a2b 2d2d 2d2d 191 |.+---- │ │ │ │ -0027f700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -0027f710: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0027f720: 0a0a 2020 2a20 2a6e 6f74 6520 6772 6f75 .. * *note grou │ │ │ │ -0027f730: 7049 443a 2067 726f 7570 4944 2c20 2d2d pID: groupID, -- │ │ │ │ -0027f740: 2074 6865 2070 726f 6365 7373 2067 726f the process gro │ │ │ │ -0027f750: 7570 2069 6465 6e74 6966 6965 720a 2020 up identifier. │ │ │ │ -0027f760: 2a20 2a6e 6f74 6520 7365 7447 726f 7570 * *note setGroup │ │ │ │ -0027f770: 4944 3a20 7365 7447 726f 7570 4944 2c20 ID: setGroupID, │ │ │ │ -0027f780: 2d2d 2073 6574 2074 6865 2070 726f 6365 -- set the proce │ │ │ │ -0027f790: 7373 2067 726f 7570 2069 6465 6e74 6966 ss group identif │ │ │ │ -0027f7a0: 6965 720a 0a46 6f72 2074 6865 2070 726f ier..For the pro │ │ │ │ -0027f7b0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0027f7c0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0027f7d0: 6f62 6a65 6374 202a 6e6f 7465 2070 726f object *note pro │ │ │ │ -0027f7e0: 6365 7373 4944 3a20 7072 6f63 6573 7349 cessID: processI │ │ │ │ -0027f7f0: 442c 2069 7320 6120 2a6e 6f74 6520 636f D, is a *note co │ │ │ │ -0027f800: 6d70 696c 6564 2066 756e 6374 696f 6e3a mpiled function: │ │ │ │ -0027f810: 0a43 6f6d 7069 6c65 6446 756e 6374 696f .CompiledFunctio │ │ │ │ -0027f820: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -0027f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0027f4f0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0027f500: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0027f510: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0027f520: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0027f530: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0027f540: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0027f550: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0027f560: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0027f570: 3a31 3731 303a 302e 0a1f 0a46 696c 653a :1710:0....File: │ │ │ │ +0027f580: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +0027f590: 666f 2c20 4e6f 6465 3a20 7072 6f63 6573 fo, Node: proces │ │ │ │ +0027f5a0: 7349 442c 204e 6578 743a 2067 726f 7570 sID, Next: group │ │ │ │ +0027f5b0: 4944 2c20 5072 6576 3a20 6874 7470 4865 ID, Prev: httpHe │ │ │ │ +0027f5c0: 6164 6572 735f 6c70 5374 7269 6e67 5f72 aders_lpString_r │ │ │ │ +0027f5d0: 702c 2055 703a 2073 7973 7465 6d20 6661 p, Up: system fa │ │ │ │ +0027f5e0: 6369 6c69 7469 6573 0a0a 7072 6f63 6573 cilities..proces │ │ │ │ +0027f5f0: 7349 4420 2d2d 2074 6865 2070 726f 6365 sID -- the proce │ │ │ │ +0027f600: 7373 2069 6465 6e74 6966 6965 720a 2a2a ss identifier.** │ │ │ │ +0027f610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f620: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f630: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +0027f640: 2020 2020 2020 2070 726f 6365 7373 4944 processID │ │ │ │ +0027f650: 2829 0a20 202a 204f 7574 7075 7473 3a0a (). * Outputs:. │ │ │ │ +0027f660: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ +0027f670: 2069 6e74 6567 6572 3a20 5a5a 2c2c 2074 integer: ZZ,, t │ │ │ │ +0027f680: 6865 2070 726f 6365 7373 2069 6465 6e74 he process ident │ │ │ │ +0027f690: 6966 6965 7220 6f66 2074 6865 2063 7572 ifier of the cur │ │ │ │ +0027f6a0: 7265 6e74 204d 6163 6175 6c61 7932 0a20 rent Macaulay2. │ │ │ │ +0027f6b0: 2020 2020 2020 2070 726f 6365 7373 0a0a process.. │ │ │ │ +0027f6c0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0027f6d0: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ +0027f6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +0027f6f0: 3a20 7072 6f63 6573 7349 4428 297c 0a7c : processID()|.| │ │ │ │ +0027f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0027f710: 7c0a 7c6f 3120 3d20 3130 3331 3120 2020 |.|o1 = 10311 │ │ │ │ +0027f720: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0027f730: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +0027f740: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0027f750: 2a6e 6f74 6520 6772 6f75 7049 443a 2067 *note groupID: g │ │ │ │ +0027f760: 726f 7570 4944 2c20 2d2d 2074 6865 2070 roupID, -- the p │ │ │ │ +0027f770: 726f 6365 7373 2067 726f 7570 2069 6465 rocess group ide │ │ │ │ +0027f780: 6e74 6966 6965 720a 2020 2a20 2a6e 6f74 ntifier. * *not │ │ │ │ +0027f790: 6520 7365 7447 726f 7570 4944 3a20 7365 e setGroupID: se │ │ │ │ +0027f7a0: 7447 726f 7570 4944 2c20 2d2d 2073 6574 tGroupID, -- set │ │ │ │ +0027f7b0: 2074 6865 2070 726f 6365 7373 2067 726f the process gro │ │ │ │ +0027f7c0: 7570 2069 6465 6e74 6966 6965 720a 0a46 up identifier..F │ │ │ │ +0027f7d0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0027f7e0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0027f7f0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0027f800: 202a 6e6f 7465 2070 726f 6365 7373 4944 *note processID │ │ │ │ +0027f810: 3a20 7072 6f63 6573 7349 442c 2069 7320 : processID, is │ │ │ │ +0027f820: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ +0027f830: 2066 756e 6374 696f 6e3a 0a43 6f6d 7069 function:.Compi │ │ │ │ +0027f840: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ 0027f850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027f870: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -0027f880: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -0027f890: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -0027f8a0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -0027f8b0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -0027f8c0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -0027f8d0: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -0027f8e0: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -0027f8f0: 7465 6d2e 6d32 3a37 3739 3a30 2e0a 1f0a tem.m2:779:0.... │ │ │ │ -0027f900: 4669 6c65 3a20 4d61 6361 756c 6179 3244 File: Macaulay2D │ │ │ │ -0027f910: 6f63 2e69 6e66 6f2c 204e 6f64 653a 2067 oc.info, Node: g │ │ │ │ -0027f920: 726f 7570 4944 2c20 4e65 7874 3a20 7365 roupID, Next: se │ │ │ │ -0027f930: 7447 726f 7570 4944 2c20 5072 6576 3a20 tGroupID, Prev: │ │ │ │ -0027f940: 7072 6f63 6573 7349 442c 2055 703a 2073 processID, Up: s │ │ │ │ -0027f950: 7973 7465 6d20 6661 6369 6c69 7469 6573 ystem facilities │ │ │ │ -0027f960: 0a0a 6772 6f75 7049 4420 2d2d 2074 6865 ..groupID -- the │ │ │ │ -0027f970: 2070 726f 6365 7373 2067 726f 7570 2069 process group i │ │ │ │ -0027f980: 6465 6e74 6966 6965 720a 2a2a 2a2a 2a2a dentifier.****** │ │ │ │ -0027f990: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027f9a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027f9b0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ -0027f9c0: 2020 2020 2020 2067 726f 7570 4944 2829 groupID() │ │ │ │ -0027f9d0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0027f9e0: 2020 2020 2a20 616e 202a 6e6f 7465 2069 * an *note i │ │ │ │ -0027f9f0: 6e74 6567 6572 3a20 5a5a 2c2c 2074 6865 nteger: ZZ,, the │ │ │ │ -0027fa00: 2070 726f 6365 7373 2067 726f 7570 2069 process group i │ │ │ │ -0027fa10: 6465 6e74 6966 6965 7220 6f66 2074 6865 dentifier of the │ │ │ │ -0027fa20: 2063 7572 7265 6e74 0a20 2020 2020 2020 current. │ │ │ │ -0027fa30: 204d 6163 6175 6c61 7932 2070 726f 6365 Macaulay2 proce │ │ │ │ -0027fa40: 7373 0a0a 4465 7363 7269 7074 696f 6e0a ss..Description. │ │ │ │ -0027fa50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ -0027fa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0027fa70: 3120 3a20 6772 6f75 7049 4428 297c 0a7c 1 : groupID()|.| │ │ │ │ -0027fa80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0027fa90: 7c6f 3120 3d20 3220 2020 2020 2020 207c |o1 = 2 | │ │ │ │ -0027faa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0027fab0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -0027fac0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0027fad0: 7072 6f63 6573 7349 443a 2070 726f 6365 processID: proce │ │ │ │ -0027fae0: 7373 4944 2c20 2d2d 2074 6865 2070 726f ssID, -- the pro │ │ │ │ -0027faf0: 6365 7373 2069 6465 6e74 6966 6965 720a cess identifier. │ │ │ │ -0027fb00: 2020 2a20 2a6e 6f74 6520 7365 7447 726f * *note setGro │ │ │ │ -0027fb10: 7570 4944 3a20 7365 7447 726f 7570 4944 upID: setGroupID │ │ │ │ -0027fb20: 2c20 2d2d 2073 6574 2074 6865 2070 726f , -- set the pro │ │ │ │ -0027fb30: 6365 7373 2067 726f 7570 2069 6465 6e74 cess group ident │ │ │ │ -0027fb40: 6966 6965 720a 0a46 6f72 2074 6865 2070 ifier..For the p │ │ │ │ -0027fb50: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0027fb60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0027fb70: 6520 6f62 6a65 6374 202a 6e6f 7465 2067 e object *note g │ │ │ │ -0027fb80: 726f 7570 4944 3a20 6772 6f75 7049 442c roupID: groupID, │ │ │ │ -0027fb90: 2069 7320 6120 2a6e 6f74 6520 636f 6d70 is a *note comp │ │ │ │ -0027fba0: 696c 6564 2066 756e 6374 696f 6e3a 0a43 iled function:.C │ │ │ │ -0027fbb0: 6f6d 7069 6c65 6446 756e 6374 696f 6e2c ompiledFunction, │ │ │ │ -0027fbc0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ -0027fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027f890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0027f8a0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0027f8b0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0027f8c0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0027f8d0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0027f8e0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0027f8f0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0027f900: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +0027f910: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +0027f920: 3a37 3739 3a30 2e0a 1f0a 4669 6c65 3a20 :779:0....File: │ │ │ │ +0027f930: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ +0027f940: 6f2c 204e 6f64 653a 2067 726f 7570 4944 o, Node: groupID │ │ │ │ +0027f950: 2c20 4e65 7874 3a20 7365 7447 726f 7570 , Next: setGroup │ │ │ │ +0027f960: 4944 2c20 5072 6576 3a20 7072 6f63 6573 ID, Prev: proces │ │ │ │ +0027f970: 7349 442c 2055 703a 2073 7973 7465 6d20 sID, Up: system │ │ │ │ +0027f980: 6661 6369 6c69 7469 6573 0a0a 6772 6f75 facilities..grou │ │ │ │ +0027f990: 7049 4420 2d2d 2074 6865 2070 726f 6365 pID -- the proce │ │ │ │ +0027f9a0: 7373 2067 726f 7570 2069 6465 6e74 6966 ss group identif │ │ │ │ +0027f9b0: 6965 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ier.************ │ │ │ │ +0027f9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027f9d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0027f9e0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0027f9f0: 2067 726f 7570 4944 2829 0a20 202a 204f groupID(). * O │ │ │ │ +0027fa00: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +0027fa10: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +0027fa20: 3a20 5a5a 2c2c 2074 6865 2070 726f 6365 : ZZ,, the proce │ │ │ │ +0027fa30: 7373 2067 726f 7570 2069 6465 6e74 6966 ss group identif │ │ │ │ +0027fa40: 6965 7220 6f66 2074 6865 2063 7572 7265 ier of the curre │ │ │ │ +0027fa50: 6e74 0a20 2020 2020 2020 204d 6163 6175 nt. Macau │ │ │ │ +0027fa60: 6c61 7932 2070 726f 6365 7373 0a0a 4465 lay2 process..De │ │ │ │ +0027fa70: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0027fa80: 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d =====..+-------- │ │ │ │ +0027fa90: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 6772 ------+.|i1 : gr │ │ │ │ +0027faa0: 6f75 7049 4428 297c 0a7c 2020 2020 2020 oupID()|.| │ │ │ │ +0027fab0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +0027fac0: 3220 2020 2020 2020 207c 0a2b 2d2d 2d2d 2 |.+---- │ │ │ │ +0027fad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ +0027fae0: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +0027faf0: 2020 2a20 2a6e 6f74 6520 7072 6f63 6573 * *note proces │ │ │ │ +0027fb00: 7349 443a 2070 726f 6365 7373 4944 2c20 sID: processID, │ │ │ │ +0027fb10: 2d2d 2074 6865 2070 726f 6365 7373 2069 -- the process i │ │ │ │ +0027fb20: 6465 6e74 6966 6965 720a 2020 2a20 2a6e dentifier. * *n │ │ │ │ +0027fb30: 6f74 6520 7365 7447 726f 7570 4944 3a20 ote setGroupID: │ │ │ │ +0027fb40: 7365 7447 726f 7570 4944 2c20 2d2d 2073 setGroupID, -- s │ │ │ │ +0027fb50: 6574 2074 6865 2070 726f 6365 7373 2067 et the process g │ │ │ │ +0027fb60: 726f 7570 2069 6465 6e74 6966 6965 720a roup identifier. │ │ │ │ +0027fb70: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0027fb80: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0027fb90: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0027fba0: 6374 202a 6e6f 7465 2067 726f 7570 4944 ct *note groupID │ │ │ │ +0027fbb0: 3a20 6772 6f75 7049 442c 2069 7320 6120 : groupID, is a │ │ │ │ +0027fbc0: 2a6e 6f74 6520 636f 6d70 696c 6564 2066 *note compiled f │ │ │ │ +0027fbd0: 756e 6374 696f 6e3a 0a43 6f6d 7069 6c65 unction:.Compile │ │ │ │ +0027fbe0: 6446 756e 6374 696f 6e2c 2e0a 0a2d 2d2d dFunction,...--- │ │ │ │ 0027fbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0027fc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027fc10: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0027fc20: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0027fc30: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0027fc40: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0027fc50: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0027fc60: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0027fc70: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ -0027fc80: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ -0027fc90: 6d2e 6d32 3a37 3839 3a30 2e0a 1f0a 4669 m.m2:789:0....Fi │ │ │ │ -0027fca0: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ -0027fcb0: 2e69 6e66 6f2c 204e 6f64 653a 2073 6574 .info, Node: set │ │ │ │ -0027fcc0: 4772 6f75 7049 442c 204e 6578 743a 206b GroupID, Next: k │ │ │ │ -0027fcd0: 696c 6c2c 2050 7265 763a 2067 726f 7570 ill, Prev: group │ │ │ │ -0027fce0: 4944 2c20 5570 3a20 7379 7374 656d 2066 ID, Up: system f │ │ │ │ -0027fcf0: 6163 696c 6974 6965 730a 0a73 6574 4772 acilities..setGr │ │ │ │ -0027fd00: 6f75 7049 4420 2d2d 2073 6574 2074 6865 oupID -- set the │ │ │ │ -0027fd10: 2070 726f 6365 7373 2067 726f 7570 2069 process group i │ │ │ │ -0027fd20: 6465 6e74 6966 6965 720a 2a2a 2a2a 2a2a dentifier.****** │ │ │ │ -0027fd30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027fd40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0027fd50: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -0027fd60: 6167 653a 200a 2020 2020 2020 2020 7365 age: . se │ │ │ │ -0027fd70: 7447 726f 7570 4944 2870 6964 2c70 6769 tGroupID(pid,pgi │ │ │ │ -0027fd80: 6429 0a20 202a 2049 6e70 7574 733a 0a20 d). * Inputs:. │ │ │ │ -0027fd90: 2020 2020 202a 2070 6964 2c20 616e 202a * pid, an * │ │ │ │ -0027fda0: 6e6f 7465 2069 6e74 6567 6572 3a20 5a5a note integer: ZZ │ │ │ │ -0027fdb0: 2c0a 2020 2020 2020 2a20 7067 6964 2c20 ,. * pgid, │ │ │ │ -0027fdc0: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -0027fdd0: 3a20 5a5a 2c0a 2020 2a20 436f 6e73 6571 : ZZ,. * Conseq │ │ │ │ -0027fde0: 7565 6e63 6573 3a0a 2020 2020 2020 2a20 uences:. * │ │ │ │ -0027fdf0: 5468 6520 7072 6f63 6573 7320 6772 6f75 The process grou │ │ │ │ -0027fe00: 7020 6964 206f 6620 7468 6520 7072 6f63 p id of the proc │ │ │ │ -0027fe10: 6573 7320 7769 7468 2070 726f 6365 7373 ess with process │ │ │ │ -0027fe20: 2069 6420 7069 6420 6973 2073 6574 2074 id pid is set t │ │ │ │ -0027fe30: 6f20 7067 6964 2e0a 2020 2020 2020 2020 o pgid.. │ │ │ │ -0027fe40: 4966 2070 6964 2069 7320 302c 2074 6865 If pid is 0, the │ │ │ │ -0027fe50: 2063 7572 7265 6e74 2070 726f 6365 7373 current process │ │ │ │ -0027fe60: 2069 7320 6166 6665 6374 6564 2e20 2049 is affected. I │ │ │ │ -0027fe70: 6620 7067 6964 2069 7320 302c 2074 6865 f pgid is 0, the │ │ │ │ -0027fe80: 206e 6577 0a20 2020 2020 2020 2070 726f new. pro │ │ │ │ -0027fe90: 6365 7373 2067 726f 7570 2069 6420 6973 cess group id is │ │ │ │ -0027fea0: 2065 7175 616c 2074 6f20 7468 6520 7072 equal to the pr │ │ │ │ -0027feb0: 6f63 6573 7320 6964 2e0a 0a53 6565 2061 ocess id...See a │ │ │ │ -0027fec0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -0027fed0: 2a20 2a6e 6f74 6520 7072 6f63 6573 7349 * *note processI │ │ │ │ -0027fee0: 443a 2070 726f 6365 7373 4944 2c20 2d2d D: processID, -- │ │ │ │ -0027fef0: 2074 6865 2070 726f 6365 7373 2069 6465 the process ide │ │ │ │ -0027ff00: 6e74 6966 6965 720a 2020 2a20 2a6e 6f74 ntifier. * *not │ │ │ │ -0027ff10: 6520 6772 6f75 7049 443a 2067 726f 7570 e groupID: group │ │ │ │ -0027ff20: 4944 2c20 2d2d 2074 6865 2070 726f 6365 ID, -- the proce │ │ │ │ -0027ff30: 7373 2067 726f 7570 2069 6465 6e74 6966 ss group identif │ │ │ │ -0027ff40: 6965 720a 0a46 6f72 2074 6865 2070 726f ier..For the pro │ │ │ │ -0027ff50: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0027ff60: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0027ff70: 6f62 6a65 6374 202a 6e6f 7465 2073 6574 object *note set │ │ │ │ -0027ff80: 4772 6f75 7049 443a 2073 6574 4772 6f75 GroupID: setGrou │ │ │ │ -0027ff90: 7049 442c 2069 7320 6120 2a6e 6f74 6520 pID, is a *note │ │ │ │ -0027ffa0: 636f 6d70 696c 6564 2066 756e 6374 696f compiled functio │ │ │ │ -0027ffb0: 6e3a 0a43 6f6d 7069 6c65 6446 756e 6374 n:.CompiledFunct │ │ │ │ -0027ffc0: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ -0027ffd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0027fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027fc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027fc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0027fc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0027fc40: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0027fc50: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0027fc60: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0027fc70: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0027fc80: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0027fc90: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0027fca0: 6765 732f 0a4d 6163 6175 6c61 7932 446f ges/.Macaulay2Do │ │ │ │ +0027fcb0: 632f 6f76 5f73 7973 7465 6d2e 6d32 3a37 c/ov_system.m2:7 │ │ │ │ +0027fcc0: 3839 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 89:0....File: Ma │ │ │ │ +0027fcd0: 6361 756c 6179 3244 6f63 2e69 6e66 6f2c caulay2Doc.info, │ │ │ │ +0027fce0: 204e 6f64 653a 2073 6574 4772 6f75 7049 Node: setGroupI │ │ │ │ +0027fcf0: 442c 204e 6578 743a 206b 696c 6c2c 2050 D, Next: kill, P │ │ │ │ +0027fd00: 7265 763a 2067 726f 7570 4944 2c20 5570 rev: groupID, Up │ │ │ │ +0027fd10: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ +0027fd20: 6965 730a 0a73 6574 4772 6f75 7049 4420 ies..setGroupID │ │ │ │ +0027fd30: 2d2d 2073 6574 2074 6865 2070 726f 6365 -- set the proce │ │ │ │ +0027fd40: 7373 2067 726f 7570 2069 6465 6e74 6966 ss group identif │ │ │ │ +0027fd50: 6965 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ier.************ │ │ │ │ +0027fd60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027fd70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0027fd80: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +0027fd90: 2020 2020 2020 2020 7365 7447 726f 7570 setGroup │ │ │ │ +0027fda0: 4944 2870 6964 2c70 6769 6429 0a20 202a ID(pid,pgid). * │ │ │ │ +0027fdb0: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +0027fdc0: 2070 6964 2c20 616e 202a 6e6f 7465 2069 pid, an *note i │ │ │ │ +0027fdd0: 6e74 6567 6572 3a20 5a5a 2c0a 2020 2020 nteger: ZZ,. │ │ │ │ +0027fde0: 2020 2a20 7067 6964 2c20 616e 202a 6e6f * pgid, an *no │ │ │ │ +0027fdf0: 7465 2069 6e74 6567 6572 3a20 5a5a 2c0a te integer: ZZ,. │ │ │ │ +0027fe00: 2020 2a20 436f 6e73 6571 7565 6e63 6573 * Consequences │ │ │ │ +0027fe10: 3a0a 2020 2020 2020 2a20 5468 6520 7072 :. * The pr │ │ │ │ +0027fe20: 6f63 6573 7320 6772 6f75 7020 6964 206f ocess group id o │ │ │ │ +0027fe30: 6620 7468 6520 7072 6f63 6573 7320 7769 f the process wi │ │ │ │ +0027fe40: 7468 2070 726f 6365 7373 2069 6420 7069 th process id pi │ │ │ │ +0027fe50: 6420 6973 2073 6574 2074 6f20 7067 6964 d is set to pgid │ │ │ │ +0027fe60: 2e0a 2020 2020 2020 2020 4966 2070 6964 .. If pid │ │ │ │ +0027fe70: 2069 7320 302c 2074 6865 2063 7572 7265 is 0, the curre │ │ │ │ +0027fe80: 6e74 2070 726f 6365 7373 2069 7320 6166 nt process is af │ │ │ │ +0027fe90: 6665 6374 6564 2e20 2049 6620 7067 6964 fected. If pgid │ │ │ │ +0027fea0: 2069 7320 302c 2074 6865 206e 6577 0a20 is 0, the new. │ │ │ │ +0027feb0: 2020 2020 2020 2070 726f 6365 7373 2067 process g │ │ │ │ +0027fec0: 726f 7570 2069 6420 6973 2065 7175 616c roup id is equal │ │ │ │ +0027fed0: 2074 6f20 7468 6520 7072 6f63 6573 7320 to the process │ │ │ │ +0027fee0: 6964 2e0a 0a53 6565 2061 6c73 6f0a 3d3d id...See also.== │ │ │ │ +0027fef0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +0027ff00: 6520 7072 6f63 6573 7349 443a 2070 726f e processID: pro │ │ │ │ +0027ff10: 6365 7373 4944 2c20 2d2d 2074 6865 2070 cessID, -- the p │ │ │ │ +0027ff20: 726f 6365 7373 2069 6465 6e74 6966 6965 rocess identifie │ │ │ │ +0027ff30: 720a 2020 2a20 2a6e 6f74 6520 6772 6f75 r. * *note grou │ │ │ │ +0027ff40: 7049 443a 2067 726f 7570 4944 2c20 2d2d pID: groupID, -- │ │ │ │ +0027ff50: 2074 6865 2070 726f 6365 7373 2067 726f the process gro │ │ │ │ +0027ff60: 7570 2069 6465 6e74 6966 6965 720a 0a46 up identifier..F │ │ │ │ +0027ff70: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0027ff80: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0027ff90: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0027ffa0: 202a 6e6f 7465 2073 6574 4772 6f75 7049 *note setGroupI │ │ │ │ +0027ffb0: 443a 2073 6574 4772 6f75 7049 442c 2069 D: setGroupID, i │ │ │ │ +0027ffc0: 7320 6120 2a6e 6f74 6520 636f 6d70 696c s a *note compil │ │ │ │ +0027ffd0: 6564 2066 756e 6374 696f 6e3a 0a43 6f6d ed function:.Com │ │ │ │ +0027ffe0: 7069 6c65 6446 756e 6374 696f 6e2c 2e0a piledFunction,.. │ │ │ │ +0027fff0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00280000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280010: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00280020: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00280030: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00280040: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00280050: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00280060: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00280070: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ -00280080: 6163 6175 6c61 7932 446f 632f 6f76 5f73 acaulay2Doc/ov_s │ │ │ │ -00280090: 7973 7465 6d2e 6d32 3a38 3037 3a30 2e0a ystem.m2:807:0.. │ │ │ │ -002800a0: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -002800b0: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -002800c0: 206b 696c 6c2c 204e 6578 743a 206b 696c kill, Next: kil │ │ │ │ -002800d0: 6c5f 6c70 5a5a 5f72 702c 2050 7265 763a l_lpZZ_rp, Prev: │ │ │ │ -002800e0: 2073 6574 4772 6f75 7049 442c 2055 703a setGroupID, Up: │ │ │ │ -002800f0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -00280100: 6573 0a0a 6b69 6c6c 202d 2d20 6b69 6c6c es..kill -- kill │ │ │ │ -00280110: 2061 2070 726f 6365 7373 0a2a 2a2a 2a2a a process.***** │ │ │ │ -00280120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00280130: 2a0a 0a44 6573 6372 6970 7469 6f6e 0a3d *..Description.= │ │ │ │ -00280140: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 6b69 6c6c ==========..kill │ │ │ │ -00280150: 2066 202d 2d20 6b69 6c6c 2074 6865 2070 f -- kill the p │ │ │ │ -00280160: 726f 6365 7373 2061 7373 6f63 6961 7465 rocess associate │ │ │ │ -00280170: 6420 7769 7468 2074 6865 2066 696c 6520 d with the file │ │ │ │ -00280180: 662e 0a0a 5761 7973 2074 6f20 7573 6520 f...Ways to use │ │ │ │ -00280190: 6b69 6c6c 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d kill:.========== │ │ │ │ -002801a0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 6b69 =======.. * "ki │ │ │ │ -002801b0: 6c6c 2846 696c 6529 220a 2020 2a20 2a6e ll(File)". * *n │ │ │ │ -002801c0: 6f74 6520 6b69 6c6c 285a 5a29 3a20 6b69 ote kill(ZZ): ki │ │ │ │ -002801d0: 6c6c 5f6c 705a 5a5f 7270 2c20 2d2d 206b ll_lpZZ_rp, -- k │ │ │ │ -002801e0: 696c 6c20 6120 7072 6f63 6573 730a 0a46 ill a process..F │ │ │ │ -002801f0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00280200: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00280210: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00280220: 202a 6e6f 7465 206b 696c 6c3a 206b 696c *note kill: kil │ │ │ │ -00280230: 6c2c 2069 7320 6120 2a6e 6f74 6520 636f l, is a *note co │ │ │ │ -00280240: 6d70 696c 6564 2066 756e 6374 696f 6e3a mpiled function: │ │ │ │ -00280250: 2043 6f6d 7069 6c65 6446 756e 6374 696f CompiledFunctio │ │ │ │ -00280260: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ -00280270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280040: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00280050: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00280060: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00280070: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00280080: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00280090: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +002800a0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +002800b0: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ +002800c0: 6d32 3a38 3037 3a30 2e0a 1f0a 4669 6c65 m2:807:0....File │ │ │ │ +002800d0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ +002800e0: 6e66 6f2c 204e 6f64 653a 206b 696c 6c2c nfo, Node: kill, │ │ │ │ +002800f0: 204e 6578 743a 206b 696c 6c5f 6c70 5a5a Next: kill_lpZZ │ │ │ │ +00280100: 5f72 702c 2050 7265 763a 2073 6574 4772 _rp, Prev: setGr │ │ │ │ +00280110: 6f75 7049 442c 2055 703a 2073 7973 7465 oupID, Up: syste │ │ │ │ +00280120: 6d20 6661 6369 6c69 7469 6573 0a0a 6b69 m facilities..ki │ │ │ │ +00280130: 6c6c 202d 2d20 6b69 6c6c 2061 2070 726f ll -- kill a pro │ │ │ │ +00280140: 6365 7373 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a cess.*********** │ │ │ │ +00280150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ +00280160: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00280170: 3d3d 3d3d 0a0a 6b69 6c6c 2066 202d 2d20 ====..kill f -- │ │ │ │ +00280180: 6b69 6c6c 2074 6865 2070 726f 6365 7373 kill the process │ │ │ │ +00280190: 2061 7373 6f63 6961 7465 6420 7769 7468 associated with │ │ │ │ +002801a0: 2074 6865 2066 696c 6520 662e 0a0a 5761 the file f...Wa │ │ │ │ +002801b0: 7973 2074 6f20 7573 6520 6b69 6c6c 3a0a ys to use kill:. │ │ │ │ +002801c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +002801d0: 3d0a 0a20 202a 2022 6b69 6c6c 2846 696c =.. * "kill(Fil │ │ │ │ +002801e0: 6529 220a 2020 2a20 2a6e 6f74 6520 6b69 e)". * *note ki │ │ │ │ +002801f0: 6c6c 285a 5a29 3a20 6b69 6c6c 5f6c 705a ll(ZZ): kill_lpZ │ │ │ │ +00280200: 5a5f 7270 2c20 2d2d 206b 696c 6c20 6120 Z_rp, -- kill a │ │ │ │ +00280210: 7072 6f63 6573 730a 0a46 6f72 2074 6865 process..For the │ │ │ │ +00280220: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +00280230: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00280240: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +00280250: 206b 696c 6c3a 206b 696c 6c2c 2069 7320 kill: kill, is │ │ │ │ +00280260: 6120 2a6e 6f74 6520 636f 6d70 696c 6564 a *note compiled │ │ │ │ +00280270: 2066 756e 6374 696f 6e3a 2043 6f6d 7069 function: Compi │ │ │ │ +00280280: 6c65 6446 756e 6374 696f 6e2c 2e0a 0a2d ledFunction,...- │ │ │ │ 00280290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002802a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002802b0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -002802c0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -002802d0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -002802e0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -002802f0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00280300: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00280310: 7932 2f70 6163 6b61 6765 732f 0a4d 6163 y2/packages/.Mac │ │ │ │ -00280320: 6175 6c61 7932 446f 632f 6f76 5f73 7973 aulay2Doc/ov_sys │ │ │ │ -00280330: 7465 6d2e 6d32 3a31 3438 393a 302e 0a1f tem.m2:1489:0... │ │ │ │ -00280340: 0a46 696c 653a 204d 6163 6175 6c61 7932 .File: Macaulay2 │ │ │ │ -00280350: 446f 632e 696e 666f 2c20 4e6f 6465 3a20 Doc.info, Node: │ │ │ │ -00280360: 6b69 6c6c 5f6c 705a 5a5f 7270 2c20 4e65 kill_lpZZ_rp, Ne │ │ │ │ -00280370: 7874 3a20 7175 6974 2c20 5072 6576 3a20 xt: quit, Prev: │ │ │ │ -00280380: 6b69 6c6c 2c20 5570 3a20 7379 7374 656d kill, Up: system │ │ │ │ -00280390: 2066 6163 696c 6974 6965 730a 0a6b 696c facilities..kil │ │ │ │ -002803a0: 6c28 5a5a 2920 2d2d 206b 696c 6c20 6120 l(ZZ) -- kill a │ │ │ │ -002803b0: 7072 6f63 6573 730a 2a2a 2a2a 2a2a 2a2a process.******** │ │ │ │ -002803c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002803d0: 2a2a 0a0a 2020 2a20 4675 6e63 7469 6f6e **.. * Function │ │ │ │ -002803e0: 3a20 2a6e 6f74 6520 6b69 6c6c 3a20 6b69 : *note kill: ki │ │ │ │ -002803f0: 6c6c 2c0a 2020 2a20 5573 6167 653a 200a ll,. * Usage: . │ │ │ │ -00280400: 2020 2020 2020 2020 6b69 6c6c 206e 0a20 kill n. │ │ │ │ -00280410: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -00280420: 202a 206e 2c20 616e 202a 6e6f 7465 2069 * n, an *note i │ │ │ │ -00280430: 6e74 6567 6572 3a20 5a5a 2c2c 200a 2020 nteger: ZZ,, . │ │ │ │ -00280440: 2a20 436f 6e73 6571 7565 6e63 6573 3a0a * Consequences:. │ │ │ │ -00280450: 2020 2020 2020 2a20 7468 6520 7072 6f63 * the proc │ │ │ │ -00280460: 6573 7320 7769 7468 2069 6420 6e75 6d62 ess with id numb │ │ │ │ -00280470: 6572 206e 2069 7320 6b69 6c6c 6564 0a0a er n is killed.. │ │ │ │ -00280480: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ -00280490: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ -002804a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -002804b0: 3d0a 0a20 202a 202a 6e6f 7465 206b 696c =.. * *note kil │ │ │ │ -002804c0: 6c28 5a5a 293a 206b 696c 6c5f 6c70 5a5a l(ZZ): kill_lpZZ │ │ │ │ -002804d0: 5f72 702c 202d 2d20 6b69 6c6c 2061 2070 _rp, -- kill a p │ │ │ │ -002804e0: 726f 6365 7373 0a2d 2d2d 2d2d 2d2d 2d2d rocess.--------- │ │ │ │ -002804f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002802b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002802c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002802d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +002802e0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +002802f0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00280300: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00280310: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00280320: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00280330: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00280340: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ +00280350: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ +00280360: 3a31 3438 393a 302e 0a1f 0a46 696c 653a :1489:0....File: │ │ │ │ +00280370: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ +00280380: 666f 2c20 4e6f 6465 3a20 6b69 6c6c 5f6c fo, Node: kill_l │ │ │ │ +00280390: 705a 5a5f 7270 2c20 4e65 7874 3a20 7175 pZZ_rp, Next: qu │ │ │ │ +002803a0: 6974 2c20 5072 6576 3a20 6b69 6c6c 2c20 it, Prev: kill, │ │ │ │ +002803b0: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ +002803c0: 6974 6965 730a 0a6b 696c 6c28 5a5a 2920 ities..kill(ZZ) │ │ │ │ +002803d0: 2d2d 206b 696c 6c20 6120 7072 6f63 6573 -- kill a proces │ │ │ │ +002803e0: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ +002803f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00280400: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ +00280410: 6520 6b69 6c6c 3a20 6b69 6c6c 2c0a 2020 e kill: kill,. │ │ │ │ +00280420: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00280430: 2020 6b69 6c6c 206e 0a20 202a 2049 6e70 kill n. * Inp │ │ │ │ +00280440: 7574 733a 0a20 2020 2020 202a 206e 2c20 uts:. * n, │ │ │ │ +00280450: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +00280460: 3a20 5a5a 2c2c 200a 2020 2a20 436f 6e73 : ZZ,, . * Cons │ │ │ │ +00280470: 6571 7565 6e63 6573 3a0a 2020 2020 2020 equences:. │ │ │ │ +00280480: 2a20 7468 6520 7072 6f63 6573 7320 7769 * the process wi │ │ │ │ +00280490: 7468 2069 6420 6e75 6d62 6572 206e 2069 th id number n i │ │ │ │ +002804a0: 7320 6b69 6c6c 6564 0a0a 5761 7973 2074 s killed..Ways t │ │ │ │ +002804b0: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ +002804c0: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ +002804d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +002804e0: 202a 6e6f 7465 206b 696c 6c28 5a5a 293a *note kill(ZZ): │ │ │ │ +002804f0: 206b 696c 6c5f 6c70 5a5a 5f72 702c 202d kill_lpZZ_rp, - │ │ │ │ +00280500: 2d20 6b69 6c6c 2061 2070 726f 6365 7373 - kill a process │ │ │ │ +00280510: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00280520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280530: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00280540: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00280550: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00280560: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00280570: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00280580: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00280590: 6c61 7932 2f70 6163 6b61 6765 732f 0a4d lay2/packages/.M │ │ │ │ -002805a0: 6163 6175 6c61 7932 446f 632f 6f76 5f73 acaulay2Doc/ov_s │ │ │ │ -002805b0: 7973 7465 6d2e 6d32 3a31 3530 323a 302e ystem.m2:1502:0. │ │ │ │ -002805c0: 0a1f 0a46 696c 653a 204d 6163 6175 6c61 ...File: Macaula │ │ │ │ -002805d0: 7932 446f 632e 696e 666f 2c20 4e6f 6465 y2Doc.info, Node │ │ │ │ -002805e0: 3a20 7175 6974 2c20 4e65 7874 3a20 7761 : quit, Next: wa │ │ │ │ -002805f0: 6974 2c20 5072 6576 3a20 6b69 6c6c 5f6c it, Prev: kill_l │ │ │ │ -00280600: 705a 5a5f 7270 2c20 5570 3a20 7379 7374 pZZ_rp, Up: syst │ │ │ │ -00280610: 656d 2066 6163 696c 6974 6965 730a 0a71 em facilities..q │ │ │ │ -00280620: 7569 7420 2d2d 2071 7569 7420 7468 6520 uit -- quit the │ │ │ │ -00280630: 7072 6f67 7261 6d0a 2a2a 2a2a 2a2a 2a2a program.******** │ │ │ │ -00280640: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00280650: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00280660: 3d3d 3d3d 3d3d 3d3d 3d0a 0a71 7569 7420 =========..quit │ │ │ │ -00280670: 2d2d 2074 6572 6d69 6e61 7465 7320 7468 -- terminates th │ │ │ │ -00280680: 6520 7072 6f67 7261 6d20 616e 6420 7265 e program and re │ │ │ │ -00280690: 7475 726e 7320 3020 6173 2072 6574 7572 turns 0 as retur │ │ │ │ -002806a0: 6e20 636f 6465 2e0a 0a0a 4669 6c65 7320 n code....Files │ │ │ │ -002806b0: 6172 6520 666c 7573 6865 6420 616e 6420 are flushed and │ │ │ │ -002806c0: 636c 6f73 6564 2e20 2041 6e6f 7468 6572 closed. Another │ │ │ │ -002806d0: 2077 6179 2074 6f20 6578 6974 2069 7320 way to exit is │ │ │ │ -002806e0: 746f 2074 7970 6520 7468 6520 656e 6420 to type the end │ │ │ │ -002806f0: 6f66 2066 696c 650a 6368 6172 6163 7465 of file.characte │ │ │ │ -00280700: 722c 2077 6869 6368 2069 7320 7479 7069 r, which is typi │ │ │ │ -00280710: 6361 6c6c 7920 7365 7420 746f 2043 6f6e cally set to Con │ │ │ │ -00280720: 7472 6f6c 2d44 2069 6e20 756e 6978 2073 trol-D in unix s │ │ │ │ -00280730: 7973 7465 6d73 2c20 616e 6420 6973 0a43 ystems, and is.C │ │ │ │ -00280740: 6f6e 7472 6f6c 2d5a 2075 6e64 6572 204d ontrol-Z under M │ │ │ │ -00280750: 532d 444f 532e 0a0a 5365 6520 616c 736f S-DOS...See also │ │ │ │ -00280760: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00280770: 6e6f 7465 2065 7869 743a 2065 7869 742c note exit: exit, │ │ │ │ -00280780: 202d 2d20 6578 6974 2074 6865 2070 726f -- exit the pro │ │ │ │ -00280790: 6772 616d 0a0a 466f 7220 7468 6520 7072 gram..For the pr │ │ │ │ -002807a0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -002807b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -002807c0: 206f 626a 6563 7420 2a6e 6f74 6520 7175 object *note qu │ │ │ │ -002807d0: 6974 3a20 7175 6974 2c20 6973 2061 202a it: quit, is a * │ │ │ │ -002807e0: 6e6f 7465 2063 6f6d 6d61 6e64 3a20 436f note command: Co │ │ │ │ -002807f0: 6d6d 616e 642c 2e0a 0a2d 2d2d 2d2d 2d2d mmand,...------- │ │ │ │ -00280800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280560: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00280570: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00280580: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00280590: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +002805a0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +002805b0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +002805c0: 6163 6b61 6765 732f 0a4d 6163 6175 6c61 ackages/.Macaula │ │ │ │ +002805d0: 7932 446f 632f 6f76 5f73 7973 7465 6d2e y2Doc/ov_system. │ │ │ │ +002805e0: 6d32 3a31 3530 323a 302e 0a1f 0a46 696c m2:1502:0....Fil │ │ │ │ +002805f0: 653a 204d 6163 6175 6c61 7932 446f 632e e: Macaulay2Doc. │ │ │ │ +00280600: 696e 666f 2c20 4e6f 6465 3a20 7175 6974 info, Node: quit │ │ │ │ +00280610: 2c20 4e65 7874 3a20 7761 6974 2c20 5072 , Next: wait, Pr │ │ │ │ +00280620: 6576 3a20 6b69 6c6c 5f6c 705a 5a5f 7270 ev: kill_lpZZ_rp │ │ │ │ +00280630: 2c20 5570 3a20 7379 7374 656d 2066 6163 , Up: system fac │ │ │ │ +00280640: 696c 6974 6965 730a 0a71 7569 7420 2d2d ilities..quit -- │ │ │ │ +00280650: 2071 7569 7420 7468 6520 7072 6f67 7261 quit the progra │ │ │ │ +00280660: 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a m.************** │ │ │ │ +00280670: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +00280680: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00280690: 3d3d 3d0a 0a71 7569 7420 2d2d 2074 6572 ===..quit -- ter │ │ │ │ +002806a0: 6d69 6e61 7465 7320 7468 6520 7072 6f67 minates the prog │ │ │ │ +002806b0: 7261 6d20 616e 6420 7265 7475 726e 7320 ram and returns │ │ │ │ +002806c0: 3020 6173 2072 6574 7572 6e20 636f 6465 0 as return code │ │ │ │ +002806d0: 2e0a 0a0a 4669 6c65 7320 6172 6520 666c ....Files are fl │ │ │ │ +002806e0: 7573 6865 6420 616e 6420 636c 6f73 6564 ushed and closed │ │ │ │ +002806f0: 2e20 2041 6e6f 7468 6572 2077 6179 2074 . Another way t │ │ │ │ +00280700: 6f20 6578 6974 2069 7320 746f 2074 7970 o exit is to typ │ │ │ │ +00280710: 6520 7468 6520 656e 6420 6f66 2066 696c e the end of fil │ │ │ │ +00280720: 650a 6368 6172 6163 7465 722c 2077 6869 e.character, whi │ │ │ │ +00280730: 6368 2069 7320 7479 7069 6361 6c6c 7920 ch is typically │ │ │ │ +00280740: 7365 7420 746f 2043 6f6e 7472 6f6c 2d44 set to Control-D │ │ │ │ +00280750: 2069 6e20 756e 6978 2073 7973 7465 6d73 in unix systems │ │ │ │ +00280760: 2c20 616e 6420 6973 0a43 6f6e 7472 6f6c , and is.Control │ │ │ │ +00280770: 2d5a 2075 6e64 6572 204d 532d 444f 532e -Z under MS-DOS. │ │ │ │ +00280780: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00280790: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2065 ===.. * *note e │ │ │ │ +002807a0: 7869 743a 2065 7869 742c 202d 2d20 6578 xit: exit, -- ex │ │ │ │ +002807b0: 6974 2074 6865 2070 726f 6772 616d 0a0a it the program.. │ │ │ │ +002807c0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +002807d0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +002807e0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +002807f0: 7420 2a6e 6f74 6520 7175 6974 3a20 7175 t *note quit: qu │ │ │ │ +00280800: 6974 2c20 6973 2061 202a 6e6f 7465 2063 it, is a *note c │ │ │ │ +00280810: 6f6d 6d61 6e64 3a20 436f 6d6d 616e 642c ommand: Command, │ │ │ │ +00280820: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00280830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280840: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00280850: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00280860: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00280870: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00280880: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00280890: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -002808a0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -002808b0: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ -002808c0: 5f73 7973 7465 6d2e 6d32 3a38 3433 3a30 _system.m2:843:0 │ │ │ │ -002808d0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ -002808e0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ -002808f0: 653a 2077 6169 742c 204e 6578 743a 206c e: wait, Next: l │ │ │ │ -00280900: 696d 6974 4669 6c65 732c 2050 7265 763a imitFiles, Prev: │ │ │ │ -00280910: 2071 7569 742c 2055 703a 2073 7973 7465 quit, Up: syste │ │ │ │ -00280920: 6d20 6661 6369 6c69 7469 6573 0a0a 7761 m facilities..wa │ │ │ │ -00280930: 6974 202d 2d20 7761 6974 2066 6f72 2063 it -- wait for c │ │ │ │ -00280940: 6869 6c64 2070 726f 6365 7373 0a2a 2a2a hild process.*** │ │ │ │ -00280950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00280960: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 ***********..Des │ │ │ │ -00280970: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00280980: 3d3d 3d3d 0a0a 7761 6974 2069 2077 6169 ====..wait i wai │ │ │ │ -00280990: 7473 2066 6f72 2074 6865 2063 6f6d 706c ts for the compl │ │ │ │ -002809a0: 6574 696f 6e20 6f66 2063 6869 6c64 2070 etion of child p │ │ │ │ -002809b0: 726f 6365 7373 2077 6974 6820 7072 6f63 rocess with proc │ │ │ │ -002809c0: 6573 7320 6964 2069 2e0a 7761 6974 2066 ess id i..wait f │ │ │ │ -002809d0: 2077 6169 7473 2066 6f72 2074 6865 2069 waits for the i │ │ │ │ -002809e0: 6e70 7574 2066 696c 6520 746f 2068 6176 nput file to hav │ │ │ │ -002809f0: 6520 736f 6d65 2069 6e70 7574 2072 6561 e some input rea │ │ │ │ -00280a00: 6479 2e0a 7761 6974 2073 2077 6169 7473 dy..wait s waits │ │ │ │ -00280a10: 2066 6f72 2061 7420 6c65 6173 7420 6f6e for at least on │ │ │ │ -00280a20: 6520 6f66 2074 6865 2066 696c 6573 2069 e of the files i │ │ │ │ -00280a30: 6e20 7468 6520 6c69 7374 2073 206f 6620 n the list s of │ │ │ │ -00280a40: 696e 7075 7420 6669 6c65 7320 746f 2062 input files to b │ │ │ │ -00280a50: 650a 7265 6164 792c 2061 6e64 2072 6574 e.ready, and ret │ │ │ │ -00280a60: 7572 6e20 7468 6520 6c69 7374 206f 6620 urn the list of │ │ │ │ -00280a70: 706f 7369 7469 6f6e 7320 636f 7272 6573 positions corres │ │ │ │ -00280a80: 706f 6e64 696e 6720 746f 2072 6561 6479 ponding to ready │ │ │ │ -00280a90: 2066 696c 6573 2e0a 7761 6974 2076 2063 files..wait v c │ │ │ │ -00280aa0: 6865 636b 7320 7768 6574 6865 7220 7468 hecks whether th │ │ │ │ -00280ab0: 6520 7072 6f63 6573 7365 7320 7768 6f73 e processes whos │ │ │ │ -00280ac0: 6520 6964 2773 2061 7265 2069 6e20 7468 e id's are in th │ │ │ │ -00280ad0: 6520 6c69 7374 2076 206f 6620 696e 7465 e list v of inte │ │ │ │ -00280ae0: 6765 7273 0a68 6176 6520 7465 726d 696e gers.have termin │ │ │ │ -00280af0: 6174 6564 2c20 616e 6420 7265 7475 726e ated, and return │ │ │ │ -00280b00: 7320 6120 6c69 7374 2063 6f6e 7461 696e s a list contain │ │ │ │ -00280b10: 696e 6720 7468 6520 7374 6174 7573 2063 ing the status c │ │ │ │ -00280b20: 6f64 6573 2066 6f72 2074 686f 7365 0a70 odes for those.p │ │ │ │ -00280b30: 726f 6365 7373 6573 2074 6861 7420 6861 rocesses that ha │ │ │ │ -00280b40: 7665 2074 6572 6d69 6e61 7465 642e 2020 ve terminated. │ │ │ │ -00280b50: 4120 7661 6c75 6520 6f66 202d 3120 696e A value of -1 in │ │ │ │ -00280b60: 2074 6865 206c 6973 7420 696e 6469 6361 the list indica │ │ │ │ -00280b70: 7465 7320 616e 2065 7272 6f72 0a66 6f72 tes an error.for │ │ │ │ -00280b80: 2074 6861 7420 7072 6f63 6573 7320 6964 that process id │ │ │ │ -00280b90: 2c20 616e 6420 6120 7661 6c75 6520 6f66 , and a value of │ │ │ │ -00280ba0: 202d 3220 696e 2074 6865 206c 6973 7420 -2 in the list │ │ │ │ -00280bb0: 696e 6469 6361 7465 7320 7468 6174 2074 indicates that t │ │ │ │ -00280bc0: 6865 2070 726f 6365 7373 0a69 7320 7374 he process.is st │ │ │ │ -00280bd0: 696c 6c20 7275 6e6e 696e 672e 0a0a 466f ill running...Fo │ │ │ │ -00280be0: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00280bf0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00280c00: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00280c10: 2a6e 6f74 6520 7761 6974 3a20 7761 6974 *note wait: wait │ │ │ │ -00280c20: 2c20 6973 2061 202a 6e6f 7465 2063 6f6d , is a *note com │ │ │ │ -00280c30: 7069 6c65 6420 6675 6e63 7469 6f6e 3a20 piled function: │ │ │ │ -00280c40: 436f 6d70 696c 6564 4675 6e63 7469 6f6e CompiledFunction │ │ │ │ -00280c50: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00280c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280870: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00280880: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00280890: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +002808a0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +002808b0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +002808c0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +002808d0: 2f70 6163 6b61 6765 732f 0a4d 6163 6175 /packages/.Macau │ │ │ │ +002808e0: 6c61 7932 446f 632f 6f76 5f73 7973 7465 lay2Doc/ov_syste │ │ │ │ +002808f0: 6d2e 6d32 3a38 3433 3a30 2e0a 1f0a 4669 m.m2:843:0....Fi │ │ │ │ +00280900: 6c65 3a20 4d61 6361 756c 6179 3244 6f63 le: Macaulay2Doc │ │ │ │ +00280910: 2e69 6e66 6f2c 204e 6f64 653a 2077 6169 .info, Node: wai │ │ │ │ +00280920: 742c 204e 6578 743a 206c 696d 6974 4669 t, Next: limitFi │ │ │ │ +00280930: 6c65 732c 2050 7265 763a 2071 7569 742c les, Prev: quit, │ │ │ │ +00280940: 2055 703a 2073 7973 7465 6d20 6661 6369 Up: system faci │ │ │ │ +00280950: 6c69 7469 6573 0a0a 7761 6974 202d 2d20 lities..wait -- │ │ │ │ +00280960: 7761 6974 2066 6f72 2063 6869 6c64 2070 wait for child p │ │ │ │ +00280970: 726f 6365 7373 0a2a 2a2a 2a2a 2a2a 2a2a rocess.********* │ │ │ │ +00280980: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00280990: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ +002809a0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +002809b0: 7761 6974 2069 2077 6169 7473 2066 6f72 wait i waits for │ │ │ │ +002809c0: 2074 6865 2063 6f6d 706c 6574 696f 6e20 the completion │ │ │ │ +002809d0: 6f66 2063 6869 6c64 2070 726f 6365 7373 of child process │ │ │ │ +002809e0: 2077 6974 6820 7072 6f63 6573 7320 6964 with process id │ │ │ │ +002809f0: 2069 2e0a 7761 6974 2066 2077 6169 7473 i..wait f waits │ │ │ │ +00280a00: 2066 6f72 2074 6865 2069 6e70 7574 2066 for the input f │ │ │ │ +00280a10: 696c 6520 746f 2068 6176 6520 736f 6d65 ile to have some │ │ │ │ +00280a20: 2069 6e70 7574 2072 6561 6479 2e0a 7761 input ready..wa │ │ │ │ +00280a30: 6974 2073 2077 6169 7473 2066 6f72 2061 it s waits for a │ │ │ │ +00280a40: 7420 6c65 6173 7420 6f6e 6520 6f66 2074 t least one of t │ │ │ │ +00280a50: 6865 2066 696c 6573 2069 6e20 7468 6520 he files in the │ │ │ │ +00280a60: 6c69 7374 2073 206f 6620 696e 7075 7420 list s of input │ │ │ │ +00280a70: 6669 6c65 7320 746f 2062 650a 7265 6164 files to be.read │ │ │ │ +00280a80: 792c 2061 6e64 2072 6574 7572 6e20 7468 y, and return th │ │ │ │ +00280a90: 6520 6c69 7374 206f 6620 706f 7369 7469 e list of positi │ │ │ │ +00280aa0: 6f6e 7320 636f 7272 6573 706f 6e64 696e ons correspondin │ │ │ │ +00280ab0: 6720 746f 2072 6561 6479 2066 696c 6573 g to ready files │ │ │ │ +00280ac0: 2e0a 7761 6974 2076 2063 6865 636b 7320 ..wait v checks │ │ │ │ +00280ad0: 7768 6574 6865 7220 7468 6520 7072 6f63 whether the proc │ │ │ │ +00280ae0: 6573 7365 7320 7768 6f73 6520 6964 2773 esses whose id's │ │ │ │ +00280af0: 2061 7265 2069 6e20 7468 6520 6c69 7374 are in the list │ │ │ │ +00280b00: 2076 206f 6620 696e 7465 6765 7273 0a68 v of integers.h │ │ │ │ +00280b10: 6176 6520 7465 726d 696e 6174 6564 2c20 ave terminated, │ │ │ │ +00280b20: 616e 6420 7265 7475 726e 7320 6120 6c69 and returns a li │ │ │ │ +00280b30: 7374 2063 6f6e 7461 696e 696e 6720 7468 st containing th │ │ │ │ +00280b40: 6520 7374 6174 7573 2063 6f64 6573 2066 e status codes f │ │ │ │ +00280b50: 6f72 2074 686f 7365 0a70 726f 6365 7373 or those.process │ │ │ │ +00280b60: 6573 2074 6861 7420 6861 7665 2074 6572 es that have ter │ │ │ │ +00280b70: 6d69 6e61 7465 642e 2020 4120 7661 6c75 minated. A valu │ │ │ │ +00280b80: 6520 6f66 202d 3120 696e 2074 6865 206c e of -1 in the l │ │ │ │ +00280b90: 6973 7420 696e 6469 6361 7465 7320 616e ist indicates an │ │ │ │ +00280ba0: 2065 7272 6f72 0a66 6f72 2074 6861 7420 error.for that │ │ │ │ +00280bb0: 7072 6f63 6573 7320 6964 2c20 616e 6420 process id, and │ │ │ │ +00280bc0: 6120 7661 6c75 6520 6f66 202d 3220 696e a value of -2 in │ │ │ │ +00280bd0: 2074 6865 206c 6973 7420 696e 6469 6361 the list indica │ │ │ │ +00280be0: 7465 7320 7468 6174 2074 6865 2070 726f tes that the pro │ │ │ │ +00280bf0: 6365 7373 0a69 7320 7374 696c 6c20 7275 cess.is still ru │ │ │ │ +00280c00: 6e6e 696e 672e 0a0a 466f 7220 7468 6520 nning...For the │ │ │ │ +00280c10: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00280c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00280c30: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00280c40: 7761 6974 3a20 7761 6974 2c20 6973 2061 wait: wait, is a │ │ │ │ +00280c50: 202a 6e6f 7465 2063 6f6d 7069 6c65 6420 *note compiled │ │ │ │ +00280c60: 6675 6e63 7469 6f6e 3a20 436f 6d70 696c function: Compil │ │ │ │ +00280c70: 6564 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d edFunction,...-- │ │ │ │ 00280c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00280c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280ca0: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -00280cb0: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -00280cc0: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00280cd0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00280ce0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00280cf0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00280d00: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00280d10: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -00280d20: 656d 2e6d 323a 3936 323a 302e 0a1f 0a46 em.m2:962:0....F │ │ │ │ -00280d30: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -00280d40: 632e 696e 666f 2c20 4e6f 6465 3a20 6c69 c.info, Node: li │ │ │ │ -00280d50: 6d69 7446 696c 6573 2c20 4e65 7874 3a20 mitFiles, Next: │ │ │ │ -00280d60: 6c69 6d69 7450 726f 6365 7373 6573 2c20 limitProcesses, │ │ │ │ -00280d70: 5072 6576 3a20 7761 6974 2c20 5570 3a20 Prev: wait, Up: │ │ │ │ -00280d80: 7379 7374 656d 2066 6163 696c 6974 6965 system facilitie │ │ │ │ -00280d90: 730a 0a6c 696d 6974 4669 6c65 730a 2a2a s..limitFiles.** │ │ │ │ -00280da0: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -00280db0: 6167 653a 200a 2020 2020 2020 2020 6c69 age: . li │ │ │ │ -00280dc0: 6d69 7446 696c 6573 206e 0a20 202a 2049 mitFiles n. * I │ │ │ │ -00280dd0: 6e70 7574 733a 0a20 2020 2020 202a 206e nputs:. * n │ │ │ │ -00280de0: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -00280df0: 6572 3a20 5a5a 2c2c 200a 2020 2a20 436f er: ZZ,, . * Co │ │ │ │ -00280e00: 6e73 6571 7565 6e63 6573 3a0a 2020 2020 nsequences:. │ │ │ │ -00280e10: 2020 2a20 7468 6520 6e75 6d62 6572 206f * the number o │ │ │ │ -00280e20: 6620 6f70 656e 2066 696c 6520 6465 7363 f open file desc │ │ │ │ -00280e30: 7269 7074 6f72 7320 666f 7220 7468 6520 riptors for the │ │ │ │ -00280e40: 6375 7272 656e 7420 7072 6f63 6573 7320 current process │ │ │ │ -00280e50: 7769 6c6c 2062 650a 2020 2020 2020 2020 will be. │ │ │ │ -00280e60: 6c69 6d69 7465 6420 746f 206e 0a0a 466f limited to n..Fo │ │ │ │ -00280e70: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00280e80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00280e90: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00280ea0: 2a6e 6f74 6520 6c69 6d69 7446 696c 6573 *note limitFiles │ │ │ │ -00280eb0: 3a20 6c69 6d69 7446 696c 6573 2c20 6973 : limitFiles, is │ │ │ │ -00280ec0: 2061 202a 6e6f 7465 2063 6f6d 7069 6c65 a *note compile │ │ │ │ -00280ed0: 6420 6675 6e63 7469 6f6e 3a0a 436f 6d70 d function:.Comp │ │ │ │ -00280ee0: 696c 6564 4675 6e63 7469 6f6e 2c2e 0a0a iledFunction,... │ │ │ │ -00280ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00280cd0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00280ce0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00280cf0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00280d00: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00280d10: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00280d20: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00280d30: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +00280d40: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ +00280d50: 3936 323a 302e 0a1f 0a46 696c 653a 204d 962:0....File: M │ │ │ │ +00280d60: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +00280d70: 2c20 4e6f 6465 3a20 6c69 6d69 7446 696c , Node: limitFil │ │ │ │ +00280d80: 6573 2c20 4e65 7874 3a20 6c69 6d69 7450 es, Next: limitP │ │ │ │ +00280d90: 726f 6365 7373 6573 2c20 5072 6576 3a20 rocesses, Prev: │ │ │ │ +00280da0: 7761 6974 2c20 5570 3a20 7379 7374 656d wait, Up: system │ │ │ │ +00280db0: 2066 6163 696c 6974 6965 730a 0a6c 696d facilities..lim │ │ │ │ +00280dc0: 6974 4669 6c65 730a 2a2a 2a2a 2a2a 2a2a itFiles.******** │ │ │ │ +00280dd0: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00280de0: 2020 2020 2020 2020 6c69 6d69 7446 696c limitFil │ │ │ │ +00280df0: 6573 206e 0a20 202a 2049 6e70 7574 733a es n. * Inputs: │ │ │ │ +00280e00: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ +00280e10: 6e6f 7465 2069 6e74 6567 6572 3a20 5a5a note integer: ZZ │ │ │ │ +00280e20: 2c2c 200a 2020 2a20 436f 6e73 6571 7565 ,, . * Conseque │ │ │ │ +00280e30: 6e63 6573 3a0a 2020 2020 2020 2a20 7468 nces:. * th │ │ │ │ +00280e40: 6520 6e75 6d62 6572 206f 6620 6f70 656e e number of open │ │ │ │ +00280e50: 2066 696c 6520 6465 7363 7269 7074 6f72 file descriptor │ │ │ │ +00280e60: 7320 666f 7220 7468 6520 6375 7272 656e s for the curren │ │ │ │ +00280e70: 7420 7072 6f63 6573 7320 7769 6c6c 2062 t process will b │ │ │ │ +00280e80: 650a 2020 2020 2020 2020 6c69 6d69 7465 e. limite │ │ │ │ +00280e90: 6420 746f 206e 0a0a 466f 7220 7468 6520 d to n..For the │ │ │ │ +00280ea0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00280eb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00280ec0: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00280ed0: 6c69 6d69 7446 696c 6573 3a20 6c69 6d69 limitFiles: limi │ │ │ │ +00280ee0: 7446 696c 6573 2c20 6973 2061 202a 6e6f tFiles, is a *no │ │ │ │ +00280ef0: 7465 2063 6f6d 7069 6c65 6420 6675 6e63 te compiled func │ │ │ │ +00280f00: 7469 6f6e 3a0a 436f 6d70 696c 6564 4675 tion:.CompiledFu │ │ │ │ +00280f10: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ 00280f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00280f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00280f40: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00280f50: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00280f60: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00280f70: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00280f80: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00280f90: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -00280fa0: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -00280fb0: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ -00280fc0: 323a 3231 3135 3a30 2e0a 1f0a 4669 6c65 2:2115:0....File │ │ │ │ -00280fd0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ -00280fe0: 6e66 6f2c 204e 6f64 653a 206c 696d 6974 nfo, Node: limit │ │ │ │ -00280ff0: 5072 6f63 6573 7365 732c 204e 6578 743a Processes, Next: │ │ │ │ -00281000: 2063 6f6d 6d61 6e64 4c69 6e65 2c20 5072 commandLine, Pr │ │ │ │ -00281010: 6576 3a20 6c69 6d69 7446 696c 6573 2c20 ev: limitFiles, │ │ │ │ -00281020: 5570 3a20 7379 7374 656d 2066 6163 696c Up: system facil │ │ │ │ -00281030: 6974 6965 730a 0a6c 696d 6974 5072 6f63 ities..limitProc │ │ │ │ -00281040: 6573 7365 730a 2a2a 2a2a 2a2a 2a2a 2a2a esses.********** │ │ │ │ -00281050: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ -00281060: 200a 2020 2020 2020 2020 6c69 6d69 7450 . limitP │ │ │ │ -00281070: 726f 6365 7373 6573 206e 0a20 202a 2049 rocesses n. * I │ │ │ │ -00281080: 6e70 7574 733a 0a20 2020 2020 202a 206e nputs:. * n │ │ │ │ -00281090: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -002810a0: 6572 3a20 5a5a 2c2c 200a 2020 2a20 436f er: ZZ,, . * Co │ │ │ │ -002810b0: 6e73 6571 7565 6e63 6573 3a0a 2020 2020 nsequences:. │ │ │ │ -002810c0: 2020 2a20 7468 6520 6e75 6d62 6572 206f * the number o │ │ │ │ -002810d0: 6620 7369 6d75 6c74 616e 656f 7573 2070 f simultaneous p │ │ │ │ -002810e0: 726f 6365 7373 6573 2066 6f72 2074 6865 rocesses for the │ │ │ │ -002810f0: 2063 7572 7265 6e74 2075 7365 7220 7769 current user wi │ │ │ │ -00281100: 6c6c 2062 650a 2020 2020 2020 2020 6c69 ll be. li │ │ │ │ -00281110: 6d69 7465 6420 746f 206e 0a0a 466f 7220 mited to n..For │ │ │ │ -00281120: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00281130: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00281140: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00281150: 6f74 6520 6c69 6d69 7450 726f 6365 7373 ote limitProcess │ │ │ │ -00281160: 6573 3a20 6c69 6d69 7450 726f 6365 7373 es: limitProcess │ │ │ │ -00281170: 6573 2c20 6973 2061 202a 6e6f 7465 2063 es, is a *note c │ │ │ │ -00281180: 6f6d 7069 6c65 6420 6675 6e63 7469 6f6e ompiled function │ │ │ │ -00281190: 3a0a 436f 6d70 696c 6564 4675 6e63 7469 :.CompiledFuncti │ │ │ │ -002811a0: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ -002811b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002811c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00280f60: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00280f70: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00280f80: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00280f90: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00280fa0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00280fb0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00280fc0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00280fd0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +00280fe0: 765f 7379 7374 656d 2e6d 323a 3231 3135 v_system.m2:2115 │ │ │ │ +00280ff0: 3a30 2e0a 1f0a 4669 6c65 3a20 4d61 6361 :0....File: Maca │ │ │ │ +00281000: 756c 6179 3244 6f63 2e69 6e66 6f2c 204e ulay2Doc.info, N │ │ │ │ +00281010: 6f64 653a 206c 696d 6974 5072 6f63 6573 ode: limitProces │ │ │ │ +00281020: 7365 732c 204e 6578 743a 2063 6f6d 6d61 ses, Next: comma │ │ │ │ +00281030: 6e64 4c69 6e65 2c20 5072 6576 3a20 6c69 ndLine, Prev: li │ │ │ │ +00281040: 6d69 7446 696c 6573 2c20 5570 3a20 7379 mitFiles, Up: sy │ │ │ │ +00281050: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ +00281060: 0a6c 696d 6974 5072 6f63 6573 7365 730a .limitProcesses. │ │ │ │ +00281070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00281080: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00281090: 2020 2020 6c69 6d69 7450 726f 6365 7373 limitProcess │ │ │ │ +002810a0: 6573 206e 0a20 202a 2049 6e70 7574 733a es n. * Inputs: │ │ │ │ +002810b0: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ +002810c0: 6e6f 7465 2069 6e74 6567 6572 3a20 5a5a note integer: ZZ │ │ │ │ +002810d0: 2c2c 200a 2020 2a20 436f 6e73 6571 7565 ,, . * Conseque │ │ │ │ +002810e0: 6e63 6573 3a0a 2020 2020 2020 2a20 7468 nces:. * th │ │ │ │ +002810f0: 6520 6e75 6d62 6572 206f 6620 7369 6d75 e number of simu │ │ │ │ +00281100: 6c74 616e 656f 7573 2070 726f 6365 7373 ltaneous process │ │ │ │ +00281110: 6573 2066 6f72 2074 6865 2063 7572 7265 es for the curre │ │ │ │ +00281120: 6e74 2075 7365 7220 7769 6c6c 2062 650a nt user will be. │ │ │ │ +00281130: 2020 2020 2020 2020 6c69 6d69 7465 6420 limited │ │ │ │ +00281140: 746f 206e 0a0a 466f 7220 7468 6520 7072 to n..For the pr │ │ │ │ +00281150: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00281160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00281170: 206f 626a 6563 7420 2a6e 6f74 6520 6c69 object *note li │ │ │ │ +00281180: 6d69 7450 726f 6365 7373 6573 3a20 6c69 mitProcesses: li │ │ │ │ +00281190: 6d69 7450 726f 6365 7373 6573 2c20 6973 mitProcesses, is │ │ │ │ +002811a0: 2061 202a 6e6f 7465 2063 6f6d 7069 6c65 a *note compile │ │ │ │ +002811b0: 6420 6675 6e63 7469 6f6e 3a0a 436f 6d70 d function:.Comp │ │ │ │ +002811c0: 696c 6564 4675 6e63 7469 6f6e 2c2e 0a0a iledFunction,... │ │ │ │ 002811d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 002811e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002811f0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00281200: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00281210: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00281220: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00281230: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00281240: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00281250: 6179 322f 7061 636b 6167 6573 2f0a 4d61 ay2/packages/.Ma │ │ │ │ -00281260: 6361 756c 6179 3244 6f63 2f6f 765f 7379 caulay2Doc/ov_sy │ │ │ │ -00281270: 7374 656d 2e6d 323a 3231 3135 3a30 2e0a stem.m2:2115:0.. │ │ │ │ -00281280: 1f0a 4669 6c65 3a20 4d61 6361 756c 6179 ..File: Macaulay │ │ │ │ -00281290: 3244 6f63 2e69 6e66 6f2c 204e 6f64 653a 2Doc.info, Node: │ │ │ │ -002812a0: 2063 6f6d 6d61 6e64 4c69 6e65 2c20 4e65 commandLine, Ne │ │ │ │ -002812b0: 7874 3a20 7363 7269 7074 436f 6d6d 616e xt: scriptComman │ │ │ │ -002812c0: 644c 696e 652c 2050 7265 763a 206c 696d dLine, Prev: lim │ │ │ │ -002812d0: 6974 5072 6f63 6573 7365 732c 2055 703a itProcesses, Up: │ │ │ │ -002812e0: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ -002812f0: 6573 0a0a 636f 6d6d 616e 644c 696e 6520 es..commandLine │ │ │ │ -00281300: 2d2d 2074 6865 2063 6f6d 6d61 6e64 206c -- the command l │ │ │ │ -00281310: 696e 6520 6172 6775 6d65 6e74 730a 2a2a ine arguments.** │ │ │ │ -00281320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281340: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00281350: 6765 3a20 0a20 2020 2020 2020 2063 6f6d ge: . com │ │ │ │ -00281360: 6d61 6e64 4c69 6e65 0a0a 4465 7363 7269 mandLine..Descri │ │ │ │ -00281370: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00281380: 3d0a 0a41 2063 6f6e 7374 616e 7420 7768 =..A constant wh │ │ │ │ -00281390: 6f73 6520 7661 6c75 6520 6973 2074 6865 ose value is the │ │ │ │ -002813a0: 206c 6973 7420 6f66 2061 7267 756d 656e list of argumen │ │ │ │ -002813b0: 7473 2070 6173 7365 6420 746f 2074 6865 ts passed to the │ │ │ │ -002813c0: 2069 6e74 6572 7072 6574 6572 2c0a 696e interpreter,.in │ │ │ │ -002813d0: 636c 7564 696e 6720 6172 6775 6d65 6e74 cluding argument │ │ │ │ -002813e0: 2030 2c20 7468 6520 6e61 6d65 206f 6620 0, the name of │ │ │ │ -002813f0: 7468 6520 7072 6f67 7261 6d2e 0a0a 5365 the program...Se │ │ │ │ -00281400: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00281410: 0a20 202a 202a 6e6f 7465 2073 6372 6970 . * *note scrip │ │ │ │ -00281420: 7443 6f6d 6d61 6e64 4c69 6e65 3a20 7363 tCommandLine: sc │ │ │ │ -00281430: 7269 7074 436f 6d6d 616e 644c 696e 652c riptCommandLine, │ │ │ │ -00281440: 202d 2d20 7468 6520 636f 6d6d 616e 6420 -- the command │ │ │ │ -00281450: 6c69 6e65 2061 7267 756d 656e 7473 0a20 line arguments. │ │ │ │ -00281460: 2020 2074 6f20 6265 2075 7365 6420 7768 to be used wh │ │ │ │ -00281470: 656e 2072 756e 6e69 6e67 2061 2073 6372 en running a scr │ │ │ │ -00281480: 6970 740a 0a46 6f72 2074 6865 2070 726f ipt..For the pro │ │ │ │ -00281490: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -002814a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -002814b0: 6f62 6a65 6374 202a 6e6f 7465 2063 6f6d object *note com │ │ │ │ -002814c0: 6d61 6e64 4c69 6e65 3a20 636f 6d6d 616e mandLine: comman │ │ │ │ -002814d0: 644c 696e 652c 2069 7320 6120 2a6e 6f74 dLine, is a *not │ │ │ │ -002814e0: 6520 6c69 7374 3a20 4c69 7374 2c2e 0a0a e list: List,... │ │ │ │ -002814f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002811f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +00281220: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +00281230: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +00281240: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +00281250: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +00281260: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +00281270: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00281280: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ +00281290: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ +002812a0: 323a 3231 3135 3a30 2e0a 1f0a 4669 6c65 2:2115:0....File │ │ │ │ +002812b0: 3a20 4d61 6361 756c 6179 3244 6f63 2e69 : Macaulay2Doc.i │ │ │ │ +002812c0: 6e66 6f2c 204e 6f64 653a 2063 6f6d 6d61 nfo, Node: comma │ │ │ │ +002812d0: 6e64 4c69 6e65 2c20 4e65 7874 3a20 7363 ndLine, Next: sc │ │ │ │ +002812e0: 7269 7074 436f 6d6d 616e 644c 696e 652c riptCommandLine, │ │ │ │ +002812f0: 2050 7265 763a 206c 696d 6974 5072 6f63 Prev: limitProc │ │ │ │ +00281300: 6573 7365 732c 2055 703a 2073 7973 7465 esses, Up: syste │ │ │ │ +00281310: 6d20 6661 6369 6c69 7469 6573 0a0a 636f m facilities..co │ │ │ │ +00281320: 6d6d 616e 644c 696e 6520 2d2d 2074 6865 mmandLine -- the │ │ │ │ +00281330: 2063 6f6d 6d61 6e64 206c 696e 6520 6172 command line ar │ │ │ │ +00281340: 6775 6d65 6e74 730a 2a2a 2a2a 2a2a 2a2a guments.******** │ │ │ │ +00281350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281360: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281370: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00281380: 2020 2020 2020 2063 6f6d 6d61 6e64 4c69 commandLi │ │ │ │ +00281390: 6e65 0a0a 4465 7363 7269 7074 696f 6e0a ne..Description. │ │ │ │ +002813a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 2063 ===========..A c │ │ │ │ +002813b0: 6f6e 7374 616e 7420 7768 6f73 6520 7661 onstant whose va │ │ │ │ +002813c0: 6c75 6520 6973 2074 6865 206c 6973 7420 lue is the list │ │ │ │ +002813d0: 6f66 2061 7267 756d 656e 7473 2070 6173 of arguments pas │ │ │ │ +002813e0: 7365 6420 746f 2074 6865 2069 6e74 6572 sed to the inter │ │ │ │ +002813f0: 7072 6574 6572 2c0a 696e 636c 7564 696e preter,.includin │ │ │ │ +00281400: 6720 6172 6775 6d65 6e74 2030 2c20 7468 g argument 0, th │ │ │ │ +00281410: 6520 6e61 6d65 206f 6620 7468 6520 7072 e name of the pr │ │ │ │ +00281420: 6f67 7261 6d2e 0a0a 5365 6520 616c 736f ogram...See also │ │ │ │ +00281430: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00281440: 6e6f 7465 2073 6372 6970 7443 6f6d 6d61 note scriptComma │ │ │ │ +00281450: 6e64 4c69 6e65 3a20 7363 7269 7074 436f ndLine: scriptCo │ │ │ │ +00281460: 6d6d 616e 644c 696e 652c 202d 2d20 7468 mmandLine, -- th │ │ │ │ +00281470: 6520 636f 6d6d 616e 6420 6c69 6e65 2061 e command line a │ │ │ │ +00281480: 7267 756d 656e 7473 0a20 2020 2074 6f20 rguments. to │ │ │ │ +00281490: 6265 2075 7365 6420 7768 656e 2072 756e be used when run │ │ │ │ +002814a0: 6e69 6e67 2061 2073 6372 6970 740a 0a46 ning a script..F │ │ │ │ +002814b0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +002814c0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +002814d0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +002814e0: 202a 6e6f 7465 2063 6f6d 6d61 6e64 4c69 *note commandLi │ │ │ │ +002814f0: 6e65 3a20 636f 6d6d 616e 644c 696e 652c ne: commandLine, │ │ │ │ +00281500: 2069 7320 6120 2a6e 6f74 6520 6c69 7374 is a *note list │ │ │ │ +00281510: 3a20 4c69 7374 2c2e 0a0a 2d2d 2d2d 2d2d : List,...------ │ │ │ │ 00281520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00281540: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00281550: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00281560: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00281570: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00281580: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00281590: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -002815a0: 636b 6167 6573 2f0a 4d61 6361 756c 6179 ckages/.Macaulay │ │ │ │ -002815b0: 3244 6f63 2f6f 765f 7379 7374 656d 2e6d 2Doc/ov_system.m │ │ │ │ -002815c0: 323a 3937 313a 302e 0a1f 0a46 696c 653a 2:971:0....File: │ │ │ │ -002815d0: 204d 6163 6175 6c61 7932 446f 632e 696e Macaulay2Doc.in │ │ │ │ -002815e0: 666f 2c20 4e6f 6465 3a20 7363 7269 7074 fo, Node: script │ │ │ │ -002815f0: 436f 6d6d 616e 644c 696e 652c 204e 6578 CommandLine, Nex │ │ │ │ -00281600: 743a 2065 6e76 6972 6f6e 6d65 6e74 2c20 t: environment, │ │ │ │ -00281610: 5072 6576 3a20 636f 6d6d 616e 644c 696e Prev: commandLin │ │ │ │ -00281620: 652c 2055 703a 2073 7973 7465 6d20 6661 e, Up: system fa │ │ │ │ -00281630: 6369 6c69 7469 6573 0a0a 7363 7269 7074 cilities..script │ │ │ │ -00281640: 436f 6d6d 616e 644c 696e 6520 2d2d 2074 CommandLine -- t │ │ │ │ -00281650: 6865 2063 6f6d 6d61 6e64 206c 696e 6520 he command line │ │ │ │ -00281660: 6172 6775 6d65 6e74 7320 746f 2062 6520 arguments to be │ │ │ │ -00281670: 7573 6564 2077 6865 6e20 7275 6e6e 696e used when runnin │ │ │ │ -00281680: 6720 6120 7363 7269 7074 0a2a 2a2a 2a2a g a script.***** │ │ │ │ -00281690: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002816a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002816b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281560: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00281570: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00281580: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00281590: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +002815a0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +002815b0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +002815c0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +002815d0: 2f0a 4d61 6361 756c 6179 3244 6f63 2f6f /.Macaulay2Doc/o │ │ │ │ +002815e0: 765f 7379 7374 656d 2e6d 323a 3937 313a v_system.m2:971: │ │ │ │ +002815f0: 302e 0a1f 0a46 696c 653a 204d 6163 6175 0....File: Macau │ │ │ │ +00281600: 6c61 7932 446f 632e 696e 666f 2c20 4e6f lay2Doc.info, No │ │ │ │ +00281610: 6465 3a20 7363 7269 7074 436f 6d6d 616e de: scriptComman │ │ │ │ +00281620: 644c 696e 652c 204e 6578 743a 2065 6e76 dLine, Next: env │ │ │ │ +00281630: 6972 6f6e 6d65 6e74 2c20 5072 6576 3a20 ironment, Prev: │ │ │ │ +00281640: 636f 6d6d 616e 644c 696e 652c 2055 703a commandLine, Up: │ │ │ │ +00281650: 2073 7973 7465 6d20 6661 6369 6c69 7469 system faciliti │ │ │ │ +00281660: 6573 0a0a 7363 7269 7074 436f 6d6d 616e es..scriptComman │ │ │ │ +00281670: 644c 696e 6520 2d2d 2074 6865 2063 6f6d dLine -- the com │ │ │ │ +00281680: 6d61 6e64 206c 696e 6520 6172 6775 6d65 mand line argume │ │ │ │ +00281690: 6e74 7320 746f 2062 6520 7573 6564 2077 nts to be used w │ │ │ │ +002816a0: 6865 6e20 7275 6e6e 696e 6720 6120 7363 hen running a sc │ │ │ │ +002816b0: 7269 7074 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ript.*********** │ │ │ │ 002816c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -002816d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -002816e0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -002816f0: 2073 6372 6970 7443 6f6d 6d61 6e64 4c69 scriptCommandLi │ │ │ │ -00281700: 6e65 0a0a 4465 7363 7269 7074 696f 6e0a ne..Description. │ │ │ │ -00281710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 2063 ===========..A c │ │ │ │ -00281720: 6f6e 7374 616e 7420 7768 6f73 6520 7661 onstant whose va │ │ │ │ -00281730: 6c75 6520 6973 2074 6865 206c 6973 7420 lue is the list │ │ │ │ -00281740: 6f66 2061 7267 756d 656e 7473 2070 6173 of arguments pas │ │ │ │ -00281750: 7365 6420 746f 2074 6865 2069 6e74 6572 sed to the inter │ │ │ │ -00281760: 7072 6574 6572 2077 6865 6e0a 6120 7363 preter when.a sc │ │ │ │ -00281770: 7269 7074 2069 7320 7374 6172 7465 642c ript is started, │ │ │ │ -00281780: 2065 7863 6c75 6469 6e67 2061 7267 756d excluding argum │ │ │ │ -00281790: 656e 7420 302c 2074 6865 206e 616d 6520 ent 0, the name │ │ │ │ -002817a0: 6f66 2074 6865 2070 726f 6772 616d 2c20 of the program, │ │ │ │ -002817b0: 616e 640a 6578 636c 7564 696e 6720 6172 and.excluding ar │ │ │ │ -002817c0: 6775 6d65 6e74 2031 2c20 7468 6520 6f70 gument 1, the op │ │ │ │ -002817d0: 7469 6f6e 2022 2d2d 7363 7269 7074 222e tion "--script". │ │ │ │ -002817e0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -002817f0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2063 ===.. * *note c │ │ │ │ -00281800: 6f6d 6d61 6e64 4c69 6e65 3a20 636f 6d6d ommandLine: comm │ │ │ │ -00281810: 616e 644c 696e 652c 202d 2d20 7468 6520 andLine, -- the │ │ │ │ -00281820: 636f 6d6d 616e 6420 6c69 6e65 2061 7267 command line arg │ │ │ │ -00281830: 756d 656e 7473 0a0a 466f 7220 7468 6520 uments..For the │ │ │ │ -00281840: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -00281850: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -00281860: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -00281870: 7363 7269 7074 436f 6d6d 616e 644c 696e scriptCommandLin │ │ │ │ -00281880: 653a 2073 6372 6970 7443 6f6d 6d61 6e64 e: scriptCommand │ │ │ │ -00281890: 4c69 6e65 2c20 6973 2061 202a 6e6f 7465 Line, is a *note │ │ │ │ -002818a0: 206c 6973 743a 204c 6973 742c 2e0a 0a2d list: List,...- │ │ │ │ -002818b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002818c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002818d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002816d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002816e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +002816f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281700: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ +00281710: 3a20 0a20 2020 2020 2020 2073 6372 6970 : . scrip │ │ │ │ +00281720: 7443 6f6d 6d61 6e64 4c69 6e65 0a0a 4465 tCommandLine..De │ │ │ │ +00281730: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00281740: 3d3d 3d3d 3d0a 0a41 2063 6f6e 7374 616e =====..A constan │ │ │ │ +00281750: 7420 7768 6f73 6520 7661 6c75 6520 6973 t whose value is │ │ │ │ +00281760: 2074 6865 206c 6973 7420 6f66 2061 7267 the list of arg │ │ │ │ +00281770: 756d 656e 7473 2070 6173 7365 6420 746f uments passed to │ │ │ │ +00281780: 2074 6865 2069 6e74 6572 7072 6574 6572 the interpreter │ │ │ │ +00281790: 2077 6865 6e0a 6120 7363 7269 7074 2069 when.a script i │ │ │ │ +002817a0: 7320 7374 6172 7465 642c 2065 7863 6c75 s started, exclu │ │ │ │ +002817b0: 6469 6e67 2061 7267 756d 656e 7420 302c ding argument 0, │ │ │ │ +002817c0: 2074 6865 206e 616d 6520 6f66 2074 6865 the name of the │ │ │ │ +002817d0: 2070 726f 6772 616d 2c20 616e 640a 6578 program, and.ex │ │ │ │ +002817e0: 636c 7564 696e 6720 6172 6775 6d65 6e74 cluding argument │ │ │ │ +002817f0: 2031 2c20 7468 6520 6f70 7469 6f6e 2022 1, the option " │ │ │ │ +00281800: 2d2d 7363 7269 7074 222e 0a0a 5365 6520 --script"...See │ │ │ │ +00281810: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +00281820: 202a 202a 6e6f 7465 2063 6f6d 6d61 6e64 * *note command │ │ │ │ +00281830: 4c69 6e65 3a20 636f 6d6d 616e 644c 696e Line: commandLin │ │ │ │ +00281840: 652c 202d 2d20 7468 6520 636f 6d6d 616e e, -- the comman │ │ │ │ +00281850: 6420 6c69 6e65 2061 7267 756d 656e 7473 d line arguments │ │ │ │ +00281860: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +00281870: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +00281880: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +00281890: 6563 7420 2a6e 6f74 6520 7363 7269 7074 ect *note script │ │ │ │ +002818a0: 436f 6d6d 616e 644c 696e 653a 2073 6372 CommandLine: scr │ │ │ │ +002818b0: 6970 7443 6f6d 6d61 6e64 4c69 6e65 2c20 iptCommandLine, │ │ │ │ +002818c0: 6973 2061 202a 6e6f 7465 206c 6973 743a is a *note list: │ │ │ │ +002818d0: 204c 6973 742c 2e0a 0a2d 2d2d 2d2d 2d2d List,...------- │ │ │ │ 002818e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002818f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00281900: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00281910: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00281920: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00281930: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00281940: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00281950: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00281960: 6b61 6765 732f 0a4d 6163 6175 6c61 7932 kages/.Macaulay2 │ │ │ │ -00281970: 446f 632f 6f76 5f73 7973 7465 6d2e 6d32 Doc/ov_system.m2 │ │ │ │ -00281980: 3a39 3830 3a30 2e0a 1f0a 4669 6c65 3a20 :980:0....File: │ │ │ │ -00281990: 4d61 6361 756c 6179 3244 6f63 2e69 6e66 Macaulay2Doc.inf │ │ │ │ -002819a0: 6f2c 204e 6f64 653a 2065 6e76 6972 6f6e o, Node: environ │ │ │ │ -002819b0: 6d65 6e74 2c20 4e65 7874 3a20 7665 7273 ment, Next: vers │ │ │ │ -002819c0: 696f 6e2c 2050 7265 763a 2073 6372 6970 ion, Prev: scrip │ │ │ │ -002819d0: 7443 6f6d 6d61 6e64 4c69 6e65 2c20 5570 tCommandLine, Up │ │ │ │ -002819e0: 3a20 7379 7374 656d 2066 6163 696c 6974 : system facilit │ │ │ │ -002819f0: 6965 730a 0a65 6e76 6972 6f6e 6d65 6e74 ies..environment │ │ │ │ -00281a00: 202d 2d20 7468 6520 656e 7669 726f 6e6d -- the environm │ │ │ │ -00281a10: 656e 7420 7661 7269 6162 6c65 730a 2a2a ent variables.** │ │ │ │ -00281a20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281a30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281a40: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -00281a50: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -00281a60: 0a41 2063 6f6e 7374 616e 7420 7768 6f73 .A constant whos │ │ │ │ -00281a70: 6520 7661 6c75 6520 6973 2074 6865 206c e value is the l │ │ │ │ -00281a80: 6973 7420 636f 6e74 6169 6e69 6e67 2074 ist containing t │ │ │ │ -00281a90: 6865 2065 6e76 6972 6f6e 6d65 6e74 2073 he environment s │ │ │ │ -00281aa0: 7472 696e 6773 2066 6f72 2074 6865 0a70 trings for the.p │ │ │ │ -00281ab0: 726f 6365 7373 2e0a 0a46 6f72 2074 6865 rocess...For the │ │ │ │ -00281ac0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00281ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00281ae0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00281af0: 2065 6e76 6972 6f6e 6d65 6e74 3a20 656e environment: en │ │ │ │ -00281b00: 7669 726f 6e6d 656e 742c 2069 7320 6120 vironment, is a │ │ │ │ -00281b10: 2a6e 6f74 6520 6c69 7374 3a20 4c69 7374 *note list: List │ │ │ │ -00281b20: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ -00281b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +002818f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281920: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00281930: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00281940: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00281950: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00281960: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00281970: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00281980: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00281990: 0a4d 6163 6175 6c61 7932 446f 632f 6f76 .Macaulay2Doc/ov │ │ │ │ +002819a0: 5f73 7973 7465 6d2e 6d32 3a39 3830 3a30 _system.m2:980:0 │ │ │ │ +002819b0: 2e0a 1f0a 4669 6c65 3a20 4d61 6361 756c ....File: Macaul │ │ │ │ +002819c0: 6179 3244 6f63 2e69 6e66 6f2c 204e 6f64 ay2Doc.info, Nod │ │ │ │ +002819d0: 653a 2065 6e76 6972 6f6e 6d65 6e74 2c20 e: environment, │ │ │ │ +002819e0: 4e65 7874 3a20 7665 7273 696f 6e2c 2050 Next: version, P │ │ │ │ +002819f0: 7265 763a 2073 6372 6970 7443 6f6d 6d61 rev: scriptComma │ │ │ │ +00281a00: 6e64 4c69 6e65 2c20 5570 3a20 7379 7374 ndLine, Up: syst │ │ │ │ +00281a10: 656d 2066 6163 696c 6974 6965 730a 0a65 em facilities..e │ │ │ │ +00281a20: 6e76 6972 6f6e 6d65 6e74 202d 2d20 7468 nvironment -- th │ │ │ │ +00281a30: 6520 656e 7669 726f 6e6d 656e 7420 7661 e environment va │ │ │ │ +00281a40: 7269 6162 6c65 730a 2a2a 2a2a 2a2a 2a2a riables.******** │ │ │ │ +00281a50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281a60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281a70: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00281a80: 3d3d 3d3d 3d3d 3d3d 3d0a 0a41 2063 6f6e =========..A con │ │ │ │ +00281a90: 7374 616e 7420 7768 6f73 6520 7661 6c75 stant whose valu │ │ │ │ +00281aa0: 6520 6973 2074 6865 206c 6973 7420 636f e is the list co │ │ │ │ +00281ab0: 6e74 6169 6e69 6e67 2074 6865 2065 6e76 ntaining the env │ │ │ │ +00281ac0: 6972 6f6e 6d65 6e74 2073 7472 696e 6773 ironment strings │ │ │ │ +00281ad0: 2066 6f72 2074 6865 0a70 726f 6365 7373 for the.process │ │ │ │ +00281ae0: 2e0a 0a46 6f72 2074 6865 2070 726f 6772 ...For the progr │ │ │ │ +00281af0: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00281b00: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00281b10: 6a65 6374 202a 6e6f 7465 2065 6e76 6972 ject *note envir │ │ │ │ +00281b20: 6f6e 6d65 6e74 3a20 656e 7669 726f 6e6d onment: environm │ │ │ │ +00281b30: 656e 742c 2069 7320 6120 2a6e 6f74 6520 ent, is a *note │ │ │ │ +00281b40: 6c69 7374 3a20 4c69 7374 2c2e 0a0a 2d2d list: List,...-- │ │ │ │ 00281b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00281b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281b70: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ -00281b80: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ -00281b90: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ -00281ba0: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ -00281bb0: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ -00281bc0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ -00281bd0: 322f 7061 636b 6167 6573 2f0a 4d61 6361 2/packages/.Maca │ │ │ │ -00281be0: 756c 6179 3244 6f63 2f6f 765f 7379 7374 ulay2Doc/ov_syst │ │ │ │ -00281bf0: 656d 2e6d 323a 3938 363a 302e 0a1f 0a46 em.m2:986:0....F │ │ │ │ -00281c00: 696c 653a 204d 6163 6175 6c61 7932 446f ile: Macaulay2Do │ │ │ │ -00281c10: 632e 696e 666f 2c20 4e6f 6465 3a20 7665 c.info, Node: ve │ │ │ │ -00281c20: 7273 696f 6e2c 204e 6578 743a 2044 6174 rsion, Next: Dat │ │ │ │ -00281c30: 6162 6173 652c 2050 7265 763a 2065 6e76 abase, Prev: env │ │ │ │ -00281c40: 6972 6f6e 6d65 6e74 2c20 5570 3a20 7379 ironment, Up: sy │ │ │ │ -00281c50: 7374 656d 2066 6163 696c 6974 6965 730a stem facilities. │ │ │ │ -00281c60: 0a76 6572 7369 6f6e 202d 2d20 696e 666f .version -- info │ │ │ │ -00281c70: 726d 6174 696f 6e20 6162 6f75 7420 7468 rmation about th │ │ │ │ -00281c80: 6973 2076 6572 7369 6f6e 206f 6620 7468 is version of th │ │ │ │ -00281c90: 6520 7072 6f67 7261 6d0a 2a2a 2a2a 2a2a e program.****** │ │ │ │ -00281ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00281cd0: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -00281ce0: 2020 2020 2020 2020 7665 7273 696f 6e0a version. │ │ │ │ -00281cf0: 2020 2a20 436f 6e73 6571 7565 6e63 6573 * Consequences │ │ │ │ -00281d00: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -00281d10: 6520 6861 7368 2074 6162 6c65 3a20 4861 e hash table: Ha │ │ │ │ -00281d20: 7368 5461 626c 652c 2064 6573 6372 6962 shTable, describ │ │ │ │ -00281d30: 696e 6720 7468 6973 2076 6572 7369 6f6e ing this version │ │ │ │ -00281d40: 206f 6620 7468 6520 7072 6f67 7261 6d0a of the program. │ │ │ │ -00281d50: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00281d60: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 7661 ========..The va │ │ │ │ -00281d70: 6c75 6573 2073 746f 7265 6420 696e 2074 lues stored in t │ │ │ │ -00281d80: 6869 7320 6861 7368 2074 6162 6c65 2064 his hash table d │ │ │ │ -00281d90: 6570 656e 6420 6f6e 2074 6865 2073 6f75 epend on the sou │ │ │ │ -00281da0: 7263 6520 636f 6465 2076 6572 7369 6f6e rce code version │ │ │ │ -00281db0: 2074 6865 0a61 7263 6869 7465 6374 7572 the.architectur │ │ │ │ -00281dc0: 6520 666f 7220 7768 6963 6820 7468 6520 e for which the │ │ │ │ -00281dd0: 7072 6f67 7261 6d20 7761 7320 636f 6d70 program was comp │ │ │ │ -00281de0: 696c 6564 2c20 616e 6420 7468 6520 6c69 iled, and the li │ │ │ │ -00281df0: 6272 6172 6965 7320 2862 6f74 6820 7374 braries (both st │ │ │ │ -00281e00: 6174 6963 0a61 6e64 2064 796e 616d 6963 atic.and dynamic │ │ │ │ -00281e10: 2920 6167 6169 6e73 7420 7768 6963 6820 ) against which │ │ │ │ -00281e20: 7468 6520 7072 6f67 7261 6d20 6973 206c the program is l │ │ │ │ -00281e30: 696e 6b65 642e 0a2b 2d2d 2d2d 2d2d 2d2d inked..+-------- │ │ │ │ -00281e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00281ba0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00281bb0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00281bc0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00281bd0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00281be0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00281bf0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00281c00: 6167 6573 2f0a 4d61 6361 756c 6179 3244 ages/.Macaulay2D │ │ │ │ +00281c10: 6f63 2f6f 765f 7379 7374 656d 2e6d 323a oc/ov_system.m2: │ │ │ │ +00281c20: 3938 363a 302e 0a1f 0a46 696c 653a 204d 986:0....File: M │ │ │ │ +00281c30: 6163 6175 6c61 7932 446f 632e 696e 666f acaulay2Doc.info │ │ │ │ +00281c40: 2c20 4e6f 6465 3a20 7665 7273 696f 6e2c , Node: version, │ │ │ │ +00281c50: 204e 6578 743a 2044 6174 6162 6173 652c Next: Database, │ │ │ │ +00281c60: 2050 7265 763a 2065 6e76 6972 6f6e 6d65 Prev: environme │ │ │ │ +00281c70: 6e74 2c20 5570 3a20 7379 7374 656d 2066 nt, Up: system f │ │ │ │ +00281c80: 6163 696c 6974 6965 730a 0a76 6572 7369 acilities..versi │ │ │ │ +00281c90: 6f6e 202d 2d20 696e 666f 726d 6174 696f on -- informatio │ │ │ │ +00281ca0: 6e20 6162 6f75 7420 7468 6973 2076 6572 n about this ver │ │ │ │ +00281cb0: 7369 6f6e 206f 6620 7468 6520 7072 6f67 sion of the prog │ │ │ │ +00281cc0: 7261 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ram.************ │ │ │ │ +00281cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00281cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00281d00: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00281d10: 2020 7665 7273 696f 6e0a 2020 2a20 436f version. * Co │ │ │ │ +00281d20: 6e73 6571 7565 6e63 6573 3a0a 2020 2020 nsequences:. │ │ │ │ +00281d30: 2020 2a20 6120 2a6e 6f74 6520 6861 7368 * a *note hash │ │ │ │ +00281d40: 2074 6162 6c65 3a20 4861 7368 5461 626c table: HashTabl │ │ │ │ +00281d50: 652c 2064 6573 6372 6962 696e 6720 7468 e, describing th │ │ │ │ +00281d60: 6973 2076 6572 7369 6f6e 206f 6620 7468 is version of th │ │ │ │ +00281d70: 6520 7072 6f67 7261 6d0a 0a44 6573 6372 e program..Descr │ │ │ │ +00281d80: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00281d90: 3d3d 0a0a 5468 6520 7661 6c75 6573 2073 ==..The values s │ │ │ │ +00281da0: 746f 7265 6420 696e 2074 6869 7320 6861 tored in this ha │ │ │ │ +00281db0: 7368 2074 6162 6c65 2064 6570 656e 6420 sh table depend │ │ │ │ +00281dc0: 6f6e 2074 6865 2073 6f75 7263 6520 636f on the source co │ │ │ │ +00281dd0: 6465 2076 6572 7369 6f6e 2074 6865 0a61 de version the.a │ │ │ │ +00281de0: 7263 6869 7465 6374 7572 6520 666f 7220 rchitecture for │ │ │ │ +00281df0: 7768 6963 6820 7468 6520 7072 6f67 7261 which the progra │ │ │ │ +00281e00: 6d20 7761 7320 636f 6d70 696c 6564 2c20 m was compiled, │ │ │ │ +00281e10: 616e 6420 7468 6520 6c69 6272 6172 6965 and the librarie │ │ │ │ +00281e20: 7320 2862 6f74 6820 7374 6174 6963 0a61 s (both static.a │ │ │ │ +00281e30: 6e64 2064 796e 616d 6963 2920 6167 6169 nd dynamic) agai │ │ │ │ +00281e40: 6e73 7420 7768 6963 6820 7468 6520 7072 nst which the pr │ │ │ │ +00281e50: 6f67 7261 6d20 6973 206c 696e 6b65 642e ogram is linked. │ │ │ │ +00281e60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00281e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00281e80: 2d2d 2d2d 2d2b 0a7c 6931 203a 2076 6572 -----+.|i1 : ver │ │ │ │ -00281e90: 7369 6f6e 2020 2020 2020 2020 2020 2020 sion │ │ │ │ -00281ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00281ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00281eb0: 0a7c 6931 203a 2076 6572 7369 6f6e 2020 .|i1 : version │ │ │ │ 00281ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00281ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00281ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00281f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00281f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281f20: 2020 2020 207c 0a7c 6f31 203d 2048 6173 |.|o1 = Has │ │ │ │ -00281f30: 6854 6162 6c65 7b22 6172 6368 6974 6563 hTable{"architec │ │ │ │ -00281f40: 7475 7265 2220 3d3e 2078 3836 5f36 3420 ture" => x86_64 │ │ │ │ -00281f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00281f80: 2020 2020 2020 2022 626f 6f73 7420 7665 "boost ve │ │ │ │ -00281f90: 7273 696f 6e22 203d 3e20 315f 3833 2020 rsion" => 1_83 │ │ │ │ -00281fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00281fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00281fd0: 2020 2020 2020 2022 6275 696c 6422 203d "build" = │ │ │ │ -00281fe0: 3e20 7838 365f 3634 2d70 632d 6c69 6e75 > x86_64-pc-linu │ │ │ │ -00281ff0: 782d 676e 7520 2020 2020 2020 2020 2020 x-gnu │ │ │ │ -00282000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282020: 2020 2020 2020 2022 636f 6d70 696c 6520 "compile │ │ │ │ -00282030: 6e6f 6465 206e 616d 6522 203d 3e20 6d32 node name" => m2 │ │ │ │ -00282040: 2d63 6f6d 7069 6c65 2d6e 6f64 6520 2020 -compile-node │ │ │ │ -00282050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282060: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282070: 2020 2020 2020 2022 636f 6d70 696c 6520 "compile │ │ │ │ -00282080: 7469 6d65 2220 3d3e 2044 6563 2031 3420 time" => Dec 14 │ │ │ │ -00282090: 3230 3235 2c20 3134 3a30 393a 3533 2020 2025, 14:09:53 │ │ │ │ -002820a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002820b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002820c0: 2020 2020 2020 2022 636f 6d70 696c 6572 "compiler │ │ │ │ -002820d0: 2220 3d3e 2067 6363 2031 352e 322e 3020 " => gcc 15.2.0 │ │ │ │ -002820e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002820f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282110: 2020 2020 2020 2022 636f 6e66 6967 7572 "configur │ │ │ │ -00282120: 6520 6172 6775 6d65 6e74 7322 203d 3e20 e arguments" => │ │ │ │ -00282130: 2027 2d2d 6275 696c 643d 7838 365f 3634 '--build=x86_64 │ │ │ │ -00282140: 2d6c 696e 7578 2d67 6e75 2720 272d 2d70 -linux-gnu' '--p │ │ │ │ -00282150: 7265 6669 787c 0a7c 2020 2020 2020 2020 refix|.| │ │ │ │ -00282160: 2020 2020 2020 2022 6569 6765 6e20 7665 "eigen ve │ │ │ │ -00282170: 7273 696f 6e22 203d 3e20 332e 342e 3020 rsion" => 3.4.0 │ │ │ │ -00282180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002821a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002821b0: 2020 2020 2020 2022 656e 6469 616e 6e65 "endianne │ │ │ │ -002821c0: 7373 2220 3d3e 2064 6362 6120 2020 2020 ss" => dcba │ │ │ │ -002821d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002821e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002821f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282200: 2020 2020 2020 2022 6578 6563 7574 6162 "executab │ │ │ │ -00282210: 6c65 2065 7874 656e 7369 6f6e 2220 3d3e le extension" => │ │ │ │ -00282220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282250: 2020 2020 2020 2022 6661 6374 6f72 7920 "factory │ │ │ │ -00282260: 7665 7273 696f 6e22 203d 3e20 342e 342e version" => 4.4. │ │ │ │ -00282270: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00282280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002822a0: 2020 2020 2020 2022 6666 6c61 735f 6666 "fflas_ff │ │ │ │ -002822b0: 7061 636b 2076 6572 7369 6f6e 2220 3d3e pack version" => │ │ │ │ -002822c0: 2032 2e35 2e30 2020 2020 2020 2020 2020 2.5.0 │ │ │ │ -002822d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002822e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002822f0: 2020 2020 2020 2022 666c 696e 7420 7665 "flint ve │ │ │ │ -00282300: 7273 696f 6e22 203d 3e20 332e 342e 3020 rsion" => 3.4.0 │ │ │ │ -00282310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282340: 2020 2020 2020 2022 6670 6c6c 6c20 7665 "fplll ve │ │ │ │ -00282350: 7273 696f 6e22 203d 3e20 352e 352e 3020 rsion" => 5.5.0 │ │ │ │ -00282360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282390: 2020 2020 2020 2022 6672 6f62 6279 2076 "frobby v │ │ │ │ -002823a0: 6572 7369 6f6e 2220 3d3e 2030 2e39 2e35 ersion" => 0.9.5 │ │ │ │ -002823b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002823c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002823d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002823e0: 2020 2020 2020 2022 6763 2076 6572 7369 "gc versi │ │ │ │ -002823f0: 6f6e 2220 3d3e 2038 2e32 2e31 3020 2020 on" => 8.2.10 │ │ │ │ -00282400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282420: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282430: 2020 2020 2020 2022 6764 626d 2076 6572 "gdbm ver │ │ │ │ -00282440: 7369 6f6e 2220 3d3e 2047 4442 4d20 7665 sion" => GDBM ve │ │ │ │ -00282450: 7273 696f 6e20 312e 3236 2e20 3330 2f30 rsion 1.26. 30/0 │ │ │ │ -00282460: 372f 3230 3235 2020 2020 2020 2020 2020 7/2025 │ │ │ │ -00282470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282480: 2020 2020 2020 2022 6769 7420 6272 616e "git bran │ │ │ │ -00282490: 6368 2220 3d3e 2073 7461 626c 6520 2020 ch" => stable │ │ │ │ -002824a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002824b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002824c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002824d0: 2020 2020 2020 2022 6769 7420 6465 7363 "git desc │ │ │ │ -002824e0: 7269 7074 696f 6e22 203d 3e20 7265 6c65 ription" => rele │ │ │ │ -002824f0: 6173 652d 312e 3235 2e31 3120 2020 2020 ase-1.25.11 │ │ │ │ -00282500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282520: 2020 2020 2020 2022 676d 7020 7665 7273 "gmp vers │ │ │ │ -00282530: 696f 6e22 203d 3e20 362e 332e 3020 2020 ion" => 6.3.0 │ │ │ │ -00282540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282570: 2020 2020 2020 2022 686f 7374 2220 3d3e "host" => │ │ │ │ -00282580: 2078 3836 5f36 342d 7063 2d6c 696e 7578 x86_64-pc-linux │ │ │ │ -00282590: 2d67 6e75 2020 2020 2020 2020 2020 2020 -gnu │ │ │ │ -002825a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002825b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002825c0: 2020 2020 2020 2022 6973 7375 6522 203d "issue" = │ │ │ │ -002825d0: 3e20 4465 6269 616e 2d66 6f72 6b79 2020 > Debian-forky │ │ │ │ -002825e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002825f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282600: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282610: 2020 2020 2020 2022 6c61 7061 636b 2076 "lapack v │ │ │ │ -00282620: 6572 7369 6f6e 2220 3d3e 2033 2e31 322e ersion" => 3.12. │ │ │ │ -00282630: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00282640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282650: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282660: 2020 2020 2020 2022 6c69 6266 6669 2076 "libffi v │ │ │ │ -00282670: 6572 7369 6f6e 2220 3d3e 2033 2e35 2e32 ersion" => 3.5.2 │ │ │ │ -00282680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002826a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002826b0: 2020 2020 2020 2022 4d32 206e 616d 6522 "M2 name" │ │ │ │ -002826c0: 203d 3e20 4d32 2020 2020 2020 2020 2020 => M2 │ │ │ │ -002826d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002826e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002826f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282700: 2020 2020 2020 2022 4d32 2073 7566 6669 "M2 suffi │ │ │ │ -00282710: 7822 203d 3e20 2020 2020 2020 2020 2020 x" => │ │ │ │ -00282720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282740: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282750: 2020 2020 2020 2022 6d61 6368 696e 6522 "machine" │ │ │ │ -00282760: 203d 3e20 7838 365f 3634 2d4c 696e 7578 => x86_64-Linux │ │ │ │ -00282770: 2d44 6562 6961 6e2d 666f 726b 7920 2020 -Debian-forky │ │ │ │ -00282780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002827a0: 2020 2020 2020 2022 6d61 7468 6963 2076 "mathic v │ │ │ │ -002827b0: 6572 7369 6f6e 2220 3d3e 2031 2e31 2020 ersion" => 1.1 │ │ │ │ -002827c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002827d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002827e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002827f0: 2020 2020 2020 2022 6d61 7468 6963 6762 "mathicgb │ │ │ │ -00282800: 2076 6572 7369 6f6e 2220 3d3e 2031 2e31 version" => 1.1 │ │ │ │ -00282810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282840: 2020 2020 2020 2022 6d65 6d74 6169 6c6f "memtailo │ │ │ │ -00282850: 7220 7665 7273 696f 6e22 203d 3e20 312e r version" => 1. │ │ │ │ -00282860: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00282870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282890: 2020 2020 2020 2022 6d70 6669 2076 6572 "mpfi ver │ │ │ │ -002828a0: 7369 6f6e 2220 3d3e 2031 2e35 2e34 2020 sion" => 1.5.4 │ │ │ │ -002828b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002828c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002828d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002828e0: 2020 2020 2020 2022 6d70 6672 2076 6572 "mpfr ver │ │ │ │ -002828f0: 7369 6f6e 2220 3d3e 2034 2e32 2e32 2020 sion" => 4.2.2 │ │ │ │ -00282900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282930: 2020 2020 2020 2022 6d70 736f 6c76 6520 "mpsolve │ │ │ │ -00282940: 7665 7273 696f 6e22 203d 3e20 332e 322e version" => 3.2. │ │ │ │ -00282950: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00282960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282980: 2020 2020 2020 2022 6d79 7371 6c20 7665 "mysql ve │ │ │ │ -00282990: 7273 696f 6e22 203d 3e20 6e6f 7420 7072 rsion" => not pr │ │ │ │ -002829a0: 6573 656e 7420 2020 2020 2020 2020 2020 esent │ │ │ │ -002829b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002829c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -002829d0: 2020 2020 2020 2022 6e6f 726d 616c 697a "normaliz │ │ │ │ -002829e0: 2076 6572 7369 6f6e 2220 3d3e 2033 2e31 version" => 3.1 │ │ │ │ -002829f0: 312e 3020 2020 2020 2020 2020 2020 2020 1.0 │ │ │ │ -00282a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282a10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282a20: 2020 2020 2020 2022 6e74 6c20 7665 7273 "ntl vers │ │ │ │ -00282a30: 696f 6e22 203d 3e20 3131 2e35 2e31 2020 ion" => 11.5.1 │ │ │ │ -00282a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282a60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282a70: 2020 2020 2020 2022 6f70 6572 6174 696e "operatin │ │ │ │ -00282a80: 6720 7379 7374 656d 2072 656c 6561 7365 g system release │ │ │ │ -00282a90: 2220 3d3e 2036 2e31 322e 3537 2b64 6562 " => 6.12.57+deb │ │ │ │ -00282aa0: 3133 2d61 6d64 3634 2020 2020 2020 2020 13-amd64 │ │ │ │ -00282ab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282ac0: 2020 2020 2020 2022 6f70 6572 6174 696e "operatin │ │ │ │ -00282ad0: 6720 7379 7374 656d 2220 3d3e 204c 696e g system" => Lin │ │ │ │ -00282ae0: 7578 2020 2020 2020 2020 2020 2020 2020 ux │ │ │ │ -00282af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282b00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282b10: 2020 2020 2020 2022 7061 636b 6167 6573 "packages │ │ │ │ -00282b20: 2220 3d3e 2053 7479 6c65 2046 6972 7374 " => Style First │ │ │ │ -00282b30: 5061 636b 6167 6520 4d61 6361 756c 6179 Package Macaulay │ │ │ │ -00282b40: 3244 6f63 2050 6172 7369 6e67 2043 6c61 2Doc Parsing Cla │ │ │ │ -00282b50: 7373 6963 207c 0a7c 2020 2020 2020 2020 ssic |.| │ │ │ │ -00282b60: 2020 2020 2020 2022 706f 696e 7465 7220 "pointer │ │ │ │ -00282b70: 7369 7a65 2220 3d3e 2038 2020 2020 2020 size" => 8 │ │ │ │ -00282b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ba0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282bb0: 2020 2020 2020 2022 7079 7468 6f6e 2076 "python v │ │ │ │ -00282bc0: 6572 7369 6f6e 2220 3d3e 2033 2e31 332e ersion" => 3.13. │ │ │ │ -00282bd0: 3131 2020 2020 2020 2020 2020 2020 2020 11 │ │ │ │ -00282be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282bf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282c00: 2020 2020 2020 2022 7265 6164 6c69 6e65 "readline │ │ │ │ -00282c10: 2076 6572 7369 6f6e 2220 3d3e 2038 2e33 version" => 8.3 │ │ │ │ -00282c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282c50: 2020 2020 2020 2022 7363 7363 7020 7665 "scscp ve │ │ │ │ -00282c60: 7273 696f 6e22 203d 3e20 6e6f 7420 7072 rsion" => not pr │ │ │ │ -00282c70: 6573 656e 7420 2020 2020 2020 2020 2020 esent │ │ │ │ -00282c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282c90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282ca0: 2020 2020 2020 2022 7462 6220 7665 7273 "tbb vers │ │ │ │ -00282cb0: 696f 6e22 203d 3e20 3230 3232 2e31 2020 ion" => 2022.1 │ │ │ │ -00282cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ce0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00282cf0: 2020 2020 2020 2022 5645 5253 494f 4e22 "VERSION" │ │ │ │ -00282d00: 203d 3e20 312e 3235 2e31 3120 2020 2020 => 1.25.11 │ │ │ │ -00282d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282d30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00281f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00281f50: 0a7c 6f31 203d 2048 6173 6854 6162 6c65 .|o1 = HashTable │ │ │ │ +00281f60: 7b22 6172 6368 6974 6563 7475 7265 2220 {"architecture" │ │ │ │ +00281f70: 3d3e 2078 3836 5f36 3420 2020 2020 2020 => x86_64 │ │ │ │ +00281f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00281fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00281fb0: 2022 626f 6f73 7420 7665 7273 696f 6e22 "boost version" │ │ │ │ +00281fc0: 203d 3e20 315f 3833 2020 2020 2020 2020 => 1_83 │ │ │ │ +00281fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00281fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00281ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282000: 2022 6275 696c 6422 203d 3e20 7838 365f "build" => x86_ │ │ │ │ +00282010: 3634 2d70 632d 6c69 6e75 782d 676e 7520 64-pc-linux-gnu │ │ │ │ +00282020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282050: 2022 636f 6d70 696c 6520 6e6f 6465 206e "compile node n │ │ │ │ +00282060: 616d 6522 203d 3e20 6d32 2d63 6f6d 7069 ame" => m2-compi │ │ │ │ +00282070: 6c65 2d6e 6f64 6520 2020 2020 2020 2020 le-node │ │ │ │ +00282080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002820a0: 2022 636f 6d70 696c 6520 7469 6d65 2220 "compile time" │ │ │ │ +002820b0: 3d3e 2044 6563 2031 3420 3230 3235 2c20 => Dec 14 2025, │ │ │ │ +002820c0: 3134 3a30 393a 3533 2020 2020 2020 2020 14:09:53 │ │ │ │ +002820d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002820e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002820f0: 2022 636f 6d70 696c 6572 2220 3d3e 2067 "compiler" => g │ │ │ │ +00282100: 6363 2031 352e 322e 3020 2020 2020 2020 cc 15.2.0 │ │ │ │ +00282110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282140: 2022 636f 6e66 6967 7572 6520 6172 6775 "configure argu │ │ │ │ +00282150: 6d65 6e74 7322 203d 3e20 2027 2d2d 6275 ments" => '--bu │ │ │ │ +00282160: 696c 643d 7838 365f 3634 2d6c 696e 7578 ild=x86_64-linux │ │ │ │ +00282170: 2d67 6e75 2720 272d 2d70 7265 6669 787c -gnu' '--prefix| │ │ │ │ +00282180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282190: 2022 6569 6765 6e20 7665 7273 696f 6e22 "eigen version" │ │ │ │ +002821a0: 203d 3e20 332e 342e 3020 2020 2020 2020 => 3.4.0 │ │ │ │ +002821b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002821c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002821d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002821e0: 2022 656e 6469 616e 6e65 7373 2220 3d3e "endianness" => │ │ │ │ +002821f0: 2064 6362 6120 2020 2020 2020 2020 2020 dcba │ │ │ │ +00282200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282230: 2022 6578 6563 7574 6162 6c65 2065 7874 "executable ext │ │ │ │ +00282240: 656e 7369 6f6e 2220 3d3e 2020 2020 2020 ension" => │ │ │ │ +00282250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282280: 2022 6661 6374 6f72 7920 7665 7273 696f "factory versio │ │ │ │ +00282290: 6e22 203d 3e20 342e 342e 3120 2020 2020 n" => 4.4.1 │ │ │ │ +002822a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002822b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002822c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002822d0: 2022 6666 6c61 735f 6666 7061 636b 2076 "fflas_ffpack v │ │ │ │ +002822e0: 6572 7369 6f6e 2220 3d3e 2032 2e35 2e30 ersion" => 2.5.0 │ │ │ │ +002822f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282320: 2022 666c 696e 7420 7665 7273 696f 6e22 "flint version" │ │ │ │ +00282330: 203d 3e20 332e 342e 3020 2020 2020 2020 => 3.4.0 │ │ │ │ +00282340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282370: 2022 6670 6c6c 6c20 7665 7273 696f 6e22 "fplll version" │ │ │ │ +00282380: 203d 3e20 352e 352e 3020 2020 2020 2020 => 5.5.0 │ │ │ │ +00282390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002823a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002823b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002823c0: 2022 6672 6f62 6279 2076 6572 7369 6f6e "frobby version │ │ │ │ +002823d0: 2220 3d3e 2030 2e39 2e35 2020 2020 2020 " => 0.9.5 │ │ │ │ +002823e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002823f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282400: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282410: 2022 6763 2076 6572 7369 6f6e 2220 3d3e "gc version" => │ │ │ │ +00282420: 2038 2e32 2e31 3020 2020 2020 2020 2020 8.2.10 │ │ │ │ +00282430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282460: 2022 6764 626d 2076 6572 7369 6f6e 2220 "gdbm version" │ │ │ │ +00282470: 3d3e 2047 4442 4d20 7665 7273 696f 6e20 => GDBM version │ │ │ │ +00282480: 312e 3236 2e20 3330 2f30 372f 3230 3235 1.26. 30/07/2025 │ │ │ │ +00282490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002824a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002824b0: 2022 6769 7420 6272 616e 6368 2220 3d3e "git branch" => │ │ │ │ +002824c0: 2073 7461 626c 6520 2020 2020 2020 2020 stable │ │ │ │ +002824d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002824e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002824f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282500: 2022 6769 7420 6465 7363 7269 7074 696f "git descriptio │ │ │ │ +00282510: 6e22 203d 3e20 7265 6c65 6173 652d 312e n" => release-1. │ │ │ │ +00282520: 3235 2e31 3120 2020 2020 2020 2020 2020 25.11 │ │ │ │ +00282530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282550: 2022 676d 7020 7665 7273 696f 6e22 203d "gmp version" = │ │ │ │ +00282560: 3e20 362e 332e 3020 2020 2020 2020 2020 > 6.3.0 │ │ │ │ +00282570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002825a0: 2022 686f 7374 2220 3d3e 2078 3836 5f36 "host" => x86_6 │ │ │ │ +002825b0: 342d 7063 2d6c 696e 7578 2d67 6e75 2020 4-pc-linux-gnu │ │ │ │ +002825c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002825d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002825e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002825f0: 2022 6973 7375 6522 203d 3e20 4465 6269 "issue" => Debi │ │ │ │ +00282600: 616e 2d66 6f72 6b79 2020 2020 2020 2020 an-forky │ │ │ │ +00282610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282640: 2022 6c61 7061 636b 2076 6572 7369 6f6e "lapack version │ │ │ │ +00282650: 2220 3d3e 2033 2e31 322e 3020 2020 2020 " => 3.12.0 │ │ │ │ +00282660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282690: 2022 6c69 6266 6669 2076 6572 7369 6f6e "libffi version │ │ │ │ +002826a0: 2220 3d3e 2033 2e35 2e32 2020 2020 2020 " => 3.5.2 │ │ │ │ +002826b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002826c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002826d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002826e0: 2022 4d32 206e 616d 6522 203d 3e20 4d32 "M2 name" => M2 │ │ │ │ +002826f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282730: 2022 4d32 2073 7566 6669 7822 203d 3e20 "M2 suffix" => │ │ │ │ +00282740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282780: 2022 6d61 6368 696e 6522 203d 3e20 7838 "machine" => x8 │ │ │ │ +00282790: 365f 3634 2d4c 696e 7578 2d44 6562 6961 6_64-Linux-Debia │ │ │ │ +002827a0: 6e2d 666f 726b 7920 2020 2020 2020 2020 n-forky │ │ │ │ +002827b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002827c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002827d0: 2022 6d61 7468 6963 2076 6572 7369 6f6e "mathic version │ │ │ │ +002827e0: 2220 3d3e 2031 2e31 2020 2020 2020 2020 " => 1.1 │ │ │ │ +002827f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282820: 2022 6d61 7468 6963 6762 2076 6572 7369 "mathicgb versi │ │ │ │ +00282830: 6f6e 2220 3d3e 2031 2e31 2020 2020 2020 on" => 1.1 │ │ │ │ +00282840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282870: 2022 6d65 6d74 6169 6c6f 7220 7665 7273 "memtailor vers │ │ │ │ +00282880: 696f 6e22 203d 3e20 312e 3120 2020 2020 ion" => 1.1 │ │ │ │ +00282890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002828a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002828b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002828c0: 2022 6d70 6669 2076 6572 7369 6f6e 2220 "mpfi version" │ │ │ │ +002828d0: 3d3e 2031 2e35 2e34 2020 2020 2020 2020 => 1.5.4 │ │ │ │ +002828e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002828f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282900: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282910: 2022 6d70 6672 2076 6572 7369 6f6e 2220 "mpfr version" │ │ │ │ +00282920: 3d3e 2034 2e32 2e32 2020 2020 2020 2020 => 4.2.2 │ │ │ │ +00282930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282960: 2022 6d70 736f 6c76 6520 7665 7273 696f "mpsolve versio │ │ │ │ +00282970: 6e22 203d 3e20 332e 322e 3220 2020 2020 n" => 3.2.2 │ │ │ │ +00282980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002829a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +002829b0: 2022 6d79 7371 6c20 7665 7273 696f 6e22 "mysql version" │ │ │ │ +002829c0: 203d 3e20 6e6f 7420 7072 6573 656e 7420 => not present │ │ │ │ +002829d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002829e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002829f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282a00: 2022 6e6f 726d 616c 697a 2076 6572 7369 "normaliz versi │ │ │ │ +00282a10: 6f6e 2220 3d3e 2033 2e31 312e 3020 2020 on" => 3.11.0 │ │ │ │ +00282a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282a50: 2022 6e74 6c20 7665 7273 696f 6e22 203d "ntl version" = │ │ │ │ +00282a60: 3e20 3131 2e35 2e31 2020 2020 2020 2020 > 11.5.1 │ │ │ │ +00282a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282aa0: 2022 6f70 6572 6174 696e 6720 7379 7374 "operating syst │ │ │ │ +00282ab0: 656d 2072 656c 6561 7365 2220 3d3e 2036 em release" => 6 │ │ │ │ +00282ac0: 2e31 322e 3537 2b64 6562 3133 2d63 6c6f .12.57+deb13-clo │ │ │ │ +00282ad0: 7564 2d61 6d64 3634 2020 2020 2020 207c ud-amd64 | │ │ │ │ +00282ae0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282af0: 2022 6f70 6572 6174 696e 6720 7379 7374 "operating syst │ │ │ │ +00282b00: 656d 2220 3d3e 204c 696e 7578 2020 2020 em" => Linux │ │ │ │ +00282b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282b30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282b40: 2022 7061 636b 6167 6573 2220 3d3e 2053 "packages" => S │ │ │ │ +00282b50: 7479 6c65 2046 6972 7374 5061 636b 6167 tyle FirstPackag │ │ │ │ +00282b60: 6520 4d61 6361 756c 6179 3244 6f63 2050 e Macaulay2Doc P │ │ │ │ +00282b70: 6172 7369 6e67 2043 6c61 7373 6963 207c arsing Classic | │ │ │ │ +00282b80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282b90: 2022 706f 696e 7465 7220 7369 7a65 2220 "pointer size" │ │ │ │ +00282ba0: 3d3e 2038 2020 2020 2020 2020 2020 2020 => 8 │ │ │ │ +00282bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282bd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282be0: 2022 7079 7468 6f6e 2076 6572 7369 6f6e "python version │ │ │ │ +00282bf0: 2220 3d3e 2033 2e31 332e 3131 2020 2020 " => 3.13.11 │ │ │ │ +00282c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282c30: 2022 7265 6164 6c69 6e65 2076 6572 7369 "readline versi │ │ │ │ +00282c40: 6f6e 2220 3d3e 2038 2e33 2020 2020 2020 on" => 8.3 │ │ │ │ +00282c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282c70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282c80: 2022 7363 7363 7020 7665 7273 696f 6e22 "scscp version" │ │ │ │ +00282c90: 203d 3e20 6e6f 7420 7072 6573 656e 7420 => not present │ │ │ │ +00282ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282cd0: 2022 7462 6220 7665 7273 696f 6e22 203d "tbb version" = │ │ │ │ +00282ce0: 3e20 3230 3232 2e31 2020 2020 2020 2020 > 2022.1 │ │ │ │ +00282cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282d10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00282d20: 2022 5645 5253 494f 4e22 203d 3e20 312e "VERSION" => 1. │ │ │ │ +00282d30: 3235 2e31 3120 2020 2020 2020 2020 2020 25.11 │ │ │ │ 00282d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282d80: 2020 2020 207c 0a7c 6f31 203a 2048 6173 |.|o1 : Has │ │ │ │ -00282d90: 6854 6162 6c65 2020 2020 2020 2020 2020 hTable │ │ │ │ -00282da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282db0: 0a7c 6f31 203a 2048 6173 6854 6162 6c65 .|o1 : HashTable │ │ │ │ 00282dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282dd0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00282de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00282df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00282e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00282dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282e00: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00282e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00282e20: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00282e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00282e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00282e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00282e50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282e70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00282e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00282e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282ea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00282ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00282ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282ef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00282f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00282f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282f30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00282f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00282f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282f90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282fb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00282fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00282fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00282fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00282fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00282fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00282ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283000: 2020 2020 207c 0a7c 3d2f 7573 7227 2027 |.|=/usr' ' │ │ │ │ -00283010: 2d2d 696e 636c 7564 6564 6972 3d24 7b70 --includedir=${p │ │ │ │ -00283020: 7265 6669 787d 2f69 6e63 6c75 6465 2720 refix}/include' │ │ │ │ -00283030: 272d 2d6d 616e 6469 723d 247b 7072 6566 '--mandir=${pref │ │ │ │ -00283040: 6978 2020 2020 2020 2020 2020 2020 2020 ix │ │ │ │ -00283050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00283060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283030: 0a7c 3d2f 7573 7227 2027 2d2d 696e 636c .|=/usr' '--incl │ │ │ │ +00283040: 7564 6564 6972 3d24 7b70 7265 6669 787d udedir=${prefix} │ │ │ │ +00283050: 2f69 6e63 6c75 6465 2720 272d 2d6d 616e /include' '--man │ │ │ │ +00283060: 6469 723d 247b 7072 6566 6978 2020 2020 dir=${prefix │ │ │ │ +00283070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002830a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002830a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002830b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002830c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002830d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002830c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002830d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002830e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002830f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002830f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283140: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283190: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002831a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002831b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002831c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002831b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002831c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002831d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002831e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002831e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002831f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283230: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002832a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002832b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002832a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002832b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002832c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002832d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002832d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002832e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002832f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002832f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283320: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002833a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002833a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002833b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002833c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002833c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002833d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002833e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002833f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002833e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002833f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283410: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283460: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002834a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002834b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002834b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002834c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002834d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002834e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002834d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002834e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002834f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283500: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283580: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002835a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002835a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002835b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002835c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002835d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002835c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002835d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002835e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002835f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002835f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283640: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283690: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002836a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002836b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002836c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002836b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002836c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002836d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002836e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002836e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002836f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283780: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002837a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002837b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002837a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002837b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002837c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002837d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002837d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002837e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002837f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002837f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283820: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002838a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002838a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002838b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002838c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002838c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002838d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002838e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002838f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002838e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002838f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283910: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283960: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002839a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002839b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002839b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002839c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002839d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002839e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002839d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002839e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002839f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283a00: 2020 2020 207c 0a7c 4272 6f77 7365 2042 |.|Browse B │ │ │ │ -00283a10: 656e 6368 6d61 726b 2054 6578 7420 5369 enchmark Text Si │ │ │ │ -00283a20: 6d70 6c65 446f 6320 5061 636b 6167 6554 mpleDoc PackageT │ │ │ │ -00283a30: 656d 706c 6174 6520 5361 7475 7261 7469 emplate Saturati │ │ │ │ -00283a40: 6f6e 2020 2020 2020 2020 2020 2020 2020 on │ │ │ │ -00283a50: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00283a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00283a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00283a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00283a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283a30: 0a7c 4272 6f77 7365 2042 656e 6368 6d61 .|Browse Benchma │ │ │ │ +00283a40: 726b 2054 6578 7420 5369 6d70 6c65 446f rk Text SimpleDo │ │ │ │ +00283a50: 6320 5061 636b 6167 6554 656d 706c 6174 c PackageTemplat │ │ │ │ +00283a60: 6520 5361 7475 7261 7469 6f6e 2020 2020 e Saturation │ │ │ │ +00283a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283a80: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00283a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00283aa0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00283ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00283ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00283ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00283ad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283be0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283c10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283c60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283c80: 2020 2020 207c 0a7c 7d2f 7368 6172 652f |.|}/share/ │ │ │ │ -00283c90: 6d61 6e27 2027 2d2d 696e 666f 6469 723d man' '--infodir= │ │ │ │ -00283ca0: 247b 7072 6566 6978 7d2f 7368 6172 652f ${prefix}/share/ │ │ │ │ -00283cb0: 696e 666f 2720 2020 2020 2020 2020 2020 info' │ │ │ │ -00283cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283cb0: 0a7c 7d2f 7368 6172 652f 6d61 6e27 2027 .|}/share/man' ' │ │ │ │ +00283cc0: 2d2d 696e 666f 6469 723d 247b 7072 6566 --infodir=${pref │ │ │ │ +00283cd0: 6978 7d2f 7368 6172 652f 696e 666f 2720 ix}/share/info' │ │ │ │ 00283ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283d00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283eb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283fa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00283fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00283fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00283fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00283fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00283ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00283ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002840a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002840b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002840c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002840b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002840c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002840d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002840e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002840e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002840f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002841a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002841b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002841a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002841b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002841c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002841d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002841d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002841e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002841f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002841f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002842a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002842a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002842b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002842c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002842c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002842d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002842e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002842f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002842e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002842f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002843a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002843b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002843b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002843c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002843d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002843e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002843d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002843e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002843f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002844a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002844a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002844b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002844c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002844d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002844c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002844d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002844e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002844f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002844f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002845a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002845b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002845c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002845b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002845c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002845d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002845e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002845e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002845f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284610: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284660: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284680: 2020 2020 207c 0a7c 2050 7269 6d61 7279 |.| Primary │ │ │ │ -00284690: 4465 636f 6d70 6f73 6974 696f 6e20 466f Decomposition Fo │ │ │ │ -002846a0: 7572 6965 724d 6f74 7a6b 696e 2044 6d6f urierMotzkin Dmo │ │ │ │ -002846b0: 6475 6c65 7320 2020 2020 2020 2020 2020 dules │ │ │ │ -002846c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002846d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -002846e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -002846f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00284700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00284680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002846a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002846b0: 0a7c 2050 7269 6d61 7279 4465 636f 6d70 .| PrimaryDecomp │ │ │ │ +002846c0: 6f73 6974 696f 6e20 466f 7572 6965 724d osition FourierM │ │ │ │ +002846d0: 6f74 7a6b 696e 2044 6d6f 6475 6c65 7320 otzkin Dmodules │ │ │ │ +002846e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002846f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284700: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00284710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00284720: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00284730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00284730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00284740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00284750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002847a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002847a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002847b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002847c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002847c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002847d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002847e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002847f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002847e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002847f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284860: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002848a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002848b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002848b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002848c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002848d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002848e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002848d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002848e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002848f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284900: 2020 2020 207c 0a7c 272d 2d73 7973 636f |.|'--sysco │ │ │ │ -00284910: 6e66 6469 723d 2f65 7463 2720 272d 2d6c nfdir=/etc' '--l │ │ │ │ -00284920: 6f63 616c 7374 6174 6564 6972 3d2f 7661 ocalstatedir=/va │ │ │ │ -00284930: 7227 2027 2020 2020 2020 2020 2020 2020 r' ' │ │ │ │ -00284940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284930: 0a7c 272d 2d73 7973 636f 6e66 6469 723d .|'--sysconfdir= │ │ │ │ +00284940: 2f65 7463 2720 272d 2d6c 6f63 616c 7374 /etc' '--localst │ │ │ │ +00284950: 6174 6564 6972 3d2f 7661 7227 2027 2020 atedir=/var' ' │ │ │ │ 00284960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002849a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002849a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 002849b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002849c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002849d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +002849c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +002849d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 002849e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -002849f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +002849f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284ac0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284ae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284b10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284b50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284b60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284b80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00284b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00284b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00284ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00284bb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00284bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00284bd0: 2020 2020 207c 0a7c 2020 2 TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes